1
|
Mathew J, Adhia DB, Smith ML, De Ridder D, Mani R. Closed-Loop Infraslow Brain-Computer Interface can Modulate Cortical Activity and Connectivity in Individuals With Chronic Painful Knee Osteoarthritis: A Secondary Analysis of a Randomized Placebo-Controlled Clinical Trial. Clin EEG Neurosci 2024:15500594241264892. [PMID: 39056313 DOI: 10.1177/15500594241264892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Introduction. Chronic pain is a percept due to an imbalance in the activity between sensory-discriminative, motivational-affective, and descending pain-inhibitory brain regions. Evidence suggests that electroencephalography (EEG) infraslow fluctuation neurofeedback (ISF-NF) training can improve clinical outcomes. It is unknown whether such training can induce EEG activity and functional connectivity (FC) changes. A secondary data analysis of a feasibility clinical trial was conducted to determine whether EEG ISF-NF training can significantly alter EEG activity and FC between the targeted cortical regions in people with chronic painful knee osteoarthritis (OA). Methods. A parallel, two-arm, double-blind, randomized, sham-controlled clinical trial was conducted. People with chronic knee pain associated with OA were randomized to receive sham NF training or source-localized ratio ISF-NF training protocol to down-train ISF bands at the somatosensory (SSC), dorsal anterior cingulate (dACC), and uptrain pregenual anterior cingulate cortices (pgACC). Resting state EEG was recorded at baseline and immediate post-training. Results. The source localization mapping demonstrated a reduction (P = .04) in the ISF band activity at the left dorsolateral prefrontal cortex (LdlPFC) in the active NF group. Region of interest analysis yielded significant differences for ISF (P = .008), slow (P = .007), beta (P = .043), and gamma (P = .012) band activities at LdlPFC, dACC, and bilateral SSC. The FC between pgACC and left SSC in the delta band was negatively correlated with pain bothersomeness in the ISF-NF group. Conclusion. The EEG ISF-NF training can modulate EEG activity and connectivity in individuals with chronic painful knee osteoarthritis, and the observed EEG changes correlate with clinical pain measures.
Collapse
Affiliation(s)
- Jerin Mathew
- Centre for Health, Activity, and Rehabilitation Research, School of Physiotherapy, University of Otago, Dunedin, New Zealand
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Pain@Otago Research Theme, University of Otago, Dunedin, New Zealand
| | - Divya Bharatkumar Adhia
- Pain@Otago Research Theme, University of Otago, Dunedin, New Zealand
- Division of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | | | - Dirk De Ridder
- Pain@Otago Research Theme, University of Otago, Dunedin, New Zealand
- Division of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Ramakrishnan Mani
- Centre for Health, Activity, and Rehabilitation Research, School of Physiotherapy, University of Otago, Dunedin, New Zealand
- Pain@Otago Research Theme, University of Otago, Dunedin, New Zealand
| |
Collapse
|
2
|
Annarumma L, Reda F, Scarpelli S, D'Atri A, Alfonsi V, Salfi F, Viselli L, Pazzaglia M, De Gennaro L, Gorgoni M. Spatiotemporal EEG dynamics of the sleep onset process in preadolescence. Sleep Med 2024; 119:438-450. [PMID: 38781667 DOI: 10.1016/j.sleep.2024.05.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND During preadolescence the sleep electroencephalography undergoes massive qualitative and quantitative modifications. Despite these relevant age-related peculiarities, the specific EEG pattern of the wake-sleep transition in preadolescence has not been exhaustively described. METHODS The aim of the present study is to characterize regional and temporal electrophysiological features of the sleep onset (SO) process in a group of 23 preadolescents (9-14 years) and to compare the topographical pattern of slow wave activity and delta/beta ratio of preadolescents with the EEG pattern of young adults. RESULTS Results showed in preadolescence the same dynamics known for adults, but with peculiarities in the delta and beta activity, likely associated with developmental cerebral modifications: the delta power showed a widespread increase during the SO with central maxima, and the lower bins of the beta activity showed a power increase after SO. Compared to adults, preadolescents during the SO exhibited higher delta power only in the slowest bins of the band: before SO slow delta activity was higher in prefrontal, frontal and occipital areas in preadolescents, and, after SO the younger group had higher slow delta activity in occipital areas. In preadolescents delta/beta ratio was higher in more posterior areas both before and after the wake-sleep transition and, after SO, preadolescents showed also a lower delta/beta ratio in frontal areas, compared to adults. CONCLUSION Results point to a general higher homeostatic drive for the developing areas, consistently with plastic-related maturational modifications, that physiologically occur during preadolescence.
Collapse
Affiliation(s)
- Ludovica Annarumma
- Body and Action Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179, Rome, Italy
| | - Flaminia Reda
- SIPRE, Società Italiana di psicoanalisi Della Relazione, Italy
| | - Serena Scarpelli
- Department of Psychology, Sapienza University of Rome, Via Dei Marsi 78, 00185, Rome, Italy
| | - Aurora D'Atri
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100, L'Aquila, Italy
| | - Valentina Alfonsi
- Department of Psychology, Sapienza University of Rome, Via Dei Marsi 78, 00185, Rome, Italy
| | - Federico Salfi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100, L'Aquila, Italy
| | - Lorenzo Viselli
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100, L'Aquila, Italy
| | - Mariella Pazzaglia
- Body and Action Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179, Rome, Italy; Department of Psychology, Sapienza University of Rome, Via Dei Marsi 78, 00185, Rome, Italy
| | - Luigi De Gennaro
- Body and Action Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179, Rome, Italy; Department of Psychology, Sapienza University of Rome, Via Dei Marsi 78, 00185, Rome, Italy
| | - Maurizio Gorgoni
- Body and Action Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179, Rome, Italy; Department of Psychology, Sapienza University of Rome, Via Dei Marsi 78, 00185, Rome, Italy.
| |
Collapse
|
3
|
Belali R, Mard SA, Khoshnam SE, Bavarsad K, Sarkaki A, Farbood Y. Anandamide Attenuates Neurobehavioral Deficits and EEG Irregularities in the Chronic Sleep Deprivation Rats: The Role of Oxidative Stress and Neuroinflammation. Neurochem Res 2024; 49:1541-1555. [PMID: 37966567 DOI: 10.1007/s11064-023-04054-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 10/10/2023] [Accepted: 10/20/2023] [Indexed: 11/16/2023]
Abstract
Sleep deprivation increases stress, anxiety, and depression by altering the endocannabinoid system's function. In the present study, we aimed to investigate the anti-anxiety and anti-depressant effects of the endocannabinoid anandamide (AEA) in the chronic sleep deprivation (SD) model in rats. Adult male Wistar rats (200-250 g) were randomly divided into three groups: control + vehicle (Control), chronic sleep deprivation + vehicle (SD), and chronic sleep deprivation + 20 mg/kg AEA (SD + A). The rats were kept in a sleep deprivation device for 18 h (7 to 1 a.m.) daily for 21 days. Open-field (OFT), elevated plus maze, and forced swimming tests (FST) were used to assess anxiety and depression-like behavior. As well as the cortical EEG, CB1R mRNA expression, TNF-α, IL-6, IL-4 levels, and antioxidant activity in the brain were examined following SD induction. AEA administration significantly increased the time spent (p < 0.01), the distance traveled in the central zone (p < 0.001), and the number of climbing (p < 0.05) in the OFT; it also increased the duration and number of entries into the open arms (p < 0.01 and p < 0.05 respectively), and did not reduce immobility time in the FST (p > 0.05), AEA increased CB1R mRNA expression in the anterior and medial parts of the brain (p < 0.01), and IL-4 levels (p < 0.05). AEA also reduced IL-6 and TNF-α (p < 0.05) and modulated cortical EEG. AEA induced anxiolytic-like effects but not anti-depressant effects in the SD model in rats by modulating CB1R mRNA expression, cortical EEG, and inflammatory response.
Collapse
Affiliation(s)
- Rafie Belali
- Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyyed Ali Mard
- Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Kowsar Bavarsad
- Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Sarkaki
- Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Yaghoob Farbood
- Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
4
|
Mathew J, Adhia DB, Hall M, De Ridder D, Mani R. EEG-Based Cortical Alterations in Individuals With Chronic Knee Pain Secondary to Osteoarthritis: A Cross-sectional Investigation. THE JOURNAL OF PAIN 2024; 25:104429. [PMID: 37989404 DOI: 10.1016/j.jpain.2023.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 11/05/2023] [Accepted: 11/10/2023] [Indexed: 11/23/2023]
Abstract
Chronic painful knee osteoarthritis (OA) is a disabling physical health condition. Alterations in brain responses to arthritic changes in the knee may explain persistent pain. This study investigated source localized, resting-state electroencephalography activity and functional connectivity in people with knee OA, compared to healthy controls. Adults aged 44 to 85 years with knee OA (n = 37) and healthy control (n = 39) were recruited. Resting-state electroencephalography was collected for 10 minutes and decomposed into infraslow frequency (ISF) to gamma frequency bands. Standard low-resolution electromagnetic brain tomography statistical nonparametric maps were conducted, current densities of regions of interest were compared between groups and correlation analyses were performed between electroencephalography (EEG) measures and clinical pain and functional outcomes in the knee OA group. Standard low-resolution electromagnetic brain tomography nonparametric maps revealed higher (P = .006) gamma band activity over the right insula (RIns) in the knee OA group. A significant (P < .0001) reduction in ISF band activity at the pregenual anterior cingulate cortex, whereas higher theta, alpha, beta, and gamma band activity at the dorsal anterior cingulate cortex, pregenual anterior cingulate cortex, the somatosensory cortex, and RIns in the knee OA group were identified. ISF activity of the dorsal anterior cingulate cortex was positively correlated with pain measures and psychological distress scores. Theta and alpha activity of RIns were negatively correlated with pain interference. In conclusion, aberrations in infraslow and faster frequency EEG oscillations at sensory discriminative, motivational-affective, and descending inhibitory cortical regions were demonstrated in people with chronic painful knee OA. Moreover, EEG oscillations were correlated with pain and functional outcome measures. PERSPECTIVE: This study confirms alterations in the rsEEG oscillations and its relationship with pain experience in people with knee OA. The study provides potential cortical targets and the EEG frequency bands for neuromodulatory interventions for managing chronic pain experience in knee OA.
Collapse
Affiliation(s)
- Jerin Mathew
- Centre for Health, Activity, and Rehabilitation Research, School of Physiotherapy, University of Otago, New Zealand; Department of Anatomy, School of Biomedical Sciences, University of Otago, New Zealand; Pain@Otago Research Theme, University of Otago, New Zealand
| | - Divya B Adhia
- Pain@Otago Research Theme, University of Otago, New Zealand; Division of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, New Zealand
| | - Matthew Hall
- Division of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, New Zealand
| | - Dirk De Ridder
- Pain@Otago Research Theme, University of Otago, New Zealand; Division of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, New Zealand
| | - Ramakrishnan Mani
- Centre for Health, Activity, and Rehabilitation Research, School of Physiotherapy, University of Otago, New Zealand; Pain@Otago Research Theme, University of Otago, New Zealand
| |
Collapse
|
5
|
Champetier P, André C, Rehel S, Ourry V, Landeau B, Mézenge F, Roquet D, Vivien D, de La Sayette V, Chételat G, Rauchs G. Multimodal neuroimaging correlates of spectral power in NREM sleep delta sub-bands in cognitively unimpaired older adults. Sleep 2024; 47:zsae012. [PMID: 38227830 PMCID: PMC11009032 DOI: 10.1093/sleep/zsae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/27/2023] [Indexed: 01/18/2024] Open
Abstract
STUDY OBJECTIVES In aging, reduced delta power (0.5-4 Hz) during N2 and N3 sleep has been associated with gray matter (GM) atrophy and hypometabolism within frontal regions. Some studies have also reported associations between N2 and N3 sleep delta power in specific sub-bands and amyloid pathology. Our objective was to better understand the relationships between spectral power in delta sub-bands during N2-N3 sleep and brain integrity using multimodal neuroimaging. METHODS In-home polysomnography was performed in 127 cognitively unimpaired older adults (mean age ± SD: 69.0 ± 3.8 years). N2-N3 sleep EEG power was calculated in delta (0.5-4 Hz), slow delta (0.5-1 Hz), and fast delta (1-4 Hz) frequency bands. Participants also underwent magnetic resonance imaging and Florbetapir-PET (early and late acquisitions) scans to assess GM volume, brain perfusion, and amyloid burden. Amyloid accumulation over ~21 months was also quantified. RESULTS Higher delta power was associated with higher GM volume mainly in fronto-cingular regions. Specifically, slow delta power was positively correlated with GM volume and perfusion in these regions, while the inverse association was observed with fast delta power. Delta power was neither associated with amyloid burden at baseline nor its accumulation over time, whatever the frequency band considered. CONCLUSIONS Our results show that slow delta is particularly associated with preserved brain structure, and highlight the importance of analyzing delta power sub-bands to better understand the associations between delta power and brain integrity. Further longitudinal investigations with long follow-ups are needed to disentangle the associations among sleep, amyloid pathology, and dementia risk in older populations. CLINICAL TRIAL INFORMATION Name: Study in Cognitively Intact Seniors Aiming to Assess the Effects of Meditation Training (Age-Well). URL: https://clinicaltrials.gov/ct2/show/NCT02977819?term=Age-Well&draw=2&rank=1. See STROBE_statement_AGEWELL in supplemental materials. REGISTRATION EudraCT: 2016-002441-36; IDRCB: 2016-A01767-44; ClinicalTrials.gov Identifier: NCT02977819.
Collapse
Affiliation(s)
- Pierre Champetier
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND “Physiopathology and Imaging of Neurological Disorders,” NeuroPresage Team, Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, 14000 Caen, France
- Normandie Univ, UNICAEN, PSL Université, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, NIMH, 14000 Caen, France
| | - Claire André
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND “Physiopathology and Imaging of Neurological Disorders,” NeuroPresage Team, Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, 14000 Caen, France
| | - Stéphane Rehel
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND “Physiopathology and Imaging of Neurological Disorders,” NeuroPresage Team, Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, 14000 Caen, France
- Normandie Univ, UNICAEN, PSL Université, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, NIMH, 14000 Caen, France
| | - Valentin Ourry
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND “Physiopathology and Imaging of Neurological Disorders,” NeuroPresage Team, Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, 14000 Caen, France
- Normandie Univ, UNICAEN, PSL Université, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, NIMH, 14000 Caen, France
| | - Brigitte Landeau
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND “Physiopathology and Imaging of Neurological Disorders,” NeuroPresage Team, Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, 14000 Caen, France
| | - Florence Mézenge
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND “Physiopathology and Imaging of Neurological Disorders,” NeuroPresage Team, Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, 14000 Caen, France
| | - Daniel Roquet
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND “Physiopathology and Imaging of Neurological Disorders,” NeuroPresage Team, Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, 14000 Caen, France
| | - Denis Vivien
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND “Physiopathology and Imaging of Neurological Disorders,” NeuroPresage Team, Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, 14000 Caen, France
- Département de Recherche Clinique, CHU Caen-Normandie, Caen, France
| | | | - Gaël Chételat
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND “Physiopathology and Imaging of Neurological Disorders,” NeuroPresage Team, Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, 14000 Caen, France
| | - Géraldine Rauchs
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND “Physiopathology and Imaging of Neurological Disorders,” NeuroPresage Team, Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, 14000 Caen, France
| |
Collapse
|
6
|
Studler M, Gianotti LRR, Lobmaier J, Maric A, Knoch D. Human Prosocial Preferences Are Related to Slow-Wave Activity in Sleep. J Neurosci 2024; 44:e0885232024. [PMID: 38467433 PMCID: PMC11007317 DOI: 10.1523/jneurosci.0885-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 03/13/2024] Open
Abstract
Prosocial behavior is crucial for the smooth functioning of the society. Yet, individuals differ vastly in the propensity to behave prosocially. Here, we try to explain these individual differences under normal sleep conditions without any experimental modulation of sleep. Using a portable high-density EEG, we measured the sleep data in 54 healthy adults (28 females) during a normal night's sleep at the participants' homes. To capture prosocial preferences, participants played an incentivized public goods game in which they faced real monetary consequences. The whole-brain analyses showed that a higher relative slow-wave activity (SWA, an indicator of sleep depth) in a cluster of electrodes over the right temporoparietal junction (TPJ) was associated with increased prosocial preferences. Source localization and current source density analyses further support these findings. Recent sleep deprivation studies imply that sleeping enough makes us more prosocial; the present findings suggest that it is not only sleep duration, but particularly sufficient sleep depth in the TPJ that is positively related to prosociality. Because the TPJ plays a central role in social cognitive functions, we speculate that sleep depth in the TPJ, as reflected by relative SWA, might serve as a dispositional indicator of social cognition ability, which is reflected in prosocial preferences. These findings contribute to the emerging framework explaining the link between sleep and prosocial behavior by shedding light on the underlying mechanisms.
Collapse
Affiliation(s)
- Mirjam Studler
- Department of Social Neuroscience and Social Psychology, Institute of Psychology, University of Bern, Bern 3012, Switzerland
| | - Lorena R R Gianotti
- Department of Social Neuroscience and Social Psychology, Institute of Psychology, University of Bern, Bern 3012, Switzerland
| | - Janek Lobmaier
- Department of Social Neuroscience and Social Psychology, Institute of Psychology, University of Bern, Bern 3012, Switzerland
| | - Angelina Maric
- Department of Neurology, University Hospital Zurich, University of Zurich, Zurich 8091, Switzerland
| | - Daria Knoch
- Department of Social Neuroscience and Social Psychology, Institute of Psychology, University of Bern, Bern 3012, Switzerland
| |
Collapse
|
7
|
Weiner OM, O'Byrne J, Cross NE, Giraud J, Tarelli L, Yue V, Homer L, Walker K, Carbone R, Dang-Vu TT. Slow oscillation-spindle cross-frequency coupling predicts overnight declarative memory consolidation in older adults. Eur J Neurosci 2024; 59:662-685. [PMID: 37002805 DOI: 10.1111/ejn.15980] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/06/2023] [Accepted: 03/24/2023] [Indexed: 04/04/2023]
Abstract
Cross-frequency coupling (CFC) between brain oscillations during non-rapid-eye-movement (NREM) sleep (e.g. slow oscillations [SO] and spindles) may be a neural mechanism of overnight memory consolidation. Declines in CFC across the lifespan might accompany coinciding memory problems with ageing. However, there are few reports of CFC changes during sleep after learning in older adults, controlling for baseline effects. Our objective was to examine NREM CFC in healthy older adults, with an emphasis on spindle activity and SOs from frontal electroencephalogram (EEG), during a learning night after a declarative learning task, as compared to a baseline night without learning. Twenty-five older adults (M [SD] age = 69.12 [5.53] years; 64% female) completed a two-night study, with a pre- and post-sleep word-pair associates task completed on the second night. SO-spindle coupling strength and a measure of coupling phase distance from the SO up-state were both examined for between-night differences and associations with memory consolidation. Coupling strength and phase distance from the up-state peak were both stable between nights. Change in coupling strength between nights was not associated with memory consolidation, but a shift in coupling phase towards (vs. away from) the up-state peak after learning predicted better memory consolidation. Also, an exploratory interaction model suggested that associations between coupling phase closer to the up-state peak and memory consolidation may be moderated by higher (vs. lower) coupling strength. This study supports a role for NREM CFC in sleep-related memory consolidation in older adults.
Collapse
Affiliation(s)
- Oren M Weiner
- PERFORM Centre and Center for Studies in Behavioural Neurobiology, Department of Psychology and Department of Health, Kinesiology, and Applied Physiology, Concordia University, Montréal, Quebec, Canada
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, CIUSSS Centre-Sud-de-l'île-de-Montréal, Montréal, Quebec, Canada
| | - Jordan O'Byrne
- PERFORM Centre and Center for Studies in Behavioural Neurobiology, Department of Psychology and Department of Health, Kinesiology, and Applied Physiology, Concordia University, Montréal, Quebec, Canada
- Department of Psychology, Université de Montréal, Montréal, Quebec, Canada
| | - Nathan E Cross
- PERFORM Centre and Center for Studies in Behavioural Neurobiology, Department of Psychology and Department of Health, Kinesiology, and Applied Physiology, Concordia University, Montréal, Quebec, Canada
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, CIUSSS Centre-Sud-de-l'île-de-Montréal, Montréal, Quebec, Canada
| | - Julia Giraud
- Department of Neurosciences, Université de Montréal, Montréal, Quebec, Canada
| | - Lukia Tarelli
- PERFORM Centre and Center for Studies in Behavioural Neurobiology, Department of Psychology and Department of Health, Kinesiology, and Applied Physiology, Concordia University, Montréal, Quebec, Canada
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, CIUSSS Centre-Sud-de-l'île-de-Montréal, Montréal, Quebec, Canada
| | - Victoria Yue
- PERFORM Centre and Center for Studies in Behavioural Neurobiology, Department of Psychology and Department of Health, Kinesiology, and Applied Physiology, Concordia University, Montréal, Quebec, Canada
| | - Léa Homer
- PERFORM Centre and Center for Studies in Behavioural Neurobiology, Department of Psychology and Department of Health, Kinesiology, and Applied Physiology, Concordia University, Montréal, Quebec, Canada
| | - Katherine Walker
- PERFORM Centre and Center for Studies in Behavioural Neurobiology, Department of Psychology and Department of Health, Kinesiology, and Applied Physiology, Concordia University, Montréal, Quebec, Canada
| | - Roxanne Carbone
- PERFORM Centre and Center for Studies in Behavioural Neurobiology, Department of Psychology and Department of Health, Kinesiology, and Applied Physiology, Concordia University, Montréal, Quebec, Canada
| | - Thien Thanh Dang-Vu
- PERFORM Centre and Center for Studies in Behavioural Neurobiology, Department of Psychology and Department of Health, Kinesiology, and Applied Physiology, Concordia University, Montréal, Quebec, Canada
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, CIUSSS Centre-Sud-de-l'île-de-Montréal, Montréal, Quebec, Canada
- Department of Neurosciences, Université de Montréal, Montréal, Quebec, Canada
| |
Collapse
|
8
|
Zhao Y, Wang D, Wang X, Jin Q, Gao X. Differential effects of specific emotions on spatial decision-making: evidence from cross-frequency functionally independent brain networks. Cereb Cortex 2024; 34:bhad541. [PMID: 38236728 DOI: 10.1093/cercor/bhad541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 02/06/2024] Open
Abstract
Emotions significantly shape the way humans make decisions. However, the underlying neural mechanisms of this influence remain elusive. In this study, we designed an experiment to investigate how emotions (specifically happiness, fear, and sadness) impact spatial decision-making, utilizing EEG data. To address the inherent limitations of sensor-level investigations previously conducted, we employed standard low-resolution brain electromagnetic tomography and functional independent component analysis to analyze the EEG data at the cortical source level. Our findings showed that across various spectral-spatial networks, positive emotion activated the decision-making network in the left middle temporal gyrus and inferior temporal gyrus, in contrast to negative emotions. We also identified the common spectral-spatial networks and observed significant differences in network strength across emotions. These insights further revealed the important role of the gamma-band prefrontal network. Our research provides a basis for deciphering the roles of brain networks in the impact of emotions on decision-making.
Collapse
Affiliation(s)
- Yanyan Zhao
- The State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- The School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Danli Wang
- The State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- The School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinyuan Wang
- The State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- The School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiao Jin
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, United States
| | - Xuange Gao
- The State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- The School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
9
|
Wilckens KA, Habte RF, Dong Y, Stepan ME, Dessa KM, Whitehead AB, Peng CW, Fletcher ME, Buysse DJ. A pilot time-in-bed restriction intervention behaviorally enhances slow-wave activity in older adults. FRONTIERS IN SLEEP 2024; 2:1265006. [PMID: 38938690 PMCID: PMC11210605 DOI: 10.3389/frsle.2023.1265006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Introduction Identifying intervention methods that target sleep characteristics involved in memory processing is a priority for the field of cognitive aging. Older adults with greater sleep efficiency and non-rapid eye movement slow-wave activity (SWA) (0.5-4 Hz electroencephalographic activity) tend to exhibit better memory and cognitive abilities. Paradoxically, long total sleep times are consistently associated with poorer cognition in older adults. Thus, maximizing sleep efficiency and SWA may be a priority relative to increasing mere total sleep time. As clinical behavioral sleep treatments do not consistently enhance SWA, and propensity for SWA increases with time spent awake, we examined with a proof-of concept pilot intervention whether a greater dose of time-in-bed (TiB) restriction (75% of habitual TiB) would increase both sleep efficiency and SWA in older adults with difficulties staying asleep without impairing memory performance. Methods Participants were adults ages 55-80 with diary-reported sleep efficiency <90% and wake after sleep onset (WASO) >20 min. Sleep diary, actigraphy, polysomnography (PSG), and paired associate memory acquisition and retention were assessed before and after a week-long TiB restriction intervention (n = 30). TiB was restricted to 75% of diary-reported habitual TiB. A comparison group of n = 5 participants repeated assessments while following their usual sleep schedule to obtain preliminary estimates of effect sizes associated with repeated testing. Results Subjective and objective sleep measures robustly improved in the TiB restriction group for sleep quality, sleep depth, sleep efficiency and WASO, at the expense of TiB and time spent in N1 and N2 sleep. As hypothesized, SWA increased robustly with TiB restriction across the 0.5-4 Hz range, as well as subjective sleep depth, subjective and objective WASO. Despite increases in sleepiness ratings, no impairments were found in memory acquisition or retention. Conclusion A TiB restriction dose equivalent to 75% of habitual TiB robustly increased sleep continuity and SWA in older adults with sleep maintenance difficulties, without impairing memory performance. These findings may inform long-term behavioral SWA enhancement interventions aimed at improving memory performance and risk for cognitive impairments.
Collapse
Affiliation(s)
| | - Rima F. Habte
- Department of Psychiatry, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Yue Dong
- School of Nursing, University of Pittsburgh, Pittsburgh, PA, United States
| | - Michelle E. Stepan
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kibra M. Dessa
- Department of Psychiatry, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Alexis B. Whitehead
- Department of Psychiatry, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Christine W. Peng
- Department of Psychiatry, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Mary E. Fletcher
- Department of Psychiatry, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Daniel J. Buysse
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
10
|
Wu X, Yang J, Shao Y, Chen X. Mental fatigue assessment by an arbitrary channel EEG based on morphological features and LSTM-CNN. Comput Biol Med 2023; 167:107652. [PMID: 37950945 DOI: 10.1016/j.compbiomed.2023.107652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 10/05/2023] [Accepted: 10/31/2023] [Indexed: 11/13/2023]
Abstract
In order to achieve more sensitive mental fatigue assessment (MFA) based on an arbitrary channel EEG, this study proposed a series of feature extraction methods that combine mathematical morphology (MM), as well as an LSTM-CNN architecture. Firstly, 37 subjects had their resting-state EEGs collected at rested wakefulness (RW) and after 24 h of sleep deprivation (SD) using a 30-channel EEG acquisition device, the RW and SD groups were regarded as the negative and positive groups of mental fatigue, respectively, and the EEG collection were further categorized into two conditions: eye-opened state (EO) and eye-closed state (EC). Then, since MM can reflect the morphological characteristics of EEG rhythms and their potentials relatively independently of the time-frequency analysis and phase calculation, the MM methods were found to better reflect the mental fatigue after SD statistically, whether for single features (ANOVA: p<0.000001), multiple features (clustering by K-means, t-test: p<0.01), or time series feature spaces (calculating CD, t-test: p<0.01) of a single channel. Finally, the LSTM-CNN enhanced the generalization ability when dealing with different single-channel EEG by combining GRUs with convolutional layers: comparing the AUCs of different architectures for MFA based on an arbitrary channel, LSTM-CNN (0.992) > LSTM network (0.94) > CNN (0.831) > MLP (0.754). Moreover, the use of MM also improved the accuracy of analyzed architectures, and the true/false positive rate (TPR/FPR) of the LSTM-CNN architecture for MFA based on an arbitrary channel reached 97.024 %/3.497 %, which provided a feasible solution for the arbitrary channel EEG-based MFA.
Collapse
Affiliation(s)
- Xiaolong Wu
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing, China; Shunde Innovation School, University of Science and Technology Beijing, Guangdong, China
| | - Jianhong Yang
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing, China; Shunde Innovation School, University of Science and Technology Beijing, Guangdong, China; Technical Support Center for Prevention and Control of Disastrous Accidents in Metal Smelting, University of Science and Technology Beijing, Beijing, China.
| | - Yongcong Shao
- School of Psychology, Beijing Sport University, Beijing, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, China
| | - Xuewei Chen
- Institute of Environmental and Operational Medicine, Academy of Military Sciences, Tianjin, China
| |
Collapse
|
11
|
Chong CS, Tan JK, Ng BH, Lin ABY, Khoo CS, Rajah R, Hod R, Tan HJ. The prevalence and predictors of poor sleep quality and excessive daytime sleepiness in epilepsy: A single tertiary centre experience in Malaysia. J Clin Neurosci 2023; 118:132-142. [PMID: 37935067 DOI: 10.1016/j.jocn.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/09/2023] [Accepted: 10/22/2023] [Indexed: 11/09/2023]
Abstract
BACKGROUND AND OBJECTIVE People with epilepsy frequently encounter sleep disruptions that can stem from a variety of complex factors. Epilepsy-related sleep disturbance can lead to reduced quality of life and excessive daytime hypersomnolence. Identification of sleep disturbances may help in the overall management of epilepsy patients. This study was conducted to determine the prevalence and predictors of poor sleep quality and daytime sleepiness in epilepsy. METHODS A cross-sectional study on 284 epilepsy patients was performed in a local tertiary centre. The demographic and clinical epilepsy data were collected. The Pittsburgh Sleep Quality Index (PSQI) and Epworth Sleepiness Scale (ESS) questionnaires were utilised to determine the quality of life and daytime hypersomnolence of epilepsy patients, respectively. RESULTS Poor sleep quality was reported in 78 (27.5%) patients while daytime hypersomnolence was present in 17 (6%) patients. The predictors of poor sleep quality include structural causes (OR = 2.749; 95% CI: 1.436, 5.264, p = 0.002), generalised seizures (OR = 1.959, 95% CI: 1.04, 3.689, p = 0.037), and antiseizure medications such as Carbamazepine (OR = 2.34; 95% CI: 1.095, 5.001, p = 0.028) and Topiramate (OR 2.487; 95% CI: 1.028, 6.014, p = 0.043). Females are 3.797 times more likely score higher in ESS assessment (OR 3.797; 95% CI: 1.064, 13.555 p = 0.04). DISCUSSION Sleep disturbances frequently coexist with epilepsy. Patients should be actively evaluated using the PSQI and ESS questionnaires. It is imperative to identify the key factors that lead to reduced sleep quality and heightened daytime sleepiness in patients with epilepsy, as this is essential to properly manage their condition.
Collapse
Affiliation(s)
- Chee Sing Chong
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia; Hospital Canselor Tuanku Muhriz, Cheras, Kuala Lumpur, Malaysia
| | - Juen Kiem Tan
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia; Hospital Canselor Tuanku Muhriz, Cheras, Kuala Lumpur, Malaysia
| | - Boon Hau Ng
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia; Hospital Canselor Tuanku Muhriz, Cheras, Kuala Lumpur, Malaysia
| | - Andrea Ban Yu Lin
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia; Hospital Canselor Tuanku Muhriz, Cheras, Kuala Lumpur, Malaysia
| | - Ching Soong Khoo
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia; Hospital Canselor Tuanku Muhriz, Cheras, Kuala Lumpur, Malaysia
| | - Rathika Rajah
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia; Hospital Canselor Tuanku Muhriz, Cheras, Kuala Lumpur, Malaysia
| | - Rozita Hod
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia; Hospital Canselor Tuanku Muhriz, Cheras, Kuala Lumpur, Malaysia
| | - Hui Jan Tan
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia; Hospital Canselor Tuanku Muhriz, Cheras, Kuala Lumpur, Malaysia.
| |
Collapse
|
12
|
Wang Y, Cao Q, Wei C, Xu F, Zhang P, Zeng H, Shao Y, Weng X, Meng R. The Effect of Transcranial Electrical Stimulation on the Recovery of Sleep Quality after Sleep Deprivation Based on an EEG Analysis. Brain Sci 2023; 13:933. [PMID: 37371411 DOI: 10.3390/brainsci13060933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Acute sleep deprivation can reduce the cognitive ability and change the emotional state in humans. However, little is known about how brain EEGs and facial expressions change during acute sleep deprivation (SD). Herein, we employed 34 healthy adult male subjects to undergo acute SD for 36 h, during which, their emotional states and brain EEG power were measured. The subjects were divided randomly into electronic stimulation and control groups. We performed TDCS on the left dorsolateral prefrontal cortex for 2 mA and 30 min in the TDCS group. These results indicated that the proportion of disgusted expressions in the electrical stimulation group was significantly less than the controls after 36 h post-acute SD, while the proportion of neutral expressions was increased post-restorative sleep. Furthermore, the electrical stimulation group presented a more significant impact on slow wave power (theta and delta) than the controls. These findings indicated that emotional changes occurred in the subjects after 36 h post-acute SD, while electrical stimulation could effectively regulate the cortical excitability and excitation inhibition balance after acute SD.
Collapse
Affiliation(s)
- Yuhan Wang
- Department of Public Health, Chengdu Medical College, Chengdu 610500, China
| | - Qiongfang Cao
- Department of Public Health, Chengdu Medical College, Chengdu 610500, China
| | - Changyou Wei
- Department of Public Health, Chengdu Medical College, Chengdu 610500, China
| | - Fan Xu
- Department of Public Health, Chengdu Medical College, Chengdu 610500, China
| | - Peng Zhang
- Department of Public Health, Chengdu Medical College, Chengdu 610500, China
| | - Hanrui Zeng
- Department of Clinic Medicine, Chengdu Medical College, Chengdu 610500, China
| | - Yongcong Shao
- School of Psychology, Beijing Sport University, Beijing 100084, China
| | - Xiechuan Weng
- Department of Neuroscience, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Rong Meng
- Department of Public Health, Chengdu Medical College, Chengdu 610500, China
| |
Collapse
|
13
|
Hao C, Li M, Ning Q, Ma N. One night of 10-h sleep restores vigilance after total sleep deprivation: the role of delta and theta power during recovery sleep. Sleep Biol Rhythms 2023; 21:165-173. [PMID: 38469277 PMCID: PMC10899914 DOI: 10.1007/s41105-022-00428-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/19/2022] [Indexed: 11/30/2022]
Abstract
A series of studies have demonstrated that impaired vigilance performance caused by total sleep deprivation could restore to baseline when recovery sleep is longer than the habitual sleep. However, it is unclear which factors on the recovery night affected the restoration of vigilance performance impaired by sleep deprivation. 22 participant's sleep electroencephalograms were recorded with polysomnography in 8-h baseline sleep and one-night 10-h recovery sleep following 36-h sleep deprivation. Participants completed a 10-min psychomotor vigilance task and subjective ratings after baseline and recovery sleep the following day. Objective vigilance and subjective ratings were impaired by sleep deprivation and recovered to baseline after one-night 10-h recovery sleep. Compared with baseline sleep, sleep depth increased with enhanced delta and theta power density, and sleep duration was also prolonged during recovery sleep. The vigilance performance difference between recovery and baseline sleep was taken as a behavioral index of the restoration of vigilance. The restoration of vigilance was correlated with the delta and theta power density of stage N3 in the frontal and central region during the recovery sleep. These findings indicated that one-night 10-h recovery sleep could restore the impaired objective vigilance and subjective ratings caused by sleep deprivation. The recuperative effect of vigilance relies on individual differences in sleep intensity. Individuals with higher sleep intensity in recovery sleep obtained better vigilance recovery.
Collapse
Affiliation(s)
- Chao Hao
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, 510631 China
- Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou, 510631 China
| | - Mingzhu Li
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, 510631 China
- Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou, 510631 China
| | - Qian Ning
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, 510631 China
- Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou, 510631 China
| | - Ning Ma
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, 510631 China
- Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou, 510631 China
| |
Collapse
|
14
|
Fioranelli M, Aru OE, Roccia MG, Beesham A, Flavin D. A model for analyzing evolutions of neurons by using EEG waves. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:12936-12949. [PMID: 36654029 DOI: 10.3934/mbe.2022604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
It is known that differences between potentials of soma, dendrites and different parts of neural structures may be the origin of electroencephalogram (EEG) waves. These potentials may be produced by some excitatory synapses and currents of charges between neurons and then thereafter may themselves cause the emergence of new synapses and electrical currents. These currents within and between neurons emit some electromagnetic waves which could be absorbed by electrodes on the scalp, and form topographic images. In this research, a model is proposed which formulates EEG topographic parameters in terms of the charge and mass of exchanged particles within neurons, those which move between neurons, the number of neurons and the length of neurons and synapses. In this model, by knowing the densities of the frequencies in different regions of the brain, one can predict the type, charge and velocity of particles which are moving along neurons or are exchanged between neurons.
Collapse
Affiliation(s)
- Massimo Fioranelli
- Department of Human Sciences, Guglielmo Marconi University, Via Plinio 44, 00193 Rome, Italy
| | - O Eze Aru
- Department of Computer Engineering, College of Engineering and Engineering Technology, Michael Okpara University of Agriculture, Umudike Umuahia, Abia State, Nigeria
| | - Maria Grazia Roccia
- Department of Human Sciences, Guglielmo Marconi University, Via Plinio 44, 00193 Rome, Italy
| | - Aroonkumar Beesham
- Faculty of Natural Sciences, Mangosuthu University of Technology, PO Box 12363, Jacobs 4026, South Africa
- Department of Mathematical Sciences, University of Zululand, Private Bag X1001, Kwa-Dlangezwa 3886, South Africa
| | - Dana Flavin
- President, Foundation for Collaborative Medicine and Research, Greenwich CT, USA
| |
Collapse
|
15
|
Mathew J, Adhia DB, Smith ML, De Ridder D, Mani R. Source localized infraslow neurofeedback training in people with chronic painful knee osteoarthritis: A randomized, double-blind, sham-controlled feasibility clinical trial. Front Neurosci 2022; 16:899772. [PMID: 35968375 PMCID: PMC9366917 DOI: 10.3389/fnins.2022.899772] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 07/01/2022] [Indexed: 11/15/2022] Open
Abstract
Persistent pain is a key symptom in people living with knee osteoarthritis (KOA). Infra-slow Neurofeedback (ISF-NF) training is a recent development focusing on modulating cortical slow-wave activity to improve pain outcomes. A parallel, two-armed double-blinded, randomized sham-controlled, feasibility clinical trial aimed to determine the feasibility and safety of a novel electroencephalography-based infraslow fluctuation neurofeedback (EEG ISF-NF) training in people with KOA and determine the variability of clinical outcomes and EEG changes following NF training. Eligible participants attended nine 30-min ISF-NF training sessions involving three cortical regions linked to pain. Feasibility measures were monitored during the trial period. Pain and functional outcomes were measured at baseline, post-intervention, and follow-up after 2 weeks. Resting-state EEG was recorded at baseline and immediate post-intervention. Participants were middle-aged (61.7 ± 7.6 years), New Zealand European (90.5%), and mostly females (62%) with an average knee pain duration of 4 ± 3.4 years. The study achieved a retention rate of 91%, with 20/22 participants completing all the sessions. Participants rated high levels of acceptance and “moderate to high levels of perceived effectiveness of the training.” No serious adverse events were reported during the trial. Mean difference (95% CI) for clinical pain and function measures are as follows for pain severity [active: 0.89 ± 1.7 (−0.27 to 2.0); sham: 0.98 ± 1.1 (0.22–1.7)], pain interference [active: 0.75 ± 2.3 (−0.82 to 2.3); Sham: 0.89 ± 2.1 (−0.60 to 2.4)], pain unpleasantness [active: 2.6 ± 3.7 (0.17–5.1); sham: 2.8 ± 3 (0.62–5.0)] and physical function [active: 6.2 ± 13 (−2.6 to 15); sham: 1.6 ± 12 (−6.8 to 10)]. EEG sources demonstrated frequency-specific neuronal activity, functional connectivity, and ISF ratio changes following NF training. The findings of the study indicated that the ISF-NF training is a feasible, safe, and acceptable intervention for pain management in people with KOA, with high levels of perceived effectiveness. The study also reports the variability in clinical, brain activity, and connectivity changes following training.
Collapse
Affiliation(s)
- Jerin Mathew
- Centre for Health, Activity, and Rehabilitation Research, School of Physiotherapy, University of Otago, Dunedin, New Zealand
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
- *Correspondence: Jerin Mathew,
| | - Divya Bharatkumar Adhia
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | | | - Dirk De Ridder
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Ramakrishnan Mani
- Centre for Health, Activity, and Rehabilitation Research, School of Physiotherapy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
16
|
Babiloni C, Noce G, Di Bonaventura C, Lizio R, Eldellaa A, Tucci F, Salamone EM, Ferri R, Soricelli A, Nobili F, Famà F, Arnaldi D, Palma E, Cifelli P, Marizzoni M, Stocchi F, Bruno G, Di Gennaro G, Frisoni GB, Del Percio C. Alzheimer's Disease with Epileptiform EEG Activity: Abnormal Cortical Sources of Resting State Delta Rhythms in Patients with Amnesic Mild Cognitive Impairment. J Alzheimers Dis 2022; 88:903-931. [PMID: 35694930 DOI: 10.3233/jad-220442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Patients with amnesic mild cognitive impairment due to Alzheimer's disease (ADMCI) typically show a "slowing" of cortical resting-state eyes-closed electroencephalographic (rsEEG) rhythms. Some of them also show subclinical, non-convulsive, and epileptiform EEG activity (EEA) with an unclear relationship with that "slowing." OBJECTIVE Here we tested the hypothesis that the "slowing" of rsEEG rhythms is related to EEA in ADMCI patients. METHODS Clinical and instrumental datasets in 62 ADMCI patients and 38 normal elderly (Nold) subjects were available in a national archive. No participant had received a clinical diagnosis of epilepsy. The eLORETA freeware estimated rsEEG cortical sources. The area under the receiver operating characteristic curve (AUROCC) indexed the accuracy of eLORETA solutions in the classification between ADMCI-EEA and ADMCI-noEEA individuals. RESULTS EEA was observed in 15% (N = 8) of the ADMCI patients. The ADMCI-EEA group showed: 1) more abnormal Aβ 42 levels in the cerebrospinal fluid as compared to the ADMCI-noEEA group and 2) higher temporal and occipital delta (<4 Hz) rsEEG source activities as compared to the ADMCI-noEEA and Nold groups. Those source activities showed moderate accuracy (AUROCC = 0.70-0.75) in the discrimination between ADMCI-noEEA versus ADMCI-EEA individuals. CONCLUSION It can be speculated that in ADMCI-EEA patients, AD-related amyloid neuropathology may be related to an over-excitation in neurophysiological low-frequency (delta) oscillatory mechanisms underpinning cortical arousal and quiet vigilance.
Collapse
Affiliation(s)
- Claudio Babiloni
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy.,Hospital San Raffaele Cassino, Cassino (FR), Italy
| | | | - Carlo Di Bonaventura
- Epilepsy Unit, Department of Neurosciences/Mental Health, Sapienza University of Rome, Rome, Italy
| | | | - Ali Eldellaa
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Federico Tucci
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Enrico M Salamone
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy.,Epilepsy Unit, Department of Neurosciences/Mental Health, Sapienza University of Rome, Rome, Italy
| | | | - Andrea Soricelli
- IRCCS Synlab SDN, Naples, Italy.,Department of Motor Sciences and Healthiness, University of Naples Parthenope, Naples, Italy
| | - Flavio Nobili
- Clinical Neurology, IRCCS Hospital Policlinico San Martino, Genoa, Italy.,Department of Neuroscience (DiNOGMI), University of Genoa, Genoa, Italy
| | - Francesco Famà
- Clinical Neurology, IRCCS Hospital Policlinico San Martino, Genoa, Italy
| | - Dario Arnaldi
- Clinical Neurology, IRCCS Hospital Policlinico San Martino, Genoa, Italy
| | - Eleonora Palma
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy.,Pasteur Institute-Cenci Bolognetti Foundation, Rome, Italy
| | - Pierangelo Cifelli
- IRCCS Neuromed, Pozzilli, (IS), Italy.,Department of Applied and Biotechnological Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Moira Marizzoni
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | | | - Giuseppe Bruno
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | | | - Giovanni B Frisoni
- Department of Applied and Biotechnological Clinical Sciences, University of L'Aquila, L'Aquila, Italy.,Memory Clinic and LANVIE - Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Claudio Del Percio
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
17
|
Milinski L, Nodal FR, Vyazovskiy VV, Bajo VM. Tinnitus: at a crossroad between phantom perception and sleep. Brain Commun 2022; 4:fcac089. [PMID: 35620170 PMCID: PMC9128384 DOI: 10.1093/braincomms/fcac089] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/31/2021] [Accepted: 03/31/2022] [Indexed: 11/25/2022] Open
Abstract
Sensory disconnection from the environment is a hallmark of sleep and is crucial
for sleep maintenance. It remains unclear, however, whether internally generated
percepts—phantom percepts—may overcome such disconnection and, in
turn, how sleep and its effect on sensory processing and brain plasticity may
affect the function of the specific neural networks underlying such phenomena. A
major hurdle in addressing this relationship is the methodological difficulty to
study sensory phantoms, due to their subjective nature and lack of control over
the parameters or neural activity underlying that percept. Here, we explore the
most prevalent phantom percept, subjective tinnitus—or tinnitus for
short—as a model to investigate this. Tinnitus is the permanent
perception of a sound with no identifiable corresponding acoustic source. This
review offers a novel perspective on the functional interaction between brain
activity across the sleep–wake cycle and tinnitus. We discuss
characteristic features of brain activity during tinnitus in the awake and the
sleeping brain and explore its effect on sleep functions and homeostasis. We ask
whether local changes in cortical activity in tinnitus may overcome sensory
disconnection and prevent the occurrence of global restorative sleep and, in
turn, how accumulating sleep pressure may temporarily alleviate the persistence
of a phantom sound. Beyond an acute interaction between sleep and neural
activity, we discuss how the effects of sleep on brain plasticity may contribute
to aberrant neural circuit activity and promote tinnitus consolidation. Tinnitus
represents a unique window into understanding the role of sleep in sensory
processing. Clarification of the underlying relationship may offer novel
insights into therapeutic interventions in tinnitus management.
Collapse
Affiliation(s)
- Linus Milinski
- University of Oxford, Department of Physiology, Anatomy and Genetics, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | - Fernando R. Nodal
- University of Oxford, Department of Physiology, Anatomy and Genetics, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | - Vladyslav V. Vyazovskiy
- University of Oxford, Department of Physiology, Anatomy and Genetics, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | - Victoria M. Bajo
- University of Oxford, Department of Physiology, Anatomy and Genetics, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| |
Collapse
|
18
|
Abstract
Sleep disturbances are commonly observed in schizophrenia, including in chronic, early-course, and first-episode patients. This has generated considerable interest, both in clinical and research endeavors, in characterizing the relationship between disturbed sleep and schizophrenia. Sleep features can be objectively assessed with EEG recordings. Traditionally, EEG studies have focused on sleep architecture, which includes non-REM and REM sleep stages. More recently, numerous studies have investigated alterations in sleep-specific rhythms, including EEG oscillations, such as sleep spindles and slow waves, in individuals with schizophrenia compared with control subjects. In this article, the author reviews state-of-the-art evidence of disturbed sleep in schizophrenia, starting from the relationship between sleep disturbances and clinical symptoms. First, the author presents studies demonstrating abnormalities in sleep architecture and sleep-oscillatory rhythms in schizophrenia and related psychotic disorders, with an emphasis on recent work demonstrating sleep spindles and slow-wave deficits in early-course and first-episode schizophrenia. Next, the author shows how these sleep abnormalities relate to the cognitive impairments in patients diagnosed with schizophrenia and point to dysfunctions in underlying thalamocortical circuits, Ca+ channel activity, and GABA-glutamate neurotransmission. Finally, the author discusses some of the next steps needed to further establish the role of altered sleep in schizophrenia, including the need to investigate sleep abnormalities across the psychotic spectrum and to establish their relationship with circadian disturbances, which in turn will contribute to the development of novel sleep-informed treatment interventions.
Collapse
Affiliation(s)
- Fabio Ferrarelli
- Department of Psychiatry, University of Pittsburgh School of Medicine Pittsburgh, PA, 15213
| |
Collapse
|
19
|
Fitzroy AB, Kainec KA, Spencer RMC. Ageing-related changes in nap neuroscillatory activity are mediated and moderated by grey matter volume. Eur J Neurosci 2021; 54:7332-7354. [PMID: 34541728 PMCID: PMC8809479 DOI: 10.1111/ejn.15468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 08/14/2021] [Accepted: 09/10/2021] [Indexed: 12/03/2022]
Abstract
Ageing‐related changes in grey matter result in changes in the intensity and topography of sleep neural activity. However, it is unclear whether these findings can be explained by ageing‐related differences in sleep pressure or circadian influence. The current study used high‐density electroencephalography to assess how grey matter volume differences between young and older adults mediate and moderate neuroscillatory activity differences during a midday nap following a motor sequencing task. Delta, theta, and sigma amplitude were reduced in older relative to young adults, especially over frontocentral scalp, leading to increases in relative delta frontality and relative sigma lateral centroposteriority. Delta reductions in older adults were mediated by grey matter loss in frontal medial cortex, primary motor cortex, thalamus, caudate, putamen, and pallidum, and were moderated by putamen grey matter volume. Theta reductions were mediated by grey matter loss in primary motor cortex, thalamus, and caudate, and were moderated by putamen and pallidum grey matter volume. Sigma changes were moderated by putamen and pallidum grey matter volume. Moderation results suggested that across frequencies, young adults with more grey matter had increased activity, whereas older adults with more grey matter had unchanged or decreased activity. These results provide a critical extension of previous findings from overnight sleep in a midday nap, indicating that they are not driven by sleep pressure or circadian confounds. Moreover, these results suggest brain regions associated with motor sequence learning contribute to sleep neural activity following a motor sequencing task.
Collapse
Affiliation(s)
- Ahren B Fitzroy
- Neuroscience and Behavior Program, University of Massachusetts Amherst, Amherst, MA, USA.,Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Kyle A Kainec
- Neuroscience and Behavior Program, University of Massachusetts Amherst, Amherst, MA, USA.,Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Rebecca M C Spencer
- Neuroscience and Behavior Program, University of Massachusetts Amherst, Amherst, MA, USA.,Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, MA, USA.,Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| |
Collapse
|
20
|
Source Imaging of Triphasic Waves and Other Encephalopathies. J Clin Neurophysiol 2021; 38:420-425. [PMID: 33273156 DOI: 10.1097/wnp.0000000000000798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
PURPOSE Triphasic waves (TWs) are defined as high-amplitude positive waveforms with preceding and after-going negative waves, typically seen in medically ill patients. TWs manifest in similar clinical presentations as other EEG encephalopathies; however, electrographically, they appear different. To better understand the difference, the authors used two different source localization software programs to find a reproducible and unique signature for TW. METHODS EEGs performed at Johns Hopkins Hospital and Duke University Hospital were retrospectively analyzed. EEG samples of TW, Delta, Theta-Delta, and Frontal Intermittent Rhythmic Delta Activity were selected. The authors did source localization via Commercial Curry 8 and open-source Brainstorm software. A minimum of 10 stereotypical waveforms per subject were selected. The authors used the Boundary Element Method for the head model, which was derived from the Montreal Neurological Institute averaged imaging data set. Dipole and current density analyses were performed. RESULTS Twenty-eight patients were selected (10 TW, 4 Frontal Intermittent Rhythmic Delta Activity, 6 Theta-Delta, and 8 Delta). The findings suggest the activation of anterior frontal and midline structures for TW. Frontal Intermittent Rhythmic Delta Activity had a similar localization but without a moving dipole. In comparison, the Delta and Delta-Theta appeared to have a more diffuse origin. CONCLUSIONS Source analysis of TW via two different software suggests the anterior midline location of TW with anterior to posterior propagation. These findings correlate with the previous hypotheses of TW origin. Retrospective analysis, low number of recording electrodes, and difficult analysis of slow waves limit the interpretation of these results. Nonetheless, this article opens the prospect of future studies in this field.
Collapse
|
21
|
Advances in Electrical Source Imaging: A Review of the Current Approaches, Applications and Challenges. SIGNALS 2021. [DOI: 10.3390/signals2030024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Brain source localization has been consistently implemented over the recent years to elucidate complex brain operations, pairing the high temporal resolution of the EEG with the high spatial estimation of the estimated sources. This review paper aims to present the basic principles of Electrical source imaging (ESI) in the context of the recent progress for solving the forward and the inverse problems, and highlight the advantages and limitations of the different approaches. As such, a synthesis of the current state-of-the-art methodological aspects is provided, offering a complete overview of the present advances with regard to the ESI solutions. Moreover, the new dimensions for the analysis of the brain processes are indicated in terms of clinical and cognitive ESI applications, while the prevailing challenges and limitations are thoroughly discussed, providing insights for future approaches that could help to alleviate methodological and technical shortcomings.
Collapse
|
22
|
Neikrug AB, Mander BA, Radom-Aizik S, Chen IY, Stehli A, Lui KK, Chappel-Farley MG, Dave A, Benca RM. Aerobic fitness and the sleeping brain of adolescents-a pilot study. SLEEP ADVANCES : A JOURNAL OF THE SLEEP RESEARCH SOCIETY 2021; 2:zpab005. [PMID: 33981996 PMCID: PMC8101484 DOI: 10.1093/sleepadvances/zpab005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/17/2021] [Indexed: 11/14/2022]
Abstract
STUDY OBJECTIVES Aerobic fitness (AF) and sleep are major determinants of health in adolescents and impact neurocognitive and psychological development. However, little is known about the interactions between AF and sleep during the developmental transition experienced across adolescence. This study aimed to consider the relationships between AF and habitual sleep patterns and sleep neurophysiology in healthy adolescents. METHODS Subjects (mean age = 14.6 ± 2.3 years old, range 11-17, 11 females) were evaluated for AF (peak VO2 assessed by ramp-type progressive cycle ergometry in the laboratory), habitual sleep duration and efficiency (7-14 days actigraphy), and topographic patterns of spectral power in slow wave, theta, and sleep spindle frequencies in non-rapid eye movement (NREM) sleep using overnight polysomnography (PSG) with high-density electroencephalography (hdEEG, 128 channels). RESULTS Significant relationships were observed between peak VO2 and habitual bedtime (r = -0.650, p = .009) and wake-up time (r = -0.603, p = .017), with greater fitness associated with going to bed and waking up earlier. Peak VO2 significantly predicted slow oscillations (0.5-1 Hz, p = .018) and theta activity (4.5-7.5 Hz, p = .002) over anterior frontal and central derivations (p < .001 and p = .001, respectively) after adjusting for sex and pubertal development stage. Similar associations were detected for fast sleep spindle activity (13-16 Hz, p = .006), which was greater over temporo-parietal derivations. CONCLUSIONS Greater AF was associated with a more mature pattern of topographically-specific features of sleep EEG known to support neuroplasticity and cognitive processes and which are dependent on prefrontal cortex and hippocampal function in adolescents and adults. AF was also correlated with a smaller behavioral sleep phase delay commonly seen during adolescence.
Collapse
Affiliation(s)
- Ariel B Neikrug
- Department of Psychiatry and Human Behavior, School of Medicine, University of California Irvine, Irvine, CA
| | - Bryce A Mander
- Department of Psychiatry and Human Behavior, School of Medicine, University of California Irvine, Irvine, CA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine, CA
| | - Shlomit Radom-Aizik
- Pediatric Exercise and Genomics Research Center, School of Medicine, University of California Irvine, Irvine, CA
| | - Ivy Y Chen
- Department of Psychiatry and Human Behavior, School of Medicine, University of California Irvine, Irvine, CA
| | - Annamarie Stehli
- Department of Psychiatry and Human Behavior, School of Medicine, University of California Irvine, Irvine, CA
- Pediatric Exercise and Genomics Research Center, School of Medicine, University of California Irvine, Irvine, CA
| | - Kitty K Lui
- Department of Psychiatry and Human Behavior, School of Medicine, University of California Irvine, Irvine, CA
| | - Miranda G Chappel-Farley
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine, CA
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA
| | - Abhishek Dave
- Department of Psychiatry and Human Behavior, School of Medicine, University of California Irvine, Irvine, CA
| | - Ruth M Benca
- Department of Psychiatry and Human Behavior, School of Medicine, University of California Irvine, Irvine, CA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine, CA
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA
| |
Collapse
|
23
|
Hindriks R. A methodological framework for inverse-modeling of propagating cortical activity using MEG/EEG. Neuroimage 2020; 223:117345. [PMID: 32896634 DOI: 10.1016/j.neuroimage.2020.117345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 08/18/2020] [Accepted: 09/01/2020] [Indexed: 11/16/2022] Open
Abstract
The prevailing view on the dynamics of large-scale electrical activity in the human cortex is that it constitutes a functional network of discrete and localized circuits. Within this view, a natural way to analyse magnetoencephalographic (MEG) and electroencephalographic (EEG) data is by adopting methods from network theory. Invasive recordings, however, demonstrate that cortical activity is spatially continuous, rather than discrete, and exhibits propagation behavior. Furthermore, human cortical activity is known to propagate under a variety of conditions such as non-REM sleep, general anesthesia, and coma. Although several MEG/EEG studies have investigated propagating cortical activity, not much is known about the conditions under which such activity can be successfully reconstructed from MEG/EEG sensor-data. This study provides a methodological framework for inverse-modeling of propagating cortical activity. Within this framework, cortical activity is represented in the spatial frequency domain, which is more natural than the dipole domain when dealing with spatially continuous activity. We define angular power spectra, which show how the power of cortical activity is distributed across spatial frequencies, angular gain/phase spectra, which characterize the spatial filtering properties of linear inverse operators, and angular resolution matrices, which summarize how linear inverse operators leak signal within and across spatial frequencies. We adopt the framework to provide insight into the performance of several linear inverse operators in reconstructing propagating cortical activity from MEG/EEG sensor-data. We also describe how prior spatial frequency information can be incorporated into the inverse-modeling to obtain better reconstructions.
Collapse
Affiliation(s)
- Rikkert Hindriks
- Department of Mathematics, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
24
|
Zivi P, De Gennaro L, Ferlazzo F. Sleep in Isolated, Confined, and Extreme (ICE): A Review on the Different Factors Affecting Human Sleep in ICE. Front Neurosci 2020; 14:851. [PMID: 32848590 PMCID: PMC7433404 DOI: 10.3389/fnins.2020.00851] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/21/2020] [Indexed: 02/05/2023] Open
Abstract
The recently renewed focus on the human exploration of outer space has boosted the interest toward a variety of questions regarding health of astronauts and cosmonauts. Among the others, sleep has traditionally been considered a central issue. To extend the research chances, human sleep alterations have been investigated in several analog environments, called ICEs (Isolated, Confined, and Extreme). ICEs share different features with the spaceflight itself and have been implemented in natural facilities and artificial simulations. The current paper presents a systematic review of research findings on sleep disturbances in ICEs. We looked for evidence from studies run in polar settings (mostly Antarctica) during space missions, Head-Down Bed-Rest protocols, simulations, and in a few ICE-resembling settings such as caves and submarines. Even though research has shown that sleep can be widely affected in ICEs, mostly evidencing general and non-specific changes in REM and SWS sleep, results show a very blurred picture, often with contradictory findings. The variable coexistence of the many factors characterizing the ICE environments (such as isolation and confinement, microgravity, circadian disentrainment, hypoxia, noise levels, and radiations) does not provide a clear indication of what role is played by each factor per se or in association one with each other in determining the pattern observed, and how. Most importantly, a number of methodological limitations contribute immensely to the unclear pattern of results reported in the literature. Among them, small sample sizes, small effect sizes, and large variability among experimental conditions, protocols, and measurements make it difficult to draw hints about whether sleep alterations in ICEs do exist due to the specific environmental characteristics, and which of them plays a major role. More systematic and cross-settings research is needed to address the mechanisms underlying the sleep alterations in ICE environments and possibly develop appropriate countermeasures to be used during long-term space missions.
Collapse
Affiliation(s)
| | | | - Fabio Ferlazzo
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
25
|
Zhang Y, Quiñones GM, Ferrarelli F. Sleep spindle and slow wave abnormalities in schizophrenia and other psychotic disorders: Recent findings and future directions. Schizophr Res 2020; 221:29-36. [PMID: 31753592 PMCID: PMC7231641 DOI: 10.1016/j.schres.2019.11.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/31/2019] [Accepted: 11/03/2019] [Indexed: 12/27/2022]
Abstract
Sleep spindles and slow waves are the two main oscillatory activities occurring during NREM sleep. Slow waves are ∼1 Hz, high amplitude, negative-positive deflections that are primarily generated and coordinated within the cortex, whereas sleep spindles are 12-16 Hz, waxing and waning oscillations that are initiated within the thalamus and regulated by thalamo-cortical circuits. In healthy subjects, these oscillations are thought to be responsible for the restorative aspects of sleep and have been increasingly shown to be involved in learning, memory and plasticity. Furthermore, deficits in sleep spindles and, to lesser extent, slow waves have been reported in both chronic schizophrenia (SCZ) and early course psychosis patients. In this article, we will first describe sleep spindle and slow wave characteristics, including their putative functional roles in the healthy brain. We will then review electrophysiological, genetic, and cognitive studies demonstrating spindle and slow wave impairments in SCZ and other psychotic disorders, with particularly emphasis on recent findings in early course patients. Finally, we will discuss how future work, including sleep studies in individuals at clinical high risk for psychosis, may help position spindles and slow waves as candidate biomarkers, as well as novel treatment targets, for SCZ and related psychotic disorders.
Collapse
Affiliation(s)
- Yingyi Zhang
- Department of Psychiatry, University of Pittsburgh, USA
| | | | | |
Collapse
|
26
|
Rapid fast-delta decay following prolonged wakefulness marks a phase of wake-inertia in NREM sleep. Nat Commun 2020; 11:3130. [PMID: 32561733 PMCID: PMC7305232 DOI: 10.1038/s41467-020-16915-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 05/30/2020] [Indexed: 11/25/2022] Open
Abstract
Sleep-wake driven changes in non-rapid-eye-movement sleep (NREM) sleep (NREMS) EEG delta (δ-)power are widely used as proxy for a sleep homeostatic process. Here, we noted frequency increases in δ-waves in sleep-deprived mice, prompting us to re-evaluate how slow-wave characteristics relate to prior sleep-wake history. We identified two classes of δ-waves; one responding to sleep deprivation with high initial power and fast, discontinuous decay during recovery sleep (δ2) and another unrelated to time-spent-awake with slow, linear decay (δ1). Reanalysis of previously published datasets demonstrates that δ-band heterogeneity after sleep deprivation is also present in human subjects. Similar to sleep deprivation, silencing of centromedial thalamus neurons boosted subsequent δ2-waves, specifically. δ2-dynamics paralleled that of temperature, muscle tone, heart rate, and neuronal ON-/OFF-state lengths, all reverting to characteristic NREMS levels within the first recovery hour. Thus, prolonged waking seems to necessitate a physiological recalibration before typical NREMS can be reinstated. Changes in EEG delta-activity are widely used as proxy of sleep propensity. Here the authors demonstrate in mice and humans the presence of two types of delta-waves, only one of which reports on prior sleep-wake history with dynamics denoting a wake-inertia process accompanying deepest non-rapid-eye-movement sleep (NREM) sleep.
Collapse
|
27
|
Kim S, Jo K, Hong KB, Han SH, Suh HJ. GABA and l-theanine mixture decreases sleep latency and improves NREM sleep. PHARMACEUTICAL BIOLOGY 2019; 57:65-73. [PMID: 30707852 PMCID: PMC6366437 DOI: 10.1080/13880209.2018.1557698] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/21/2018] [Accepted: 12/05/2018] [Indexed: 05/24/2023]
Abstract
CONTEXT γ-Aminobutyric acid (GABA) is the main inhibitory neurotransmitter and it is well established that activation of GABAA receptors favours sleep. l-Theanine, a naturally occurring amino acid first discovered in green tea, is a well-known anti-anxiety supplement with proven relaxation benefits. OBJECTIVE This study investigated the potential synergistic sleep enhancement effect of GABA/l-theanine mixture. MATERIALS AND METHODS Pentobarbital-induced sleep test was applied to find proper concentration for sleep-promoting effect in ICR mice. Electroencephalogram (EEG) analysis was performed to investigate total sleeping time and sleep quality in normal SD rats and caffeine-induced awareness model. Real-time polymerase chain reaction (RT-PCR) was applied to investigate whether the sleep-promoting mechanism of GABA/l-theanine mixture involved transcriptional processes. RESULTS GABA/l-theanine mixture (100/20 mg/kg) showed a decrease in sleep latency (20.7 and 14.9%) and an increase in sleep duration (87.3 and 26.8%) compared to GABA or theanine alone. GABA/l-theanine mixture led to a significant increase in rapid eye movement (REM) (99.6%) and non-REM (NREM) (20.6%) compared to controls. The use of GABA/l-theanine mixture rather than GABA or l-theanine alone restored to normal levels sleep time and quality in the arousal animal model. The administration of GABA/l-theanine led to increased expression of GABA and the glutamate GluN1 receptor subunit. CONCLUSIONS GABA/l-theanine mixture has a positive synergistic effect on sleep quality and duration as compared to the GABA or l-theanine alone. The increase in GABA receptor and GluN1 expression is attributed to the potential neuromodulatory properties of GABA/l-theanine combination, which seems to affect sleep behaviour.
Collapse
Affiliation(s)
- Suhyeon Kim
- Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul, Republic of Korea
| | - Kyungae Jo
- Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul, Republic of Korea
| | - Ki-Bae Hong
- Department of Biological Sciences and Environmental Sciences Program, Southern Illinois University-Edwardsville, Edwardsville, IL, USA
| | - Sung Hee Han
- BK21 Plus, College of Health Science, Korea University, Seoul, Republic of Korea
| | - Hyung Joo Suh
- Department of Public Health Sciences, Graduate School, Seoul, Republic of Korea
| |
Collapse
|
28
|
Dornbierer DA, Baur DM, Stucky B, Quednow BB, Kraemer T, Seifritz E, Bosch OG, Landolt HP. Neurophysiological signature of gamma-hydroxybutyrate augmented sleep in male healthy volunteers may reflect biomimetic sleep enhancement: a randomized controlled trial. Neuropsychopharmacology 2019; 44:1985-1993. [PMID: 30959514 PMCID: PMC6785068 DOI: 10.1038/s41386-019-0382-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/25/2019] [Accepted: 04/01/2019] [Indexed: 12/16/2022]
Abstract
Gamma-hydroxybutyrate (GHB) is an endogenous GHB/GABAB receptor agonist, which has demonstrated potency in consolidating sleep and reducing excessive daytime sleepiness in narcolepsy. Little is known whether GHB's efficacy reflects the promotion of physiological sleep mechanisms and no study has investigated its sleep consolidating effects under low sleep pressure. GHB (50 mg/kg p.o.) and placebo were administered in 20 young male volunteers at 2:30 a.m., the time when GHB is typically given in narcolepsy, in a randomized, double-blinded, crossover manner. Drug effects on sleep architecture and electroencephalographic (EEG) sleep spectra were analyzed. In addition, current source density (CSD) analysis was employed to identify the effects of GHB on the brain electrical sources of neuronal oscillations. Moreover, lagged-phase synchronization (LPS) analysis was applied to quantify the functional connectivity among sleep-relevant brain regions. GHB prolonged slow-wave sleep (stage N3) at the cost of rapid eye movement (REM) sleep. Furthermore, it enhanced delta-theta (0.5-8 Hz) activity in NREM and REM sleep, while reducing activity in the spindle frequency range (13-15 Hz) in sleep stage N2. The increase in delta power predominated in medial prefrontal cortex, parahippocampal and fusiform gyri, and posterior cingulate cortex. Theta power was particularly increased in the prefrontal cortex and both temporal poles. Moreover, the brain areas that showed increased theta power after GHB also exhibited increased lagged-phase synchronization among each other. Our study in healthy men revealed distinct similarities between GHB-augmented sleep and physiologically augmented sleep as seen in recovery sleep after prolonged wakefulness. The promotion of the sleep neurophysiological mechanisms by GHB may thus provide a rationale for GHB-induced sleep and waking quality in neuropsychiatric disorders beyond narcolepsy.
Collapse
Affiliation(s)
- Dario A Dornbierer
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland.
- Department of Forensic Pharmacology and Toxicology, Zurich Institute of Forensic Medicine, University of Zürich, Zürich, Switzerland.
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zürich, Lenggstrasse 31, Zürich, CH-8032, Switzerland.
| | - Diego M Baur
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
- Sleep & Health Zürich, University Center of Competence, University of Zürich, Zürich, Switzerland
| | - Benjamin Stucky
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
- Sleep & Health Zürich, University Center of Competence, University of Zürich, Zürich, Switzerland
| | - Boris B Quednow
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zürich, Lenggstrasse 31, Zürich, CH-8032, Switzerland
| | - Thomas Kraemer
- Department of Forensic Pharmacology and Toxicology, Zurich Institute of Forensic Medicine, University of Zürich, Zürich, Switzerland
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zürich, Lenggstrasse 31, Zürich, CH-8032, Switzerland
- Sleep & Health Zürich, University Center of Competence, University of Zürich, Zürich, Switzerland
- HMZ Flagship SleepLoop of UZH and ETHZ, Zürich, Switzerland
| | - Oliver G Bosch
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zürich, Lenggstrasse 31, Zürich, CH-8032, Switzerland
| | - Hans-Peter Landolt
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
- Sleep & Health Zürich, University Center of Competence, University of Zürich, Zürich, Switzerland
| |
Collapse
|
29
|
Achermann P, Rusterholz T, Stucky B, Olbrich E. Oscillatory patterns in the electroencephalogram at sleep onset. Sleep 2019; 42:5512509. [PMID: 31173152 DOI: 10.1093/sleep/zsz096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 02/17/2019] [Indexed: 11/13/2022] Open
Abstract
Falling asleep is a gradually unfolding process. We investigated the role of various oscillatory activities including sleep spindles and alpha and delta oscillations at sleep onset (SO) by automatically detecting oscillatory events. We used two datasets of healthy young males, eight with four baseline recordings, and eight with a baseline and recovery sleep after 40 h of sustained wakefulness. We analyzed the 2-min interval before SO (stage 2) and the five consecutive 2-min intervals after SO. The incidence of delta/theta events reached its maximum in the first 2-min episode after SO, while the frequency of them was continuously decreasing from stage 1 onwards, continuing over SO and further into deeper sleep. Interestingly, this decrease of the frequencies of the oscillations were not affected by increased sleep pressure, in contrast to the incidence which increased. We observed an increasing number of alpha events after SO, predominantly frontally, with their prevalence varying strongly across individuals. Sleep spindles started to occur after SO, with first an increasing then a decreasing incidence and a continuous decrease in their frequency. Again, the frequency of the spindles was not altered after sleep deprivation. Oscillatory events revealed derivation dependent aspects. However, these regional aspects were not specific of the process of SO but rather reflect a general sleep related phenomenon. No individual traits of SO features (incidence and frequency of oscillations) and their dynamics were observed. Delta/theta events are important features for the analysis of SO in addition to slow waves.
Collapse
Affiliation(s)
- Peter Achermann
- Chronobiology and Sleep Research, Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.,The KEY Institute for Brain-Mind Research, Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Psychiatry, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.,Sleep and Health Zurich, University of Zurich, Zurich, Switzerland
| | - Thomas Rusterholz
- Chronobiology and Sleep Research, Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Benjamin Stucky
- Chronobiology and Sleep Research, Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Eckehard Olbrich
- Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany
| |
Collapse
|
30
|
Dennison P. The Human Default Consciousness and Its Disruption: Insights From an EEG Study of Buddhist Jhāna Meditation. Front Hum Neurosci 2019; 13:178. [PMID: 31249516 PMCID: PMC6582244 DOI: 10.3389/fnhum.2019.00178] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 05/16/2019] [Indexed: 01/09/2023] Open
Abstract
The “neural correlates of consciousness” (NCC) is a familiar topic in neuroscience, overlapping with research on the brain’s “default mode network.” Task-based studies of NCC by their nature recruit one part of the cortical network to study another, and are therefore both limited and compromised in what they can reveal about consciousness itself. The form of consciousness explored in such research, we term the human default consciousness (DCs), our everyday waking consciousness. In contrast, studies of anesthesia, coma, deep sleep, or some extreme pathological states such as epilepsy, reveal very different cortical activity; all of which states are essentially involuntary, and generally regarded as “unconscious.” An exception to involuntary disruption of consciousness is Buddhist jhāna meditation, whose implicit aim is to intentionally withdraw from the default consciousness, to an inward-directed state of stillness referred to as jhāna consciousness, as a basis to develop insight. The default consciousness is sensorily-based, where information about, and our experience of, the outer world is evaluated against personal and organic needs and forms the basis of our ongoing self-experience. This view conforms both to Buddhist models, and to the emerging work on active inference and minimization of free energy in determining the network balance of the human default consciousness. This paper is a preliminary report on the first detailed EEG study of jhāna meditation, with findings radically different to studies of more familiar, less focused forms of meditation. While remaining highly alert and “present” in their subjective experience, a high proportion of subjects display “spindle” activity in their EEG, superficially similar to sleep spindles of stage 2 nREM sleep, while more-experienced subjects display high voltage slow-waves reminiscent, but significantly different, to the slow waves of deeper stage 4 nREM sleep, or even high-voltage delta coma. Some others show brief posterior spike-wave bursts, again similar, but with significant differences, to absence epilepsy. Some subjects also develop the ability to consciously evoke clonic seizure-like activity at will, under full control. We suggest that the remarkable nature of these observations reflects a profound disruption of the human DCs when the personal element is progressively withdrawn.
Collapse
|
31
|
Bernardi G, Betta M, Ricciardi E, Pietrini P, Tononi G, Siclari F. Regional Delta Waves In Human Rapid Eye Movement Sleep. J Neurosci 2019; 39:2686-2697. [PMID: 30737310 PMCID: PMC6445986 DOI: 10.1523/jneurosci.2298-18.2019] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/28/2018] [Accepted: 01/04/2019] [Indexed: 01/25/2023] Open
Abstract
Although the EEG slow wave of sleep is typically considered to be a hallmark of nonrapid eye movement (NREM) sleep, recent work in mice has shown that slow waves can also occur in REM sleep. Here, we investigated the presence and cortical distribution of negative delta (1-4 Hz) waves in human REM sleep by analyzing high-density EEG sleep recordings obtained in 28 healthy subjects. We identified two clusters of delta waves with distinctive properties: (1) a frontal-central cluster characterized by ∼2.5-3.0 Hz, relatively large, notched delta waves (so-called "sawtooth waves") that tended to occur in bursts, were associated with increased gamma activity and rapid eye movements (EMs), and upon source modeling displayed an occipital-temporal and a frontal-central component and (2) a medial-occipital cluster characterized by more isolated, slower (<2 Hz), and smaller waves that were not associated with rapid EMs, displayed a negative correlation with gamma activity, and were also found in NREM sleep. Therefore, delta waves are an integral part of REM sleep in humans and the two identified subtypes (sawtooth and medial-occipital slow waves) may reflect distinct generation mechanisms and functional roles. Sawtooth waves, which are exclusive to REM sleep, share many characteristics with ponto-geniculo-occipital waves described in animals and may represent the human equivalent or a closely related event, whereas medial-occipital slow waves appear similar to NREM sleep slow waves.SIGNIFICANCE STATEMENT The EEG slow wave is typically considered a hallmark of nonrapid eye movement (NREM) sleep, but recent work in mice has shown that it can also occur in REM sleep. By analyzing high-density EEG recordings collected in healthy adult individuals, we show that REM sleep is characterized by prominent delta waves also in humans. In particular, we identified two distinctive clusters of delta waves with different properties: a frontal-central cluster characterized by faster, activating "sawtooth waves" that share many characteristics with ponto-geniculo-occipital waves described in animals and a medial-occipital cluster containing slow waves that are more similar to NREM sleep slow waves. These findings indicate that REM sleep is a spatially and temporally heterogeneous state and may contribute to explaining its known functional and phenomenological properties.
Collapse
Affiliation(s)
- Giulio Bernardi
- Center for Investigation and Research on Sleep, Lausanne University Hospital, CH-1011 Lausanne, Switzerland,
- MoMiLab Research Unit, IMT School for Advanced Studies, IT-55100 Lucca, Italy, and
| | - Monica Betta
- MoMiLab Research Unit, IMT School for Advanced Studies, IT-55100 Lucca, Italy, and
| | - Emiliano Ricciardi
- MoMiLab Research Unit, IMT School for Advanced Studies, IT-55100 Lucca, Italy, and
| | - Pietro Pietrini
- MoMiLab Research Unit, IMT School for Advanced Studies, IT-55100 Lucca, Italy, and
| | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin, Madison, Wisconsin 53719
| | - Francesca Siclari
- Center for Investigation and Research on Sleep, Lausanne University Hospital, CH-1011 Lausanne, Switzerland,
| |
Collapse
|
32
|
Gorgoni M, Bartolacci C, D’Atri A, Scarpelli S, Marzano C, Moroni F, Ferrara M, De Gennaro L. The Spatiotemporal Pattern of the Human Electroencephalogram at Sleep Onset After a Period of Prolonged Wakefulness. Front Neurosci 2019; 13:312. [PMID: 31001079 PMCID: PMC6456684 DOI: 10.3389/fnins.2019.00312] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/19/2019] [Indexed: 02/05/2023] Open
Abstract
During the sleep onset (SO) process, the human electroencephalogram (EEG) is characterized by an orchestrated pattern of spatiotemporal changes. Sleep deprivation (SD) strongly affects both wake and sleep EEG, but a description of the topographical EEG power spectra and oscillatory activity during the wake-sleep transition after a period of prolonged wakefulness is still missing. The increased homeostatic sleep pressure should induce an earlier onset of sleep-related EEG oscillations. The aim of the present study was to assess the spatiotemporal EEG pattern at SO following SD. A dataset of a previous study was analyzed. We assessed the spatiotemporal EEG changes (19 cortical derivations) during the SO (5 min before vs. 5 min after the first epoch of Stage 2) of a recovery night after 40 h of SD in 39 healthy subjects, analyzing the EEG power spectra (fast Fourier transform) and the oscillatory activity [better oscillation (BOSC) detection method]. The spatiotemporal pattern of the EEG power spectra mostly confirmed the changes previously observed during the wake-sleep transition at baseline. The comparison between baseline and recovery showed a wide increase of the post- vs. pre-SO ratio during the recovery night in the frequency bins ≤10 Hz. We found a predominant alpha oscillatory rhythm in the pre-SO period, while after SO the theta oscillatory activity was prevalent. The oscillatory peaks showed a generalized increase in all frequency bands from delta to sigma with different predominance, while beta activity increased only in the fronto-central midline derivations. Overall, the analysis of the EEG power replicated the topographical pattern observed during a baseline night of sleep but with a stronger intensity of the SO-induced changes in the frequencies ≤10 Hz, and the detection of the rhythmic activity showed the rise of several oscillations at SO after SD that was not observed during the wake-sleep transition at baseline (e.g., alpha and frontal theta in correspondence of their frequency peaks). Beyond confirming the local nature of the EEG pattern at SO, our results show that SD has an impact on the spatiotemporal modulation of cortical activity during the falling-asleep process, inducing the earlier emergence of sleep-related EEG oscillations.
Collapse
Affiliation(s)
- Maurizio Gorgoni
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | | | - Aurora D’Atri
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Serena Scarpelli
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Cristina Marzano
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Fabio Moroni
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Michele Ferrara
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Luigi De Gennaro
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- IRCCS Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
33
|
Reduced frontal slow wave density during sleep in first-episode psychosis. Schizophr Res 2019; 206:318-324. [PMID: 30377012 DOI: 10.1016/j.schres.2018.10.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/21/2018] [Accepted: 10/23/2018] [Indexed: 01/29/2023]
Abstract
BACKGROUND Sleep disturbances are commonly reported in psychotic patients and often contribute to the manifestation and severity of their symptoms. Slow waves characterize the deepest stage of NREM sleep, and their occurrence is critical for restorative sleep. Slow wave abnormalities have been reported in patient with schizophrenia, especially when experiencing an exacerbation of psychosis. However, their presence and delineation, with an emphasis on topography, in first-episode psychosis patients (FEP) have not yet been characterized. METHODS We performed sleep high density (hd)-EEG recordings in twenty FEP patients and twenty healthy control subjects (HC). Slow wave activity (SWA) and several other slow wave parameters, e.g. density, amplitude, up- and down-slopes, were calculated at each electrode location and compared across groups. Additionally, the association between slow wave characteristics and clinical symptoms was assessed. RESULTS FEP patients showed a reduction selectively in slow-wave density relative to HC, and this reduction was significant in a large frontal area, including channels overlying the prefrontal cortex. Furthermore, slow wave density was inversely correlated with the severity of FEP positive symptoms. CONCLUSIONS Abnormalities in slow waves are present at the beginning of psychosis, occur in frontal-prefrontal regions that are highly dysfunctional in psychotic patients, and are associated with their positive symptom severity. Building on these findings, future work will help establish the direction of these associations (i.e., if clinical symptoms precede, coincide, or follow SW deficits), which will determine whether ameliorating slow wave sleep deficits is a viable treatment target in early psychosis.
Collapse
|
34
|
Kay DB, Karim HT, Hasler BP, James JA, Germain A, Hall MH, Franzen PL, Price JC, Nofzinger EA, Buysse DJ. Impact of acute sleep restriction on cerebral glucose metabolism during recovery non-rapid eye movement sleep among individuals with primary insomnia and good sleeper controls. Sleep Med 2019; 55:81-91. [PMID: 30772698 PMCID: PMC8232888 DOI: 10.1016/j.sleep.2018.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 11/22/2018] [Accepted: 12/11/2018] [Indexed: 01/17/2023]
Abstract
BACKGROUND Restricting time in bed improves insomnia symptoms, but the neural mechanisms for this effect are unknown. Total and partial acute sleep restriction may be useful paradigms for elucidating these effects. We examined the impact of acute sleep restriction on cerebral glucose metabolism during non-rapid eye movement (NREM) sleep in individuals with primary insomnia (n = 17) and good sleep (n = 19). METHODS Participants underwent [18F]fluorodeoxyglucose positron emission tomography scans during baseline and recovery NREM sleep following one night of partial or total sleep restriction. We compared group differences in baseline-recovery changes, as well as main effects of group and condition (baseline vs. recovery NREM sleep), for relative regional cerebral metabolic rate for glucose (rCMRglc), whole-brain glucose metabolism, and sleep quality. RESULTS Relative rCMRglc was significantly lower during recovery NREM sleep compared to baseline in the left frontoparietal cortex, medial frontal cortex, posterior cingulate cortex, and thalamus, with no significant group differences. Good sleepers, but not insomnia patients, had lower whole-brain glucose metabolism during recovery NREM sleep compared to baseline. Acute sleep restriction improved sleep quality in individual with insomnia. Subgroup analyses including only participants who underwent partial sleep restriction yielded the same pattern of findings. CONCLUSION Individuals with insomnia and good sleepers showed similar relative rCMRglc responses to acute sleep restriction. Brain regions showing the greatest baseline-recovery changes in both groups included regions previously shown to have smaller sleep-wake differences in patients with primary insomnia. Acute sleep restriction, and by extension sleep restriction therapy, may impact regional metabolic alterations that characterize insomnia.
Collapse
Affiliation(s)
- Daniel B Kay
- Department of Psychology, Brigham Young University, Provo, UT, USA.
| | - Helmet T Karim
- Department of Psychiatry, Center for Sleep and Circadian Science, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Brant P Hasler
- Department of Psychiatry, Center for Sleep and Circadian Science, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jeffrey A James
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anne Germain
- Department of Psychiatry, Center for Sleep and Circadian Science, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Martica H Hall
- Department of Psychiatry, Center for Sleep and Circadian Science, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Peter L Franzen
- Department of Psychiatry, Center for Sleep and Circadian Science, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Julie C Price
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Eric A Nofzinger
- Ebb Therapeutics Oakmont, PA, USA; Department of Psychiatry, Center for Sleep and Circadian Science, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Daniel J Buysse
- Department of Psychiatry, Center for Sleep and Circadian Science, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
35
|
|
36
|
Rusterholz T, Hamann C, Markovic A, Schmidt SJ, Achermann P, Tarokh L. Nature and Nurture: Brain Region-Specific Inheritance of Sleep Neurophysiology in Adolescence. J Neurosci 2018; 38:9275-9285. [PMID: 30249805 PMCID: PMC6705989 DOI: 10.1523/jneurosci.0945-18.2018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 08/29/2018] [Accepted: 09/01/2018] [Indexed: 11/21/2022] Open
Abstract
Sleep-specific oscillations of spindles and slow waves are generated through thalamocortical and corticocortical loops, respectively, and provide a unique opportunity to measure the integrity of these neuronal systems. Understanding the relative contribution of genetic factors to sleep oscillations is important for determining whether they constitute useful endophenotypes that mark vulnerability to psychiatric illness. Using high-density sleep EEG recordings in human adolescent twin pairs (n = 60; 28 females), we find that over posterior regions 80-90% of the variance in slow oscillations, slow wave, and spindle activity is due to genes. Surprisingly, slow (10-12 Hz) and fast (12-16 Hz) anterior spindle amplitude and σ power are largely driven by environmental factors shared among the twins. To our knowledge this is the first example of a neural phenotype that exhibits a strong influence of nature in one brain region, and nurture in another. Overall, our findings highlight the utility of the sleep EEG as a reliable and easy to measure endophenotype during adolescence. This measure may be used to measure disease risk in development before the onset of a psychiatric disorder; the location within the brain of deficits in sleep neurophysiology may suggest whether the ultimate cause is genetic or environmental.SIGNIFICANCE STATEMENT Two cardinal oscillations of sleep, slow waves and sleep spindles, play an important role in the core functions of sleep including memory consolidation, synaptic plasticity, and the recuperative function of sleep. In this study, we use a behavioral genetics approach to examine the heritability of sleep neurophysiology using high-density EEG in a sample of early adolescent twins. Our findings reveal a strong influence of both environmental and genetic factors in shaping these oscillations, dependent on brain region. Thus, during a developmental period when brain structure and function is in flux, we find that the sleep EEG is among the most heritable of human traits over circumscribed brain regions.
Collapse
Affiliation(s)
- Thomas Rusterholz
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern 3000, Switzerland
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich 8057, Switzerland
- Centre for Experimental Neurology, Department of Neurology, Inselspital University Hospital Bern, University of Bern, Bern 3010, Switzerland
| | - Christoph Hamann
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern 3000, Switzerland
| | - Andjela Markovic
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern 3000, Switzerland
| | - Stefanie J Schmidt
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern 3000, Switzerland
- Department of Clinical Psychology and Psychotherapy, University of Bern, Bern 3012, Switzerland
| | - Peter Achermann
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich 8057, Switzerland
- Zurich Center for Interdisciplinary Sleep Research, University of Zurich, Zurich 8091, Switzerland, and
- The KEY Institute for Brain-Mind Research, Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Psychiatry, Zurich 8006, Switzerland
| | - Leila Tarokh
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern 3000, Switzerland,
| |
Collapse
|
37
|
Bidirectional and context-dependent changes in theta and gamma oscillatory brain activity in noradrenergic cell-specific Hypocretin/Orexin receptor 1-KO mice. Sci Rep 2018; 8:15474. [PMID: 30341359 PMCID: PMC6195537 DOI: 10.1038/s41598-018-33069-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 09/21/2018] [Indexed: 11/08/2022] Open
Abstract
Noradrenaline (NA) and hypocretins/orexins (HCRT), and their receptors, dynamically modulate the circuits that configure behavioral states, and their associated oscillatory activities. Salient stimuli activate spiking of locus coeruleus noradrenergic (NALC) cells, inducing NA release and brain-wide noradrenergic signalling, thus resetting network activity, and mediating an orienting response. Hypothalamic HCRT neurons provide one of the densest input to NALC cells. To functionally address the HCRT-to-NA connection, we selectively disrupted the Hcrtr1 gene in NA neurons, and analyzed resulting (Hcrtr1Dbh-CKO) mice’, and their control littermates’ electrocortical response in several contexts of enhanced arousal. Under enforced wakefulness (EW), or after cage change (CC), Hcrtr1Dbh-CKO mice exhibited a weakened ability to lower infra-θ frequencies (1–7 Hz), and mount a robust, narrow-bandwidth, high-frequency θ rhythm (~8.5 Hz). A fast-γ (55–80 Hz) response, whose dynamics closely parallelled θ, also diminished, while β/slow-γ activity (15–45 Hz) increased. Furthermore, EW-associated locomotion was lower. Surprisingly, nestbuilding-associated wakefulness, inversely, featured enhanced θ and fast-γ activities. Thus HCRT-to-NA signalling may fine-tune arousal, up in alarming conditions, and down during self-motivated, goal-driven behaviors. Lastly, slow-wave-sleep following EW and CC, but not nestbuilding, was severely deficient in slow-δ waves (0.75–2.25 Hz), suggesting that HCRT-to-NA signalling regulates the slow-δ rebound characterizing sleep after stress-associated arousal.
Collapse
|
38
|
Markovic A, Achermann P, Rusterholz T, Tarokh L. Heritability of Sleep EEG Topography in Adolescence: Results from a Longitudinal Twin Study. Sci Rep 2018; 8:7334. [PMID: 29743546 PMCID: PMC5943340 DOI: 10.1038/s41598-018-25590-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/16/2018] [Indexed: 01/12/2023] Open
Abstract
The topographic distribution of sleep EEG power is a reflection of brain structure and function. The goal of this study was to examine the degree to which genes contribute to sleep EEG topography during adolescence, a period of brain restructuring and maturation. We recorded high-density sleep EEG in monozygotic (MZ; n = 28) and dizygotic (DZ; n = 22) adolescent twins (mean age = 13.2 ± 1.1 years) at two time points 6 months apart. The topographic distribution of normalized sleep EEG power was examined for the frequency bands delta (1-4.6 Hz) to gamma 2 (34.2-44 Hz) during NREM and REM sleep. We found highest heritability values in the beta band for NREM and REM sleep (0.44 ≤ h2 ≤ 0.57), while environmental factors shared amongst twin siblings accounted for the variance in the delta to sigma bands (0.59 ≤ c2 ≤ 0.83). Given that both genetic and environmental factors are reflected in sleep EEG topography, our results suggest that topography may provide a rich metric by which to understand brain function. Furthermore, the frequency specific parsing of the influence of genetic from environmental factors on topography suggests functionally distinct networks and reveals the mechanisms that shape these networks.
Collapse
Affiliation(s)
- Andjela Markovic
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Peter Achermann
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
- Zurich Center for Interdisciplinary Sleep Research, University of Zurich, Zurich, Switzerland
| | - Thomas Rusterholz
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Leila Tarokh
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA.
| |
Collapse
|