1
|
Yaldiko A, Coonrod S, Marella P, Hurley L, Jadavji NM. Maternal dietary deficiencies in folic acid or choline reduce primary neuron viability after exposure to hypoxia through increased levels of apoptosis. Nutr Neurosci 2025; 28:583-590. [PMID: 39230256 DOI: 10.1080/1028415x.2024.2398365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Objective: Ischemic stroke is the leading cause of death and disability globally. By addressing modifiable risk factors, particularly nutrition, the prevalence of stroke and its dire consequences can be mitigated. One-carbon (1C) metabolism is a critical biosynthetic process that is involved in neural tube closure, DNA synthesis, plasticity, and cellular proliferation. Folates and choline are two active components of 1C metabolism. We have previously demonstrated that maternal dietary deficiencies during pregnancy and lactation in folic acid or choline result in worse stroke outcomes in offspring. However, there is insufficient data to understand the neuronal mechanisms involved.Methods: Using C57Bl/6J female mice maintained on control, folic acid (0.3 mg/kg) or choline (choline bitrate 300 mg/kg) deficient diets we collected embryonic primary neurons from offspring and exposed them to hypoxic conditions for 6 hours. To determine whether increased levels of either folic acid or choline can rescue reduced neuronal viability, we supplemented cell media with folic acid and choline prior to and after exposure to hypoxia.Results: Our results suggest that maternal dietary deficiencies in either folic acid or choline during pregnancy negatively impacts offspring neuronal viability after hypoxia. Furthermore, increasing levels of folic acid (250 mg/ml) or choline chloride (250 mg/ml) prior to and after hypoxia have a beneficial impact on neuronal viability.Conclusion: The findings contribute to our understanding of the intricate interplay between maternal dietary factors, 1C metabolism, and the outcome of offspring to hypoxic events, emphasizing the potential for nutritional interventions in mitigating adverse outcomes.
Collapse
Affiliation(s)
- Alice Yaldiko
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Glendale, AZ, USA
- College of Osteopathic Medicine, Midwestern University, Glendale, AZ, USA
| | - Sarah Coonrod
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Glendale, AZ, USA
- College of Veterinary Medicine, Midwestern University, Glendale, AZ, USA
| | - Purvaja Marella
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Glendale, AZ, USA
- College of Osteopathic Medicine, Midwestern University, Glendale, AZ, USA
| | - Lauren Hurley
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Glendale, AZ, USA
- College of Veterinary Medicine, Midwestern University, Glendale, AZ, USA
| | - Nafisa M Jadavji
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Glendale, AZ, USA
- College of Osteopathic Medicine, Midwestern University, Glendale, AZ, USA
- College of Veterinary Medicine, Midwestern University, Glendale, AZ, USA
- Department of Child Health, College of Medicine Phoenix, University of Arizona, Phoenix, AZ, USA
- Department of Neuroscience, Carleton University, Ottawa, Canada
| |
Collapse
|
2
|
Agostini D, Bartolacci A, Rotondo R, De Pandis MF, Battistelli M, Micucci M, Potenza L, Polidori E, Ferrini F, Sisti D, Pegreffi F, Pazienza V, Virgili E, Stocchi V, Donati Zeppa S. Homocysteine, Nutrition, and Gut Microbiota: A Comprehensive Review of Current Evidence and Insights. Nutrients 2025; 17:1325. [PMID: 40284190 PMCID: PMC12030302 DOI: 10.3390/nu17081325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
Homocysteine, a sulfur-containing amino acid, is an intermediate product during the metabolism of methionine, a vital amino acid. An elevated concentration of homocysteine in the plasma, named hyperhomocysteinemia, has been significantly related to the onset of several diseases, including diabetes, multiple sclerosis, osteoporosis, cancer, and neurodegenerative disorders such as dementia, Alzheimer's and Parkinson's diseases. An interaction between metabolic pathways of homocysteine and gut microbiota has been reported, and specific microbial signatures have been found in individuals experiencing hyperhomocysteinemia. Furthermore, some evidence suggests that gut microbial modulation may exert an influence on homocysteine levels and related disease progression. Conventional approaches for managing hyperhomocysteinemia typically involve dietary interventions alongside the administration of supplements such as B vitamins and betaine. The present review aims to synthesize recent advancements in understanding interventions targeted at mitigating hyperhomocysteinemia, with a particular emphasis on the role of gut microbiota in these strategies. The emerging therapeutic potential of gut microbiota has been reported for several diseases. Indeed, a better understanding of the complex interaction between microbial species and homocysteine metabolism may help in finding novel therapeutic strategies to counteract hyperhomocysteinemia.
Collapse
Affiliation(s)
- Deborah Agostini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (D.A.); (M.B.); (M.M.); (L.P.); (E.P.); (F.F.); (D.S.); (S.D.Z.)
| | - Alessia Bartolacci
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (D.A.); (M.B.); (M.M.); (L.P.); (E.P.); (F.F.); (D.S.); (S.D.Z.)
| | - Rossella Rotondo
- Department of Human Science and Promotion of Quality of Life, San Raffaele Rome Open University, 00166 Rome, Italy; (M.F.D.P.); (V.S.)
- San Raffaele Cassino, 03043 Cassino, Italy
| | - Maria Francesca De Pandis
- Department of Human Science and Promotion of Quality of Life, San Raffaele Rome Open University, 00166 Rome, Italy; (M.F.D.P.); (V.S.)
- San Raffaele Cassino, 03043 Cassino, Italy
| | - Michela Battistelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (D.A.); (M.B.); (M.M.); (L.P.); (E.P.); (F.F.); (D.S.); (S.D.Z.)
| | - Matteo Micucci
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (D.A.); (M.B.); (M.M.); (L.P.); (E.P.); (F.F.); (D.S.); (S.D.Z.)
| | - Lucia Potenza
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (D.A.); (M.B.); (M.M.); (L.P.); (E.P.); (F.F.); (D.S.); (S.D.Z.)
| | - Emanuela Polidori
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (D.A.); (M.B.); (M.M.); (L.P.); (E.P.); (F.F.); (D.S.); (S.D.Z.)
| | - Fabio Ferrini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (D.A.); (M.B.); (M.M.); (L.P.); (E.P.); (F.F.); (D.S.); (S.D.Z.)
| | - Davide Sisti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (D.A.); (M.B.); (M.M.); (L.P.); (E.P.); (F.F.); (D.S.); (S.D.Z.)
| | - Francesco Pegreffi
- Department of Medicine and Surgery, Kore University of Enna, 94100 Enna, Italy;
| | - Valerio Pazienza
- Division of Gastroenterology, “Casa Sollievo della Sofferenza” Hospital, 71013 San Giovanni Rotondo, Italy;
| | - Edy Virgili
- School of Biosciences and Veterinary Medicine, University of Camerino, 62031 Camerino, Italy;
| | - Vilberto Stocchi
- Department of Human Science and Promotion of Quality of Life, San Raffaele Rome Open University, 00166 Rome, Italy; (M.F.D.P.); (V.S.)
| | - Sabrina Donati Zeppa
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (D.A.); (M.B.); (M.M.); (L.P.); (E.P.); (F.F.); (D.S.); (S.D.Z.)
- Department of Human Science and Promotion of Quality of Life, San Raffaele Rome Open University, 00166 Rome, Italy; (M.F.D.P.); (V.S.)
| |
Collapse
|
3
|
Gunnala S, Buhlman LM, Jadavji NM. How Increased Dietary Folic Acid Intake Impacts Health Outcomes Through Changes in Inflammation, Angiogenesis, and Neurotoxicity. Nutrients 2025; 17:1286. [PMID: 40219043 PMCID: PMC11990278 DOI: 10.3390/nu17071286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 04/01/2025] [Accepted: 04/03/2025] [Indexed: 04/14/2025] Open
Abstract
Dietary folic acid supplementation is well known for playing a crucial role in the closure of the neural tube. Individuals have continued to increase dietary intake of folic acid in counties with mandatory fortication laws in place. Some studies have demonstrated adverse health effects in individuals with high dietary intake of folic acid. Nutrition is a modifiable risk factor for ischemic stroke. Specifically, elevated levels of homocysteine, they can be reduced by increasing intake of vitamins, such as folic acid, a B-vitamin. Hypoxia, when levels of oxygen are reduced, is a major component of cardiovascular diseases. The aim of this review paper was to summarize how increased dietary intake of folic acid interaction with hypoxia to impact health outcomes. Our survey of the literature found that increased dietary intake of folic acid promotes inflammation, angiogenesis, and neurotoxicity. We also report negative actions of increased dietary intake of folic acid with vitamin B12 and genetic deficiencies in one-carbon metabolism. Increased dietary intake of folic acid also results in elevated levels of unmetabolized folic acid in the population, of which the impact on health risks has not yet been determined. Our review of the literature emphasizes that a more comprehensive understanding of the action between increased dietary intake of folic acid on disease outcomes could pave the way for improved public health guidelines. Furthermore, adequate knowledge of an individual's one-carbon metabolism status can inform proactive management for patients at higher risk of experiencing negative health outcomes.
Collapse
Affiliation(s)
- Siddarth Gunnala
- Department of Biomedical Sciences, Midwestern University, Glendale, AZ 85308, USA
- College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA
| | - Lori M. Buhlman
- Department of Biomedical Sciences, Midwestern University, Glendale, AZ 85308, USA
| | - Nafisa M. Jadavji
- Department of Biomedical Sciences, School of Medicine, Southern Illinois University, Carbondale, IL 62901, USA
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada
- Department of Child Health, College of Medicine—Phoenix, University of Arizona, Phoenix, AZ 85721, USA
| |
Collapse
|
4
|
Ermakova E, Svitko S, Kabirova A, Nevsky E, Yakovleva O, Gilizhdinova K, Shaidullova K, Hermann A, Sitdikova G. The Role of Purinergic Mechanisms in the Excitability of Trigeminal Afferents of Rats with Prenatal Hyperhomocysteinemia. Biomolecules 2025; 15:419. [PMID: 40149955 PMCID: PMC11940108 DOI: 10.3390/biom15030419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025] Open
Abstract
Elevated levels of homocysteine in the blood plasma (hyperhomocysteinemia, HHCY) positively correlate with migraine symptoms in patients. Experimental studies show a higher sensitivity of rats with prenatal HHCY (pHHCY) to migraine symptoms like allodynia, photophobia, anxiety, and a higher excitability of meningeal trigeminal afferents. In the present study, the roles of purinergic mechanisms in the homocysteine-induced hyperexcitability of the trigeminal ganglion (TG) system using electrophysiological recordings from the trigeminal nerve, Ca2+ imaging of cells isolated from TG, and mast cell staining in meninges were investigated. Experiments were performed using rats with pHHCY born from females fed with a high-methionine-containing diet before and during pregnancy. Firstly, we found that lower concentrations of 4-aminopyridine, a K+-channel blocker, were able to induce an increase in the nociceptive activity of trigeminal afferents, supporting the hypothesis of the higher excitability of the trigeminal nerve of rats with pHHCY. Trigeminal afferents of rats with pHHCY were more sensitive to the exogenous application of the nonspecific agonist of purinergic ATP receptors. In neurons and satellite glial cells of TG of rats with pHHCY ATP, ADP (an agonist of metabotropic P2Y receptors) and BzATP (an agonist of ionotropic P2X with especially high potency for the P2X7 receptor) induced larger Ca2+ transients. The incubation of TG neurons in homocysteine for 24 h increased the ratio of neurons responding simultaneously to ATP and capsaicin. Moreover, rats with pHHCY exhibit a higher rate of degranulation of mast cells and increased response to the agonist of the P2X7 receptor BzATP application. In addition, higher levels of calcitonin gene-related peptide (CGRP) were found in rats with pHHCY. Our results suggest that chronic elevated levels of homocysteine induce the upregulation of ionotropic or metabotropic ATP receptors in neurons, satellite glial cells, and mast cells, which further provide inflammatory conditions and the sensitization of peripheral afferents underlying pain.
Collapse
Affiliation(s)
- Elizaveta Ermakova
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlevskaya Str., 420008 Kazan, Russia; (E.E.); (S.S.); (A.K.); (E.N.); (O.Y.); (K.G.); (K.S.)
| | - Svetlana Svitko
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlevskaya Str., 420008 Kazan, Russia; (E.E.); (S.S.); (A.K.); (E.N.); (O.Y.); (K.G.); (K.S.)
| | - Alsu Kabirova
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlevskaya Str., 420008 Kazan, Russia; (E.E.); (S.S.); (A.K.); (E.N.); (O.Y.); (K.G.); (K.S.)
| | - Egor Nevsky
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlevskaya Str., 420008 Kazan, Russia; (E.E.); (S.S.); (A.K.); (E.N.); (O.Y.); (K.G.); (K.S.)
| | - Olga Yakovleva
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlevskaya Str., 420008 Kazan, Russia; (E.E.); (S.S.); (A.K.); (E.N.); (O.Y.); (K.G.); (K.S.)
| | - Karina Gilizhdinova
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlevskaya Str., 420008 Kazan, Russia; (E.E.); (S.S.); (A.K.); (E.N.); (O.Y.); (K.G.); (K.S.)
| | - Kseniia Shaidullova
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlevskaya Str., 420008 Kazan, Russia; (E.E.); (S.S.); (A.K.); (E.N.); (O.Y.); (K.G.); (K.S.)
| | - Anton Hermann
- Department of Biosciences, University of Salzburg, Hellbrunnerstr. 34, 5020 Salzburg, Austria;
| | - Guzel Sitdikova
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlevskaya Str., 420008 Kazan, Russia; (E.E.); (S.S.); (A.K.); (E.N.); (O.Y.); (K.G.); (K.S.)
| |
Collapse
|
5
|
Luo S, Liu Z, Gu X, Li W, Jiao R, Sun J, Ma S, Zhu H, Chen Z, Song J. Association between serum homocysteine concentration level and tooth loss: a cross-sectional study from NHANES 2003-2006. J Bone Miner Metab 2025:10.1007/s00774-025-01588-w. [PMID: 39966120 DOI: 10.1007/s00774-025-01588-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 01/23/2025] [Indexed: 02/20/2025]
Abstract
INTRODUCTION This cross-sectional study aimed to investigate the associations between serum homocysteine levels and missing teeth, as well as to explore the threshold effect of serum homocysteine levels on the number of missing teeth. MATERIALS AND METHODS This study involved 4746 participants (aged ≥ 40 years) from NHANES data 2003-2006. Negative binomial regression was used to assess the association between serum homocysteine levels and tooth loss. Non-linear and dose-response relationships were analyzed using smooth curve fitting and threshold effect analysis. In addition, we supplemented the relationship between serum homocysteine levels and tooth loss and conducted subgroup analysis to determine the impact of covariates on the relationship between serum homocysteine levels and tooth loss. RESULTS In a fully adjusted negative binomial regression model, higher levels of serum Hcy concentration in the Q2-Q4(Q2: IRR = 1.46, 95%CI (1.67,1.79)); Q3: IRR = 1.42, 95%CI (1.36,1.48); Q4: IRR = 1.47,95%CI (1.01,1.78)) groups increased the likelihood of tooth loss compared with quartile Q1 (low level of serum homocysteine). Threshold effect analysis revealed that the log2-transformed Hcy infection point was at 2.95 μmol/L. CONCLUSION The likelihood of tooth loss increased by 47% for each unit increase in serum homocysteine level. There was a non-linear positive correlation between serum homocysteine and tooth loss, with a threshold effect of approximately log2(Hcy) = 2.95 μmol/L. This link emphasizes the importance of maintaining appropriate homocysteine levels to prevent oral health problems.
Collapse
Affiliation(s)
- Shiyi Luo
- Guiyang Hospital of Stomatology, Guiyang, 550005, Guizhou, China
- Guizhou University Medical College, Guiyang, 550025, Guizhou, China
| | - Zefei Liu
- Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Xuanyan Gu
- Guiyang Hospital of Stomatology, Guiyang, 550005, Guizhou, China
- Guizhou University Medical College, Guiyang, 550025, Guizhou, China
| | - Wei Li
- Guiyang Hospital of Stomatology, Guiyang, 550005, Guizhou, China
| | - Ruofeng Jiao
- Guiyang Hospital of Stomatology, Guiyang, 550005, Guizhou, China
| | - Jiangling Sun
- Guiyang Hospital of Stomatology, Guiyang, 550005, Guizhou, China
| | - Shu Ma
- Guiyang Hospital of Stomatology, Guiyang, 550005, Guizhou, China
| | - Haijian Zhu
- Guiyang Hospital of Stomatology, Guiyang, 550005, Guizhou, China
| | - Zhu Chen
- Guiyang Hospital of Stomatology, Guiyang, 550005, Guizhou, China.
| | - Jukun Song
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Guizhou Medical University, Guiyang, 550001, Guizhou, China.
| |
Collapse
|
6
|
Crouse MS, Cushman RA, Redifer CA, Neville BW, Dahlen CR, Caton JS, Diniz WJS, Ward AK. International Symposium on Ruminant Physiology: One-carbon metabolism in beef cattle throughout the production cycle. J Dairy Sci 2024:S0022-0302(24)01390-0. [PMID: 39701525 DOI: 10.3168/jds.2024-25784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/18/2024] [Indexed: 12/21/2024]
Abstract
One-carbon metabolism (OCM) is a series of connected pathways involving the methionine-folate cycles, transsulfuration, polyamine synthesis, nucleotide synthesis, free-radical scavenging, and energy metabolism. These pathways functionally depend upon amino acids (methionine, glycine, and serine), vitamins (folate, B2, B6, and B12), and minerals (sulfur, cobalt, and zinc). Growing bodies of research indicate that in beef cattle, physiological stage, nutritional plane, diet, species (Bos taurus vs. indicus), rumen protected vs. not, individual vs. combination supplementation and method of delivery all affect the efficacy of one-carbon metabolite supplementation. Infusion studies showed that supplementing methionine to growing steers improved N retention and altered hepatic activity of methionine synthase; however, only supplementing methionine without folate decreased folate concentrations in circulation. When heifers were supplemented with methionine, choline, folate, and B12 for the first 63 d of gestation, metabolomic analysis revealed increasing OCM analytes to the heifer, but a buffering effect to the fetus with minimal changes seen in hepatic metabolite abundance. Methionine supplementation to heifers during the periconceptual period increased circulating methionine but shifted fetal hepatic metabolism toward the transsulfuration pathway. Periconceptual methionine supplementation to cows increased gain and total-tract digestibility in calves post-weaning. In vitro supplementation of choline to beef cattle embryos results in calves of increased birth and weaning weight. Overall, these data demonstrate that OCM is altered in those cattle receiving one-carbon metabolites, and that a metabolic programming response is elicited in offspring receiving supplements in vitro or during early gestation. Research should be considered to maximize efficiency of beef cattle production at all stages by identifying limiting metabolites or enzymes to maximize efficiency of OCM in beef cattle, as well as to understand the concerted effects of multiple one-carbon metabolites to balance the stoichiometry of the pathway.
Collapse
Affiliation(s)
- Matthew S Crouse
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, 68933, USA..
| | - Robert A Cushman
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, 68933, USA
| | - Colby A Redifer
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, 68933, USA
| | - Bryan W Neville
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, 68933, USA
| | | | - Joel S Caton
- North Dakota State University, Fargo, ND 58102, USA
| | | | | |
Collapse
|
7
|
Esfandiarei M, Strash SGU, Covaleski A, Ille S, Li W, Jadavji NM. Maternal Dietary Deficiency in Choline Reduced Levels of MMP-2 Levels in Blood and Brain Tissue of Male Offspring Mice. Cells 2024; 13:1472. [PMID: 39273042 PMCID: PMC11394209 DOI: 10.3390/cells13171472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Ischemic stroke is one of the leading causes of disability and death globally, with a rising incidence in younger age groups. It is well known that maternal diet during pregnancy and lactation is vital for the early neurodevelopment of offspring. One-carbon (1C) metabolism, including folic acid and choline, plays a vital role in closure of the neural tube in utero. However, the impact of maternal dietary deficiencies in 1C on offspring neurological function following ischemic stroke later in life remains undefined. The aim of this study was to investigate inflammation in the blood and brain tissue of offspring from mothers deficient in dietary folic acid or choline. Female mice were maintained on either a control or deficient diet prior to and during pregnancy and lactation. When offspring were 3 months of age, ischemic stroke was induced. One and a half months later, blood and brain tissue were collected. We measured levels of matrix metalloproteases (MMP)-2 and 9 in both plasma and brain tissue, and reported reduced levels of MMP-2 in ChDD male offspring in both tissue types. No changes were observed in MMP-9. This observation supports our working hypothesis that maternal dietary deficiencies in folic acid or choline during early neurodevelopment impact the levels of inflammation in offspring after ischemic stroke.
Collapse
Affiliation(s)
- Mitra Esfandiarei
- Department of Biomedical Sciences, Midwestern University, Glendale, AZ 85308, USA;
- Anesthesiology, Pharmacology, & Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Basic Medical Sciences, College of Medicine Phoenix, University of Arizona, Phoenix, AZ 85004, USA
| | - Shawn G. U. Strash
- College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA;
| | - Amanda Covaleski
- College of Pharmacy, Midwestern University, Glendale, AZ 85038, USA;
| | - Sharadyn Ille
- College of Dental Medicine, Midwestern University, Glendale, AZ 85038, USA;
| | - Weidang Li
- College of Veterinary Medicine, Midwestern University, Glendale, AZ 85038, USA;
| | - Nafisa M. Jadavji
- Department of Biomedical Sciences, Southern Illinois University, Carbondale, IL 62901, USA
- Department of Child Health, College of Medicine Phoenix, University of Arizona, Phoenix, AZ 85721, USA
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
8
|
Huang Y, Su T, Duan Q, Wei X, Fan X, Wan J, Liu L, Dian Z, Zhang G, Sun Y, Zhou T, Xu Y. Association of Methylenetetrahydrofolate Reductase rs1801133 Gene Polymorphism with Cancer Risk and Septin 9 Methylation in Patients with Colorectal Cancer. J Gastrointest Cancer 2024; 55:778-786. [PMID: 38252186 PMCID: PMC11186932 DOI: 10.1007/s12029-024-01020-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
PURPOSE Colorectal cancer (CRC) is one of the most common malignancies, with a high incidence and mortality worldwide. Methylated Septin 9 (mSEPT9) has been used clinically as an auxiliary tool for CRC screening. The aim of the present study was to investigate the association of the methylenetetrahydrofolate reductase (MTHFR) rs1801133 polymorphism with the risk of CRC and the methylation status of Septin 9 in CRC. METHODS Information of 540 patients with a confirmed diagnosis of CRC and with a physical examination were utilized to assess the association of the MTHFR rs1801133 polymorphism with CRC and the methylation of SEPT9. MTHFR rs1801133 polymorphism was genotyped using polymerase chain reaction (PCR). The commercial Septin 9 Gene Methylation(mSEPT9) Detection Kit was used for plasma SEPT9 methylation analysis. RESULTS Among 540 patients, 61.48% were men and the median age was 54.47 ± 13.14. 65.37% of all colorectal tumors developed in the rectum. 195 patients had negative mSEPT9 methylation, while 345 had positive results. 87 individuals with stage I, 90 with stage II, 287 with stage III, and 76 with stage IV colorectal cancer were included in the sample. The results demonstrated that the positivity rate and degree of methylation of mSEPT9 were remarkably higher in patients with more advanced TNM stages than in those with less advanced stages. The frequencies of the MTHFR rs1801133 CC genotype and allele C carriers in patients with CRC were significantly higher than those in healthy individuals (P = 0.006 and P = 0.001, respectively). The positivity rate of the mSEPT9 assay was significantly higher among the MTHFR rs1801133 TT genotype and allele T carriers than among the CC and allele C carriers respectively. The MTHFR rs1801133 TT genotype and allele T carriers were positively associated with the methylation of SEPT9 (OR = 3.320, 95% CI 1.485-7.424, P = 0.003 and OR = 1.783, 95% CI 1.056-3.010, P = 0.030, respectively). CONCLUSION In conclusion, individuals harboring the MTHFR rs1801133 CC genotype had a higher risk of CRC and the MTHFR rs1801133 TT carriers were more susceptible to Septin 9 gene methylation.
Collapse
Affiliation(s)
- Yafei Huang
- Department of Clinical Laboratory, the First People's Hospital of Yunnan Province, 157 Jinbi Road, Xishan District, Kunming, Yunnan, 650500, P.R. China
- The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, China
| | - Ting Su
- Department of Clinical Laboratory, the First People's Hospital of Yunnan Province, 157 Jinbi Road, Xishan District, Kunming, Yunnan, 650500, P.R. China
- The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, China
| | - Qiuting Duan
- Department of Clinical Laboratory, the First People's Hospital of Yunnan Province, 157 Jinbi Road, Xishan District, Kunming, Yunnan, 650500, P.R. China
- The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, China
| | - Xiangcong Wei
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Xin Fan
- Department of Clinical Laboratory, the First People's Hospital of Yunnan Province, 157 Jinbi Road, Xishan District, Kunming, Yunnan, 650500, P.R. China
- The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, China
| | - Jinxiu Wan
- Department of Clinical Laboratory, the First People's Hospital of Yunnan Province, 157 Jinbi Road, Xishan District, Kunming, Yunnan, 650500, P.R. China
- The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, China
| | - Luping Liu
- Department of Clinical Laboratory, the First People's Hospital of Yunnan Province, 157 Jinbi Road, Xishan District, Kunming, Yunnan, 650500, P.R. China
- The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, China
| | - Ziqin Dian
- Department of Clinical Laboratory, the First People's Hospital of Yunnan Province, 157 Jinbi Road, Xishan District, Kunming, Yunnan, 650500, P.R. China
- The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, China
| | - Guiqian Zhang
- Department of Clinical Laboratory, the First People's Hospital of Yunnan Province, 157 Jinbi Road, Xishan District, Kunming, Yunnan, 650500, P.R. China
- The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, China
| | - Yi Sun
- Department of Clinical Laboratory, the First People's Hospital of Yunnan Province, 157 Jinbi Road, Xishan District, Kunming, Yunnan, 650500, P.R. China
- The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, China
| | - Tao Zhou
- Department of Clinical Laboratory, The Second Affiliated Hospital of Kunming Medical University, 374 Dianmian Avenue, Kunming, Yunnan, 650500, P.R. China.
| | - Ya Xu
- Department of Clinical Laboratory, the First People's Hospital of Yunnan Province, 157 Jinbi Road, Xishan District, Kunming, Yunnan, 650500, P.R. China.
- The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, China.
| |
Collapse
|
9
|
Qi Y, Meng X, Li J, He A, Hao J, Zhao X, Zhao R, Chen R, Zhang R. Evaluating the link between DIO3-FA27 promoter methylation, biochemical indices, and heart failure progression. Clin Epigenetics 2024; 16:57. [PMID: 38659084 PMCID: PMC11040988 DOI: 10.1186/s13148-024-01668-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/28/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Heart failure (HF) is a disease that poses a serious threat to individual health, and DNA methylation is an important mechanism in epigenetics, and its role in the occurrence and development of the disease has attracted more and more attention. The aim of this study was to evaluate the link between iodothyronine deiodinase 3 promoter region fragment FA27 (DIO3-FA27) methylation levels, biochemical indices, and HF. RESULTS The methylation levels of DIO3-FA27_CpG_11.12 and DIO3-FA27_CpG_23.24 significantly differed in HF patients with different degrees. Multivariate logistic regression analysis indicated that the relative HF risk in the third and fourth quartiles of activated partial thromboplastin time and fibrin degradation products. The results of the restricted cubic spline model showed that the methylation levels of DIO3-FA 27_CpG_11.12 and DIO3-FA 27_CpG_23.24 were associated with coagulation indicators, liver function, renal function, and blood routine. CONCLUSIONS Based on the differential analysis of CpG methylation levels based on DIO3-FA27, it was found that biochemical indicators combined with DIO3-FA27 promoter DNA methylation levels could increase the risk of worsening the severity classification of HF patients, which provided a solid foundation and new insights for the study of epigenetic regulation mechanisms in patients with HF.
Collapse
Affiliation(s)
- Yan Qi
- Department of Epidemiology and Health Statistics, School of Public Health, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
| | - Xiangchao Meng
- Public Health Department, Jinan Children's Hospital, Jinan, 25000, Shandong, China
| | - Jing Li
- Department of Epidemiology and Health Statistics, School of Public Health, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
| | - Aoyue He
- Department of Epidemiology and Health Statistics, School of Public Health, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
| | - Jie Hao
- Department of Epidemiology and Health Statistics, School of Public Health, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
| | - Xu Zhao
- Department of Epidemiology and Health Statistics, School of Public Health, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
| | - Ruonan Zhao
- Department of Epidemiology and Health Statistics, School of Public Health, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
| | - Rongrong Chen
- Department of Epidemiology and Health Statistics, School of Public Health, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
| | - Rongqiang Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China.
| |
Collapse
|
10
|
Savic-Hartwig M, Kerlikowsky F, van de Flierdt E, Hahn A, Schuchardt JP. A micronutrient supplement modulates homocysteine levels regardless of vitamin B biostatus in elderly subjects. INT J VITAM NUTR RES 2024; 94:120-132. [PMID: 36715360 DOI: 10.1024/0300-9831/a000777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Elevated homocysteine (Hcy) levels (≥15 μmol/L) in the elderly are frequently associated with a higher risk of cardiovascular disease and cognitive decline. Several studies have already shown an Hcy-lowering effect of B vitamin supplementation in cohorts deficient in these nutrients. The aim of this randomized, double-blinded 12-week intervention study was to investigate whether Hcy levels in healthy elderly subjects (75.4±4.5 years, n=133) could be lowered with a micronutrient supplement (i.e., 400 μg folic acid, 100 μg cobalamin). Difference in mean initial Hcy levels between intervention (17.6±7.1 μmol/L, n=65) and placebo group (18.9±6.1 μmol/L, n=68) was not significant. The prevalence of cobalamin and folate deficiency in the total study population was low: 27% had serum-cobalamin levels ≤150 pmol/L, 12% holo-transcobalamin (Holo-TC) levels ≤50 pmol/L, 13% low cobalamin status using the aggregated cobalamin marker 4cB12 and 10% red blood cell (RBC) folate ≤570 nmol/L. Nevertheless, the treated subjects still showed improved cobalamin and folate biostatus (serum cobalamin Δt12-t0: 63±48 pmol/L; Holo-TC Δt12-t0: 17±19 pmol/L; RBC folate Δt12-t0: 326±253 nmol/L) and Hcy levels (Δt12-t0: -3.6±5.7 μmol/L). The effects were statistically significant compared to the placebo group with p=0.005 (serum cobalamin), p=0.021 (Holo-TC), p=0.014 (RBC-folate) and p<0.001 (Hcy). The Hcy-lowering effect was dependent on the initial Hcy levels (p<0.001). Our findings suggest that elevated Hcy levels in elderly subjects can be lowered regardless of the initial cobalamin and folate biostatus.
Collapse
Affiliation(s)
- Marija Savic-Hartwig
- Institute of Food Science and Human Nutrition, Leibniz University Hannover, Germany
| | - Felix Kerlikowsky
- Institute of Food Science and Human Nutrition, Leibniz University Hannover, Germany
| | - Edda van de Flierdt
- Institute of Food Science and Human Nutrition, Leibniz University Hannover, Germany
| | - Andreas Hahn
- Institute of Food Science and Human Nutrition, Leibniz University Hannover, Germany
| | | |
Collapse
|
11
|
Mbs GBY, Wasek B, Bottiglieri T, Malysheva O, Caudill MA, Jadavji NM. Dietary vitamin B12 deficiency impairs motor function and changes neuronal survival and choline metabolism after ischemic stroke in middle-aged male and female mice. Nutr Neurosci 2024; 27:300-309. [PMID: 36932327 DOI: 10.1080/1028415x.2023.2188639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
Nutrition is a modifiable risk factor for ischemic stroke. As people age their ability to absorb some nutrients decreases, a primary example is vitamin B12. Older individuals with a vitamin B12 deficiency are at a higher risk for ischemic stroke and have worse stroke outcome. However, the mechanisms through which these occur remain unknown. The aim of the study was to investigate the role of vitamin B12 deficiency in ischemic stroke outcome and mechanistic changes in a mouse model. Ten-month-old male and female mice were put on control or vitamin B12 deficient diets for 4 weeks prior to and after ischemic stroke to the sensorimotor cortex. Motor function was measured, and tissues were collected to assess potential mechanisms. All deficient mice had increased levels of total homocysteine in plasma and liver tissues. After ischemic stroke, deficient mice had impaired motor function compared to control mice. There was no difference between groups in ischemic damage volume. However, within the ischemic damage region, there was an increase in total apoptosis of male deficient mice compared to controls. Furthermore, there was an increase in neuronal survival in ischemic brain tissue of the vitamin B12 deficient mice compared to controls. Additionally, there were changes in choline metabolites in ischemic brain tissue because of a vitamin B12 deficiency. The data presented in this study confirms that a vitamin B12 deficiency worsens stroke outcome in male and female mice. The mechanisms driving this change may be a result of neuronal survival and compensation in choline metabolism within the damaged brain tissue.
Collapse
Affiliation(s)
- Gyllian B Yahn Mbs
- Department of Biomedical Sciences, Midwestern University, Glendale, AZ, USA
| | - Brandi Wasek
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott & White Research Institute, Dallas, TX, USA
| | - Teodoro Bottiglieri
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott & White Research Institute, Dallas, TX, USA
| | - Olga Malysheva
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Marie A Caudill
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Nafisa M Jadavji
- Department of Biomedical Sciences, Midwestern University, Glendale, AZ, USA
- College of Veterinary Medicine, Midwestern University, Glendale, AZ, USA
- College of Osteopathic Medicine, Midwestern University, Glendale, AZ, USA
- Department of Neuroscience, Carleton University, Ottawa, Canada
| |
Collapse
|
12
|
Bou Ghanem A, Hussayni Y, Kadbey R, Ratel Y, Yehya S, Khouzami L, Ghadieh HE, Kanaan A, Azar S, Harb F. Exploring the complexities of 1C metabolism: implications in aging and neurodegenerative diseases. Front Aging Neurosci 2024; 15:1322419. [PMID: 38239489 PMCID: PMC10794399 DOI: 10.3389/fnagi.2023.1322419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/11/2023] [Indexed: 01/22/2024] Open
Abstract
The intricate interplay of one-carbon metabolism (OCM) with various cellular processes has garnered substantial attention due to its fundamental implications in several biological processes. OCM serves as a pivotal hub for methyl group donation in vital biochemical reactions, influencing DNA methylation, protein synthesis, and redox balance. In the context of aging, OCM dysregulation can contribute to epigenetic modifications and aberrant redox states, accentuating cellular senescence and age-associated pathologies. Furthermore, OCM's intricate involvement in cancer progression is evident through its capacity to provide essential one-carbon units crucial for nucleotide synthesis and DNA methylation, thereby fueling uncontrolled cell proliferation and tumor development. In neurodegenerative disorders like Alzheimer's and Parkinson's, perturbations in OCM pathways are implicated in the dysregulation of neurotransmitter synthesis and mitochondrial dysfunction, contributing to disease pathophysiology. This review underscores the profound impact of OCM in diverse disease contexts, reinforcing the need for a comprehensive understanding of its molecular complexities to pave the way for targeted therapeutic interventions across inflammation, aging and neurodegenerative disorders.
Collapse
Affiliation(s)
- Ayman Bou Ghanem
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
| | - Yaman Hussayni
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
| | - Raghid Kadbey
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
| | - Yara Ratel
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
| | - Shereen Yehya
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
| | - Lara Khouzami
- College of Natural and Health Sciences, Zayed University, Dubai, United Arab Emirates
| | - Hilda E. Ghadieh
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
- AUB Diabetes, American University of Beirut Medical Center, Beirut, Lebanon
| | - Amjad Kanaan
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
| | - Sami Azar
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
| | - Frederic Harb
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
- AUB Diabetes, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
13
|
Kanjanaruch C, Bochantin KA, Dávila Ruiz BJ, Syring J, Entzie Y, King L, Borowicz PP, Crouse MS, Caton JS, Dahlen CR, Ward AK, Reynolds LP. One-carbon metabolite supplementation to nutrient-restricted beef heifers affects placental vascularity during early pregnancy. J Anim Sci 2024; 102:skae044. [PMID: 38407272 PMCID: PMC10907004 DOI: 10.1093/jas/skae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/23/2024] [Indexed: 02/27/2024] Open
Abstract
We hypothesized that restricted maternal nutrition and supplementation of one-carbon metabolites (OCM; methionine, folate, choline, and vitamin B12) would affect placental vascular development during early pregnancy. A total of 43 cows were bred, and 32 heifers successfully became pregnant with female calves, leading to the formation of four treatment groups: CON - OCM (n = 8), CON + OCM (n = 7), RES - OCM (n = 9), and RES + OCM (n = 8). The experimental design was a 2 × 2 factorial, with main factors of dietary intake affecting average daily gain: control (CON; 0.6 kg/d ADG) and restricted (RES; -0.23 kg/d ADG); and OCM supplementation (+OCM) in which the heifers were supplemented with rumen-protected methionine (7.4 g/d) and choline (44.4 g/d) and received weekly injections of 320 mg of folate and 20 mg of vitamin B12, or received no supplementation (-OCM; corn carrier and saline injections). Heifers were individually fed and randomly assigned to treatment at breeding (day 0). Placentomes were collected on day 63 of gestation (0.225 of gestation). Fluorescent staining with CD31 and CD34 combined with image analysis was used to determine the vascularity of the placenta. Images were analyzed for capillary area density (CAD) and capillary number density (CND). Areas evaluated included fetal placental cotyledon (COT), maternal placental caruncle (CAR), whole placentome (CAR + COT), intercotyledonary fetal membranes (ICOT, or chorioallantois), intercaruncular endometrium (ICAR), and endometrial glands (EG). Data were analyzed with the GLM procedure of SAS, with heifer as the experimental unit and significance at P ≤ 0.05 and a tendency at P > 0.05 and P < 0.10. Though no gain × OCM interactions existed (P ≥ 0.10), OCM supplementation increased (P = 0.01) CAD of EG, whereas nutrient restriction tended (P < 0.10) to increase CAD of ICOT and CND of COT. Additionally, there was a gain × OCM interaction (P < 0.05) for CAD within the placentome and ICAR, such that RES reduced and supplementation of RES with OCM restored CAD. These results indicate that maternal rate of gain and OCM supplementation affected placental vascularization (capillary area and number density), which could affect placental function and thus the efficiency of nutrient transfer to the fetus during early gestation.
Collapse
Affiliation(s)
- Chutikun Kanjanaruch
- Department of Animal Sciences and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| | - Kerri A Bochantin
- Department of Animal Sciences and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| | - Bethania J Dávila Ruiz
- Department of Animal Sciences and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| | - Jessica Syring
- Department of Animal Sciences and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| | - Yssi Entzie
- Department of Animal Sciences and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| | - Layla King
- Department of Animal Sciences and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| | - Pawel P Borowicz
- Department of Animal Sciences and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| | - Matthew S Crouse
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933, USA
| | - Joel S Caton
- Department of Animal Sciences and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| | - Carl R Dahlen
- Department of Animal Sciences and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| | - Alison K Ward
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Lawrence P Reynolds
- Department of Animal Sciences and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| |
Collapse
|
14
|
Scotti L, da Silva PR, Monteiro AFM, de Araújo RSA, do Nascimento VL, Monteiro KLC, de Aquino TM, Dos Santos Silva WF, da Silva Junior EF, Scotti MT, Mendonça Junior FJB. The Multitarget Action of Vitamins in the Ischemic Stroke. Curr Top Med Chem 2024; 24:2465-2488. [PMID: 39301898 DOI: 10.2174/0115680266316939240909070627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/08/2024] [Accepted: 08/19/2024] [Indexed: 09/22/2024]
Abstract
A stroke, also known as a cerebral hemorrhage, occurs when there is an interruption in the blood supply to a part of the brain, resulting in damage to brain cells. This issue is one of the leading causes of death in developed countries, currently killing about 5 million people annually. Individuals who survive ischemic stroke often face serious vision problems, paralysis, dementia, and other sequelae. The numerous efforts to prevent and/or treat stroke sequelae seem insufficient, which is concerning given the increasing global elderly population and the well-known association between aging and stroke risk. In this review, we aim to present and discuss the importance of vitamins in stroke prevention and/or incidence. Vitamins from diet or dietary supplements influence the body at various levels; they are a relevant factor but are reported only in isolated articles. This review reports and updates the multitarget role of vitamins involved in reducing stroke risk.
Collapse
Affiliation(s)
- Luciana Scotti
- Post-Graduate Program in Natural and Synthetic Bioactive Compounds, Federal University of Paraíba (UFPB), João Pessoa, Paraiba, Brazil
| | - Pablo Rayff da Silva
- Postgraduate Program in Dentistry, Health Sciences Center, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Alex France M Monteiro
- Post-Graduate Program in Natural and Synthetic Bioactive Compounds, Federal University of Paraíba (UFPB), João Pessoa, Paraiba, Brazil
- Postgraduate Program in Chemistry, Department of Chemistry, Federal Rural University of Pernambuco, Campus I-Recife/PE, Brazil
| | | | - Vanessa Lima do Nascimento
- Research Group on Therapeutic Strategies - GPET, Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Maceió, Brazil
| | - Kadja Luana Chagas Monteiro
- Research Group on Therapeutic Strategies - GPET, Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Maceió, Brazil
| | - Thiago Mendonça de Aquino
- Research Group on Therapeutic Strategies - GPET, Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Maceió, Brazil
| | - Wadja Feitosa Dos Santos Silva
- Research Group on Therapeutic Strategies - GPET, Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Maceió, Brazil
| | - Edeildo Ferreira da Silva Junior
- Research Group on Therapeutic Strategies - GPET, Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Maceió, Brazil
| | - Marcus T Scotti
- Post-Graduate Program in Natural and Synthetic Bioactive Compounds, Federal University of Paraíba (UFPB), João Pessoa, Paraiba, Brazil
| | - Francisco Jaime Bezerra Mendonça Junior
- Post-Graduate Program in Natural and Synthetic Bioactive Compounds, Federal University of Paraíba (UFPB), João Pessoa, Paraiba, Brazil
- Laboratory of Synthesys and Drug Delivery - LSVM, State University of Paraíba (UEPB), João Pessoa, Brazil
| |
Collapse
|
15
|
Zarembska E, Ślusarczyk K, Wrzosek M. The Implication of a Polymorphism in the Methylenetetrahydrofolate Reductase Gene in Homocysteine Metabolism and Related Civilisation Diseases. Int J Mol Sci 2023; 25:193. [PMID: 38203363 PMCID: PMC10779094 DOI: 10.3390/ijms25010193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Methylenetetrahydrofolate reductase (MTHFR) is a key regulatory enzyme in the one-carbon cycle. This enzyme is essential for the metabolism of methionine, folate, and RNA, as well as for the production of proteins, DNA, and RNA. MTHFR catalyses the irreversible conversion of 5,10-methylenetetrahydrofolate to its active form, 5-methyltetrahydrofolate, a co-substrate for homocysteine remethylation to methionine. Numerous variants of the MTHFR gene have been recognised, among which the C677T variant is the most extensively studied. The C677T polymorphism, which results in the conversion of valine to alanine at codon 222, is associated with reduced activity and an increased thermolability of the enzyme. Impaired MTHFR efficiency is associated with increased levels of homocysteine, which can contribute to increased production of reactive oxygen species and the development of oxidative stress. Homocysteine is acknowledged as an independent risk factor for cardiovascular disease, while chronic inflammation serves as the common underlying factor among these issues. Many studies have been conducted to determine whether there is an association between the C677T polymorphism and an increased risk of cardiovascular disease, hypertension, diabetes, and overweight/obesity. There is substantial evidence supporting this association, although several studies have concluded that the polymorphism cannot be reliably used for prediction. This review examines the latest research on MTHFR polymorphisms and their correlation with cardiovascular disease, obesity, and epigenetic regulation.
Collapse
Affiliation(s)
- Emilia Zarembska
- Student Scientific Association “Farmakon”, Department of Biochemistry and Pharmacogenomics, Medical University of Warsaw, 1 Banacha St., 02-097 Warsaw, Poland
| | - Klaudia Ślusarczyk
- Student Scientific Association “Farmakon”, Department of Biochemistry and Pharmacogenomics, Medical University of Warsaw, 1 Banacha St., 02-097 Warsaw, Poland
- Department of Medical Genetics, Institute of Mother and Child, 17a Kasprzaka St., 01-211 Warsaw, Poland
| | - Małgorzata Wrzosek
- Department of Biochemistry and Pharmacogenomics, Medical University of Warsaw, 1 Banacha St., 02-097 Warsaw, Poland
- Centre for Preclinical Research, Medical University of Warsaw, 1B Banacha St., 02-097 Warsaw, Poland
| |
Collapse
|
16
|
Gong S, Qin A, Tian J, Li M, Liang Y, Meng Z, Xu X, Wang Z, Wang S. Fluorescent probe for sensitive discrimination of GSH and Hcy/Cys with single-wavelength excitation in biological systems via different emission. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123128. [PMID: 37480806 DOI: 10.1016/j.saa.2023.123128] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/05/2023] [Accepted: 07/09/2023] [Indexed: 07/24/2023]
Abstract
Biothiols (GSH, Hcy, Cys) are important active sulfur substances in biological systems and widely participate in various physiological processes. The three kinds of biothiols have similar chemical structures, including the sulfhydryl group (-SH) and an amino group (-NH2), so distinguishing two or more of them simultaneously is an important challenge. Herein, a nopinone-based fluorescent probe 3-(3-((4-nitrobenzoxadiazole vinyl) nopinyl difluoride (NF-NBD) was designed to distinguish GSH and Hcy/Cys by generating different fluorescence channels with a single excitation wavelength. The nitrobenzodioxazole (NBD) was introduced in the fluorescent probe by ether bounds that can quench fluorescence and selectively discriminate GSH and Hcy/Cys. After reacting with GSH and Hcy/Cys, NF-NBD exhibited strong fluorescence (green for GSH and yellow for Hcy/Cys). NF-NBD displayed a wide linear range, low detection limit, a rapid response time, and superior selectivity for biothiols. Furthermore, NF-NBD was applied to image and distinguish different biothiols in living cells and zebrafish via different fluorescence signals at a single excitation wavelength.
Collapse
Affiliation(s)
- Shuai Gong
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Ahui Qin
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jixiang Tian
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Mingxin Li
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yueyin Liang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhiyuan Meng
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xu Xu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhonglong Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Shifa Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
17
|
Virdi S, McKee AM, Nuthi M, Jadavji NM. The Role of One-Carbon Metabolism in Healthy Brain Aging. Nutrients 2023; 15:3891. [PMID: 37764675 PMCID: PMC10537016 DOI: 10.3390/nu15183891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Aging results in more health challenges, including neurodegeneration. Healthy aging is possible through nutrition as well as other lifestyle changes. One-carbon (1C) metabolism is a key metabolic network that integrates nutritional signals with several processes in the human body. Dietary supplementation of 1C components, such as folic acid, vitamin B12, and choline are reported to have beneficial effects on normal and diseased brain function. The aim of this review is to summarize the current clinical studies investigating dietary supplementation of 1C, specifically folic acid, choline, and vitamin B12, and its effects on healthy aging. Preclinical studies using model systems have been included to discuss supplementation mechanisms of action. This article will also discuss future steps to consider for supplementation. Dietary supplementation of folic acid, vitamin B12, or choline has positive effects on normal and diseased brain function. Considerations for dietary supplementation to promote healthy aging include using precision medicine for individualized plans, avoiding over-supplementation, and combining therapies.
Collapse
Affiliation(s)
- Sapna Virdi
- Department of Biomedical Sciences, Midwestern University, Glendale, AZ 85308, USA; (S.V.); (A.M.M.); (M.N.)
- College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA
| | - Abbey M. McKee
- Department of Biomedical Sciences, Midwestern University, Glendale, AZ 85308, USA; (S.V.); (A.M.M.); (M.N.)
- College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA
| | - Manogna Nuthi
- Department of Biomedical Sciences, Midwestern University, Glendale, AZ 85308, USA; (S.V.); (A.M.M.); (M.N.)
- College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA
| | - Nafisa M. Jadavji
- Department of Biomedical Sciences, Midwestern University, Glendale, AZ 85308, USA; (S.V.); (A.M.M.); (M.N.)
- College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA
- College of Veterinary Medicine, Midwestern University, Glendale, AZ 85308, USA
- Department of Child Health, College of Medicine Phoenix, University of Arizona, Phoenix, AZ 85308, USA
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
18
|
Pawlik P, Kurzawińska G, Ożarowski M, Wolski H, Piątek K, Słopień R, Sajdak S, Olbromski P, Seremak-Mrozikiewicz A. Common Variants in One-Carbon Metabolism Genes ( MTHFR, MTR, MTHFD1) and Depression in Gynecologic Cancers. Int J Mol Sci 2023; 24:12574. [PMID: 37628752 PMCID: PMC10454161 DOI: 10.3390/ijms241612574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/29/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
We investigated the association between methylenetetrahydrofolate reductase (gene MTHFR 677C>T, rs1801133), 5-methyltetrahydrofolate-homocysteine methyltransferase (MTR 2756A>G, rs1805087), and methylenetetrahydrofolate dehydrogenase, cyclohydrolase and formyltetrahydrofolate synthetase 1 (gene MTHFD1 1958G>A, rs2236225)-well-studied functional variants involved in one-carbon metabolism-and gynecologic cancer risk, and the interaction between these polymorphisms and depression. A total of 200 gynecologic cancer cases and 240 healthy controls were recruited to participate in this study. Three single-nucleotide variants (SNVs) (rs1801133, rs1805087, rs2236225) were genotyped using the PCR-restriction fragment length polymorphism method. Depression was assessed in all patients using the Hamilton Depression Scale. Depression was statistically significantly more frequent in women with gynecologic cancers (69.5% vs. 34.2% in controls, p < 0.001). MTHFD1 rs2236225 was associated with an increased risk of gynecologic cancers (in dominant OR = 1.53, p = 0.033, and in log-additive models OR = 1.37, p = 0.024). Moreover, an association was found between depression risk and MTHFR rs1801133 genotypes in the controls but not in women with gynecologic cancers (in codominant model CC vs. TT: OR = 3.39, 95%: 1.49-7.74, p = 0.011). Cancers of the female reproductive system are associated with the occurrence of depression, and ovarian cancer may be associated with the rs2236225 variant of the MTHFD1 gene. In addition, in healthy aging women in the Polish population, the rs1801133 variant of the MTHFR gene is associated with depression.
Collapse
Affiliation(s)
- Piotr Pawlik
- Division of Gynecological Surgery, Poznan University of Medical Sciences, Fredry 10, 61-701 Poznan, Poland; (P.P.); (S.S.); (P.O.)
| | - Grażyna Kurzawińska
- Division of Perinatology and Women’s Diseases, Poznan University of Medical Sciences, Fredry 10, 61-701 Poznan, Poland; (G.K.); (A.S.-M.)
- Laboratory of Molecular Biology, Division of Perinatology and Women’s Diseases, Poznan University of Medical Sciences, Fredry 10, 61-701 Poznan, Poland
| | - Marcin Ożarowski
- Department of Biotechnology, Institute of Natural Fibres and Medicinal Plants—National Research Institute, Wojska Polskiego 71B, 60-630 Poznan, Poland
| | - Hubert Wolski
- Institute of Medical Sciences, Academy of Applied Sciences, Kokoszków 71, 34-400 Nowy Targ, Poland;
| | - Krzysztof Piątek
- Department of Gynecology and Obstetrics, University of Zielona Gora, Licealna 9, 65-417 Zielona Gora, Poland;
| | - Radosław Słopień
- MedicaNow Gynecological Endocrinology and Menopause Clinic, Piątkowska 118, 60-648 Poznan, Poland;
| | - Stefan Sajdak
- Division of Gynecological Surgery, Poznan University of Medical Sciences, Fredry 10, 61-701 Poznan, Poland; (P.P.); (S.S.); (P.O.)
| | - Piotr Olbromski
- Division of Gynecological Surgery, Poznan University of Medical Sciences, Fredry 10, 61-701 Poznan, Poland; (P.P.); (S.S.); (P.O.)
| | - Agnieszka Seremak-Mrozikiewicz
- Division of Perinatology and Women’s Diseases, Poznan University of Medical Sciences, Fredry 10, 61-701 Poznan, Poland; (G.K.); (A.S.-M.)
- Laboratory of Molecular Biology, Division of Perinatology and Women’s Diseases, Poznan University of Medical Sciences, Fredry 10, 61-701 Poznan, Poland
| |
Collapse
|
19
|
Majumder A. Targeting Homocysteine and Hydrogen Sulfide Balance as Future Therapeutics in Cancer Treatment. Antioxidants (Basel) 2023; 12:1520. [PMID: 37627515 PMCID: PMC10451792 DOI: 10.3390/antiox12081520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
A high level of homocysteine (Hcy) is associated with oxidative/ER stress, apoptosis, and impairment of angiogenesis, whereas hydrogen sulfide (H2S) has been found to reverse this condition. Recent studies have shown that cancer cells need to produce a high level of endogenous H2S to maintain cell proliferation, growth, viability, and migration. However, any novel mechanism that targets this balance of Hcy and H2S production has yet to be discovered or exploited. Cells require homocysteine metabolism via the methionine cycle for nucleotide synthesis, methylation, and reductive metabolism, and this pathway supports the high proliferative rate of cancer cells. Although the methionine cycle favors cancer cells for their survival and growth, this metabolism produces a massive amount of toxic Hcy that somehow cancer cells handle very well. Recently, research showed specific pathways important for balancing the antioxidative defense through H2S production in cancer cells. This review discusses the relationship between Hcy metabolism and the antiapoptotic, antioxidative, anti-inflammatory, and angiogenic effects of H2S in different cancer types. It also summarizes the historical understanding of targeting antioxidative defense systems, angiogenesis, and other protective mechanisms of cancer cells and the role of H2S production in the genesis, progression, and metastasis of cancer. This review defines a nexus of diet and precision medicine in targeting the delicate antioxidative system of cancer and explores possible future therapeutics that could exploit the Hcy and H2S balance.
Collapse
Affiliation(s)
- Avisek Majumder
- Department of Medicine, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
20
|
Yuan M, Sano H, Nishino T, Chen H, Li RS, Matsuo Y, Nishida K, Koga T, Takeda T, Tanaka Y, Ishii Y. α-Lipoic acid eliminates dioxin-induced offspring sexual immaturity by improving abnormalities in folic acid metabolism. Biochem Pharmacol 2023; 210:115490. [PMID: 36893816 DOI: 10.1016/j.bcp.2023.115490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023]
Abstract
Maternal exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) causes developmental and reproductive disorders in pups due to the attenuated luteinizing hormone (LH) production during the perinatal stage; however, the administration of α-lipoic acid (LA) to TCDD-exposed pregnant rats reversed the attenuated LH production. Therefore, reproductive disorders in pups are expected to be ameliorated with LA supplementation. To address this issue, pregnant rats orally received low dose TCDD at gestational day 15 (GD15) and proceeded to parturition. The control received a corn oil vehicle. To examine the preventive effects of LA, supplementation with LA was provided until postnatal day 21. In this study, we demonstrated that maternal administration of LA restored the sexually dimorphic behavior of male and female offspring. TCDD-induced LA insufficiency is likely a direct cause of TCDD reproductive toxicity. In the analysis to clarify the mechanism of the decrease in LA, we found evidence suggesting that TCDD inhibits the synthesis and increases the utilization of S-adenosylmethionine (SAM), a cofactor for LA synthesis, resulting in a decrease in the SAM level. Furthermore, folate metabolism, which is involved in SAM synthesis, is disrupted by TCDD, which may adversely affect infant growth. Maternal supplementation of LA restored SAM to its original level in the fetal hypothalamus; in turn, SAM ameliorated abnormal folate consumption and suppressed aryl hydrocarbon receptor activation induced by TCDD. The study demonstrates that the application of LA could prevent and recover next-generation dioxin reproductive toxicity, which provides the potential to establish effective protective measures against dioxin toxicity.
Collapse
Affiliation(s)
- Ming Yuan
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hiroe Sano
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takaaki Nishino
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hongbin Chen
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Ren-Shi Li
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; China Pharmaceutical University, 639 Longmian Avenue, Jiangning District, Nanjing 211198, PR China
| | - Yuki Matsuo
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kyoko Nishida
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takayuki Koga
- Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka, 815-8511, Japan
| | - Tomoki Takeda
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Japan Bioassay Research Center, 2445 Hirasawa, Hadano, Kanagawa 257-0015, Japan
| | - Yoshitaka Tanaka
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yuji Ishii
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
21
|
Grant WB, Blake SM. Diet's Role in Modifying Risk of Alzheimer's Disease: History and Present Understanding. J Alzheimers Dis 2023; 96:1353-1382. [PMID: 37955087 PMCID: PMC10741367 DOI: 10.3233/jad-230418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2023] [Indexed: 11/14/2023]
Abstract
Diet is an important nonpharmacological risk-modifying factor for Alzheimer's disease (AD). The approaches used here to assess diet's role in the risk of AD include multi-country ecological studies, prospective and cross-sectional observational studies, and laboratory studies. Ecological studies have identified fat, meat, and obesity from high-energy diets as important risk factors for AD and reported that AD rates peak about 15-20 years after national dietary changes. Observational studies have compared the Western dietary pattern with those of the Dietary Approaches to Stop Hypertension (DASH), Mediterranean (MedDi), and Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) diets. Those studies identified AD risk factors including higher consumption of saturated and total fats, meat, and ultraprocessed foods and a lower risk of AD with higher consumption of fruits, legumes, nuts, omega-3 fatty acids, vegetables, and whole grains. Diet-induced factors associated with a significant risk of AD include inflammation, insulin resistance, oxidative stress, elevated homocysteine, dietary advanced glycation end products, and trimethylamine N-oxide. The molecular mechanisms by which dietary bioactive components and specific foods affect risk of AD are discussed. Given most countries' entrenched food supply systems, the upward trends of AD rates would be hard to reverse. However, for people willing and able, a low-animal product diet with plenty of anti-inflammatory, low-glycemic load foods may be helpful.
Collapse
Affiliation(s)
- William B. Grant
- Sunlight, Nutrition, and Health Research Center, San Francisco, CA, USA
| | - Steven M. Blake
- Nutritional Neuroscience, Maui Memory Clinic, Wailuku, HI, USA
| |
Collapse
|
22
|
Wan S, Dandu C, Han G, Guo Y, Ding Y, Song H, Meng R. Plasma inflammatory biomarkers in cerebral small vessel disease: A review. CNS Neurosci Ther 2022; 29:498-515. [PMID: 36478511 PMCID: PMC9873530 DOI: 10.1111/cns.14047] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/24/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Cerebral small vessel disease (CSVD) is a group of pathological processes affecting small arteries, arterioles, capillaries, and small veins of the brain. It is one of the most common subtypes of cerebrovascular diseases, especially highly prevalent in elderly populations, and is associated with stroke occurrence and recurrence, cognitive impairment, gait disorders, psychological disturbance, and dysuria. Its diagnosis mainly depends on MRI, characterized by recent small subcortical infarcts, lacunes, white matter hyperintensities (WMHs), enlarged perivascular spaces (EPVS), cerebral microbleeds (CMBs), and brain atrophy. While the pathophysiological processes of CSVD are not fully understood at present, inflammation is noticed as playing an important role. Herein, we aimed to review the relationship between plasma inflammatory biomarkers and the MRI features of CSVD, to provide background for further research.
Collapse
Affiliation(s)
- Shuling Wan
- Department of Neurology, National Center for Neurological Disorders, Xuanwu HospitalCapital Medical UniversityBeijingChina,Advanced Center of StrokeBeijing Institute for Brain DisordersBeijingChina
| | - Chaitu Dandu
- Department of NeurosurgeryWayne State University School of MedicineDetroitMichiganUSA
| | - Guangyu Han
- Department of Neurology, National Center for Neurological Disorders, Xuanwu HospitalCapital Medical UniversityBeijingChina,Advanced Center of StrokeBeijing Institute for Brain DisordersBeijingChina
| | - Yibing Guo
- Department of Neurology, National Center for Neurological Disorders, Xuanwu HospitalCapital Medical UniversityBeijingChina,Advanced Center of StrokeBeijing Institute for Brain DisordersBeijingChina
| | - Yuchuan Ding
- Department of NeurosurgeryWayne State University School of MedicineDetroitMichiganUSA
| | - Haiqing Song
- Department of Neurology, National Center for Neurological Disorders, Xuanwu HospitalCapital Medical UniversityBeijingChina,Advanced Center of StrokeBeijing Institute for Brain DisordersBeijingChina
| | - Ran Meng
- Department of Neurology, National Center for Neurological Disorders, Xuanwu HospitalCapital Medical UniversityBeijingChina,Advanced Center of StrokeBeijing Institute for Brain DisordersBeijingChina,Department of NeurosurgeryWayne State University School of MedicineDetroitMichiganUSA
| |
Collapse
|
23
|
Epigenetic Regulation by microRNAs in Hyperhomocysteinemia-Accelerated Atherosclerosis. Int J Mol Sci 2022; 23:ijms232012452. [PMID: 36293305 PMCID: PMC9604464 DOI: 10.3390/ijms232012452] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Increased serum levels of homocysteine (Hcy) is a risk factor for cardiovascular disease and is specifically linked to various diseases of the vasculature such as atherosclerosis. However, the precise mechanisms by which Hcy contributes to this condition remain elusive. During the development of atherosclerosis, epigenetic modifications influence gene expression. As such, epigenetic modifications are an adaptive response to endogenous and exogenous factors that lead to altered gene expression by methylation and acetylation reactions of different substrates and the action of noncoding RNA including microRNAs (miRNAs). Epigenetic remodeling modulates cell biology in both physiological and physiopathological conditions. DNA and histone modification have been identified to have a crucial role in the progression of atherosclerosis. However, the potential role of miRNAs in hyperHcy (HHcy)-related atherosclerosis disease remains poorly explored and might be essential as well. There is no review available yet summarizing the contribution of miRNAs to hyperhomocystein-mediated atherogenicity or their potential as therapeutic targets even though their important role has been described in numerous studies. Specifically, downregulation of miR-143 or miR-125b has been shown to regulate VSCMs proliferation in vitro. In preclinical studies, downregulation of miR-92 or miR195-3p has been shown to increase the accumulation of cholesterol in foam cells and increase macrophage inflammation and atherosclerotic plaque formation, respectively. Another preclinical study found that there is a reciprocal regulation between miR-148a/152 and DNMT1 in Hcy-accelerated atherosclerosis. Interestingly, a couple of studies have shown that miR-143 or miR-217 may be used as potential biomarkers in patients with HHcy that may develop atherosclerosis. Moreover, the current review will also update current knowledge on miRNA-based therapies, their challenges, and approaches to deal with Hcy-induced atherosclerosis.
Collapse
|
24
|
Plants, Plants, and More Plants: Plant-Derived Nutrients and Their Protective Roles in Cognitive Function, Alzheimer’s Disease, and Other Dementias. Medicina (B Aires) 2022; 58:medicina58081025. [PMID: 36013492 PMCID: PMC9414574 DOI: 10.3390/medicina58081025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/18/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Objectives: Alzheimer’s disease (AD) is the most common form of dementia, with the risk of developing it attributed to non-modifiable and modifiable factors. Currently, there is no cure for AD. A plant-based diet may protect against cognitive decline, due to the effects of plant-based nutrients such as vitamins, antioxidants, and fiber. The aim of the review is to summarize current literature on plant-based nutrients and their impact on cognition. Materials and Methods: A search was conducted on PubMed for clinical and murine studies, using combinations of the following words: “Alzheimer’s disease”, “dementia”, “cognition”, “plant-based diet”, “mild cognitive impairment”, “vitamin B”, “vitamin C”, “vitamin E, “beta carotene”, “antioxidants”, “fiber”, “vitamin K”, “Mediterranean diet”, “vitamin D”, and “mushrooms”. Results and Conclusions: A diet rich in vitamin B and antioxidants can benefit the cognitive functions of individuals as shown in randomized clinical trials. Vitamin K is associated with improved cognition, although large randomized controlled trials need to be done. Fiber has been shown to prevent cognitive decline in animal studies. Vitamin D may contribute to cognitive health via anti-inflammatory processes. Several medical organizations have recommended a plant-based diet for optimizing cognitive health and potentially helping to prevent dementia.
Collapse
|
25
|
Dye CK, Corley MJ, Ing C, Lum-Jones A, Li D, Mau MKLM, Maunakea AK. Shifts in the immunoepigenomic landscape of monocytes in response to a diabetes-specific social support intervention: a pilot study among Native Hawaiian adults with diabetes. Clin Epigenetics 2022; 14:91. [PMID: 35851422 PMCID: PMC9295496 DOI: 10.1186/s13148-022-01307-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 07/04/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Native Hawaiians are disproportionately affected by type 2 diabetes mellitus (DM), a chronic metabolic, non-communicable disease characterized by hyperglycemia and systemic inflammation. Unrelenting systemic inflammation frequently leads to a cascade of multiple comorbidities associated with DM, including cardiovascular disease, microvascular complications, and renal dysfunction. Yet few studies have examined the link between chronic inflammation at a cellular level and its relationship to standard DM therapies such as diabetes-specific lifestyle and social support education, well recognized as the cornerstone of clinical standards of diabetes care. This pilot study was initiated to explore the association of monocyte inflammation using epigenetic, immunologic, and clinical measures following a 3-month diabetes-specific social support program among high-risk Native Hawaiian adults with DM. RESULTS From a sample of 16 Native Hawaiian adults with DM, monocytes enriched from peripheral blood mononuclear cells (PBMCs) of 8 individuals were randomly selected for epigenomic analysis. Using the Illumina HumanMethylation450 BeadChip microarray, 1,061 differentially methylated loci (DML) were identified in monocytes of participants at baseline and 3 months following a DM-specific social support program (DM-SSP). Gene ontology analysis showed that these DML were enriched within genes involved in immune, metabolic, and cardiometabolic pathways, a subset of which were also significantly differentially expressed. Ex vivo analysis of immune function showed improvement post-DM-SSP compared with baseline, characterized by attenuated interleukin 1β and IL-6 secretion from monocytes. Altered cytokine secretion in response to the DM-SSP was significantly associated with changes in the methylation and gene expression states of immune-related genes in monocytes between intervention time points. CONCLUSIONS Our pilot study provides preliminary evidence of changes to inflammatory monocyte activity, potentially driven by epigenetic modifications, 3 months following a DM-specific SSP intervention. These novel alterations in the trajectory of monocyte inflammatory states were identified at loci that regulate transcription of immune and metabolic genes in high-risk Native Hawaiians with DM, suggesting a relationship between improvements in psychosocial behaviors and shifts in the immunoepigenetic patterns following a diabetes-specific SSP. Further research is warranted to investigate how social support influences systemic inflammation via immunoepigenetic modifications in chronic inflammatory diseases such as DM.
Collapse
Affiliation(s)
- Christian K Dye
- Department of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI, 96822, USA
- Department of Native Hawaiian Health, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, 96813, USA
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo St. BSB222-K, Honolulu, HI, 96813, USA
| | - Michael J Corley
- Cornell Center for Immunology, Weill Cornell Medical Center, Cornell University, New York, NY, 10065, USA
- Department of Native Hawaiian Health, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, 96813, USA
| | - Claire Ing
- Department of Native Hawaiian Health, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, 96813, USA
| | - Annette Lum-Jones
- Department of Native Hawaiian Health, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, 96813, USA
- University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI, 96813, USA
| | - Dongmei Li
- Department of Clinical and Translational Research, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA
| | - Marjorie K L M Mau
- Department of Native Hawaiian Health, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, 96813, USA
| | - Alika K Maunakea
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo St. BSB222-K, Honolulu, HI, 96813, USA.
| |
Collapse
|
26
|
Yverneau M, Leroux S, Imbard A, Gleich F, Arion A, Moreau C, Nassogne MC, Szymanowski M, Tardieu M, Touati G, Bueno M, Chapman KA, Chien YH, Huemer M, Ješina P, Janssen MCH, Kölker S, Kožich V, Lavigne C, Lund AM, Mochel F, Morris A, Pons MR, Porras-Hurtado GL, Benoist JF, Damaj L, Schiff M. Influence of early identification and therapy on long-term outcomes in early-onset MTHFR deficiency. J Inherit Metab Dis 2022; 45:848-861. [PMID: 35460084 DOI: 10.1002/jimd.12504] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/12/2022] [Accepted: 04/21/2022] [Indexed: 11/08/2022]
Abstract
MTHFR deficiency is a severe inborn error of metabolism leading to impairment of the remethylation of homocysteine to methionine. Neonatal and early-onset patients mostly exhibit a life-threatening acute neurologic deterioration. Furthermore, data on early-onset patients' long-term outcomes are scarce. The aims of this study were (1) to study and describe the clinical and laboratory parameters of early-onset MTHFR-deficient patients (i.e., ≤3 months of age) and (2) to identify predictive factors for severe neurodevelopmental outcomes in a cohort with early and late onset MTHFR-deficient patients. To this end, we conducted a retrospective, multicentric, international cohort study on 72 patients with MTHFR deficiency from 32 international metabolic centres. Characteristics of the 32 patients with early-onset MTHFR deficiency were described at time of diagnosis and at the last follow-up visit. Logistic regression analysis was used to identify predictive factors of severe neurodevelopmental outcome in a broader set of patients with early and non-early-onset MTHFR deficiency. The majority of early-onset MTHFR-deficient patients (n = 32) exhibited neurologic symptoms (76%) and feeding difficulties (70%) at time of diagnosis. At the last follow-up visit (median follow-up time of 8.1 years), 76% of treated early-onset patients (n = 29) exhibited a severe neurodevelopmental outcome. Among the whole study population of 64 patients, pre-symptomatic diagnosis was independently associated with a significantly better neurodevelopmental outcome (adjusted OR 0.004, [0.002-0.232]; p = 0.003). This study provides evidence for benefits of pre-symptomatic diagnosis and appropriate therapeutic management, highlighting the need for systematic newborn screening for MTHFR deficiency and pre-symptomatic treatment that may improve outcome.
Collapse
Affiliation(s)
- Mathilde Yverneau
- Department of Child and Adolescent Medicine, Rennes Hospital, Rennes, France
| | - Stéphanie Leroux
- Department of Child and Adolescent Medicine, Rennes Hospital, Rennes, France
| | - Apolline Imbard
- Biochemistry Laboratory, Robert Debré Hospital, APHP, Paris, France
- Department of Pediatrics, Reference Center for Inborn Error of Metabolism, Necker and Robert-Debré Hospital, APHP, Université Paris Cité, Paris, France
- LYPSIS, Université Paris-Saclay, Châtenay-Malabry, France
| | - Florian Gleich
- Division of Child Neurology and Metabolic Medicine, Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Alina Arion
- Department of Pediatrics, Caen Hospital, Caen, France
| | | | - Marie-Cécile Nassogne
- Pediatric Neurology Unit, Cliniques Universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| | - Marie Szymanowski
- Department of Pediatrics, Estaing Hospital, Clermont-Ferrand, France
| | | | - Guy Touati
- Department of Pediatrics, Reference Center for Inborn Error of Metabolism, Toulouse Hospital, Toulouse, France
| | - María Bueno
- Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Kimberly A Chapman
- Section of Genetics and Metabolism, Children's National Health System, Washington, District of Columbia, USA
| | - Yin-Hsiu Chien
- Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Martina Huemer
- Division of Metabolism and Children's Research Center, University Children's Hospital, Zürich, Switzerland
- Department of Paediatrics, Landeskrankenhaus Bregenz, Bregenz, Austria
| | - Pavel Ješina
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, General University Hospital, Charles University, Prague, Czech Republic
| | - Mirian C H Janssen
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Stefan Kölker
- Division of Child Neurology and Metabolic Medicine, Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Viktor Kožich
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, General University Hospital, Charles University, Prague, Czech Republic
| | - Christian Lavigne
- Department of Internal Medicine, Angers University Hospital, Angers, France
| | - Allan Meldgaard Lund
- Departments of Paediatrics and Clinical Genetics, Centre for Inherited Metabolic Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Fanny Mochel
- Department of Genetics, AP-HP, Pitié-Salpêtrière University Hospital, Paris, France
| | - Andrew Morris
- Willink Metabolic Unit, Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Manchester
- Alder Hey Children's Hospital, Liverpool, UK
| | | | | | - Jean-François Benoist
- Biochemistry Laboratory, Robert Debré Hospital, APHP, Paris, France
- Department of Pediatrics, Reference Center for Inborn Error of Metabolism, Necker and Robert-Debré Hospital, APHP, Université Paris Cité, Paris, France
- LYPSIS, Université Paris-Saclay, Châtenay-Malabry, France
| | - Léna Damaj
- Department of Pediatrics, Competence Center of Inherited Metabolic Disorders, Rennes Hospital, Rennes, France
| | - Manuel Schiff
- Department of Pediatrics, Reference Center for Inborn Error of Metabolism, Necker and Robert-Debré Hospital, APHP, Université Paris Cité, Paris, France
- Inserm UMR_S1163, Institut Imagine, Paris, France
| |
Collapse
|
27
|
Novak Kujundžić R. COVID-19: Are We Facing Secondary Pellagra Which Cannot Simply Be Cured by Vitamin B3? Int J Mol Sci 2022; 23:ijms23084309. [PMID: 35457123 PMCID: PMC9032523 DOI: 10.3390/ijms23084309] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 02/07/2023] Open
Abstract
Immune response to SARS-CoV-2 and ensuing inflammation pose a huge challenge to the host’s nicotinamide adenine dinucleotide (NAD+) metabolism. Humans depend on vitamin B3 for biosynthesis of NAD+, indispensable for many metabolic and NAD+-consuming signaling reactions. The balance between its utilization and resynthesis is vitally important. Many extra-pulmonary symptoms of COVID-19 strikingly resemble those of pellagra, vitamin B3 deficiency (e.g., diarrhoea, dermatitis, oral cavity and tongue manifestations, loss of smell and taste, mental confusion). In most developed countries, pellagra is successfully eradicated by vitamin B3 fortification programs. Thus, conceivably, it has not been suspected as a cause of COVID-19 symptoms. Here, the deregulation of the NAD+ metabolism in response to the SARS-CoV-2 infection is reviewed, with special emphasis on the differences in the NAD+ biosynthetic pathway’s efficiency in conditions predisposing for the development of serious COVID-19. SARS-CoV-2 infection-induced NAD+ depletion and the elevated levels of its metabolites contribute to the development of a systemic disease. Acute liberation of nicotinamide (NAM) in antiviral NAD+-consuming reactions potentiates “NAM drain”, cooperatively mediated by nicotinamide N-methyltransferase and aldehyde oxidase. “NAM drain” compromises the NAD+ salvage pathway’s fail-safe function. The robustness of the host’s NAD+ salvage pathway, prior to the SARS-CoV-2 infection, is an important determinant of COVID-19 severity and persistence of certain symptoms upon resolution of infection.
Collapse
Affiliation(s)
- Renata Novak Kujundžić
- Laboratory for Epigenomics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| |
Collapse
|
28
|
Crouse MS, Caton JS, Claycombe-Larson KJ, Diniz WJS, Lindholm-Perry AK, Reynolds LP, Dahlen CR, Borowicz PP, Ward AK. Epigenetic Modifier Supplementation Improves Mitochondrial Respiration and Growth Rates and Alters DNA Methylation of Bovine Embryonic Fibroblast Cells Cultured in Divergent Energy Supply. Front Genet 2022; 13:812764. [PMID: 35281844 PMCID: PMC8907857 DOI: 10.3389/fgene.2022.812764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/12/2022] [Indexed: 11/13/2022] Open
Abstract
Epigenetic modifiers (EM; methionine, choline, folate, and vitamin B12) are important for early embryonic development due to their roles as methyl donors or cofactors in methylation reactions. Additionally, they are essential for the synthesis of nucleotides, polyamines, redox equivalents, and energy metabolites. Despite their importance, investigation into the supplementation of EM in ruminants has been limited to one or two epigenetic modifiers. Like all biochemical pathways, one-carbon metabolism needs to be stoichiometrically balanced. Thus, we investigated the effects of supplementing four EM encompassing the methionine–folate cycle on bovine embryonic fibroblast growth, mitochondrial function, and DNA methylation. We hypothesized that EM supplemented to embryonic fibroblasts cultured in divergent glucose media would increase mitochondrial respiration and cell growth rate and alter DNA methylation as reflected by changes in the gene expression of enzymes involved in methylation reactions, thereby improving the growth parameters beyond Control treated cells. Bovine embryonic fibroblast cells were cultured in Eagle’s minimum essential medium with 1 g/L glucose (Low) or 4.5 g/L glucose (High). The control medium contained no additional OCM, whereas the treated media contained supplemented EM at 2.5, 5, and 10 times (×2.5, ×5, and ×10, respectively) the control media, except for methionine (limited to ×2). Therefore, the experimental design was a 2 (levels of glucose) × 4 (levels of EM) factorial arrangement of treatments. Cells were passaged three times in their respective treatment media before analysis for growth rate, cell proliferation, mitochondrial respiration, transcript abundance of methionine–folate cycle enzymes, and DNA methylation by reduced-representation bisulfite sequencing. Total cell growth was greatest in High ×10 and mitochondrial maximal respiration, and reserve capacity was greatest (p < 0.01) for High ×2.5 and ×10 compared with all other treatments. In Low cells, the total growth rate, mitochondrial maximal respiration, and reserve capacity increased quadratically to 2.5 and ×5 and decreased to control levels at ×10. The biological processes identified due to differential methylation included the positive regulation of GTPase activity, molecular function, protein modification processes, phosphorylation, and metabolic processes. These data are interpreted to imply that EM increased the growth rate and mitochondrial function beyond Control treated cells in both Low and High cells, which may be due to changes in the methylation of genes involved with growth and energy metabolism.
Collapse
Affiliation(s)
- Matthew S. Crouse
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, United States
- *Correspondence: Matthew S. Crouse,
| | - Joel S. Caton
- Department of Animal Sciences, North Dakota State University, Fargo, ND, United States
| | | | | | | | - Lawrence P. Reynolds
- Department of Animal Sciences, North Dakota State University, Fargo, ND, United States
| | - Carl R. Dahlen
- Department of Animal Sciences, North Dakota State University, Fargo, ND, United States
| | - Pawel P. Borowicz
- Department of Animal Sciences, North Dakota State University, Fargo, ND, United States
| | - Alison K. Ward
- Department of Animal Sciences, North Dakota State University, Fargo, ND, United States
| |
Collapse
|
29
|
Han D, Longhini AP, Zhang X, Hoang V, Wilson MZ, Kosik KS. Dynamic assembly of the mRNA m6A methyltransferase complex is regulated by METTL3 phase separation. PLoS Biol 2022; 20:e3001535. [PMID: 35143475 PMCID: PMC8865655 DOI: 10.1371/journal.pbio.3001535] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 02/23/2022] [Accepted: 01/11/2022] [Indexed: 11/18/2022] Open
Abstract
m6A methylation is the most abundant and reversible chemical modification on mRNA with approximately one-fourth of eukaryotic mRNAs harboring at least one m6A-modified base. The recruitment of the mRNA m6A methyltransferase writer complex to phase-separated nuclear speckles is likely to be crucial in its regulation; however, control over the activity of the complex remains unclear. Supported by our observation that a core catalytic subunit of the methyltransferase complex, METTL3, is endogenously colocalized within nuclear speckles as well as in noncolocalized puncta, we tracked the components of the complex with a Cry2-METTL3 fusion construct to disentangle key domains and interactions necessary for the phase separation of METTL3. METTL3 is capable of self-interaction and likely provides the multivalency to drive condensation. Condensates in cells necessarily contain myriad components, each with partition coefficients that establish an entropic barrier that can regulate entry into the condensate. In this regard, we found that, in contrast to the constitutive binding of METTL14 to METTL3 in both the diffuse and the dense phase, WTAP only interacts with METTL3 in dense phase and thereby distinguishes METTL3/METTL14 single complexes in the dilute phase from METTL3/METTL14 multicomponent condensates. Finally, control over METTL3/METTL14 condensation is determined by its small molecule cofactor, S-adenosylmethionine (SAM), which regulates conformations of two gate loops, and some cancer-associated mutations near gate loops can impair METTL3 condensation. Therefore, the link between SAM binding and the control of writer complex phase state suggests that the regulation of its phase state is a potentially critical facet of its functional regulation.
Collapse
Affiliation(s)
- Dasol Han
- Neuroscience Research Institute, University of California, Santa Barbara, California, United States of America
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, United States of America
| | - Andrew P. Longhini
- Neuroscience Research Institute, University of California, Santa Barbara, California, United States of America
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, United States of America
| | - Xuemei Zhang
- Neuroscience Research Institute, University of California, Santa Barbara, California, United States of America
| | - Vivian Hoang
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, United States of America
| | - Maxwell Z. Wilson
- Neuroscience Research Institute, University of California, Santa Barbara, California, United States of America
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, United States of America
| | - Kenneth S. Kosik
- Neuroscience Research Institute, University of California, Santa Barbara, California, United States of America
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, United States of America
| |
Collapse
|
30
|
Chen XG, Mei Y, Song QH. Coumarin-based fluorescent probe with 4-phenylselenium as the active site for multi-channel discrimination of biothiols. J Mater Chem B 2022; 10:1272-1280. [DOI: 10.1039/d1tb02584h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biological mercaptans, also known as biothiols, play their own roles in a number of important physiological processes, and the abnormal levels of biothiols are closely associated with a variety of...
Collapse
|
31
|
Li S, Li G, Luo X, Huang Y, Wen L, Li J. Endothelial Dysfunction and Hyperhomocysteinemia-Linked Cerebral Small Vessel Disease: Underlying Mechanisms and Treatment Timing. Front Neurol 2021; 12:736309. [PMID: 34899561 PMCID: PMC8651556 DOI: 10.3389/fneur.2021.736309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/01/2021] [Indexed: 02/05/2023] Open
Abstract
Cerebral small vessel disease (cSVD)—a common cause of stroke and vascular dementia—is a group of clinical syndromes that affects the brain's small vessels, including arterioles, capillaries, and venules. Its pathogenesis is not fully understood, and effective treatments are limited. Increasing evidence indicates that an elevated total serum homocysteine level is directly and indirectly associated with cSVD, and endothelial dysfunction plays an active role in this association. Hyperhomocysteinemia affects endothelial function through oxidative stress, inflammatory pathways, and epigenetic alterations at an early stage, even before the onset of small vessel injuries and the disease. Therefore, hyperhomocysteinemia is potentially an important therapeutic target for cSVD. However, decreasing the homocysteine level is not sufficiently effective, possibly due to delayed treatment, which underlying reason remains unclear. In this review, we examined endothelial dysfunction to understand the close relationship between hyperhomocysteinemia and cSVD and identify the optimal timing for the therapy.
Collapse
Affiliation(s)
- Shuang Li
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Guangjian Li
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xia Luo
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yan Huang
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lan Wen
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jinglun Li
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
32
|
The significance of homocysteine in patients with hypertension. POSTEP HIG MED DOSW 2021. [DOI: 10.2478/ahem-2021-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Cardiovascular disease is the most common cause of death in developed countries. Important factors leading to ischemic heart disease and strokes are hypertension and high levels of homocysteine in blood serum. The coexistence of these two factors significantly increases the risk of these diseases and premature deaths. Many studies indicate that patients with hypertension are significantly more likely to demonstrate increased blood serum homocysteine levels than those with normal blood pressure. This may be caused by a higher incidence of overweight, high intake of salt and increased uric acid levels. It has been shown that both these factors increase the prevalence of hypertension and lead to higher homocysteine levels. However, the results of some studies indicate that arterial hypertension and homocysteinemia are causally related. It was shown, among other things, that high homocysteine levels damage the endothelium and reduce nitric oxide synthesis, which may directly lead to hypertension. Serum homocysteine levels are slightly higher in patients with white coat hypertension than they are in healthy individuals and may therefore also increase the risk of cardiovascular diseases. Several authors have also shown that the levels of homocysteine in blood serum are higher in so-called non-dippers, i.e., patients with no night-time pressure drop. The lack of a 10%–20% decrease in blood pressure at night is associated with increased cardiovascular complications. Strokes occur especially frequently in older people with arterial hypertension and hyperhomocysteinemia. The administration of B vitamins and folic acid significantly reduces serum homocysteine levels. The administration of this acid also slightly, but statistically significantly, increases the effectiveness of hypotensive drugs. Large meta-analyses meta-analysis indicate that the increased supply of folic acid in patients with hypertension significantly reduces the risk of stroke. Such management is particularly effective in patients with hypertension and hyperhomocysteinemia.
Collapse
|
33
|
Castro R, Whalen CA, Gullette S, Mattie FJ, Florindo C, Heil SG, Huang NK, Neuberger T, Ross AC. A Hypomethylating Ketogenic Diet in Apolipoprotein E-Deficient Mice: A Pilot Study on Vascular Effects and Specific Epigenetic Changes. Nutrients 2021; 13:nu13103576. [PMID: 34684577 PMCID: PMC8537671 DOI: 10.3390/nu13103576] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/27/2021] [Accepted: 10/02/2021] [Indexed: 12/20/2022] Open
Abstract
Hyperhomocysteneinemia (HHcy) is common in the general population and is a risk factor for atherosclerosis by mechanisms that are still elusive. A hypomethylated status of epigenetically relevant targets may contribute to the vascular toxicity associated with HHcy. Ketogenic diets (KD) are diets with a severely restricted amount of carbohydrates that are being widely used, mainly for weight-loss purposes. However, studies associating nutritional ketosis and HHcy are lacking. This pilot study investigates the effects of mild HHcy induced by nutritional manipulation of the methionine metabolism in the absence of dietary carbohydrates on disease progression and specific epigenetic changes in the apolipoprotein-E deficient (apoE-/-) mouse model. ApoE-/- mice were either fed a KD, a diet with the same macronutrient composition but low in methyl donors (low methyl KD, LMKD), or control diet. After 4, 8 or 12 weeks plasma was collected for the quantification of: (1) nutritional ketosis, (i.e., the ketone body beta-hydroxybutyrate using a colorimetric assay); (2) homocysteine by HPLC; (3) the methylating potential S-adenosylmethionine to S-adenosylhomocysteine ratio (AdoHcy/AdoMet) by LC-MS/MS; and (4) the inflammatory cytokine monocyte chemoattractant protein 1 (MCP1) by ELISA. After 12 weeks, aortas were collected to assess: (1) the vascular AdoHcy/AdoMet ratio; (2) the volume of atherosclerotic lesions by high-field magnetic resonance imaging (14T-MRI); and (3) the content of specific epigenetic tags (H3K27me3 and H3K27ac) by immunofluorescence. The results confirmed the presence of nutritional ketosis in KD and LMKD mice but not in the control mice. As expected, mild HHcy was only detected in the LMKD-fed mice. Significantly decreased MCP1 plasma levels and plaque burden were observed in control mice versus the other two groups, together with an increased content of one of the investigated epigenetic tags (H3K27me3) but not of the other (H3K27ac). Moreover, we are unable to detect any significant differences at the p < 0.05 level for MCP1 plasma levels, vascular AdoMet:AdoHcy ratio levels, plaque burden, and specific epigenetic content between the latter two groups. Nevertheless, the systemic methylating index was significantly decreased in LMKD mice versus the other two groups, reinforcing the possibility that the levels of accumulated homocysteine were insufficient to affect vascular transmethylation reactions. Further studies addressing nutritional ketosis in the presence of mild HHcy should use a higher number of animals and are warranted to confirm these preliminary observations.
Collapse
Affiliation(s)
- Rita Castro
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (C.A.W.); (F.J.M.); (N.K.H.); (A.C.R.)
- Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal;
- Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Correspondence: ; Tel.: +1-814-865-2938
| | - Courtney A. Whalen
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (C.A.W.); (F.J.M.); (N.K.H.); (A.C.R.)
| | - Sean Gullette
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (S.G.); (T.N.)
| | - Floyd J. Mattie
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (C.A.W.); (F.J.M.); (N.K.H.); (A.C.R.)
| | - Cristina Florindo
- Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal;
| | - Sandra G. Heil
- Medical Center Rotterdam, Department of Clinical Chemistry, Erasmus MC University, 3015 GD Rotterdam, The Netherlands;
| | - Neil K. Huang
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (C.A.W.); (F.J.M.); (N.K.H.); (A.C.R.)
- Jean Mayer USDA Human Nutrition Research Center on Aging, Cardiovascular Nutrition Laboratory, Tufts University, Boston, MA 02111, USA
| | - Thomas Neuberger
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (S.G.); (T.N.)
- Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - A. Catharine Ross
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (C.A.W.); (F.J.M.); (N.K.H.); (A.C.R.)
| |
Collapse
|
34
|
Bennett C, Green J, Ciancio M, Goral J, Pitstick L, Pytynia M, Meyer A, Kwatra N, Jadavji NM. Dietary folic acid deficiency impacts hippocampal morphology and cortical acetylcholine metabolism in adult male and female mice. Nutr Neurosci 2021; 25:2057-2065. [PMID: 34042561 DOI: 10.1080/1028415x.2021.1932242] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE One-carbon (1C) metabolism is a metabolic network that integrates nutritional signals with biosynthesis, redox homeostasis, and epigenetics. There are sex differences in hepatic 1C metabolism, however, it is unclear whether sex differences in 1C impact the brain. The aim of this study was to investigate if sex modulates the effects of dietary folic acid deficiency, the main component of 1C, in brain tissue using a mouse model. METHODS Male and female C57Bl/6J mice were placed on a folic acid deficient (FD) or control diet (CD) at six weeks until six months of aged. After which brain tissue and serum were collected for analysis. In brain tissue, hippocampal volume, morphology, and apoptosis as well as cortical acetylcholine metabolism were measured. RESULTS Male and female FD mice had reduced serum levels of folate. Both males and females maintained on a FD showed a decrease in the thickness of the hippocampal CA1-CA3 region. Interestingly, there was a sex difference in the levels of active caspase-3 within the CA3 region of the hippocampus. In cortical tissue, there were increased levels of neuronal ChAT and reduced levels of AChE in FD females and male mice. CONCLUSIONS The results indicated that FD impacts hippocampal morphology and cortical neuronal acetylcholine metabolism. The data from our study indicate that there was only one sex difference and that was in hippocampal apoptosis. Our study provides little evidence that sex modulates the effects of dietary folate deficiency on hippocampal morphology and cortical neuronal acetylcholine metabolism.
Collapse
Affiliation(s)
- Calli Bennett
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Glendale, AZ, USA.,College of Osteopathic Medicine, Midwestern University, Glendale, AZ, USA
| | - Jacalyn Green
- Biochemistry and Molecular Genetics, College of Graduate Studies, Midwestern University, Downers Grove, IL, USA
| | - Mae Ciancio
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Downers Grove, IL, USA
| | - Joanna Goral
- Department of Anatomy, College of Graduate Studies, Midwestern University, Downers Grove, IL, USA
| | - Lenore Pitstick
- Biochemistry and Molecular Genetics, College of Graduate Studies, Midwestern University, Downers Grove, IL, USA
| | - Matthew Pytynia
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Downers Grove, IL, USA
| | - Alice Meyer
- Department of Anatomy, College of Graduate Studies, Midwestern University, Downers Grove, IL, USA
| | - Neha Kwatra
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Glendale, AZ, USA.,College of Dental Medicine, Midwestern University, Glendale, AZ, USA
| | - Nafisa M Jadavji
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Glendale, AZ, USA.,College of Veterinary Medicine, Midwestern University, Glendale, AZ, USA.,Department of Neuroscience, Carleton University, Ottawa, Canada
| |
Collapse
|
35
|
Shih CC, Shih YL, Chen JY. The association between homocysteine levels and cardiovascular disease risk among middle-aged and elderly adults in Taiwan. BMC Cardiovasc Disord 2021; 21:191. [PMID: 33879044 PMCID: PMC8056530 DOI: 10.1186/s12872-021-02000-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 04/09/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Our study aimed to determine the association between homocysteine levels and cardiovascular disease (CVD) risk in middle-aged and elderly adults in a community in northern Taiwan. METHODS Participants in our study included adults aged 50 to 85 years old during community health examinations in 2019. A total of 396 people were enrolled, the ethnicity of all participants is Chinese. We divided participants according to tertiles of ln[homocysteine] level (low, middle and high groups). The CVD risk was calculated by the Framingham cardiovascular risk score (FRS). An FRS ≥ 20% indicated high CVD risk. Pearson correlation coefficients were calculated between homocysteine level and other cardio-metabolic risk factors while adjusting for age. Multivariate logistic regression analysis was used to determine the association of high and middle ln[homocysteine] groups with high CVD risk after adjusting age, sex, uric acid, creatinine, and body mass index (BMI). The Youden index and receiver operating characteristic (ROC) curves were performed to determine the optimized cut-off value. RESULTS There were 396 people enrolled for analysis; 41.4% of participants were male, and the average age was 64.79 (± 8.76). In our study, we showed a positive correlation of homocysteine with FRS. In the logistic regression models, higher ln[homocysteine] levels was associated with higher CVD risk with a odds ratio (OR) of 2.499 and 95% confidence interval (CI) of 1.214 to 5.142 in the high homocysteine level group compared with the low homocysteine group after adjusting for traditional CVD risk factors. The area under the ROC curve was 0.667, and a ln[homocysteine] cut-off value of 2.495 µmol/L was determined. CONCLUSIONS Middle-aged and elderly people with increased homocysteine levels were associated with higher FRSs in this Taiwan community. Furthermore, homocysteine was an independent risk factor for high CVD risk in this study.
Collapse
Affiliation(s)
- Chin-Chuan Shih
- General Administrative Department, United Safety Medical Group, 2F, No.302, Zhongzheng Rd., Xinzhuang District, New Taipei City, 242, Taiwan (R.O.C.)
| | - Yu-Lin Shih
- Department of Family Medicine, Chang-Gung Memorial Hospital, Linkou Branch, No.5, Fuxing St., Guishan Dist, Taoyuan City, 333, Taiwan (R.O.C.)
| | - Jau-Yuan Chen
- Department of Family Medicine, Chang-Gung Memorial Hospital, Linkou Branch, No.5, Fuxing St., Guishan Dist, Taoyuan City, 333, Taiwan (R.O.C.).
- Chang Gung University College of Medicine, Taoyuan, No.259, Wenhua 1st Rd., Guishan Dist, Taoyuan City, 333, Taiwan (R.O.C.).
| |
Collapse
|
36
|
Association of High Serum Homocysteine Levels and Severe Chronic Venous Disease. Ann Vasc Surg 2021; 74:315-320. [PMID: 33549775 DOI: 10.1016/j.avsg.2020.12.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/16/2020] [Accepted: 12/20/2020] [Indexed: 11/20/2022]
Abstract
BACKGROUND Homocysteine (Hcy) is considered as a modifiable risk factor for vascular disease. This study was aimed to explore the association between serum concentration and the severity of primary chronic venous disease (CVD). METHODS Clinical data of 582 patients diagnosed with primary CVD were collected and analyzed retrospectively. The Clinical Etiology Anatomy Pathophysiology classification system was used to grade the severity of chronic venous disease. Patients were divided into 2 groups (group A: C1-C3; group B: C4-C6). The association between serum homocysteine levels and the severity of primary chronic venous disease was investigated using rank sum test and logistic regression. RESULTS The difference between the level of homocysteine in each grade has statistical significance. Group A has higher median Hcy concentrations than Group B (15.40 μmol/L vs. 14.05 μmol/L, P< 0.01). Further binary logistic regression showed no statistical significance among the level of Hcy (11.00-14.75 μmol/L [OR 0.66, 95% CI 0.40-1.11, P= 0.12], 14.75-20.38μmol/L [OR 0.97, 95% CI 0.59-1.69, P = 0.89], ≥20.38 μmol/L [OR 0.67, 95% CI 0.41-1.10, P = 0.11]), but age (OR 1.03, 95% CI 1.01-1.04, P< 0.01) and female (OR 0.41, 95% CI 0.28-0.59, P< 0.01) are associated with more severe stages of CVD. CONCLUSIONS Higher level of Hcy is associated with more severe stages of CVD, but it not an independent risk factor. However, Advanced age and female are risk factors for CVD development based on logistic regression analysis.
Collapse
|
37
|
da Silva IV, Whalen CA, Mattie FJ, Florindo C, Huang NK, Heil SG, Neuberger T, Ross AC, Soveral G, Castro R. An Atherogenic Diet Disturbs Aquaporin 5 Expression in Liver and Adipocyte Tissues of Apolipoprotein E-Deficient Mice: New Insights into an Old Model of Experimental Atherosclerosis. Biomedicines 2021; 9:150. [PMID: 33557105 PMCID: PMC7913888 DOI: 10.3390/biomedicines9020150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/26/2021] [Accepted: 01/30/2021] [Indexed: 12/16/2022] Open
Abstract
The dysfunction of vascular endothelial cells is profoundly implicated in the pathogenesis of atherosclerosis and cardiovascular disease, the global leading cause of death. Aquaporins (AQPs) are membrane channels that facilitate water and glycerol transport across cellular membranes recently implicated in the homeostasis of the cardiovascular system. Apolipoprotein-E deficient (apoE-/-) mice are a common model to study the progression of atherosclerosis. Nevertheless, the pattern of expression of AQPs in this atheroprone model is poorly characterized. In this study, apoE-/- mice were fed an atherogenic high-fat (HF) or a control diet. Plasma was collected at multiple time points to assess metabolic disturbances. At the endpoint, the aortic atherosclerotic burden was quantified using high field magnetic resonance imaging. Moreover, the transcriptional levels of several AQP isoforms were evaluated in the liver, white adipocyte tissue (WAT), and brown adipocyte tissue (BAT). The results revealed that HF-fed mice, when compared to controls, presented an exacerbated systemic inflammation and atherosclerotic phenotype, with no major differences in systemic methylation status, circulating amino acids, or plasma total glutathione. Moreover, an overexpression of the isoform AQP5 was detected in all studied tissues from HF-fed mice when compared to controls. These results suggest a novel role for AQP5 on diet-induced atherosclerosis that warrants further investigation.
Collapse
Affiliation(s)
- Inês V. da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
| | - Courtney A. Whalen
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (C.A.W.); (F.J.M.); (N.K.H.); (A.C.R.)
| | - Floyd J. Mattie
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (C.A.W.); (F.J.M.); (N.K.H.); (A.C.R.)
| | - Cristina Florindo
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
| | - Neil K. Huang
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (C.A.W.); (F.J.M.); (N.K.H.); (A.C.R.)
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA
| | - Sandra G. Heil
- Department of Clinical Chemistry, Medical Center Rotterdam, Erasmus MC University, 3015 GD Rotterdam, The Netherlands;
| | - Thomas Neuberger
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA;
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - A. Catharine Ross
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (C.A.W.); (F.J.M.); (N.K.H.); (A.C.R.)
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
| | - Rita Castro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (C.A.W.); (F.J.M.); (N.K.H.); (A.C.R.)
| |
Collapse
|
38
|
Yahn GB, Abato JE, Jadavji NM. Role of vitamin B12 deficiency in ischemic stroke risk and outcome. Neural Regen Res 2021; 16:470-474. [PMID: 32985467 PMCID: PMC7996019 DOI: 10.4103/1673-5374.291381] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Currently, ischemic stroke is the most prevalent form of stroke compared to hemorrhagic and there is a high incidence in older adults. Nutrition is a modifiable risk factor for stroke. B-vitamins are part of a metabolic network that integrates nutritional signals with biosynthesis, redox homeostasis, and epigenetics. These vitamins play an essential role in the regulation of cell proliferation, stress resistance, and embryo development. A deficiency in vitamin B12 is common in older adults and has been reported to be implicated in ischemic stroke. The aim of this review was to investigate whether vitamin B12 deficiencies impact the risk and outcome of ischemic stroke. Clinical data from our literature review strongly suggest that a deficiency in vitamin B12 is a risk factor for ischemic stroke and possible outcome. Our survey of the literature has identified that there is a gap in the understanding of the mechanisms through which a vitamin B12 deficiency leads to an increased risk of stroke and outcome. A vitamin B12 deficiency can increase homocysteine levels, which are a well-established risk factor for ischemic stroke. Another potential mechanism through which vitamin B12 deficient may impact neurological function and increase risk of stroke, is changes in myelination, however this link requires further investigation. Further studies are required in model systems to understand how a vitamin B12 deficiency changes the brain.
Collapse
Affiliation(s)
- Gyllian B Yahn
- Department of Biomedical Sciences, Midwestern University, Glendale, AZ, USA
| | - Jamie E Abato
- Department of Biomedical Sciences, Midwestern University, Glendale, AZ, USA
| | - Nafisa M Jadavji
- Department of Biomedical Sciences, Midwestern University, Glendale, AZ, USA; Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
39
|
Ali SAEM. Nutritional Deficiencies and Hyperhomocysteinemia. NUTRITIONAL MANAGEMENT AND METABOLIC ASPECTS OF HYPERHOMOCYSTEINEMIA 2021:259-267. [DOI: 10.1007/978-3-030-57839-8_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
40
|
Cai S, Quan S, Yang G, Ye Q, Chen M, Yu H, Wang G, Wang Y, Zeng X, Qiao S. One Carbon Metabolism and Mammalian Pregnancy Outcomes. Mol Nutr Food Res 2020; 65:e2000734. [PMID: 33226182 DOI: 10.1002/mnfr.202000734] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/27/2020] [Indexed: 12/20/2022]
Abstract
One-carbon metabolism is involved in varieties of physiological processes in mammals, including nucleic acid synthesis, amino acid homeostasis, epigenetic regulation, redox balance and neurodevelopment. The current evidence linking levels of one-carbon nutrients during pregnancy to the development of oocytes, embryos, and placentas, as well as maternal and offspring health, is reviewed. The sources of mammalian one-carbon units, the pathways active in mammalian one-carbon metabolism, the maternal and fetal needs for one-carbon units and their functions during pregnancy are described. The demand for one-carbon metabolism is highest during pregnancy compared to the entire lifetime of a mammal. The primary types of one-carbon metabolism in mammals are the folate cycle, methionine cycle and transsulfuration pathway, which varies at different pregnancy stages (e.g., methylation programming of embryo, neural development of fetus, fetal growth and placenta development). Therefore, an overall consideration of one-carbon metabolism requirements for different pregnancy stages, is called for, specifically, the balance of all nutrients involved, not just one single nutrient in one-carbon metabolism. Moreover, the establishment of an ideal one-carbon metabolism requirement model is suggested according to the requirements for different pregnancy stages to support optimal pregnancy outcomes and maternal and offspring health.
Collapse
Affiliation(s)
- Shuang Cai
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, P. R. China
- Beijing Key Laboratory of Bio-feed additives, China Agricultural University, Beijing, 100193, P. R. China
| | - Shuang Quan
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, P. R. China
- Beijing Key Laboratory of Bio-feed additives, China Agricultural University, Beijing, 100193, P. R. China
| | - Guangxin Yang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, P. R. China
- Beijing Key Laboratory of Bio-feed additives, China Agricultural University, Beijing, 100193, P. R. China
| | - Qianhong Ye
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, P. R. China
- Beijing Key Laboratory of Bio-feed additives, China Agricultural University, Beijing, 100193, P. R. China
| | - Meixia Chen
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, P. R. China
- Beijing Key Laboratory of Bio-feed additives, China Agricultural University, Beijing, 100193, P. R. China
| | - Haitao Yu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, P. R. China
- Beijing Key Laboratory of Bio-feed additives, China Agricultural University, Beijing, 100193, P. R. China
| | - Gang Wang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, P. R. China
- Beijing Key Laboratory of Bio-feed additives, China Agricultural University, Beijing, 100193, P. R. China
| | - Yuming Wang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, P. R. China
- Beijing Key Laboratory of Bio-feed additives, China Agricultural University, Beijing, 100193, P. R. China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, P. R. China
- Beijing Key Laboratory of Bio-feed additives, China Agricultural University, Beijing, 100193, P. R. China
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, P. R. China
- Beijing Key Laboratory of Bio-feed additives, China Agricultural University, Beijing, 100193, P. R. China
| |
Collapse
|
41
|
Sultana R, Choudhury SS, Bose S, Tiwari D, Bharali A, Kakoty SD. Increased homocysteine expression associated with genetic changes in the folate pathway as a key determinant of preeclampsia: A prospective study from lower Assam, India. Meta Gene 2020. [DOI: 10.1016/j.mgene.2020.100775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
42
|
Ji Y, Li Y, Zhao Z, Li P, Xie Y. Hydrogen Sulfide Overproduction Is Involved in Acute Ischemic Cerebral Injury Under Hyperhomocysteinemia. Front Neurosci 2020; 14:582851. [PMID: 33424533 PMCID: PMC7793897 DOI: 10.3389/fnins.2020.582851] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/04/2020] [Indexed: 11/13/2022] Open
Abstract
Objectives This study aimed to identify the involvement of hydrogen sulfide overproduction in acute brain injury under ischemia/reperfusion and hyperhomocysteinemia. Methods In vitro and in vivo experiments were conducted to determine: the effect of sodium hydrosulfide treatment on the human neuroblastoma cell line (SH-SY5Y) under conditions of oxygen and glucose deprivation; the changes of hydrogen sulfide levels, inflammatory factors, energetic metabolism, and mitochondrial function in the brain tissue of rats under either ischemia/reperfusion alone or a combination of ischemia/reperfusion and hyperhomocysteinemia; and the potential mechanism underlying the relationship between homocysteine and these changes through the addition of the related inhibitors. Furthermore, experimental technologies, including western blot, enzyme-linked immunosorbent assay, immunofluorescence, reverse transcription polymerase chain reaction, and flow cytometry, were used. Results Our study found that high concentration of sodium hydrosulfide treatment aggravated the decrease in mitochondrial membrane potential, the increase in both mitochondrial permeability transition pore and translocation of cytochrome C, as well as the accumulation of reactive oxygen species in oxygen and glucose deprived SH-SY5Y cells. As a result, neurological deficit appeared in rats with ischemia/reperfusion or ischemia/reperfusion and hyperhomocysteinemia, and a higher water content and larger infarction size of cerebral tissue appeared in rats combined ischemia/reperfusion and hyperhomocysteinemia. Furthermore, alterations in hydrogen sulfide production, inflammatory factors, and mitochondria morphology and function were more evident under the combined ischemia/reperfusion and hyperhomocysteinemia. These changes were, however, alleviated by the addition of inhibitors for CBS, CSE, Hcy, H2S, and NF-κB, although at different levels. Finally, we observed a negative relationship between the blockage of: (a) the nuclear factor kappa-B pathway and the levels of cystathionine β-synthase and hydrogen sulfide; and (b) the hydrogen sulfide pathway and the levels of inflammatory factors. Conclusion Hydrogen sulfide overproduction and reactive inflammatory response are involved in ischemic cerebral injury under hyperhomocysteinemia. Future studies in this direction are warranted to provide a scientific base for targeted medicine development.
Collapse
Affiliation(s)
- Yan Ji
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yusheng Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zichen Zhao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Panxing Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yi Xie
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
43
|
Huang Z, Aweya JJ, Zhu C, Tran NT, Hong Y, Li S, Yao D, Zhang Y. Modulation of Crustacean Innate Immune Response by Amino Acids and Their Metabolites: Inferences From Other Species. Front Immunol 2020; 11:574721. [PMID: 33224140 PMCID: PMC7674553 DOI: 10.3389/fimmu.2020.574721] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 10/08/2020] [Indexed: 12/21/2022] Open
Abstract
Aquaculture production of crustaceans (mainly shrimp and crabs) has expanded globally, but disease outbreaks and pathogenic infections have hampered production in the last two decades. As invertebrates, crustaceans lack an adaptive immune system and mainly defend and protect themselves using their innate immune system. The immune system derives energy and metabolites from nutrients, with amino acids constituting one such source. A growing number of studies have shown that amino acids and their metabolites are involved in the activation, synthesis, proliferation, and differentiation of immune cells, as well as in the activation of immune related signaling pathways, reduction of inflammatory response and regulation of oxidative stress. Key enzymes in amino acid metabolism have also been implicated in the regulation of the immune system. Here, we reviewed the role played by amino acids and their metabolites in immune-modulation in crustaceans. Information is inferred from mammals and fish where none exists for crustaceans. Research themes are identified and the relevant research gaps highlighted for further studies.
Collapse
Affiliation(s)
- Zishu Huang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China.,Shantou University-Universiti Malaysia Terengganu (STU-UMT) Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Jude Juventus Aweya
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China.,Shantou University-Universiti Malaysia Terengganu (STU-UMT) Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Chunhua Zhu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Ngoc Tuan Tran
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China.,Shantou University-Universiti Malaysia Terengganu (STU-UMT) Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Yujian Hong
- Guangdong Yuequn Marine Biological Research and Development Co., Ltd., Jieyang, China
| | - Shengkang Li
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China.,Shantou University-Universiti Malaysia Terengganu (STU-UMT) Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Defu Yao
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China.,Shantou University-Universiti Malaysia Terengganu (STU-UMT) Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Yueling Zhang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China.,Shantou University-Universiti Malaysia Terengganu (STU-UMT) Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| |
Collapse
|
44
|
Burgess K, Bennett C, Mosnier H, Kwatra N, Bethel F, Jadavji NM. The Antioxidant Role of One-Carbon Metabolism on Stroke. Antioxidants (Basel) 2020; 9:E1141. [PMID: 33212887 PMCID: PMC7698340 DOI: 10.3390/antiox9111141] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023] Open
Abstract
One-carbon (1C) metabolism is a metabolic network that is centered on folate, a B vitamin; it integrates nutritional signals with biosynthesis, redox homeostasis, and epigenetics. This metabolic pathway also reduces levels of homocysteine, a non-protein amino acid. High levels of homocysteine are linked to increased risk of hypoxic events, such as stroke. Several preclinical studies have suggested that 1C metabolism can impact stroke outcome, but the clinical data are unclear. The objective of this paper was to review preclinical and clinical research to determine whether 1C metabolism has an antioxidant role on stroke. To accomplish the objective, we searched for publications using the following medical subject headings (MeSH) keywords: antioxidants, hypoxia, stroke, homocysteine, one-carbon metabolism, folate, methionine, and dietary supplementation of one-carbon metabolism. Both pre-clinical and clinical studies were retrieved and reviewed. Our review of the literature suggests that deficiencies in 1C play an important role in the onset and outcome of stroke. Dietary supplementation of 1C provides beneficial effects on stroke outcome. For stroke-affected patients or individuals at high risk for stroke, the data suggest that nutritional modifications in addition to other therapies could be incorporated into a treatment plan.
Collapse
Affiliation(s)
- Kassidy Burgess
- College of Veterinary Medicine, Midwestern University, Glendale, AZ 85308, USA;
- Biomedical Sciences Program, Midwestern University, Glendale, AZ 85308, USA; (C.B.); (N.K.); (F.B.)
| | - Calli Bennett
- Biomedical Sciences Program, Midwestern University, Glendale, AZ 85308, USA; (C.B.); (N.K.); (F.B.)
- College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA
| | - Hannah Mosnier
- School of Medicine, National University of Ireland Galway, H91 TK33, Ireland;
- College of Dental Medicine, Midwestern University, Glendale, AZ 85308, USA
| | - Neha Kwatra
- Biomedical Sciences Program, Midwestern University, Glendale, AZ 85308, USA; (C.B.); (N.K.); (F.B.)
- College of Dental Medicine, Midwestern University, Glendale, AZ 85308, USA
| | - Forrest Bethel
- Biomedical Sciences Program, Midwestern University, Glendale, AZ 85308, USA; (C.B.); (N.K.); (F.B.)
- College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA
| | - Nafisa M. Jadavji
- College of Veterinary Medicine, Midwestern University, Glendale, AZ 85308, USA;
- Biomedical Sciences Program, Midwestern University, Glendale, AZ 85308, USA; (C.B.); (N.K.); (F.B.)
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
45
|
Al Mutairi F. Hyperhomocysteinemia: Clinical Insights. J Cent Nerv Syst Dis 2020; 12:1179573520962230. [PMID: 33100834 PMCID: PMC7549175 DOI: 10.1177/1179573520962230] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/06/2020] [Indexed: 12/12/2022] Open
Abstract
Homocysteine (Hcy) is a sulfhydryl-containing amino acid, and intermediate metabolite formed in metabolising methionine (Met) to cysteine (Cys); defective Met metabolism can increase Hcy. The effect of hyperhomocysteinemia (HHcy) on human health, is well described and associated with multiple clinical conditions. HHcy is considered to be an independent risk factor for common cardiovascular and central nervous disorders, where its role in folate metabolism and choline catabolism is fundamental in many metabolic pathways. HHcy induces inflammatory responses via increasing the pro-inflammatory cytokines and downregulation of anti-inflammatory cytokines which lead to Hcy-induced cell apoptosis. Conflicting evidence indicates that the development of the homocysteine-associated cerebrovascular disease may be prevented by the maintenance of normal Hcy levels. In this review, we discuss common conditions associated with HHcy and biochemical diagnostic workup that may help in reaching diagnosis at early stages. Furthermore, future systematic studies need to prove the exact pathophysiological mechanism of HHcy at the cellular level and the effect of Hcy lowering agents on disease courses.
Collapse
Affiliation(s)
- Fuad Al Mutairi
- Medical Genetics Division, Department of Pediatrics, King Abdulaziz Medical City, Riyadh, Saudi Arabia.,King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
46
|
Chen RY, Li XZ, Lin Q, Zhu Y, Shen YY, Xu QY, Zhu XM, Chen LQ, Wu HY, Chen XQ. Proteinuria as a presenting sign of combined methylmalonic acidemia and homocysteinemia: case report. BMC MEDICAL GENETICS 2020; 21:183. [PMID: 32957924 PMCID: PMC7507264 DOI: 10.1186/s12881-020-01122-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 09/10/2020] [Indexed: 11/24/2022]
Abstract
Background Disorders of the metabolism and absorption of vitamin B12 can lead to decrease in activity of methionine synthetase and methylmalonate coenzyme A mutase (MMUT), which results in increased levels of methylmalonic acid and homocysteine in blood and urine. Often, combined methylmalonic acidemia (MMA) and homocysteinemia is misdiagnosed due to a lack of specific symptoms. The clinical manifestations are diverse, but proteinuria as the initial presentation is rare. Case presentation Two cases of MMA with homocysteinemia in children are reported. Proteinuria were a primary presenting symptom, followed by anemia and neurologic symptoms (frequent convulsions and unstable walking, respectively). Screening of amino acids and acyl carnitine in serum showed that the propionyl carnitine:acetylcarnitine ratio increased. Profiling of urinary organic acids by gas chromatography–mass spectrometry revealed high levels of methylmalonic acid. Homocysteine content in blood was increased. Comprehensive genetic analyses of peripheral blood-derived DNA demonstrated heterozygous variants of methylmalonic aciduria type C and homocystinuria (MMACHC) and amnionless (AMN) genes in our two patients, respectively. After active treatment, the clinical manifestations in Case 1 were relieved and urinary protein ceased to be observed; Case 2 had persistent proteinuria and was lost to follow-up. Conclusions Analyses of the organic acids in blood and urine suggested MMA combined with homocysteinemia. In such diseases, reports of renal damage are uncommon and proteinuria as the initial presentation is rare. Molecular analysis indicated two different genetic causes. Although the pathologic mechanisms were related to vitamin B12, the severity and prognosis of renal lesions were different. Therefore, gene detection provides new insights into inherited metabolic diseases.
Collapse
Affiliation(s)
- Ru-Yue Chen
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiao-Zhong Li
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Qiang Lin
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yun Zhu
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yun-Yan Shen
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qin-Ying Xu
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xue-Ming Zhu
- Department of Pathology, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Lin-Qi Chen
- Department of Endocrinology, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hai-Ying Wu
- Department of Endocrinology, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xu-Qin Chen
- Department of Neurology, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
47
|
Catalytic specificity of the Lactobacillus plantarum cystathionine γ-lyase presumed by the crystallographic analysis. Sci Rep 2020; 10:14886. [PMID: 32913258 PMCID: PMC7483736 DOI: 10.1038/s41598-020-71756-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/05/2020] [Indexed: 11/17/2022] Open
Abstract
The reverse transsulfuration pathway, which is composed of cystathionine β-synthase (CBS) and cystathionine γ-lyase (CGL), plays a role to synthesize l-cysteine using l-serine and the sulfur atom in l-methionine. A plant-derived lactic acid bacterium Lactobacillus plantarum SN35N has been previously found to harbor the gene cluster encoding the CBS- and CGL-like enzymes. In addition, it has been demonstrated that the L. plantarum CBS can synthesize cystathionine from O-acetyl-l-serine and l-homocysteine. The aim of this study is to characterize the enzymatic functions of the L. plantarum CGL. We have found that the enzyme has the high γ-lyase activity toward cystathionine to generate l-cysteine, together with the β-lyase activity toward l-cystine to generate l-cysteine persulfide. By the crystallographic analysis of the inactive CGL K194A mutant complexed with cystathionine, we have found the residues which recognize the distal amino and carboxyl groups of cystathionine or l-cystine. The PLP-bound substrates at the active site may take either the binding pose for the γ- or β-elimination reaction, with the former being the major reaction in the case of cystathionine.
Collapse
|
48
|
No Effect of Diet-Induced Mild Hyperhomocysteinemia on Vascular Methylating Capacity, Atherosclerosis Progression, and Specific Histone Methylation. Nutrients 2020; 12:nu12082182. [PMID: 32717800 PMCID: PMC7468910 DOI: 10.3390/nu12082182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023] Open
Abstract
Hyperhomocysteinemia (HHcy) is a risk factor for atherosclerosis through mechanisms which are still incompletely defined. One possible mechanism involves the hypomethylation of the nuclear histone proteins to favor the progression of atherosclerosis. In previous cell studies, hypomethylating stress decreased a specific epigenetic tag (the trimethylation of lysine 27 on histone H3, H3K27me3) to promote endothelial dysfunction and activation, i.e., an atherogenic phenotype. Here, we conducted a pilot study to investigate the impact of mild HHcy on vascular methylating index, atherosclerosis progression and H3K27me3 aortic content in apolipoprotein E-deficient (ApoE -/-) mice. In two different sets of experiments, male mice were fed high-fat, low in methyl donors (HFLM), or control (HF) diets for 16 (Study A) or 12 (Study B) weeks. At multiple time points, plasma was collected for (1) quantification of total homocysteine (tHcy) by high-performance liquid chromatography; or (2) the methylation index of S-adenosylmethionine to S-adenosylhomocysteine (SAM:SAH ratio) by liquid chromatography tandem-mass spectrometry; or (3) a panel of inflammatory cytokines previously implicated in atherosclerosis by a multiplex assay. At the end point, aortas were collected and used to assess (1) the methylating index (SAM:SAH ratio); (2) the volume of aortic atherosclerotic plaque assessed by high field magnetic resonance imaging; and (3) the vascular content of H3K27me3 by immunohistochemistry. The results showed that, in both studies, HFLM-fed mice, but not those mice fed control diets, accumulated mildly elevated tHcy plasmatic concentrations. However, the pattern of changes in the inflammatory cytokines did not support a major difference in systemic inflammation between these groups. Accordingly, in both studies, no significant differences were detected for the aortic methylating index, plaque burden, and H3K27me3 vascular content between HF and HFLM-fed mice. Surprisingly however, a decreased plasma SAM: SAH was also observed, suggesting that the plasma compartment does not always reflect the vascular concentrations of these two metabolites, at least in this model. Mild HHcy in vivo was not be sufficient to induce vascular hypomethylating stress or the progression of atherosclerosis, suggesting that only higher accumulations of plasma tHcy will exhibit vascular toxicity and promote specific epigenetic dysregulation.
Collapse
|
49
|
Lee KT, Teoh CS, Chew TK, Goh AS. Microangiopathic haemolytic anaemia and thrombocytopenia due to combined vitamin B12 and folate deficiency masquerading as thrombotic thrombocytopenic purpura. J R Coll Physicians Edinb 2020; 50:144-147. [PMID: 32568285 DOI: 10.4997/jrcpe.2020.213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Vitamin B12 deficiency and folate deficiency are common causes of macrocytic anaemia and both are important for many cellular processes. These deficiencies could be due to inadequate dietary intake, impaired absorption or drug ingestion. We present a case of a 47-year-old male with a history of diffuse large B-cell lymphoma (DLBCL) who was admitted for fatigue, persistent frontal headache and left upper-quadrant abdominal pain. Further investigation showed that he had pancytopenia with microangiopathic haemolytic anaemia (MAHA) and intracranial bleeding (ICB). Serum vitamin B12 and folate were later found to be low and a diagnosis of combined vitamin B12 and folate deficiency mimicking thrombotic thrombocytopenic purpura (TTP) was made. The patient responded well to vitamin B12 and folate replacement.
Collapse
Affiliation(s)
- Kee Tat Lee
- Department of Medicine, Hospital Pulau Pinang, Jalan Residensi, 10990 Georgetown, Pulau Pinang, Malaysia,
| | - Ching Soon Teoh
- Hematology unit, Department of Medicine, Hospital Pulau Pinang, Pulau Pinang, Malaysia
| | - Teng Keat Chew
- Hematology unit, Department of Medicine, Hospital Pulau Pinang, Pulau Pinang, Malaysia
| | - Ai Sim Goh
- Hematology unit, Department of Medicine, Hospital Pulau Pinang, Pulau Pinang, Malaysia
| |
Collapse
|
50
|
Abato JE, Moftah M, Cron GO, Smith PD, Jadavji NM. Methylenetetrahydrofolate reductase deficiency alters cellular response after ischemic stroke in male mice. Nutr Neurosci 2020; 25:558-566. [PMID: 32448097 DOI: 10.1080/1028415x.2020.1769412] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Objective: Elevated homocysteine concentrations are a risk factor for stroke. A common genetic polymorphism in methylenetetrahydrofolate reductase (MTHFR 677 C→T) results in elevated levels of homocysteine. MTHFR plays a critical role in the synthesis of S-adenosylmethionine (SAM), a global methyl donor. Our previous work has demonstrated that Mthfr+/- mice, which model the MTHFR polymorphism in humans, are more vulnerable to ischemic damage. The aim of this study was to investigate the cellular mechanisms by which the MTHFR-deficiency changes the brain in the context of ischemic stroke injury.Methods: In the present study, three-month-old male Mthfr+/- and wild-type littermate mice were subjected to photothrombosis (PT) damage. Four weeks after PT damage, animals were tested on behavioral tasks, in vivo imaging was performed using T2-weighted MRI, and brain tissue was collected for histological analysis.Results: Mthfr+/- animals used their non-impaired forepaw more to explore the cylinder and had a larger damage volume compared to wild-type littermates. In brain tissue of Mthfr+/- mice methionine adenosyltransferase II alpha (MAT2A) protein levels were decreased within the damage hemisphere and increased levels in hypoxia-induced factor 1 alpha (HIF-1α) in non-damage hemisphere. There was an increased antioxidant response in the damage site as indicated by higher levels of nuclear factor erythroid 2-related factor 2 (Nrf2) in neurons and astrocytes and neuronal superoxide dismutase 2 (SOD2) levels.Conclusions: Our results suggest that Mthfr+/- mice are more vulnerable to PT-induced stroke damage through the regulation of the cellular response. The increased antioxidant response we observed may be compensatory to the damage amount.
Collapse
Affiliation(s)
- Jamie E Abato
- Department of Biomedical Sciences, Midwestern University, Glendale, AZ, USA
| | - Mahira Moftah
- Department of Neuroscience, Carleton University, Ottawa, Canada
| | - Greg O Cron
- Department of Radiology, University of Ottawa, Ottawa, Canada.,The Ottawa Hospital Research Institute, Ottawa, Canada.,Department of Medical Imaging, The Ottawa Hospital, Ottawa, Canada
| | - Patrice D Smith
- Department of Neuroscience, Carleton University, Ottawa, Canada
| | - Nafisa M Jadavji
- Department of Biomedical Sciences, Midwestern University, Glendale, AZ, USA.,Department of Neuroscience, Carleton University, Ottawa, Canada
| |
Collapse
|