1
|
Ariaeenejad S, Barani M, Sarani M, Lohrasbi-Nejad A, Mohammadi-Nejad G, Salekdeh GH. Green synthesis of NiO NPs for metagenome-derived laccase stabilization: Detoxifying pollutants and wastes. Int J Biol Macromol 2024; 266:130986. [PMID: 38508564 DOI: 10.1016/j.ijbiomac.2024.130986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/13/2024] [Accepted: 03/16/2024] [Indexed: 03/22/2024]
Abstract
Laccases play a crucial role in neutralizing environmental pollutants, including antibiotics and phenolic compounds, by converting them into less harmful substances via a unique oxidation process. This study introduces an environmentally sustainable remediation technique, utilizing NiO nanoparticles (NPs) synthesized through green chemistry to immobilize a metagenome-derived laccase, PersiLac1, enhancing its application in pollutant detoxification. Salvadora persica leaf extract was used for the synthesis of NiO nanoparticles, utilizing its phytochemical constituents as reducing and capping agents, followed by characterization through different analyses. Characterization of NiO nanoparticles revealed distinctive FTIR absorption peaks indicating the nanoparticulate structure, while FESEM showed structured NiO with robust interconnections and dimensionality of about 50nm, confirmed by EDX analysis to have a consistent distribution of Ni and O. The immobilized PersiLac1 demonstrated enhanced thermal stability, with 85.55 % activity at 80 °C and reduced enzyme leaching, retaining 67.93 % activity across 15 biocatalytic cycles. It efficiently reduced rice straw (RS) phenol by 67.97 % within 210 min and degraded 70-78 % of tetracycline (TC) across a wide pH range (4.0-8.0), showing superior performance over the free enzyme. Immobilized laccase achieved up to 71 % TC removal at 40-80 °C, significantly outperforming the free enzyme. Notably, 54 % efficiency was achieved at 500 mg/L TC by immobilized laccase at 120 min. This research showed the potential of green-synthesized NiO nanoparticles to effectively immobilize laccase, presenting an eco-friendly approach to purify pollutants such as phenols and antibiotics. The durability and reusability of the immobilized enzyme, coupled with its ability to reduce pollutants, indicates a viable method for cleaning the environment. Nonetheless, the production costs and scalability of NiO nanoparticles for widespread industrial applications pose significant challenges. Future studies should focus on implementation at an industrial level and examine a wider range of pollutants to fully leverage the environmental clean-up capabilities of this innovative technology.
Collapse
Affiliation(s)
- Shohreh Ariaeenejad
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran.
| | - Mahmood Barani
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, 76169-13555 Kerman, Iran.
| | - Mina Sarani
- Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol, Iran
| | - Azadeh Lohrasbi-Nejad
- Department of Agricultural Biotechnology, Shahid Bahonar University of Kerman, Kerman, Iran; Research and Technology Institute of Plant Production, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Ghasem Mohammadi-Nejad
- Department of Agronomy and Plant Breeding, College of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran; Research and Technology Institute of Plant Production, Shahid Bahonar University of Kerman, Kerman, Iran
| | | |
Collapse
|
2
|
Trivedi J, Chhaya U. Bioremediation of bisphenol A found in industrial wastewater using Trametes versicolor (TV) laccase nanoemulsion-based bead organogel in packed bed reactor. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10786. [PMID: 36217258 DOI: 10.1002/wer.10786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 08/15/2022] [Accepted: 08/21/2022] [Indexed: 06/16/2023]
Abstract
Bisphenol A (BPA) is one of the toxic chemicals, which is widely used for manufacturing epoxy, polyester resin, and polycarbonates. These materials are extensively used in manufacturing of reusable bottles, baby bottles, dental sealants, various medical devices, and so forth. Moreover, canned and packaged foods are sources of bisphenol A, which is unknowingly consumed by many people worldwide. Its endocrine disrupting and teratogenic properties impose potential risk to the wildlife and human health. BPA has been linked to reproductive, metabolic, and immunity disorders in humans. Regardless of BPA ban in reusable and baby bottles, annually, 15 billion pounds of BPA still being produced. BPA pollution and its cleanup are major challenges. Therefore, it is essential to develop a suitable strategy to bioremediate BPA. The Trametes versicolor (TV) laccase-based nanoemulsion calcium alginate bead organogel was able to transform 94% of BPA within 2 h of treatment. Organogel showed 60% of BPA removal from actual industrial wastewater in packed bed batch reactor and 67% of BPA removal in continuous flow packed bed reactor. The biological oxygen demand (BOD) of treated industrial effluent was 14 mg/L, which is very much less than untreated effluent's BOD, which was 48 mg/L. The chemical oxygen demand of industrial effluent was 1240 mg/ml, and treated effluent was 248 mg/L, respectively. Hence, application of nanoemulsion-based organogel in packed bed reactor found to be a potential candidate for the bioremediation of industrial effluent containing BPA. PRACTITIONER POINTS: The TV laccase-based nanoemulsion calcium alginate bead organogel was able to transform 94% of BPA. Organogel showed 67% of BPA removal from industrial wastewater in continuous flow packed bed reactor. The nanoemulsion-based organogel in packed bed reactor found to be potential candidate for the bioremediation of industrial effluent containing BPA.
Collapse
Affiliation(s)
- Janki Trivedi
- Department of Microbiology, N.V. Patel College of Pure and Applied Sciences, Anand, Gujarat, India
| | - Urvish Chhaya
- Department of Microbiology, N.V. Patel College of Pure and Applied Sciences, Anand, Gujarat, India
| |
Collapse
|
3
|
Somu P, Narayanasamy S, Gomez LA, Rajendran S, Lee YR, Balakrishnan D. Immobilization of enzymes for bioremediation: A future remedial and mitigating strategy. ENVIRONMENTAL RESEARCH 2022; 212:113411. [PMID: 35561819 DOI: 10.1016/j.envres.2022.113411] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/19/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Over the years, extensive urbanization and industrialization have led to xenobiotics contamination of the environment and also posed a severe threat to human health. Although there are multiple physical and chemical techniques for xenobiotic pollutants management, bioremediation seems to be a promising technology from the environmental perspective. It is an eco-friendly and low-cost method involving the application of microbes, plants, or their enzymes to degrade xenobiotics into less toxic or non-toxic forms. Moreover, bioremediation involving enzymes has gained an advantage over microorganisms or phytoremediation due to better activity for pollutant degradation with less waste generation. However, the significant disadvantages associated with the application of enzymes are low stability (storage, pH, and temperature) as well as the low possibility of reuse as it is hard to separate from reaction media. The immobilization of enzymes without affecting their activity provides a possible solution to the problems and allows reusability by easing the process of separation with improved stability to various environmental factors. The present communication provides an overview of the importance of enzyme immobilization in bioremediation, carrier selection, and immobilization methods, as well as the pros and cons of immobilization and its prospects.
Collapse
Affiliation(s)
- Prathap Somu
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea; Department of Bioengineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 600124, India
| | - Saranya Narayanasamy
- Department of Bioengineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 600124, India
| | - Levin Anbu Gomez
- Department of Biotechnology, Karunya Institute of Technology and Sciences (Deemed to Be University), Coimbatore, 641114, India
| | - Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica, Chile
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | - Deepanraj Balakrishnan
- College of Engineering, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia.
| |
Collapse
|
4
|
Lassouane F, Aït-Amar H, Rodriguez-Couto S. High BPA removal by immobilized crude laccase in a batch fluidized bed bioreactor. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
5
|
Assalin MR, Rosa MA, Durán N. Trametes versicolour laccase immobilization by covalent binding and its application in Kraft E 1 effluent pre-treated with ozone. BIOCATAL BIOTRANSFOR 2022. [DOI: 10.1080/10242422.2022.2051495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
| | | | - Nelson Durán
- Urogenital Carcinogenesis and Immunotherapy Laboratory, Structural and Functional Biology Department, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
6
|
Xu X, Pose-Boirazian T, Eibes G, McCoubrey LE, Martínez-Costas J, Gaisford S, Goyanes A, Basit AW. A customizable 3D printed device for enzymatic removal of drugs in water. WATER RESEARCH 2022; 208:117861. [PMID: 34837812 DOI: 10.1016/j.watres.2021.117861] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 10/07/2021] [Accepted: 11/09/2021] [Indexed: 05/19/2023]
Abstract
The infiltration of drugs into water is a key global issue, with pharmaceuticals being detected in all nearly aqueous systems at often alarming concentrations. Pharmaceutical contamination of environmental water supplies has been shown to negatively impact ecological equilibrium and pose a risk to human health. In this study, we design and develop a novel system for the removal of drugs from water, termed as Printzyme. The device, fabricated with stereolithography (SLA) 3D printing, immobilises laccase sourced from Trametes Versicolor within a poly(ethylene glycol) diacrylate hydrogel. We show that SLA printing is a sustainable method for enzyme entrapment under mild conditions, and measure the stability of the system when exposed to extremes of pH and temperature in comparison to free laccase. When tested for its drug removal capacity, the 3D printed device substantially degraded two dissolved drugs on the European water pollution watch list. When configured in the shape of a torus, the device effectively removed 95% of diclofenac and ethinylestradiol from aqueous solution within 24 and 2 h, respectively, more efficiently than free enzyme. Being customizable and reusable, these 3D printed devices could help to efficiently tackle the world's water pollution crisis, in a flexible, easily scalable, and cost-efficient manner.
Collapse
Affiliation(s)
- Xiaoyan Xu
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Tomás Pose-Boirazian
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Bioquímica y Biología Molecular, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Gemma Eibes
- CRETUS Institute, Dept. of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Laura E McCoubrey
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Jose Martínez-Costas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Bioquímica y Biología Molecular, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Simon Gaisford
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK; FabRx Ltd., 3 Romney Road, Ashford, Kent TN24 0RW, UK
| | - Alvaro Goyanes
- FabRx Ltd., 3 Romney Road, Ashford, Kent TN24 0RW, UK; Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Abdul W Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK; FabRx Ltd., 3 Romney Road, Ashford, Kent TN24 0RW, UK.
| |
Collapse
|
7
|
Guardado ALP, Druon-Bocquet S, Belleville MP, Sanchez-Marcano J. A novel process for the covalent immobilization of laccases on silica gel and its application for the elimination of pharmaceutical micropollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:25579-25593. [PMID: 33459981 DOI: 10.1007/s11356-021-12394-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
In the present work, pharmaceutical micropollutant degradation by laccase immobilized on silica through an innovative process is proposed. The influence of different parameters on the immobilization conditions was evaluated by a 23 full factorial design, and parameters leading to the highest activity were identified. Under these conditions, laccase activity reached 14 ± 2 U g-1 of silica with a protein immobilization yield of 35%. The biocatalyst characterization did not show any change in pH and thermal stabilities but enhanced the long-term storage of laccases. Immobilized T. versicolor laccases were then tested to remove four pharmaceutical micropollutants (amoxicillin, ciprofloxacin, carbamazepine, and sulfamethoxazole) in the presence of redox mediators (syringaldehyde, p-coumaric acid, and ABTS). High removal yields (50-100% according to the pollutant) were obtained within 4 h of treatment due to the synergistic effect of laccase-mediator biotransformation and adsorption on the support. Overall, the pharmaceuticals' removal efficiency was highly influenced by their physicochemical properties; however, the presence of redox mediators impacted not only the oxidation mechanism but also the interactions between the biocatalyst and micropollutants. Finally, the reusability of the biocatalyst was proved during 7 degradation cycles.
Collapse
Affiliation(s)
- Ana Luisa Parra Guardado
- Institut Européen des Membranes, IEM - UMR 5635, CNRS, ENSCM, Université de Montpellier, Montpellier, France
| | - Stéphanie Druon-Bocquet
- Institut Européen des Membranes, IEM - UMR 5635, CNRS, ENSCM, Université de Montpellier, Montpellier, France
| | - Marie-Pierre Belleville
- Institut Européen des Membranes, IEM - UMR 5635, CNRS, ENSCM, Université de Montpellier, Montpellier, France
| | - Jose Sanchez-Marcano
- Institut Européen des Membranes, IEM - UMR 5635, CNRS, ENSCM, Université de Montpellier, Montpellier, France.
| |
Collapse
|
8
|
Wang F, Xu Z, Wang C, Guo Z, Yuan Z, Kang H, Li J, Lu F, Liu Y. Biochemical characterization of a tyrosinase from Bacillus aryabhattai and its application. Int J Biol Macromol 2021; 176:37-46. [PMID: 33571594 DOI: 10.1016/j.ijbiomac.2021.02.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 02/05/2023]
Abstract
Although lots of tyrosinases have been isolated from bacteria, few studies are focused on tyrosinases from Bacillus sp.. In this study, a tyrosinase from B. aryabhattai TCCC 111983 (TYR) was functionally expressed, purified, and then biochemically characterized. The recombinant tyrosinase (rTYR) presented a good catalytic activity in a broad temperature and pH range, retaining over 60% of the relative activity at 30 °C-90 °C and 45% at pH 3.0 to 10.0. Especially, rTYR exhibited 20% of its maximum activity at 0 °C, and it also showed a variable stability towards different effectors. It presented high tolerance towards salinity and chloride, retaining 81% of its original activity in 2 M NaCl. Kinetic parameters indicated that rTYR displayed a relatively good affinity for both l-tyrosine and l-DOPA. Additionally, rTYR demonstrated remarkable advantages on efficient decolorizing azo and anthraquinonic food dyes (carmine and erythrosin), and more five industrial dyes with or without mediators in acidic, neutral, and alkaline conditions. As the first report on the tyrosinase from B. aryabhattai, the aforementioned results indicated that rTYR would be potential for food industrial applications.
Collapse
Affiliation(s)
- Fenghua Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Zehua Xu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Chen Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Zehui Guo
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Zhaoting Yuan
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Hongwei Kang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Jingwen Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| |
Collapse
|
9
|
Bilal M, Iqbal HMN. Persistence and impact of steroidal estrogens on the environment and their laccase-assisted removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 690:447-459. [PMID: 31299577 DOI: 10.1016/j.scitotenv.2019.07.025] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/21/2019] [Accepted: 07/02/2019] [Indexed: 02/05/2023]
Abstract
Steroidal estrogens are widespread water contaminants with potential carcinogenic and endocrine-disrupting activities. The World Health Organization has listed estrogens as group 1 carcinogens. These contaminants are of substantial concern because of potential threats to human health, and aquatic organisms on long-term exposure. A range of methods, including oxidation, adsorption, electrochemical, and irradiation techniques have been employed for their remediation from aqueous systems. However, inadequate removal, toxic sludge generation, high operating costs, and the requisite for skilled operating and maintenance personnel commercially hampered the application of many methods. An interesting alternative treatment approach based on the use of oxidoreductases, particularly laccases, has recently gained amicability for the biotransformation of emerging pollutants. The use of immobilized enzymes is more cost-effective from an industrial perspective due to improved catalytic stability, reusability, reduction of product inhibition, and easier product separation. This review provides comprehensive knowledge on the use of laccases in the biodegradation of steroidal estrogens, including estrone, 17β-estradiol, and 17α-ethinylestradiol with endocrine-disrupting potency from the environment. After an overview of estrogens and catalytic properties of laccase, the use of free, as well as immobilized laccases with a particular emphasis on estrogens removal by laccase-based fed-batch, packed bed bioreactors, and membrane reactors, is discussed. A comparison of existing treatment technologies with enzyme technology for the removal of estrogens from different environmental matrices is made. Lastly, along with concluding remarks, future research direction aimed at bridging knowledge gaps for estrogenic compounds removal are also proposed in this very important research area.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. CP 64849, Mexico.
| |
Collapse
|
10
|
Zdarta J, Meyer AS, Jesionowski T, Pinelo M. Multi-faceted strategy based on enzyme immobilization with reactant adsorption and membrane technology for biocatalytic removal of pollutants: A critical review. Biotechnol Adv 2019; 37:107401. [DOI: 10.1016/j.biotechadv.2019.05.007] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/29/2019] [Accepted: 05/20/2019] [Indexed: 01/22/2023]
|
11
|
Qiao W, Liu H. Enhanced decolorization of malachite green by a magnetic graphene oxide-CotA laccase composite. Int J Biol Macromol 2019; 138:1-12. [DOI: 10.1016/j.ijbiomac.2019.07.077] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/10/2019] [Accepted: 07/10/2019] [Indexed: 12/31/2022]
|
12
|
Guo J, Liu X, Zhang X, Wu J, Chai C, Ma D, Chen Q, Xiang D, Ge W. Immobilized lignin peroxidase on Fe3O4@SiO2@polydopamine nanoparticles for degradation of organic pollutants. Int J Biol Macromol 2019; 138:433-440. [DOI: 10.1016/j.ijbiomac.2019.07.105] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/16/2019] [Accepted: 07/16/2019] [Indexed: 01/18/2023]
|
13
|
Garcia LF, Lacerda MFAR, Thomaz DV, de Souza Golveia JC, Pereira MDGC, de Souza Gil E, Schimidt F, Santiago MF. Optimization of laccase–alginate–chitosan-based matrix toward 17 α-ethinylestradiol removal. Prep Biochem Biotechnol 2019; 49:375-383. [DOI: 10.1080/10826068.2019.1573195] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
| | | | | | | | | | - Eric de Souza Gil
- Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Fernando Schimidt
- Departamento de Quimica, Instituto Federal de Goias - IFG, Ciência e Tecnologia de Goiás, Instituto Federal de Educação, Goiânia, GO, Brazil
| | | |
Collapse
|
14
|
Lonappan L, Liu Y, Rouissi T, Brar SK, Verma M, Surampalli RY. Adsorptive immobilization of agro-industrially produced crude laccase on various micro-biochars and degradation of diclofenac. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 640-641:1251-1258. [PMID: 30021290 DOI: 10.1016/j.scitotenv.2018.06.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 06/08/2023]
Abstract
Although enzymes are gifted with unique and unprecedented catalytic activity and selectivity over a wide range of pollutants, still their stability related issues often hinder their application in real environmental conditions. In this study, agro-industrially produced crude laccase was concentrated using ultrafiltration. Crude laccase was immobilized on pine wood (BC-PW), pig manure (BC-PM) and almond shell (BC-AS) biochar microparticles. Immobilization of laccase was investigated at various laccase activities on micro-biochars and the release (desorption) of the enzyme has been studied. It was observed that for all the biochars, as the initial concentration of laccase increased in the crude solution, the binding capacity and as result immobilization efficiency also increased. BC-PM was found to be the most effective (31.4 ± 3.1 U g-1) at 10 U mL-1 of enzyme activity followed by BC-AS (24.3 ± 4.8 U g-1) and BC-PW (14.58 ± 3.3 U g-1). In addition, the biochars were functionalized with citric acid for possible surface modifications and the effect of biochars for the adsorption of enzymes has been investigated. Isotherm studies of enzyme loading onto biochar established homogeneous monolayer adsorption as the major mechanism. The desorption of laccase from all biochars followed pseudo-second-order model. Immobilized laccase exhibited superior storage ability and shelf-life which were three times higher than free laccase. Finally, the immobilized laccase was used for the degradation of micropollutant, DCF and near 100% removal was obtained within 5 h at an environmentally relevant concentration (500 μg L-1).
Collapse
Affiliation(s)
- Linson Lonappan
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada
| | - Yuxue Liu
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada; Institute of Environment Resources, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou 310021, PR China
| | - Tarek Rouissi
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada
| | - Satinder Kaur Brar
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada.
| | - Mausam Verma
- CO2 Solutions Inc., 2300, rue Jean-Perrin, Québec G2C 1T9, Canada
| | - Rao Y Surampalli
- Department of Civil Engineering, University of Nebraska-Lincoln, N104 SEC, P.O. Box 886105, Lincoln, NE 68588-6105, United States
| |
Collapse
|
15
|
Sharma A, Ahmad J, Flora SJS. Application of advanced oxidation processes and toxicity assessment of transformation products. ENVIRONMENTAL RESEARCH 2018; 167:223-233. [PMID: 30055452 DOI: 10.1016/j.envres.2018.07.010] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/09/2018] [Accepted: 07/05/2018] [Indexed: 05/03/2023]
Abstract
Advanced Oxidation Processes (AOPs) are the techniques employed for oxidation of various organic contaminants in polluted water with the objective of making it suitable for human consumption like household and drinking purpose. AOPs use potent chemical oxidants to bring down the contaminant level in the water. In addition to this function, these processes are also capable to kills microbes (as disinfectant) and remove odor as well as improve taste of the drinking water. The non-photochemical AOPs methods include generation of hydroxyl radical in absence of light either by ozonation or through Fenton reaction. The photochemical AOPs methods use UV light along with H2O2, O3 and/or Fe+2 to generate reactive hydroxyl radical. Non-photochemical method is the commonly used whereas, photochemical method is used when conventional O3 and H2O2 cannot completely oxidize organic pollutants. However, the choice of AOPs methods is depended upon the type of contaminant to be removed. AOPs cause loss of biological activity of the pollutant present in drinking water without generation of any toxicity. Conventional ozonation and AOPs can inactivate estrogenic compounds, antiviral compounds, antibiotics, and herbicides. However, the study of different AOPs methods for the treatment of drinking water has shown that oxidation of parent compound can also lead to the generation of a degradation/transformation product having biological activity/chemical toxicity similar to or different from the parent compound. Furthermore, an increased toxicity can also occur in AOPs treated drinking water. This review discusses various methods of AOPs, their merits, its application in drinking water treatment, the related issue of the evolution of toxicity in AOPs treated drinking water, biocatalyst, and analytical methods for identification of pollutants /transformed products and provides future directions to address such an issue.
Collapse
Affiliation(s)
- Abha Sharma
- National Institute of Pharmaceutical Education and Research, Shree Bhawani Paper Mill Road, ITI Compound, Raebareli 229010, Uttar Pradesh, India
| | - Javed Ahmad
- National Institute of Pharmaceutical Education and Research, Shree Bhawani Paper Mill Road, ITI Compound, Raebareli 229010, Uttar Pradesh, India
| | - S J S Flora
- National Institute of Pharmaceutical Education and Research, Shree Bhawani Paper Mill Road, ITI Compound, Raebareli 229010, Uttar Pradesh, India.
| |
Collapse
|
16
|
Falade AO, Mabinya LV, Okoh AI, Nwodo UU. Ligninolytic enzymes: Versatile biocatalysts for the elimination of endocrine-disrupting chemicals in wastewater. Microbiologyopen 2018; 7:e00722. [PMID: 30328673 PMCID: PMC6291825 DOI: 10.1002/mbo3.722] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/06/2018] [Accepted: 08/07/2018] [Indexed: 11/11/2022] Open
Abstract
Direct municipal wastewater effluent discharge from treatment plants has been identified as the major source of endocrine‐disrupting chemicals (EDC) in freshwaters. Consequently, efficient elimination of EDC in wastewater is significant to good water quality. However, conventional wastewater treatment approaches have been deficient in the complete removal of these contaminants. Hence, the exploration of new and more efficient methods for elimination of EDC in wastewater is imperative. Enzymatic treatment approach has been suggested as a suitable option. Nonetheless, ligninolytic enzymes seem to be the most promising group of enzymes for EDC elimination, perhaps, owing to their unique catalytic properties and characteristic high redox potentials for oxidation of a wide spectrum of organic compounds. Therefore, this paper discusses the potential of some ligninolytic enzymes (laccase, manganese peroxidase, and versatile peroxidase) in the elimination of EDC in wastewater and proposes a new scheme of wastewater treatment process for EDC removal.
Collapse
Affiliation(s)
- Ayodeji O Falade
- SA-MRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, Eastern Cape, South Africa.,Department of Biochemistry and Microbiology, Applied and Environmental Microbiology Research Group (AEMREG), University of Fort Hare, Alice, Eastern Cape, South Africa
| | - Leonard V Mabinya
- SA-MRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, Eastern Cape, South Africa.,Department of Biochemistry and Microbiology, Applied and Environmental Microbiology Research Group (AEMREG), University of Fort Hare, Alice, Eastern Cape, South Africa
| | - Anthony I Okoh
- SA-MRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, Eastern Cape, South Africa.,Department of Biochemistry and Microbiology, Applied and Environmental Microbiology Research Group (AEMREG), University of Fort Hare, Alice, Eastern Cape, South Africa
| | - Uchechukwu U Nwodo
- SA-MRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, Eastern Cape, South Africa.,Department of Biochemistry and Microbiology, Applied and Environmental Microbiology Research Group (AEMREG), University of Fort Hare, Alice, Eastern Cape, South Africa
| |
Collapse
|
17
|
Abdollahi K, Yazdani F, Panahi R, Mokhtarani B. Biotransformation of phenol in synthetic wastewater using the functionalized magnetic nano-biocatalyst particles carrying tyrosinase. 3 Biotech 2018; 8:419. [PMID: 30305990 DOI: 10.1007/s13205-018-1445-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/24/2018] [Indexed: 11/25/2022] Open
Abstract
Low conversion efficiency and long-processing time are some of the major problems associated with the use of biocatalysts in industrial processes. In this study, modified magnetic iron oxide nanoparticles bearing tyrosinase (tyrosinase-MNPs) were employed as a magnetic nano-biocatalyst to treat phenol-containing wastewater. Different factors affecting the phenol removal efficiency of the fabricated nano-biocatalyst such as catalyst dosage, pH, temperature, initial phenol concentration, and reusability were investigated. The results proved that the precise dosage of nano-biocatalyst was able to degrade phenol at the wide range of pHs and temperatures. The immobilized tyrosinase showed proper phenol degradation more than 70%, where the substrate with a high concentration of 2500 mg/L was subjected to phenol removal. The nano-biocatalyst was highly efficient and reusable, since it displayed phenol degradation yields of 100% after the third reuse cycle and about 58% after the seventh cycle. Moreover, the immobilized tyrosinase was able to degrade phenol dissolved in real water samples up to 78% after incubation for 60 min. It was also reusable at least seven cycles in the real water sample. The results proved the effectiveness and applicability of the fabricated nano-biocatalyst to treat phenol-containing wastewaters in a shorter time and higher efficiency even at high phenol concentration. The developed nano-biocatalyst can be promising for the micropollutants removal and an alternative for the catalysts used in traditional treatment processes.
Collapse
Affiliation(s)
- Kourosh Abdollahi
- Chemistry and Chemical Engineering Research Center of Iran (CCERCI), Tehran, Iran
| | - Farshad Yazdani
- Chemistry and Chemical Engineering Research Center of Iran (CCERCI), Tehran, Iran
| | - Reza Panahi
- Chemistry and Chemical Engineering Research Center of Iran (CCERCI), Tehran, Iran
| | - Babak Mokhtarani
- Chemistry and Chemical Engineering Research Center of Iran (CCERCI), Tehran, Iran
| |
Collapse
|
18
|
Sondhi S, Kaur R, Kaur S, Kaur PS. Immobilization of laccase-ABTS system for the development of a continuous flow packed bed bioreactor for decolorization of textile effluent. Int J Biol Macromol 2018; 117:1093-1100. [DOI: 10.1016/j.ijbiomac.2018.06.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 06/01/2018] [Accepted: 06/02/2018] [Indexed: 11/27/2022]
|
19
|
Yuan H, Chen L, Hong FF, Zhu M. Evaluation of nanocellulose carriers produced by four different bacterial strains for laccase immobilization. Carbohydr Polym 2018; 196:457-464. [DOI: 10.1016/j.carbpol.2018.05.055] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/16/2018] [Accepted: 05/16/2018] [Indexed: 12/20/2022]
|
20
|
Mostafa FA, Abd El Aty AA. Thermodynamics enhancement of Alternaria tenuissima KM651985 laccase by covalent coupling to polysaccharides and its applications. Int J Biol Macromol 2018; 120:222-229. [PMID: 30125631 DOI: 10.1016/j.ijbiomac.2018.08.081] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/18/2018] [Accepted: 08/16/2018] [Indexed: 11/19/2022]
Abstract
This study full filed in enhancement of catalytic, thermodynamics and storage stability of Alternaria tenuissima KM651985 laccase by conjugation to sodium periodate oxidized starch. The starch conjugated A. tenuissima KM651985 laccase was active over a wide range of temperatures and pHs with the highest activity at 60 °C and 4, respectively. The thermal stability of conjugated A. tenuissima KM651985 laccase was indicated by, high T1/2 values (half life) 1076.16, 382.42 and 191.23 min at 50, 60 and 70 °C, respectively, low Kd (denaturation rate constant) 6.44 × 10-4, 18.13 × 10-4 and 36.25 × 10-4 min-1 at the same temperatures, high D-values (decimal reduction time) 3575.56, 1270.61 and 635.38 min at the same temperatures. Also, the thermal stability of conjugated A. tenuissima KM651985 laccase was emphasized by high ΔHd (enthalpy), high ΔGd (free energy) and low ΔSd (entropy). The conjugated A. tenuissima KM651985 laccase showed high effectiveness in dyes decolorization of Remazol Brilliant Blue R (RBBR) and Malachite Green (MG). Moreover, the addition of conjugated A. tenuissima KM651985 laccase with hemicellulolytic enzymes cocktail improved the saccharification of corn cobs, rice straw, corn cobs leaves and water hyacinth with the highest reducing sugar production 847.44 ± 19.17 mg from corn cops.
Collapse
Affiliation(s)
- Faten A Mostafa
- Chemistry of Natural and Microbial Products Department, National Research Centre, Dokki, Giza, Egypt.
| | - Abeer A Abd El Aty
- Chemistry of Natural and Microbial Products Department, National Research Centre, Dokki, Giza, Egypt; Biology Department, Faculty of Education, Hafr Al Batin University, Saudi Arabia
| |
Collapse
|
21
|
Huber D, Bleymaier K, Pellis A, Vielnascher R, Daxbacher A, Greimel KJ, Guebitz GM. Laccase catalyzed elimination of morphine from aqueous systems. N Biotechnol 2018; 42:19-25. [DOI: 10.1016/j.nbt.2018.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 08/29/2017] [Accepted: 01/05/2018] [Indexed: 02/09/2023]
|
22
|
Mohammed I, Werner A, Schubert M, Hampel U. Enzymatic decolourization of water using loofa sponge as cellular carrier: Immobilization and dye degradation performance. CAN J CHEM ENG 2018. [DOI: 10.1002/cjce.23154] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Iman Mohammed
- AREVA Endowed Chair of Imaging Techniques in Energy and Process Engineering; Technische Universität Dresden; 01062 Dresden Germany
| | - Anett Werner
- Department of Bioprocess Engineering; Institute of Natural Materials Technology, Technische Universität Dresden; 01062 Dresden Germany
| | - Markus Schubert
- Institute of Fluid Dynamics; Helmholtz-Zentrum Dresden-Rossendorf; Bautzner Landstraße 400 01328 Dresden Germany
| | - Uwe Hampel
- AREVA Endowed Chair of Imaging Techniques in Energy and Process Engineering; Technische Universität Dresden; 01062 Dresden Germany
- Institute of Fluid Dynamics; Helmholtz-Zentrum Dresden-Rossendorf; Bautzner Landstraße 400 01328 Dresden Germany
| |
Collapse
|
23
|
Naghdi M, Taheran M, Brar SK, Kermanshahi-Pour A, Verma M, Surampalli RY. Removal of pharmaceutical compounds in water and wastewater using fungal oxidoreductase enzymes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 234:190-213. [PMID: 29175684 DOI: 10.1016/j.envpol.2017.11.060] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/13/2017] [Accepted: 11/16/2017] [Indexed: 05/26/2023]
Abstract
Due to recalcitrance of some pharmaceutically active compounds (PhACs), conventional wastewater treatment is not able to remove them effectively. Therefore, their occurrence in surface water and potential environmental impact has raised serious global concern. Biological transformation of these contaminants using white-rot fungi (WRF) and their oxidoreductase enzymes has been proposed as a low cost and environmentally friendly solution for water treatment. The removal performance of PhACs by a fungal culture is dependent on several factors, such as fungal species, the secreted enzymes, molecular structure of target compounds, culture medium composition, etc. In recent 20 years, numerous researchers tried to elucidate the removal mechanisms and the effects of important operational parameters such as temperature and pH on the enzymatic treatment of PhACs. This review summarizes and analyzes the studies performed on PhACs removal from spiked pure water and real wastewaters using oxidoreductase enzymes and the data related to degradation efficiencies of the most studied compounds. The review also offers an insight into enzymes immobilization, fungal reactors, mediators, degradation mechanisms and transformation products (TPs) of PhACs. In brief, higher hydrophobicity and having electron-donating groups, such as amine and hydroxyl in molecular structure leads to more effective degradation of PhACs by fungal cultures. For recalcitrant compounds, using redox mediators, such as syringaldehyde increases the degradation efficiency, however they may cause toxicity in the effluent and deactivate the enzyme. Immobilization of enzymes on supports can enhance the performance of enzyme in terms of reusability and stability. However, the immobilization strategy should be carefully selected to reduce the cost and enable regeneration. Still, further studies are needed to elucidate the mechanisms involved in enzymatic degradation and the toxicity levels of TPs and also to optimize the whole treatment strategy to have economical and technical competitiveness.
Collapse
Affiliation(s)
- Mitra Naghdi
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada
| | - Mehrdad Taheran
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada
| | - Satinder Kaur Brar
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada.
| | - Azadeh Kermanshahi-Pour
- Biorefining and Remediation Laboratory, Department of Process Engineering and Applied Science, Dalhousie University, 1360 Barrington Street, Halifax, B3J 1Z1, Nova Scotia, Canada
| | - Mausam Verma
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada
| | - R Y Surampalli
- Global Institute for Energy, Environment and Sustainability, P.O. Box 14354, Lenexa, KS 66285, USA
| |
Collapse
|
24
|
|
25
|
Immobilization of laccase of Pycnoporus sanguineus CS43. N Biotechnol 2017; 39:141-149. [DOI: 10.1016/j.nbt.2016.12.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 12/02/2016] [Accepted: 12/17/2016] [Indexed: 11/20/2022]
|
26
|
Liu Y, Geng Y, Yan M, Huang J. Stable ABTS Immobilized in the MIL-100(Fe) Metal-Organic Framework as an Efficient Mediator for Laccase-Catalyzed Decolorization. Molecules 2017; 22:molecules22060920. [PMID: 28574450 PMCID: PMC6152645 DOI: 10.3390/molecules22060920] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/31/2017] [Accepted: 05/31/2017] [Indexed: 11/22/2022] Open
Abstract
The successful encapsulation of 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS), a well-known laccase mediator, within a mesoporous metal-organic framework sample (i.e., MIL-100(Fe)) was achieved using a one-pot hydrothermal synthetic method. The as-prepared ABTS@MIL-100(Fe) was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, nitrogen sorption, and cyclic voltammetry (CV). Our ABTS@MIL-100(Fe)-based electrode exhibited an excellent electrochemical response, indicating that MIL-100(Fe) provides an appropriate microenvironment for the immobilization and electroactivity of ABTS molecules. ABTS@MIL-100(Fe) was then evaluated as an immobilized laccase mediator for dye removal using indigo carmine (IC) as a model dye. Through the application of laccase in combination with a free (ABTS) or immobilized (ABTS@MIL-100(Fe)) mediator, decolorization yields of 95% and 94%, respectively, were obtained for IC after 50 min. In addition, following seven reuse cycles of ABTS@MIL-100(Fe) for dye treatment, a decolorization yield of 74% was obtained. Dye decolorization occurred through the breakdown of the chromophoric group by the Laccase/ABTS@MIL-100(Fe) system, and a catalytic mechanism was proposed. We therefore expect that the stability, reusability, and validity of ABTS@MIL-100(Fe) as a laccase mediator potentially render it a promising tool for dye removal, in addition to reducing the high running costs and potential toxicity associated with synthetic mediators.
Collapse
Affiliation(s)
- Youxun Liu
- School of Basic Medical Sciences, Xinxiang Medical University, Jinsui Avenue 601, Xinxiang 453003, Henan, China.
- Henan Collaborative Innovation Center of Molecular Diagnostics and Laboratory Medicine, Jinsui Avenue 601, Xinxiang 453003, Henan, China.
| | - Yuanyuan Geng
- School of Basic Medical Sciences, Xinxiang Medical University, Jinsui Avenue 601, Xinxiang 453003, Henan, China.
| | - Mingyang Yan
- School of Basic Medical Sciences, Xinxiang Medical University, Jinsui Avenue 601, Xinxiang 453003, Henan, China.
| | - Juan Huang
- School of Basic Medical Sciences, Xinxiang Medical University, Jinsui Avenue 601, Xinxiang 453003, Henan, China.
| |
Collapse
|
27
|
Arca-Ramos A, Eibes G, Feijoo G, Lema JM, Moreira MT. Enzymatic reactors for the removal of recalcitrant compounds in wastewater. BIOCATAL BIOTRANSFOR 2017. [DOI: 10.1080/10242422.2017.1315411] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Adriana Arca-Ramos
- Department of Chemical Engineering, Institute of Technology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Gemma Eibes
- Department of Chemical Engineering, Institute of Technology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Gumersindo Feijoo
- Department of Chemical Engineering, Institute of Technology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Juan M. Lema
- Department of Chemical Engineering, Institute of Technology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - María Teresa Moreira
- Department of Chemical Engineering, Institute of Technology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
28
|
Gamallo M, Moldes-Diz Y, Eibes G, Feijoo G, Lema JM, Moreira MT. Sequential reactors for the removal of endocrine disrupting chemicals by laccase immobilized onto fumed silica microparticles. BIOCATAL BIOTRANSFOR 2017. [DOI: 10.1080/10242422.2017.1316489] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- M. Gamallo
- Department of Chemical Engineering, Institute of Technology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Y. Moldes-Diz
- Department of Chemical Engineering, Institute of Technology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - G. Eibes
- Department of Chemical Engineering, Institute of Technology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - G. Feijoo
- Department of Chemical Engineering, Institute of Technology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - J. M. Lema
- Department of Chemical Engineering, Institute of Technology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - M. T. Moreira
- Department of Chemical Engineering, Institute of Technology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
29
|
Naghdi M, Taheran M, Brar SK, Kermanshahi-Pour A, Verma M, Surampalli RY. Immobilized laccase on oxygen functionalized nanobiochars through mineral acids treatment for removal of carbamazepine. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 584-585:393-401. [PMID: 28117156 DOI: 10.1016/j.scitotenv.2017.01.021] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 01/03/2017] [Accepted: 01/04/2017] [Indexed: 05/28/2023]
Abstract
Biocatalytic treatment with oxidoreductase enzymes, especially laccases are an environmentally benign method for biodegradation of pharmaceutical compounds, such as carbamazepine to less harmful compounds. However, enzymes are required to be immobilized on supports to be reusable and maintain their activity. Functionalization of support prior to immobilization of enzyme is highly important because of biomolecule-support interface on enzyme activity and stability. In this work, the effect of oxidation of nanobiochar, a carbonaceous material produced by biomass pyrolysis, using HCl, H2SO4, HNO3 and their mixtures on immobilization of laccase has been studied. Scanning electron microscopy indicated that the structure of nanobiochars remained intact after oxidation and Fourier transform infrared spectroscopy confirmed the formation of carboxylic groups because of acid treatment. Titration measurements showed that the sample treated with H2SO4/HNO3 (50:50, v/v) had the highest number of carboxylic groups (4.7mmol/g) and consequently the highest efficiency for laccase immobilization. Additionally, it was observed that the storage, pH and thermal stability of immobilized laccase on functionalized nanobiochar was improved compared to free laccase showing its potential for continuous applications. The reusability tests towards oxidation of 2, 2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) showed that the immobilized laccase preserved 70% of the initial activity after 3cycles. Finally, using immobilized laccase for degradation of carbamazepine exhibited 83% and 86% removal in spiked water and secondary effluent, respectively.
Collapse
Affiliation(s)
- Mitra Naghdi
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada
| | - Mehrdad Taheran
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada
| | - Satinder K Brar
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada.
| | - Azadeh Kermanshahi-Pour
- Biorefining and Remediation Laboratory, Department of Process Engineering and Applied Science, Dalhousie University, 1360 Barrington Street, Halifax, Nova Scotia B3J 1Z1, Canada
| | - M Verma
- CO(2) Solutions Inc., 2300, Rue Jean-Perrin, Québec, Québec G2C 1T9, Canada
| | - R Y Surampalli
- Department of Civil Engineering, University of Nebraska-Lincoln, N104 SEC PO Box 886105, Lincoln, NE 68588-6105, US
| |
Collapse
|
30
|
Abd El Aty AA, Mostafa FA, Hassan ME, Hamed ER, Esawy MA. Covalent immobilization of Alternaria tenuissima KM651985 laccase and some applied aspects. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2016.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
31
|
Blavier J, Songulashvili G, Simon C, Penninckx M, Flahaut S, Scippo ML, Debaste F. Assessment of methods of detection of water estrogenicity for their use as monitoring tools in a process of estrogenicity removal. ENVIRONMENTAL TECHNOLOGY 2016; 37:3104-19. [PMID: 27144327 DOI: 10.1080/09593330.2016.1177119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Methods of monitoring of estrogenicity in water were gathered, compared, and tested within the context of their practical use as measurement and design tools, in the development of a process of degradation of estrogenic endocrine disruptors. In this work, the focus was put on in vitro assays, with the use of analytical techniques as additional analysis when possible. Practically, from a literature review, four methods that seemed most suitable to practical use required in a process development were tested: the Yeast Estrogen Screen assay, the Lyticase-assisted Yeast Estrogen Screen assay (LYES), the MMV-LUC assay and the HPLC-UV analytical method. Dose-response curves in response to estrogenic standard 17β-estradiol were compared. Bisphenol A estrogenicity was measured by the methods as well. The model for the calculation of estradiol equivalents as measurements units was adapted. The methods were assessed in terms of ranges of detection, time of experiment, cost, ease of the experiment, reproducibility, etc. Based on that assessment, the LYES assay was selected and successfully applied to the monitoring of estrogenicity removal from 17β-estradiol and bisphenol A. More precisely, the bioassay allowed the acquisition of kinetic curves for a laboratory-scaled process of estrogenicity removal by immobilized enzymes in a continuous packed-bed reactor. The LYES assay was found to have a real methodological potential for scale-up and design of a treatment process. The HPLC-UV method showed good complementarity with the LYES assay for the monitoring of bisphenol A concentrations in parallel with estrogenicity, reporting no significant estrogenicity from degradation byproducts, among others.
Collapse
Affiliation(s)
- J Blavier
- a Department Transfers, Interfaces & Processes , Université Libre de Bruxelles , Bruxelles , Belgium
| | - G Songulashvili
- b Department of Applied Microbiology , Université Libre de Bruxelles c/o Institut de Recherches Microbiologiques Jean-Marie Wiame , Bruxelles , Belgium
| | - C Simon
- c Department of Food Sciences, Laboratory of Food Analysis , FARAH - Veterinary Public Health, Université de Liège , Liege , Belgium
| | - M Penninckx
- a Department Transfers, Interfaces & Processes , Université Libre de Bruxelles , Bruxelles , Belgium
| | - S Flahaut
- b Department of Applied Microbiology , Université Libre de Bruxelles c/o Institut de Recherches Microbiologiques Jean-Marie Wiame , Bruxelles , Belgium
| | - M L Scippo
- c Department of Food Sciences, Laboratory of Food Analysis , FARAH - Veterinary Public Health, Université de Liège , Liege , Belgium
| | - F Debaste
- a Department Transfers, Interfaces & Processes , Université Libre de Bruxelles , Bruxelles , Belgium
| |
Collapse
|
32
|
Laccase Immobilization on Poly(p-Phenylenediamine)/Fe3O4 Nanocomposite for Reactive Blue 19 Dye Removal. APPLIED SCIENCES-BASEL 2016. [DOI: 10.3390/app6080232] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
33
|
Nguyen LN, Hai FI, Dosseto A, Richardson C, Price WE, Nghiem LD. Continuous adsorption and biotransformation of micropollutants by granular activated carbon-bound laccase in a packed-bed enzyme reactor. BIORESOURCE TECHNOLOGY 2016; 210:108-116. [PMID: 26803903 DOI: 10.1016/j.biortech.2016.01.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/05/2016] [Accepted: 01/06/2016] [Indexed: 06/05/2023]
Abstract
Laccase was immobilized on granular activated carbon (GAC) and the resulting GAC-bound laccase was used to degrade four micropollutants in a packed-bed column. Compared to the free enzyme, the immobilized laccase showed high residual activities over a broad range of pH and temperature. The GAC-bound laccase efficiently removed four micropollutants, namely, sulfamethoxazole, carbamazepine, diclofenac and bisphenol A, commonly detected in raw wastewater and wastewater-impacted water sources. Mass balance analysis showed that these micropollutants were enzymatically degraded following adsorption onto GAC. Higher degradation efficiency of micropollutants by the immobilized compared to free laccase was possibly due to better electron transfer between laccase and substrate molecules once they have adsorbed onto the GAC surface. Results here highlight the complementary effects of adsorption and enzymatic degradation on micropollutant removal by GAC-bound laccase. Indeed laccase-immobilized GAC outperformed regular GAC during continuous operation of packed-bed columns over two months (a throughput of 12,000 bed volumes).
Collapse
Affiliation(s)
- Luong N Nguyen
- Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong (UOW), NSW 2522, Australia
| | - Faisal I Hai
- Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong (UOW), NSW 2522, Australia.
| | - Anthony Dosseto
- Wollongong Isotope Geochronology Laboratory, School of Earth and Environmental Sciences, UOW, NSW 2522, Australia
| | | | - William E Price
- Strategic Water Infrastructure Laboratory, School of Chemistry, UOW, NSW 2522, Australia
| | - Long D Nghiem
- Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong (UOW), NSW 2522, Australia
| |
Collapse
|
34
|
Arca-Ramos A, Ammann EM, Gasser CA, Nastold P, Eibes G, Feijoo G, Lema JM, Moreira MT, Corvini PFX. Assessing the use of nanoimmobilized laccases to remove micropollutants from wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:3217-3228. [PMID: 26490891 DOI: 10.1007/s11356-015-5564-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 10/06/2015] [Indexed: 06/05/2023]
Abstract
Enzymes immobilization is a useful way to allow enzyme reuse and increase their stability. A high redox potential laccase from Trametes versicolor (TvL) and a low redox potential, but commercially available low-cost laccase from Myceliophthora thermophila (MtL), were successfully immobilized and co-immobilized onto fumed silica nanoparticles (fsNP). Enzyme loads of 1.78 ± 0.07, 0.69 ± 0.03, and 1.10 ± 0.01 U/mg fsNP were attained for the optimal doses of TvL, MtL, and co-immobilized laccases, respectively. In general, the laccase-fsNP conjugates showed a higher resistance against an acidic pH value (i.e., pH 3), and a higher storage stability than free enzymes. In addition, immobilized enzymes exhibited a superior long-term stability than free laccases when incubated in a secondary effluent from a municipal wastewater treatment plant (WWTP). For instance, the residual activity after 2 weeks for the co-immobilized laccases and the mixture of free laccases were 40.2 ± 2.5% and 16.8 ± 1.0%, respectively. The ability of the laccase-fsNP to remove a mixture of (14)C-bisphenol A (BPA) and (14)C-sodium diclofenac (DCF) from spiked secondary effluents was assessed in batch experiments. The catalytic efficiency was highly dependent on both the microbial source and state of the biocatalyst. The high redox potential TvL in free form attained a four-fold higher percentage of BPA transformation than the free MtL. Compared to free laccases, immobilized enzymes led to much slower rates of BPA transformation. For instance, after 24 h, the percentages of BPA transformation by 1000 U/L of a mixture of free laccases or co-immobilized enzymes were 67.8 ± 5.2 and 27.0 ± 3.9%, respectively. Nevertheless, the use of 8000 U/L of co-immobilized laccase led to a nearly complete removal of BPA, despite the unfavorable conditions for laccase catalysis (pH ~ 8.4). DCF transformation was not observed for any of the enzymatic systems, showing that this compound is highly recalcitrant toward laccase oxidation under realistic conditions.
Collapse
Affiliation(s)
- A Arca-Ramos
- Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| | - E M Ammann
- Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Gründenstrasse 40, Muttenz, 4132, Switzerland
| | - C A Gasser
- Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Gründenstrasse 40, Muttenz, 4132, Switzerland
| | - P Nastold
- Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Gründenstrasse 40, Muttenz, 4132, Switzerland
| | - G Eibes
- Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - G Feijoo
- Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - J M Lema
- Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - M T Moreira
- Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - P F-X Corvini
- Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Gründenstrasse 40, Muttenz, 4132, Switzerland
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University Xianlin Campus, Xianlin Avenue 163, Nanjing, 210023, China
| |
Collapse
|
35
|
Singh B, Poças-Fonseca MJ, Johri BN, Satyanarayana T. Thermophilic molds: Biology and applications. Crit Rev Microbiol 2016; 42:985-1006. [DOI: 10.3109/1040841x.2015.1122572] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
36
|
Othman A, González-Domínguez E, Sanromán Á, Correa-Duarte M, Moldes D. Immobilization of laccase on functionalized multiwalled carbon nanotube membranes and application for dye decolorization. RSC Adv 2016. [DOI: 10.1039/c6ra18283f] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Myceliophthora thermophilalaccase was covalently immobilized on functionalized multiwalled carbon nanotubes (MWNT) arranged over a supporting membrane to obtain a permeable bio-barrier that could be applied in multibatch or continuous processes.
Collapse
Affiliation(s)
- Abdelmageed M. Othman
- Bioengineering and Sustainable Processes Research Group
- Department of Chemical Engineering
- Universidade de Vigo
- 36310 Vigo
- Spain
| | - Elena González-Domínguez
- Department of Physical Chemistry
- Biomedical Research Center (CINBIO)
- Institute of Biomedical Research of Ourense-Pontevedra-Vigo (IBI)
- Universidade de Vigo
- 36310 Vigo
| | - Ángeles Sanromán
- Bioengineering and Sustainable Processes Research Group
- Department of Chemical Engineering
- Universidade de Vigo
- 36310 Vigo
- Spain
| | - Miguel Correa-Duarte
- Department of Physical Chemistry
- Biomedical Research Center (CINBIO)
- Institute of Biomedical Research of Ourense-Pontevedra-Vigo (IBI)
- Universidade de Vigo
- 36310 Vigo
| | - Diego Moldes
- Bioengineering and Sustainable Processes Research Group
- Department of Chemical Engineering
- Universidade de Vigo
- 36310 Vigo
- Spain
| |
Collapse
|
37
|
Fungal Bioremediation of Emerging Micropollutants in Municipal Wastewaters. FUNGAL APPLICATIONS IN SUSTAINABLE ENVIRONMENTAL BIOTECHNOLOGY 2016. [DOI: 10.1007/978-3-319-42852-9_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
38
|
Sutar RS, Rathod VK. Ultrasound assisted Laccase catalyzed degradation of Ciprofloxacin hydrochloride. J IND ENG CHEM 2015. [DOI: 10.1016/j.jiec.2015.06.037] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Arca-Ramos A, Eibes G, Feijoo G, Lema JM, Moreira MT. Potentiality of a ceramic membrane reactor for the laccase-catalyzed removal of bisphenol A from secondary effluents. Appl Microbiol Biotechnol 2015. [DOI: 10.1007/s00253-015-6826-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Aydemir T, Güler S. Characterization and immobilization ofTrametes versicolorlaccase on magnetic chitosan–clay composite beads for phenol removal. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2015; 43:425-32. [DOI: 10.3109/21691401.2015.1058809] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
41
|
Ardao I, Magnin D, Agathos SN. Bioinspired production of magnetic laccase-biotitania particles for the removal of endocrine disrupting chemicals. Biotechnol Bioeng 2015; 112:1986-96. [PMID: 26058804 DOI: 10.1002/bit.25612] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 03/30/2015] [Indexed: 01/25/2023]
Abstract
Microbial laccases are powerful enzymes capable of degrading lignin and other recalcitrant compounds including endocrine disrupting chemicals (EDCs). Efficient EDC removal on an industrial scale requires robust, stable, easy to handle and cost-effective immobilized biocatalysts. In this direction, magnetic biocatalysts are attractive due to their easy separation through an external magnetic field. Recently, a bioinspired immobilization technique that mimics the natural biomineralization reactions in diatoms has emerged as a fast and versatile tool for generating robust, cheap, and highly stable (nano) biocatalysts. In this work, bioinspired formation of a biotitania matrix is triggered on the surface of magnetic particles in the presence of laccase in order to produce laccase-biotitania (lac-bioTiO2 ) biocatalysts suitable for environmental applications using a novel, fast and versatile enzyme entrapment technique. Highly active lac-bioTiO2 particles have been produced and the effect of different parameters (enzyme loading, titania precursor concentration, pH, duration of the biotitania formation, and laccase adsorption steps) on the apparent activity yield of these biocatalysts were evaluated, the concentration of the titania precursor being the most influential. The lac-bioTiO2 particles were able to catalyze the removal of bisphenol A, 17α-ethinylestradiol and diclofenac in a mixture of six model EDCs and retained 90% of activity after five reaction cycles and 60% after 10 cycles.
Collapse
Affiliation(s)
- Inés Ardao
- Earth & Life Institute-Laboratory of Bioengineering, Université Catholique de Louvain, Place Croix du Sud 2-L7.05.19, 1348, Louvain-la-Neuve, Belgium.
| | - Delphine Magnin
- Institute of Condensed Matter and Nanosciences-Bio and soft matter group, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Spiros N Agathos
- Earth & Life Institute-Laboratory of Bioengineering, Université Catholique de Louvain, Place Croix du Sud 2-L7.05.19, 1348, Louvain-la-Neuve, Belgium
| |
Collapse
|
42
|
Fungal enzymes for environmental management. Curr Opin Biotechnol 2015; 33:268-78. [DOI: 10.1016/j.copbio.2015.03.006] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 03/07/2015] [Indexed: 11/20/2022]
|
43
|
Donati E, Polcaro CM, Ciccioli P, Galli E. The comparative study of a laccase-natural clinoptilolite-based catalyst activity and free laccase activity on model compounds. JOURNAL OF HAZARDOUS MATERIALS 2015; 289:83-90. [PMID: 25710818 DOI: 10.1016/j.jhazmat.2015.02.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 02/12/2015] [Accepted: 02/15/2015] [Indexed: 06/04/2023]
Abstract
For the first time a laccase from Trametes versicolor was immobilized on a natural clinoptilolite with Si/Al=5 to obtain a biocatalyst for environmental applications. Immobilization procedures exploiting adsorption and covalent binding were both tested, and only the last provided enough activity for practical applications. The optimal conditions for the immobilization of the enzyme on the support and the kinetic parameters for the free and covalent bonded laccase were determined. The laccase bonded to the zeolitic support showed a lower activity than the free laccase, but the pH and thermal stability were greater. 20 mg of dry biocatalyst containing 1 U of laccase were able to remove in 50h 73-78% of 2-chlorophenol and 2,4-dichlorophenol in relatively concentrated aqueous solutions (100 μmol L(-1)).
Collapse
Affiliation(s)
- Enrica Donati
- Institute of Chemical Methodologies of CNR (IMC), Research Area of Rome 1, Via Salaria Km 29,300, 00015 Monterotondo, Rome, Italy
| | - Chiara M Polcaro
- Institute of Chemical Methodologies of CNR (IMC), Research Area of Rome 1, Via Salaria Km 29,300, 00015 Monterotondo, Rome, Italy.
| | - Piero Ciccioli
- Institute of Chemical Methodologies of CNR (IMC), Research Area of Rome 1, Via Salaria Km 29,300, 00015 Monterotondo, Rome, Italy
| | - Emanuela Galli
- Institute of Agro-Environmental and Forest Biology of CNR (IBAF), Research Area of Rome 1, Via Salaria Km 29,300, 00015 Monterotondo, Rome, Italy
| |
Collapse
|
44
|
Garcia-Morales R, Rodríguez-Delgado M, Gomez-Mariscal K, Orona-Navar C, Hernandez-Luna C, Torres E, Parra R, Cárdenas-Chávez D, Mahlknecht J, Ornelas-Soto N. Biotransformation of Endocrine-Disrupting Compounds in Groundwater: Bisphenol A, Nonylphenol, Ethynylestradiol and Triclosan by a Laccase Cocktail from Pycnoporus sanguineus CS43. WATER, AIR, AND SOIL POLLUTION 2015; 226:251. [PMID: 26190872 PMCID: PMC4498228 DOI: 10.1007/s11270-015-2514-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 06/22/2015] [Indexed: 05/20/2023]
Abstract
The biodegradation of organic compounds present in water at trace concentration has become a critical environmental problem. In particular, enzymatic oxidation by fungal laccases offers a promising alternative for efficient and sustainable removal of organic pollutants in water. In this work, the biocatalytic ability of laccases from the Pycnoporus sanguineus CS43 fungus was evaluated. A filtered culture supernatant (laccase cocktail) evidenced an enhanced biotransformation capability to remove common endocrine-disruptor compounds (EDCs), such as bisphenol A, 4-nonylphenol, 17-α-ethynylestradiol and triclosan. A biodegradation of around 89-100 % was achieved for all EDCs using synthetic samples (10 mg L-1) and after the enzymatic treatment with 100 U L-1 (50.3 U mg -1). The biodegradation rates obtained were fitted to a first order reaction. Furthermore, enzymatic biocatalytic activity was also evaluated in groundwater samples coming from northwestern Mexico, reaching biotransformation percentages between 55 and 93 % for all tested compounds. As far as we know this is the first study on real groundwater samples in which the enzymatic degradation of target EDCs by a laccase cocktail from any strain of Pycnoporus sanguineus was evaluated. In comparison with purified laccases, the use of cocktail offers operational advantages since additional purification steps can be avoided.
Collapse
Affiliation(s)
- R. Garcia-Morales
- />Centro del Agua para América Latina y el Caribe, Tecnológico de Monterrey, Monterrey, NL 64849 Mexico
- />Universidad Juárez Autónoma de Tabasco, Av. Universidad S/N Magisterial, Villahermosa, 86040 Tabasco Mexico
| | - M. Rodríguez-Delgado
- />Centro del Agua para América Latina y el Caribe, Tecnológico de Monterrey, Monterrey, NL 64849 Mexico
| | - K. Gomez-Mariscal
- />Centro del Agua para América Latina y el Caribe, Tecnológico de Monterrey, Monterrey, NL 64849 Mexico
| | - C. Orona-Navar
- />Centro del Agua para América Latina y el Caribe, Tecnológico de Monterrey, Monterrey, NL 64849 Mexico
| | - C. Hernandez-Luna
- />Laboratorio de Enzimología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León. Av. Universidad s/n, Ciudad Universitaria San Nicolás de los Garza, San Nicolás de los Garza, NL 64450 Mexico
| | - E. Torres
- />Posgrado en Ciencias Ambientales, Benemérita Universidad Autónoma de Puebla, Edificio 103G, 7, Puebla, Mexico
| | - R. Parra
- />Centro del Agua para América Latina y el Caribe, Tecnológico de Monterrey, Monterrey, NL 64849 Mexico
| | - D. Cárdenas-Chávez
- />Centro del Agua para América Latina y el Caribe, Tecnológico de Monterrey, Monterrey, NL 64849 Mexico
| | - J. Mahlknecht
- />Centro del Agua para América Latina y el Caribe, Tecnológico de Monterrey, Monterrey, NL 64849 Mexico
| | - N. Ornelas-Soto
- />Centro del Agua para América Latina y el Caribe, Tecnológico de Monterrey, Monterrey, NL 64849 Mexico
| |
Collapse
|
45
|
Gasser CA, Ammann EM, Shahgaldian P, Corvini PFX. Laccases to take on the challenge of emerging organic contaminants in wastewater. Appl Microbiol Biotechnol 2014; 98:9931-52. [PMID: 25359481 DOI: 10.1007/s00253-014-6177-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 10/16/2014] [Accepted: 10/17/2014] [Indexed: 10/24/2022]
Abstract
The removal of emerging organic contaminants from municipal wastewater poses a major challenge unsatisfactorily addressed by present wastewater treatment processes. Enzyme-catalyzed transformation of emerging organic contaminants (EOC) has been proposed as a possible solution to this major environmental issue more than a decade ago. Especially, laccases gained interest in this context in recent years due to their broad substrate range and since they only need molecular oxygen as a cosubstrate. In order to ensure the stability of the enzymes and allow their retention and reuse, either immobilization or insolubilization of the biocatalysts seems to be the prerequisite for continuous wastewater treatment applications. The present review summarizes the research conducted on EOC transformation with laccases and presents an overview of the possible immobilization techniques. The goal is to assess the state of the art and identify the next necessary steps that have to be undertaken in order to implement laccases as a tertiary wastewater treatment process in sewage treatment plants.
Collapse
Affiliation(s)
- Christoph A Gasser
- Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Gründenstrasse 40, Muttenz, CH-4132, Switzerland
| | | | | | | |
Collapse
|
46
|
de Cazes M, Abejón R, Belleville MP, Sanchez-Marcano J. Membrane bioprocesses for pharmaceutical micropollutant removal from waters. MEMBRANES 2014; 4:692-729. [PMID: 25295629 PMCID: PMC4289862 DOI: 10.3390/membranes4040692] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 09/16/2014] [Accepted: 09/17/2014] [Indexed: 01/02/2023]
Abstract
The purpose of this review work is to give an overview of the research reported on bioprocesses for the treatment of domestic or industrial wastewaters (WW) containing pharmaceuticals. Conventional WW treatment technologies are not efficient enough to completely remove all pharmaceuticals from water. Indeed, these compounds are becoming an actual public health problem, because they are more and more present in underground and even in potable waters. Different types of bioprocesses are described in this work: from classical activated sludge systems, which allow the depletion of pharmaceuticals by bio-degradation and adsorption, to enzymatic reactions, which are more focused on the treatment of WW containing a relatively high content of pharmaceuticals and less organic carbon pollution than classical WW. Different aspects concerning the advantages of membrane bioreactors for pharmaceuticals removal are discussed, as well as the more recent studies on enzymatic membrane reactors to the depletion of these recalcitrant compounds.
Collapse
Affiliation(s)
- Matthias de Cazes
- Institut Européen des Membranes (IEM), ENSCM, UM2, CNRS, Université de Montpellier 2, CC 047, Place Eugène Bataillon 34095, France.
| | - Ricardo Abejón
- Institut Européen des Membranes (IEM), ENSCM, UM2, CNRS, Université de Montpellier 2, CC 047, Place Eugène Bataillon 34095, France.
| | - Marie-Pierre Belleville
- Institut Européen des Membranes (IEM), ENSCM, UM2, CNRS, Université de Montpellier 2, CC 047, Place Eugène Bataillon 34095, France.
| | - José Sanchez-Marcano
- Institut Européen des Membranes (IEM), ENSCM, UM2, CNRS, Université de Montpellier 2, CC 047, Place Eugène Bataillon 34095, France.
| |
Collapse
|
47
|
Frazão CJR, Silva NHC, Freire CSR, Silvestre AJD, Xavier AMRB, Tavares APM. Bacterial cellulose as carrier for immobilization of laccase: Optimization and characterization. Eng Life Sci 2014. [DOI: 10.1002/elsc.201400054] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
| | - Nuno H. C. Silva
- Department of Chemistry; CICECO, University of Aveiro; Aveiro Portugal
| | | | | | | | - Ana P. M. Tavares
- Associate Laboratory LSRE/LCM; Laboratory of Separation and Reaction Engineering (LSRE); Department of Chemical Engineering, Faculty of Engineering; University of Porto; Porto Portugal
| |
Collapse
|
48
|
Kochius S, Ni Y, Kara S, Gargiulo S, Schrader J, Holtmann D, Hollmann F. Light-Accelerated Biocatalytic Oxidation Reactions. Chempluschem 2014. [DOI: 10.1002/cplu.201402152] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
49
|
Kumar VV, Sivanesan S, Cabana H. Magnetic cross-linked laccase aggregates--bioremediation tool for decolorization of distinct classes of recalcitrant dyes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 487:830-839. [PMID: 24785303 DOI: 10.1016/j.scitotenv.2014.04.009] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 04/01/2014] [Accepted: 04/01/2014] [Indexed: 06/03/2023]
Abstract
The increasing use of laccase in waste water industries is useful to explore the high benefit/cost ratio of insolubilization technologies like cross linked enzyme aggregates (CLEAs) for the decolorization and detoxification of distinctive classes of recalcitrant dyes. Amino-functionalized magnetic nanoparticles bonded to CLEAs increased the potential of laccase-based CLEAs and are applicable for commercial implementation of this technology in environmental applications. The activity recovery obtained from the stable rigid structure of magnetic CLEAs was around 32%. High volumetric activity, increased in thermal and operational stability of laccase and its resistance to extreme conditions were the properties provided by these magnetic CLEAs. Kinetic studies show that the catalytic efficiency of the enzyme, based on the kcat/km value, changed significantly upon CLEAs and magnetic CLEA formations. When 0.2U/mL of magnetic CLEAs was used, the biocatalyst rapidly decolorized 61-96% of remazol brilliant blue R, malachite green and reactive black 5 initially at 50mgL(-1) at 20°C and pH7.0. Investigation of dye degradation using both active and heat denatured CLEAs revealed a slight adsorption of dyes on inactivated biocatalysts. A laboratory scale perfusion basket reactor (BR) was used to study the continuous decolorization of dyes. The efficient decolorization (>90%) of remazol brilliant blue R and slight decrease in CLEA activity were measured over a 10h period of continuous operation, which illustrates the potential of CLEAs for the wastewater treatment. The present findings will advance the understanding of dye decolorization mechanism by CLEA laccase, which could provide useful references for developing industrial wastewater treatment.
Collapse
Affiliation(s)
- Vaidyanathan Vinoth Kumar
- Department of Applied Science and Technology, Environment Management Laboratory, AC Tech, Anna University, Chennai 600025, India; Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur, Chennai 603203, India
| | - Subramanian Sivanesan
- Department of Applied Science and Technology, Environment Management Laboratory, AC Tech, Anna University, Chennai 600025, India
| | - Hubert Cabana
- Department of Civil Engineering, Université de Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, Québec J1K 2R1, Canada.
| |
Collapse
|
50
|
Singh B. Myceliophthora thermophila syn. Sporotrichum thermophile: a thermophilic mould of biotechnological potential. Crit Rev Biotechnol 2014; 36:59-69. [PMID: 25025273 DOI: 10.3109/07388551.2014.923985] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Myceliophthora thermophila syn. Sporotrichum thermophile is a ubiquitous thermophilic mould with a strong ability to degrade organic matter during optimal growth at 45 °C. Both genome analysis and experimental data have suggested that the mould is capable of hydrolyzing all major polysaccharides found in biomass. The mould is able to secrete a large number of hydrolytic enzymes (cellulases, laccases, xylanases, pectinases, lipases, phytases and some other miscellaneous enzymes) employed in various biotechnological applications. Characterization of the biomass-hydrolyzing activity of wild and recombinant enzymes suggests that this mould is highly efficient in biomass decomposition at both moderate and high temperatures. The native enzymes produced by the mould are more efficient in activity than their mesophilic counterparts beside their low enzyme titers. The mould is able to synthesize various biomolecules, which are used in multifarious applications. Genome sequence data of M. thermophila also supported the physiological data. This review describes the biotechnological potential of thermophilic mould, M. thermophila supported by genomic and experimental evidences.
Collapse
Affiliation(s)
- Bijender Singh
- a Laboratory of Bioprocess Technology, Department of Microbiology , Maharshi Dayanand University , Rohtak-124001 , Haryana , India
| |
Collapse
|