1
|
Feng LS, Wang YM, Liu H, Ning B, Yu HB, Li SL, Wang YT, Zhao MJ, Ma J. Hyperactivity in the Hypothalamic-Pituitary-Adrenal Axis: An Invisible Killer for Anxiety and/or Depression in Coronary Artherosclerotic Heart Disease. J Integr Neurosci 2024; 23:222. [PMID: 39735967 DOI: 10.31083/j.jin2312222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 12/31/2024] Open
Abstract
The coexistence of anxiety or depression with coronary heart disease (CHD) is a significant clinical challenge in cardiovascular medicine. Recent studies have indicated that hypothalamic-pituitary-adrenal (HPA) axis activity could be a promising focus in understanding and addressing the development of treatments for comorbid CHD and anxiety or depression. The HPA axis helps to regulate the levels of inflammatory factors, thereby reducing oxidative stress damage, promoting platelet activation, and stabilizing gut microbiota, which enhance the survival and regeneration of neurons, endothelial cells, and other cell types, leading to neuroprotective and cardioprotective benefits. This review addresses the relevance of the HPA axis to the cardiovascular and nervous systems, as well as the latest research advancements regarding its mechanisms of action. The discussion includes a detailed function of the HPA axis in regulating the processes mentioned. Above all, it summarizes the therapeutic potential of HPA axis function as a biomarker for coronary atherosclerotic heart disease combined with anxiety or depression.
Collapse
Affiliation(s)
- Lan-Shuan Feng
- First Clinical Medical College, Shaanxi University of Chinese Medicine, 712046 Xianyang, Shaanxi, China
| | - Yi-Ming Wang
- First Clinical Medical College, Shaanxi University of Chinese Medicine, 712046 Xianyang, Shaanxi, China
| | - Huan Liu
- First Clinical Medical College, Shaanxi University of Chinese Medicine, 712046 Xianyang, Shaanxi, China
- The Department of Traditional Chinese Medicine, the First Affiliated Hospital of the Air Force Military Medical University, 710038 Xi'an, Shaanxi, China
| | - Bo Ning
- First Clinical Medical College, Shaanxi University of Chinese Medicine, 712046 Xianyang, Shaanxi, China
| | - Hu-Bin Yu
- First Clinical Medical College, Shaanxi University of Chinese Medicine, 712046 Xianyang, Shaanxi, China
| | - Shi-Lin Li
- First Clinical Medical College, Shaanxi University of Chinese Medicine, 712046 Xianyang, Shaanxi, China
| | - Yu-Ting Wang
- First Clinical Medical College, Shaanxi University of Chinese Medicine, 712046 Xianyang, Shaanxi, China
- Department of Cardiology, Affiliated Hospital of Shaanxi University of Chinese Medicine, 712000 Xianyang, Shaanxi, China
| | - Ming-Jun Zhao
- First Clinical Medical College, Shaanxi University of Chinese Medicine, 712046 Xianyang, Shaanxi, China
- Department of Cardiology, Affiliated Hospital of Shaanxi University of Chinese Medicine, 712000 Xianyang, Shaanxi, China
| | - Jing Ma
- First Clinical Medical College, Shaanxi University of Chinese Medicine, 712046 Xianyang, Shaanxi, China
- The Department of Traditional Chinese Medicine, the First Affiliated Hospital of the Air Force Military Medical University, 710038 Xi'an, Shaanxi, China
| |
Collapse
|
2
|
Chen H, Jiao Y, Lin C, Fan W, Li L, Li B, Li L, Zeng X, Li Z, Wei H, Zhang Y, Zhou B, Chen C, Ye J, Yang M. Thrombopoietin improves the functions of bone marrow endothelial progenitor cells via METTL16/Akt signalling of haematological patients with chemotherapy-induced thrombocytopenia. Br J Haematol 2024; 205:1532-1545. [PMID: 39189039 DOI: 10.1111/bjh.19722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 08/12/2024] [Indexed: 08/28/2024]
Abstract
Bone marrow endothelial progenitor cells (BM EPCs) are crucial in supporting haematopoietic regeneration, while the BM EPCs of haematological patients with chemotherapy-induced thrombocytopenia (CIT) are unavoidably damaged. Therefore, the present study aimed to examine the effect of thrombopoietin (TPO) on the recovery of BM EPCs of CIT patients and to identify the underlying mechanisms. The cell functions were determined by 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (Dil)-acetylated low-density lipoprotein (Dil-Ac-LDL) uptake and fluorescein isothiocyanate (FITC)-labeled Ulex europaeus agglutinin-I (FITC-UEA-I) binding assay, as well as proliferation, migration and tube formation experiments. Endothelial cells were transfected with METTL16 lentivirus, followed by methylated RNA immunoprecipitation sequencing. Zebrafish with vascular defect was used as the in vivo model. TPO significantly improved the quantity and functions of BM EPCs from CIT patients in vitro and restored the subintestinal vein area of zebrafish with vascular defect in vivo. Mechanically, TPO enhanced the BM EPC functions through Akt signal mediated by METTL16, which was downregulated in BM EPCs of CIT patients and involved in the regulation of endothelial functions. The present study demonstrates that TPO improves the recovery of BM EPCs from CIT patients with haematological malignancies via METTL16/Akt signalling, which provides new insights into the role of TPO in treating CIT in addition to direct megakaryopoiesis.
Collapse
Affiliation(s)
- Hui Chen
- The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, P.R. China
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen, Guangdong, P.R. China
| | - Yingying Jiao
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Chao Lin
- The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, P.R. China
| | - Wenxuan Fan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Lindi Li
- The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, P.R. China
| | - Bo Li
- The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, P.R. China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Shenzhen, Guangdong, P.R. China
| | - Liang Li
- The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, P.R. China
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen, Guangdong, P.R. China
| | - Xiaoyuan Zeng
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Zongpeng Li
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Hongfa Wei
- The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, P.R. China
| | - Yuming Zhang
- Department of Hematology, Hematology Research Institute, Affiliated Hospital of Guangdong Medical University (GDMU), Zhanjiang, China
| | - Benjie Zhou
- The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, P.R. China
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen, Guangdong, P.R. China
| | - Chun Chen
- The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, P.R. China
| | - Jieyu Ye
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Mo Yang
- The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, P.R. China
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen, Guangdong, P.R. China
- Department of Hematology, Hematology Research Institute, Affiliated Hospital of Guangdong Medical University (GDMU), Zhanjiang, China
| |
Collapse
|
3
|
Larionov A, Hammer CM, Fiedler K, Filgueira L. Dynamics of Endothelial Cell Diversity and Plasticity in Health and Disease. Cells 2024; 13:1276. [PMID: 39120307 PMCID: PMC11312403 DOI: 10.3390/cells13151276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024] Open
Abstract
Endothelial cells (ECs) are vital structural units of the cardiovascular system possessing two principal distinctive properties: heterogeneity and plasticity. Endothelial heterogeneity is defined by differences in tissue-specific endothelial phenotypes and their high predisposition to modification along the length of the vascular bed. This aspect of heterogeneity is closely associated with plasticity, the ability of ECs to adapt to environmental cues through the mobilization of genetic, molecular, and structural alterations. The specific endothelial cytoarchitectonics facilitate a quick structural cell reorganization and, furthermore, easy adaptation to the extrinsic and intrinsic environmental stimuli, known as the epigenetic landscape. ECs, as universally distributed and ubiquitous cells of the human body, play a role that extends far beyond their structural function in the cardiovascular system. They play a crucial role in terms of barrier function, cell-to-cell communication, and a myriad of physiological and pathologic processes. These include development, ontogenesis, disease initiation, and progression, as well as growth, regeneration, and repair. Despite substantial progress in the understanding of endothelial cell biology, the role of ECs in healthy conditions and pathologies remains a fascinating area of exploration. This review aims to summarize knowledge and concepts in endothelial biology. It focuses on the development and functional characteristics of endothelial cells in health and pathological conditions, with a particular emphasis on endothelial phenotypic and functional heterogeneity.
Collapse
Affiliation(s)
- Alexey Larionov
- Faculty of Science and Medicine, Anatomy, University of Fribourg, Route Albert-Gockel 1, CH-1700 Fribourg, Switzerland; (C.M.H.); (L.F.)
| | - Christian Manfred Hammer
- Faculty of Science and Medicine, Anatomy, University of Fribourg, Route Albert-Gockel 1, CH-1700 Fribourg, Switzerland; (C.M.H.); (L.F.)
| | - Klaus Fiedler
- Independent Researcher, CH-1700 Fribourg, Switzerland;
| | - Luis Filgueira
- Faculty of Science and Medicine, Anatomy, University of Fribourg, Route Albert-Gockel 1, CH-1700 Fribourg, Switzerland; (C.M.H.); (L.F.)
| |
Collapse
|
4
|
Li Y, Lu X, Cao W, Liu N, Jin X, Li Y, Tang S, Tao L, Zhu Q, Zhu G, Liang H. Exploring the diagnostic value of endothelial cell and angiogenesis-related genes in Hashimoto's thyroiditis based on transcriptomics and single cell RNA sequencing. Arch Biochem Biophys 2024; 757:110013. [PMID: 38670301 DOI: 10.1016/j.abb.2024.110013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
(1) BACKGROUND: Hashimoto's thyroiditis (HT) can cause angiogenesis in the thyroid gland. However, the molecular mechanism of endothelial cells and angiogenesis related genes (ARGs) has not been extensively studied in HT. (2) METHODS: The HRA001684, GSE29315 and GSE163203 datasets were included in this study. Using single-cell analysis, weighted gene co-expression network analysis (WGCNA), functional enrichment analysis, machine learning algorithms and expression analysis for exploration. And receiver operator characteristic (ROC) curves was draw. Gene set enrichment analysis (GSEA) was utilized to investigate the biological function of the biomarkers. Meanwhile, we investigated into the relationship between biomarkers and different types of immune cells. Additionally, the expression of biomarkers in the TCGA-TC dataset was examined and the mRNA-drug interaction network was constructed. (3) RESULTS: We found 14 cell subtypes were obtained in HT samples after single-cell analysis. A total of 5 biomarkers (CD52, CD74, CD79A, HLA-B and RGS1) were derived, and they had excellent diagnostic performance. Then, 27 drugs targeting biomarkers were predicted. The expression analysis showed that CD74 and HLA-B were significantly up-regulated in HT samples. (4) CONCLUSION: In this study, 5 biomarkers (CD52, CD74, CD79A, HLA-B and RGS1) were screened and their expressions in endothelial cells was compared to offer a new reference for the recognition and management of HT.
Collapse
Affiliation(s)
- Yihang Li
- Department of Ultrasound, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650000, PR China; Kunming Medical University, Kunming, Yunnan, 650000, PR China
| | - Xiaokai Lu
- Department of Ultrasound, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650000, PR China
| | - Weihan Cao
- Department of Ultrasound, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650000, PR China
| | - Nianqiu Liu
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Center, Kunming, Yunnan 650000, PR China
| | - Xin Jin
- Department of Ultrasound, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology
| | - Yuting Li
- Department of Ultrasound, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650000, PR China
| | - Shiying Tang
- Department of Ultrasound, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650000, PR China
| | - Ling Tao
- Kunming Medical University, Kunming, Yunnan, 650000, PR China
| | - Qian Zhu
- Kunming Medical University, Kunming, Yunnan, 650000, PR China
| | - Gaohong Zhu
- Department of Nuclear Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650000, PR China.
| | - Hongmin Liang
- Department of Ultrasound, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650000, PR China.
| |
Collapse
|
5
|
Diniz MS, Hiden U, Falcão-Pires I, Oliveira PJ, Sobrevia L, Pereira SP. Fetoplacental endothelial dysfunction in gestational diabetes mellitus and maternal obesity: A potential threat for programming cardiovascular disease. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166834. [PMID: 37541330 DOI: 10.1016/j.bbadis.2023.166834] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/08/2023] [Accepted: 07/27/2023] [Indexed: 08/06/2023]
Abstract
Gestational diabetes mellitus (GDM) and maternal obesity (MO) increase the risk of adverse fetal outcomes, and the incidence of cardiovascular disease later in life. Extensive research has been conducted to elucidate the underlying mechanisms by which GDM and MO program the offspring to disease. This review focuses on the role of fetoplacental endothelial dysfunction in programming the offspring for cardiovascular disease in GDM and MO pregnancies. We discuss how pre-existing maternal health conditions can lead to vascular dysfunction in the fetoplacental unit and the fetus. We also examine the role of fetoplacental endothelial dysfunction in impairing fetal cardiovascular system development and the involvement of nitric oxide and hydrogen sulfide in mediating fetoplacental vascular dysfunction. Furthermore, we suggest that the L-Arginine-Nitric Oxide and the Adenosine-L-Arginine-Nitric Oxide (ALANO) signaling pathways are pertinent targets for research. Despite significant progress in this area, there are still knowledge gaps that need to be addressed in future research.
Collapse
Affiliation(s)
- Mariana S Diniz
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal; Ph.D. Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile.
| | - Ursula Hiden
- Department of Obstetrics and Gynecology, Medical University of Graz, 8063 Graz, Austria; Research Unit Early Life Determinants (ELiD), Medical University of Graz, 8036 Graz, Austria
| | - Inês Falcão-Pires
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Paulo J Oliveira
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville E-41012, Spain; Medical School (Faculty of Medicine), São Paulo State University (UNESP), São Paulo, Brazil; University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, QLD 4029, Australia; Tecnologico de Monterrey, Eutra, The Institute for Obesity Research (IOR), School of Medicine and Health Sciences, Monterrey, Nuevo León, Mexico.
| | - Susana P Pereira
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal; Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal.
| |
Collapse
|
6
|
Chen Y, Wan G, Li Z, Liu X, Zhao Y, Zou L, Liu W. Endothelial progenitor cells in pregnancy-related diseases. Clin Sci (Lond) 2023; 137:1699-1719. [PMID: 37986615 PMCID: PMC10665129 DOI: 10.1042/cs20230853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/09/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023]
Abstract
Placental neovascularization plays a crucial role in fetomaternal circulation throughout pregnancy and is dysregulated in several pregnancy-related diseases, including preeclampsia, gestational diabetes mellitus, and fetal growth restriction. Endothelial progenitor cells (EPCs) are a heterogeneous population of cells that differentiate into mature endothelial cells, which influence vascular homeostasis, neovascularization, and endothelial repair. Since their discovery in 1997 by Asahara et al., the role of EPCs in vascular biology has garnered a lot of interest. However, although pregnancy-related conditions are associated with changes in the number and function of EPCs, the reported findings are conflicting. This review discusses the discovery, isolation, and classification of EPCs and highlights discrepancies between current studies. Overviews of how various diseases affect the numbers and functions of EPCs, the role of EPCs as biomarkers of pregnancy disorders, and the potential therapeutic applications involving EPCs are also provided.
Collapse
Affiliation(s)
- Yangyang Chen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Gui Wan
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zeyun Li
- The First Clinical School of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaoxia Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yin Zhao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Li Zou
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Weifang Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
7
|
Feugray G, Miranda S, Le Cam Duchez V, Bellien J, Billoir P. Endothelial Progenitor Cells in Autoimmune Disorders. Stem Cell Rev Rep 2023; 19:2597-2611. [PMID: 37676423 DOI: 10.1007/s12015-023-10617-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2023] [Indexed: 09/08/2023]
Abstract
Circulating endothelial progenitor cells (EPCs) were first described in 1997 by Asahara et al. as "putative endothelial cells" from human peripheral blood. The study of endothelial progenitors is also intensifying in several pathologies associated with endothelial damage, including diabetes, myocardial infarction, sepsis, pulmonary arterial hypertension, obstructive bronchopneumopathy and transplantation. EPCs have been studied in several autoimmune diseases with endothelial involvement such as systemic lupus erythematosus, thrombotic thrombocytopenic purpura, antineutrophil cytoplasmic antibodies, vasculitis, rheumatoid arthritis, Goujerot-Sjögren and antiphospholipid syndrome. Factors involved in endothelial damage are due to overexpression of pro-inflammatory cytokines and/or autoantibodies. Management of these pathologies, particularly the long-term use of glucocorticoids and methotrexate, promote atherosclerosis. A lack of standardized assessment of the number and function of EPCs represents a serious challenge for the use of EPCs as prognostic markers of cardiovascular diseases (CVD). The objective of this review was to describe EPCs, their properties and their involvement in several autoimmune diseases.
Collapse
Affiliation(s)
- Guillaume Feugray
- UNIROUEN, INSERM U1096 EnVI, CHU Rouen, Department of General Biochemistry, Normandie University, F-76000, Rouen, France
| | - Sébastien Miranda
- UNIROUEN, INSERM U1096, CHU Rouen. Department of Internal Medicine, Normandie University, Rouen, France
| | | | - Jérémy Bellien
- UNIROUEN, INSERM U1096 EnVI, CHU Rouen, Department of Pharmacology, Normandie University, F-76000, Rouen, France
| | - Paul Billoir
- UNIROUEN, INSERM U1096, CHU Rouen. Department of Internal Medicine, Normandie University, Rouen, France.
- Normandy Univ, U1096, Rouen University Hospital, Vascular Hemostasis Unit, Rouen, France.
| |
Collapse
|
8
|
Dudley AC, Griffioen AW. Pathological angiogenesis: mechanisms and therapeutic strategies. Angiogenesis 2023; 26:313-347. [PMID: 37060495 PMCID: PMC10105163 DOI: 10.1007/s10456-023-09876-7] [Citation(s) in RCA: 126] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/26/2023] [Indexed: 04/16/2023]
Abstract
In multicellular organisms, angiogenesis, the formation of new blood vessels from pre-existing ones, is an essential process for growth and development. Different mechanisms such as vasculogenesis, sprouting, intussusceptive, and coalescent angiogenesis, as well as vessel co-option, vasculogenic mimicry and lymphangiogenesis, underlie the formation of new vasculature. In many pathological conditions, such as cancer, atherosclerosis, arthritis, psoriasis, endometriosis, obesity and SARS-CoV-2(COVID-19), developmental angiogenic processes are recapitulated, but are often done so without the normal feedback mechanisms that regulate the ordinary spatial and temporal patterns of blood vessel formation. Thus, pathological angiogenesis presents new challenges yet new opportunities for the design of vascular-directed therapies. Here, we provide an overview of recent insights into blood vessel development and highlight novel therapeutic strategies that promote or inhibit the process of angiogenesis to stabilize, reverse, or even halt disease progression. In our review, we will also explore several additional aspects (the angiogenic switch, hypoxia, angiocrine signals, endothelial plasticity, vessel normalization, and endothelial cell anergy) that operate in parallel to canonical angiogenesis mechanisms and speculate how these processes may also be targeted with anti-angiogenic or vascular-directed therapies.
Collapse
Affiliation(s)
- Andrew C Dudley
- Department of Microbiology, Immunology and Cancer Biology, The University of Virginia, Charlottesville, VA, 22908, USA.
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
9
|
Robertson JO, Erzurum SC, Asosingh K. Pathological Roles for Endothelial Colony-Forming Cells in Neonatal and Adult Lung Disease. Am J Respir Cell Mol Biol 2023; 68:13-22. [PMID: 36215049 PMCID: PMC9817912 DOI: 10.1165/rcmb.2022-0318ps] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/10/2022] [Indexed: 02/05/2023] Open
Abstract
Endothelial colony-forming cells (ECFCs) are vascular resident and circulating endothelial cell subtypes with potent angiogenic capacity, a hierarchy of single-cell clonogenic potentials, and the ability to participate in de novo blood vessel formation and endothelial repair. Existing literature regarding ECFCs in neonatal and adult pulmonary diseases is confounded by the study of ambiguously defined "endothelial progenitor cells," which are often not true ECFCs. This review contrasts adult and fetal ECFCs, discusses the effect of prematurity on ECFCs, and examines their different pathological roles in neonatal and adult pulmonary diseases, such as bronchopulmonary dysplasia, congenital diaphragmatic hernia, pulmonary artery hypertension, pulmonary fibrosis, and chronic obstructive pulmonary disease. Therapeutic potential is also discussed in light of available preclinical data.
Collapse
Affiliation(s)
| | - Serpil C. Erzurum
- Department of Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Kewal Asosingh
- Department of Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
10
|
Han Z, He X, Feng Y, Jiang W, Zhou N, Huang X. Hsp20 Promotes Endothelial Progenitor Cell Angiogenesis via Activation of PI3K/Akt Signaling Pathway under Hypoxia. Tissue Eng Regen Med 2022; 19:1251-1266. [PMID: 36042130 PMCID: PMC9679071 DOI: 10.1007/s13770-022-00481-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/09/2022] [Accepted: 07/13/2022] [Indexed: 10/14/2022] Open
Abstract
BACKGROUND Mandibular distraction osteogenesis (MDO) is a kind of endogenous tissue engineering technology that lengthens the jaw and opens airway so that a patient can breathe safely and comfortably on his or her own. Endothelial progenitor cells (EPCs) are crucial for MDO-related angiogenesis. Moreover, emerging evidence suggests that heat shock protein 20 (Hsp20) modulates angiogenesis under hypoxic conditions. However, the specific role of Hsp20 in EPCs, in the context of MDO, is not yet known. The aim of this study was to explore the expression of Hsp20 during MDO and the effects of Hsp20 on EPCs under hypoxia. METHODS Mandibular distraction osteogenesis and mandibular bone defect (MBD) canine model were established. The expression of CD34, CD133, HIF-1α, and Hsp20 in callus was detected by immunofluorescence on day 14 after surgery. Canine bone marrow EPCs were cultured, with or without optimal cobalt chloride (CoCl2) concentration. Hypoxic effects, caused by CoCl2, were evaluated by means of the cell cycle, cell apoptosis, transwell cell migration, and tube formation assays. The Hsp20/KDR/PI3K/Akt expression levels were evaluated via immunofluorescence, RT-qPCR, and western blot. Next, EPCs were incorporated with either Hsp20-overexpression or Hsp20-siRNA lentivirus. The resulting effects were evaluated as described above. RESULTS CD34, CD133, HIF-1α, and Hsp20 were displayed more positive in the callus of MDO compared with MBD. In addition, hypoxic conditions, generated by 0.1 mM CoCl2, in canine EPCs, accelerated cell proliferation, migration, tube formation, and Hsp20 expression. Hsp20 overexpression in EPCs significantly stimulated cell proliferation, migration, and tube formation, whereas Hsp20 inhibition produced the opposite effect. Additionally, the molecular mechanism was partly dependent on the KDR/PI3K/Akt pathway. CONCLUSION In summary, herein, we present a novel mechanism of Hsp20-mediated regulation of canine EPCs via Akt activation in a hypoxic microenvironment.
Collapse
Affiliation(s)
- Zhiqi Han
- Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, Guangxi, 530021, People's Republic of China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, Guangxi, 530021, People's Republic of China
| | - Xuan He
- Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, Guangxi, 530021, People's Republic of China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, Guangxi, 530021, People's Republic of China
| | - Yuan Feng
- Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, Guangxi, 530021, People's Republic of China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, Guangxi, 530021, People's Republic of China
| | - Weidong Jiang
- Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, Guangxi, 530021, People's Republic of China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, Guangxi, 530021, People's Republic of China
| | - Nuo Zhou
- Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China.
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China.
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, Guangxi, 530021, People's Republic of China.
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, Guangxi, 530021, People's Republic of China.
| | - Xuanping Huang
- Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China.
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China.
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, Guangxi, 530021, People's Republic of China.
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, Guangxi, 530021, People's Republic of China.
| |
Collapse
|
11
|
Ma X, Wang S, Cheng H, Ouyang H, Ma X. Melatonin Attenuates Ischemia/Reperfusion-Induced Oxidative Stress by Activating Mitochondrial Fusion in Cardiomyocytes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7105181. [PMID: 35047108 PMCID: PMC8763517 DOI: 10.1155/2022/7105181] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/20/2021] [Accepted: 10/01/2021] [Indexed: 12/31/2022]
Abstract
Myocardial ischemia/reperfusion (I/R) injury can stimulate mitochondrial reactive oxygen species production. Optic atrophy 1- (OPA1-) induced mitochondrial fusion is an endogenous antioxidative mechanism that preserves the mitochondrial function. In our study, we investigated whether melatonin augments OPA1-dependent mitochondrial fusion and thus maintains redox balance during myocardial I/R injury. In hypoxia/reoxygenation- (H/R-) treated H9C2 cardiomyocytes, melatonin treatment upregulated OPA1 mRNA and protein expression, thereby enhancing mitochondrial fusion. Melatonin also suppressed apoptosis in H/R-treated cardiomyocytes, as evidenced by increased cell viability, diminished caspase-3 activity, and reduced Troponin T secretion; however, silencing OPA1 abolished these effects. H/R treatment augmented mitochondrial ROS production and repressed antioxidative molecule levels, while melatonin reversed these changes in an OPA1-dependent manner. Melatonin also inhibited mitochondrial permeability transition pore opening and maintained the mitochondrial membrane potential, but OPA1 silencing prevented these outcomes. These results illustrate that melatonin administration alleviates cardiomyocyte I/R injury by activating OPA1-induced mitochondrial fusion and inhibiting mitochondrial oxidative stress.
Collapse
Affiliation(s)
- Xiaoling Ma
- Department of Critical Care Medicine, Shijiazhuang People's Hospital, Shijiazhuang, Hebei 050000, China
| | - Shengchi Wang
- Department of Critical Care Medicine, Shijiazhuang People's Hospital, Shijiazhuang, Hebei 050000, China
| | - Hui Cheng
- Department of Critical Care Medicine, Shijiazhuang People's Hospital, Shijiazhuang, Hebei 050000, China
| | - Haichun Ouyang
- Department of Cardiology, The Seventh Affiliated Hospital, Southern Medical University, China
| | - Xiaoning Ma
- Department of Critical Care Medicine, Shijiazhuang People's Hospital, Shijiazhuang, Hebei 050000, China
| |
Collapse
|
12
|
Regulation of endothelial progenitor cell functions during hyperglycemia: new therapeutic targets in diabetic wound healing. J Mol Med (Berl) 2022; 100:485-498. [PMID: 34997250 DOI: 10.1007/s00109-021-02172-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/16/2021] [Accepted: 12/02/2021] [Indexed: 11/09/2022]
Abstract
Diabetes is primarily characterized by hyperglycemia, and its high incidence is often very costly to patients, their families, and national economies. Unsurprisingly, the number and function of endothelial progenitor cells (EPCs) decrease in patients resulting in diabetic wound non-healing. As precursors of endothelial cells (ECs), these cells were discovered in 1997 and found to play an essential role in wound healing. Their function, number, and role in wound healing has been widely investigated. Hitherto, a lot of complex molecular mechanisms have been discovered. In this review, we summarize the mechanisms of how hyperglycemia affects the function and number of EPCs and how the affected cells impact wound healing. We aim to provide a complete summary of the relationship between diabetic hyperglycosemia, EPCs, and wound healing, as well as a better comprehensive platform for subsequent related research.
Collapse
|
13
|
FUNDC1 activates the mitochondrial unfolded protein response to preserve mitochondrial quality control in cardiac ischemia/reperfusion injury. Cell Signal 2022; 92:110249. [DOI: 10.1016/j.cellsig.2022.110249] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 12/28/2021] [Accepted: 01/12/2022] [Indexed: 12/13/2022]
|
14
|
Wang J, Wang X, Du W, Xue Z, Huang W, Guan Z, Wang H. BI-1 ameliorates myocardial injury by activating the mitochondrial unfolded protein response and FUNDC1-related mitophagy in cardiorenal syndrome type 3. Cell Signal 2021; 91:110218. [PMID: 34921980 DOI: 10.1016/j.cellsig.2021.110218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 01/25/2023]
Abstract
It has been suggested that mitochondrial dysfunction underlies the myocardial injury seen following cardiorenal syndrome type 3 (CRS-3). Both mitophagy and the mitochondrial unfolded protein response (UPRmt) are protective programs that preserve mitochondrial homeostasis. Here, we explored whether Bax inhibitor-1 (BI-1) overexpression attenuates CRS-3-related myocardial injury through activation of mitophagy and the UPRmt in cardiomyocytes. Following CRS-3 induction via renal ischemia-reperfusion injury, BI-1 transgenic (BI1TG) mice showed greater preservation of myocardial integrity and relaxation function and less cardiomyocyte apoptosis than wild-type (WT) mice. Moreover, BI-1 overexpression attenuated CRS-3-mediated myocardial inflammation, as indicated by decreased MCP-1 and IL-6 expression and normalized ATP production in cardiomyocytes. After CRS-3 induction, mitophagy was inhibited in cardiomyocytes from WT mice, as indicated by both decreased Fundc1 transcription and mt-Keima fluorescence, and modest activation of the UPRmt, denoted by a slight increase in Atf6 mRNA levels. By contrast, activation of mitophagy and marked UPRmt upregulation were observed in cardiac tissue from BI1TG mice. shRNA-mediated silencing of Fundc1 or Atf6 greatly impaired mitochondrial metabolism and survival in cultured cardiomyocytes overexpressing BI-1. Thus, upregulation of BI-1 expression aimed at activating mitophagy and the UPRmt may represent a useful therapeutic approach for the treatment of CRS-3.
Collapse
Affiliation(s)
- Jin Wang
- Department of Vascular Medicine, Peking University Shougang Hospital, Beijing 100144, China.
| | - Xiaohua Wang
- National Clinical Research Center for Geriatric Diseases, People's Liberation Army General Hospital, Beijing, China
| | - Wenjuan Du
- Laboratory of Radiation Injury Treatment, Medical Innovation Research Division, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Zhe Xue
- Department of Orthopedics, Peking University Shougang Hospital, Beijing 100144, China
| | - Wei Huang
- Department of Vascular Medicine, Peking University Shougang Hospital, Beijing 100144, China
| | - Zhenpeng Guan
- Department of Orthopedics, Peking University Shougang Hospital, Beijing 100144, China
| | - Hongyu Wang
- Department of Vascular Medicine, Peking University Shougang Hospital, Beijing 100144, China.
| |
Collapse
|
15
|
Shi C, Zhang S, Guo C, Tie J. Yap-Hippo Signaling Activates Mitochondrial Protection and Sustains Breast Cancer Viability under Hypoxic Stress. JOURNAL OF ONCOLOGY 2021; 2021:5212721. [PMID: 34567116 PMCID: PMC8463197 DOI: 10.1155/2021/5212721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 11/17/2022]
Abstract
Yes-associated protein (Yap) is a transcriptional regulator that upregulates oncogenes and downregulates tumor repressor genes. In this study, we analyzed protein expression, RNA transcription, and signaling pathways to determine the function and mechanism of Yap in breast cancer survival during hypoxic stress. Yap transcription was drastically upregulated by hypoxia in a time-dependent manner. siRNA-mediated Yap knockdown attenuated breast cancer viability and impaired cell proliferation under hypoxic conditions. Yap knockdown induced mitochondrial stress, including mitochondrial membrane potential reduction, mitochondrial oxidative stress, and ATP exhaustion after exposure to hypoxia. It also repressed mitochondrial protective systems, including mitophagy and mitochondrial fusion upon exposure to hypoxia. Finally, our data showed that Yap knockdown suppresses MCF-7 cell migration by inhibiting F-actin transcription and promoting lamellipodium degradation under hypoxic stress. Taken together, Yap maintenance of mitochondrial function and activation of F-actin/lamellipodium signaling is required for breast cancer survival, migration, and proliferation under hypoxic stress.
Collapse
Affiliation(s)
- Chen Shi
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Siyuan Zhang
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Changkuo Guo
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Jian Tie
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| |
Collapse
|
16
|
Zhang H, Qu X, Han L, Di X. Mst2 Overexpression Inhibits Thyroid Carcinoma Growth and Metastasis by Disrupting Mitochondrial Fitness and Endoplasmic Reticulum Homeostasis. JOURNAL OF ONCOLOGY 2021; 2021:1262291. [PMID: 34557228 PMCID: PMC8455210 DOI: 10.1155/2021/1262291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/27/2021] [Accepted: 08/31/2021] [Indexed: 12/24/2022]
Abstract
Although the incidence of thyroid carcinoma has increased over the past several decades, it has an excellent prognosis and overall 5-year survival, with a stable mortality rate, except in cases with advanced stages or rare malignant tumor types. Biomarkers have emerged as effective targets of molecular therapy against thyroid carcinoma due to their rapid and convenient detection; however, there has been little clinical application. Macrophage stimulating 2 (Mst2) is a proapoptotic protein with implications in carcinogenesis and metastasis. We found that Mst2 overexpression-induced endoplasmic reticulum (ER) stress in MDA-T32 thyroid carcinoma cells, accompanied by elevated caspase-12 activity, increased apoptotic rate, and reduced cell viability. In addition, Mst2 overexpression contributed to mitochondrial damage, as evidenced by increased mitochondrial oxidative stress and activated the mitochondrial apoptotic pathway. Inhibition of the JNK pathway abolished these effects. These results show Mst2 to be a novel tumor suppressor that induces mitochondrial dysfunction and ER stress via the JNK pathway. Thus, Mst2 could potentially serve as a biomarker for developing targeted therapy against thyroid carcinoma.
Collapse
Affiliation(s)
- Haichao Zhang
- Department of Thyroid and Breast Surgery, Tianjin Fourth Central Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Center Clinical College of Tianjin Medical University, Tianjin 300140, China
| | - Xin Qu
- Department of Thyroid and Breast Surgery, Tianjin Fourth Central Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Center Clinical College of Tianjin Medical University, Tianjin 300140, China
| | - Lu Han
- Department of Thyroid and Breast Surgery, Tianjin Fourth Central Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Center Clinical College of Tianjin Medical University, Tianjin 300140, China
| | - Xu Di
- Department of Thyroid and Breast Surgery, Tianjin Fourth Central Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Center Clinical College of Tianjin Medical University, Tianjin 300140, China
| |
Collapse
|
17
|
Abstract
Vascular endothelial cells are highly plastic and show great phenotypic heterogeneity. In recent years, emerging technologies have identified a range of novel endothelial phenotypes and functions. In this Special Issue of Angiogenesis, we present a series of papers from leading experts in the field, highlighting the heterogeneity and plasticity of endothelial cells in health and disease.
Collapse
Affiliation(s)
- Coert Margadant
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Center, Location VUmc, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
18
|
Ma C, Ding H, Deng Y, Liu H, Xiong X, Yang Y. Irisin: A New Code Uncover the Relationship of Skeletal Muscle and Cardiovascular Health During Exercise. Front Physiol 2021; 12:620608. [PMID: 33597894 PMCID: PMC7882619 DOI: 10.3389/fphys.2021.620608] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
Exercise not only produces beneficial effects on muscle itself via various molecular pathways, but also mediates the interaction between muscles and other organs in an autocrine/paracrine manner through myokines, which plays a positive role in maintaining overall health. Irisin, an exercise-derived myokine, has been found involved in the regulation of some cardiovascular diseases. However, the relationship between irisin and cardiovascular health is not fully elucidated and there are some divergences on the regulation of irisin by exercise. In this review, we present the current knowledge on the origin and physiology of irisin, describe the regulation of irisin by acute and chronic exercises, and discuss the divergences of the related research results. Importantly, we discuss the role of irisin as a biomarker in the diagnosis of cardiovascular diseases and describe its treatment and molecular mechanism in some cardiovascular diseases. It is expected that irisin will be used as a therapeutic agent to combat cardiovascular diseases or other disorders caused by inactivity in the near future.
Collapse
Affiliation(s)
- Chunlian Ma
- College of Health Science, Wuhan Sports University, Wuhan, China
| | - Haichao Ding
- Graduate School, Wuhan Sports University, Wuhan, China
| | - Yuting Deng
- Graduate School, Wuhan Sports University, Wuhan, China
| | - Hua Liu
- College of Health Science, Wuhan Sports University, Wuhan, China
| | - Xiaoling Xiong
- College of Health Science, Wuhan Sports University, Wuhan, China
| | - Yi Yang
- College of Health Science, Wuhan Sports University, Wuhan, China
| |
Collapse
|