1
|
Nakamura M, Oyane A, Inose T, Kanemoto Y, Miyaji H. One-Step Fabrication of Water-Dispersible Calcium Phosphate Nanoparticles with Immobilized Lactoferrin for Intraoral Disinfection. Int J Mol Sci 2025; 26:852. [PMID: 39859565 PMCID: PMC11765996 DOI: 10.3390/ijms26020852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/12/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Lactoferrin is a highly safe antibacterial protein found in the human body and in foods. Calcium phosphate (CaP) nanoparticles with immobilized lactoferrin could therefore be useful as intraoral disinfectants for the prevention and treatment of dental infections because CaP is a mineral component of human teeth. In this study, we fabricated CaP nanoparticles with co-immobilized lactoferrin and heparin using a simple one-step coprecipitation process. Heparin, a negatively charged polysaccharide, was used as both an immobilizing agent for lactoferrin and a particle-dispersing agent. The immobilization efficiency for lactoferrin in the CaP nanoparticles depended on the concentrations of both the lactoferrin and heparin in the reaction solution and was over 90% under optimal conditions. The nanoparticles had a hydrodynamic diameter of about 150-200 nm and could be well dispersed in water, owing to their relatively large negative zeta potential derived from heparin. They were found to exhibit antibacterial activity against Actinomyces naeslundii, which is involved in the initial formation of dental plaque that consequently leads to dental caries and periodontal disease. These results indicate the potential of the proposed nanoparticles as intraoral disinfectants.
Collapse
Affiliation(s)
- Maki Nakamura
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan; (A.O.); (T.I.)
| | - Ayako Oyane
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan; (A.O.); (T.I.)
| | - Tomoya Inose
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan; (A.O.); (T.I.)
| | - Yukimi Kanemoto
- Periodontics, Hokkaido University Hospital, N14W5, Kita-ku, Sapporo 060-8648, Japan;
| | - Hirofumi Miyaji
- General Dentistry, Department of Oral Health Science, Faculty of Dental Medicine, Hokkaido University, N13W7, Kita-ku, Sapporo 060-8586, Japan;
| |
Collapse
|
2
|
Yılmaz B, Emingil G. Validating proteomic biomarkers in saliva: distinguishing between health and periodontal diseases. Expert Rev Proteomics 2024; 21:417-429. [PMID: 39385324 DOI: 10.1080/14789450.2024.2413099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024]
Abstract
INTRODUCTION Periodontitis is a chronic inflammatory disease characterized by progressive soft tissue and alveolar bone loss due to interactions between microbial dental plaque and the host response. Despite extensive research on biomarkers from saliva or gingival crevicular fluid (GCF) for diagnosing periodontitis, clinical and radiological parameters remain the primary diagnostic tools. AREAS COVERED This review discusses the ongoing research into salivary biomarkers for periodontitis diagnosis, emphasizing the need for reliable biomarkers to differentiate between periodontal health and disease. Salivary biomarker research has gained momentum with advancements in proteomic technologies, enabling noninvasive sample collection and revealing potential candidate biomarkers. EXPERT OPINION Proteomic research since the early 2000s has identified promising biomarkers and provided insights into the pathogenesis of periodontitis. Bioinformatic analysis of proteomic data elucidates the underlying biological mechanisms. This review summarizes key findings and highlights common potential biomarkers identified through proteomic research in periodontology.
Collapse
Affiliation(s)
- Büşra Yılmaz
- Department of Periodontology, Ege University School of Dentistry, İzmir, Turkey
| | - Gülnur Emingil
- Department of Periodontology, Ege University School of Dentistry, İzmir, Turkey
| |
Collapse
|
3
|
Kubo S, Oda H, Tanaka M, Koikeda T, Tomita S. Effects of Lactoferrin on Oral and Throat Conditions under Low Humidity Environments: A Randomized, Double-Blind, and Placebo-Controlled Crossover Trial. Nutrients 2023; 15:4033. [PMID: 37764816 PMCID: PMC10537525 DOI: 10.3390/nu15184033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/15/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
To evaluate the effects of a single ingestion of bovine lactoferrin (bLF) on oral and throat conditions under a low-humidity environment. A randomized, double-blind, 2-sequence, 2-treatment, and 2-period placebo-controlled crossover trial was conducted. Healthy adult subjects orally ingested bLF dissolved in water, or placebo water, followed by exposure to low humidity (20 °C, 20% relative humidity (RH)) for 2 h. The primary endpoint was subjective oral and throat discomfort assessed by a visual analog scale (VAS), which positively correlated with the discomfort. Secondary endpoints were unstimulated whole salivary flow rate (UWSFR) and salivary immunoglobulin A (IgA) secretion rate. Overall, 40 subjects were randomly assigned to two sequences (20 each) and 34 were analyzed. The VAS values for oral and throat discomfort in the bLF treatment were significantly lower than in the placebo treatment, whereas UWSFR and IgA secretion rates were comparable between the two treatments. Adverse drug reactions were not observed. Subjective oral and throat discomfort associated with low humidity is suppressed by a single ingestion of bLF. Our findings demonstrate the novel use of bLF in a clinical situation that leverages its unique characteristics.
Collapse
Affiliation(s)
- Shutaro Kubo
- Innovative Research Institute, R&D Division, Morinaga Milk Industry Co., Ltd., 5-1-83 Higashihara, Zama 252-8583, Japan
| | - Hirotsugu Oda
- Innovative Research Institute, R&D Division, Morinaga Milk Industry Co., Ltd., 5-1-83 Higashihara, Zama 252-8583, Japan
| | - Miyuki Tanaka
- Innovative Research Institute, R&D Division, Morinaga Milk Industry Co., Ltd., 5-1-83 Higashihara, Zama 252-8583, Japan
| | - Takashi Koikeda
- Shiba Palace Clinic, Daiwa A Hamamatsucho Bldg. 6F, 1-9-10 Hamamatsucho, Minato 105-0013, Japan
| | - Shinichi Tomita
- Department of Advanced Food Sciences, Faculty of Agriculture, Tamagawa University, 6-1-1 Tamagawa-Gakuen, Machida 194-8610, Japan
| |
Collapse
|
4
|
López-Valverde N, López-Valverde A, Montero J, Rodríguez C, Macedo de Sousa B, Aragoneses JM. Antioxidant, anti-inflammatory and antimicrobial activity of natural products in periodontal disease: a comprehensive review. Front Bioeng Biotechnol 2023; 11:1226907. [PMID: 37600299 PMCID: PMC10435350 DOI: 10.3389/fbioe.2023.1226907] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/27/2023] [Indexed: 08/22/2023] Open
Abstract
Periodontal diseases (PD) are common chronic inflammatory oral pathologies that are strongly linked to others not found in the mouth cavity. The immune system mediates the host response, which includes the upregulation of proinflammatory cytokines, metalloproteinases, and reactive oxygen species (ROS); the latter may play an important role in the establishment and progression of inflammatory diseases, particularly periodontal disease, via the development of oxidative stress (OS). Natural antioxidants have powerful anti-inflammatory properties, and some can reduce serum levels of key PD indicators such tumor necrosis factor (TNF) and interleukin IL-1. This review compiles, through a thorough literature analysis, the antioxidant, anti-inflammatory, and antibacterial effects of a variety of natural products, as well as their therapeutic potential in the treatment of PD.
Collapse
Affiliation(s)
- Nansi López-Valverde
- Department of Medicine and Medical Specialties, Faculty of Health Sciences, Universidad Alcalá de Henares, Madrid, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Madrid, Spain
| | - Antonio López-Valverde
- Department of Surgery, Instituto de Investigación Biomédica de Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Javier Montero
- Department of Surgery, Instituto de Investigación Biomédica de Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Cinthia Rodríguez
- Department of Dentistry, Universidad Federico Henríquez y Carvajal, Santo Domingo, Dominican Republic
| | - Bruno Macedo de Sousa
- Institute for Occlusion and Orofacial Pain Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | | |
Collapse
|
5
|
Naruo E, Hayama M, Sano T, Yamamoto Y, Masumura C. Buccal Abscess Caused by Toothbrush Trauma: A Case Report of a Two-Year-Old. Cureus 2023; 15:e41055. [PMID: 37519531 PMCID: PMC10374434 DOI: 10.7759/cureus.41055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2023] [Indexed: 08/01/2023] Open
Abstract
Children often experience impalement trauma when they fall while holding objects in their mouths. While most cases heal without complications, here we report a case of buccal abscess formation after toothbrush trauma. A two-year-old boy fell while running with a toothbrush in his mouth, which punctured his right buccal mucosa. The following day, he presented to a pediatrician with a fever and buccal swelling and was treated with oral antibiotics. However, the buccal swelling did not improve, and the patient was referred to our department. Four days after the visit, the buccal swelling and fever worsened, requiring hospitalization, intravenous antibiotics, and drainage. The inflammation quickly disappeared following treatment, with no recurrence. Prophylactic antibiotic administration for oral impalement trauma is controversial. Our results suggest that prophylactic antibiotics covering both anaerobic and aerobic bacteria are necessary in cases of toothbrush-related oral trauma, where multiple bacterial infections may occur.
Collapse
Affiliation(s)
- Eiji Naruo
- Otolaryngology, Hyogo Prefectural Nishinomiya Hospital, Nishinomiya, JPN
| | - Masaki Hayama
- Otolaryngology, Hyogo Prefectural Nishinomiya Hospital, Nishinomiya, JPN
| | - Tsutomu Sano
- Otolaryngology, Hyogo Prefectural Nishinomiya Hospital, Nishinomiya, JPN
| | - Yuka Yamamoto
- Otolaryngology, Hyogo Prefectural Nishinomiya Hospital, Nishinomiya, JPN
| | - Chisako Masumura
- Otolaryngology, Hyogo Prefectural Nishinomiya Hospital, Nishinomiya, JPN
| |
Collapse
|
6
|
Roslund K, Uosukainen M, Järvik K, Hartonen K, Lehto M, Pussinen P, Groop PH, Metsälä M. Antibiotic treatment and supplemental hemin availability affect the volatile organic compounds produced by P. gingivalis in vitro. Sci Rep 2022; 12:22534. [PMID: 36581644 PMCID: PMC9800405 DOI: 10.1038/s41598-022-26497-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/15/2022] [Indexed: 12/30/2022] Open
Abstract
We have measured the changes in the production of volatile organic compounds (VOCs) by the oral pathogen Porphyromonas gingivalis, when treated in vitro with the antibiotic amoxicillin. We have also measured the VOC production of P. gingivalis grown in the presence and absence of supplemental hemin. Planktonic bacterial cultures were treated with different amounts of amoxicillin in the lag phase of the bacterial growth. Planktonic bacteria were also cultured with and without supplemental hemin in the culture medium. Concentrations of VOCs were measured with proton-transfer-reaction time-of-flight mass spectrometry (PTR-ToF-MS) and further molecular identification was done with gas chromatography-mass spectrometry (GC-MS) using solid phase microextraction (SPME) for sampling. The cell growth of P. gingivalis in the cultures was estimated with optical density measurements at the wavelength of 600 nm (OD600). We found that the production of methanethiol, hydrogen sulfide and several short- to medium-chain fatty acids was decreased with antibiotic treatment using amoxicillin. Compounds found to increase with the antibiotic treatment were butyric acid and indole. In cultures without supplemental hemin, indole and short- to medium-chain fatty acid production was significantly reduced. Acetic acid production was found to increase when supplemental hemin was not available. Our results suggest that the metabolic effects of both antibiotic treatment and supplemental hemin availability are reflected in the VOCs produced by P. gingivalis and could be used as markers for bacterial cell growth and response to threat. Analysis of these volatiles from human samples, such as the exhaled breath, could be used in the future to rapidly monitor response to antibacterial treatment.
Collapse
Affiliation(s)
- Kajsa Roslund
- grid.7737.40000 0004 0410 2071Department of Chemistry, University of Helsinki, Helsinki, Finland
| | - Moona Uosukainen
- grid.7737.40000 0004 0410 2071Department of Chemistry, University of Helsinki, Helsinki, Finland
| | - Katriin Järvik
- grid.7737.40000 0004 0410 2071Department of Chemistry, University of Helsinki, Helsinki, Finland
| | - Kari Hartonen
- grid.7737.40000 0004 0410 2071Department of Chemistry, University of Helsinki, Helsinki, Finland
| | - Markku Lehto
- grid.7737.40000 0004 0410 2071Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland ,grid.7737.40000 0004 0410 2071Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland ,grid.7737.40000 0004 0410 2071Clinical and Molecular Metabolism, Faculty of Medicine Research Programs, University of Helsinki, Helsinki, Finland
| | - Pirkko Pussinen
- grid.7737.40000 0004 0410 2071Oral and Maxillofacial Diseases, Helsinki University Hospital, University of Helsinki, Helsinki, Finland ,grid.9668.10000 0001 0726 2490Institute of Dentistry, University of Eastern Finland, Kuopio, Finland
| | - Per-Henrik Groop
- grid.7737.40000 0004 0410 2071Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland ,grid.7737.40000 0004 0410 2071Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland ,grid.7737.40000 0004 0410 2071Clinical and Molecular Metabolism, Faculty of Medicine Research Programs, University of Helsinki, Helsinki, Finland ,grid.1002.30000 0004 1936 7857Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC Australia
| | - Markus Metsälä
- grid.7737.40000 0004 0410 2071Department of Chemistry, University of Helsinki, Helsinki, Finland
| |
Collapse
|
7
|
Bartolomé F, Rosa L, Valenti P, Lopera F, Hernández-Gallego J, Cantero JL, Orive G, Carro E. Lactoferrin as Immune-Enhancement Strategy for SARS-CoV-2 Infection in Alzheimer's Disease Patients. Front Immunol 2022; 13:878201. [PMID: 35547737 PMCID: PMC9083828 DOI: 10.3389/fimmu.2022.878201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/28/2022] [Indexed: 12/25/2022] Open
Abstract
Coronavirus 2 (SARS-CoV2) (COVID-19) causes severe acute respiratory syndrome. Severe illness of COVID-19 largely occurs in older people and recent evidence indicates that demented patients have higher risk for COVID-19. Additionally, COVID-19 further enhances the vulnerability of older adults with cognitive damage. A balance between the immune and inflammatory response is necessary to control the infection. Thus, antimicrobial and anti-inflammatory drugs are hopeful therapeutic agents for the treatment of COVID-19. Accumulating evidence suggests that lactoferrin (Lf) is active against SARS-CoV-2, likely due to its potent antiviral and anti-inflammatory actions that ultimately improves immune system responses. Remarkably, salivary Lf levels are significantly reduced in different Alzheimer's disease (AD) stages, which may reflect AD-related immunological disturbances, leading to reduced defense mechanisms against viral pathogens and an increase of the COVID-19 susceptibility. Overall, there is an urgent necessity to protect AD patients against COVID-19, decreasing the risk of viral infections. In this context, we propose bovine Lf (bLf) as a promising preventive therapeutic tool to minimize COVID-19 risk in patients with dementia or AD.
Collapse
Affiliation(s)
- Fernando Bartolomé
- Group of Neurodegenerative Diseases, Hospital Universitario 12 de Octubre Research Institute (imas12), Madrid, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Luigi Rosa
- Department of Public Health and Infectious Diseases, University of Rome “La Sapienza”, Rome, Italy
| | - Piera Valenti
- Department of Public Health and Infectious Diseases, University of Rome “La Sapienza”, Rome, Italy
| | - Francisco Lopera
- Neuroscience Group of Antioquia, Faculty of Medicine, University of Antioquia, Medellín, Colombia
| | - Jesús Hernández-Gallego
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Department of Neurology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Department of Medicine, Faculty of Medicine, Complutense University of Madrid, Madrid, Spain
| | - José Luis Cantero
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Laboratory of Functional Neuroscience, Pablo de Olavide University, Seville, Spain
| | - Gorka Orive
- Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country, Vitoria, Spain
- Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
- Networked Center for Biomedical Research in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Eva Carro
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Neurobiology of Alzheimer’s Disease Unit, Chronic Disease Programme, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
8
|
Peng W, Zhang B, Sun Z, Zhang M, Guo L. Targeting the Nod-like receptor protein 3 Inflammasome with inhibitor MCC950 rescues lipopolysaccharide-induced inhibition of osteogenesis in Human periodontal ligament cells. Arch Oral Biol 2021; 131:105269. [PMID: 34601319 DOI: 10.1016/j.archoralbio.2021.105269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/27/2022]
Abstract
OBJECTIVE We aim to investigate whether lipopolysaccharide-stimulated activition of Nod-like receptor protein 3 (NLRP3) Inflammasome inhibits osteogenesis in Human periodontal ligament cells (HPDLCs). Futhermore, to study whether MCC950 (a inhibitor of NLRP3 Inflammasome) rescues lipopolysaccharide-induced inhibition of osteogenesis in HPDLCs as well as the underlying mechanisms. METHODS HPDLCs were isolated from periodontal ligament of healthy orthodontic teeth from teenagers, and cells surface marker protein were detected by flow cytometry. Cells viability were determined by Cell Counting kit 8 assay. Enzyme-linked immunosorbent assay was used to analyze the secretion of proinflammatory factors. Western blot and real-time quantitative polymerase chain reaction (RT-qPCR) were measured assessing the expression of NLRP3 and Caspase-1. RT-qPCR, Alizarin red staining and Alkaline phosphatase staining were tested to determine the osteogenic differentiation capacity of HPDLCs. RESULTS It was found that lipopolysaccharide in the range of concentrations from 10 to 100 μg/ml significantly inhibited HPDLCs viability at 24 h and significantly improved proinflammatory cytokine expressions at 8 h and 24 h. MCC950 reversed lipopolysaccharide-stimulated proinflammatory cytokine expressions including interleukin-1β and interleukin-18, but not tumor necrosis factor-α. In addition, MCC950 rescued the lipopolysaccharide-inhibited osteogenic gene (Alkaline phosphatase, Runt-related transcription factor 2, and Osteocalcin). Moreover, MCC950 downregulated lipopolysaccharide-induced relative protein of NLRP3 Inflammasome signaling pathway, such as NLRP3 and Caspase-1. CONCLUSION MCC950 rescues lipopolysaccharide-induced inhibition of osteogenesis in HPDLCs via blocking NLRP3 Inflammasome signaling pathway, and it may be used as a promising therapeutic agent for periodontitis or periondontal regenerative related disease.
Collapse
Affiliation(s)
- Wei Peng
- Department of prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan, China.
| | - Bo Zhang
- Department of prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan, China.
| | - Zhengfan Sun
- Department of prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan, China.
| | - Meifeng Zhang
- Department of prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan, China.
| | - Ling Guo
- Department of prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
9
|
Loureiro C, Buzalaf MAR, Moraes FRN, Ventura TMO, Pelá VT, Pessan JP, Jacinto RC. Quantitative proteomic analysis in symptomatic and asymptomatic apical periodontitis. Int Endod J 2021; 54:834-847. [PMID: 33480079 DOI: 10.1111/iej.13480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 01/19/2021] [Indexed: 12/31/2022]
Abstract
AIM To quantitatively and qualitatively compare the host proteomic profile in samples of symptomatic and asymptomatic apical periodontitis (AP) using nano-liquid chromatography-electron spray tandem mass spectrometry. METHODOLOGY Samples were obtained from 18 patients with radiographically evident AP, divided into symptomatic and asymptomatic groups (nine per group) according to clinical characteristics. After sample collection, protein extraction, purification and quantification of the samples were performed, which were analysed by reverse-phase liquid chromatography coupled to mass spectrometry. Label-free quantitative proteomic analysis was performed by Protein Lynx Global Service software. Differences in expression of proteins between the groups were calculated using the Monte Carlo algorithm, considering P < 0.05 for down-regulated proteins and 1 - P > 0.95 for up-regulated proteins. Proteins were identified with the embedded ion accounting algorithm in the software and a search of the Homo sapiens UniProt database. RESULTS A total of 853 individual human proteins were identified. In the quantitative analysis, common proteins to both groups accounted for 143 proteins. Differences in expression between groups resulted in 51 up-regulated proteins (1 - P > 0.95) in the symptomatic group, including alpha-1-antitrypsin, protein S100-A8, myeloperoxidase, peroxiredoxin and lactotransferrin. This group also had 43 down-regulated proteins (P < 0.05), comprising immunoglobulin, neutrophil defensin, pyruvate kinase and alpha-enolase. The qualitative analysis considered only the exclusive proteins of each group. For the symptomatic group, 318 complete proteins and 29 fragments were identified, such as dedicator of cytokinesis protein, intersectin, prostaglandin, phospholipase DDHD2 and superoxide dismutase. For the asymptomatic group, 326 complete proteins and 37 fragments were identified, including azurocidin, C-reactive protein, collagen alpha, cathepsin, heat shock and laminin. CONCLUSIONS Quantitative differences in the expression of common proteins in cases of symptomatic and asymptomatic AP were found, which were mostly related to host immune response in both groups. Exclusive proteins in the symptomatic group were mainly related to the host response to the presence of viruses in endodontic infections, oxidative stress and proteolytic enzymes. The results provide a basis for a better understanding of cellular and molecular pathways involved in AP, establishing specific proteomic profiles for symptomatic and asymptomatic conditions.
Collapse
Affiliation(s)
- C Loureiro
- Department of Preventive and Restorative Dentistry, Aracatuba School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - M A R Buzalaf
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - F R N Moraes
- Department of Preventive and Restorative Dentistry, Aracatuba School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - T M O Ventura
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - V T Pelá
- Department of Genetics and Evolution, Federal University of Sao Carlos, São Carlos, Brazil
| | - J P Pessan
- Department of Preventive and Restorative Dentistry, Aracatuba School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - R C Jacinto
- Department of Preventive and Restorative Dentistry, Aracatuba School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| |
Collapse
|
10
|
Olsen I, Singhrao SK. Low levels of salivary lactoferrin may affect oral dysbiosis and contribute to Alzheimer's disease: A hypothesis. Med Hypotheses 2020; 146:110393. [PMID: 33229194 DOI: 10.1016/j.mehy.2020.110393] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/29/2020] [Accepted: 11/06/2020] [Indexed: 12/13/2022]
Abstract
Recently it has been reported that reduced levels of salivary lactoferrin (LF) can be a plausible biomarker for amyloid beta (Aβ) accumulation in Alzheimer's disease (AD) brains. This could mean that reduced levels of salivary LF act as a trigger for oral dysbiosis and that low LF levels could change the oral microbiota. A chemical change in the composition of saliva has not yet been considered as a cause for microbial dysbiosis but does present an opportunity to view oral dysbiosis as a plausible contributory factor in the development of AD pathophysiology. Oral dysbiosis has largely been reported as a result of inadequate oral hygiene and dry mouth in elderly subjects. Here we discuss if the deficiency of LF in saliva and gingival fluid of AD patients can facilitate proliferation of oral pathogens, and as a result their spread elsewhere in the body. Additionally, we ask if LF in the AD brain could be overexposed as a result of chronic infection. Together these outcomes will indicate if reduced levels of salivary LF can act as a trigger of oral dysbiosis.
Collapse
Affiliation(s)
- Ingar Olsen
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway.
| | - Sim K Singhrao
- Brain and Behavior Centre, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, UK
| |
Collapse
|
11
|
Lactoferrin and lactoferricin B reduce adhesion and biofilm formation in the intestinal symbionts Bacteroides fragilis and Bacteroides thetaiotaomicron. Anaerobe 2020; 64:102232. [DOI: 10.1016/j.anaerobe.2020.102232] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 06/01/2020] [Accepted: 06/18/2020] [Indexed: 01/01/2023]
|
12
|
Lu J, Francis J, Doster RS, Haley KP, Craft KM, Moore RE, Chambers SA, Aronoff DM, Osteen K, Damo SM, Manning S, Townsend SD, Gaddy JA. Lactoferrin: A Critical Mediator of Both Host Immune Response and Antimicrobial Activity in Response to Streptococcal Infections. ACS Infect Dis 2020; 6:1615-1623. [PMID: 32329605 DOI: 10.1021/acsinfecdis.0c00050] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Streptococcal species are Gram-positive bacteria responsible for a variety of disease outcomes including pneumonia, meningitis, endocarditis, erysipelas, necrotizing fasciitis, periodontitis, skin and soft tissue infections, chorioamnionitis, premature rupture of membranes, preterm birth, and neonatal sepsis. In response to streptococcal infections, the host innate immune system deploys a repertoire of antimicrobial and immune modulating molecules. One important molecule that is produced in response to streptococcal infections is lactoferrin. Lactoferrin has antimicrobial properties including the ability to bind iron with high affinity and sequester this important nutrient from an invading pathogen. Additionally, lactoferrin has the capacity to alter the host inflammatory response and contribute to disease outcome. This Review presents the most recent published work that studies the interaction between the host innate immune protein lactoferrin and the invading pathogen, Streptococcus.
Collapse
Affiliation(s)
- Jacky Lu
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Jamisha Francis
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Ryan S. Doster
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Kathryn P. Haley
- Department of Biomedical Sciences, Grand Valley State University, Allendale, Michigan 49401, United States
| | - Kelly M. Craft
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Rebecca E. Moore
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Schuyler A. Chambers
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - David M. Aronoff
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Kevin Osteen
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department of Veterans Affairs, Tennessee Valley Healthcare Systems, Nashville, Tennessee 37212, United States
- Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Steven M. Damo
- Department of Chemistry, Fisk University, Nashville, Tennessee 37208, United States
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Shannon Manning
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Steven D. Townsend
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Jennifer A. Gaddy
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department of Veterans Affairs, Tennessee Valley Healthcare Systems, Nashville, Tennessee 37212, United States
| |
Collapse
|
13
|
Rosa L, Lepanto MS, Cutone A, Ianiro G, Pernarella S, Sangermano R, Musci G, Ottolenghi L, Valenti P. Lactoferrin and oral pathologies: a therapeutic treatment. Biochem Cell Biol 2020; 99:81-90. [PMID: 32213143 DOI: 10.1139/bcb-2020-0052] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The oral cavity is a non-uniform, extraordinary environment characterized by mucosal, epithelial, abiotic surfaces and secretions as saliva. Aerobic and anaerobic commensal and pathogenic microorganisms colonize the tongue, teeth, jowl, gingiva, and periodontium. Commensals exert an important role in host defenses, while pathogenic microorganisms can nullify this protective function causing oral and systemic diseases. Every day, 750-1000 mL of saliva, containing several host defense constituents including lactoferrin (Lf), are secreted and swallowed. Lf is a multifunctional iron-chelating cationic glycoprotein of innate immunity. Depending on, or regardless of its iron-binding ability, Lf exerts bacteriostatic, bactericidal, antibiofilm, antioxidant, antiadhesive, anti-invasive, and anti-inflammatory activities. Here, we report the protective role of Lf in different oral pathologies, such as xerostomia, halitosis, alveolar or maxillary bone damage, gingivitis, periodontitis, and black stain. Unlike antibiotic therapy, which is ineffective against bacteria that are within a biofilm, adherent, or intracellular, the topical administration of Lf, through its simultaneous activity against microbial replication, biofilms, adhesion, and invasiveness, as well as inflammation, has been proven to be efficient in the treatment of all known oral pathologies without any adverse effects.
Collapse
Affiliation(s)
- Luigi Rosa
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Italy
| | | | - Antimo Cutone
- Department of Biosciences and Territory, University of Molise, Pesche, Italy
| | - Giusi Ianiro
- Department of Biosciences and Territory, University of Molise, Pesche, Italy
| | - Stefania Pernarella
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, Italy
| | - Riccardo Sangermano
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Italy
| | - Giovanni Musci
- Department of Biosciences and Territory, University of Molise, Pesche, Italy
| | - Livia Ottolenghi
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, Italy
| | - Piera Valenti
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Italy
| |
Collapse
|
14
|
Zheng R, Tan Y, Gu M, Kang T, Zhang H, Guo L. N-acetyl cysteine inhibits lipopolysaccharide-mediated synthesis of interleukin-1β and tumor necrosis factor-α in human periodontal ligament fibroblast cells through nuclear factor-kappa B signaling. Medicine (Baltimore) 2019; 98:e17126. [PMID: 31577702 PMCID: PMC6783161 DOI: 10.1097/md.0000000000017126] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The aim of this study was to investigate the role of n-acetyl cysteine (NAC) in the lipopolysaccharide (LPS)-mediated induction of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) synthesis by human periodontal ligament fibroblast cells (hPDLFs). In addition, we aimed to determine the involvement of the nuclear factor-kappa B (NF-κB) pathway in any changes in IL-1β and TNF-α expression observed in response to LPS and NAC. METHODS HPDLFs were obtained by primary culture. The culture medium used in this experiment was Dulbecco's Modified Eagle Medium (DMEM low-glucose). Cells were stimulated with various concentrations of NAC or LPS. Cell proliferation was measured at various time-points with the cell Counting Kit 8 (CCK-8) assay. mRNA levels of IL-1β and TNF-α were determined by real-time quantitative polymerase chain reaction (RT-qPCR) analysis. Protein levels of IL-1β and TNF-α were measured by enzyme-linked immunosorbent assay (ELISA). Protein and mRNA expression levels of NF-κB were measured by western blot and RT-qPCR. RESULTS The results showed that LPS treatment in hPDLFs induced mRNA and protein expression of IL-1β, TNF-α, and NF-κB. However, these effects were eliminated by pretreatment with NAC. Pretreatment with both NAC (1 mmol/L) and BAY11-7082 (10 μmol/L) significantly inhibited the NF-κB activity induced by LPS. CONCLUSION NAC inhibits the LPS-mediated synthesis of tumor TNF-α and IL-1β in hPDLFs, through the NF-κB pathway.
Collapse
|
15
|
Nakano M, Yoshida A, Wakabayashi H, Tanaka M, Yamauchi K, Abe F, Masuda Y. Effect of tablets containing lactoferrin and lactoperoxidase on gingival health in adults: A randomized, double‐blind, placebo‐controlled clinical trial. J Periodontal Res 2019; 54:702-708. [DOI: 10.1111/jre.12679] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/16/2019] [Accepted: 06/09/2019] [Indexed: 01/22/2023]
Affiliation(s)
- Manabu Nakano
- Food Ingredients & Technology Institute, R&D Division Morinaga Milk Industry Co., Ltd. Zama Japan
| | - Akihiro Yoshida
- Department of Oral Microbiology, Faculty of Dentistry Matsumoto Dental University Shiojiri Japan
| | - Hiroyuki Wakabayashi
- Food Ingredients & Technology Institute, R&D Division Morinaga Milk Industry Co., Ltd. Zama Japan
| | - Miyuki Tanaka
- Food Ingredients & Technology Institute, R&D Division Morinaga Milk Industry Co., Ltd. Zama Japan
| | - Koji Yamauchi
- Food Ingredients & Technology Institute, R&D Division Morinaga Milk Industry Co., Ltd. Zama Japan
| | - Fumiaki Abe
- Food Ingredients & Technology Institute, R&D Division Morinaga Milk Industry Co., Ltd. Zama Japan
| | - Yuji Masuda
- Institute for Oral Science, Graduate school of Oral Medicine Matsumoto Dental University Shiojiri Japan
| |
Collapse
|
16
|
Velliyagounder K, Bahdila D, Pawar S, Fine DH. Role of lactoferrin and lactoferrin‐derived peptides in oral and maxillofacial diseases. Oral Dis 2018; 25:652-669. [DOI: 10.1111/odi.12868] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/20/2018] [Accepted: 03/17/2018] [Indexed: 12/30/2022]
Affiliation(s)
- K Velliyagounder
- Department of Oral BiologyRutgers School of Dental Medicine Newark New Jersey
| | - D Bahdila
- Department of Oral BiologyRutgers School of Dental Medicine Newark New Jersey
| | - S Pawar
- Department of Oral BiologyRutgers School of Dental Medicine Newark New Jersey
| | - DH Fine
- Department of Oral BiologyRutgers School of Dental Medicine Newark New Jersey
| |
Collapse
|
17
|
Li X, Yu C, Hu Y, Xia X, Liao Y, Zhang J, Chen H, Lu W, Zhou W, Song Z. New Application of Psoralen and Angelicin on Periodontitis With Anti-bacterial, Anti-inflammatory, and Osteogenesis Effects. Front Cell Infect Microbiol 2018; 8:178. [PMID: 29922598 PMCID: PMC5996246 DOI: 10.3389/fcimb.2018.00178] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 05/08/2018] [Indexed: 01/10/2023] Open
Abstract
Psoralen and angelicin are two effective compounds isolated from psoraleae, a traditional Chinese medicine. They have a wide range of applications for bone disease treatment and immune modulation. In this study, we explored their new applications for the treatment of periodontal diseases. This study aimed to investigate the effects of psoralen and angelicin on Porphyromonas gingivalis growth and P. gingivalis-derived lipopolysaccharide (Pg-LPS)-induced inflammation, and further to evaluate their effects on osteogenesis. Finally, the effects of angelicin on a mouse model of periodontitis were also investigated. The results showed that psoralen and angelicin had beneficial dose-dependent effects regarding the inhibition of planktonic P. gingivalis and biofilms of P. gingivalis. There were no significant differences in the viability of monocyte-like THP-1 cells and human periodontal ligament cells (hPDLCs) treated with either psoralen or angelicin compared to the untreated control cells. Psoralen and angelicin also markedly decreased the mRNA expression and release of inflammatory cytokines (interleukin [IL]-1β and IL-8) by THP-1 cells in a dose-dependent manner. They significantly enhanced the alkaline phosphatase (ALP) activity of hPDLCs and up-regulated the expression of osteogenic proteins (runt-related transcription factor 2 [RUNX2], distal-less homeobox 5 [DLX5], and osteopontin [OPN]). Angelicin significantly attenuated alveolar bone loss and inflammation response in the mice with periodontitis. In conclusion, our data demonstrated that psoralen and angelicin could inhibit the growth of planktonic P. gingivalis and P. gingivalis biofilm. It is also the first report on the anti-inflammatory effect of psoralen and angelicin against Pg-LPS. They also had an osteogenesis-potentiating effect on hPDLCs. The in vivo study also indicated the effect of angelicin regarding protection against periodontitis. Our study highlighted the potential ability of psoralen and angelicin to act as novel natural agents to prevent and treat periodontitis.
Collapse
Affiliation(s)
- Xiaotian Li
- Department of Periodontology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Chunbo Yu
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Laboratory of Oral Microbiota and Systemic Disease, Shanghai Research Institute of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Hu
- Department of Periodontology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Xinyi Xia
- Department of Periodontology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Yue Liao
- Department of Periodontology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Jing Zhang
- Department of Periodontology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Huiwen Chen
- Department of Periodontology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Weili Lu
- Department of Periodontology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Wei Zhou
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China.,Laboratory of Oral Microbiota and Systemic Disease, Shanghai Research Institute of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhongchen Song
- Department of Periodontology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| |
Collapse
|
18
|
Nakano M, Wakabayashi H, Sugahara H, Odamaki T, Yamauchi K, Abe F, Xiao JZ, Murakami K, Ishikawa K, Hironaka S. Effects of lactoferrin and lactoperoxidase-containing food on the oral microbiota of older individuals. Microbiol Immunol 2018; 61:416-426. [PMID: 28881387 DOI: 10.1111/1348-0421.12537] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/21/2017] [Accepted: 09/01/2017] [Indexed: 11/30/2022]
Abstract
The oral microbiota influences health and disease states. Some gram-negative anaerobic bacteria play important roles in tissue destruction associated with periodontal disease. Lactoferrin (LF) and lactoperoxidase (LPO) are antimicrobial proteins found in saliva; however, their influence on the whole oral microbiota currently remains unknown. In this randomized, double-blinded, placebo-controlled study, the effects of long-term ingestion of LF and LPO-containing tablets on the microbiota of supragingival plaque and tongue coating were assessed. Forty-six older individuals ingested placebo or test tablets after every meal for 8 weeks. The relative abundance of bacterial species was assessed by 16S rRNA gene high-throughput sequencing. Most of the bacterial species in supragingival plaque and tongue coating that exhibited significant decreases in the test group were gram-negative bacteria, including periodontal pathogens. Decreases in the total relative abundance of gram-negative organisms in supragingival plaque and tongue coating correlated with improvements in assessed variables related to oral health, such as oral malodor and plaque accumulation. Furthermore, there was significantly less microbiota diversity in supragingival plaque at 8 weeks in the test group than in the placebo group and low microbiota diversity correlated with improvements in assessed variables related to oral health. These results suggest that LF and LPO-containing tablets promote a shift from a highly diverse and gram-negative-dominated to a gram-positive-dominated community in the microbiota of supragingival plaque and tongue coating. This microbial shift may contribute to improvements in oral health, including oral malodor and state of the gingiva.
Collapse
Affiliation(s)
- Manabu Nakano
- Food Ingredients and Technology Institute, Morinaga Milk Industry, 5-1-83 Higashihara, Zama, Kanagawa 252-8583
| | - Hiroyuki Wakabayashi
- Food Ingredients and Technology Institute, Morinaga Milk Industry, 5-1-83 Higashihara, Zama, Kanagawa 252-8583
| | - Hirosuke Sugahara
- Next Generation Science Institute, Morinaga Milk Industry, 5-1-83 Higashihara, Zama, Kanagawa 252-8583
| | - Toshitaka Odamaki
- Next Generation Science Institute, Morinaga Milk Industry, 5-1-83 Higashihara, Zama, Kanagawa 252-8583
| | - Koji Yamauchi
- Food Ingredients and Technology Institute, Morinaga Milk Industry, 5-1-83 Higashihara, Zama, Kanagawa 252-8583
| | - Fumiaki Abe
- Food Ingredients and Technology Institute, Morinaga Milk Industry, 5-1-83 Higashihara, Zama, Kanagawa 252-8583
| | - Jin-Zhong Xiao
- Next Generation Science Institute, Morinaga Milk Industry, 5-1-83 Higashihara, Zama, Kanagawa 252-8583
| | - Kohji Murakami
- Department of Special Needs Dentistry, Division of Hygiene and Oral Health, Showa University School of Dentistry, Tokyo, Japan
| | - Kentaro Ishikawa
- Department of Special Needs Dentistry, Division of Hygiene and Oral Health, Showa University School of Dentistry, Tokyo, Japan
| | - Shouji Hironaka
- Department of Special Needs Dentistry, Division of Hygiene and Oral Health, Showa University School of Dentistry, Tokyo, Japan
| |
Collapse
|
19
|
Pólvora TLS, Nobre ÁVV, Tirapelli C, Taba M, Macedo LDD, Santana RC, Pozzetto B, Lourenço AG, Motta ACF. Relationship between human immunodeficiency virus (HIV-1) infection and chronic periodontitis. Expert Rev Clin Immunol 2018; 14:315-327. [PMID: 29595347 DOI: 10.1080/1744666x.2018.1459571] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Current studies show that, even in the era of antiretroviral therapies, HIV-1 infection is associated with more severe and frequent refractory chronic periodontitis. Areas covered: This review, based on a systematic analysis of the literature, intends to provide an update on factors that may be involved in the pathogenesis of periodontal disease in HIV-1-infected patients, including local immunosuppression, oral microbial factors, systemic inflammation, salivary markers, and the role of gingival tissue as a possible reservoir of HIV-1. Expert commentary: The therapeutic revolution of ART made HIV-1 infection a chronic controllable disease, reduced HIV-1 mortality rate, restored at least partially the immune response and dramatically increased life expectancy of HIV-1-infected patients. Despite all these positive aspects, chronic periodontitis assumes an important role in the HIV-1 infection status for activating systemic inflammation favoring viral replication and influencing HIV-1 status, and also acting as a possible reservoir of HIV-1. All these issues still need to be clarified and validated, but have important clinical implications that certainly will benefit the diagnosis and management of chronic periodontitis in HIV-1-infected patients, and also contributes to HIV-1 eradication.
Collapse
Affiliation(s)
| | - Átila Vinícius V Nobre
- b Department of Oral & Maxillofacial Surgery, and Periodontology, School of Dentistry of Ribeirão Preto , University of São Paulo , Ribeirão Preto , Brazil
| | - Camila Tirapelli
- c Department of Dental Material and Prosthesis, School of Dentistry of Ribeirão Preto , USP - University of São Paulo , Ribeirão Preto , Brazil
| | - Mário Taba
- b Department of Oral & Maxillofacial Surgery, and Periodontology, School of Dentistry of Ribeirão Preto , University of São Paulo , Ribeirão Preto , Brazil
| | - Leandro Dorigan de Macedo
- d Division of Dentistry and Stomatology, Clinical Hospital, Ribeirão Preto Medical School , University of São Paulo , Ribeirão Preto , Brazil
| | - Rodrigo Carvalho Santana
- e Department of Internal Medicine, Ribeirão Preto Medical School , USP - University of São Paulo , Ribeirão Preto , Brazil
| | - Bruno Pozzetto
- f GIMAP EA 3064 (Groupe Immunité des Muqueuses et Agents Pathogènes) , University of Lyon , Saint-Etienne , France
| | - Alan Grupioni Lourenço
- g Department of Stomatology, Public Oral Health and Forensic Dentistry, School of Dentistry of Ribeirão Preto , University of São Paulo , Ribeirão Preto , Brazil
| | - Ana Carolina F Motta
- g Department of Stomatology, Public Oral Health and Forensic Dentistry, School of Dentistry of Ribeirão Preto , University of São Paulo , Ribeirão Preto , Brazil
| |
Collapse
|
20
|
Rosa L, Cutone A, Lepanto MS, Paesano R, Valenti P. Lactoferrin: A Natural Glycoprotein Involved in Iron and Inflammatory Homeostasis. Int J Mol Sci 2017; 18:1985. [PMID: 28914813 PMCID: PMC5618634 DOI: 10.3390/ijms18091985&n948647=v984776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human lactoferrin (hLf), an iron-binding multifunctional cationic glycoprotein secreted by exocrine glands and by neutrophils, is a key element of host defenses. HLf and bovine Lf (bLf), possessing high sequence homology and identical functions, inhibit bacterial growth and biofilm dependently from iron binding ability while, independently, bacterial adhesion to and the entry into cells. In infected/inflamed host cells, bLf exerts an anti-inflammatory activity against interleukin-6 (IL-6), thus up-regulating ferroportin (Fpn) and transferrin receptor 1 (TfR1) and down-regulating ferritin (Ftn), pivotal actors of iron and inflammatory homeostasis (IIH). Consequently, bLf inhibits intracellular iron overload, an unsafe condition enhancing in vivo susceptibility to infections, as well as anemia of inflammation (AI), re-establishing IIH. In pregnant women, affected by AI, bLf oral administration decreases IL-6 and increases hematological parameters. This surprising effect is unrelated to iron supplementation by bLf (80 μg instead of 1-2 mg/day), but to its role on IIH. AI is unrelated to the lack of iron, but to iron delocalization: cellular/tissue overload and blood deficiency. BLf cures AI by restoring iron from cells to blood through Fpn up-expression. Indeed, anti-inflammatory activity of oral and intravaginal bLf prevents preterm delivery. Promising bLf treatments can prevent/cure transitory inflammation/anemia/oral pathologies in athletes.
Collapse
Affiliation(s)
- Luigi Rosa
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy.
| | - Antimo Cutone
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy.
| | - Maria Stefania Lepanto
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy.
| | - Rosalba Paesano
- Department of Gynecological-Obstetric and Urological Sciences, University of Rome La Sapienza, 00185 Rome, Italy.
| | - Piera Valenti
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy.
| |
Collapse
|
21
|
Rosa L, Cutone A, Lepanto MS, Paesano R, Valenti P. Lactoferrin: A Natural Glycoprotein Involved in Iron and Inflammatory Homeostasis. Int J Mol Sci 2017; 18:E1985. [PMID: 28914813 PMCID: PMC5618634 DOI: 10.3390/ijms18091985] [Citation(s) in RCA: 235] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/11/2017] [Accepted: 09/12/2017] [Indexed: 02/07/2023] Open
Abstract
Human lactoferrin (hLf), an iron-binding multifunctional cationic glycoprotein secreted by exocrine glands and by neutrophils, is a key element of host defenses. HLf and bovine Lf (bLf), possessing high sequence homology and identical functions, inhibit bacterial growth and biofilm dependently from iron binding ability while, independently, bacterial adhesion to and the entry into cells. In infected/inflamed host cells, bLf exerts an anti-inflammatory activity against interleukin-6 (IL-6), thus up-regulating ferroportin (Fpn) and transferrin receptor 1 (TfR1) and down-regulating ferritin (Ftn), pivotal actors of iron and inflammatory homeostasis (IIH). Consequently, bLf inhibits intracellular iron overload, an unsafe condition enhancing in vivo susceptibility to infections, as well as anemia of inflammation (AI), re-establishing IIH. In pregnant women, affected by AI, bLf oral administration decreases IL-6 and increases hematological parameters. This surprising effect is unrelated to iron supplementation by bLf (80 μg instead of 1-2 mg/day), but to its role on IIH. AI is unrelated to the lack of iron, but to iron delocalization: cellular/tissue overload and blood deficiency. BLf cures AI by restoring iron from cells to blood through Fpn up-expression. Indeed, anti-inflammatory activity of oral and intravaginal bLf prevents preterm delivery. Promising bLf treatments can prevent/cure transitory inflammation/anemia/oral pathologies in athletes.
Collapse
Affiliation(s)
- Luigi Rosa
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy.
| | - Antimo Cutone
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy.
| | - Maria Stefania Lepanto
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy.
| | - Rosalba Paesano
- Department of Gynecological-Obstetric and Urological Sciences, University of Rome La Sapienza, 00185 Rome, Italy.
| | - Piera Valenti
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy.
| |
Collapse
|
22
|
Hoyos-Nogués M, Brosel-Oliu S, Abramova N, Muñoz FX, Bratov A, Mas-Moruno C, Gil FJ. Impedimetric antimicrobial peptide-based sensor for the early detection of periodontopathogenic bacteria. Biosens Bioelectron 2016; 86:377-385. [DOI: 10.1016/j.bios.2016.06.066] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/13/2016] [Accepted: 06/21/2016] [Indexed: 01/16/2023]
|
23
|
Nakano M, Shimizu E, Wakabayashi H, Yamauchi K, Abe F. A randomized, double-blind, crossover, placebo-controlled clinical trial to assess effects of the single ingestion of a tablet containing lactoferrin, lactoperoxidase, and glucose oxidase on oral malodor. BMC Oral Health 2016; 16:37. [PMID: 27001471 PMCID: PMC4802841 DOI: 10.1186/s12903-016-0199-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 03/15/2016] [Indexed: 11/24/2022] Open
Abstract
Background The main components of oral malodor have been identified as volatile sulfur compounds (VSCs) including hydrogen sulfide (H2S) and methyl mercaptan (CH3SH). VSCs also play an important role in the progression of periodontal disease. The aim of the present study was to assess the effects of the single ingestion of a tablet containing 20 mg of lactoferrin, 2.6 mg of lactoperoxidase, and 2.6 mg of glucose oxidase on VSCs in the mouth. Method Subjects with VSCs greater than the olfactory threshold in their mouth air ingested a test or placebo tablet in two crossover phases. The concentrations of VSCs were monitored at baseline and 10 and 30 min after ingestion of the tablets using portable gas chromatography. Results Thirty-nine subjects were included in the efficacy analysis based on a full analysis set (FAS). The concentrations of total VSCs and H2S at 10 min were significantly lower in the test group than in the placebo group (−0.246 log ng/10 ml [95 % CI −0.395 to −0.098], P = 0.002; −0.349 log ng/10 ml; 95 % CI −0.506 to −0.192; P < 0.001, respectively). In the subgroup analysis, a significant difference in the concentration of total VSCs between the groups was also observed when subjects were fractionated by sex (male or female) and age (20–55 or 56–65 years). The reducing effect on total VSCs positively correlated with the probing pocket depth (P = 0.035). Conclusions These results suggest that the ingestion of a tablet containing lactoferrin, lactoperoxidase, and glucose oxidase has suppressive effects on oral malodor. Trial registration This trial was registered with the University Hospital Medical Information Network Clinical Trial Registry (number: UMIN000015140, date of registration: 16/09/2014). Electronic supplementary material The online version of this article (doi:10.1186/s12903-016-0199-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Manabu Nakano
- Food Ingredients & Technology Institute, Morinaga Milk Industry Co., Ltd., 5-1-83 Higashihara, Zama, Kanagawa, 252-8583, Japan.
| | - Eiju Shimizu
- Shimizu Dental Clinic, 1066 Kamikobanamachi, Takasaki, 370-0077, Japan
| | - Hiroyuki Wakabayashi
- Food Ingredients & Technology Institute, Morinaga Milk Industry Co., Ltd., 5-1-83 Higashihara, Zama, Kanagawa, 252-8583, Japan
| | - Koji Yamauchi
- Food Ingredients & Technology Institute, Morinaga Milk Industry Co., Ltd., 5-1-83 Higashihara, Zama, Kanagawa, 252-8583, Japan
| | - Fumiaki Abe
- Food Ingredients & Technology Institute, Morinaga Milk Industry Co., Ltd., 5-1-83 Higashihara, Zama, Kanagawa, 252-8583, Japan
| |
Collapse
|
24
|
Aboodi GM, Sima C, Moffa EB, Crosara KTB, Xiao Y, Siqueira WL, Glogauer M. Salivary Cytoprotective Proteins in Inflammation and Resolution during Experimental Gingivitis--A Pilot Study. Front Cell Infect Microbiol 2016; 5:92. [PMID: 26779447 PMCID: PMC4700204 DOI: 10.3389/fcimb.2015.00092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 11/30/2015] [Indexed: 01/23/2023] Open
Abstract
Objective: The protective mechanisms that maintain periodontal homeostasis in gingivitis and prevent periodontal tissue destruction are poorly understood. The aim of this study was to identify changes in the salivary proteome during experimental gingivitis. Study design: We used oral neutrophil quantification and whole saliva (WS) proteomics to assess changes that occur in the inflammatory and resolution phases of gingivitis in healthy individuals. Oral neutrophils and WS samples were collected and clinical parameters measured on days 0, 7, 14, 21, 28, and 35. Results: Increased oral neutrophil recruitment and salivary cytoprotective proteins increased progressively during inflammation and decreased in resolution. Oral neutrophil numbers in gingival inflammation and resolution correlated moderately with salivary β-globin, thioredoxin, and albumin and strongly with collagen alpha-1 and G-protein coupled receptor 98. Conclusions: Our results indicate that changes in salivary cytoprotective proteins in gingivitis are associated with a similar trend in oral neutrophil recruitment and clinical parameters. Clinical relevance: We found moderate to strong correlations between oral neutrophil numbers and levels of several salivary cytoprotective proteins both in the development of the inflammation and in the resolution of gingivitis. Our proteomics approach identified and relatively quantified specific cytoprotective proteins in this pilot study of experimental gingivitis; however, future and more comprehensive studies are needed to clearly identify and validate those protein biomarkers when gingivitis is active.
Collapse
Affiliation(s)
- Guy M Aboodi
- Department of Periodontology and Matrix Dynamics Group, Faculty of Dentistry, University of Toronto Toronto, ON, Canada
| | - Corneliu Sima
- Department of Periodontology and Matrix Dynamics Group, Faculty of Dentistry, University of Toronto Toronto, ON, Canada
| | - Eduardo B Moffa
- Department of Biochemistry and Schulich Dentistry, Schulich School of Medicine and Dentistry, The University of Western OntarioLondon, ON, Canada; Department of Prosthodontics, CEUMA UniversitySao Luis, Brazil
| | - Karla T B Crosara
- Department of Biochemistry and Schulich Dentistry, Schulich School of Medicine and Dentistry, The University of Western Ontario London, ON, Canada
| | - Yizhi Xiao
- Department of Biochemistry and Schulich Dentistry, Schulich School of Medicine and Dentistry, The University of Western Ontario London, ON, Canada
| | - Walter L Siqueira
- Department of Biochemistry and Schulich Dentistry, Schulich School of Medicine and Dentistry, The University of Western Ontario London, ON, Canada
| | - Michael Glogauer
- Department of Biochemistry and Schulich Dentistry, Schulich School of Medicine and Dentistry, The University of Western Ontario London, ON, Canada
| |
Collapse
|
25
|
The Biological Properties of Lactoferrin. CENTRAL EUROPEAN JOURNAL OF SPORT SCIENCES AND MEDICINE 2016. [DOI: 10.18276/cej.2016.3-02] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
26
|
Doetzer AD, Schlipf N, Alvim-Pereira F, Alvim-Pereira CC, Werneck R, Riess O, Bauer P, Trevilatto PC. Lactotransferrin Gene (LTF) Polymorphisms and Dental Implant Loss: A Case-Control Association Study. Clin Implant Dent Relat Res 2014; 17 Suppl 2:e550-61. [PMID: 25535701 DOI: 10.1111/cid.12284] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Dental implants have been widely used to replace missing teeth, accomplishing aesthetics and function. Due to its large use worldwide, the small percentage of implant loss becomes significant in number of cases. Lactotransferrin (LTF) is a pleiotropic protein, expressed in various body tissues and fluids, which modulates the host immune-inflammatory response and bone metabolism, and might be involved in dental implant osseointegration. Recently, a few studies have been investigating genetic aspects underlying dental implant failure. PURPOSE This case-control study aimed to investigate the association of genetic markers (tag SNPs) in LTF gene and clinical parameters with dental implant loss. MATERIAL AND METHODS 278 patients, both sexes, mean age 51 years old, divided into 184 without and 94 with implant loss, were genotyped for sixteen tag SNPs, representative of the whole LTF gene. Also, clinical oral and systemic parameters were analyzed. Univariate and Multivariate Logistic Regression model were used to analyze the results (p < .05). RESULTS No association was found between the tag SNPs and implant loss in the study population. Clinical association was found with medical treatment, hormonal reposition, edentulism, number of placed implants, plaque, calculus, and mobility. CONCLUSION Clinical variables, but not LTF gene polymorphisms, were associated with implant loss.
Collapse
Affiliation(s)
- Andrea Duarte Doetzer
- Core for Advanced Molecular Investigation (COMI), School of Health and Biosciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, PR, Brazil
| | - Nina Schlipf
- Department of Medical Genetics, University of Tübingen, Tübingen, Germany
| | - Fabiano Alvim-Pereira
- Department of Dentistry/Postgraduate Program in Science Applied to Health, UFS-Federal University of Sergipe, Lagarto, SE, Brazil
| | - Claudia Cristina Alvim-Pereira
- Department of Medicine/Postgraduate Program in Science Applied to Health, UFS-Federal University of Sergipe, Lagarto, SE, Brazil
| | - Renata Werneck
- Core for Advanced Molecular Investigation (COMI), School of Health and Biosciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, PR, Brazil
| | - Olaf Riess
- Department of Medical Genetics, University of Tübingen, Tübingen, Germany
| | - Peter Bauer
- Department of Medical Genetics, University of Tübingen, Tübingen, Germany
| | - Paula Cristina Trevilatto
- Core for Advanced Molecular Investigation (COMI), School of Health and Biosciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, PR, Brazil
| |
Collapse
|
27
|
Huynh AHS, Veith PD, McGregor NR, Adams GG, Chen D, Reynolds EC, Ngo LH, Darby IB. Gingival crevicular fluid proteomes in health, gingivitis and chronic periodontitis. J Periodontal Res 2014; 50:637-49. [PMID: 25439677 DOI: 10.1111/jre.12244] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2014] [Indexed: 01/06/2023]
Abstract
OBJECTIVE The aim of this study was to compare the proteome composition of gingival crevicular fluid obtained from healthy periodontium, gingivitis and chronic periodontitis affected sites. BACKGROUND Owing to its site-specific nature, gingival crevicular fluid is ideal for studying biological processes that occur during periodontal health and disease progression. However, few studies have been conducted into the gingival crevicular fluid proteome due to the small volumes obtained. METHODS Fifteen males were chosen for each of three different groups, healthy periodontium, gingivitis and chronic periodontitis. They were categorized based on clinical measurements including probing depth, bleeding on probing, plaque index, radiographic bone level, modified gingival index and smoking status. Gingival crevicular fluid was collected from each patient, pooled into healthy, gingivitis and chronic periodontitis groups and their proteome analyzed by gel electrophoresis and liquid chromatography electrospray ionization ion trap tandem mass spectrometry. RESULTS One hundred and twenty-one proteins in total were identified, and two-thirds of these were identified in all three conditions. Forty-two proteins were considered to have changed in abundance. Of note, cystatin B and cystatin S decreased in abundance from health to gingivitis and further in chronic periodontitis. Complement proteins demonstrated an increase from health to gingivitis followed by a decrease in chronic periodontitis. Immunoglobulins, keratin proteins, fibronectin, lactotransferrin precursor, 14-3-3 protein zeta/delta, neutrophil defensin 3 and alpha-actinin exhibited fluctuations in levels. CONCLUSION The gingival crevicular fluid proteome in each clinical condition was different and its analysis may assist us in understanding periodontal pathogenesis.
Collapse
Affiliation(s)
- A H S Huynh
- Melbourne Dental School, Oral Health Cooperative Research Centre, Bio21 Institute, The University of Melbourne, Melbourne, Vic., Australia
| | - P D Veith
- Melbourne Dental School, Oral Health Cooperative Research Centre, Bio21 Institute, The University of Melbourne, Melbourne, Vic., Australia
| | - N R McGregor
- Melbourne Dental School, Oral Health Cooperative Research Centre, Bio21 Institute, The University of Melbourne, Melbourne, Vic., Australia
| | - G G Adams
- Melbourne Dental School, Oral Health Cooperative Research Centre, Bio21 Institute, The University of Melbourne, Melbourne, Vic., Australia
| | - D Chen
- Melbourne Dental School, Oral Health Cooperative Research Centre, Bio21 Institute, The University of Melbourne, Melbourne, Vic., Australia
| | - E C Reynolds
- Melbourne Dental School, Oral Health Cooperative Research Centre, Bio21 Institute, The University of Melbourne, Melbourne, Vic., Australia
| | - L H Ngo
- Melbourne Dental School, Oral Health Cooperative Research Centre, Bio21 Institute, The University of Melbourne, Melbourne, Vic., Australia
| | - I B Darby
- Melbourne Dental School, Oral Health Cooperative Research Centre, Bio21 Institute, The University of Melbourne, Melbourne, Vic., Australia
| |
Collapse
|
28
|
Ferreira SMS, Gonçalves LS, Torres SR, Nogueira SA, Meiller TF. Lactoferrin levels in gingival crevicular fluid and saliva of HIV-infected patients with chronic periodontitis. ACTA ACUST UNITED AC 2014; 6:16-24. [PMID: 25331852 DOI: 10.1111/jicd.12017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 09/30/2012] [Indexed: 11/28/2022]
Abstract
AIM This study compared lactoferrin (LF) levels in the gingival crevicular fluid (GCF) and saliva between HIV-infected and noninfected patients with chronic periodontitis. METHODS For each subject, LF levels were analyzed in one shallow site (SS; PD ≤3 mm), one deep site (DS; PD >5 mm) and in resting whole saliva. Two groups, 28 HIV-infected and 10 noninfected, were selected. RESULTS Although the salivary LF levels were higher in HIV-infected than in noninfected individuals, especially in AIDS patients, this was not statistically significant (P > 0.05). Subgingival LF levels for SS and DS were lower among HIV-infected individuals, although AIDS patients showed the lowest levels. Age, smoking, gender, T CD4 lymphocytes levels and viral load did not influence subgingival LF levels, neither for SS nor for DP. Positive fungal culture was observed in 24 HIV-infected patients, but only observed in one in the control group. Overall, LF concentration was significantly higher in DS than SS, both in HIV-infected and noninfected individuals (P < 0.05) and salivary LF levels were always higher than GCF levels. CONCLUSION The data indicate that LF levels in the GCF and saliva are not different between HIV-infected and noninfected patients with chronic periodontitis.
Collapse
|
29
|
Yadav N, Lamba AK, Thakur A, Faraz F, Tandon S, Pahwa P. Effect of periodontal therapy on lactoferrin levels in gingival crevicular fluid. Aust Dent J 2014; 59:314-20. [PMID: 24913177 DOI: 10.1111/adj.12203] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2013] [Indexed: 12/17/2022]
Abstract
BACKGROUND The aim of this study was to evaluate lactoferrin quantification as a sensitive and objective method of detecting the degree of periodontal inflammation, oxidative stress and to monitor the effects of periodontal therapy. METHODS Fifty subjects were divided into two groups based on gingival index, probing pocket depth, clinical attachment loss and alveolar bone loss: healthy group and periodontitis group with generalized chronic periodontitis. Non-surgical periodontal therapy was rendered and crevicular fluid samples collected at baseline and four weeks after therapy for lactoferrin quantification using enzyme linked immunosorbent assay. The correlation between clinical parameters and lactoferrin levels was drawn and analysed for both groups. RESULTS The mean level of crevicular lactoferrin in the periodontitis group was 1857.21 ng/ml. The mean level decreased to 1415.03 ng/ml after treatment. The lowest lactoferrin concentration was seen in the healthy group (75.34 ng/ml). All clinical parameters correlated positively with lactoferrin levels. CONCLUSIONS The lactoferrin level was higher in the periodontitis group compared to the healthy group, and reduced with periodontal therapy. Higher levels were associated with higher values of clinical parameters, both before and after therapy. The data indicates that Lactoferrin plays an important role in periodontal disease and crevicular lactoferrin quantification can be a marker for detecting periodontal inflammation, oxidative stress and monitoring periodontal therapy.
Collapse
Affiliation(s)
- N Yadav
- Department of Periodontics, Maulana Azad Institute of Dental Sciences, New Delhi, India
| | | | | | | | | | | |
Collapse
|
30
|
Heo SM, Ruhl S, Scannapieco FA. Implications of salivary protein binding to commensal and pathogenic bacteria. J Oral Biosci 2013; 55:169-174. [PMID: 24707190 PMCID: PMC3974197 DOI: 10.1016/j.job.2013.06.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An important function of salivary proteins is to interact with microorganisms that enter the oral cavity. For some microbes, these interactions promote microbial colonization. For others, these interactions are deleterious and result in the elimination of the microbe from the mouth, This paper reviews recent studies of the interaction of salivary proteins with two model bacteria; the commensal species Streptococcus gordonii, and the facultative pathogen Staphylococcus aureus. These organisms selectively interact with a variety of salivary proteins to influence important functions such as bacterial adhesion to surfaces, evasion of host defense, bacterial nutrition and metabolism and gene expression.
Collapse
Affiliation(s)
- Seok-Mo Heo
- Department of Periodontology, School of Dentistry, Chonbuk National University, Jeonju, Republic of Korea
| | | | - Frank A. Scannapieco
- Corresponding author: Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Foster Hall, Buffalo, New York 14214,
| |
Collapse
|
31
|
Salazar MG, Jehmlich N, Murr A, Dhople VM, Holtfreter B, Hammer E, Völker U, Kocher T. Identification of periodontitis associated changes in the proteome of whole human saliva by mass spectrometric analysis. J Clin Periodontol 2013; 40:825-32. [DOI: 10.1111/jcpe.12130] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2013] [Indexed: 12/23/2022]
Affiliation(s)
- Manuela Gesell Salazar
- Department of Functional Genomics; Interfaculty Institute for Genetics and Functional Genomics; University Medicine Greifswald; Greifswald Germany
| | - Nico Jehmlich
- Department of Functional Genomics; Interfaculty Institute for Genetics and Functional Genomics; University Medicine Greifswald; Greifswald Germany
| | - Annette Murr
- Department of Functional Genomics; Interfaculty Institute for Genetics and Functional Genomics; University Medicine Greifswald; Greifswald Germany
| | - Vishnu M. Dhople
- Department of Functional Genomics; Interfaculty Institute for Genetics and Functional Genomics; University Medicine Greifswald; Greifswald Germany
| | - Birte Holtfreter
- Unit of Periodontology; Department of Restorative Dentistry, Periodontology and Endodontology; University Medicine Greifswald; Greifswald Germany
| | - Elke Hammer
- Department of Functional Genomics; Interfaculty Institute for Genetics and Functional Genomics; University Medicine Greifswald; Greifswald Germany
| | - Uwe Völker
- Department of Functional Genomics; Interfaculty Institute for Genetics and Functional Genomics; University Medicine Greifswald; Greifswald Germany
| | - Thomas Kocher
- Unit of Periodontology; Department of Restorative Dentistry, Periodontology and Endodontology; University Medicine Greifswald; Greifswald Germany
| |
Collapse
|
32
|
Velusamy SK, Ganeshnarayan K, Markowitz K, Schreiner H, Furgang D, Fine DH, Velliyagounder K. Lactoferrin knockout mice demonstrates greater susceptibility to Aggregatibacter actinomycetemcomitans-induced periodontal disease. J Periodontol 2013; 84:1690-701. [PMID: 23327622 DOI: 10.1902/jop.2013.120587] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Among the innate defense mechanisms in the oral cavity, lactoferrin (LF) is a vital antimicrobial that can modify the host response against periodontopathogens. Aggregatibacter actinomycetemcomitans is the main periodontopathogen of localized aggressive periodontitis. The aim of this study is to evaluate the role of LF during A. actinomycetemcomitans-induced periodontitis. METHODS Differences in the expression levels of cytokines, chemokines, chemokine receptors, and bone loss markers between wild-type (WT) and LF knockout mice (LFKO(-/-)) were evaluated by real time-PCR. Serum IgG and LF levels were quantified by ELISA. Alveolar bone loss among the groups was estimated by measuring the distance from cemento-enamel junction (CEJ) to the alveolar bone crest (ABC) at 20 molar sites. RESULTS Oral infection with A. actinomycetemcomitans increased LF levels in periodontal tissue (P = 0.01) and saliva (P = 0.0004) of wild-type infected (WTI) mice compared to wild-type control mice. Pro-inflammatory cytokines such as interferon-γ, tumor necrosis factor-α, interleukin (IL)-1β, IL-6, and IL-12 were increased in the infected LF knockout (LFKO(-/-)I) mice compared to the WTI mice, whereas the anti-inflammatory cytokines IL-4 and IL-10 were decreased. Chemokines and chemokine receptors showed different expression patterns between WTI and LFKO(-/-)I mice. The LFKO(-/-)I mice developed increased bone loss (P = 0.002), in conjunction with increased expression of receptor activator of nuclear factor-κB ligand and decrease in osteoprotegerin, compared to WTI mice. CONCLUSIONS These results demonstrate that the infected LFKO(-/-) mice were more susceptible to A. actinomycetemcomitans-induced alveolar bone loss, with different patterns of immune responses compared to those of WTI mice.
Collapse
Affiliation(s)
- S K Velusamy
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ
| | | | | | | | | | | | | |
Collapse
|
33
|
van Essche M, Loozen G, Godts C, Boon N, Pauwels M, Quirynen M, Teughels W. Bacterial antagonism against periodontopathogens. J Periodontol 2012; 84:801-11. [PMID: 22897652 DOI: 10.1902/jop.2012.120261] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND The aim of the current study is to compare the prevalence of commensal bacteria, with beneficial properties, for healthy and diseased individuals and additionally to examine the inhibitory effect of some commercial dietary probiotics on periodontopathogens, comparing this inhibitory effect to that of orally derived beneficial bacteria. METHODS Subgingival plaque samples from 35 patients (healthy and periodontitis patients) were analyzed. Growth inhibition of the periodontal pathogens Porphyromonas gingivalis, Prevotella intermedia, Fusobacterium nucleatum, and Aggregatibacter actinomycetemcomitans was examined using the agar overlay technique and agar well diffusion method. The quantification of the inhibitory effect was checked with the agar well diffusion method. RESULTS Using the agar overlay technique, the prevalence of strains antagonistic toward P. gingivalis, A. actinomycetemcomitans, and F. nucleatum was found to be higher in healthy individuals than in individuals with periodontitis, but this could not be validated by the agar well diffusion assay. Compared with the antagonistic activity of the isolated strains, the probiotic strains overall showed a stronger inhibition of the periodontal pathogens. CONCLUSION It was shown that some oral bacteria can cause antagonism toward periodontopathogens, and these observations underline the therapeutic potential of applications that stimulate oral health by the application of beneficial effector strains.
Collapse
Affiliation(s)
- Mark van Essche
- Catholic University of Leuven, Department of Periodontology, Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
34
|
Hasan S, Danishuddin M, Adil M, Singh K, Verma PK, Khan AU. Efficacy of E. officinalis on the cariogenic properties of Streptococcus mutans: a novel and alternative approach to suppress quorum-sensing mechanism. PLoS One 2012; 7:e40319. [PMID: 22792279 PMCID: PMC3390397 DOI: 10.1371/journal.pone.0040319] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 06/04/2012] [Indexed: 11/18/2022] Open
Abstract
The present study was focused on evaluating the potential of Emblica officinalis against cariogenic properties of Streptococcus mutans, a causative microorganism for caries. The effect of crude extract and ethanolic fraction from Emblica officinalis fruit was analysed against S. mutans. The sub-MIC concentrations of crude and ethanolic fraction of E. officinalis were evaluated for its cariogenic properties such as acid production, biofilm formation, cell-surface hydrophobicity, glucan production, sucrose-dependent and independent adherence. Its effect on biofilm architecture was also investigated with the help of confocal and scanning electron microscopy (SEM). Moreover, expression of genes involved in biofilm formation was also studied by quantitative RT- PCR. This study showed 50% reduction in adherence at concentrations 156 µg/ and 312.5 µg/ml of crude extract and ethanolic fraction respectively. However, the biofilm was reduced to 50% in the presence of crude extract (39.04 µg/ml) and ethanolic fraction (78.08 µg/ml). Furthermore, effective reduction was observed in the glucan synthesis and cell surface hydrophobicity. The qRT-PCR revealed significant suppression of the genes involved in its virulence. Confocal and scanning electron microscopy clearly depicted the obliteration of biofilm structure with reference to control. Hence, this study reveals the potential of E. officinalis fruit extracts as an alternative and complementary medicine for dental caries by inhibiting the virulence factors of Streptococcus mutans.
Collapse
Affiliation(s)
- Sadaf Hasan
- Medical Microbiology and Molecular Biology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Mohd Danishuddin
- Medical Microbiology and Molecular Biology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Mohd Adil
- Medical Microbiology and Molecular Biology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Kunal Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Praveen K. Verma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Asad U. Khan
- Medical Microbiology and Molecular Biology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
35
|
García-Montoya IA, Cendón TS, Arévalo-Gallegos S, Rascón-Cruz Q. Lactoferrin a multiple bioactive protein: an overview. Biochim Biophys Acta Gen Subj 2012; 1820:226-36. [PMID: 21726601 PMCID: PMC7127262 DOI: 10.1016/j.bbagen.2011.06.018] [Citation(s) in RCA: 303] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 06/17/2011] [Accepted: 06/20/2011] [Indexed: 12/16/2022]
Abstract
BACKGROUND Lactoferrin (Lf) is an 80kDa iron-binding glycoprotein of the transferrin family. It is abundant in milk and in most biological fluids and is a cell-secreted molecule that bridges innate and adaptive immune function in mammals. Its protective effects range from anticancer, anti-inflammatory and immune modulator activities to antimicrobial activities against a large number of microorganisms. This wide range of activities is made possible by mechanisms of action involving not only the capacity of Lf to bind iron but also interactions of Lf with molecular and cellular components of both hosts and pathogens. SCOPE OF REVIEW This review summarizes the activities of Lf, its regulation and potential applications. MAJOR CONCLUSIONS The extensive uses of Lf in the treatment of various infectious diseases in animals and humans has been the driving force in Lf research however, a lot of work is required to obtain a better understanding of its activity. GENERAL SIGNIFICANCE The large potential applications of Lf have led scientists to develop this nutraceutical protein for use in feed, food and pharmaceutical applications. This article is part of a Special Issue entitled Molecular Mechanisms of Iron Transport and Disorders.
Collapse
Affiliation(s)
- Isui Abril García-Montoya
- Laboratorio de Biotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito 1, Nuevo Campus Universitario, CP 31125, Chihuahua, Mexico
| | | | | | | |
Collapse
|
36
|
The role of antimicrobial peptides in preventing multidrug-resistant bacterial infections and biofilm formation. Int J Mol Sci 2011; 12:5971-92. [PMID: 22016639 PMCID: PMC3189763 DOI: 10.3390/ijms12095971] [Citation(s) in RCA: 207] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 09/05/2011] [Accepted: 09/06/2011] [Indexed: 01/21/2023] Open
Abstract
Over the last decade, decreasing effectiveness of conventional antimicrobial-drugs has caused serious problems due to the rapid emergence of multidrug-resistant pathogens. Furthermore, biofilms, which are microbial communities that cause serious chronic infections and dental plaque, form environments that enhance antimicrobial resistance. As a result, there is a continuous search to overcome or control such problems, which has resulted in antimicrobial peptides being considered as an alternative to conventional drugs. Antimicrobial peptides are ancient host defense effector molecules in living organisms. These peptides have been identified in diverse organisms and synthetically developed by using peptidomimic techniques. This review was conducted to demonstrate the mode of action by which antimicrobial peptides combat multidrug-resistant bacteria and prevent biofilm formation and to introduce clinical uses of these compounds for chronic disease, medical devices, and oral health. In addition, combinations of antimicrobial peptides and conventional drugs were considered due to their synergetic effects and low cost for therapeutic treatment.
Collapse
|
37
|
Mizuno N, Niitani M, Shiba H, Iwata T, Hayashi I, Kawaguchi H, Kurihara H. Proteome analysis of proteins related to aggressive periodontitis combined with neutrophil chemotaxis dysfunction. J Clin Periodontol 2011; 38:310-7. [PMID: 21226751 DOI: 10.1111/j.1600-051x.2010.01693.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
AIM Some patients suffering from aggressive periodontitis (Ag-P) also display neutrophil chemotaxis dysfunction. In this study, we attempted to identify the proteins involved in Ag-P associated with neutrophil chemotaxis dysfunction using proteome analysis. MATERIAL AND METHODS A two-dimensional fluorescence difference gel electrophoresis system was used to detect differences in protein expression between neutrophils from four patients suffering from Ag-P combined with neutrophil chemotaxis dysfunction and those from four controls. Moreover, the mRNA levels of the proteins identified by the above method were examined in neutrophils from four types of subjects using the real-time polymerase chain reaction: twenty patients suffering from Ag-P with or without the dysfunction, 15 patients with chronic periodontitis, and 15 controls. RESULTS Four proteins, lactoferrin, caldesmon, heat shock protein 70, and stac, displayed a higher protein expression level in the neutrophils from the patients suffering from Ag-P combined with the neutrophil dysfunction than in those from the control group. The caldesmon mRNA levels in the neutrophils from the patients suffering from Ag-P combined with the neutrophil dysfunction were high compared with those in the neutrophils from the patients suffering from the other two types of periodontitis and those from the control group. CONCLUSION Caldesmon may be a marker of Ag-P combined with neutrophil chemotaxis dysfunction.
Collapse
Affiliation(s)
- Noriyoshi Mizuno
- Department of Periodontal Medicine, Division of Frontier Medical Science, Graduate School of Biomedical Sciences Research Facility, Faculty of Dentistry, Hiroshima University, Hiroshima, Japan.
| | | | | | | | | | | | | |
Collapse
|