1
|
Galbács ZN, Agyemang ED, Pásztor G, Takács AP, Várallyay É. Viromes of Monocotyledonous Weeds Growing in Crop Fields Reveal Infection by Several Viruses Suggesting Their Virus Reservoir Role. PLANTS (BASEL, SWITZERLAND) 2024; 13:2664. [PMID: 39339638 PMCID: PMC11435186 DOI: 10.3390/plants13182664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/09/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
In 2019, random samples of Panicum miliaceum growing as a weed were surveyed to uncover their virus infections at two locations in Hungary. This pilot study revealed infection with three viruses, two appearing for the first time in the country. As follow-up research, in the summer of 2021, we collected symptomatic leaves of several monocotyledonous plants in the same locations and determined their viromes using small RNA high-throughput sequencing (HTS). As a result, we have identified the presence of wheat streak mosaic virus (WSMV), barley yellow striate mosaic virus (BYSMV), barley virus G (BVG), and two additional viruses, namely Aphis glycines virus 1 (ApGlV1) and Ljubljana dicistrovirus 1 (LDV1), which are described for the first time in Hungary. New hosts of the viruses were identified: Cynodon dactylon is a new host of BYSMV and LDV1, Echinocloa crus-galli is a new host of BVG, ApGlV1 and LDV1, Sorghum halepense is a new host of ApGlV1, and Panicum miliaceum is a new host of LDV1. At the same time, Zea mays is a new host of ApGlV1 and LDV1. Small RNA HTS diagnosed acute infections but failed to detect persistent ones, which could be revealed using RT-PCR. The infection rates at the different locations and plant species were different. The phylogenetic analyses of the sequenced virus variants suggest that the tested monocotyledonous weeds can host different viruses and play a virus reservoir role. Viral spread from the reservoir species relies on the activity of insect vectors, which is why their management requires an active role in plant protection strategies, which need careful planning in the changing environment.
Collapse
Affiliation(s)
- Zsuzsanna N Galbács
- Genomics Research Group, Department of Plant Pathology, Institute of Plant Protection, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi Albert Street 4, H-2100 Godollo, Hungary
| | - Evans Duah Agyemang
- Department of Plant Protection, Institute of Plant Protection, Hungarian University of Agriculture and Life Sciences, H-8360 Keszthely, Hungary
| | - György Pásztor
- Department of Plant Protection, Institute of Plant Protection, Hungarian University of Agriculture and Life Sciences, H-8360 Keszthely, Hungary
| | - András Péter Takács
- Department of Plant Protection, Institute of Plant Protection, Hungarian University of Agriculture and Life Sciences, H-8360 Keszthely, Hungary
| | - Éva Várallyay
- Genomics Research Group, Department of Plant Pathology, Institute of Plant Protection, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi Albert Street 4, H-2100 Godollo, Hungary
| |
Collapse
|
2
|
Majer A, Skoracka A, Spaak J, Kuczyński L. Higher-order species interactions cause time-dependent niche and fitness differences: Experimental evidence in plant-feeding arthropods. Ecol Lett 2024; 27:e14428. [PMID: 38685715 DOI: 10.1111/ele.14428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 03/25/2024] [Accepted: 04/04/2024] [Indexed: 05/02/2024]
Abstract
Species interact in different ways, including competition, facilitation and predation. These interactions can be non-linear or higher order and may depend on time or species densities. Although these higher-order interactions are virtually ubiquitous, they remain poorly understood, as they are challenging both theoretically and empirically. We propose to adapt niche and fitness differences from modern coexistence theory and apply them to species interactions over time. As such, they may not merely inform about coexistence, but provide a deeper understanding of how species interactions change. Here, we investigated how the exploitation of a biotic resource (plant) by phytophagous arthropods affects their interactions. We performed monoculture and competition experiments to fit a generalized additive mixed model to the empirical data, which allowed us to calculate niche and fitness differences. We found that species switch between different types of interactions over time, including intra- and interspecific facilitation, and strong and weak competition.
Collapse
Affiliation(s)
- Agnieszka Majer
- Population Ecology Lab, Faculty of Biology, Institute of Environmental Biology, Adam Mickiewicz University, Poznań, Poland
- Center for Advanced Technology, Adam Mickiewicz University, Poznań, Poland
| | - Anna Skoracka
- Population Ecology Lab, Faculty of Biology, Institute of Environmental Biology, Adam Mickiewicz University, Poznań, Poland
| | - Jürg Spaak
- Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Landau, Germany
| | - Lechosław Kuczyński
- Population Ecology Lab, Faculty of Biology, Institute of Environmental Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
3
|
Duarte ME, Lewandowski M, de Mendonça RS, Simoni S, Navia D. Genetic analysis of the tomato russet mite provides evidence of oligophagy and a widespread pestiferous haplotype. EXPERIMENTAL & APPLIED ACAROLOGY 2023; 89:171-199. [PMID: 36795266 DOI: 10.1007/s10493-023-00777-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Worldwide, the tomato russet mite (TRM), Aculops lycopersici (Eriophyidae), is a key pest on cultivated tomato in addition to infesting other cultivated and wild Solanaceae; however, basic information on TRM supporting effective control strategies is still lacking, mainly regarding its taxonomic status and genetic diversity and structure. As A. lycopersici is reported on different species and genera of host plants, populations associated with different host plants may constitute specialized cryptic species, as shown for other eriophyids previously considered generalists. The main aims of this study were to (i) confirm the TRM taxonomic unity of populations from different host plants and localities as well as the species' oligophagy, and (ii) to advance the understanding of TRM host relationship and invasion history. For this purpose, we evaluated the genetic variability and structure of populations from different host plants along crucial areas of occurrence, including the area of potential origin, based on DNA sequences of mitochondrial (cytochrome c oxidase subunit I) and nuclear (internal transcribed spacer, D2 28S) genomic regions. Specimens from South America (Brazil) and Europe (France, Italy, Poland, The Netherlands) were collected from tomato and other solanaceous species from the genera Solanum and Physalis. Final TRM datasets were composed of 101, 82 and 50 sequences from the COI (672 bp), ITS (553 bp) and D2 (605 bp) regions, respectively. Distributions and frequencies of haplotypes (COI) and genotypes (D2 and ITS1) were inferred; pairwise genetic distance comparisons, and phylogenetic analysis were performed, including Bayesian Inference (BI) combined analysis. Our results showed that genetic divergences for mitochondrial and nuclear genomic regions from TRM associated with different host plants were lower than those observed in other eriophyid taxa, confirming conspecificity of TRM populations and oligophagy of this eriophyid mite. Four haplotypes (cH) were identified from the COI sequences with cH1 being the most frequent, representing 90% of all sequences occurring in all host plants studied (Brazil, France, The Netherlands); the other haplotypes were present exclusively in Brazilian populations. Six variants (I) were identified from the ITS sequences: I-1 was the most frequent (76.5% of all sequences), spread in all countries and associated with all host plants, except S. nigrum. Just one D2 sequence variant was found in all studied countries. The genetic homogeneity among populations highlights the occurrence of a highly invasive and oligophagous haplotype. These results failed to corroborate the hypothesis that differential symptomatology or damage intensity among tomato varieties and solanaceous host plants could be due to the genetic diversity of the associated mite populations. The genetic evidence, along with the history of spread of cultivated tomato, corroborates the hypothesis of a South American origin of TRM.
Collapse
Affiliation(s)
- Mercia Elias Duarte
- Federal University of Piauí, Campus Amilcar Ferreira Sobral, Floriano, PI, CEP: 64808-605, Brazil
| | - Mariusz Lewandowski
- Section of Applied Entomology, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences, ul. Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Renata Santos de Mendonça
- Faculty of Agronomy and Veterinary Medicine, University of Brasília, ICC Sul Campus Darcy Ribeiro, Brasília, DF, CEP 70910-970, Brazil
| | - Sauro Simoni
- CREA - DC Council for Agricultural Research and Economics-Research Centre for Plant Protection and Certification, Via di Lanciola12/a, 50125, Florence, Italy
| | - Denise Navia
- CBGP, Institut Agro, CIRAD, INRAE, IRD, Univ Montpellier, Centre de Biologie pour la Gestion des Populations, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), 755 Avenue du Campus Agropolis, CS 30016, 34988, Montferrier sur Lez Cedex, France.
| |
Collapse
|
4
|
Macroevolutionary analyses point to a key role of hosts in diversification of the highly speciose eriophyoid mite superfamily. Mol Phylogenet Evol 2023; 179:107676. [PMID: 36535519 DOI: 10.1016/j.ympev.2022.107676] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
The superfamily Eriophyoidea includes >5000 named species of very small phytophagous mites. As for many groups of phytophagous invertebrates, factors responsible for diversification of eriophyoid mites are unclear. Here, we used an inferred phylogeny of 566 putative species of eriophyoid mites based on fragments of two mitochondrial genes and two nuclear genes to examine factors associated with their massive evolutionary diversification through time. Our dated phylogeny indicates a Carboniferous origin for gymnosperm-associated Eriophyoidea with subsequent diversification involving multiple host shifts to angiosperms-first to dicots, and then to monocots or shifts back to gymnosperms-beginning in the Cretaceous period when angiosperms diverged. Speciation rates increased more rapidly in the Eriophyidae + Diptilomiopidae (mostly infesting angiosperms) than in the Phytoptidae (mostly infesting gymnosperms). Phylogenetic signal, speciation rates, dispersal and vicariance results combined with inferred topologies show that hosts played a key role in the evolution of eriophyoid mites. Speciation constrained by hosts was probably the main driver behind eriophyoid mite diversification worldwide. We demonstrate monophyly of the Eriophyoidea, whereas all three families, most subfamilies, tribes, and most genera are not monophyletic. Our time-calibrated tree provides a framework for further evolutionary studies of eriophyoid mites and their interactions with host plants as well as taxonomic revisions above the species level.
Collapse
|
5
|
Skoracka A, Laska A, Radwan J, Konczal M, Lewandowski M, Puchalska E, Karpicka‐Ignatowska K, Przychodzka A, Raubic J, Kuczyński L. Effective specialist or jack of all trades? Experimental evolution of a crop pest in fluctuating and stable environments. Evol Appl 2022; 15:1639-1652. [PMID: 36330306 PMCID: PMC9624081 DOI: 10.1111/eva.13360] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/30/2022] [Accepted: 02/06/2022] [Indexed: 11/30/2022] Open
Abstract
Understanding pest evolution in agricultural systems is crucial for developing effective and innovative pest control strategies. Types of cultivation, such as crop monocultures versus polycultures or crop rotation, may act as a selective pressure on pests' capability to exploit the host's resources. In this study, we examined the herbivorous mite Aceria tosichella (commonly known as wheat curl mite), a widespread wheat pest, to understand how fluctuating versus stable environments influence its niche breadth and ability to utilize different host plant species. We subjected a wheat-bred mite population to replicated experimental evolution in a single-host environment (either wheat or barley), or in an alternation between these two plant species every three mite generations. Next, we tested the fitness of these evolving populations on wheat, barley, and on two other plant species not encountered during experimental evolution, namely rye and smooth brome. Our results revealed that the niche breadth of A. tosichella evolved in response to the level of environmental variability. The fluctuating environment expanded the niche breadth by increasing the mite's ability to utilize different plant species, including novel ones. Such an environment may thus promote flexible host-use generalist phenotypes. However, the niche expansion resulted in some costs expressed as reduced performances on both wheat and barley as compared to specialists. Stable host environments led to specialized phenotypes. The population that evolved in a constant environment consisting of barley increased its fitness on barley without the cost of utilizing wheat. However, the population evolving on wheat did not significantly increase its fitness on wheat, but decreased its performance on barley. Altogether, our results indicated that, depending on the degree of environmental heterogeneity, agricultural systems create different conditions that influence pests' niche breadth evolution, which may in turn affect the ability of pests to persist in such systems.
Collapse
Affiliation(s)
- Anna Skoracka
- Population Ecology LabFaculty of BiologyInstitute of Environmental BiologyAdam Mickiewicz UniversityPoznańPoland
- Center for Advanced TechnologyAdam Mickiewicz UniversityPoznańPoland
| | - Alicja Laska
- Population Ecology LabFaculty of BiologyInstitute of Environmental BiologyAdam Mickiewicz UniversityPoznańPoland
| | - Jacek Radwan
- Evolutionary Biology GroupFaculty of BiologyInstitute of Environmental BiologyAdam Mickiewicz UniversityPoznańPoland
| | - Mateusz Konczal
- Evolutionary Biology GroupFaculty of BiologyInstitute of Environmental BiologyAdam Mickiewicz UniversityPoznańPoland
| | - Mariusz Lewandowski
- Section of Applied EntomologyDepartment of Plant ProtectionInstitute of Horticultural SciencesWarsaw University of Life Sciences – SGGWWarsawPoland
| | - Ewa Puchalska
- Section of Applied EntomologyDepartment of Plant ProtectionInstitute of Horticultural SciencesWarsaw University of Life Sciences – SGGWWarsawPoland
| | - Kamila Karpicka‐Ignatowska
- Population Ecology LabFaculty of BiologyInstitute of Environmental BiologyAdam Mickiewicz UniversityPoznańPoland
| | - Anna Przychodzka
- Population Ecology LabFaculty of BiologyInstitute of Environmental BiologyAdam Mickiewicz UniversityPoznańPoland
| | - Jarosław Raubic
- Population Ecology LabFaculty of BiologyInstitute of Environmental BiologyAdam Mickiewicz UniversityPoznańPoland
| | - Lechosław Kuczyński
- Population Ecology LabFaculty of BiologyInstitute of Environmental BiologyAdam Mickiewicz UniversityPoznańPoland
| |
Collapse
|
6
|
Albrecht T, White S, Layton M, Stenglein M, Haley S, Nachappa P. Occurrence of Wheat Curl Mite and Mite-Vectored Viruses of Wheat in Colorado and Insights into the Wheat Virome. PLANT DISEASE 2022; 106:2678-2688. [PMID: 35196102 DOI: 10.1094/pdis-02-21-0352-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The wheat curl mite (WCM) is a vector of three important wheat viruses in the U.S. Great Plains: wheat streak mosaic virus (WSMV), triticum mosaic virus (TriMV), and High Plains wheat mosaic virus (HPWMoV). This study was conducted to determine the current profile of WCM and WCM-transmitted viruses of wheat and their occurrence in Colorado, including novel wheat viruses via virome analysis. There was a high rate of virus incidence in symptomatic wheat samples collected in 2019 (95%) and 2020 (77%). Single infection of WSMV was most common in both years, followed by coinfection with WSMV + TriMV and WSMV + HPWMoV. Both type 1 and type 2 mite genotypes were found in Colorado. There was high genetic diversity of WSMV and HPWMoV isolates, whereas TriMV isolates showed minimal sequence variation. Analysis of WSMV isolates revealed novel virus variants, including one isolate from a variety trial, where severe disease symptoms were observed on wheat varieties carrying Wsm2, a known virus resistance locus. Virome analysis identified two to four sequence variants of all eight RNA segments of HPWMoV, which suggests co-occurrence of multiple genotypes within host populations and presence of a variant of HPWMoV. A possible novel virus in the family Tombusviridae and several mycoviruses were identified. Overall, the data presented here highlight the need to define the effect of novel WCM-transmitted virus variants on disease severity and the role of novel viruses.
Collapse
Affiliation(s)
- Tessa Albrecht
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523
| | - Samantha White
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523
| | - Marylee Layton
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523
| | - Mark Stenglein
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523
| | - Scott Haley
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523
| | - Punya Nachappa
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523
| |
Collapse
|
7
|
Xie Y, Nachappa P, Nalam VJ, Pearce S. Genomic and Molecular Characterization of Wheat Streak Mosaic Virus Resistance Locus 2 ( Wsm2) in Common Wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:928949. [PMID: 35845691 PMCID: PMC9285007 DOI: 10.3389/fpls.2022.928949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Wheat streak mosaic virus (WSMV) is an economically important viral pathogen that threatens global wheat production, particularly in the Great Plains of the United States. The Wsm2 locus confers resistance to WSMV and has been widely deployed in common wheat varieties adapted to this region. Characterizing the underlying causative genetic variant would contribute to our understanding of viral resistance mechanisms in wheat and aid the development of perfect markers for breeding. In this study, linkage mapping in a doubled-haploid (DH) mapping population confirmed Wsm2 as a major locus conferring WSMV resistance in wheat. The Wsm2 flanking markers were mapped to a 4.0 Mbp region at the distal end of chromosome 3BS containing 142 candidate genes. Eight haplotypes were identified from seventeen wheat genotypes collected from different agroecological zones, indicating that Wsm2 lies in a dynamic region of the genome with extensive structural variation and that it is likely a rare allele in most available genome assemblies of common wheat varieties. Exome sequencing of the variety "Snowmass", which carries Wsm2, revealed several loss-of-function mutations and copy number variants in the 142 candidate genes within the Wsm2 interval. Six of these genes are differentially expressed in "Snowmass" compared to "Antero," a variety lacking Wsm2, including a gene that encodes a nucleotide-binding site leucine-rich repeat (NBS-LRR) type protein with homology to RPM1. A de novo assembly of unmapped RNA-seq reads identified nine transcripts expressed only in "Snowmass," three of which are also induced in response to WSMV inoculation. This study sheds light on the variation underlying Wsm2 and provides a list of candidate genes for subsequent validation.
Collapse
Affiliation(s)
- Yucong Xie
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, United States
| | - Punya Nachappa
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, United States
| | - Vamsi J. Nalam
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, United States
| | - Stephen Pearce
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
8
|
Pozhylov I, Snihur H, Shevchenko T, Budzanivska I, Liu W, Wang X, Shevchenko O. Occurrence and Characterization of Wheat Streak Mosaic Virus Found in Mono- and Mixed Infection with High Plains Wheat Mosaic Virus in Winter Wheat in Ukraine. Viruses 2022; 14:v14061220. [PMID: 35746690 PMCID: PMC9229632 DOI: 10.3390/v14061220] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 02/04/2023] Open
Abstract
Although wheat streak mosaic virus (WSMV) is a well-known pathogen inducing significant crop losses and endangering wheat production worldwide, the recent discovery of High Plains wheat mosaic virus (HPWMoV) in Ukraine raises questions on the co-existence of these two viruses having a similar host range and the same mite vector. Here we report on the screening of winter wheat industrial plantings in several important regions of Ukraine for WSMV and HPWMoV. WSMV was identified in an extremely high number of symptomatic plants (>85%) as compared to HPWMoV detected in 40% of wheat samples. Importantly, the preferred mode of HPWMoV circulation in Ukraine was mixed infection with WSMV (>30%) as opposed to WSMV, which was typically found in monoinfection (60%). Screening wheat varieties for possible virus resistance indicated that all but one were susceptible to WSMV, whereas over 50% of the same varieties were not naturally infected with HPWMoV. Overall, phylogenetic analysis of the collected WSMV and HPWMoV isolates indicated their high identity and similarity to other known isolates of the respective viruses. Here we first characterize WSMV isolates found in winter wheat plants in mono- or mixed infection with HPWMoV, which was recently reported as a typical wheat pathogen in Ukraine.
Collapse
Affiliation(s)
- Illia Pozhylov
- Virology Department, ESC “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine; (I.P.); (H.S.); (T.S.); (I.B.)
| | - Halyna Snihur
- Virology Department, ESC “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine; (I.P.); (H.S.); (T.S.); (I.B.)
- Laboratory of Plant Viruses, D.K. Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine, 03143 Kyiv, Ukraine
| | - Tetiana Shevchenko
- Virology Department, ESC “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine; (I.P.); (H.S.); (T.S.); (I.B.)
| | - Irena Budzanivska
- Virology Department, ESC “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine; (I.P.); (H.S.); (T.S.); (I.B.)
| | - Wenwen Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Xifeng Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
- Correspondence: (X.W.); (O.S.)
| | - Oleksiy Shevchenko
- Virology Department, ESC “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine; (I.P.); (H.S.); (T.S.); (I.B.)
- Correspondence: (X.W.); (O.S.)
| |
Collapse
|
9
|
Bragard C, Baptista P, Chatzivassiliou E, Di Serio F, Gonthier P, Jaques Miret JA, Justesen AF, MacLeod A, Magnusson CS, Milonas P, Navas‐Cortes JA, Parnell S, Potting R, Reignault PL, Stefani E, Thulke H, Van der Werf W, Vicent Civera A, Yuen J, Zappalà L, Dehnen‐Schmutz K, Migheli Q, Vloutoglou I, Streissl F, Chiumenti M, Di Serio F, Rubino L, Reignault PL. Pest categorisation of High Plains wheat mosaic virus. EFSA J 2022; 20:e07302. [PMID: 35592019 PMCID: PMC9092486 DOI: 10.2903/j.efsa.2022.7302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The EFSA Panel on Plant Health conducted a pest categorisation of High Plains wheat mosaic virus (HPWMoV) for the EU territory. The identity of HPWMoV, a member of the genus Emaravirus (family Fimoviridae), is well established and reliable identification methods are available. The pathogen is not included in the EU Commission Implementing Regulation 2019/2072. HPWMoV has been reported from Argentina, Australia, Canada, Ukraine and USA, and it is not known to be present in the EU. HPWMoV infects plant species of the family Poaceae (i.e. wheat, maize and several other cultivated or wild Poaceae species). It is the causal agent of High Plains disease of wheat and maize, inducing symptoms ranging from mild to severe mosaic, chlorosis and necrosis in wheat, and chlorotic streaks in maize plants. The virus is transmitted by the wheat curl mite Aceria tosichella, which is present in the EU. HPWMoV transmission via seeds was reported to occur in sweet corn. Sweet corn seeds for sowing were identified as the most relevant pathway for entry of HPWMoV into the EU. Seeds from other hosts and viruliferous wheat curl mites were identified as entry pathways associated with uncertainties. Machinery not appropriately cleaned may move infected seeds and/or parts of cereals infested by viruliferous mites. Cultivated and wild hosts of HPWMoV are distributed across the EU. Would the pest enter and establish in the EU territory, economic impact on the production of cultivated hosts is expected. Phytosanitary measures are available to prevent entry and spread of the virus in the EU. HPWMoV fulfils the criteria that are within the remit of EFSA to assess for it to be regarded as a potential Union quarantine pest.
Collapse
|
10
|
Population genomic analysis of Aegilops tauschii identifies targets for bread wheat improvement. Nat Biotechnol 2022; 40:422-431. [PMID: 34725503 PMCID: PMC8926922 DOI: 10.1038/s41587-021-01058-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 08/16/2021] [Indexed: 01/02/2023]
Abstract
Aegilops tauschii, the diploid wild progenitor of the D subgenome of bread wheat, is a reservoir of genetic diversity for improving bread wheat performance and environmental resilience. Here we sequenced 242 Ae. tauschii accessions and compared them to the wheat D subgenome to characterize genomic diversity. We found that a rare lineage of Ae. tauschii geographically restricted to present-day Georgia contributed to the wheat D subgenome in the independent hybridizations that gave rise to modern bread wheat. Through k-mer-based association mapping, we identified discrete genomic regions with candidate genes for disease and pest resistance and demonstrated their functional transfer into wheat by transgenesis and wide crossing, including the generation of a library of hexaploids incorporating diverse Ae. tauschii genomes. Exploiting the genomic diversity of the Ae. tauschii ancestral diploid genome permits rapid trait discovery and functional genetic validation in a hexaploid background amenable to breeding.
Collapse
|
11
|
Pozhylov I, Snihur H. INCIDENCE AND SPREAD OF CEREALS VIRUSES IN 2020–2021 IN UKRAINE. BULLETIN OF TARAS SHEVCHENKO NATIONAL UNIVERSITY OF KYIV. SERIES: BIOLOGY 2022. [DOI: 10.17721/1728.2748.2022.90.14-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cereals play a significant role in the Ukrainian economy and agriculture. Viral diseases can cause a serious reduction in yields. Aim. The aim of the work was to identify and determine the spread of grain viruses in the main cereal-growing regions of Ukraine in the period 2020–2021 using different methods of virus detection. Methods. Enzyme-linked immunosorbent assay was used to identify viruses using commercial test systems by for wheat streak mosaic virus (WSMV), barley stripe mosaic virus (BSMV), brome mosaic virus (BMV), wheat dwarf virus (WDV), High Plainswheat mosaic virus (HPWMoV), barley yellow dwarf virus-PAV (BYDV-PAV), barley yellow dwarf virus-MAV (BYDV-MAV), andcereal yellow dwarf virus-RPV (CYDV-RPV). Transmission electron microscopy was used for direct virus detection. Reverse transcription polymerase chain reaction was performed to identify viruses by molecular methods. Results. Summarizing the results obtained by different methods, we can say about the circulation of WSMV, HPWMoV, BSMV, BYDV-PAV, and BYDV-MAV in the Ukrainian agrocoenoses in 2020–2021. Significant prevalence and the dominant role of WSMV have been shown, with the degree of damage to symptomatic plants reaching 52 %. The spread of HPWMoV in Kyiv and Poltava regions has been established, although previously the virus was detected only in the eastern part of our country. WSMV was more likely to induce monoinfection (70 %). Conclusions. During the testing of symptomatic plants in the agrocenoses of Ukraine in 2020–2021 the most common were WSMV and HPWMoV (52 % and 19 %, respectively), also found BYDV-PAV in winter wheat and BYDV-MAV in oats.
Collapse
|
12
|
Majer A, Laska A, Hein G, Kuczyński L, Skoracka A. Hitchhiking or hang gliding? Dispersal strategies of two cereal-feeding eriophyoid mite species. EXPERIMENTAL & APPLIED ACAROLOGY 2021; 85:131-146. [PMID: 34609667 PMCID: PMC8604871 DOI: 10.1007/s10493-021-00661-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Dispersal shapes the dynamics of populations, their genetic structure and species distribution; therefore, knowledge of an organisms' dispersal abilities is crucial, especially in economically important and invasive species. In this study, we investigated dispersal strategies of two phytophagous eriophyoid mite species: Aceria tosichella (wheat curl mite, WCM) and Abacarus hystrix (cereal rust mite, CRM). Both species are obligatory plant parasites that infest cereals and are of economic significance. We investigated their dispersal success using different dispersal agents: wind and vectors. We hypothesised that in both mite species the main mode of dispersal is moving via wind, whereas phoretic dispersal is rather accidental, as the majority of eriophyoid mite species do not possess clear morphological or behavioural adaptations for phoresy. Results confirmed our predictions that both species dispersed mainly with wind currents. Additionally, WCM was found to have a higher dispersal success than CRM. Thus, this study contributes to our understanding of the high invasive potential of WCM.
Collapse
Affiliation(s)
- Agnieszka Majer
- Population Ecology Lab, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland.
| | - Alicja Laska
- Population Ecology Lab, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Gary Hein
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, USA
| | - Lechosław Kuczyński
- Population Ecology Lab, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Anna Skoracka
- Population Ecology Lab, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| |
Collapse
|
13
|
Laska A, Magalhães S, Lewandowski M, Puchalska E, Karpicka-Ignatowska K, Radwańska A, Meagher S, Kuczyński L, Skoracka A. A sink host allows a specialist herbivore to persist in a seasonal source. Proc Biol Sci 2021; 288:20211604. [PMID: 34465242 PMCID: PMC8437026 DOI: 10.1098/rspb.2021.1604] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In seasonal environments, sinks that are more persistent than sources may serve as temporal stepping stones for specialists. However, this possibility has to our knowledge, not been demonstrated to date, as such environments are thought to select for generalists, and the role of sinks, both in the field and in the laboratory, is difficult to document. Here, we used laboratory experiments to show that herbivorous arthropods associated with seasonally absent main (source) habitats can endure on a suboptimal (sink) host for several generations, albeit with a negative growth rate. Additionally, they dispersed towards this host less often than towards the main host and accepted it less often than the main host. Finally, repeated experimental evolution attempts revealed no adaptation to the suboptimal host. Nevertheless, field observations showed that arthropods are found in suboptimal habitats when the main habitat is unavailable. Together, these results show that evolutionary rescue in the suboptimal habitat is not possible. Instead, the sink habitat functions as a temporal stepping stone, allowing for the persistence of a specialist when the source habitat is gone.
Collapse
Affiliation(s)
- Alicja Laska
- Population Ecology Laboratory, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Sara Magalhães
- cE3c, Centre for Ecology, Evolution and Environmental changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Edifício C2, 1749-016 Lisboa, Portugal
| | - Mariusz Lewandowski
- Section of Applied Entomology, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-787 Warsaw, Poland
| | - Ewa Puchalska
- Section of Applied Entomology, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-787 Warsaw, Poland
| | - Kamila Karpicka-Ignatowska
- Population Ecology Laboratory, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Anna Radwańska
- Population Ecology Laboratory, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Shawn Meagher
- Department of Biological Sciences, Western Illinois University, Macomb, IL 61455, USA
| | - Lechosław Kuczyński
- Population Ecology Laboratory, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Anna Skoracka
- Population Ecology Laboratory, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| |
Collapse
|
14
|
Nachappa P, Haley S, Pearce S. Resistance to the wheat curl mite and mite-transmitted viruses: challenges and future directions. CURRENT OPINION IN INSECT SCIENCE 2021; 45:21-27. [PMID: 33249178 DOI: 10.1016/j.cois.2020.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/29/2020] [Accepted: 11/09/2020] [Indexed: 06/12/2023]
Abstract
Wheat curl mite (WCM) is the only known arthropod vector of four wheat viruses, the most important of which is Wheat streak mosaic virus (WSMV). Host resistance to WCM and WSMV is limited to a small number of loci, most of which are introgressed from wild relatives and are often associated with linkage drag and temperature sensitivity. Reports of virulent WCM populations and potential resistance-breaking WSMV isolates highlight the need for more diverse sources of resistance. Genome sequencing will be critical to fully characterize the genetic diversity in WCM and WSMV populations to better understand the incidence of WCM-transmitted viruses and to evaluate the potential stability of resistance genes. Characterizing host resistance genes will help build a mechanistic understanding of wheat-WCM-WSMV interactions and inform strategies to identify and engineer more durable resistance sources.
Collapse
Affiliation(s)
- Punya Nachappa
- Department of Agricultural Biology, Colorado State University, 307 University Ave, Fort Collins, CO 80523, United States.
| | - Scott Haley
- Department of Soil and Crop Sciences, Colorado State University, 307 University Ave, Fort Collins, CO 80523, United States
| | - Stephen Pearce
- Department of Soil and Crop Sciences, Colorado State University, 307 University Ave, Fort Collins, CO 80523, United States
| |
Collapse
|
15
|
Zhao L, Liu S, Abdelsalam NR, Carver BF, Bai G. Characterization of wheat curl mite resistance gene Cmc4 in OK05312. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:993-1005. [PMID: 33606050 DOI: 10.1007/s00122-020-03737-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Cmc4, a wheat curl mite resistance gene, was delimited to a 523 kb region and a diagnostic marker haplotype was identified for selecting Cmc4 in breeding programs. Wheat curl mite (WCM, Aceria tosichella Keifer) is a disastrous wheat pest in many wheat-growing regions worldwide. WCM not only directly affects wheat yield, but also transmits wheat streak mosaic virus. Growing WCM resistant cultivars is the most economical and sustainable method to reduce its damage. A hard winter wheat breeding line OK05312 (PI 670019) carries Cmc4 gene resistance to A. tosichella and has many desirable agronomic traits. To finely map Cmc4 in OK05312, two recombinant inbred line populations were developed from crosses between OK05312 and two susceptible cultivars, SD06165 and Jerry, genotyped using single nucleotide polymorphism (SNP) markers generated from genotyping-by-sequencing (GBS), and phenotyped for WCM resistance. Gene mapping using the two SNP maps confirmed Cmc4 in OK05312 that explained up to 68% of the phenotypic variation. Further analysis delimited Cmc4 to a ~ 523 kb region between SNPs SDOKSNP6314 and SDOKSNP2805 based on the Ae. tauschii reference genome. We developed 18 polymorphic Kompetitive Allele Specific PCR (KASP) markers using the sequences of GBS-SNPs in this region and 23 additional KASP markers based on the SNPs between the parents derived from 90K SNP chips. The KASP markers SDOKSNP6314 and SDOKSNP9699 are closest to Cmc4 and can be used to diagnose the presence of Cmc4 in wheat breeding programs. Haplotype analysis suggested that CmcTAM112 in TAM112 might be the same gene as Cmc4.
Collapse
Affiliation(s)
- Lanfei Zhao
- Department of Agronomy, Kansas State University, 2004 Throckmorton Hall, Manhattan, KS, 66506, USA
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agriculture University, Taian, 271018, Shandong, China
| | - Shuyu Liu
- Texas A&M AgriLife Research, 6500 Amarillo Blvd W, Amarillo, TX, 79106, USA
| | - Nader R Abdelsalam
- Department of Agronomy, Kansas State University, 2004 Throckmorton Hall, Manhattan, KS, 66506, USA
- Agricultural Botany Department, Faculty of Agriculture, Alexandria University, Saba Basha22 Tag El Roassa Street Bolky, Alexandria, 21531, Egypt
| | - Brett F Carver
- Department of Plant and Soil Sciences, Oklahoma State University, 371 Agricultural Hall, Stillwater, OK, 74078, USA
| | - Guihua Bai
- Department of Agronomy, Kansas State University, 2004 Throckmorton Hall, Manhattan, KS, 66506, USA.
- USDA, Hard Winter Wheat Genetics Research Unit, 4008 Throckmorton Hall, Manhattan, KS, 66506, USA.
| |
Collapse
|
16
|
Karpicka-Ignatowska K, Laska A, Rector BG, Skoracka A, Kuczyński L. Temperature-dependent development and survival of an invasive genotype of wheat curl mite, Aceria tosichella. EXPERIMENTAL & APPLIED ACAROLOGY 2021; 83:513-525. [PMID: 33661416 PMCID: PMC8041678 DOI: 10.1007/s10493-021-00602-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/20/2021] [Indexed: 05/03/2023]
Abstract
Quantifying basic biological data, such as the effects of variable temperatures on development and survival, is crucial to predicting and monitoring population growth rates of pest species, many of which are highly invasive. One of the most globally important pests of cereals is the eriophyoid wheat curl mite (WCM), Aceria tosichella, which is the primary vector of several plant viruses. The aim of this study was to evaluate temperature-dependent development and survival of WCM at a wide range of constant temperatures in the laboratory (17-33 °C). The development time of each stage depended significantly on temperature and it was negatively correlated with temperature increase. At high temperatures (27-33 °C), individuals had shorter developmental times, with the shortest (6 days) at 33 °C, whereas at the lowest tested temperatures (17-19 °C), developmental time was almost 3× longer. Moreover, temperature had a clear effect on survival: the higher the temperature, the lower the survival rate. These data provide information promoting more efficient and effective manipulation of WCM laboratory colonies, and further our understanding of the ramifications of temperature change on WCM physiology and implications for the growth and spread of this globally invasive pest.
Collapse
Affiliation(s)
- Kamila Karpicka-Ignatowska
- Population Ecology Lab, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznan, Poland.
| | - Alicja Laska
- Population Ecology Lab, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznan, Poland
| | - Brian G Rector
- USDA-ARS, Great Basin Rangelands Research Unit, Reno, NV, USA
| | - Anna Skoracka
- Population Ecology Lab, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznan, Poland
| | - Lechosław Kuczyński
- Population Ecology Lab, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznan, Poland
| |
Collapse
|
17
|
Venter TS, Robertson MP, Saccaggi DL, Faulkner KT. The wheat curl mite (Aceria tosichella, Prostigmata: Eriophyidae) could establish in South Africa. AFRICAN ZOOLOGY 2021. [DOI: 10.1080/15627020.2020.1845794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Tamryn S Venter
- Centre for Invasion Biology, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Mark P Robertson
- Centre for Invasion Biology, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Davina L Saccaggi
- Plant Health Diagnostic Services, Department of Agriculture, Land Reform, and Rural Development, Stellenbosch, South Africa
| | - Katelyn T Faulkner
- Centre for Invasion Biology, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
- South African National Biodiversity Institute, Kirstenbosch Research Centre, Cape Town, South Africa
| |
Collapse
|
18
|
Kiani M, Bryan B, Rush C, Szczepaniec A. Transcriptional Responses of Resistant and Susceptible Wheat Exposed to Wheat Curl Mite. Int J Mol Sci 2021; 22:ijms22052703. [PMID: 33800120 PMCID: PMC7962190 DOI: 10.3390/ijms22052703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 12/04/2022] Open
Abstract
(1) Background: The wheat curl mite (Aceria tosichella Keifer) is a key pest of wheat (Triticum aestivum L.) worldwide. While a number of wheat cultivars resistant to the mites have been employed to minimize the impact on the yield and quality of grain, little is known regarding the mechanisms underlying host plant resistance. Therefore, the goal of this study was to explore changes in transcriptome of resistant and susceptible wheat in order to quantify the molecular changes that drive host plant resistance. (2) Methods: Two varieties, wheat curl mite-susceptible (Karl 92) and wheat curl mite-resistant (TAM112) wheat, both at 2-week postemergence, were used in this study. Half of the plants were exposed to wheat curl mite herbivory and half remained mite-free and served as controls. Transcriptome changes were quantified using RNA-seq and compared among treatments to identify genes and pathways affected by herbivores. (3) Results: We identified a number of genes and pathways involved in plant defenses against pathogens, herbivores, and abiotic stress that were differentially expressed in the resistant wheat exposed to wheat curl mite herbivory but were unaffected in the susceptible wheat. (4) Conclusions: Our outcomes indicated that resistant wheat counteracts wheat curl mite exposure through effective induction of genes and pathways that enhance its defense responses.
Collapse
Affiliation(s)
- Mahnaz Kiani
- Thegreencell, Inc., 15810 Gaither Drive, Gaithersburg, MD 20877, USA
- Correspondence:
| | - Becky Bryan
- Department of Plant Pathology, Texas A&M AgriLife Research, Amarillo, TX 79106, USA; (B.B.); (C.R.)
| | - Charles Rush
- Department of Plant Pathology, Texas A&M AgriLife Research, Amarillo, TX 79106, USA; (B.B.); (C.R.)
| | - Adrianna Szczepaniec
- Department of Entomology, Texas A&M AgriLife Research, Amarillo, TX 79106, USA; or
| |
Collapse
|
19
|
Greenhalgh R, Dermauw W, Glas JJ, Rombauts S, Wybouw N, Thomas J, Alba JM, Pritham EJ, Legarrea S, Feyereisen R, Van de Peer Y, Van Leeuwen T, Clark RM, Kant MR. Genome streamlining in a minute herbivore that manipulates its host plant. eLife 2020; 9:56689. [PMID: 33095158 PMCID: PMC7738191 DOI: 10.7554/elife.56689] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
The tomato russet mite, Aculops lycopersici, is among the smallest animals on earth. It is a worldwide pest on tomato and can potently suppress the host's natural resistance. We sequenced its genome, the first of an eriophyoid, and explored whether there are genomic features associated with the mite's minute size and lifestyle. At only 32.5 Mb, the genome is the smallest yet reported for any arthropod and, reminiscent of microbial eukaryotes, exceptionally streamlined. It has few transposable elements, tiny intergenic regions, and is remarkably intron-poor, as more than 80% of coding genes are intronless. Furthermore, in accordance with ecological specialization theory, this defense-suppressing herbivore has extremely reduced environmental response gene families such as those involved in chemoreception and detoxification. Other losses associate with this species' highly derived body plan. Our findings accelerate the understanding of evolutionary forces underpinning metazoan life at the limits of small physical and genome size.
Collapse
Affiliation(s)
- Robert Greenhalgh
- School of Biological Sciences, University of Utah, Salt Lake City, United States
| | - Wannes Dermauw
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Joris J Glas
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Stephane Rombauts
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Nicky Wybouw
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Jainy Thomas
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, United States
| | - Juan M Alba
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Ellen J Pritham
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, United States
| | - Saioa Legarrea
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - René Feyereisen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.,Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,Center for Plant Systems Biology, VIB, Ghent, Belgium.,Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Richard M Clark
- School of Biological Sciences, University of Utah, Salt Lake City, United States.,Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City, United States
| | - Merijn R Kant
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
20
|
Millet Could Be both a Weed and Serve as a Virus Reservoir in Crop Fields. PLANTS 2020; 9:plants9080954. [PMID: 32731617 PMCID: PMC7463774 DOI: 10.3390/plants9080954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 11/27/2022]
Abstract
Millet is a dangerous weed in crop fields. A lack of seed dormancy helps it to spread easily and be present in maize, wheat, and other crop fields. Our previous report revealed the possibility that millet can also play a role as a virus reservoir. In that study, we focused on visual symptoms and detected the presence of several viruses in millet using serological methods, which can only detect the presence of the investigated pathogen. In this current work, we used small RNA high-throughput sequencing as an unbiased virus diagnostic method to uncover presenting viruses in randomly sampled millet grown as a volunteer weed in two maize fields, showing stunting, chlorosis, and striped leaves. Our results confirmed the widespread presence of wheat streak mosaic virus at both locations. Moreover, barley yellow striate mosaic virus and barley virus G, neither of which had been previously described in Hungary, were also identified. As these viruses can cause severe diseases in wheat and other cereals, their presence in a weed implies a potential infection risk. Our study indicates that the presence of millet in fields requires special control to prevent the emergence of new viral diseases in crop fields.
Collapse
|
21
|
Khalaf L, Timm A, Chuang WP, Enders L, Hefley TJ, Smith CM. Modeling Aceria tosichella biotype distribution over geographic space and time. PLoS One 2020; 15:e0233507. [PMID: 32469925 PMCID: PMC7259573 DOI: 10.1371/journal.pone.0233507] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 05/06/2020] [Indexed: 11/29/2022] Open
Abstract
The wheat curl mite, Aceria tosichella Keifer, one of the most destructive arthropod pests of bread wheat worldwide, inflicts significant annual reductions in grain yields. Moreover, A. tosichella is the only vector for several economically important wheat viruses in the Americas, Australia and Europe. To date, mite-resistant wheat genotypes have proven to be one of the most effective methods of controlling the A. tosichella-virus complex. Thus, it is important to elucidate A. tosichella population genetic structure, in order to better predict improved mite and virus management. Two genetically distinct A. tosichella lineages occur as pests of wheat in Australia, Europe, North America, South America and the Middle East. These lineages are known as type 1 and type 2 in Australia and North America and in Europe and South America as MT-8 and MT-1, respectively. Type 1 and type 2 mites in Australia and North America are delineated by internal transcribed spacer 1 region (ITS1) and cytochrome oxidase I region (COI) sequence differences. In North America, two A. tosichella genotypes known as biotypes are recognized by their response to the Cmc3 mite resistance gene in wheat. Aceria tosichella biotype 1 is susceptible to Cmc3 and biotype 2 is virulent to Cmc3. In this study, ITS1 and COI sequence differences in 25 different populations of A. tosichella of known biotype 1 or biotype 2 composition were characterized for ITS1 and COI sequence differences and used to model spatio-temporal dynamics based on biotype prevalence. Results showed that the proportion of biotype 1 and 2 varies both spatially and temporally. Greater ranges of cropland and grassland within 5000m of the sample site, as well as higher mean monthly precipitation during the month prior to sampling appear to reduce the probability of occurrence of biotype 1 and increase the probability of occurrence of biotype 2. The results suggest that spatio-temporal modeling can effectively improve A. tosichella management. Continual integration of additional current and future precipitation and ground cover data into the existing model will further improve the accuracy of predicting the occurrence of A. tosichella in annual wheat crops, allowing producers to make informed decisions about the selection of varieties with different A. tosichella resistance genes.
Collapse
Affiliation(s)
- Luaay Khalaf
- Department of Entomology, Kansas State University, Manhattan, Kansas, United States of America
- Department of Plant Protection, College of Agriculture, University of Baghdad, Baghdad, Iraq
| | - Alicia Timm
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, Colorado, United States of America
| | - Wen-Po Chuang
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
| | - Laramy Enders
- Department of Entomology, Purdue University, West Lafayette, Indiana, United States of America
| | - T. J. Hefley
- Department of Statistics, Kansas State University, Manhattan, Kansas, United States of America
| | - C. Michael Smith
- Department of Entomology, Kansas State University, Manhattan, Kansas, United States of America
| |
Collapse
|
22
|
Tatineni S, Sato S, Nersesian N, Alexander J, Quach T, Graybosch RA, Clemente TE. Transgenic Wheat Harboring an RNAi Element Confers Dual Resistance Against Synergistically Interacting Wheat Streak Mosaic Virus and Triticum Mosaic Virus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:108-122. [PMID: 31687913 DOI: 10.1094/mpmi-10-19-0275-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Wheat streak mosaic virus (WSMV) and triticum mosaic virus (TriMV) are economically important viruses of wheat (Triticum aestivum L.), causing significant yield losses in the Great Plains region of the United States. These two viruses are transmitted by wheat curl mites, which often leads to mixed infections with synergistic interaction in grower fields that exacerbates yield losses. Development of dual-resistant wheat lines would provide effective control of these two viruses. In this study, a genetic resistance strategy employing an RNA interference (RNAi) approach was implemented by assembling a hairpin element composed of a 202-bp (404-bp in total) stem sequence of the NIb (replicase) gene from each of WSMV and TriMV in tandem and of an intron sequence in the loop. The derived RNAi element was cloned into a binary vector and was used to transform spring wheat genotype CB037. Phenotyping of T1 lineages across eight independent transgenic events for resistance revealed that i) two of the transgenic events provided resistance to WSMV and TriMV, ii) four events provided resistance to either WSMV or TriMV, and iii) no resistance was found in two other events. T2 populations derived from the two events classified as dual-resistant were subsequently monitored for stability of the resistance phenotype through the T4 generation. The resistance phenotype in these events was temperature-dependent, with a complete dual resistance at temperatures ≥25°C and an increasingly susceptible response at temperatures below 25°C. Northern blot hybridization of total RNA from transgenic wheat revealed that virus-specific small RNAs (vsRNAs) accumulated progressively with an increase in temperature, with no detectable levels of vsRNA accumulation at 20°C. Thus, the resistance phenotype of wheat harboring an RNAi element was correlated with accumulation of vsRNAs, and the generation of vsRNAs can be used as a molecular marker for the prediction of resistant phenotypes of transgenic plants at a specific temperature.
Collapse
Affiliation(s)
- Satyanarayana Tatineni
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS) and Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68583, U.S.A
| | - Shirley Sato
- Center for Biotechnology, University of Nebraska-Lincoln
| | | | | | - Truyen Quach
- Department of Agronomy & Horticulture, University of Nebraska-Lincoln
| | | | - Tom Elmo Clemente
- Department of Agronomy & Horticulture, University of Nebraska-Lincoln
- Center for Plant Science Innovation, University of Nebraska-Lincoln
| |
Collapse
|
23
|
A novel experimental approach for studying life-history traits of phytophagous arthropods utilizing an artificial culture medium. Sci Rep 2019; 9:20327. [PMID: 31889108 PMCID: PMC6937311 DOI: 10.1038/s41598-019-56801-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/01/2019] [Indexed: 12/13/2022] Open
Abstract
Experimental approaches to studying life-history traits in minute herbivorous arthropods are hampered by the need to work with detached host plant material and the difficulty of maintaining that material in a suitable condition to support the animal throughout the duration of the test. In order to address this shortcoming, we developed a customizable agar-based medium modified from an established plant cell-culture medium to nourish detached leaves laid atop it while also preventing arthropods from escaping the experimental arena. The artificial culture medium was tested with two herbivorous mite species: the wheat curl mite (Aceria tosichella; Eriophyidae) and two-spotted spider mite (Tetranychus urticae; Tetranychidae). The proposed approach was a major improvement over a standard protocol for prolonged studies of individual eriophyid mites and also provided some benefits for experiments with spider mites. Moreover, the described method can be easily modified according to the requirements of host plant species and applied to a wide range of microherbivore species. Such applications include investigations of life-history traits and other ecological and evolutionary questions, e.g. mating or competitive behaviours or interspecific interactions, assessing invasiveness potential and predicting possible outbreaks. The approach presented here should have a significant impact on the advancement of evolutionary and ecological research on microscopic herbivores.
Collapse
|
24
|
Liu Q, Yuan YM, Lai Y, Wang GQ, Xue XF. Unravelling the phylogeny, cryptic diversity and morphological evolution of Diptilomiopus mites (Acari: Eriophyoidea). EXPERIMENTAL & APPLIED ACAROLOGY 2019; 79:323-344. [PMID: 31786687 DOI: 10.1007/s10493-019-00443-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/20/2019] [Indexed: 06/10/2023]
Abstract
The Eriophyoidea, notable for specific morphological characters (four-legged mites) and gall-formation in host plants (gall mites), is one of the most species-rich superfamilies of Acari. Monophyly of the superfamily Eriophyoidea is accepted by all acarologists; however, monophyly of most genera has not been evaluated in a molecular phylogenetic network. Furthermore, most eriophyoid mites, especially species in the genus Diptilomiopus, are morphologically similar, challenging their identification. Here we test the phylogeny and cryptic diversity of Diptilomiopus species using fragments of two mitochondrial (COI and 12S) and two nuclear (18S and 28S) genes. Our results revealed the monophyly of Diptilomiopus. Sequence distance, barcode gap, and species delimitation analyses of the COI gene allowed us to resolve cryptic diversity of Diptilomiopus species. Additionally, we supposed that characteristics of genu fused with femur on both legs and seta ft' absent on leg II evolved only once within Diptilomiopus, which are potential morphological synapomorphies. In contrast, characteristics of both setae ft' and ft″ divided into a short branch and a long branch were supposed evolving multiple times independently. Our findings contribute to the understanding of phylogeny and morphological evolution of Diptilomiopus species and provide a DNA-based approach for species delimitation of Diptilomiopus mites.
Collapse
Affiliation(s)
- Qing Liu
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yan-Mei Yuan
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yan Lai
- Department of Plant Protection, Guangxi University, Nanning, 530005, Guangxi, China
| | - Guo-Quan Wang
- Department of Plant Protection, Guangxi University, Nanning, 530005, Guangxi, China
| | - Xiao-Feng Xue
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
25
|
Sperotto RA, Grbic V, Pappas ML, Leiss KA, Kant MR, Wilson CR, Santamaria ME, Gao Y. Editorial: Plant Responses to Phytophagous Mites/Thrips and Search for Resistance. FRONTIERS IN PLANT SCIENCE 2019; 10:866. [PMID: 31333703 PMCID: PMC6620531 DOI: 10.3389/fpls.2019.00866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 06/17/2019] [Indexed: 06/10/2023]
Affiliation(s)
- Raul A. Sperotto
- Graduate Program in Biotechnology, University of Taquari Valley–Univates, Lajeado, Brazil
| | - Vojislava Grbic
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Maria L. Pappas
- Department of Agricultural Development, Democritus University of Thrace, Orestiada, Greece
| | - Kirsten A. Leiss
- Horticulture, Wageningen University & Research, Wageningen, Netherlands
| | - Merijn R. Kant
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Calum R. Wilson
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - M. Estrella Santamaria
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, Madrid, Spain
| | - Yulin Gao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
26
|
de Lillo E, Pozzebon A, Valenzano D, Duso C. An Intimate Relationship Between Eriophyoid Mites and Their Host Plants - A Review. FRONTIERS IN PLANT SCIENCE 2018; 9:1786. [PMID: 30564261 PMCID: PMC6288765 DOI: 10.3389/fpls.2018.01786] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/16/2018] [Indexed: 05/20/2023]
Abstract
Eriophyoid mites (Acari Eriophyoidea) are phytophagous arthropods forming intimate relationships with their host plants. These mites are associated with annual and perennial plants including ferns, and are highly specialized with a dominant monophagy. They can be classified in different ecological classes, i.e., vagrant, gall-making and refuge-seeking species. Many of them are major pests and some of them are vectors of plant pathogens. This paper critically reviews the knowledge on eriophyoids of agricultural importance with emphasis on sources for host plant resistance to these mites. The role of species belonging to the family Eriophyidae as vectors of plant viruses is discussed. Eriophyoid-host plant interactions, the susceptibility within selected crops and main host plant tolerance/resistance mechanisms are discussed. Fundamental concepts, subjects, and problems emerged in this review are pointed out and studies are suggested to clarify some controversial points.
Collapse
Affiliation(s)
- Enrico de Lillo
- Department of Soil, Plant and Food Sciences, Entomological and Zoological Section, University of Bari Aldo Moro, Bari, Italy
| | - Alberto Pozzebon
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Padova, Italy
| | - Domenico Valenzano
- Department of Soil, Plant and Food Sciences, Entomological and Zoological Section, University of Bari Aldo Moro, Bari, Italy
| | - Carlo Duso
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Padova, Italy
| |
Collapse
|
27
|
Singh K, Wegulo SN, Skoracka A, Kundu JK. Wheat streak mosaic virus: a century old virus with rising importance worldwide. MOLECULAR PLANT PATHOLOGY 2018; 19:2193-2206. [PMID: 29575495 PMCID: PMC6638073 DOI: 10.1111/mpp.12683] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/15/2018] [Accepted: 03/20/2018] [Indexed: 05/15/2023]
Abstract
Wheat streak mosaic virus (WSMV) causes wheat streak mosaic, a disease of cereals and grasses that threatens wheat production worldwide. It is a monopartite, positive-sense, single-stranded RNA virus and the type member of the genus Tritimovirus in the family Potyviridae. The only known vector is the wheat curl mite (WCM, Aceria tosichella), recently identified as a species complex of biotypes differing in virus transmission. Low rates of seed transmission have been reported. Infected plants are stunted and have a yellow mosaic of parallel discontinuous streaks on the leaves. In the autumn, WCMs move from WSMV-infected volunteer wheat and other grass hosts to newly emerged wheat and transmit the virus which survives the winter within the plant, and the mites survive as eggs, larvae, nymphs or adults in the crown and leaf sheaths. In the spring/summer, the mites move from the maturing wheat crop to volunteer wheat and other grass hosts and transmit WSMV, and onto newly emerged wheat in the fall to which they transmit the virus, completing the disease cycle. WSMV detection is by enzyme-linked immunosorbent assay (ELISA), reverse transcription-polymerase chain reaction (RT-PCR) or quantitative RT-PCR (RT-qPCR). Three types of WSMV are recognized: A (Mexico), B (Europe, Russia, Asia) and D (USA, Argentina, Brazil, Australia, Turkey, Canada). Resistance genes Wsm1, Wsm2 and Wsm3 have been identified. The most effective, Wsm2, has been introduced into several wheat cultivars. Mitigation of losses caused by WSMV will require enhanced knowledge of the biology of WCM biotypes and WSMV, new or improved virus detection techniques, the development of resistance through traditional and molecular breeding, and the adaptation of cultural management tactics to account for climate change.
Collapse
Affiliation(s)
- Khushwant Singh
- Crop Research Institute, Division of Crop Protection and Plant Health161 06 Prague 6Czech Republic
| | - Stephen N. Wegulo
- Department of Plant PathologyUniversity of Nebraska‐Lincoln, 406H Plant Sciences HallLincolnNE 68583USA
| | - Anna Skoracka
- Population Ecology Laboratory, Faculty of BiologyAdam Mickiewicz University in Poznań, Umultowska 89Poznań 61‐614Poland
| | - Jiban Kumar Kundu
- Crop Research Institute, Division of Crop Protection and Plant Health161 06 Prague 6Czech Republic
| |
Collapse
|
28
|
Laska A, Majer A, Szydło W, Karpicka-Ignatowska K, Hornyák M, Labrzycka A, Skoracka A. Cryptic diversity within grass-associated Abacarus species complex (Acariformes: Eriophyidae), with the description of a new species, Abacarus plumiger n. sp. EXPERIMENTAL & APPLIED ACAROLOGY 2018; 76:1-28. [PMID: 30171478 DOI: 10.1007/s10493-018-0291-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/24/2018] [Indexed: 05/20/2023]
Abstract
Accurate estimation of species richness is often complex as genetic divergence is not always accompanied by appreciable morphological differentiation. In consequence, cryptic lineages or species evolve. Cryptic speciation is common especially in taxa characterized by small and simplified bodies, what makes their proper identification challenging. The cereal rust mite, Abacarus hystrix, was regarded for a long time as a species associated with a wide range of grass hosts, whereas wide host ranges are rather rare in eriophyoid mites. Therefore, the generalist status of A. hystrix was questioned. In this paper we demonstrate that the diversity within Abacarus species associated with grasses is more complex than it was previously thought. The 78 Abacarus mtDNA COI sequences used in this study formed 10 highly supported clades (bootstrap value 99%) and four more distinct genetic lineages were represented by unique sequences. The genetic distances between them ranged from 6.6 to 26.5%. Moreover, morphological study and genetic approach based on the combination of the Poisson Tree Processes model for species delimitation (PTP) and a Bayesian implementation of PTP (bPTP), and Neighbour Joining analyses led to delimitation of a new species within the Abacarus complex: Abacarus plumiger, specialized on smooth brome (Bromus inermis). Furthermore, our analyses demonstrated a pattern of host-associated differentiation within the complex. Overall, our study indicates that cryptic speciation occurs in the grass-associated Abacarus genus, and suggests the need for more extensive sampling using integrative methods.
Collapse
Affiliation(s)
- Alicja Laska
- Population Ecology Lab, Faculty of Biology, Adam Mickiewicz University, Poznań, Umultowska 89, 61-614, Poznań, Poland.
| | - Agnieszka Majer
- Population Ecology Lab, Faculty of Biology, Adam Mickiewicz University, Poznań, Umultowska 89, 61-614, Poznań, Poland
| | - Wiktoria Szydło
- Department of Entomology, University of Nebraska-Lincoln, 103 Entomology Hall, Lincoln, NE, 68583-0816, USA
| | - Kamila Karpicka-Ignatowska
- Population Ecology Lab, Faculty of Biology, Adam Mickiewicz University, Poznań, Umultowska 89, 61-614, Poznań, Poland
| | - Marta Hornyák
- Department of Plant Physiology, Faculty of Agriculture and Economics, University of Agriculture in Krakow, Podłużna 3, 30-239, Kraków, Poland
| | - Anna Labrzycka
- Molecular Biology Techniques Laboratory, Faculty of Biology, Adam Mickiewicz University, Poznań, Umultowska 89, 61-614, Poznań, Poland
| | - Anna Skoracka
- Population Ecology Lab, Faculty of Biology, Adam Mickiewicz University, Poznań, Umultowska 89, 61-614, Poznań, Poland
| |
Collapse
|
29
|
Skoracka A, Lopes LF, Alves MJ, Miller A, Lewandowski M, Szydło W, Majer A, Różańska E, Kuczyński L. Genetics of lineage diversification and the evolution of host usage in the economically important wheat curl mite, Aceria tosichella Keifer, 1969. BMC Evol Biol 2018; 18:122. [PMID: 30086701 PMCID: PMC6081818 DOI: 10.1186/s12862-018-1234-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 07/26/2018] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Understanding the mechanisms that underlie the diversification of herbivores through interactions with their hosts is important for their diversity assessment and identification of expansion events, particularly in a human-altered world where evolutionary processes can be exacerbated. We studied patterns of host usage and genetic structure in the wheat curl mite complex (WCM), Aceria tosichella, a major pest of the world's grain industry, to identify the factors behind its extensive diversification. RESULTS We expanded on previous phylogenetic research, demonstrating deep lineage diversification within the taxon, a complex of distinctive host specialist and generalist lineages more diverse than previously assumed. Time-calibrated phylogenetic reconstruction inferred from mitochondrial DNA sequence data suggests that lineage diversification pre-dates the influence of agricultural practices, and lineages started to radiate in the mid Miocene when major radiations of C4 grasses is known to have occurred. Furthermore, we demonstrated that host specificity is not phylogenetically constrained, while host generalization appears to be a more derived trait coinciding with the expansion of the world's grasslands. Demographic history of specialist lineages have been more stable when compared to generalists, and their expansion pre-dated all generalist lineages. The lack of host-associated genetic structure of generalists indicates gene flow between mite populations from different hosts. CONCLUSIONS Our analyses demonstrated that WCM is an unexpectedly diverse complex of genetic lineages and its differentiation is likely associated with the time of diversification and expansion of its hosts. Signatures of demographic histories and expansion of generalists are consistent with the observed proliferation of the globally most common lineages. The apparent lack of constrains on host use, coupled with a high colonization potential, hinders mite management, which may be further compromised by host range expansion. This study provides a significant contribution to the growing literature on host-association and diversification in herbivorous invertebrates.
Collapse
Affiliation(s)
- Anna Skoracka
- Population Ecology Lab, Faculty of Biology, Adam Mickiewicz University, Poznań, Umultowska 89, 61–614 Poznań, Poland
| | - Luís Filipe Lopes
- Museu Nacional de História Natural e da Ciência & Centre for Ecology, Evolution and Environmental Changes (cE3c), University of Lisbon, Rua da Escola Politécnica 58, 1250-102 Lisbon, Portugal
| | - Maria Judite Alves
- Museu Nacional de História Natural e da Ciência & Centre for Ecology, Evolution and Environmental Changes (cE3c), University of Lisbon, Rua da Escola Politécnica 58, 1250-102 Lisbon, Portugal
| | - Adam Miller
- Deakin University, Geelong, Australia
- School of Life and Environmental Sciences, Centre for Integrative Ecology, Warrnambool, Vic 3280 Australia
| | - Mariusz Lewandowski
- Department of Applied Entomology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences – SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Wiktoria Szydło
- Department of Entomology, University of Nebraska-Lincoln, 103 Entomology Hall, Lincoln, NE 68583-0816 USA
| | - Agnieszka Majer
- Population Ecology Lab, Faculty of Biology, Adam Mickiewicz University, Poznań, Umultowska 89, 61–614 Poznań, Poland
| | - Elżbieta Różańska
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences – SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Lechosław Kuczyński
- Population Ecology Lab, Faculty of Biology, Adam Mickiewicz University, Poznań, Umultowska 89, 61–614 Poznań, Poland
| |
Collapse
|
30
|
Skoracka A, Rector BG, Hein GL. The Interface Between Wheat and the Wheat Curl Mite, Aceria tosichella, the Primary Vector of Globally Important Viral Diseases. FRONTIERS IN PLANT SCIENCE 2018; 9:1098. [PMID: 30100916 PMCID: PMC6072864 DOI: 10.3389/fpls.2018.01098] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 07/09/2018] [Indexed: 05/08/2023]
Abstract
Wheat production and sustainability are steadily threatened by pests and pathogens in both wealthy and developing countries. This review is focused on the wheat curl mite (WCM), Aceria tosichella, and its relationship with wheat. WCM is a major pest of wheat and other cereals and a vector of at least four damaging plant viruses (Wheat streak mosaic virus, High plains wheat mosaic virus, Brome streak mosaic virus, and Triticum mosaic virus). The WCM-virus pathosystem causes considerable yield losses worldwide and its severity increases significantly when mixed-virus infections occur. Chemical control strategies are largely ineffective because WCM occupies secluded niches on the plant, e.g., leaf sheaths or curled leaves in the whorl. The challenge of effectively managing this pest-virus complex is exacerbated by the existence of divergent WCM lineages that differ in host-colonization and virus-transmission abilities. We highlight research progress in mite ecology and virus epidemiology that affect management and development of cereal cultivars with WCM- and virus-resistance genes. We also address the challenge of avoiding both agronomically deleterious side effects and selection for field populations of WCM that can overcome these resistance genes. This report integrates the current state of knowledge of WCM-virus-plant interactions and addresses knowledge gaps regarding the mechanisms driving WCM infestation, viral epidemics, and plant responses. We discuss the potential application of molecular methods (e.g., transcriptomics, epigenetics, and whole-genome sequencing) to understand the chemical and cellular interface between the wheat plant and WCM-virus complexes.
Collapse
Affiliation(s)
- Anna Skoracka
- Population Ecology Lab, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Brian G. Rector
- Great Basin Rangelands Research Unit, United States Department of Agriculture – Agricultural Research Service, Reno, NV, United States
| | - Gary L. Hein
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
31
|
Zhang G, Hua Z. Genome comparison implies the role of Wsm2 in membrane trafficking and protein degradation. PeerJ 2018; 6:e4678. [PMID: 29707435 PMCID: PMC5918131 DOI: 10.7717/peerj.4678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 04/09/2018] [Indexed: 02/01/2023] Open
Abstract
Wheat streak mosaic virus (WSMV) causes streak mosaic disease in wheat (Triticum aestivum L.) and has been an important constraint limiting wheat production in many regions around the world. Wsm2 is the only resistance gene discovered in wheat genome and has been located in a short genomic region of its chromosome 3B. However, the sequence nature and the biological function of Wsm2 remain unknown due to the difficulty of genetic manipulation in wheat. In this study, we tested WSMV infectivity among wheat and its two closely related grass species, rice (Oryza sativa) and Brachypodium distachyon. Based on the phenotypic result and previous genomic studies, we developed a novel bioinformatics pipeline for interpreting a potential biological function of Wsm2 and its ancestor locus in wheat. In the WSMV resistance tests, we found that rice has a WMSV resistance gene while Brachypodium does not, which allowed us to hypothesize the presence of a Wsm2 ortholog in rice. Our OrthoMCL analysis of protein coding genes on wheat chromosome 3B and its syntenic chromosomes in rice and Brachypodium discovered 4,035 OrthoMCL groups as preliminary candidates of Wsm2 orthologs. Given that Wsm2 is likely duplicated through an intrachromosomal illegitimate recombination and that Wsm2 is dominant, we inferred that this new WSMV-resistance gene acquired an activation domain, lost an inhibition domain, or gained high expression compared to its ancestor locus. Through comparison, we identified that 67, 16, and 10 out of 4,035 OrthoMCL orthologous groups contain a rice member with 25% shorter or longer in length, or 10 fold more expression, respectively, than those from wheat and Brachypodium. Taken together, we predicted a total of 93 good candidates for a Wsm2 ancestor locus. All of these 93 candidates are not tightly linked with Wsm2, indicative of the role of illegitimate recombination in the birth of Wsm2. Further sequence analysis suggests that the protein products of Wsm2 may combat WSMV disease through a molecular mechanism involving protein degradation and/or membrane trafficking. The 93 putative Wsm2 ancestor loci discovered in this study could serve as good candidates for future genetic isolation of the true Wsm2 locus.
Collapse
Affiliation(s)
- Guorong Zhang
- Agricultural Research Center-Hays, Kansas State University, Hays, KS, United States of America
| | - Zhihua Hua
- Department of Environmental and Plant Biology, Ohio University, Athens, OH, United States of America.,Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, Athens, OH, United States of America
| |
Collapse
|
32
|
Ranabhat NB, Seipel T, Lehnhoff EA, Miller ZJ, Owen KE, Menalled FD, Burrows ME. Temperature and Alternative Hosts Influence Aceria tosichella Infestation and Wheat Streak Mosaic Virus Infection. PLANT DISEASE 2018; 102:546-551. [PMID: 30673491 DOI: 10.1094/pdis-06-17-0782-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Wheat streak mosaic, caused by Wheat streak mosaic virus (WSMV; family Potyviridae), is the most important and common viral disease of wheat (Triticum aestivum L.) in the Great Plains of North America. WSMV is transmitted by the wheat curl mite (WCM; Aceria tosichella). We evaluated how mean daily temperatures, cumulative growing degree-days, day of the year, and surrounding alternative host identity affected WCM infestation and WSMV infection of wheat from late summer through early autumn in Montana, United States. Cumulative growing degree-days, warm mean daily temperatures (i.e., >10°C), and surrounding alternative hosts interacted to alter risk of WCM infestation and WSMV infection. Wheat surrounded by Bromus tectorum L. and preharvest volunteer wheat had WCM infestation and WSMV infection rates of 88% in years when the mean daily temperature was 15°C in October, compared with 23% when surrounded by bare ground, and <1% when the temperature was 0°C regardless of surrounding alternative host. Mean daily temperatures in the cereal-growing regions of Montana during autumn are marginally conducive to WCM population growth and movement. As the region continues to warm, the period of WCM movement will become longer, potentially increasing the frequency of WSMV outbreaks.
Collapse
Affiliation(s)
- Nar B Ranabhat
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman 59717
| | - Tim Seipel
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman 59717
| | - Erik A Lehnhoff
- Department of Entomology, Plant Pathology and Weed Science, New Mexico State University, Las Cruces 88003
| | - Zach J Miller
- Department of Research Centers, Western Agricultural Research Center, Montana State University, Corvallis 59828
| | - Karl E Owen
- Department of Plant Sciences and Plant Pathology
| | | | - Mary E Burrows
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman
| |
Collapse
|
33
|
Behavioural responses to potential dispersal cues in two economically important species of cereal-feeding eriophyid mites. Sci Rep 2017. [PMID: 28634374 PMCID: PMC5478656 DOI: 10.1038/s41598-017-04372-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Passively dispersing organisms should optimise the time and direction of dispersal by employing behaviours that increase their probability of being successfully transported by dispersal agents. We rigorously tested whether two agriculturally important passively-dispersing eriophyoid species, wheat curl mite (WCM) and cereal rust mite (CRM), display behaviours indicating their readiness to depart from current host plants in the presence of potential dispersal cues: wind, an insect vector and presence of a fresh plant. Contrary to our expectations, we found that both species decreased their general activity in the presence of wind. When exposed to wind, WCM (but not CRM) significantly increased behaviour that has previously been considered to facilitate dispersal (in this case, standing vertically). Our study provides the first sound test of the function of what have been interpreted as dispersal-related behaviours of eriophyid mites. The low proportion of WCM exhibiting dispersal behaviour suggests there may be predisposed dispersers and residents in the population. Moreover, we found that WCM was generally more active than CRM, which is likely a contributing factor to its high invasive potential.
Collapse
|
34
|
Skoracka A, Lewandowski M, Rector BG, Szydło W, Kuczyński L. Spatial and Host-Related Variation in Prevalence and Population Density of Wheat Curl Mite (Aceria tosichella) Cryptic Genotypes in Agricultural Landscapes. PLoS One 2017; 12:e0169874. [PMID: 28099506 PMCID: PMC5242520 DOI: 10.1371/journal.pone.0169874] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 12/24/2016] [Indexed: 01/14/2023] Open
Abstract
The wheat curl mite (WCM), Aceria tosichella Keifer, is a major pest of cereals worldwide that also comprises a complex of at least 16 genetic lineages with divergent physiological traits, including host associations and specificity. The goal of this study was to test the extent to which host-plant species and landscape spatial variation influence WCM presence and population density across the entire area of Poland (>311,000 km2). Three important findings arose from the results of the study. (1) The majority of WCM lineages analyzed exhibited variation in patterns of prevalence and/or population density on both spatial and host-associated scales. (2) Areas of occurrence and local abundance were delineated for specific WCM lineages and it was determined that the most pestiferous lineages are much less widespread than was expected, suggesting relatively recent introductions into Poland and the potential for further spread. (3) The 16 WCM lineages under study assorted within four discrete host assemblages, within which similar host preferences and host infestation patterns were detected. Of these four groups, one consists of lineages associated with cereals. In addition to improving basic ecological knowledge of a widespread arthropod herbivore, the results of this research identify high-risk areas for the presence of the most pestiferous WCM lineages in the study area (viz. the entirety of Poland). They also provide insight into the evolution of pest species of domesticated crops and facilitate testing of fundamental hypotheses about the ecological factors that shape this pest community.
Collapse
Affiliation(s)
- Anna Skoracka
- Population Ecology Lab, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poland
| | - Mariusz Lewandowski
- Department of Applied Entomology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences –SGGW, Warsaw, Poland
| | - Brian G. Rector
- Great Basin Rangelands Research Unit, USDA-ARS, Reno, Nevada, United States of America
| | - Wiktoria Szydło
- Population Ecology Lab, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poland
| | - Lechosław Kuczyński
- Population Ecology Lab, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poland
| |
Collapse
|
35
|
Ali N, Heslop-Harrison JS(P, Ahmad H, Graybosch RA, Hein GL, Schwarzacher T. Introgression of chromosome segments from multiple alien species in wheat breeding lines with wheat streak mosaic virus resistance. Heredity (Edinb) 2016; 117:114-23. [PMID: 27245423 PMCID: PMC4949730 DOI: 10.1038/hdy.2016.36] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 01/22/2016] [Accepted: 02/11/2016] [Indexed: 01/08/2023] Open
Abstract
Pyramiding of alien-derived Wheat streak mosaic virus (WSMV) resistance and resistance enhancing genes in wheat is a cost-effective and environmentally safe strategy for disease control. PCR-based markers and cytogenetic analysis with genomic in situ hybridisation were applied to identify alien chromatin in four genetically diverse populations of wheat (Triticum aestivum) lines incorporating chromosome segments from Thinopyrum intermedium and Secale cereale (rye). Out of 20 experimental lines, 10 carried Th. intermedium chromatin as T4DL*4Ai#2S translocations, while, unexpectedly, 7 lines were positive for alien chromatin (Th. intermedium or rye) on chromosome 1B. The newly described rye 1RS chromatin, transmitted from early in the pedigree, was associated with enhanced WSMV resistance. Under field conditions, the 1RS chromatin alone showed some resistance, while together with the Th. intermedium 4Ai#2S offered superior resistance to that demonstrated by the known resistant cultivar Mace. Most alien wheat lines carry whole chromosome arms, and it is notable that these lines showed intra-arm recombination within the 1BS arm. The translocation breakpoints between 1BS and alien chromatin fell in three categories: (i) at or near to the centromere, (ii) intercalary between markers UL-Thin5 and Xgwm1130 and (iii) towards the telomere between Xgwm0911 and Xbarc194. Labelled genomic Th. intermedium DNA hybridised to the rye 1RS chromatin under high stringency conditions, indicating the presence of shared tandem repeats among the cereals. The novel small alien fragments may explain the difficulty in developing well-adapted lines carrying Wsm1 despite improved tolerance to the virus. The results will facilitate directed chromosome engineering producing agronomically desirable WSMV-resistant germplasm.
Collapse
Affiliation(s)
- N Ali
- Department of Genetics, University of Leicester, Leicester, UK
- Hazara University, Mansehra, Pakistan
| | | | - H Ahmad
- Hazara University, Mansehra, Pakistan
| | - R A Graybosch
- USDA-ARS & Department of Agronomy & Horticulture, University of Nebraska, Lincoln, NE, USA
| | - G L Hein
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - T Schwarzacher
- Department of Genetics, University of Leicester, Leicester, UK
| |
Collapse
|
36
|
Kuczyński L, Rector BG, Kiedrowicz A, Lewandowski M, Szydło W, Skoracka A. Thermal Niches of Two Invasive Genotypes of the Wheat Curl Mite Aceria tosichella: Congruence between Physiological and Geographical Distribution Data. PLoS One 2016; 11:e0154600. [PMID: 27123590 PMCID: PMC4849750 DOI: 10.1371/journal.pone.0154600] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 04/16/2016] [Indexed: 11/19/2022] Open
Abstract
The wheat curl mite (WCM), Aceria tosichella Keifer, is a major pest of cereals worldwide. It is also a complex of well-defined genetic lineages with divergent physiological traits, which has not been accounted for in applied contexts. The aims of the study were to model the thermal niches of the two most pestiferous WCM lineages, designated MT-1 and MT-8, and to assess the extent to which temperature determines the distribution of these lineages. WCM population dynamics were modeled based on thermal niche data from March to November on the area of Poland (>311,000 km2). The most suitable regions for population development were predicted and compared to empirical field abundance data. Congruence between modeled parameters and field data for mite presence were observed for both WCM lineages although congruence between modeled thermal suitability and mite field abundance was observed only for MT-8. Thermal niche data for MT-1 and MT-8 provide biological insights and aid monitoring and management of WCM and the plant viruses it vectors. The presented models accurately estimate distributions of WCM and can be incorporated into management strategies for both current and predicted climate scenarios.
Collapse
Affiliation(s)
- Lechosław Kuczyński
- Department of Avian Biology and Ecology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Brian G. Rector
- United States Department of Agriculture (USDA-ARS), Great Basin Rangelands Research Unit, Reno, United States of America
| | - Agnieszka Kiedrowicz
- Department of Animal Taxonomy and Ecology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Mariusz Lewandowski
- Department of Applied Entomology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences–SGGW, Warsaw, Poland
| | - Wiktoria Szydło
- Department of Animal Taxonomy and Ecology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Anna Skoracka
- Department of Animal Taxonomy and Ecology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
- * E-mail:
| |
Collapse
|
37
|
Byamukama E, Tatineni S, Hein G, McMechan J, Wegulo SN. Incidence of Wheat streak mosaic virus, Triticum mosaic virus, and Wheat mosaic virus in Wheat Curl Mites Recovered from Maturing Winter Wheat Spikes. PLANT DISEASE 2016; 100:318-323. [PMID: 30694138 DOI: 10.1094/pdis-06-15-0692-re] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Wheat curl mites (WCM; Aceria tosichella) transmit Wheat streak mosaic virus (WSMV), Triticum mosaic virus (TriMV), and Wheat mosaic virus (WMoV) to wheat (Triticum aestivum L.) in the Great Plains region of the United States. These viruses can be detected in single, double, or triple combinations in leaf samples. Information on incidence of viruses in WCM at the end of the growing season is scant. The availability of this information can enhance our knowledge of the epidemiology of WCM-transmitted viruses. This research was conducted to determine the frequency of occurrence of WSMV, TriMV, and WMoV in WCM populations on field-collected maturing wheat spikes and to determine differences in WCM densities in three geographical regions (southeast, west-central, and panhandle) in Nebraska. Maturing wheat spikes were collected from 83 fields across Nebraska in 2011 and 2012. The spikes were placed in proximity to wheat seedlings (three- to four-leaf stage) in WCM-proof cages in a growth chamber and on sticky tape. WCM that moved off the drying wheat spikes in cages infested the wheat seedlings. WCM that moved off wheat spikes placed on sticky tape were trapped on the tape and were counted under a dissecting microscope. At 28 days after infestation, the wheat plants were tested for the presence of WSMV, TriMV, or WMoV using enzyme-linked immunosorbent assay and multiplex polymerase chain reaction. WSMV was the most predominant virus detected in wheat seedlings infested with WCM from field-collected spikes. Double (TriMV+WSMV or WMoV+WSMV) or triple (TriMV+ WMoV +WSMV) virus detections were more frequent (47%) than single detections (5%) of TriMV or WSMV. Overall, 81% of the wheat seedlings infested with WCM tested positive for at least one virus. No significant association (P > 0.05) was found between regions for WCM trapped on tape. These results suggest that WCM present on mature wheat spikes harbor multiple wheat viruses and may explain high virus incidence when direct movement of WCM into emerging winter wheat occurs in the fall.
Collapse
Affiliation(s)
- E Byamukama
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln 68583
| | - S Tatineni
- United States Department of Agriculture-Agricultural Research Service and Department of Plant Pathology, University of Nebraska-Lincoln
| | - G Hein
- Department of Entomology, University of Nebraska-Lincoln
| | - J McMechan
- Department of Entomology, University of Nebraska-Lincoln
| | - S N Wegulo
- Department of Plant Pathology, University of Nebraska-Lincoln
| |
Collapse
|
38
|
Milgate A, Adorada D, Chambers G, Terras MA. Occurrence of Winter Cereal Viruses in New South Wales, Australia, 2006 to 2014. PLANT DISEASE 2016; 100:313-317. [PMID: 30694149 DOI: 10.1094/pdis-06-15-0650-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Winter cereal viruses can cause significant crop losses; however, detailed knowledge of their occurrence in New South Wales, Australia is very limited. This paper reports on the occurrence of Wheat streak mosaic virus (WSMV), Wheat mosaic virus (WMoV), Barley yellow dwarf virus (BYDV), Cereal yellow dwarf virus (CYDV), and their serotypes between 2006 and 2014. Detection of WMoV is confirmed in eastern Australia for the first time. The BYDV and CYDV 2014 epidemic is examined in detail using 139 samples of wheat, barley, and oat surveyed from southern New South Wales. The presence of virus was determined using enzyme-linked immunosorbent assays. The results reveal a high frequency of the serotype Barley yellow dwarf virus - MAV as a single infection present in 27% of samples relative to Barley yellow dwarf virus - PAV in 19% and CYDV in 14%. Clear differences emerged in the infection of different winter cereal species by serotypes of BYDV and CYDV. These results are contrasted to other Australian and international studies.
Collapse
Affiliation(s)
- Andrew Milgate
- New South Wales (NSW) Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga NSW 2650 Australia
| | - Dante Adorada
- New South Wales (NSW) Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga NSW 2650 Australia
| | - Grant Chambers
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW 2568 Australia
| | - Mary Ann Terras
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW 2568 Australia
| |
Collapse
|
39
|
Mitochondrial genome evolution and tRNA truncation in Acariformes mites: new evidence from eriophyoid mites. Sci Rep 2016; 6:18920. [PMID: 26732998 PMCID: PMC4702108 DOI: 10.1038/srep18920] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 11/30/2015] [Indexed: 11/08/2022] Open
Abstract
The subclass Acari (mites and ticks) comprises two super-orders: Acariformes and Parasitiformes. Most species of the Parasitiformes known retained the ancestral pattern of mitochondrial (mt) gene arrangement of arthropods, and their mt tRNAs have the typical cloverleaf structure. All of the species of the Acariformes known, however, have rearranged mt genomes and truncated mt tRNAs. We sequenced the mt genomes of two species of Eriophyoidea: Phyllocoptes taishanensis and Epitrimerus sabinae. The mt genomes of P. taishanensis and E. sabinae are 13,475 bp and 13,531 bp, respectively, are circular and contain the 37 genes typical of animals; most mt tRNAs are highly truncated in both mites. On the other hand, these two eriophyoid mites have the least rearranged mt genomes seen in the Acariformes. Comparison between eriophyoid mites and other Aacariformes mites showed that: 1) the most recent common ancestor of Acariformes mites retained the ancestral pattern of mt gene arrangement of arthropods with slight modifications; 2) truncation of tRNAs for cysteine, phenylalanine and histidine occurred once in the most recent common ancestor of Acariformes mites whereas truncation of other tRNAs occurred multiple times; and 3) the placement of eriophyoid mites in the order Trombidiformes needs to be reviewed.
Collapse
|
40
|
Miller ZJ, Lehnhoff EA, Menalled FD, Burrows M. Effects of Soil Nitrogen and Atmospheric Carbon Dioxide on Wheat streak mosaic virus and Its Vector (Aceria tosichella Kiefer). PLANT DISEASE 2015; 99:1803-1807. [PMID: 30699500 DOI: 10.1094/pdis-01-15-0033-re] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Management of vector-borne plant viruses requires understanding how abiotic (e.g., resource availability) and biotic (e.g., virus-vector interactions) factors affect disease via effects on epidemiological parameters that drive disease spread. We conducted two complementary experiments using Wheat streak mosaic virus (WSMV): (i) a field study to determine the effects of nitrogen (N) fertilization on winter wheat (Triticum aestivum L.) susceptibility to WSMV infection and (ii) a growth chamber study to evaluate the effects of N and carbon dioxide (CO2) enrichment on population growth rates of the wheat curl mite (WCM), the vector of WSMV, and whether the effects of nutrient addition on WCM reproduction were modified by WSMV infection. The relationship between N fertilization and plant susceptibility to WSMV infection was nonlinear, with infection rates increasing rapidly as soil nitrate increased from 0 to 20 ppm and more gradually at higher nitrate concentrations. In the growth chamber study, N fertilization increased WCM population growth rates when the vectors transmitted WSMV but had the opposite effect on nonviruliferous mites. CO2 enrichment had no observable effects on WCM populations. These results suggest that, whereas the spread of WSMV is facilitated by N addition, increases in atmospheric CO2 may not directly alter WCM populations and WSMV spread.
Collapse
Affiliation(s)
- Zachariah J Miller
- Western Agricultural Research Center, Montana State University, Corvallis 59828
| | | | | | - Mary Burrows
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman 59717
| |
Collapse
|
41
|
Lehnhoff E, Miller Z, Menalled F, Ito D, Burrows M. Wheat and Barley Susceptibility and Tolerance to Multiple Isolates of Wheat streak mosaic virus. PLANT DISEASE 2015; 99:1383-1389. [PMID: 30690982 DOI: 10.1094/pdis-11-14-1205-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
One of the greatest virus disease threats to wheat production in the Great Plains of the USA is Wheat streak mosaic virus (WSMV). Breeding programs have developed wheat varieties that are resistant or tolerant to WSMV infection, but these characteristics are climate dependent, and may also vary by WSMV isolate. We tested 10 spring and nine winter wheat (Triticum aestivum) varieties and two barley (Hordeum vulgare) varieties for resistance and tolerance to one WSMV isolate over four years. In spring wheat and barley, there were year by cultivar interactions in terms of resistance and tolerance. However, in winter wheat, yield losses due to WSMV were relatively consistent across years and varieties. Additionally, we tested the impacts of three WSMV isolates individually and in a mixture on twelve, two, and twelve varieties of spring wheat, barley, and winter wheat, respectively. Resistance and tolerance varied by isolate and cultivar, but there were no isolate by cultivar interactions. For spring wheat and barley, yield impacts were greater for two of the three single isolates than for the isolate mixture, whereas in winter wheat, the isolate mixture caused greater yield losses than the individual isolates. Overall, the results indicate that resistance and tolerance phenotypes were influenced by environmental conditions and by WSMV isolate or combination of isolates, suggesting that cultivar screening should be conducted over multiple years and with multiple virus isolates.
Collapse
Affiliation(s)
- Erik Lehnhoff
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT 59717
| | - Zachariah Miller
- Western Agricultural Research Center, Montana State University, Corvallis, MT 59828
| | - Fabian Menalled
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT 59717
| | - Dai Ito
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717
| | - Mary Burrows
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717
| |
Collapse
|
42
|
Szydło W, Hein G, Denizhan E, Skoracka A. Exceptionally High Levels of Genetic Diversity in Wheat Curl Mite (Acari: Eriophyidae) Populations from Turkey. JOURNAL OF ECONOMIC ENTOMOLOGY 2015; 108:2030-9. [PMID: 26470350 DOI: 10.1093/jee/tov180] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 06/01/2015] [Indexed: 05/10/2023]
Abstract
Recent research on the wheat curl mite species complex has revealed extensive genetic diversity that has distinguished several genetic lineages infesting bread wheat (Triticum aestivum L.) and other cereals worldwide. Turkey is the historical region of wheat and barley (Hordeum vulgare L.) domestication and diversification. The close relationship between these grasses and the wheat curl mite provoked the question of the genetic diversity of the wheat curl mite in this region. The scope of the study was to investigate genetic differentiation within the wheat curl mite species complex on grasses in Turkey. Twenty-one wheat curl mite populations from 16 grass species from nine genera (Agropyron sp., Aegilops sp., Bromus sp., Elymus sp., Eremopyrum sp., Hordeum sp., Poa sp., Secale sp., and Triticum sp.) were sampled in eastern and southeastern Turkey for genetic analyses. Two molecular markers were amplified: the cytochrome oxidase subunit I coding region of mtDNA (COI) and the D2 region of 28S rDNA. Phylogenetic analyses revealed high genetic variation of the wheat curl mite in Turkey, primarily on Bromus and Hordeum spp., and exceptionally high diversity of populations associated with bread wheat. Three wheat-infesting wheat curl mite lineages known to occur on other continents of the world, including North and South America, Australia and Europe, were found in Turkey, and at least two new genetic lineages were discovered. These regions of Turkey exhibit rich wheat curl mite diversity on native grass species. The possible implications for further studies on the wheat curl mite are discussed.
Collapse
Affiliation(s)
- W Szydło
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland.
| | - G Hein
- Department of Entomology, University of Nebraska-Lincoln, P.O. Box 830933, Lincoln, NE 68583-0933
| | - E Denizhan
- Department of Plant Protection, Agricultural Faculty, Yüzüncü Yıl University, 65080 Van, Turkey
| | - A Skoracka
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| |
Collapse
|
43
|
Pradhan GP, Xue Q, Jessup KE, Hao B, Price JA, Rush CM. Physiological Responses of Hard Red Winter Wheat to Infection by Wheat streak mosaic virus. PHYTOPATHOLOGY 2015; 105:621-7. [PMID: 25901871 DOI: 10.1094/phyto-07-14-0194-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Wheat streak mosaic virus (WSMV) causes significant yield loss in hard red winter wheat in the U.S. Southern High Plains. Despite the prevalence of this pathogen, little is known about the physiological response of wheat to WSMV infection. A 2-year study was initiated to (i) investigate the effect of WSMV, inoculated at different development stages, on shoot and root growth, water use, water use efficiency (WUE), and photosynthesis and (ii) understand the relationships between yield and photosynthetic parameters during WSMV infection. Two greenhouse experiments were conducted with two wheat cultivars mechanically inoculated with WSMV at different developmental stages, from three-leaf to booting. WSMV inoculated early, at three- to five-leaf stage, resulted in a significant reduction in shoot biomass, root dry weight, and yield compared with wheat infected at the jointing and booting stages. However, even when inoculated as late as jointing, WSMV still reduced grain yield by at least 53%. Reduced tillers, shoot biomass, root dry weight, water use, and WUE contributed to yield loss under WSMV infection. However, infection by WSMV did not affect rooting depth and the number of seminal roots but reduced the number of nodal roots. Leaf photosynthetic parameters (chlorophyll [SPAD], net photosynthetic rate [Pn], stomatal conductance [Gs], intercellular CO2 concentration [Ci], and transpiration rate [Tr]) were reduced when infected by WSMV, and early infection reduced parameters more than late infection. Photosynthetic parameters had a linear relationship with grain yield and shoot biomass. The reduced Pn under WSMV infection was mainly in response to decreased Gs, Ci, and SPAD. The results of this study indicated that leaf chlorophyll and gas exchange parameters can be used to quantify WSMV effects on biomass and grain yield in wheat.
Collapse
|
44
|
Schubert J, Ziegler A, Rabenstein F. First detection of wheat streak mosaic virus in Germany: molecular and biological characteristics. Arch Virol 2015; 160:1761-6. [DOI: 10.1007/s00705-015-2422-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 04/05/2015] [Indexed: 12/01/2022]
|
45
|
Mandadi KK, Pyle JD, Scholthof KBG. Comparative analysis of antiviral responses in Brachypodium distachyon and Setaria viridis reveals conserved and unique outcomes among C3 and C4 plant defenses. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:1277-1290. [PMID: 25296115 DOI: 10.1094/mpmi-05-14-0152-r] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Viral diseases cause significant losses in global agricultural production, yet little is known about grass antiviral defense mechanisms. We previously reported on host immune responses triggered by Panicum mosaic virus (PMV) and its satellite virus (SPMV) in the model C3 grass Brachypodium distachyon. To aid comparative analyses of C3 and C4 grass antiviral defenses, here, we establish B. distachyon and Setaria viridis (a C4 grass) as compatible hosts for seven grass-infecting viruses, including PMV and SPMV, Brome mosaic virus, Barley stripe mosaic virus, Maize mild mottle virus, Sorghum yellow banding virus, Wheat streak mosaic virus (WSMV), and Foxtail mosaic virus (FoMV). Etiological and molecular characterization of the fourteen grass-virus pathosystems showed evidence for conserved crosstalk among salicylic acid (SA), jasmonic acid, and ethylene pathways in B. distachyon and S. viridis. Strikingly, expression of PHYTOALEXIN DEFICIENT4, an upstream modulator of SA signaling, was consistently suppressed during most virus infections in B. distachyon and S. viridis. Hierarchical clustering analyses further identified unique antiviral responses triggered by two morphologically similar viruses, FoMV and WSMV, and uncovered other host-dependent effects. Together, the results of this study establish B. distachyon and S. viridis as models for the analysis of plant-virus interactions and provide the first framework for conserved and unique features of C3 and C4 grass antiviral defenses.
Collapse
|
46
|
Miller Z, Menalled F, Ito D, Moffet M, Burrows M. Impacts of Crop Variety and Time of Inoculation on the Susceptibility and Tolerance of Winter Wheat to Wheat streak mosaic virus. PLANT DISEASE 2014; 98:1060-1065. [PMID: 30708793 DOI: 10.1094/pdis-12-13-1210-re] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Plant genotype, age, size, and environmental factors can modify susceptibility and tolerance to disease. Understanding the individual and combined impacts of these factors is needed to define improved disease management strategies. In the case of Wheat streak mosaic virus (WSMV) in winter wheat, yield losses and plant susceptibility have been found to be greatest when the crop is exposed to the virus in the fall in the central and southern Great Plains. However, the seasonal dynamics of disease risk may be different in the northern Great Plains, a region characterized by a relatively cooler fall conditions, because temperature is known to modify plant-virus interactions. In a 2-year field study conducted in south-central Montana, we compared the impact of fall and spring WSMV inoculations on the susceptibility, tolerance, yield, and grain quality of 10 winter wheat varieties. Contrary to previous studies, resistance and yields were lower in the spring than in the fall inoculation. In all, 5 to 7% of fall-inoculated wheat plants were infected with WSMV and yields were often similar to uninoculated controls. Spring inoculation resulted in 45 to 57% infection and yields that were 15 to 32% lower than controls. Although all varieties were similarly susceptible to WSMV, variations in tolerance (i.e., yield losses following exposure to the virus) were observed. These results support observations that disease risk and impacts differ across the Great Plains. Possible mechanisms include variation in climate and in the genetic composition of winter wheat and WSMV across the region.
Collapse
Affiliation(s)
- Z Miller
- Department of Land Resources and Environmental Sciences
| | - F Menalled
- Department of Land Resources and Environmental Sciences
| | | | - M Moffet
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman 59717
| | - M Burrows
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman 59717
| |
Collapse
|
47
|
Skoracka A, Kuczyński L, Rector B, Amrine JW. Wheat curl mite and dry bulb mite: untangling a taxonomic conundrum through a multidisciplinary approach. Biol J Linn Soc Lond 2014. [DOI: 10.1111/bij.12213] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Anna Skoracka
- Department of Animal Taxonomy and Ecology; Institute of Environmental Biology; Faculty of Biology; Adam Mickiewicz University; Umultowska 89 61-614 Poznań Poland
| | - Lechosław Kuczyński
- Department of Avian Biology and Ecology; Institute of Environmental Biology; Faculty of Biology; Adam Mickiewicz University; Umultowska 89 61-614 Poznań Poland
| | - Brian Rector
- USDA-ARS; Great Basin Rangelands Research Unit; Reno NV 89512 USA
| | - James W. Amrine
- West Virginia University; 1090 Agricultural Sciences Building Evansdale Drive Morgantown WV 26508 USA
| |
Collapse
|
48
|
Miller AD, Skoracka A, Navia D, Mendonca RSD, Szydło W, Schultz MB, Michael Smith C, Truol G, Hoffmann AA. Phylogenetic analyses reveal extensive cryptic speciation and host specialization in an economically important mite taxon. Mol Phylogenet Evol 2013; 66:928-40. [DOI: 10.1016/j.ympev.2012.11.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 10/31/2012] [Accepted: 11/23/2012] [Indexed: 10/27/2022]
|