1
|
Trofimov IA, Salnikov OG, Pravdivtsev AN, de Maissin H, Yi AP, Chekmenev EY, Hövener JB, Schmidt AB, Koptyug IV. Through-bond and through-space radiofrequency amplification by stimulated emission of radiation. Commun Chem 2024; 7:235. [PMID: 39414912 PMCID: PMC11484792 DOI: 10.1038/s42004-024-01313-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/20/2024] [Indexed: 10/18/2024] Open
Abstract
Radio Amplification by Stimulated Emission of Radiation (RASER) is a phenomenon observed during nuclear magnetic resonance (NMR) experiments with strongly negatively polarized systems. This phenomenon may be utilized for the production of very narrow NMR lines, background-free NMR spectroscopy, and excitation-free sensing of chemical transformations. Recently, novel methods of producing RASER by ParaHydrogen-Induced Polarization (PHIP) were introduced. Here, we show that pairwise addition of parahydrogen to various propargylic compounds induces RASER activity of other protons beyond those chemically introduced in the reaction. In high-field PHIP, negative polarization initiating RASER is transferred via intramolecular cross-relaxation. When parahydrogen is added in Earth's field followed by adiabatic transfer to a high field, RASER activity of other protons is induced via both J-couplings and cross-relaxation. This through-bond and through-space induction of RASER holds potential for the ongoing development and expansion of RASER applications and can potentially enhance spectral resolution in two-dimensional NMR spectroscopy techniques.
Collapse
Grants
- 122-09-053 EC | European Regional Development Fund (Europski Fond za Regionalni Razvoj)
- R01 EB034197 NIBIB NIH HHS
- PR 1868/3-1, PR 1868/5-1, HO-4602/2-2, HO-4602/3, EXC2167, FOR5042, TRR287 Deutsche Forschungsgemeinschaft (German Research Foundation)
- #SCHM 3694/1, #SCHM 3694/2, #SFB1479, Project ID: 441891347SFB1160 Deutsche Forschungsgemeinschaft (German Research Foundation)
- 01ZX1915C Bundesministerium für Bildung und Forschung (Federal Ministry of Education and Research)
- #22-43-04426 Russian Science Foundation (RSF)
- Postdoctoral Fellow award Wayne State University
- CHE-1904780, NIBIB R01EB034197, NHLBI 1R21HL154032, DOD CDMRP W81XWH-20-10576 National Science Foundation (NSF)
- R21 HL154032 NHLBI NIH HHS
- 13N16448 Bundesministerium für Bildung und Forschung (Federal Ministry of Education and Research)
- German Cancer Consortium (DKTK), the DKTK Joint Funding project “HYPERBOLIC”
Collapse
Affiliation(s)
- Ivan A Trofimov
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, 79106, Germany.
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia.
| | - Oleg G Salnikov
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia.
| | - Andrey N Pravdivtsev
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein and Kiel University, 24118, Kiel, Germany
| | - Henri de Maissin
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, 79106, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), 280 Im Neuenheimer Feld, Heidelberg, 69120, Germany
| | - Anna P Yi
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia
- Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan, 48202, USA
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein and Kiel University, 24118, Kiel, Germany
| | - Andreas B Schmidt
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, 79106, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), 280 Im Neuenheimer Feld, Heidelberg, 69120, Germany
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan, 48202, USA
| | - Igor V Koptyug
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia
| |
Collapse
|
2
|
Fries LM, Hune TLK, Sternkopf S, Mamone S, Schneider KL, Schulz-Heddergott R, Becker D, Glöggler S. Real-Time Metabolic Magnetic Resonance Spectroscopy of Pancreatic and Colon Cancer Tumor-Xenografts with Parahydrogen Hyperpolarized 1- 13C Pyruvate-d 3. Chemistry 2024; 30:e202400187. [PMID: 38887134 DOI: 10.1002/chem.202400187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/29/2024] [Accepted: 06/17/2024] [Indexed: 06/20/2024]
Abstract
Parahydrogen-induced polarization (PHIP) is an emerging technique to enhance the signal of stable isotope metabolic contrast agents for Magnetic Resonance (MR). The objective of this study is to continue establishing 1-13C-pyruvate-d3, signal-enhanced via PHIP, as a hyperpolarized contrast agent, obtained in seconds, to monitor metabolism in human cancer. Our focus was on human pancreatic and colon tumor xenografts. 1-13C-vinylpyruvate-d6 was hydrogenated using parahydrogen. Thereafter, the polarization of the protons was transferred to 13C. Following a workup procedure, the free hyperpolarized 1-13C-pyruvate-d3 was obtained in clean aqueous solution. After injection into animals bearing either pancreatic or colon cancer xenografts, slice-selective MR spectra were acquired and analyzed to determine rate constants of metabolic conversion into lactate and alanine. 1-13C-pyruvate-d3 proved to follow the increased metabolic rate to lactate and alanine in the tumor xenografts.
Collapse
Affiliation(s)
- Lisa M Fries
- NMR Signal Enhancement Group Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - Theresa L K Hune
- NMR Signal Enhancement Group Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - Sonja Sternkopf
- NMR Signal Enhancement Group Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - Salvatore Mamone
- NMR Signal Enhancement Group Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
- Present address: Department of Life, Health and Environmental Science, University of L'Aquila, Via Vetoio, Localita' Coppito, 67100, L'Aquila, Italy
| | - Kim Lucia Schneider
- Department of Molecular Oncology, University Medical Center Göttingen, Justus von Liebig Weg 11, 37077, Göttingen, Germany
- Clinical Research Unit 5002, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - Ramona Schulz-Heddergott
- Department of Molecular Oncology, University Medical Center Göttingen, Justus von Liebig Weg 11, 37077, Göttingen, Germany
- Clinical Research Unit 5002, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - Dorothea Becker
- Department of NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077, Göttingen, Germany
| | - Stefan Glöggler
- NMR Signal Enhancement Group Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
| |
Collapse
|
3
|
Chen S, Zhang L, Li S, Yuan Y, Jiang B, Jiang Z, Zhang X, Zhou X, Liu M. Detecting biomarkers by dynamic nuclear polarization enhanced magnetic resonance. Natl Sci Rev 2024; 11:nwae228. [PMID: 39144741 PMCID: PMC11321254 DOI: 10.1093/nsr/nwae228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/26/2024] [Accepted: 06/16/2024] [Indexed: 08/16/2024] Open
Abstract
Hyperpolarization stands out as a technique capable of significantly enhancing the sensitivity of nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI). Dynamic nuclear polarization (DNP), among various hyperpolarization methods, has gained prominence for its efficacy in real-time monitoring of metabolism and physiology. By administering a hyperpolarized substrate through dissolution DNP (dDNP), the biodistribution and metabolic changes of the DNP agent can be visualized spatiotemporally. This approach proves to be a distinctive and invaluable tool for non-invasively studying cellular metabolism in vivo, particularly in animal models. Biomarkers play a pivotal role in influencing the growth and metastasis of tumor cells by closely interacting with them, and accordingly detecting pathological alterations of these biomarkers is crucial for disease diagnosis and therapy. In recent years, a range of hyperpolarized DNP molecular bioresponsive agents utilizing various nuclei, such as 13C, 15N, 31P, 89Y, etc., have been developed. In this context, we explore how these magnetic resonance signals of nuclear spins enhanced by DNP respond to biomarkers, including pH, metal ions, enzymes, or redox processes. This review aims to offer insights into the design principles of responsive DNP agents, target selection, and the mechanisms of action for imaging. Such discussions aim to propel the future development and application of DNP-based biomedical imaging agents.
Collapse
Affiliation(s)
- Shizhen Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Biomedical Engineering, Hainan University, Haikou 570228, China
| | - Lei Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sha Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaping Yuan
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Jiang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongxing Jiang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xu Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xin Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Biomedical Engineering, Hainan University, Haikou 570228, China
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Salnikov OG, Assaf CD, Yi AP, Duckett SB, Chekmenev EY, Hövener JB, Koptyug IV, Pravdivtsev AN. Modeling Ligand Exchange Kinetics in Iridium Complexes Catalyzing SABRE Nuclear Spin Hyperpolarization. Anal Chem 2024; 96:11790-11799. [PMID: 38976810 PMCID: PMC11270526 DOI: 10.1021/acs.analchem.4c01374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/29/2024] [Accepted: 06/18/2024] [Indexed: 07/10/2024]
Abstract
Large signal enhancements can be obtained for NMR analytes using the process of nuclear spin hyperpolarization. Organometallic complexes that bind parahydrogen can themselves become hyperpolarized. Moreover, if parahydrogen and a to-be-hyperpolarized analyte undergo chemical exchange with the organometallic complex it is possible to catalytically sensitize the detection of the analyte via hyperpolarization transfer through spin-spin coupling in this organometallic complex. This process is called Signal Amplification By Reversible Exchange (SABRE). Signal intensity gains of several orders of magnitude can thus be created for various compounds in seconds. The chemical exchange processes play a defining role in controlling the efficiency of SABRE because the lifetime of the complex must match the spin-spin couplings. Here, we show how analyte dissociation rates in the key model substrates pyridine (the simplest six-membered heterocycle), 4-aminopyridine (a drug), and nicotinamide (an essential vitamin biomolecule) can be examined. This is achieved for the most widely employed SABRE motif that is based on IrIMes-derived catalysts by 1H 1D and 2D exchange NMR spectroscopy techniques. Several kinetic models are evaluated for their accuracy and simplicity. By incorporating variable temperature analysis, the data yields key enthalpies and entropies of activation that are critical for understanding the underlying SABRE catalyst properties and subsequently optimizing behavior through rational chemical design. While several studies of chemical exchange in SABRE have been reported, this work also aims to establish a toolkit on how to quantify chemical exchange in SABRE and ensure that data can be compared reliably.
Collapse
Affiliation(s)
- Oleg G. Salnikov
- International
Tomography Center SB RAS, 3A Institutskaya St., 630090 Novosibirsk, Russia
| | - Charbel D. Assaf
- Section
Biomedical Imaging, Molecular Imaging North Competence Center (MOIN
CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany
| | - Anna P. Yi
- International
Tomography Center SB RAS, 3A Institutskaya St., 630090 Novosibirsk, Russia
- Novosibirsk
State University, 2 Pirogova
St., 630090 Novosibirsk, Russia
| | - Simon B. Duckett
- Centre
for Hyperpolarization in Magnetic Resonance (CHyM), University of York, Heslington YO10 5NY, U.K.
| | - Eduard Y. Chekmenev
- Department
of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute
(KCI), Wayne State University, Detroit, Michigan 48202, United States
| | - Jan-Bernd Hövener
- Section
Biomedical Imaging, Molecular Imaging North Competence Center (MOIN
CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany
| | - Igor V. Koptyug
- International
Tomography Center SB RAS, 3A Institutskaya St., 630090 Novosibirsk, Russia
| | - Andrey N. Pravdivtsev
- Section
Biomedical Imaging, Molecular Imaging North Competence Center (MOIN
CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany
| |
Collapse
|
5
|
Frijia F, Flori A, Giovannetti G, Barison A, Menichetti L, Santarelli MF, Positano V. MRI Application and Challenges of Hyperpolarized Carbon-13 Pyruvate in Translational and Clinical Cardiovascular Studies: A Literature Review. Diagnostics (Basel) 2024; 14:1035. [PMID: 38786333 PMCID: PMC11120300 DOI: 10.3390/diagnostics14101035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/06/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Cardiovascular disease shows, or may even be caused by, changes in metabolism. Hyperpolarized magnetic resonance spectroscopy and imaging is a technique that could assess the role of different aspects of metabolism in heart disease, allowing real-time metabolic flux assessment in vivo. In this review, we introduce the main hyperpolarization techniques. Then, we summarize the use of dedicated radiofrequency 13C coils, and report a state of the art of 13C data acquisition. Finally, this review provides an overview of the pre-clinical and clinical studies on cardiac metabolism in the healthy and diseased heart. We furthermore show what advances have been made to translate this technique into the clinic in the near future and what technical challenges still remain, such as exploring other metabolic substrates.
Collapse
Affiliation(s)
- Francesca Frijia
- Bioengineering Unit, Fondazione Toscana G. Monasterio, 56124 Pisa, Italy; (A.F.); (V.P.)
| | - Alessandra Flori
- Bioengineering Unit, Fondazione Toscana G. Monasterio, 56124 Pisa, Italy; (A.F.); (V.P.)
| | - Giulio Giovannetti
- Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy; (G.G.); (L.M.); (M.F.S.)
| | - Andrea Barison
- Cardiology and Cardiovascular Medicine Unit, Fondazione Toscana G. Monasterio, 56124 Pisa, Italy;
| | - Luca Menichetti
- Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy; (G.G.); (L.M.); (M.F.S.)
| | - Maria Filomena Santarelli
- Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy; (G.G.); (L.M.); (M.F.S.)
| | - Vincenzo Positano
- Bioengineering Unit, Fondazione Toscana G. Monasterio, 56124 Pisa, Italy; (A.F.); (V.P.)
| |
Collapse
|
6
|
Epasto LM, Maimbourg T, Rosso A, Kurzbach D. Unified understanding of the breakdown of thermal mixing dynamic nuclear polarization: The role of temperature and radical concentration. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 362:107670. [PMID: 38603922 DOI: 10.1016/j.jmr.2024.107670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
We reveal an interplay between temperature and radical concentration necessary to establish thermal mixing (TM) as an efficient dynamic nuclear polarization (DNP) mechanism. We conducted DNP experiments by hyperpolarizing widely used DNP samples, i.e., sodium pyruvate-1-13C in water/glycerol mixtures at varying nitroxide radical (TEMPOL) concentrations and microwave irradiation frequencies, measuring proton and carbon-13 spin temperatures. Using a cryogen consumption-free prototype-DNP apparatus, we could probe cryogenic temperatures between 1.5 and 6.5 K, i.e., below and above the boiling point of liquid helium. We identify two mechanisms for the breakdown of TM: (i) Anderson type of quantum localization for low radical concentration, or (ii) quantum Zeno localization occurring at high temperature. This observation allowed us to reconcile the recent diverging observations regarding the relevance of TM as a DNP mechanism by proposing a unifying picture and, consequently, to find a trade-off between radical concentration and electron relaxation times, which offers a pathway to improve experimental DNP performance based on TM.
Collapse
Affiliation(s)
- Ludovica M Epasto
- University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry, Währinger Str. 38, 1090, Vienna, Austria; University of Vienna, Vienna Doctoral School in Chemistry (DoSChem), Währinger Str. 42, 1090, Vienna, Austria
| | - Thibaud Maimbourg
- Université Paris-Saclay, CNRS, CEA, Institut de physique théorique, 91191, Gif-sur-Yvette, France
| | - Alberto Rosso
- Université Paris-Saclay, CNRS, LPTMS, 91405, Orsay, France.
| | - Dennis Kurzbach
- University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry, Währinger Str. 38, 1090, Vienna, Austria; University of Vienna, Vienna Doctoral School in Chemistry (DoSChem), Währinger Str. 42, 1090, Vienna, Austria.
| |
Collapse
|
7
|
Peng Y, Zhang Z, He L, Li C, Liu M. NMR spectroscopy for metabolomics in the living system: recent progress and future challenges. Anal Bioanal Chem 2024; 416:2319-2334. [PMID: 38240793 PMCID: PMC10950998 DOI: 10.1007/s00216-024-05137-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/08/2023] [Accepted: 01/10/2024] [Indexed: 03/21/2024]
Abstract
Metabolism is a fundamental process that underlies human health and diseases. Nuclear magnetic resonance (NMR) techniques offer a powerful approach to identify metabolic processes and track the flux of metabolites at the molecular level in living systems. An in vitro study through in-cell NMR tracks metabolites in real time and investigates protein structures and dynamics in a state close to their most natural environment. This technique characterizes metabolites and proteins involved in metabolic pathways in prokaryotic and eukaryotic cells. In vivo magnetic resonance spectroscopy (MRS) enables whole-organism metabolic monitoring by visualizing the spatial distribution of metabolites and targeted proteins. One limitation of these NMR techniques is the sensitivity, for which a possible improved approach is through isotopic enrichment or hyperpolarization methods, including dynamic nuclear polarization (DNP) and parahydrogen-induced polarization (PHIP). DNP involves the transfer of high polarization from electronic spins of radicals to surrounding nuclear spins for signal enhancements, allowing the detection of low-abundance metabolites and real-time monitoring of metabolic activities. PHIP enables the transfer of nuclear spin polarization from parahydrogen to other nuclei for signal enhancements, particularly in proton NMR, and has been applied in studies of enzymatic reactions and cell signaling. This review provides an overview of in-cell NMR, in vivo MRS, and hyperpolarization techniques, highlighting their applications in metabolic studies and discussing challenges and future perspectives.
Collapse
Affiliation(s)
- Yun Peng
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zeting Zhang
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Lichun He
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Conggang Li
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China.
- Optics Valley Laboratory, Wuhan, 430074, Hubei, China.
| |
Collapse
|
8
|
Batarchuk V, Shepelytskyi Y, Grynko V, Kovacs AH, Hodgson A, Rodriguez K, Aldossary R, Talwar T, Hasselbrink C, Ruset IC, DeBoef B, Albert MS. Hyperpolarized Xenon-129 Chemical Exchange Saturation Transfer (HyperCEST) Molecular Imaging: Achievements and Future Challenges. Int J Mol Sci 2024; 25:1939. [PMID: 38339217 PMCID: PMC10856220 DOI: 10.3390/ijms25031939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/25/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
Molecular magnetic resonance imaging (MRI) is an emerging field that is set to revolutionize our perspective of disease diagnosis, treatment efficacy monitoring, and precision medicine in full concordance with personalized medicine. A wide range of hyperpolarized (HP) 129Xe biosensors have been recently developed, demonstrating their potential applications in molecular settings, and achieving notable success within in vitro studies. The favorable nuclear magnetic resonance properties of 129Xe, coupled with its non-toxic nature, high solubility in biological tissues, and capacity to dissolve in blood and diffuse across membranes, highlight its superior role for applications in molecular MRI settings. The incorporation of reporters that combine signal enhancement from both hyperpolarized 129Xe and chemical exchange saturation transfer holds the potential to address the primary limitation of low sensitivity observed in conventional MRI. This review provides a summary of the various applications of HP 129Xe biosensors developed over the last decade, specifically highlighting their use in MRI. Moreover, this paper addresses the evolution of in vivo applications of HP 129Xe, discussing its potential transition into clinical settings.
Collapse
Affiliation(s)
- Viktoriia Batarchuk
- Chemistry Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada; (V.B.)
- Thunder Bay Regional Health Research Institute, Thunder Bay, ON P7B 6V4, Canada
| | - Yurii Shepelytskyi
- Chemistry Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada; (V.B.)
- Thunder Bay Regional Health Research Institute, Thunder Bay, ON P7B 6V4, Canada
| | - Vira Grynko
- Thunder Bay Regional Health Research Institute, Thunder Bay, ON P7B 6V4, Canada
- Chemistry and Materials Science Program, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Antal Halen Kovacs
- Applied Life Science Program, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Aaron Hodgson
- Physics Program, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Karla Rodriguez
- Chemistry Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada; (V.B.)
| | - Ruba Aldossary
- Thunder Bay Regional Health Research Institute, Thunder Bay, ON P7B 6V4, Canada
| | - Tanu Talwar
- Chemistry Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada; (V.B.)
| | - Carson Hasselbrink
- Chemistry & Biochemistry Department, California Polytechnic State University, San Luis Obispo, CA 93407-005, USA
| | | | - Brenton DeBoef
- Department of Chemistry, University of Rhode Island, Kingston, RI 02881, USA
| | - Mitchell S. Albert
- Chemistry Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada; (V.B.)
- Thunder Bay Regional Health Research Institute, Thunder Bay, ON P7B 6V4, Canada
- Faculty of Medical Sciences, Northern Ontario School of Medicine, Thunder Bay, ON P7B 5E1, Canada
| |
Collapse
|
9
|
Římal V, Bunyatova EI, Štěpánková H. Efficient Scavenging of TEMPOL Radical by Ascorbic Acid in Solution and Related Prolongation of 13C and 1H Nuclear Spin Relaxation Times of the Solute. Molecules 2024; 29:738. [PMID: 38338481 PMCID: PMC10856727 DOI: 10.3390/molecules29030738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/28/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
Dynamic nuclear polarization for nuclear magnetic resonance (NMR) spectroscopy and imaging uses free radicals to strongly enhance the NMR signal of a compound under investigation. At the same time, the radicals shorten significantly its nuclear spin relaxation times which reduces the time window available for the experiments. Radical scavenging can overcome this drawback. Our work presents a detailed study of the reduction of the TEMPOL radical by ascorbic acid in solution by high-resolution NMR. Carbon-13 and hydrogen-1 nuclear spin relaxations are confirmed to be restored to their values without TEMPOL. Reaction mechanism, kinetics, and the influence of pD and viscosity are thoroughly discussed. The detailed investigation conducted in this work should help with choosing suitable concentrations in the samples for dynamic nuclear polarization and optimizing the measurement protocols.
Collapse
Affiliation(s)
- Václav Římal
- Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000 Prague 8, Czech Republic;
| | | | - Helena Štěpánková
- Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000 Prague 8, Czech Republic;
| |
Collapse
|
10
|
Wodtke P, Grashei M, Schilling F. Quo Vadis Hyperpolarized 13C MRI? Z Med Phys 2023:S0939-3889(23)00120-4. [PMID: 38160135 DOI: 10.1016/j.zemedi.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 01/03/2024]
Abstract
Over the last two decades, hyperpolarized 13C MRI has gained significance in both preclinical and clinical studies, hereby relying on technologies like PHIP-SAH (ParaHydrogen-Induced Polarization-Side Arm Hydrogenation), SABRE (Signal Amplification by Reversible Exchange), and dDNP (dissolution Dynamic Nuclear Polarization), with dDNP being applied in humans. A clinical dDNP polarizer has enabled studies across 24 sites, despite challenges like high cost and slow polarization. Parahydrogen-based techniques like SABRE and PHIP offer faster, more cost-efficient alternatives but require molecule-specific optimization. The focus has been on imaging metabolism of hyperpolarized probes, which requires long T1, high polarization and rapid contrast generation. Efforts to establish novel probes, improve acquisition techniques and enhance data analysis methods including artificial intelligence are ongoing. Potential clinical value of hyperpolarized 13C MRI was demonstrated primarily for treatment response assessment in oncology, but also in cardiology, nephrology, hepatology and CNS characterization. In this review on biomedical hyperpolarized 13C MRI, we summarize important and recent advances in polarization techniques, probe development, acquisition and analysis methods as well as clinical trials. Starting from those we try to sketch a trajectory where the field of biomedical hyperpolarized 13C MRI might go.
Collapse
Affiliation(s)
- Pascal Wodtke
- Department of Nuclear Medicine, TUM School of Medicine and Health, Klinikum rechts der Isar of Technical University of Munich, 81675 Munich, Germany; Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, United Kingdom; Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge UK
| | - Martin Grashei
- Department of Nuclear Medicine, TUM School of Medicine and Health, Klinikum rechts der Isar of Technical University of Munich, 81675 Munich, Germany
| | - Franz Schilling
- Department of Nuclear Medicine, TUM School of Medicine and Health, Klinikum rechts der Isar of Technical University of Munich, 81675 Munich, Germany; Munich Institute of Biomedical Engineering, Technical University of Munich, 85748 Garching, Germany; German Cancer Consortium (DKTK), Partner Site Munich and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany.
| |
Collapse
|
11
|
Karabanov A, Kryukov E, Langlais D, Iuga D, Good J. Post-acquisition correction of NMR spectra distorted by dynamic and static field inhomogeneity of cryogen-free magnets. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 353:107494. [PMID: 37348258 DOI: 10.1016/j.jmr.2023.107494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 06/24/2023]
Abstract
Post-acquisition correction of NMR spectra is an important part of NMR spectroscopy that enables refined NMR spectra to be obtained, clean from undesirable out-phasing, broadening and noising. We describe analytical and numerical mathematical methods for post-acquisition correction of NMR spectra distorted by static and dynamic magnetic field inhomogeneity caused by imperfections of main superconducting coils and the cold head operation, typical for cryogen-free magnets. For the dynamic inhomogeneity, we apply a variant of the general reference deconvolution method, complemented with our mathematical analysis of spectral parameters. For the static inhomogeneity, we apply the method of a delayed Fourier transform, also supported with our analytical calculations. We verify our approach by correction processing of high-field experimental liquid-state 1H NMR spectra of water and ethanol as well as solid-state 13C MAS NMR spectra of adamantane and obtain good results for both static and dynamic field distortions. This work complements our previous work on instrumental suppression of dynamic distortions caused by the cold head operation. The results presented contribute well to the general field of processing NMR spectra and serve towards a more extensive use of cryogen-free magnets in high-resolution NMR spectroscopy.
Collapse
Affiliation(s)
| | | | | | - Dinu Iuga
- The University of Warwick, Coventry, UK
| | | |
Collapse
|
12
|
Sezer D. The solid effect of dynamic nuclear polarization in liquids. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2023; 4:153-174. [PMID: 37904804 PMCID: PMC10583289 DOI: 10.5194/mr-4-153-2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/23/2023] [Indexed: 11/01/2023]
Abstract
The solid-state effect of dynamic nuclear polarization (DNP) is operative also in viscous liquids where the dipolar interaction between the electronic and nuclear spins is partially averaged. The proper way to quantify the degree of averaging, and thus calculate the efficiency of the effect, should be based on the time-correlation function of the dipolar interaction. Here we use the stochastic Liouville equation formalism to develop a general theoretical description of the solid effect in liquids. The derived expressions can be used with different dipolar correlations functions depending on the assumed motional model. At high magnetic fields, the theory predicts DNP enhancements at small offsets, far from the classical solid-effect positions that are displaced by one nuclear Larmor frequency from the electronic resonance. The predictions are in quantitative agreement with such enhancement peaks observed at 9.4 T . These non-canonical peaks are not due to thermal mixing or the cross effect but exactly follow the dispersive component of the EPR line.
Collapse
Affiliation(s)
- Deniz Sezer
- Institute of Physical and Theoretical Chemistry, Goethe University, 60438 Frankfurt am Main, Germany
| |
Collapse
|
13
|
Angelovski G, Tickner BJ, Wang G. Opportunities and challenges with hyperpolarized bioresponsive probes for functional imaging using magnetic resonance. Nat Chem 2023; 15:755-763. [PMID: 37264100 DOI: 10.1038/s41557-023-01211-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 04/19/2023] [Indexed: 06/03/2023]
Abstract
The development of hyperpolarized bioresponsive probes for magnetic resonance imaging (MRI) applications is an emerging and rapidly growing topic in chemistry. A wide range of hyperpolarized molecular biosensors for functional MRI have been developed in recent years. These probes comprise many different types of small-molecule reporters that can be hyperpolarized using dissolution dynamic nuclear polarization and parahydrogen-induced polarization or xenon-chelated macromolecular conjugates hyperpolarized using spin-exchange optical pumping. In this Perspective, we discuss how the amplified magnetic resonance signals of these agents are responsive to biologically relevant stimuli such as target proteins, reactive oxygen species, pH or metal ions. We examine how functional MRI using these systems allows a great number of biological processes to be monitored rapidly. Consequently, hyperpolarized bioresponsive probes may play a critical role in functional molecular imaging for observing physiology and pathology in real time.
Collapse
Affiliation(s)
- Goran Angelovski
- Laboratory of Molecular and Cellular Neuroimaging, International Center for Primate Brain Research, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, People's Republic of China.
| | - Ben J Tickner
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, York, UK
- Department of Chemical and Biological Physics, Faculty of Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Gaoji Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| |
Collapse
|
14
|
MacCulloch K, Browning A, TomHon P, Lehmkuhl S, Chekmenev EY, Theis T. Parahydrogen in Reversible Exchange Induces Long-Lived 15N Hyperpolarization of Anticancer Drugs Anastrozole and Letrozole. Anal Chem 2023; 95:7822-7829. [PMID: 37163687 PMCID: PMC10939174 DOI: 10.1021/acs.analchem.2c04817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Hyperpolarization modalities overcome the sensitivity limitations of NMR and unlock new applications. Signal amplification by reversible exchange (SABRE) is a particularly cheap, quick, and robust hyperpolarization modality. Here, we employ SABRE for simultaneous chemical exchange of parahydrogen and nitrile-containing anticancer drugs (letrozole or anastrozole) to enhance 15N polarization. Distinct substrates require unique optimal parameter sets, including temperature, magnetic field, or a shaped magnetic field profile. The fine tuning of these parameters for individual substrates is demonstrated here to maximize 15N polarization. After optimization, including the usage of pulsed μT fields, the 15N nuclei on common anticancer drugs, letrozole and anastrozole, can be polarized within 1-2 min. The hyperpolarization can exceed 10%, corresponding to 15N signal enhancement of over 280,000-fold at a clinically relevant magnetic field of 1 T. This sensitivity gain enables polarization studies at naturally abundant 15N enrichment level (0.4%). Moreover, the nitrile 15N sites enable long-lasting polarization storage with [15N]T1 over 9 min, enabling signal detection from a single hyperpolarization cycle for over 30 min.
Collapse
Affiliation(s)
- Keilian MacCulloch
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Austin Browning
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Patrick TomHon
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Sören Lehmkuhl
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Eduard Y. Chekmenev
- Department of Chemistry, Wayne State University, Detroit, MI 48202, United States
- Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, MI 48202, United States
- Russian Academy of Sciences, Leninskiy Prospekt 14, 119991 Moscow, Russia
| | - Thomas Theis
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27606, United States
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, North Carolina 27606, United States
- Department of Physics, North Carolina State University, Raleigh, NC 27606, United States
| |
Collapse
|
15
|
Lê TP, Hyacinthe JN, Capozzi A. Multi-sample/multi-nucleus parallel polarization and monitoring enabled by a fluid path technology compatible cryogenic probe for dissolution dynamic nuclear polarization. Sci Rep 2023; 13:7962. [PMID: 37198242 DOI: 10.1038/s41598-023-34958-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023] Open
Abstract
Low throughput is one of dissolution Dynamic Nuclear Polarization (dDNP) main shortcomings. Especially for clinical and preclinical applications, where direct 13C nuclei polarization is usually pursued, it takes hours to generate one single hyperpolarized (HP) sample. Being able to hyperpolarize more samples at once represents a clear advantage and can expand the range and complexity of the applications. In this work, we present the design and performance of a highly versatile and customizable dDNP cryogenic probe, herein adapted to a 5 T "wet" preclinical polarizer, that can accommodate up to three samples at once and, most importantly, it is capable of monitoring the solid-state spin dynamics of each sample separately, regardless of the kind of radical used and the nuclear species of interest. Within 30 min, the system was able to dispense three HP solutions with high repeatability across the channels (30.0 ± 1.2% carbon polarization for [1-13C]pyruvic acid doped with trityl radical). Moreover, we tested multi-nucleus NMR capability by polarizing and monitoring simultaneously 13C, 1H and 129Xe. Finally, we implemented [1-13C]lactate/[1-13C]pyruvate polarization and back-to-back dissolution and injection in a healthy mouse model to perform multiple-substrate HP Magnetic Resonance Spectroscopy (MRS) at 14.1 T.
Collapse
Affiliation(s)
- Thanh Phong Lê
- LIFMET, Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Station 6, 1015, Lausanne, Switzerland
| | - Jean-Noël Hyacinthe
- LIFMET, Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Station 6, 1015, Lausanne, Switzerland
- Image Guided Intervention Laboratory, Department of Radiology and Medical Informatics, University of Geneva, 4 Rue Gabrielle - Perret - Gentil, 1211, Geneva, Switzerland
- Geneva School of Health Sciences, HES-SO University of Applied Sciences and Arts Western Switzerland, 47 Avenue de Champel, 1206, Geneva, Switzerland
| | - Andrea Capozzi
- LIFMET, Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Station 6, 1015, Lausanne, Switzerland.
- HYPERMAG, Department of Health Technology, Technical University of Denmark, Building 349, 2800, Kgs Lyngby, Denmark.
| |
Collapse
|
16
|
Kryukov E, Karabanov A, Langlais D, Iuga D, Reckless R, Good J. Cryogen-free 400 MHz (9.4 T) solid state MAS NMR system with liquid state NMR potential. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2023; 125:101873. [PMID: 37172429 DOI: 10.1016/j.ssnmr.2023.101873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/24/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
We show that the temporal magnetic field distortion generated by the Cold Head operation can be removed and high quality Solid-State Magic Angle Spinning NMR results can be obtained with a cryogen-free magnet. The compact design of the cryogen-free magnets allows for the probe to be inserted either from the bottom (as in most NMR systems) or, more conveniently, from the top. The magnetic field settling time can be made as short as an hour after a field ramp. Therefore, a single cryogen-free magnet can be used at different fixed fields. The magnetic field can be changed every day without compromising the measurement resolution.
Collapse
Affiliation(s)
| | | | | | - Dinu Iuga
- The University of Warwick, Coventry, UK
| | | | | |
Collapse
|
17
|
Eills J, Budker D, Cavagnero S, Chekmenev EY, Elliott SJ, Jannin S, Lesage A, Matysik J, Meersmann T, Prisner T, Reimer JA, Yang H, Koptyug IV. Spin Hyperpolarization in Modern Magnetic Resonance. Chem Rev 2023; 123:1417-1551. [PMID: 36701528 PMCID: PMC9951229 DOI: 10.1021/acs.chemrev.2c00534] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Indexed: 01/27/2023]
Abstract
Magnetic resonance techniques are successfully utilized in a broad range of scientific disciplines and in various practical applications, with medical magnetic resonance imaging being the most widely known example. Currently, both fundamental and applied magnetic resonance are enjoying a major boost owing to the rapidly developing field of spin hyperpolarization. Hyperpolarization techniques are able to enhance signal intensities in magnetic resonance by several orders of magnitude, and thus to largely overcome its major disadvantage of relatively low sensitivity. This provides new impetus for existing applications of magnetic resonance and opens the gates to exciting new possibilities. In this review, we provide a unified picture of the many methods and techniques that fall under the umbrella term "hyperpolarization" but are currently seldom perceived as integral parts of the same field. Specifically, before delving into the individual techniques, we provide a detailed analysis of the underlying principles of spin hyperpolarization. We attempt to uncover and classify the origins of hyperpolarization, to establish its sources and the specific mechanisms that enable the flow of polarization from a source to the target spins. We then give a more detailed analysis of individual hyperpolarization techniques: the mechanisms by which they work, fundamental and technical requirements, characteristic applications, unresolved issues, and possible future directions. We are seeing a continuous growth of activity in the field of spin hyperpolarization, and we expect the field to flourish as new and improved hyperpolarization techniques are implemented. Some key areas for development are in prolonging polarization lifetimes, making hyperpolarization techniques more generally applicable to chemical/biological systems, reducing the technical and equipment requirements, and creating more efficient excitation and detection schemes. We hope this review will facilitate the sharing of knowledge between subfields within the broad topic of hyperpolarization, to help overcome existing challenges in magnetic resonance and enable novel applications.
Collapse
Affiliation(s)
- James Eills
- Institute
for Bioengineering of Catalonia, Barcelona
Institute of Science and Technology, 08028Barcelona, Spain
| | - Dmitry Budker
- Johannes
Gutenberg-Universität Mainz, 55128Mainz, Germany
- Helmholtz-Institut,
GSI Helmholtzzentrum für Schwerionenforschung, 55128Mainz, Germany
- Department
of Physics, UC Berkeley, Berkeley, California94720, United States
| | - Silvia Cavagnero
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Eduard Y. Chekmenev
- Department
of Chemistry, Integrative Biosciences (IBio), Karmanos Cancer Institute
(KCI), Wayne State University, Detroit, Michigan48202, United States
- Russian
Academy of Sciences, Moscow119991, Russia
| | - Stuart J. Elliott
- Molecular
Sciences Research Hub, Imperial College
London, LondonW12 0BZ, United Kingdom
| | - Sami Jannin
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Anne Lesage
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Jörg Matysik
- Institut
für Analytische Chemie, Universität
Leipzig, Linnéstr. 3, 04103Leipzig, Germany
| | - Thomas Meersmann
- Sir
Peter Mansfield Imaging Centre, University Park, School of Medicine, University of Nottingham, NottinghamNG7 2RD, United Kingdom
| | - Thomas Prisner
- Institute
of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic
Resonance, Goethe University Frankfurt, , 60438Frankfurt
am Main, Germany
| | - Jeffrey A. Reimer
- Department
of Chemical and Biomolecular Engineering, UC Berkeley, and Materials Science Division, Lawrence Berkeley National
Laboratory, Berkeley, California94720, United States
| | - Hanming Yang
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Igor V. Koptyug
- International Tomography Center, Siberian
Branch of the Russian Academy
of Sciences, 630090Novosibirsk, Russia
| |
Collapse
|
18
|
Abstract
Glycans, carbohydrate molecules in the realm of biology, are present as biomedically important glycoconjugates and a characteristic aspect is that their structures in many instances are branched. In determining the primary structure of a glycan, the sugar components including the absolute configuration and ring form, anomeric configuration, linkage(s), sequence, and substituents should be elucidated. Solution state NMR spectroscopy offers a unique opportunity to resolve all these aspects at atomic resolution. During the last two decades, advancement of both NMR experiments and spectrometer hardware have made it possible to unravel carbohydrate structure more efficiently. These developments applicable to glycans include, inter alia, NMR experiments that reduce spectral overlap, use selective excitations, record tilted projections of multidimensional spectra, acquire spectra by multiple receivers, utilize polarization by fast-pulsing techniques, concatenate pulse-sequence modules to acquire several spectra in a single measurement, acquire pure shift correlated spectra devoid of scalar couplings, employ stable isotope labeling to efficiently obtain homo- and/or heteronuclear correlations, as well as those that rely on dipolar cross-correlated interactions for sequential information. Refined computer programs for NMR spin simulation and chemical shift prediction aid the structural elucidation of glycans, which are notorious for their limited spectral dispersion. Hardware developments include cryogenically cold probes and dynamic nuclear polarization techniques, both resulting in enhanced sensitivity as well as ultrahigh field NMR spectrometers with a 1H NMR resonance frequency higher than 1 GHz, thus improving resolution of resonances. Taken together, the developments have made and will in the future make it possible to elucidate carbohydrate structure in great detail, thereby forming the basis for understanding of how glycans interact with other molecules.
Collapse
Affiliation(s)
- Carolina Fontana
- Departamento
de Química del Litoral, CENUR Litoral Norte, Universidad de la República, Paysandú 60000, Uruguay
| | - Göran Widmalm
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden
| |
Collapse
|
19
|
Picazo-Frutos R, Stern Q, Blanchard JW, Cala O, Ceillier M, Cousin SF, Eills J, Elliott SJ, Jannin S, Budker D. Zero- to Ultralow-Field Nuclear Magnetic Resonance Enhanced with Dissolution Dynamic Nuclear Polarization. Anal Chem 2023; 95:720-729. [PMID: 36563171 DOI: 10.1021/acs.analchem.2c02649] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Zero- to ultralow-field nuclear magnetic resonance is a modality of magnetic resonance experiment which does not require strong superconducting magnets. Contrary to conventional high-field nuclear magnetic resonance, it has the advantage of allowing high-resolution detection of nuclear magnetism through metal as well as within heterogeneous media. To achieve high sensitivity, it is common to couple zero-field nuclear magnetic resonance with hyperpolarization techniques. To date, the most common technique is parahydrogen-induced polarization, which is only compatible with a small number of compounds. In this article, we establish dissolution dynamic nuclear polarization as a versatile method to enhance signals in zero-field nuclear magnetic resonance experiments on sample mixtures of [13C]sodium formate, [1-13C]glycine, and [2-13C]sodium acetate, and our technique is immediately extendable to a broad range of molecules with >1 s relaxation times. We find signal enhancements of up to 11,000 compared with thermal prepolarization in a 2 T permanent magnet. To increase the signal in future experiments, we investigate the relaxation effects of the TEMPOL radicals used for the hyperpolarization process at zero- and ultralow-fields.
Collapse
Affiliation(s)
- Román Picazo-Frutos
- Helmholtz-Institut Mainz, GSI Helmholtzzentrum für Schwerionenforschung, Mainz55128, Germany.,Johannes Gutenberg-Universität Mainz, Mainz55128, Germany
| | - Quentin Stern
- Univ Lyon, CNRS, ENS Lyon, UCBL, Université de Lyon, CRMN UMR 5280, 69100Villeurbanne, France
| | - John W Blanchard
- Helmholtz-Institut Mainz, GSI Helmholtzzentrum für Schwerionenforschung, Mainz55128, Germany
| | - Olivier Cala
- Univ Lyon, CNRS, ENS Lyon, UCBL, Université de Lyon, CRMN UMR 5280, 69100Villeurbanne, France
| | - Morgan Ceillier
- Univ Lyon, CNRS, ENS Lyon, UCBL, Université de Lyon, CRMN UMR 5280, 69100Villeurbanne, France
| | | | - James Eills
- Helmholtz-Institut Mainz, GSI Helmholtzzentrum für Schwerionenforschung, Mainz55128, Germany.,Johannes Gutenberg-Universität Mainz, Mainz55128, Germany.,Institute for Bioengineering of Catalonia, Baldiri Reixac 10-12, Barcelona08028, Spain
| | - Stuart J Elliott
- Univ Lyon, CNRS, ENS Lyon, UCBL, Université de Lyon, CRMN UMR 5280, 69100Villeurbanne, France.,Molecular Sciences Research Hub, Imperial College London, LondonW12 0BZ, U.K
| | - Sami Jannin
- Univ Lyon, CNRS, ENS Lyon, UCBL, Université de Lyon, CRMN UMR 5280, 69100Villeurbanne, France
| | - Dmitry Budker
- Helmholtz-Institut Mainz, GSI Helmholtzzentrum für Schwerionenforschung, Mainz55128, Germany.,Johannes Gutenberg-Universität Mainz, Mainz55128, Germany
| |
Collapse
|
20
|
Salnikov OG, Trofimov IA, Pravdivtsev AN, Them K, Hövener JB, Chekmenev EY, Koptyug IV. Through-Space Multinuclear Magnetic Resonance Signal Enhancement Induced by Parahydrogen and Radiofrequency Amplification by Stimulated Emission of Radiation. Anal Chem 2022; 94:15010-15017. [PMID: 36264746 PMCID: PMC10007960 DOI: 10.1021/acs.analchem.2c02929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hyperpolarized (i.e., polarized far beyond the thermal equilibrium) nuclear spins can result in the radiofrequency amplification by stimulated emission of radiation (RASER) effect. Here, we show the utility of RASER to amplify nuclear magnetic resonance (NMR) signals of solute and solvent molecules in the liquid state. Specifically, parahydrogen-induced RASER was used to spontaneously enhance nuclear spin polarization of protons and heteronuclei (here 19F and 31P) in a wide range of molecules. The magnitude of the effect correlates with the T1 relaxation time of the target nuclear spins. A series of control experiments validate the through-space dipolar mechanism of the RASER-assisted polarization transfer between the parahydrogen-polarized compound and to-be-hyperpolarized nuclei of the target molecule. Frequency-selective saturation of the RASER-active resonances was used to control the RASER and the amplitude of spontaneous polarization transfer. Spin dynamics simulations support our experimental RASER studies. The enhanced NMR sensitivity may benefit various NMR applications such as mixture analysis, metabolomics, and structure determination.
Collapse
Affiliation(s)
- Oleg G. Salnikov
- International Tomography Center SB RAS, 3A Institutskaya St., 630090 Novosibirsk, Russia
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., 630090 Novosibirsk, Russia
| | - Ivan A. Trofimov
- International Tomography Center SB RAS, 3A Institutskaya St., 630090 Novosibirsk, Russia
- Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
| | - Andrey N. Pravdivtsev
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein and Kiel University, 24118 Kiel, Germany
| | - Kolja Them
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein and Kiel University, 24118 Kiel, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein and Kiel University, 24118 Kiel, Germany
| | - Eduard Y. Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
- Russian Academy of Sciences, 14 Leninskiy Pr., 119991 Moscow, Russia
| | - Igor V. Koptyug
- International Tomography Center SB RAS, 3A Institutskaya St., 630090 Novosibirsk, Russia
| |
Collapse
|
21
|
Lê TP, Hyacinthe JN, Capozzi A. How to improve the efficiency of a traditional dissolution dynamic nuclear polarization (dDNP) apparatus: Design and performance of a fluid path compatible dDNP/LOD-ESR probe. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 338:107197. [PMID: 35344922 DOI: 10.1016/j.jmr.2022.107197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Dissolution Dynamic Nuclear Polarization (dDNP) was invented almost twenty years ago. Ever since, hardware advancement has observed 2 trends: the quest for DNP at higher field and, more recently, the development of cryogen free polarizers. Despite the DNP community is slowly migrating towards "dry" systems, many "wet" polarizers are still in use. Traditional DNP polarizers can use up to 100 L of liquid helium per week, but are less sensitive to air contamination and have higher cooling power. These two characteristics make them very versatile when it comes to new methods development. In this study we retrofitted a 5 T/1.15 K "wet" DNP polarizer with the aim of improving cryogenic and DNP performance. We designed, built, and tested a new DNP insert that is compatible with the fluid path (FP) technology and a LOgitudinal Detected Electron Spin Resonance (LOD-ESR) probe to investigate radical properties at real DNP conditions. The new hardware increased the maximum achievable polarization and the polarization rate constant of a [1-13C]pyruvic acid-trityl sample by a factor 1.5. Moreover, the increased liquid He holding time together with the possibility to constantly keep the sample space at low pressure upon sample loading and dissolution allowed us to save about 20 L of liquid He per week.
Collapse
Affiliation(s)
- Thanh Phong Lê
- Geneva School of Health Sciences, HES-SO University of Applied Sciences and Arts Western Switzerland, Avenue de Champel 47, 1206 Geneva, Switzerland; LIFMET, Institute of Physics, École polytechnique fédérale de Lausanne (EPFL), Station 6, 1015 Lausanne, Switzerland
| | - Jean-Noël Hyacinthe
- Geneva School of Health Sciences, HES-SO University of Applied Sciences and Arts Western Switzerland, Avenue de Champel 47, 1206 Geneva, Switzerland; Image Guided Interventions Laboratory, Department of Radiology and Medical Informatics, University of Geneva, Rue Gabrielle-Perret-Gentil 4, 1211 Geneva, Switzerland
| | - Andrea Capozzi
- LIFMET, Institute of Physics, École polytechnique fédérale de Lausanne (EPFL), Station 6, 1015 Lausanne, Switzerland; HYPERMAG, Department of Health Technology, Technical University of Denmark, Building 349, 2800 Kgs Lyngby, Denmark.
| |
Collapse
|
22
|
Abstract
In-cell structural biology aims at extracting structural information about proteins or nucleic acids in their native, cellular environment. This emerging field holds great promise and is already providing new facts and outlooks of interest at both fundamental and applied levels. NMR spectroscopy has important contributions on this stage: It brings information on a broad variety of nuclei at the atomic scale, which ensures its great versatility and uniqueness. Here, we detail the methods, the fundamental knowledge, and the applications in biomedical engineering related to in-cell structural biology by NMR. We finally propose a brief overview of the main other techniques in the field (EPR, smFRET, cryo-ET, etc.) to draw some advisable developments for in-cell NMR. In the era of large-scale screenings and deep learning, both accurate and qualitative experimental evidence are as essential as ever to understand the interior life of cells. In-cell structural biology by NMR spectroscopy can generate such a knowledge, and it does so at the atomic scale. This review is meant to deliver comprehensive but accessible information, with advanced technical details and reflections on the methods, the nature of the results, and the future of the field.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
23
|
Eills J, Hale W, Utz M. Synergies between Hyperpolarized NMR and Microfluidics: A Review. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 128:44-69. [PMID: 35282869 DOI: 10.1016/j.pnmrs.2021.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 06/14/2023]
Abstract
Hyperpolarized nuclear magnetic resonance and lab-on-a-chip microfluidics are two dynamic, but until recently quite distinct, fields of research. Recent developments in both areas increased their synergistic overlap. By microfluidic integration, many complex experimental steps can be brought together onto a single platform. Microfluidic devices are therefore increasingly finding applications in medical diagnostics, forensic analysis, and biomedical research. In particular, they provide novel and powerful ways to culture cells, cell aggregates, and even functional models of entire organs. Nuclear magnetic resonance is a non-invasive, high-resolution spectroscopic technique which allows real-time process monitoring with chemical specificity. It is ideally suited for observing metabolic and other biological and chemical processes in microfluidic systems. However, its intrinsically low sensitivity has limited its application. Recent advances in nuclear hyperpolarization techniques may change this: under special circumstances, it is possible to enhance NMR signals by up to 5 orders of magnitude, which dramatically extends the utility of NMR in the context of microfluidic systems. Hyperpolarization requires complex chemical and/or physical manipulations, which in turn may benefit from microfluidic implementation. In fact, many hyperpolarization methodologies rely on processes that are more efficient at the micro-scale, such as molecular diffusion, penetration of electromagnetic radiation into a sample, or restricted molecular mobility on a surface. In this review we examine the confluence between the fields of hyperpolarization-enhanced NMR and microfluidics, and assess how these areas of research have mutually benefited one another, and will continue to do so.
Collapse
Affiliation(s)
- James Eills
- Institute for Physics, Johannes Gutenberg University, D-55090 Mainz, Germany; GSI Helmholtzzentrum für Schwerionenforschung GmbH, Helmholtz-Institut Mainz, 55128 Mainz, Germany.
| | - William Hale
- Department of Chemistry, University of Florida, 32611, USA
| | - Marcel Utz
- School of Chemistry, University of Southampton, SO17 1BJ, UK.
| |
Collapse
|
24
|
Biedenbänder T, Aladin V, Saeidpour S, Corzilius B. Dynamic Nuclear Polarization for Sensitivity Enhancement in Biomolecular Solid-State NMR. Chem Rev 2022; 122:9738-9794. [PMID: 35099939 DOI: 10.1021/acs.chemrev.1c00776] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Solid-state NMR with magic-angle spinning (MAS) is an important method in structural biology. While NMR can provide invaluable information about local geometry on an atomic scale even for large biomolecular assemblies lacking long-range order, it is often limited by low sensitivity due to small nuclear spin polarization in thermal equilibrium. Dynamic nuclear polarization (DNP) has evolved during the last decades to become a powerful method capable of increasing this sensitivity by two to three orders of magnitude, thereby reducing the valuable experimental time from weeks or months to just hours or days; in many cases, this allows experiments that would be otherwise completely unfeasible. In this review, we give an overview of the developments that have opened the field for DNP-enhanced biomolecular solid-state NMR including state-of-the-art applications at fast MAS and high magnetic field. We present DNP mechanisms, polarizing agents, and sample constitution methods suitable for biomolecules. A wide field of biomolecular NMR applications is covered including membrane proteins, amyloid fibrils, large biomolecular assemblies, and biomaterials. Finally, we present perspectives and recent developments that may shape the field of biomolecular DNP in the future.
Collapse
Affiliation(s)
- Thomas Biedenbänder
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| | - Victoria Aladin
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| | - Siavash Saeidpour
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| | - Björn Corzilius
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| |
Collapse
|
25
|
Kouřil K, Gramberg M, Jurkutat M, Kouřilová H, Meier B. A cryogen-free, semi-automated apparatus for bullet-dynamic nuclear polarization with improved resolution. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2021; 2:815-825. [PMID: 37905208 PMCID: PMC10539728 DOI: 10.5194/mr-2-815-2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/20/2021] [Indexed: 11/01/2023]
Abstract
In dissolution-dynamic nuclear polarization, a hyperpolarized solid is dissolved with a jet of hot solvent. The solution is then transferred to a secondary magnet, where spectra can be recorded with improved sensitivity. In bullet-dynamic nuclear polarization this order is reversed. Pressurized gas is used to rapidly transfer the hyperpolarized solid to the secondary magnet, and the hyperpolarized solid is dissolved only upon arrival. A potential advantage of this approach is that it may avoid excessive dilution and the associated signal loss, in particular for small sample quantities. Previously, we have shown that liquid-state NMR spectra with polarization levels of up to 30 % may be recorded within less than 1 s after the departure of the hyperpolarized solid from the polarizing magnet. The resolution of the recorded spectra however was limited. The system consumed significant amounts of liquid helium, and substantial manual work was required in between experiments to prepare for the next shot. Here, we present a new bullet-DNP (dynamic nuclear polarization) system that addresses these limitations.
Collapse
Affiliation(s)
- Karel Kouřil
- Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Michel Gramberg
- Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Michael Jurkutat
- Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Hana Kouřilová
- Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Benno Meier
- Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
26
|
Salnikov OG, Chukanov NV, Kovtunova LM, Bukhtiyarov VI, Kovtunov KV, Shchepin RV, Koptyug IV, Chekmenev EY. Heterogeneous 1 H and 13 C Parahydrogen-Induced Polarization of Acetate and Pyruvate Esters. Chemphyschem 2021; 22:1389-1396. [PMID: 33929077 PMCID: PMC8249325 DOI: 10.1002/cphc.202100156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/30/2021] [Indexed: 01/01/2023]
Abstract
Magnetic resonance imaging of [1-13 C]hyperpolarized carboxylates (most notably, [1-13 C]pyruvate) allows one to visualize abnormal metabolism in tumors and other pathologies. Herein, we investigate the efficiency of 1 H and 13 C hyperpolarization of acetate and pyruvate esters with ethyl, propyl and allyl alcoholic moieties using heterogeneous hydrogenation of corresponding vinyl, allyl and propargyl precursors in isotopically unlabeled and 1-13 C-enriched forms with parahydrogen over Rh/TiO2 catalysts in methanol-d4 and in D2 O. The maximum obtained 1 H polarization was 0.6±0.2 % (for propyl acetate in CD3 OD), while the highest 13 C polarization was 0.10±0.03 % (for ethyl acetate in CD3 OD). Hyperpolarization of acetate esters surpassed that of pyruvates, while esters with a triple carbon-carbon bond in unsaturated alcoholic moiety were less efficient as parahydrogen-induced polarization precursors than esters with a double bond. Among the compounds studied, the maximum 1 H and 13 C NMR signal intensities were observed for propyl acetate. Ethyl acetate yielded slightly less intense NMR signals which were dramatically greater than those of other esters under study.
Collapse
Affiliation(s)
- Oleg G Salnikov
- International Tomography Center SB RAS, 3 A Institutskaya St., 630090, Novosibirsk, Russia
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Nikita V Chukanov
- International Tomography Center SB RAS, 3 A Institutskaya St., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Larisa M Kovtunova
- International Tomography Center SB RAS, 3 A Institutskaya St., 630090, Novosibirsk, Russia
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Valerii I Bukhtiyarov
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Kirill V Kovtunov
- International Tomography Center SB RAS, 3 A Institutskaya St., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Roman V Shchepin
- Department of Chemistry, Biology, and Health Sciences, South Dakota School of Mines & Technology, 57701, Rapid City, South Dakota, United States
| | - Igor V Koptyug
- International Tomography Center SB RAS, 3 A Institutskaya St., 630090, Novosibirsk, Russia
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, 48202, Detroit, Michigan, United States
- Russian Academy of Sciences, 14 Leninskiy Prospekt, 119991, Moscow, Russia
| |
Collapse
|
27
|
Kress T, Che K, Epasto L, Kozak F, Negroni M, Olsen G, Selimovic A, Kurzbach D. A novel sample handling system for dissolution dynamic nuclear polarization experiments. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2021; 2:387-394. [PMID: 37904780 PMCID: PMC10539747 DOI: 10.5194/mr-2-387-2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/19/2021] [Indexed: 11/01/2023]
Abstract
We present a system for facilitated sample vitrification, melting, and transfer in dissolution dynamic nuclear polarization (DDNP) experiments. In DDNP, a sample is typically hyperpolarized at cryogenic temperatures before dissolution with hot solvent and transfer to a nuclear magnetic resonance (NMR) spectrometer for detection in the liquid state. The resulting signal enhancements can exceed 4 orders of magnitude. However, the sudden temperature jump from cryogenic temperatures close to 1 K to ambient conditions imposes a particular challenge. It is necessary to rapidly melt the sample to avoid a prohibitively fast decay of hyperpolarization. Here, we demonstrate a sample dissolution method that facilitates the temperature jump by eliminating the need to open the cryostat used to cool the sample. This is achieved by inserting the sample through an airlock in combination with a dedicated dissolution system that is inserted through the same airlock shortly before the melting event. The advantages are threefold: (1) the cryostat can be operated continuously at low temperatures. (2) The melting process is rapid as no pressurization steps of the cryostat are required. (3) Blockages of the dissolution system due to freezing of solvents during melting and transfer are minimized.
Collapse
Affiliation(s)
- Thomas Kress
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road,
Cambridge CB2 1EW, UK
| | - Kateryna Che
- Faculty of Chemistry, Institute of Biological
Chemistry, University of Vienna, Währinger Str. 38, Vienna, Austria
| | - Ludovica M. Epasto
- Faculty of Chemistry, Institute of Biological
Chemistry, University of Vienna, Währinger Str. 38, Vienna, Austria
| | - Fanny Kozak
- Faculty of Chemistry, Institute of Biological
Chemistry, University of Vienna, Währinger Str. 38, Vienna, Austria
| | - Mattia Negroni
- Faculty of Chemistry, Institute of Biological
Chemistry, University of Vienna, Währinger Str. 38, Vienna, Austria
| | - Gregory L. Olsen
- Faculty of Chemistry, Institute of Biological
Chemistry, University of Vienna, Währinger Str. 38, Vienna, Austria
| | - Albina Selimovic
- Faculty of Chemistry, Institute of Biological
Chemistry, University of Vienna, Währinger Str. 38, Vienna, Austria
| | - Dennis Kurzbach
- Faculty of Chemistry, Institute of Biological
Chemistry, University of Vienna, Währinger Str. 38, Vienna, Austria
| |
Collapse
|
28
|
Vaeggemose M, F. Schulte R, Laustsen C. Comprehensive Literature Review of Hyperpolarized Carbon-13 MRI: The Road to Clinical Application. Metabolites 2021; 11:metabo11040219. [PMID: 33916803 PMCID: PMC8067176 DOI: 10.3390/metabo11040219] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 01/02/2023] Open
Abstract
This review provides a comprehensive assessment of the development of hyperpolarized (HP) carbon-13 metabolic MRI from the early days to the present with a focus on clinical applications. The status and upcoming challenges of translating HP carbon-13 into clinical application are reviewed, along with the complexity, technical advancements, and future directions. The road to clinical application is discussed regarding clinical needs and technological advancements, highlighting the most recent successes of metabolic imaging with hyperpolarized carbon-13 MRI. Given the current state of hyperpolarized carbon-13 MRI, the conclusion of this review is that the workflow for hyperpolarized carbon-13 MRI is the limiting factor.
Collapse
Affiliation(s)
- Michael Vaeggemose
- GE Healthcare, 2605 Brondby, Denmark;
- MR Research Centre, Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
| | | | - Christoffer Laustsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
- Correspondence:
| |
Collapse
|