1
|
Gong Z, Zhou D, Shen H, Ma C, Wu D, Hou L, Wang H, Xu T. Development of a prognostic model related to homologous recombination deficiency in glioma based on multiple machine learning. Front Immunol 2024; 15:1452097. [PMID: 39434883 PMCID: PMC11491349 DOI: 10.3389/fimmu.2024.1452097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/13/2024] [Indexed: 10/23/2024] Open
Abstract
Background Despite advances in neuro-oncology, treatments of glioma and tools for predicting the outcome of patients remain limited. The objective of this research is to construct a prognostic model for glioma using the Homologous Recombination Deficiency (HRD) score and validate its predictive capability for glioma. Methods We consolidated glioma datasets from TCGA, various cancer types for pan-cancer HRD analysis, and two additional glioma RNAseq datasets from GEO and CGGA databases. HRD scores, mutation data, and other genomic indices were calculated. Using machine learning algorithms, we identified signature genes and constructed an HRD-related prognostic risk model. The model's performance was validated across multiple cohorts. We also assessed immune infiltration and conducted molecular docking to identify potential therapeutic agents. Results Our analysis established a correlation between higher HRD scores and genomic instability in gliomas. The model, based on machine learning algorithms, identified seven key genes, significantly predicting patient prognosis. Moreover, the HRD score prognostic model surpassed other models in terms of prediction efficacy across different cancers. Differential immune cell infiltration patterns were observed between HRD risk groups, with potential implications for immunotherapy. Molecular docking highlighted several compounds, notably Panobinostat, as promising for high-risk patients. Conclusions The prognostic model based on the HRD score threshold and associated genes in glioma offers new insights into the genomic and immunological landscapes, potentially guiding therapeutic strategies. The differential immune profiles associated with HRD-risk groups could inform immunotherapeutic interventions, with our findings paving the way for personalized medicine in glioma treatment.
Collapse
Affiliation(s)
- Zhenyu Gong
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
- Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Dairan Zhou
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Haotian Shen
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Chao Ma
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Dejun Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Lijun Hou
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Hongxiang Wang
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Tao Xu
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
2
|
Tuerxun K, Zhang S, Zhang Y. Downregulation of PITX2 inhibits the proliferation and migration of liver cancer cells and induces cell apoptosis. Open Life Sci 2022; 16:1322-1329. [PMID: 35071766 PMCID: PMC8724353 DOI: 10.1515/biol-2021-0133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 09/01/2021] [Accepted: 09/21/2021] [Indexed: 11/15/2022] Open
Abstract
Paired-like homeodomain 2 (PITX2) functions as a transcription factor to participate in vertebrate embryogenesis, and dysregulated PITX2 expression was associated with the progression of various cancers. The functional role of PITX2 in tumorigenesis of liver cancer remains unknown. Western blot analysis showed that expression levels of PITX2 were enhanced in the liver cancer tissues and cells. siRNAs targeting PITX2 induced downregulation of PITX2 in liver cancer cells. siRNA-induced knockdown of PITX2 decreased liver cancer cell viability and proliferation, while promoting cell apoptosis by increasing cleaved-PARP, cleaved caspase 3, and cleaved caspase 9. The knockdown of PITX2 repressed liver cancer cell migration and invasion. In conclusion, elevated PITX2 expression was associated with liver cancer progression through repression of cell apoptosis and promoting cell proliferation and metastasis, and silencing of PITX2 might serve as a potential therapeutic strategy for the treatment of liver cancer.
Collapse
Affiliation(s)
- Kebinuer Tuerxun
- Department of Infection and Liver Disease Center, The First Affiliated Hospital of Xinjiang Medical University, No. 137, Liyushan South Road, Urumqi, Xinjiang, 830054, China
| | - Shufang Zhang
- Department of Infection and Liver Disease Center, The First Affiliated Hospital of Xinjiang Medical University, No. 137, Liyushan South Road, Urumqi, Xinjiang, 830054, China
| | - Yuexin Zhang
- Department of Infection and Liver Disease Center, The First Affiliated Hospital of Xinjiang Medical University, No. 137, Liyushan South Road, Urumqi, Xinjiang, 830054, China
| |
Collapse
|
3
|
Napieralski R, Schricker G, Auer G, Aubele M, Perkins J, Magdolen V, Ulm K, Hamann M, Walch A, Weichert W, Kiechle M, Wilhelm OG. PITX2 DNA-Methylation: Predictive versus Prognostic Value for Anthracycline-Based Chemotherapy in Triple-Negative Breast Cancer Patients. Breast Care (Basel) 2021; 16:523-531. [PMID: 34720812 DOI: 10.1159/000510468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/24/2020] [Indexed: 12/31/2022] Open
Abstract
Background PITX2 DNA methylation has been shown to predict outcomes in high-risk breast cancer patients after anthracycline-based chemotherapy. To determine its prognostic versus predictive value, the impact of PITX2 DNA methylation on outcomes was studied in an untreated cohort vs. an anthracycline-treated triple-negative breast cancer (TNBC) cohort. Material and Methods The percent DNA methylation ratio (PMR) of paired-like homeodomain transcription factor 2 (PITX2) was determined by a validated methylation-specific real-time PCR test. Patient samples of routinely collected archived formalin-fixed paraffin-embedded (FFPE) tissue and clinical data from 144 TNBC patients of 2 independent cohorts (i.e., 66 untreated patients and 78 patients treated with anthracycline-based chemotherapy) were analyzed. Results The risk of 5- and 10-year overall survival (OS) increased continuously with rising PITX2 DNA methylation in the anthracycline-treated population, but it increased only slightly during 10-year follow-up time in the untreated patient population. PITX2 DNA methylation with a PMR cutoff of 2 did not show significance for poor vs. good outcomes (OS) in the untreated patient cohort (HR = 1.55; p = 0.259). In contrast, the PITX2 PMR cutoff of 2 identified patients with poor (PMR >2) vs. good (PMR ≤2) outcomes (OS) with statistical significance in the anthracycline-treated cohort (HR = 3.96; p = 0.011). The results in the subgroup of patients who did receive anthracyclines only (no taxanes) confirmed this finding (HR = 5.71; p = 0.014). Conclusion In this hypothesis-generating study PITX2 DNA methylation demonstrated predominantly predictive value in anthracycline treatment in TNBC patients. The risk of poor outcome (OS) correlates with increasing PITX2 DNA methylation.
Collapse
Affiliation(s)
| | | | - Gert Auer
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | | | | | - Viktor Magdolen
- Department of Gynecology and Obstetrics and Comprehensive Cancer Center (CCCTUM), Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Kurt Ulm
- Institute of Medical Informatics, Statistics and Epidemiology, Technische Universität München, Munich, Germany
| | - Moritz Hamann
- Department of Gynecology Rotkreuzklinikum München, Munich, Germany
| | - Axel Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Munich, Germany
| | - Wilko Weichert
- Institute of Pathology, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Marion Kiechle
- Department of Gynecology and Obstetrics and Comprehensive Cancer Center (CCCTUM), Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | | |
Collapse
|
4
|
Bertozzi S, Londero AP, Viola L, Orsaria M, Bulfoni M, Marzinotto S, Corradetti B, Baccarani U, Cesselli D, Cedolini C, Mariuzzi L. TFEB, SIRT1, CARM1, Beclin-1 expression and PITX2 methylation in breast cancer chemoresistance: a retrospective study. BMC Cancer 2021; 21:1118. [PMID: 34663249 PMCID: PMC8524961 DOI: 10.1186/s12885-021-08844-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 10/06/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Breast cancer chemoresistance is attributed to a wide variety of mechanisms, including autophagy. Transcription factor EB (TFEB) has been recently identified and characterized as one major regulator of autophagy and lysosomal genesis. OBJECTIVE This study aims to evaluate the prognostic impact of TFEB and its pathway in breast cancer chemoresistance. METHODS This retrospective study analyzes the expression of TFEB, CARM1, SIRT1, and Beclin-1 and the methylation of PITX2 in breast carcinoma. A group of breast cancer patients treated with chemotherapy, who relapsed within 12 months from treatment initiation, were compared to a sub-cohort of chemo-treated patients who did not recur within 12 months of follow-up. The expression of TFEB, CARM1, SIRT1, and Belcin-1 was analyzed using immunohistochemistry or RT-PCR on formalin-fixed paraffin-embedded samples. PITX2 methylation was tested with the diagnostic CE-marked kit Therascreen PITX2 RGQ PCR. In the final model, 136 cases of chemo-treated breast cancer were included. RESULTS A higher TFEB and Beclin-1 expression correlate with shorter survival in patients with chemo-treated invasive breast cancer (respectively HR 3.46, CI.95 1.27-9.47, p < 0.05 and 7.11, CI.95 2.54-19.9). TFEB, CARM1, and SIRT1 are positively correlated with Beclin-1. The protein expression of SIRT1 is significantly associated with TFEB and CARM1 so that a very low SIRT1 expression (lower than the first quartile of the H-score distribution) correlates with a low expression of TFEB and CARM1 and with longer survival. SIRT1 seems to have a lower H-score in the basal-like and HER2-enriched tumors than the luminal subtypes. Beclin-1 and TFEB seem to have a higher H-score in the basal-like and HER2-enriched tumors than the luminal subtypes. PITX2 methylation analysis was feasible only in 65% of the selected samples, but no significant differences between cases and controls were found, and there was also no correlation with the expression of the TFEB pathway. CONCLUSIONS TFEB, SIRT1, and Beclin-1 seem to have a potential prognostic significance in patients with chemo-treated breast cancer, likely because of their role in the regulation of autophagy. In addition, no correlation between TFEB and PITX2 methylation was found, likely because they perform two different roles within the autophagy process.
Collapse
Affiliation(s)
- Serena Bertozzi
- Breast Unit, DAME, University Hospital of Udine, Piazza Santa Maria della Misericordia, 15, 33100, Udine, Italy.
- Ennergi Research (non-profit organisation), 33050, Lestizza, UD, Italy.
| | - Ambrogio P Londero
- Ennergi Research (non-profit organisation), 33050, Lestizza, UD, Italy.
- Clinic of Obstetrics and Gynecology, University Hospital of Udine, Piazza Santa Maria della Misericordia, 15, 33100, Udine, Italy.
| | - Luigi Viola
- Department of Radiology & Radiotherapy, University of Campania "Luigi Vanvitelli", 80100, Naples, Italy
| | - Maria Orsaria
- Institute of Pathology, DAME, University Hospital of Udine, 33100, Udine, UD, Italy
| | - Michela Bulfoni
- Institute of Pathology, DAME, University Hospital of Udine, 33100, Udine, UD, Italy
| | - Stefania Marzinotto
- Institute of Pathology, DAME, University Hospital of Udine, 33100, Udine, UD, Italy
| | - Bruna Corradetti
- Department of Nanotechnology, Houston Methodist Hospital, Houston, TX, USA
| | - Umberto Baccarani
- Clinic of Surgery, DAME, University Hospital of Udine, 33100, Udine, UD, Italy
| | - Daniela Cesselli
- Institute of Pathology, DAME, University Hospital of Udine, 33100, Udine, UD, Italy
| | - Carla Cedolini
- Breast Unit, DAME, University Hospital of Udine, Piazza Santa Maria della Misericordia, 15, 33100, Udine, Italy
| | - Laura Mariuzzi
- Institute of Pathology, DAME, University Hospital of Udine, 33100, Udine, UD, Italy
| |
Collapse
|
5
|
Zhang H, Qi J, Guo J, Wang Y, Guan Y, Fan J, Sui L, Xu Y, Kong L, Yan B, Kong Y. Paired-like homeodomain transcription factor 2 affects endometrial cell function and embryo implantation through the Wnt/β-catenin pathway. Cell Biol Int 2021; 45:1957-1965. [PMID: 34003541 DOI: 10.1002/cbin.11636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 04/03/2021] [Accepted: 05/16/2021] [Indexed: 11/10/2022]
Abstract
The successful implantation of embryos is crucial for pregnancy in mammals. This complex process is inevitably dependent on the development of the endometrium. The paired-like homeodomain transcription factor 2 (PITX2) is involved in a variety of biological processes, but whether it is involved in embryo implantation has not been reported. In this study, we aimed to investigate uterine expression and regulation of PITX2 during implantation. We found that PITX2 was elevated in the human endometrium in the secretory phase. The results of the pregnant mouse models showed that PITX2 expression was spatiotemporal in mouse endometrial tissue throughout peri-implantation period, and it was significantly upregulated at the time of implantation. Interestingly, PITX2 was mainly localized to the glandular epithelium cells on D2.5-3.5 of pregnancy, while D5.5-6.5 was largely expressed in stromal cells. In vitro, PITX2 regulated endometrial cells proliferation, migration, invasion, and other functions through the Wnt/β-catenin signaling pathway. In addition, a significant decrease in the rate of embryo implantation was observed after injecting PITX2 small interfering RNA into the uterine horn. These results demonstrate the effects of PITX2 on the physiological function of endometrial cells and embryo implantation, suggesting a role in the endometrial regulatory mechanism during implantation.
Collapse
Affiliation(s)
- Hongshuo Zhang
- Core Laboratory Glycobiology & Glycoengineering, Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Jia Qi
- Core Laboratory Glycobiology & Glycoengineering, Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Jinqiu Guo
- Core Laboratory Glycobiology & Glycoengineering, Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Yufei Wang
- Core Laboratory Glycobiology & Glycoengineering, Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Ying Guan
- Core Laboratory Glycobiology & Glycoengineering, Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Jianhui Fan
- Core Laboratory Glycobiology & Glycoengineering, Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Linlin Sui
- Core Laboratory Glycobiology & Glycoengineering, Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Yuefei Xu
- Core Laboratory Glycobiology & Glycoengineering, Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Li Kong
- Department of Histology and Embryology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Bin Yan
- Department of Gynecology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Ying Kong
- Core Laboratory Glycobiology & Glycoengineering, Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
6
|
Klümper N, Ralser DJ, Zarbl R, Schlack K, Schrader AJ, Rehlinghaus M, Hoffmann MJ, Niegisch G, Uhlig A, Trojan L, Steinestel J, Steinestel K, Wirtz RM, Sikic D, Eckstein M, Kristiansen G, Toma M, Hölzel M, Ritter M, Strieth S, Ellinger J, Dietrich D. CTLA4 promoter hypomethylation is a negative prognostic biomarker at initial diagnosis but predicts response and favorable outcome to anti-PD-1 based immunotherapy in clear cell renal cell carcinoma. J Immunother Cancer 2021; 9:e002949. [PMID: 34446578 PMCID: PMC8395367 DOI: 10.1136/jitc-2021-002949] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2021] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND In metastatic clear cell renal cell carcinoma (ccRCC), different combination therapies, each including anti-PD-1 immune checkpoint blockade (ICB), are applied as first-line treatment. Robust predictive biomarkers for rational upfront therapy decisions are lacking, although they are urgently needed. Recently, we showed that CTLA4 promoter methylation predicts response to ICB in melanoma. Here, we aimed to investigate CTLA4 methylation in ccRCC and its utility to serve as a predictive biomarker for anti-PD-1 based ICB in metastatic ccRCC. METHODS CTLA4 methylation was analyzed with regard to transcriptional gene activity (mRNA expression), intratumoral immune cell composition, and clinical course in two ccRCC cohorts obtained from The Cancer Genome Atlas (TCGA cohort, n=533) and the University Hospital Bonn (UHB Non-ICB Cohort, n=116). In addition, CTLA4 methylation as well as CD8+ T cell infiltrates and PD-L1 expression were evaluated in pre-treatment samples from a multicenter cohort (RCC-ICB Cohort, n=71). Patients included in the RCC-ICB Cohort were treated with either first line anti-PD-1 based combination therapy (n=25) or monotherapy post-tyrosine kinase inhibition in second line or later. Analyses were performed with regard to treatment response according to RECIST, progression-free survival (PFS), event-free survival (EFS), and overall survival (OS) following treatment initiation. RESULTS CTLA4 promoter hypomethylation was significantly correlated with CTLA4 mRNA expression, lymphocyte infiltration, and poor OS in both primary ccRCC cohorts (TCGA: HR 0.30 (95% CI 0.18 to 0.49), p<0.001; UHB Non-ICB: HR 0.35 (95% CI 0.16 to 0.75), p=0.007). In contrast, CTLA4 promoter hypomethylation predicted response and, accordingly, favorable outcomes (PFS and OS) in patients with ICB-treated ccRCC, overcompensating the negative prognostic value of CTLA4 hypomethylation at initial diagnosis. Moreover, in multivariable Cox regression, CTLA4 promoter hypomethylation remained an independent predictor of improved outcome in ICB-treated ccRCC after co-adjustment of the International Metastatic Renal Cell Carcinoma Database Consortium score (HR 3.00 (95% CI 1.47 to 6.28), p=0.003). CONCLUSIONS Our study suggests CTLA4 methylation as a powerful predictive biomarker for immunotherapy response in metastatic RCC.
Collapse
Affiliation(s)
- Niklas Klümper
- Institute of Experimental Oncology, University Medical Center Bonn (UKB), Bonn, Germany
- Center for Integrated Oncology Aachen/Bonn/Cologne/Düsseldorf (CIO-ABCD), Bonn, Germany
- Department of Urology and Pediatric Urology, University Medical Center Bonn (UKB), Bonn, Germany
| | - Damian J Ralser
- Center for Integrated Oncology Aachen/Bonn/Cologne/Düsseldorf (CIO-ABCD), Bonn, Germany
- Department of Obstetrics and Gynecology, University Medical Center Bonn (UKB), Bonn, Germany
| | - Romina Zarbl
- Center for Integrated Oncology Aachen/Bonn/Cologne/Düsseldorf (CIO-ABCD), Bonn, Germany
- Department of Otorhinolaryngology, University Medical Center Bonn (UKB), Bonn, Germany
| | - Katrin Schlack
- Department of Urology, University Hospital Münster, Münster, Germany
| | | | - Marc Rehlinghaus
- Department of Urology, University Hospital Düsseldorf, Medical Faculty, Düsseldorf, Germany
- Center for Integrated Oncology Aachen/Bonn/Cologne/Düsseldorf (CIO-ABCD), Düsseldorf, Germany
| | - Michèle J Hoffmann
- Department of Urology, University Hospital Düsseldorf, Medical Faculty, Düsseldorf, Germany
- Center for Integrated Oncology Aachen/Bonn/Cologne/Düsseldorf (CIO-ABCD), Düsseldorf, Germany
| | - Günter Niegisch
- Department of Urology, University Hospital Düsseldorf, Medical Faculty, Düsseldorf, Germany
- Center for Integrated Oncology Aachen/Bonn/Cologne/Düsseldorf (CIO-ABCD), Düsseldorf, Germany
| | - Annemarie Uhlig
- Department of Urology, University Hospital Göttingen, Göttingen, Germany
| | - Lutz Trojan
- Department of Urology, University Hospital Göttingen, Göttingen, Germany
| | - Julie Steinestel
- Department of Urology, University Hospital Augsburg, Augsburg, Germany
| | - Konrad Steinestel
- Institute of Pathology and Molecular Pathology, Bundeswehrkrankenhaus Ulm, Ulm, Germany
| | - Ralph M Wirtz
- STRATIFYER Molecular Pathology GmbH, Cologne, Germany
- Institute of Pathology, St. Elisabeth Hospital, Cologne, Germany
| | - Danijel Sikic
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
- Department of Urology and Pediatric Urology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Markus Eckstein
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Glen Kristiansen
- Center for Integrated Oncology Aachen/Bonn/Cologne/Düsseldorf (CIO-ABCD), Bonn, Germany
- Institute of Pathology, University Medical Center Bonn (UKB), Bonn, Germany
| | - Marieta Toma
- Center for Integrated Oncology Aachen/Bonn/Cologne/Düsseldorf (CIO-ABCD), Bonn, Germany
- Institute of Pathology, University Medical Center Bonn (UKB), Bonn, Germany
| | - Michael Hölzel
- Institute of Experimental Oncology, University Medical Center Bonn (UKB), Bonn, Germany
- Center for Integrated Oncology Aachen/Bonn/Cologne/Düsseldorf (CIO-ABCD), Bonn, Germany
| | - Manuel Ritter
- Center for Integrated Oncology Aachen/Bonn/Cologne/Düsseldorf (CIO-ABCD), Bonn, Germany
- Department of Urology and Pediatric Urology, University Medical Center Bonn (UKB), Bonn, Germany
| | - Sebastian Strieth
- Center for Integrated Oncology Aachen/Bonn/Cologne/Düsseldorf (CIO-ABCD), Bonn, Germany
- Department of Otorhinolaryngology, University Medical Center Bonn (UKB), Bonn, Germany
| | - Jörg Ellinger
- Center for Integrated Oncology Aachen/Bonn/Cologne/Düsseldorf (CIO-ABCD), Bonn, Germany
- Department of Urology and Pediatric Urology, University Medical Center Bonn (UKB), Bonn, Germany
| | - Dimo Dietrich
- Center for Integrated Oncology Aachen/Bonn/Cologne/Düsseldorf (CIO-ABCD), Bonn, Germany
- Department of Otorhinolaryngology, University Medical Center Bonn (UKB), Bonn, Germany
| |
Collapse
|
7
|
Li J, Zhang P, Xia Y. Study on <em>CCDC69</em> interfering with the prognosis of patients with breast cancer through PPAR signal pathway. Eur J Histochem 2021; 65:3207. [PMID: 33634680 PMCID: PMC7922363 DOI: 10.4081/ejh.2021.3207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/27/2021] [Indexed: 12/31/2022] Open
Abstract
Coiled-coil domain-containing protein 69 (CCDC69) is a novel gene and limited knowledge in known in breast cancer. In the present study, we aimed to explore the relationship between CCDC69 and breast cancer, demonstrate the clinicopathological significance and prognostic role of CCDC69 in breast cancer, and analyze the possible mechanism of CCDC69 affecting the prognosis of breast cancer. First, from GEO database, TIMER, GEPIA, and OncoLnc, we select CCDC69 as the potential gene which closely involved in breast cancer progression. Next, by real-time PCR detection, the expression of CCDC69 in breast cancer tissue was notably lower than that in normal breast tissues (p=0.0002). In addition, our immunohistochemistry (IHC) indicated that the positive expression rate of CCDC69 in the triple-negative breast cancer (TNBC) was lower than that in the non-TNBC (p=0.0362), and it was negatively correlated with the expression of Ki67 (p=0.001). Further enrichment analysis of CCDC69 and the similar genes performed on FunRich3.1.3 revealed that these genes were significantly associated with fat differentiation, and most of them were related to peroxisome proliferator-activated receptor (PPAR) signal pathway. Collectively, our findings suggest that CCDC69 is down regulated in breast cancer tissue especially in TNBC which has higher malignant grade and poorer clinical prognosis.
Collapse
Affiliation(s)
- Jinjiao Li
- Department of Breast, Thyroid and Burn Surgery, The People's Hospital of Wenshan Prefecture, Wenshan City, Yunnan.
| | - Panshi Zhang
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan.
| | - Yun Xia
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan.
| |
Collapse
|
8
|
Ari F, Napieralski R, Akgun O, Magdolen V, Ulukaya E. Epigenetic modulators combination with chemotherapy in breast cancer cells. Cell Biochem Funct 2021; 39:571-583. [PMID: 33608886 DOI: 10.1002/cbf.3626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 12/15/2022]
Abstract
Despite the concerning adverse effects on tumour development, epigenetic drugs are very promising in cancer treatment. The aim of this study was to compare the differential effects of standard chemotherapy regimens (FEC: 5-fluorouracil plus epirubicine plus cyclophosphamide) in combination with epigenetic modulators (decitabine, valproic acid): (a) on gene methylation levels of selected tumour biomarkers (LINE-1, uPA, PAI-1, DAPK); (b) their expression status (uPA and PAI-1); (c) differentiation status (5meC and H3K27me3). Furthermore, cell survival as well as changes concerning the invasion capacity were monitored in cell culture models of breast cancer (MCF-7, MDA-MB-231). A significant overall decrease of cell survival was observed in the FEC-containing combination therapies for both cell lines. Methylation results showed a general tendency towards increased demethylation of the uPA and PAI-1 gene promoters for the MCF-7 cells, as well as the proapoptotic DAPK gene in the treatment regimens for both cell lines. The uPA and PAI-1 antigen levels were mainly increased in the supernatant of FEC-only treated MDA-MB-231 cells. DAC-only treatment induced an increase of secreted uPA protein in MCF-7 cell culture, while most of the VPA-containing regimens also induced uPA and PAI-1 expression in MCF-7 cell fractions. Epigenetically active substances can also induce a re-differentiation in tumour cells, as shown by 5meC, H3K27me3 applying ICC. SIGNIFICANCE OF THE STUDY: Epigenetic modulators especially in the highly undifferentiated and highly malignant MDA-MB-231 tumour cells significantly reduced tumour malignancy thus; further clinical studies applying specific combination therapies with epigenetic modulators may be warranted.
Collapse
Affiliation(s)
- Ferda Ari
- Science and Art Faculty, Department of Biology, Bursa Uludag University, Bursa, Turkey
| | - Rudolf Napieralski
- Department of Obstetrics and Gynecology, Clinical Research Unit, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Therawis Diagnostics GmbH, Munich, Germany
| | - Oguzhan Akgun
- Science and Art Faculty, Department of Biology, Bursa Uludag University, Bursa, Turkey
| | - Viktor Magdolen
- Department of Obstetrics and Gynecology, Clinical Research Unit, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Engin Ulukaya
- Faculty of Medicine, Department of Clinical Biochemistry, Istinye University, Istanbul, Turkey
| |
Collapse
|
9
|
Chen X, Wu X, Lei W. USP44 hypermethylation promotes cell proliferation and metastasis in breast cancer. Future Oncol 2020; 17:279-289. [PMID: 32956592 DOI: 10.2217/fon-2020-0415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Aim: The methylation and expression levels of USP44 in breast cancer were investigated and their effects on tumor cells were researched. Materials & methods: Bioinformatics was employed to identify the target gene from TCGA database. Sodium bisulfite and decitabine were used for DNA modification and demethylation, and methylation-specific PCR and reverse transcriptase PCR were performed to assess USP44 methylation and expression levels. Tumor cell behaviors were assayed via several in vitro experiments. Results: USP44 was hypermethylated, which caused its poor expression in breast cancer, whereas its overexpression significantly suppressed cancer cell proliferation, migration and invasion and induced apoptosis. Conclusion: USP44 negatively functions in cancer progression upon overexpression, indicating its potential as a therapeutic target for clinical treatment of breast cancer.
Collapse
Affiliation(s)
- Xin Chen
- Department of Surgical Oncology, Taizhou Municipal Hospital, Taizhou University, Taizhou, Zhejiang, 318000, PR China
| | - Xiaotang Wu
- Shanghai Engineering Research Center of Pharmaceutical Translation, Shanghai, 200000, PR China
| | - Wen Lei
- Department of Breast Surgical Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, Fujian, 350014, PR China
| |
Collapse
|
10
|
Díez-Villanueva A, Sanz-Pamplona R, Carreras-Torres R, Moratalla-Navarro F, Alonso M, Paré-Brunet L, Aussó S, Guinó E, Solé X, Cordero D, Salazar R, Berdasco M, Peinado MA, Moreno V. DNA methylation events in transcription factors and gene expression changes in colon cancer. Epigenomics 2020; 12:1593-1610. [DOI: 10.2217/epi-2020-0029] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Aim: Gain insight about the role of DNA methylation in the malignant growth of colon cancer. Patients & methods: Methylation and gene expression from 90 adjacent-tumor paired tissues and 48 healthy tissues were analyzed. Tumor genes whose change in expression was explained by changes in methylation were identified using linear models adjusted for tumor stromal content. Results: No differences in methylation were found between adjacent and healthy tissues, but clear differences were found between adjacent and tumor samples. We identified hypermethylated CpG islands located in promoter regions that drive differential gene expression of transcription factors and their target genes. Conclusion: Changes in methylation of a few genes provoke important changes in gene expression, by expanding the signal through transcription activation/repression.
Collapse
Affiliation(s)
- Anna Díez-Villanueva
- Unit of Biomarkers & Susceptibility, Oncology Data Analytics Program, Catalan Institute of Oncology (ICO), 08908 Hospitalet de Llobregat, Barcelona, Spain
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Hospitalet de Llobregat, Barcelona, Spain
- Biomedical Research Centre Network for Epidemiology & Public Health (CIBERESP), 28029 Madrid, Spain
| | - Rebeca Sanz-Pamplona
- Unit of Biomarkers & Susceptibility, Oncology Data Analytics Program, Catalan Institute of Oncology (ICO), 08908 Hospitalet de Llobregat, Barcelona, Spain
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Hospitalet de Llobregat, Barcelona, Spain
- Biomedical Research Centre Network for Epidemiology & Public Health (CIBERESP), 28029 Madrid, Spain
| | - Robert Carreras-Torres
- Unit of Biomarkers & Susceptibility, Oncology Data Analytics Program, Catalan Institute of Oncology (ICO), 08908 Hospitalet de Llobregat, Barcelona, Spain
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Hospitalet de Llobregat, Barcelona, Spain
- Biomedical Research Centre Network for Epidemiology & Public Health (CIBERESP), 28029 Madrid, Spain
| | - Ferran Moratalla-Navarro
- Unit of Biomarkers & Susceptibility, Oncology Data Analytics Program, Catalan Institute of Oncology (ICO), 08908 Hospitalet de Llobregat, Barcelona, Spain
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Hospitalet de Llobregat, Barcelona, Spain
- Biomedical Research Centre Network for Epidemiology & Public Health (CIBERESP), 28029 Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08907 Barcelona, Spain
| | - M Henar Alonso
- Unit of Biomarkers & Susceptibility, Oncology Data Analytics Program, Catalan Institute of Oncology (ICO), 08908 Hospitalet de Llobregat, Barcelona, Spain
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Hospitalet de Llobregat, Barcelona, Spain
- Biomedical Research Centre Network for Epidemiology & Public Health (CIBERESP), 28029 Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08907 Barcelona, Spain
| | - Laia Paré-Brunet
- Unit of Biomarkers & Susceptibility, Oncology Data Analytics Program, Catalan Institute of Oncology (ICO), 08908 Hospitalet de Llobregat, Barcelona, Spain
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Hospitalet de Llobregat, Barcelona, Spain
| | - Susanna Aussó
- Unit of Biomarkers & Susceptibility, Oncology Data Analytics Program, Catalan Institute of Oncology (ICO), 08908 Hospitalet de Llobregat, Barcelona, Spain
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Hospitalet de Llobregat, Barcelona, Spain
| | - Elisabet Guinó
- Unit of Biomarkers & Susceptibility, Oncology Data Analytics Program, Catalan Institute of Oncology (ICO), 08908 Hospitalet de Llobregat, Barcelona, Spain
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Hospitalet de Llobregat, Barcelona, Spain
- Biomedical Research Centre Network for Epidemiology & Public Health (CIBERESP), 28029 Madrid, Spain
| | - Xavier Solé
- Unit of Biomarkers & Susceptibility, Oncology Data Analytics Program, Catalan Institute of Oncology (ICO), 08908 Hospitalet de Llobregat, Barcelona, Spain
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Hospitalet de Llobregat, Barcelona, Spain
- Biomedical Research Centre Network for Epidemiology & Public Health (CIBERESP), 28029 Madrid, Spain
| | - David Cordero
- Unit of Biomarkers & Susceptibility, Oncology Data Analytics Program, Catalan Institute of Oncology (ICO), 08908 Hospitalet de Llobregat, Barcelona, Spain
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Hospitalet de Llobregat, Barcelona, Spain
- Biomedical Research Centre Network for Epidemiology & Public Health (CIBERESP), 28029 Madrid, Spain
| | - Ramón Salazar
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Hospitalet de Llobregat, Barcelona, Spain
- Biomedical Research Centre Network for Cancer (CIBERONC), 28029 Madrid, Spain
- Medical Oncology Service, Catalan Institute of Oncology (ICO), 08908 Hospitalet de Llobregat, Barcelona, Spain
| | - Maria Berdasco
- Cancer Epigenetics & Biology Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Hospitalet de Llobregat, Barcelona, Spain
- Epigenetic Therapies Group, Experimental & Clinical Hematology Program (PHEC), Josep Carreras Leukaemia Research Institute, 08916 Badalona, Barcelona, Spain
| | - Miguel A Peinado
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP), 08916 Badalona, Barcelona, Spain
| | - Victor Moreno
- Unit of Biomarkers & Susceptibility, Oncology Data Analytics Program, Catalan Institute of Oncology (ICO), 08908 Hospitalet de Llobregat, Barcelona, Spain
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Hospitalet de Llobregat, Barcelona, Spain
- Biomedical Research Centre Network for Epidemiology & Public Health (CIBERESP), 28029 Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08907 Barcelona, Spain
| |
Collapse
|
11
|
de Ruijter TC, van der Heide F, Smits KM, Aarts MJ, van Engeland M, Heijnen VCG. Prognostic DNA methylation markers for hormone receptor breast cancer: a systematic review. Breast Cancer Res 2020; 22:13. [PMID: 32005275 PMCID: PMC6993426 DOI: 10.1186/s13058-020-1250-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/15/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND In patients with hormone receptor-positive breast cancer, differentiating between patients with a low and a high risk of recurrence is an ongoing challenge. In current practice, prognostic clinical parameters are used for risk prediction. DNA methylation markers have been proven to be of additional prognostic value in several cancer types. Numerous prognostic DNA methylation markers for breast cancer have been published in the literature. However, to date, none of these markers are used in clinical practice. METHODS We conducted a systematic review of PubMed and EMBASE to assess the number and level of evidence of published DNA methylation markers for hormone receptor-positive breast cancer. To obtain an overview of the reporting quality of the included studies, all were scored according to the REMARK criteria that were established as reporting guidelines for prognostic biomarker studies. RESULTS A total of 74 studies were identified reporting on 87 different DNA methylation markers. Assessment of the REMARK criteria showed variation in reporting quality of the studies. Eighteen single markers and one marker panel were studied in multiple independent populations. Hypermethylation of the markers RASSF1, BRCA, PITX2, CDH1, RARB, PCDH10 and PGR, and the marker panel GSTP1, RASSF1 and RARB showed a statistically significant correlation with poor disease outcome that was confirmed in at least one other, independent study. CONCLUSION This systematic review provides an overview on published prognostic DNA methylation markers for hormone receptor-positive breast cancer and identifies eight markers that have been independently validated. Analysis of the reporting quality of included studies suggests that future research on this topic would benefit from standardised reporting guidelines.
Collapse
Affiliation(s)
- Tim C. de Ruijter
- Division of Medical Oncology, Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands
- GROW – School for Oncology and Developmental Biology, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands
| | - Frank van der Heide
- Division of Medical Oncology, Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Kim M. Smits
- Division of Medical Oncology, Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands
- GROW – School for Oncology and Developmental Biology, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands
- Department of Pathology, Maastricht University Medical Centre, 6202 AZ Maastricht, The Netherlands
| | - Maureen J. Aarts
- Division of Medical Oncology, Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands
- GROW – School for Oncology and Developmental Biology, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands
| | - Manon van Engeland
- GROW – School for Oncology and Developmental Biology, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands
- Department of Pathology, Maastricht University Medical Centre, 6202 AZ Maastricht, The Netherlands
| | - Vivianne C. G. Heijnen
- Division of Medical Oncology, Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands
- GROW – School for Oncology and Developmental Biology, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
12
|
Huang S, Xu W, Hu P, Lakowski TM. Integrative Analysis Reveals Subtype-Specific Regulatory Determinants in Triple Negative Breast Cancer. Cancers (Basel) 2019; 11:cancers11040507. [PMID: 30974831 PMCID: PMC6521146 DOI: 10.3390/cancers11040507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/02/2019] [Accepted: 04/02/2019] [Indexed: 12/20/2022] Open
Abstract
Different breast cancer (BC) subtypes have unique gene expression patterns, but their regulatory mechanisms have yet to be fully elucidated. We hypothesized that the top upregulated (Yin) and downregulated (Yang) genes determine the fate of cancer cells. To reveal the regulatory determinants of these Yin and Yang genes in different BC subtypes, we developed a lasso regression model integrating DNA methylation (DM), copy number variation (CNV) and microRNA (miRNA) expression of 391 BC patients, coupled with miRNA–target interactions and transcription factor (TF) binding sites. A total of 25, 20, 15 and 24 key regulators were identified for luminal A, luminal B, Her2-enriched, and triple negative (TN) subtypes, respectively. Many of the 24 TN regulators were found to regulate the PPARA and FOXM1 pathways. The Yin Yang gene expression mean ratio (YMR) and combined risk score (CRS) signatures built with either the targets of or the TN regulators were associated with the BC patients’ survival. Previously, we identified FOXM1 and PPARA as the top Yin and Yang pathways in TN, respectively. These two pathways and their regulators could be further explored experimentally, which might help to identify potential therapeutic targets for TN.
Collapse
Affiliation(s)
- Shujun Huang
- College of Pharmacy, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; huangs12@myumanitoba (S.H.); (W.X.)
| | - Wayne Xu
- College of Pharmacy, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; huangs12@myumanitoba (S.H.); (W.X.)
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Research Institute in Oncology and Hematology, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Pingzhao Hu
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Research Institute in Oncology and Hematology, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Correspondence: (P.H.); (T.M.L.); Tel.: +1-204-789-3229 (P.H.); +1-204-272-3173 (T.M.L.)
| | - Ted M. Lakowski
- College of Pharmacy, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; huangs12@myumanitoba (S.H.); (W.X.)
- Correspondence: (P.H.); (T.M.L.); Tel.: +1-204-789-3229 (P.H.); +1-204-272-3173 (T.M.L.)
| |
Collapse
|
13
|
Gao J, Yu SR, Yuan Y, Zhang LL, Lu JW, Feng JF, Hu SN. MicroRNA-590-5p functions as a tumor suppressor in breast cancer conferring inhibitory effects on cell migration, invasion, and epithelial-mesenchymal transition by downregulating the Wnt-β-catenin signaling pathway. J Cell Physiol 2019; 234:1827-1841. [PMID: 30191949 DOI: 10.1002/jcp.27056] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 06/25/2018] [Indexed: 12/21/2022]
Abstract
Breast cancer remains one of the foremost primary causes of female morbidity and mortality worldwide. During the current study, the effect of miR-590-5p and paired-like homeodomain transcription factor 2 (PITX2) on proliferation, invasion, migration, and epithelial-mesenchymal transition (EMT) of human breast cancer via the Wnt-β-catenin signaling pathway was investigated. Breast cancer-related genes and related signaling pathways were obtained from KEGG database. The PITX2 regulatory microRNA was predicted. To define the contributory role by which miR-590-5p influences the progression of breast cancer, the interaction between miR-590-5p and PITX2 was explored; the proliferation, invasion, and migration abilities as well as the tumor growth and metastasis in nude mice were detected following the overexpression or silencing of miR-590-5p. PITX2 was determined to share a correlation with breast cancer and miR-590-5p was selected for further analysis. PITX2, Wnt-1, β-catenin, N-cadherin, and vimentin all displayed higher levels, while miR-590-5p and E-cadherin expression were lower among breast cancer tissues than in the adjacent normal tissue. After overexpression of miR-590-5p or si-PITX2, the expression of E-cadherin was markedly increased, decreases in the expression of Wnt-1, β-catenin, N-cadherin, and vimentin, as well as inhibited cell proliferation, invasion, migration, metastasis, and EMT were observed. This study provides evidence suggesting that the transfection of overexpressed miR-590-5p can act to alleviate the effects of breast cancer demonstrating an ability to inhibit the processes of cell proliferation, migration, and invasion as well as EMT by suppressing the expression of PITX2 and activation of the Wnt-β-catenin pathway.
Collapse
Affiliation(s)
- Jin Gao
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Shao-Rong Yu
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Yuan Yuan
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Li-Li Zhang
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Jian-Wei Lu
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Ji-Feng Feng
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Sai-Nan Hu
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
14
|
Schricker G, Napieralski R, Noske A, Piednoir E, Manner O, Schüren E, Lauber J, Perkins J, Magdolen V, Schmitt M, Ulm K, Weichert W, Kiechle M, Martens JWM, Wilhelm OG. Clinical performance of an analytically validated assay in comparison to microarray technology to assess PITX2 DNA-methylation in breast cancer. Sci Rep 2018; 8:16861. [PMID: 30442983 PMCID: PMC6237923 DOI: 10.1038/s41598-018-34919-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 10/26/2018] [Indexed: 12/25/2022] Open
Abstract
Significant evidence has accumulated that DNA-methylation of the paired-like homeodomain transcription factor 2 (PITX2) gene can serve as a prognostic and predictive biomarker in breast cancer. PITX2 DNA-methylation data have been obtained so far from microarray and polymerase chain reaction (PCR)-based research tests. The availability of an analytically validated in vitro methylation-specific real-time PCR assay format (therascreen PITX2 RGQ PCR assay) intended for the determination of the percent methylation ratio (PMR) in the (PITX2) promoter 2 prompted us to investigate whether the clinical performance of these different assay systems generate comparable clinical outcome data. Mathematically converted microarray data of a previous breast cancer study (n = 204) into PMR values leads to a PITX2 cut-off value at PMR 14.73. Recalculation of the data to experimentally equivalent PMRs with the PCR PITX2 assay leads to a cut-off value at PMR 12 with the highest statistical significance. This cut-off predicts outcome of high-risk breast cancer patients to adjuvant anthracycline-based chemotherapy (n = 204; Hazard Ratio 2.48; p < 0.001) comparable to microarray generated results (n = 204; Hazard ratio 2.32; p < 0.0001). The therascreen PITX2 RGQ PCR assay is an analytically validated test with high reliability and robustness and predicts outcome of high-risk breast cancer patients to anthracycline-based chemotherapy.
Collapse
Affiliation(s)
- Gabriele Schricker
- Therawis Diagnostics GmbH, Grillparzerstrasse 14, 81675, Munich, Germany.
| | - Rudolf Napieralski
- Therawis Diagnostics GmbH, Grillparzerstrasse 14, 81675, Munich, Germany
| | - Aurelia Noske
- Institute of Pathology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Strasse 22, 81675, Munich, Germany
| | - Elodie Piednoir
- HalioDx Luminy Biotech Entreprises, 163 Avenue de Luminy, 13009, Marseille, France
| | - Olivia Manner
- HalioDx Luminy Biotech Entreprises, 163 Avenue de Luminy, 13009, Marseille, France
| | - Elisabeth Schüren
- Therawis Diagnostics GmbH, Grillparzerstrasse 14, 81675, Munich, Germany
| | - Jürgen Lauber
- QIAGEN GmbH, Qiagen Strasse 1, 40724, Hilden, Germany
| | - Jonathan Perkins
- QIAGEN Manchester Ltd., Lloyd Street North, Manchester, M15 6SH, United Kingdom
| | - Viktor Magdolen
- Department of Obstetrics and Gynecology, Clinical Research Unit, Klinikum rechts der Isar, Technische Universität München, Ismaningerstrasse 22, 81675, Munich, Germany
| | - Manfred Schmitt
- Therawis Diagnostics GmbH, Grillparzerstrasse 14, 81675, Munich, Germany
- Department of Obstetrics and Gynecology, Clinical Research Unit, Klinikum rechts der Isar, Technische Universität München, Ismaningerstrasse 22, 81675, Munich, Germany
| | - Kurt Ulm
- Institute of Medical Informatics, Statistics and Epidemiology, Grillparzerstrasse 18, 81675, Munich, Germany
| | - Wilko Weichert
- Institute of Pathology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Strasse 22, 81675, Munich, Germany
| | - Marion Kiechle
- Department of Obstetrics and Gynecology, Clinical Research Unit, Klinikum rechts der Isar, Technische Universität München, Ismaningerstrasse 22, 81675, Munich, Germany
| | - John W M Martens
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - Olaf G Wilhelm
- Therawis Diagnostics GmbH, Grillparzerstrasse 14, 81675, Munich, Germany
| |
Collapse
|
15
|
Schmitt M, Wilhelm OG, Noske A, Schricker G, Napieralski R, Vetter M, Aubele M, Perkins J, Lauber J, Ulm K, Thomssen C, Martens JWM, Weichert W, Kiechle M. Clinical Validation of PITX2 DNA Methylation to Predict Outcome in High-Risk Breast Cancer Patients Treated with Anthracycline-Based Chemotherapy. Breast Care (Basel) 2018; 13:425-433. [PMID: 30800037 DOI: 10.1159/000493016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background: Breast cancer patients at high risk for recurrence are treated with anthracycline-based chemotherapy, but not all patients do equally benefit from such a regimen. To further improve therapy decision-making, biomarkers predicting outcome are of high unmet medical need. Methods: The percent DNA methylation ratio (PMR) of the promoter gene coding for the Paired-like homeodomain transcription factor 2 (PITX2) was determined by a validated methylation-specific real-time polymerase chain reaction (PCR) test. The multicenter study was conducted in routinely collected archived formalin-fixed paraffin-embedded (FFPE) tissue from 205 lymph node-positive breast cancer patients treated with adjuvant anthracycline-based chemotherapy. Results: The cut-off for the PITX2 methylation status (PMR = 12) was confirmed in a randomly selected cohort (n = 60) and validated (n = 145) prospectively with disease-free survival (DFS) at the 10-year follow-up. DFS was significantly different between the PMR ≤ 12 versus the PMR > 12 group with a hazard ratio (HR) of 2.74 (p < 0.001) in the validation cohort and also for the patient subgroup treated additionally with endocrine therapy (HR 2.47; p = 0.001). Conclusions: Early-stage lymph node-positive breast cancer patients with low PITX2 methylation do benefit from adjuvant anthracycline-based chemotherapy. Patients with a high PITX2 DNA methylation ratio, approximately 30%, show poor outcome and should thus be considered for alternative chemotherapy regimens.
Collapse
Affiliation(s)
- Manfred Schmitt
- Therawis Diagnostics GmbH, Munich, Germany.,Department of Obstetrics and Gynecology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | | | - Aurelia Noske
- Institute of Pathology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,German Cancer Consortium (DKTK), partner site Munich, Munich, Germany
| | | | | | - Martina Vetter
- Department of Gynecology, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | | | | | | | - Kurt Ulm
- Institute of Medical Informatics, Statistics and Epidemiology, Technische Universität München, Munich, Germany
| | - Christoph Thomssen
- Department of Gynecology, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - John W M Martens
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC, Rotterdam, The Netherlands
| | - Wilko Weichert
- Institute of Pathology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,German Cancer Consortium (DKTK), partner site Munich, Munich, Germany
| | - Marion Kiechle
- Department of Obstetrics and Gynecology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| |
Collapse
|
16
|
Semaan A, Uhl B, Branchi V, Lingohr P, Bootz F, Kristiansen G, Kalff JC, Matthaei H, Pantelis D, Dietrich D. Significance of PITX2 Promoter Methylation in Colorectal Carcinoma Prognosis. Clin Colorectal Cancer 2018; 17:e385-e393. [PMID: 29580650 DOI: 10.1016/j.clcc.2018.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 02/17/2018] [Accepted: 02/20/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND New treatment modalities and a growing understanding of the complex genetic tumor landscape have improved the outcome of colorectal cancer (CRC) patients. Nonetheless, more individualized treatment regimens, taking individual tumor characteristics into account, have been recently postulated and prognostic biomarkers are needed. We therefore evaluated the prognostic potential of paired-like homeodomain transcription factor 2 (PITX2) promoter methylation in CRC patients. MATERIALS AND METHODS Data of 2 independent cohorts were investigated. Tissue specimens of cohort A (n = 179) were analyzed for their methylation in the PITX2 promoter region using quantitative methylation-specific polymerase chain reaction and compared with publicly available data (PITX2 promoter methylation and PITX2 mRNA expression levels) from "The Cancer Genome Atlas Research Network" (cohort B, n = 443). Data were correlated with clinicopathological parameters and outcome. RESULTS Tumor samples of both cohorts showed a decreased PITX2 promoter methylation level (both P < .001) compared with nonmalignant tissue. Additionally, PITX2 promoter hypomethylation was prognostic in univariate and multivariate analysis (hazard ratio [HR], 1.97 [95% confidence interval (CI), 1.12-3.47], P = .018 and HR, 1.89 [95% CI, 1.09-3.29], P = .023), and Kaplan-Meier analysis (median overall survival, 53.2 vs. 70.4 months, P = .004). Subanalysis of high-risk vs. low-risk stage II CRC patients also showed a PITX2 hypomethylation of the promoter region in the high-risk group (P = .006). CONCLUSION Our results suggest a prognostic role of PITX2 promoter methylation in CRC as biomarker for risk stratification in stage II CRC patients although the results need to be independently validated.
Collapse
Affiliation(s)
- Alexander Semaan
- Department of General, Visceral, Thoracic, and Vascular Surgery, University Hospital Bonn, Bonn, Germany.
| | - Barbara Uhl
- Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Vittorio Branchi
- Department of General, Visceral, Thoracic, and Vascular Surgery, University Hospital Bonn, Bonn, Germany
| | - Philipp Lingohr
- Department of General, Visceral, Thoracic, and Vascular Surgery, University Hospital Bonn, Bonn, Germany
| | - Friedrich Bootz
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Bonn, Bonn, Germany
| | | | - Jörg C Kalff
- Department of General, Visceral, Thoracic, and Vascular Surgery, University Hospital Bonn, Bonn, Germany
| | - Hanno Matthaei
- Department of General, Visceral, Thoracic, and Vascular Surgery, University Hospital Bonn, Bonn, Germany
| | - Dimitrios Pantelis
- Department of General, Visceral, Thoracic, and Vascular Surgery, University Hospital Bonn, Bonn, Germany
| | - Dimo Dietrich
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
17
|
Aberrantly Methylated DNA as a Biomarker in Breast Cancer. Int J Biol Markers 2018; 28:141-50. [DOI: 10.5301/jbm.5000009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2013] [Indexed: 11/20/2022]
Abstract
Aberrant DNA hypermethylation at gene promoters is a frequent event in human breast cancer. Recent genome-wide studies have identified hundreds of genes that exhibit differential methylation between breast cancer cells and normal breast tissue. Due to the tumor-specific nature of DNA hypermethylation events, their use as tumor biomarkers is usually not hampered by analytical signals from normal cells, which is a general problem for existing protein tumor markers used for clinical assessment of breast cancer. There is accumulating evidence that DNA-methylation changes in breast cancer patients occur early during tumorigenesis. This may open up for effective screening, and analysis of blood or nipple aspirate may later help in diagnosing breast cancer. As a more detailed molecular characterization of different types of breast cancer becomes available, the ability to divide patients into subgroups based on DNA biomarkers may improve prognosis. Serial monitoring of DNA-methylation markers in blood during treatment may be useful, particularly when the cancer burden is below the detection level for standard imaging techniques. Overall, aberrant DNA methylation has a great potential as a versatile biomarker tool for screening, diagnosis, prognosis and monitoring of breast cancer. Standardization of methods and biomarker panels will be required to fully exploit this clinical potential.
Collapse
|
18
|
Absmaier M, Napieralski R, Schuster T, Aubele M, Walch A, Magdolen V, Dorn J, Gross E, Harbeck N, Noske A, Kiechle M, Schmitt M. PITX2 DNA-methylation predicts response to anthracycline-based adjuvant chemotherapy in triple-negative breast cancer patients. Int J Oncol 2018; 52:755-767. [PMID: 29328369 PMCID: PMC5807037 DOI: 10.3892/ijo.2018.4241] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/19/2017] [Indexed: 12/11/2022] Open
Abstract
Triple-negative breast cancer (TNBC) constitutes a heterogeneous breast cancer subgroup with poor prognosis; survival rates are likely to be lower with TNBC compared to other breast cancer subgroups. For this disease, systemic adjuvant chemotherapy regimens often yield suboptimal clinical results. To improve treatment regimens in TNBC, identification of molecular biomarkers may help to select patients for individualized adjuvant therapy. Evidence has accumulated that determination of the methylation status of the PITX2 gene provides a predictive value in various breast cancer subgroups, either treated with endocrine-based therapy or anthracycline-containing chemotherapy. To further explore the validity of this novel predictive candidate biomarker, in the present exploratory retrospective study, determination of the PITX2 DNA-methylation status was assessed for non-metastatic TNBC patients treated with adjuvant anthracycline-based chemotherapy by molecular analysis of breast cancer tissues. The PITX2 DNA-methylation status was determined in fresh-frozen tumor tissue specimens (n=56) by methylation-specific qRT-PCR (qMSP) and the data related to disease-free and overall survival, applying an optimized DNA-methylation score of 6.35%. For non-metastatic TNBC patients treated with adjuvant systemic anthracycline-based chemotherapy, a low PITX2 DNA-methylation status (<6.35) defines TNBC patients with poor disease-free and overall survival. Univariate and multivariate analyses demonstrate the statistically independent predictive value of PITX2 DNA-methylation. For non-metastatic TNBC patients, selective determination of the PITX2 DNA-methylation status may serve as a cancer biomarker for predicting response to anthracycline-based adjuvant chemotherapy. The assay based on methylation of the PIXT2 gene can be applied to frozen and routinely available formalin-fixed, paraffin-embedded (FFPE) breast cancer tumor tissues that will not only define those TNBC patients who may benefit from anthracycline-based chemotherapy but also those who should be spared the necessity of such potentially toxic treatment. Such patients should be allocated to alternative treatment options.
Collapse
Affiliation(s)
- Magdalena Absmaier
- Department of Obstetrics and Gynecology, Technische Universität München, Munich, Germany
| | - Rudolf Napieralski
- Department of Obstetrics and Gynecology, Technische Universität München, Munich, Germany
| | - Tibor Schuster
- Institute of Medical Statistics and Epidemiology, Technische Universität München, Munich, Germany
| | - Michaela Aubele
- Institute of Pathology, Helmholtz Zentrum Muenchen, Neuherberg, Germany
| | - Axel Walch
- Institute of Pathology, Helmholtz Zentrum Muenchen, Neuherberg, Germany
| | - Viktor Magdolen
- Department of Obstetrics and Gynecology, Technische Universität München, Munich, Germany
| | - Julia Dorn
- Department of Obstetrics and Gynecology, Technische Universität München, Munich, Germany
| | - Eva Gross
- Department of Obstetrics and Gynecology, Technische Universität München, Munich, Germany
| | - Nadia Harbeck
- Breast Center, Klinikum der Ludwig Maximilians Universität München, Munich, Germany
| | - Aurelia Noske
- Department of Pathology and Pathological Anatomy, Technische Universität München, Munich, Germany
| | - Marion Kiechle
- Department of Obstetrics and Gynecology, Technische Universität München, Munich, Germany
| | - Manfred Schmitt
- Department of Obstetrics and Gynecology, Technische Universität München, Munich, Germany
| |
Collapse
|
19
|
Intragenic DNA methylation of PITX1 and the adjacent long non-coding RNA C5orf66-AS1 are prognostic biomarkers in patients with head and neck squamous cell carcinomas. PLoS One 2018; 13:e0192742. [PMID: 29425237 PMCID: PMC5806891 DOI: 10.1371/journal.pone.0192742] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 01/30/2018] [Indexed: 01/30/2023] Open
Abstract
Background Patients with squamous cell cancer of the head and neck region (HNSCC) are at risk for disease recurrence and metastases, even after initial successful therapy. A tissue-based biomarker could be beneficial to guide treatment as well as post-treatment surveillance. Gene methylation status has been recently identified as powerful prognostic biomarker in HNSCC. We therefore evaluated the methylation status of the homeobox gene PITX1 and the adjacent long intergenic non-coding RNA (lincRNA) C5orf66-AS1 in publicly available datasets. Methods Gene methylation and expression data from 528 patients with HNSCC included in The Cancer Genome Atlas (TCGA, there obtained by using the Infinium HumanMethylation450 BeadChip Kit) were evaluated and methylation and expression levels of PITX1 and lincRNA C5orf66-AS1 was correlated with overall survival and other parameters. Thus, ten beads targeting PITX1 exon 3 and three beads targeting lincRNA C5orf66-AS1 were identified as significant candidates. The mean methylation of these beads was used for further correlation and the median was employed for dichotomization. Results Both PITX1 exon 3 and lincRNA C5orf66-AS1 were significantly higher methylated in tumor tissue than in normal adjacent tissue (NAT) (PITX1 exon 3: tumor tissue 58.1%, NAT: 31.7%, p<0.001; lincRNA C5orf66-AS1: tumor tissue: 27.4%, NAT: 18.9%, p<0.001). In a univariate analysis, hypermethylation of both loci was significantly associated with the risk of death (univariate: exon 3: Hazard ratio (HR): 4.97 [1.78–16.71], p = 0.010, lincRNA C5orf66-AS1: Hazard ratio (HR): 12.23 [3.01–49.74], p<0.001). PITX1 exon 3 and lincRNA C5orf66-AS1 methylation was also significantly correlated with tumor localization, T category, human papilloma virus (HPV)-negative and p16-negative tumors and tumor grade. Kaplan-Meier analysis showed, that lincRNA C5orf66-AS1 hypomethylation was significantly associated with overall survival (p = 0.001) in the entire cohort as well in a subgroup of HPV-negative tumors (p = 0.003) and in patients with laryngeal tumors (p = 0.022). Conclusion Methylation status of PITX1 and even more so of lincRNA C5orf66-AS1 is a promising prognostic biomarker in HNSCC, in particular for HPV-negative patients. Further prospective evaluation is warranted.
Collapse
|
20
|
Pasculli B, Barbano R, Parrella P. Epigenetics of breast cancer: Biology and clinical implication in the era of precision medicine. Semin Cancer Biol 2018; 51:22-35. [PMID: 29339244 DOI: 10.1016/j.semcancer.2018.01.007] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 12/15/2017] [Accepted: 01/11/2018] [Indexed: 02/09/2023]
Abstract
In the last years, mortality from breast cancer has declined in western countries as a consequence of a more widespread screening resulting in earlier detection, as well as an improved molecular classification and advances in adjuvant treatment. Nevertheless, approximately one third of breast cancer patients will develop distant metastases and eventually die for the disease. There is now a compelling body of evidence suggesting that epigenetic modifications comprising DNA methylation and chromatin remodeling play a pivotal role since the early stages of breast cancerogenesis. In addition, recently, increasing emphasis is being placed on the property of ncRNAs to finely control gene expression at multiple levels by interacting with a wide array of molecules such that they might be designated as epigenetic modifiers. In this review, we summarize the current knowledge about the involvement of epigenetic modifications in breast cancer, and provide an overview of the significant association of epigenetic traits with the breast cancer clinicopathological features, emphasizing the potentiality of epigenetic marks to become biomarkers in the context of precision medicine.
Collapse
Affiliation(s)
- Barbara Pasculli
- Laboratory of Oncology, IRCCS "Casa Sollievo della Sofferenza", 71013, San Giovanni Rotondo, FG, Italy.
| | - Raffaela Barbano
- Laboratory of Oncology, IRCCS "Casa Sollievo della Sofferenza", 71013, San Giovanni Rotondo, FG, Italy.
| | - Paola Parrella
- Laboratory of Oncology, IRCCS "Casa Sollievo della Sofferenza", 71013, San Giovanni Rotondo, FG, Italy.
| |
Collapse
|
21
|
Davalos V, Martinez-Cardus A, Esteller M. The Epigenomic Revolution in Breast Cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:2163-2174. [DOI: 10.1016/j.ajpath.2017.07.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/06/2017] [Accepted: 07/06/2017] [Indexed: 02/09/2023]
|
22
|
Aubele M, Schmitt M, Napieralski R, Paepke S, Ettl J, Absmaier M, Magdolen V, Martens J, Foekens JA, Wilhelm OG, Kiechle M. The Predictive Value of PITX2 DNA Methylation for High-Risk Breast Cancer Therapy: Current Guidelines, Medical Needs, and Challenges. DISEASE MARKERS 2017; 2017:4934608. [PMID: 29138528 PMCID: PMC5613359 DOI: 10.1155/2017/4934608] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/13/2017] [Indexed: 12/15/2022]
Abstract
High-risk breast cancer comprises distinct tumor entities such as triple-negative breast cancer (TNBC) which is characterized by lack of estrogen (ER) and progesterone (PR) and the HER2 receptor and breast malignancies which have spread to more than three lymph nodes. For such patients, current (inter)national guidelines recommend anthracycline-based chemotherapy as the standard of care, but not all patients do equally benefit from such a chemotherapy. To further improve therapy decision-making, predictive biomarkers are of high, so far unmet, medical need. In this respect, predictive biomarkers would permit patient selection for a particular kind of chemotherapy and, by this, guide physicians to optimize the treatment plan for each patient individually. Besides DNA mutations, DNA methylation as a patient selection marker has received increasing clinical attention. For instance, significant evidence has accumulated that methylation of the PITX2 (paired-like homeodomain transcription factor 2) gene might serve as a novel predictive and prognostic biomarker, for a variety of cancer diseases. This review highlights the current understanding of treatment modalities of high-risk breast cancer patients with a focus on recommended treatment options, with special attention on the future clinical application of PITX2 as a predictive biomarker to personalize breast cancer management.
Collapse
Affiliation(s)
- Michaela Aubele
- Therawis Diagnostics GmbH, Grillparzerstrasse 14, 81675 Munich, Germany
| | - Manfred Schmitt
- Therawis Diagnostics GmbH, Grillparzerstrasse 14, 81675 Munich, Germany
- Department of Obstetrics and Gynecology, Clinical Research Unit, Klinikum rechts der Isar, Technische Universität München, Ismaningerstr. 22, 81675 Munich, Germany
| | | | - Stefan Paepke
- Department of Obstetrics and Gynecology, Clinical Research Unit, Klinikum rechts der Isar, Technische Universität München, Ismaningerstr. 22, 81675 Munich, Germany
| | - Johannes Ettl
- Department of Obstetrics and Gynecology, Clinical Research Unit, Klinikum rechts der Isar, Technische Universität München, Ismaningerstr. 22, 81675 Munich, Germany
| | - Magdalena Absmaier
- Department of Dermatology, Klinikum rechts der Isar, Technische Universität München, Biedersteiner Str. 29, 80802 Munich, Germany
| | - Viktor Magdolen
- Department of Obstetrics and Gynecology, Clinical Research Unit, Klinikum rechts der Isar, Technische Universität München, Ismaningerstr. 22, 81675 Munich, Germany
| | - John Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, Netherlands
| | - John A. Foekens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, Netherlands
| | - Olaf G. Wilhelm
- Therawis Diagnostics GmbH, Grillparzerstrasse 14, 81675 Munich, Germany
| | - Marion Kiechle
- Department of Obstetrics and Gynecology, Clinical Research Unit, Klinikum rechts der Isar, Technische Universität München, Ismaningerstr. 22, 81675 Munich, Germany
| |
Collapse
|
23
|
Sheng X, Guo Y, Lu Y. Prognostic role of methylated GSTP1, p16, ESR1 and PITX2 in patients with breast cancer: A systematic meta-analysis under the guideline of PRISMA. Medicine (Baltimore) 2017; 96:e7476. [PMID: 28700487 PMCID: PMC5515759 DOI: 10.1097/md.0000000000007476] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/12/2017] [Accepted: 06/19/2017] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND BRCA1 and RASSF1A promoter methylation has been reported to be correlated with a worse survival in patients with breast cancer. However, the prognostic values of GSTP1, p16, ESR1, and PITX2 promoter methylation in breast cancer remain to be determined. Here, we performed this study to evaluate the prognostic significance of GSTP1, p16, ESR1, and PITX2 promoter methylation in breast cancer. METHODS A range of online databases was systematically searched to identify available studies based on the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guideline. The pooled hazard ratios (HRs) with their 95% confidence intervals (95% CIs) were applied to estimate the prognostic effect of GSTP1, p16, ESR1, and PITX2 promoter methylation in breast cancer for multivariate regression analysis. RESULTS 13 eligible articles involving 3915 patients with breast cancer were analyzed in this meta-analysis. In a large patient population, GSTP1 showed a trend toward a worse prognosis in overall survival (OS) (HR = 1.64, 95% CI = 0.93-2.87, P = .085). PITX2 promoter methylation was significantly correlated with a worse prognosis in OS (HR = 1.57, 95% CI = 1.15-2.14, P = .004), but no association between p16 promoter methylation and OS (HR = 0.92, 95% CI = 0.31-2.71, P = .884). PITX2 promoter methylation was significantly correlated with an unfavorable prognosis of patients with breast cancer in metastasis-free survival (MFS) (HR = 1.73, 95% CI = 1.33-2.26, P < .001). The result from 3 studies with 227 cases showed that ESR1 promoter methylation was linked to a worse prognosis in OS (HR = 1.55, 95% CI = 1.06-2.28, P = .025). CONCLUSIONS Our findings suggest ESR1 and PITX2 promoter methylation may be correlated with a worse survival of patients with breast cancer (ESR1: OS, PITX2: OS and MFS). The clinical utility of aberrantly methylated ESR1 and PITX2 could be a promising factor for the prognosis of breast cancer.
Collapse
Affiliation(s)
- Xianneng Sheng
- Department of Thyroid and Breast Surgery, Ningbo First Hospital
| | - Yu Guo
- Department of Thyroid and Breast Surgery, Ningbo First Hospital
| | - Yang Lu
- Medical School of Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
24
|
Sailer V, Gevensleben H, Dietrich J, Goltz D, Kristiansen G, Bootz F, Dietrich D. Clinical performance validation of PITX2 DNA methylation as prognostic biomarker in patients with head and neck squamous cell carcinoma. PLoS One 2017; 12:e0179412. [PMID: 28617833 PMCID: PMC5472307 DOI: 10.1371/journal.pone.0179412] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 05/30/2017] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Despite advances in combined modality therapy, outcomes in head and neck squamous cell cancer (HNSCC) remain dismal with five-year overall survival rates of less than 50%. Prognostic biomarkers are urgently needed to identify patients with a high risk of death after initial curative treatment. Methylation status of the paired-like homeodomain transcription factor 2 (PITX2) has recently emerged as a powerful prognostic biomarker in various cancers. In the present study, the clinical performance of PITX2 methylation was validated in a HNSCC cohort by means of an independent analytical platform (Infinium HumanMethylation450 BeadChip, Illumina, Inc.). METHODS A total of 528 HNSCC patients from The Cancer Genome Atlas (TCGA) were included in the study. Death was defined as primary endpoint. PITX2 methylation was correlated with overall survival and clinicopathological parameters. RESULTS PITX2 methylation was significantly associated with sex, tumor site, p16 status, and grade. In univariate Cox proportional hazards analysis, PITX2 hypermethylation analyzed as continuous and dichotomized variable was significantly associated with prolonged overall survival of HNSCC patients (continuous: hazard ratio (HR) = 0.19 [95%CI: 0.04-0.88], p = 0.034; dichotomized: HR = 0.52 [95%CI: 0.33-0.84], p = 0.007). In multivariate Cox analysis including established clinicopathological parameters, PITX2 promoter methylation was confirmed as prognostic factor (HR = 0.28 [95%CI: 0.09-0.84], p = 0.023). CONCLUSION Using an independent analytical platform, PITX2 methylation was validated as a prognostic biomarker in HNSCC patients, identifying patients that potentially benefit from intensified surveillance and/or administration of adjuvant/neodjuvant treatment, i.e. immunotherapy.
Collapse
Affiliation(s)
- Verena Sailer
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York, United States of America
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, New York, United States of America
| | | | - Joern Dietrich
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Bonn, Bonn, Germany
| | - Diane Goltz
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - Glen Kristiansen
- Institute of Pathology, University Hospital of Bonn, Bonn, Germany
| | - Friedrich Bootz
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Bonn, Bonn, Germany
| | - Dimo Dietrich
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
25
|
Optical biosensing strategies for DNA methylation analysis. Biosens Bioelectron 2017; 92:668-678. [DOI: 10.1016/j.bios.2016.10.034] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/05/2016] [Accepted: 10/18/2016] [Indexed: 11/23/2022]
|
26
|
Hossain T, Mahmudunnabi G, Masud MK, Islam MN, Ooi L, Konstantinov K, Hossain MSA, Martinac B, Alici G, Nguyen NT, Shiddiky MJA. Electrochemical biosensing strategies for DNA methylation analysis. Biosens Bioelectron 2017; 94:63-73. [PMID: 28259051 DOI: 10.1016/j.bios.2017.02.026] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 02/15/2017] [Accepted: 02/16/2017] [Indexed: 12/31/2022]
Abstract
DNA methylation is one of the key epigenetic modifications of DNA that results from the enzymatic addition of a methyl group at the fifth carbon of the cytosine base. It plays a crucial role in cellular development, genomic stability and gene expression. Aberrant DNA methylation is responsible for the pathogenesis of many diseases including cancers. Over the past several decades, many methodologies have been developed to detect DNA methylation. These methodologies range from classical molecular biology and optical approaches, such as bisulfite sequencing, microarrays, quantitative real-time PCR, colorimetry, Raman spectroscopy to the more recent electrochemical approaches. Among these, electrochemical approaches offer sensitive, simple, specific, rapid, and cost-effective analysis of DNA methylation. Additionally, electrochemical methods are highly amenable to miniaturization and possess the potential to be multiplexed. In recent years, several reviews have provided information on the detection strategies of DNA methylation. However, to date, there is no comprehensive evaluation of electrochemical DNA methylation detection strategies. Herein, we address the recent developments of electrochemical DNA methylation detection approaches. Furthermore, we highlight the major technical and biological challenges involved in these strategies and provide suggestions for the future direction of this important field.
Collapse
Affiliation(s)
- Tanvir Hossain
- Department of Biochemistry & Molecular Biology, Shahjalal University of Science & Technology, Sylhet 3114, Bangladesh
| | - Golam Mahmudunnabi
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science & Technology, Sylhet 3114, Bangladesh
| | - Mostafa Kamal Masud
- Department of Biochemistry & Molecular Biology, Shahjalal University of Science & Technology, Sylhet 3114, Bangladesh; Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials (AIIM), University of Wollongong, Squires Way, Innovation Campus, North Wollongong, NSW 2519, Australia; Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia
| | - Md Nazmul Islam
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia; School of Natural Sciences, Griffith University (Nathan Campus), Nathan, QLD 4111, Australia
| | - Lezanne Ooi
- Illawarra Health and Medical Research Institute, School of Biological Sciences, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia
| | - Konstantin Konstantinov
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials (AIIM), University of Wollongong, Squires Way, Innovation Campus, North Wollongong, NSW 2519, Australia
| | - Md Shahriar Al Hossain
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials (AIIM), University of Wollongong, Squires Way, Innovation Campus, North Wollongong, NSW 2519, Australia
| | - Boris Martinac
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Gursel Alici
- ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia
| | - Muhammad J A Shiddiky
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia; School of Natural Sciences, Griffith University (Nathan Campus), Nathan, QLD 4111, Australia.
| |
Collapse
|
27
|
Sailer V, Holmes EE, Gevensleben H, Goltz D, Dröge F, Franzen A, Dietrich J, Kristiansen G, Bootz F, Schröck A, Dietrich D. PITX3 DNA methylation is an independent predictor of overall survival in patients with head and neck squamous cell carcinoma. Clin Epigenetics 2017; 9:12. [PMID: 28174607 PMCID: PMC5290668 DOI: 10.1186/s13148-017-0317-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Accepted: 01/20/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Molecular biomarkers assisting risk-group assignment and subsequent treatment stratification are urgently needed for patients with squamous cell cancer of the head and neck region (HNSCC). Aberrant methylation is a frequent event in cancer and, therefore, a promising source for potential biomarkers. Here, the methylation status of the paired-like homeodomain transcription factor 3 (PITX3) was evaluated in HNSCC. METHODS Using a quantitative real-time PCR, PITX3 methylation was assessed in a cohort of 326 HNSCC patients treated for localized or locally advanced disease (training cohort). The results were validated with Infinium HumanMethylation450 BeadChip data from a 528 HNSCC patient cohort (validation cohort) generated by The Cancer Genome Atlas (TCGA) Research Network. RESULTS PITX3 methylation was significantly higher methylated in tumor compared to normal adjacent tissue (NAT; training cohort: median methylation NAT 32.3%, tumor 71.8%, p < 0.001; validation cohort: median methylation NAT 16.9%, tumor 35.9%, p < 0.001). PITX3 methylation was also significantly correlated with lymph node status both in the training (p = 0.006) and validation (p < 0.001) cohort. PITX3 methylation was significantly higher in HPV-associated (p16-positive) tumors compared to p16-negative tumors (training cohort: 73.7 vs. 66.2%, p = 0.013; validation cohort: 40.0 vs. 33.1%, p = 0.015). Hypermethylation was significantly associated with the risk of death (training cohort: hazard ratio (HR) = 1.80, [95% confidence interval (CI) 1.20-2.69], p = 0.005; validation cohort: HR = 1.43, [95% CI 1.05-1.95], p = 0.022). In multivariate Cox analyses, PITX3 added independent prognostic information. Messenger RNA (mRNA) expression analysis revealed an inverse correlation with PITX3 methylation in the TCGA cohort. CONCLUSIONS PITX3 DNA methylation is an independent prognostic biomarker for overall survival in patients with HNSCC and might aid in the process of risk stratification for individualized treatment.
Collapse
Affiliation(s)
- Verena Sailer
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY USA.,Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY USA
| | | | | | - Diane Goltz
- Institute of Pathology, University Hospital Cologne, Cologne, Germany
| | - Freya Dröge
- Department of Otorhinolaryngology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Alina Franzen
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Jörn Dietrich
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | | | - Friedrich Bootz
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Andreas Schröck
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Dimo Dietrich
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| |
Collapse
|
28
|
Uhl B, Gevensleben H, Tolkach Y, Sailer V, Majores M, Jung M, Meller S, Stein J, Ellinger J, Dietrich D, Kristiansen G. PITX2 DNA Methylation as Biomarker for Individualized Risk Assessment of Prostate Cancer in Core Biopsies. J Mol Diagn 2017; 19:107-114. [PMID: 27939865 DOI: 10.1016/j.jmoldx.2016.08.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/11/2016] [Accepted: 08/15/2016] [Indexed: 11/19/2022] Open
Abstract
Hypermethylation of the paired-like homeodomain transcription factor 2 (PITX2) gene is a strong predictor of the risk of biochemical recurrence in patients with prostate cancer (PCa) after radical prostatectomy. We investigate whether PITX2 methylation is feasible for individualized risk assessment in prostate core biopsies before surgery. A quantitative, methylation-specific real-time PCR was used to measure PITX2 in three cohorts: i) matched samples of neoplastic and nonneoplastic tissue from 24 patients with PCa, ii) a well-characterized cohort of 300 patients with PCa after radical prostatectomy, and iii) core biopsy specimens from 32 patients with PCa and 31 patients with benign prostatic disease. PITX2 methylation discriminated between neoplastic and nonneoplastic tissue in patients with PCa (P < 0.001). In the second cohort, PITX2 methylation significantly correlated with clinicopathologic parameters, and PITX2 hypermethylation predicted an increased risk of biochemical recurrence in univariate Cox proportional hazards regression analysis (hazard ratio, 1.77; P = 0.046) and Kaplan-Meier analysis (P = 0.043). In 753 prostate biopsies, 720 (95.6%) were applicable for analysis, rendering the assay feasible for diagnostic biopsies. PITX2 methylation was furthermore significantly increased in tumor-positive biopsies and strongly correlated with International Society of Urological Pathology (ISUP) grade groups. This study indicates that the PITX2 methylation assay is feasible in prostate biopsies and might add valuable prognostic information for risk assessment in a presurgical diagnostic setting.
Collapse
Affiliation(s)
- Barbara Uhl
- Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | | | - Yuri Tolkach
- Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Verena Sailer
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine of Cornell University, New York, New York; Englander Institute for Precision Medicine, Weill Cornell Medicine of Cornell University, New York, New York
| | | | - Maria Jung
- Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | | | - Johannes Stein
- Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Jörg Ellinger
- Department of Urology, University Hospital Bonn, Bonn, Germany
| | - Dimo Dietrich
- Institute of Pathology, University Hospital Bonn, Bonn, Germany; Department of Otolaryngology, Head and Neck Surgery, University Hospital Bonn, Bonn, Germany
| | - Glen Kristiansen
- Institute of Pathology, University Hospital Bonn, Bonn, Germany.
| |
Collapse
|
29
|
Falco M, Palma G, Rea D, De Biase D, Scala S, D'Aiuto M, Facchini G, Perdonà S, Barbieri A, Arra C. Tumour biomarkers: homeostasis as a novel prognostic indicator. Open Biol 2016; 6:160254. [PMID: 27927793 PMCID: PMC5204124 DOI: 10.1098/rsob.160254] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/10/2016] [Indexed: 12/15/2022] Open
Abstract
The term 'personalized medicine' refers to a medical procedure that consists in the grouping of patients based on their predicted individual response to therapy or risk of disease. In oncologic patients, a 'tailored' therapeutic approach may potentially improve their survival and well-being by not only reducing the tumour, but also enhancing therapeutic response and minimizing the adverse effects. Diagnostic tests are often used to select appropriate and optimal therapies that rely both on patient genome and other molecular/cellular analysis. Several studies have shown that lifestyle and environmental factors can influence the epigenome and that epigenetic events may be involved in carcinogenesis. Thus, in addition to traditional biomarkers, epigenetic factors are raising considerable interest, because they could potentially be used as an excellent tool for cancer diagnosis and prognosis. In this review, we summarize the role of conventional cancer genetic biomarkers and their association with epigenomics. Furthermore, we will focus on the so-called 'homeostatic biomarkers' that result from the physiological response to cancer, emphasizing the concept that an altered 'new' homeostasis influence not only tumour environment, but also the whole organism.
Collapse
Affiliation(s)
- Michela Falco
- Struttura Semplice Dipartimentale Sperimentazione Animale, Istituto Nazionale Tumori 'Fondazione G. Pascale', IRCCS, Via Mariano Semmola, 80131 Naples, Italy
| | - Giuseppe Palma
- Struttura Semplice Dipartimentale Sperimentazione Animale, Istituto Nazionale Tumori 'Fondazione G. Pascale', IRCCS, Via Mariano Semmola, 80131 Naples, Italy
| | - Domenica Rea
- Struttura Semplice Dipartimentale Sperimentazione Animale, Istituto Nazionale Tumori 'Fondazione G. Pascale', IRCCS, Via Mariano Semmola, 80131 Naples, Italy
| | - Davide De Biase
- Department of Veterinary Medicine and Animal Production, University of Naples 'Federico II', Via Delpino 1, 80137 Naples, Italy
| | - Stefania Scala
- Molecular lmmunology and Immuneregulation, Istituto Nazionale per lo Studio e la Cura dei Tumori, IRCCS Naples 'Fondazione G. Pascale', Naples, italy, Istituto Nazionale Tumori 'Fondazione G. Pascale', IRCCS, Via Mariano Semmola, 80131 Naples, Italy
| | - Massimiliano D'Aiuto
- Division of Breast Surgery, Department of Breast Disease, National Cancer Institute, IRCCS, 'Fondazione Pascale', Naples, Italy
| | - Gaetano Facchini
- Division of Medical Oncology, Department of Uro-Gynaecological Oncology, , Istituto Nazionale per lo Studio e la Cura dei Tumori 'Fondazione G. Pascale', IRCCS, 80131 Naples, Italy
| | - Sisto Perdonà
- Department of Urology, Istituto Nazionale per lo Studio e la Cura dei Tumori 'Fondazione G. Pascale', IRCCS, 80131 Naples, Italy
| | - Antonio Barbieri
- Struttura Semplice Dipartimentale Sperimentazione Animale, Istituto Nazionale Tumori 'Fondazione G. Pascale', IRCCS, Via Mariano Semmola, 80131 Naples, Italy
| | - Claudio Arra
- Struttura Semplice Dipartimentale Sperimentazione Animale, Istituto Nazionale Tumori 'Fondazione G. Pascale', IRCCS, Via Mariano Semmola, 80131 Naples, Italy
| |
Collapse
|
30
|
Sailer V, Holmes EE, Gevensleben H, Goltz D, Dröge F, de Vos L, Franzen A, Schröck F, Bootz F, Kristiansen G, Schröck A, Dietrich D. PITX2 and PANCR DNA methylation predicts overall survival in patients with head and neck squamous cell carcinoma. Oncotarget 2016; 7:75827-75838. [PMID: 27716615 PMCID: PMC5342781 DOI: 10.18632/oncotarget.12417] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/20/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Squamous cell carcinoma of the head and neck region (HNSCC) is a common malignant disease accompanied by a high risk of local or distant recurrence after curative-intent treatment. Biomarkers that allow for the prediction of disease outcome can guide clinicians with respect to treatment and surveillance strategies. Here, the methylation status of PITX2 and an adjacent lncRNA (PANCR) were evaluated for their ability to predict overall survival in HNSCC patients. RESULTS PITX2 hypermethylation was associated with a better overall survival (hazard ratio, HR = 0.51, 95%CI: 0.35-0.74, p<0.001), while PANCR hypermethylation was significantly associated with an increased risk of death (HR = 1.64, 95%CI: 1.12-2.39, p=0.010). METHODS Quantitative, methylation-specific real-time PCR assays for PITX2 and PANCR were employed to measure bisulfite-converted DNA from formalin-fixed, paraffin-embedded (FFPE) tissues in a cohort of 399 patients with localized or locally advanced HNSCC who received curative-intent treatment (surgery with optional adjuvant radiochemotherapy or definite radiochemotherapy). CONCLUSIONS PITX2 and PANCR methylation status were shown to be independent predictors for overall survival in HNSCC patients. Tissue-based methylation testing could therefore potentially be employed to identify patients with a high risk for death who might benefit from a more radical or alternative treatment.
Collapse
Affiliation(s)
- Verena Sailer
- Weill Medical College of Cornell University and New York Presbyterian Hospital, Department of Pathology and Laboratory Medicine, New York, NY, USA
- Weill Medical College of Cornell University and New York Presbyterian Hospital, Englander Institute for Precision Medicine, New York, NY, USA
| | - Emily Eva Holmes
- Institute of Pathology, University Hospital of Bonn, Bonn, Germany
| | | | - Diane Goltz
- Institute of Pathology, University Hospital of Bonn, Bonn, Germany
| | - Freya Dröge
- Department of Otorhinolaryngology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Luka de Vos
- University Hospital Bonn, Department of Otolaryngology, Head and Neck Surgery, Bonn, Germany
| | - Alina Franzen
- University Hospital Bonn, Department of Otolaryngology, Head and Neck Surgery, Bonn, Germany
| | - Friederike Schröck
- Department of Addictive Disorders and Addiction Medicine, LVR Hospital Bonn, Bonn, Germany
| | - Friedrich Bootz
- University Hospital Bonn, Department of Otolaryngology, Head and Neck Surgery, Bonn, Germany
| | - Glen Kristiansen
- Institute of Pathology, University Hospital of Bonn, Bonn, Germany
| | - Andreas Schröck
- University Hospital Bonn, Department of Otolaryngology, Head and Neck Surgery, Bonn, Germany
| | - Dimo Dietrich
- Institute of Pathology, University Hospital of Bonn, Bonn, Germany
- University Hospital Bonn, Department of Otolaryngology, Head and Neck Surgery, Bonn, Germany
| |
Collapse
|
31
|
Uhl B, Dietrich D, Branchi V, Semaan A, Schaefer P, Gevensleben H, Rostamzadeh B, Lingohr P, Schäfer N, Kalff JC, Kristiansen G, Matthaei H. DNA Methylation of PITX2 and PANCR Is Prognostic for Overall Survival in Patients with Resected Adenocarcinomas of the Biliary Tract. PLoS One 2016; 11:e0165769. [PMID: 27798672 PMCID: PMC5087948 DOI: 10.1371/journal.pone.0165769] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/17/2016] [Indexed: 01/17/2023] Open
Abstract
Biliary tract cancers (BTC) are rare but highly aggressive malignant epithelial tumors. In order to improve the outcome in this lethal disease, novel biomarkers for diagnosis, prognosis, and therapy response prediction are urgently needed. DNA promoter methylation of PITX2 variants (PITX2ab, PITX2c) and intragenic methylation of the PITX2 adjacent non-coding RNA (PANCR) were investigated by methylations-specific qPCR assays in formalin-fixed paraffin-embedded tissue from 80 patients after resection for BTC. Results were correlated with clinicopathologic data and outcome. PITX2 variants and PANCR showed significant hypermethylation in tumor vs. normal adjacent tissue (p < 0.001 and p = 0.015), respectively. In survival analysis, dichotomized DNA methylation of variant PITX2c and PANCR were significantly associated with overall survival (OS). Patients with high tumor methylation levels of PITX2c had a shorter OS compared to patients with low methylation (12 vs. 40 months OS; HR 2.48 [1.38-4.48], p = 0.002). In contrast, PANCR hypermethylation was associated with prolonged survival (25 vs. 19 months OS; HR 0.54 [0.30-0.94], p = 0.015) and qualified as an independent prognostic factor on multivariate analysis. The biomarkers investigated in this study may help to identify BTC subpopulations at risk for worse survival. Further studies are needed to evaluate if PITX2 might be a clinically useful biomarker for an optimized and individualized treatment.
Collapse
Affiliation(s)
- Barbara Uhl
- Institute of Pathology, University of Bonn, Bonn, Germany
| | - Dimo Dietrich
- Institute of Pathology, University of Bonn, Bonn, Germany
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Bonn, Germany
| | | | | | | | | | - Babak Rostamzadeh
- Department of Neuroradiology, Katharinenhospital, Klinikum Stuttgart, Stuttgart, Germany
| | | | - Nico Schäfer
- Department of Surgery, University of Bonn, Bonn, Germany
| | - Jörg C. Kalff
- Department of Surgery, University of Bonn, Bonn, Germany
| | | | - Hanno Matthaei
- Department of Surgery, University of Bonn, Bonn, Germany
| |
Collapse
|
32
|
Jezkova E, Kajo K, Zubor P, Grendar M, Malicherova B, Mendelova A, Dokus K, Lasabova Z, Plank L, Danko J. Methylation in promoter regions of PITX2 and RASSF1A genes in association with clinicopathological features in breast cancer patients. Tumour Biol 2016; 37:10.1007/s13277-016-5324-3. [PMID: 27744628 DOI: 10.1007/s13277-016-5324-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 09/06/2016] [Indexed: 01/31/2023] Open
Abstract
Breast cancer is a heterogeneous disease with very different responses to therapy and different length of survival. In many cases, however, the determination of the stage and histopathological characteristics of breast cancer is insufficient to predict prognosis and response to treatment for the vast heterogeneity of the disease. To understand the molecular signature of subtypes of breast cancer, we attempted to identify the methylation status of key tumour suppressor gene Ras association (RalGDS/AF-6) domain family member 1 isoform a (RASSF1A) and a member of the paired-like homeodomain transcription factor family which functions in left-right asymmetry development (PITX2) and to correlate results with known clinicopathological features of breast cancer. Formalin-fixed, paraffin-embedded (FFPE) tissues of breast carcinomas (n = 149) were used for DNA extraction. DNA was modified by bisulphite conversion. Detection of the methylation level of the genes mentioned above was performed by methylation-sensitive high-resolution melting assay (MS-HRM). Based on MS-HRM results for RASSF1A and PITX2, we subdivided the samples into four groups according to methylation level (≤50 % methylated, >50 % methylated, 100 % methylated and completely unmethylated alleles). All degrees of methylation status for both genes underwent analysis of dependence with known clinicopathological features, and we found significant associations. In 134 of 149 (89.9 %) primary breast carcinomas, the RASSF1A promoter was methylated. Total hypermethylation of PITX2 was observed in 60 of 135 (44.4 %) breast cancer cases. RASSF1A hypermethylation had significant association with increased age (p < 0.05), tumour grade (p < 0.0001) and stage (p < 0.0001) in the 100 % methylated group. There was significant association of PITX2 hypermethylation with tumour grade (p < 0.0001) and stage (p < 0.0001). Association between the methylation level of both investigated genes and tumour type was significant for ductal invasive carcinoma cases only (p < 0.0001). This study shows different levels of heterogeneous methylation acquired by MS-HRM assay of the promoter region of RASSF1A and PITX2 and its relationship with clinicopathological features of 149 breast cancer patients. We noticed that immunohistopathological subtypes of breast cancer contain distinct promoter methylation patterns. All these data suggest that hypermethylation of the CpG island promoters of RASSF1A and PITX2 might play an essential role in the very early stages of breast cancer pathogenesis.
Collapse
Affiliation(s)
- Eva Jezkova
- Department of Oncology JFM CU, Biomedical Center Martin JFM CU, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4C, 036 01, Martin, Slovakia.
- Clinic of Gynaecology and Obstetrics, Jessenius Faculty of Medicine, Martin University Hospital, Kollarova 2, 036 01, Martin, Slovakia.
| | - Karol Kajo
- St. Elizabeth Cancer Institute Hospital, Heydukova 10, 812 50, Bratislava, Slovakia
| | - Pavol Zubor
- Department of Oncology JFM CU, Biomedical Center Martin JFM CU, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4C, 036 01, Martin, Slovakia
- Clinic of Gynaecology and Obstetrics, Jessenius Faculty of Medicine, Martin University Hospital, Kollarova 2, 036 01, Martin, Slovakia
| | - Marian Grendar
- Department of Oncology JFM CU, Biomedical Center Martin JFM CU, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4C, 036 01, Martin, Slovakia
| | - Bibiana Malicherova
- Department of Oncology JFM CU, Biomedical Center Martin JFM CU, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4C, 036 01, Martin, Slovakia
| | - Andrea Mendelova
- Department of Molecular Medicine JFM CU, Biomedical Center Martin JFM CU, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4C, 036 01, Martin, Slovakia
| | - Karol Dokus
- Clinic of Gynaecology and Obstetrics, Jessenius Faculty of Medicine, Martin University Hospital, Kollarova 2, 036 01, Martin, Slovakia
| | - Zora Lasabova
- Department of Oncology JFM CU, Biomedical Center Martin JFM CU, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4C, 036 01, Martin, Slovakia
| | - Lukas Plank
- Department of Pathological Anatomy, Jessenius Faculty of Medicine, Martin University Hospital, Kollarova 2, 036 01, Martin, Slovakia
| | - Jan Danko
- Clinic of Gynaecology and Obstetrics, Jessenius Faculty of Medicine, Martin University Hospital, Kollarova 2, 036 01, Martin, Slovakia
| |
Collapse
|
33
|
Holmes EE, Goltz D, Sailer V, Jung M, Meller S, Uhl B, Dietrich J, Röhler M, Ellinger J, Kristiansen G, Dietrich D. PITX3 promoter methylation is a prognostic biomarker for biochemical recurrence-free survival in prostate cancer patients after radical prostatectomy. Clin Epigenetics 2016; 8:104. [PMID: 27708722 PMCID: PMC5037587 DOI: 10.1186/s13148-016-0270-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 09/16/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Molecular biomarkers that might help to distinguish between more aggressive and clinically insignificant prostate cancers (PCa) are still urgently needed. Aberrant DNA methylation as a common molecular alteration in PCa seems to be a promising source for such biomarkers. In this study, PITX3 DNA methylation (mPITX3) and its potential role as a prognostic biomarker were investigated. Furthermore, mPITX3 was analyzed in combination with the established PCa methylation biomarker PITX2 (mPITX2). METHODS mPITX3 and mPITX2 were assessed by a quantitative real-time PCR and by means of the Infinium HumanMethylation450 BeadChip. BeadChip data were obtained from The Cancer Genome Atlas (TCGA) Research Network. DNA methylation differences between normal adjacent, benign hyperplastic, and carcinomatous prostate tissues were examined in the TCGA dataset as well as in prostatectomy specimens from the University Hospital Bonn. Retrospective analyses of biochemical recurrence (BCR) were conducted in a training cohort (n = 498) from the TCGA and an independent validation cohort (n = 300) from the University Hospital Bonn. All patients received radical prostatectomy. RESULTS In PCa tissue, mPITX3 was increased significantly compared to normal and benign hyperplastic tissue. In univariate Cox proportional hazards analyses, mPITX3 showed a significant prognostic value for BCR (training cohort: hazard ratio (HR) = 1.83 (95 % CI 1.07-3.11), p = 0.027; validation cohort: HR = 2.56 (95 % CI 1.44-4.54), p = 0.001). A combined evaluation with PITX2 methylation further revealed that hypermethylation of a single PITX gene member (either PITX2 or PITX3) identifies an intermediate risk group. CONCLUSIONS PITX3 DNA methylation alone and in combination with PITX2 is a promising biomarker for the risk stratification of PCa patients and adds relevant prognostic information to common clinically implemented parameters. Further studies are required to determine whether the results are transferable to a biopsy-based patient cohort. Trial registration: Patients for this unregistered study were enrolled retrospectively.
Collapse
Affiliation(s)
- Emily Eva Holmes
- Institute of Pathology, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Diane Goltz
- Institute of Pathology, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Verena Sailer
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine of Cornell University, New York, NY USA
- Englander Institute for Precision Medicine, Weill Cornell Medicine of Cornell University, New York, NY USA
| | - Maria Jung
- Institute of Pathology, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Sebastian Meller
- Institute of Pathology, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Barbara Uhl
- Institute of Pathology, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Jörn Dietrich
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Bonn, Bonn, Germany
| | - Magda Röhler
- Institute of Pathology, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Jörg Ellinger
- Department of Urology, University Hospital Bonn, Bonn, Germany
| | - Glen Kristiansen
- Institute of Pathology, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Dimo Dietrich
- Institute of Pathology, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
34
|
De Marchi T, Foekens JA, Umar A, Martens JWM. Endocrine therapy resistance in estrogen receptor (ER)-positive breast cancer. Drug Discov Today 2016; 21:1181-8. [PMID: 27233379 DOI: 10.1016/j.drudis.2016.05.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/25/2016] [Accepted: 05/18/2016] [Indexed: 12/20/2022]
Abstract
Estrogen receptor (ER)-positive breast cancer represents the majority (∼70%) of all breast malignancies. In this subgroup of breast cancers, endocrine therapies are effective both in the adjuvant and recurrent settings, although resistance remains a major issue. Several high-throughput approaches have been used to elucidate mechanisms of resistance and to derive potential predictive markers or alternative therapies. In this review, we cover the state-of-the-art of endocrine-resistance biomarker discovery with regard to the latest technological developments, and discuss current opportunities and restrictions for their implementation into a clinical setting.
Collapse
Affiliation(s)
- Tommaso De Marchi
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - John A Foekens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Arzu Umar
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - John W M Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
35
|
Wang Q, Li J, Wu W, Shen R, Jiang H, Qian Y, Tang Y, Bai T, Wu S, Wei L, Zang Y, Zhang J, Wang L. Smad4-dependent suppressor pituitary homeobox 2 promotes PPP2R2A-mediated inhibition of Akt pathway in pancreatic cancer. Oncotarget 2016; 7:11208-22. [PMID: 26848620 PMCID: PMC4905467 DOI: 10.18632/oncotarget.7158] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 01/23/2016] [Indexed: 12/14/2022] Open
Abstract
The importance of Pituitary homeobox 2 (Pitx2) in malignancy remains enigmatic, and Pitx2 has not been previously implicated in pancreatic ductal adenocarcinoma (PDAC). In this study, we performed gene expression profiling of human PDAC tissues and identified Pitx2 as a promising candidate. Pitx2 expression was decreased from 2.6- to 19-fold in human PDAC tissues from microarray units. Immunochemistry staining showed that Pitx2 expression was moderate to intense in normal pancreatic and pancreatic intraepithelial neoplastic lesions, whereas low in human PDAC tissues. The Pitx2 levels correlated with overall patient survival post-operatively in PDAC. Induction of Pitx2 expression partly inhibited the malignant phenotype of PDAC cells. Interestingly, low Pitx2 expression was correlated with Smad4 mutant inactivation, but not with Pitx2 DNA-methylation. Furthermore, Smad4 protein bound to Pitx2 promoter and stimulated Pitx2 expression in PDAC. In addition, Pitx2 protein bound to the promoter of the protein phosphatase 2A regulatory subunit B55α (PPP2R2A) and upregulated PPP2R2A expression, which may activate dephosphorylation of Akt in PDAC. These findings provide new mechanistic insights into Pitx2 as a tumor suppressor in the downstream of Smad4. And Pitx2 protein promotes PPP2R2A expression which may inhibit Akt pathway. Therefore, we propose that the Smad4-Pitx2-PPP2R2A axis, a new signaling pathway, suppresses the pancreatic carcinogenesis.
Collapse
Affiliation(s)
- Qi Wang
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Juanjuan Li
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wei Wu
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ruizhe Shen
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - He Jiang
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yuting Qian
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yanping Tang
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Tingting Bai
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Sheng Wu
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lumin Wei
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yi Zang
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ji Zhang
- State Key Laboratory of Medical Genomics and Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lifu Wang
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
36
|
Terry MB, McDonald JA, Wu HC, Eng S, Santella RM. Epigenetic Biomarkers of Breast Cancer Risk: Across the Breast Cancer Prevention Continuum. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 882:33-68. [PMID: 26987530 PMCID: PMC5305320 DOI: 10.1007/978-3-319-22909-6_2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Epigenetic biomarkers, such as DNA methylation, can increase cancer risk through altering gene expression. The Cancer Genome Atlas (TCGA) Network has demonstrated breast cancer-specific DNA methylation signatures. DNA methylation signatures measured at the time of diagnosis may prove important for treatment options and in predicting disease-free and overall survival (tertiary prevention). DNA methylation measurement in cell free DNA may also be useful in improving early detection by measuring tumor DNA released into the blood (secondary prevention). Most evidence evaluating the use of DNA methylation markers in tertiary and secondary prevention efforts for breast cancer comes from studies that are cross-sectional or retrospective with limited corresponding epidemiologic data, raising concerns about temporality. Few prospective studies exist that are large enough to address whether DNA methylation markers add to the prediction of tertiary and secondary outcomes over and beyond standard clinical measures. Determining the role of epigenetic biomarkers in primary prevention can help in identifying modifiable pathways for targeting interventions and reducing disease incidence. The potential is great for DNA methylation markers to improve cancer outcomes across the prevention continuum. Large, prospective epidemiological studies will provide essential evidence of the overall utility of adding these markers to primary prevention efforts, screening, and clinical care.
Collapse
Affiliation(s)
- Mary Beth Terry
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA.
| | - Jasmine A McDonald
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Hui Chen Wu
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Sybil Eng
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Regina M Santella
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
37
|
Pillai SG, Dasgupta N, Siddappa CM, Watson MA, Fleming T, Trinkaus K, Aft R. Paired-like Homeodomain Transcription factor 2 expression by breast cancer bone marrow disseminated tumor cells is associated with early recurrent disease development. Breast Cancer Res Treat 2015; 153:507-17. [PMID: 26400846 PMCID: PMC4589549 DOI: 10.1007/s10549-015-3576-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 09/15/2015] [Indexed: 11/25/2022]
Abstract
The presence of disseminated tumor cells (DTCs) in the bone marrow (BM) of breast cancer patients is prognostic for early relapse. In the present study, we analyzed the gene expression profiles from BM cells of breast cancer patients to identify molecular signatures associated with DTCs and their relevance to metastatic outcome. We analyzed BM from 30 patients with stage II/III breast cancer by gene expression profiling and correlated expression with metastatic disease development. A candidate gene, PITX2, was analyzed for expression and phenotype in breast cancer cell lines. PITX2 was knocked down in the MDAMB231 cell lines for gene expression analysis and cell invasiveness. Expression of various signaling pathway molecules was confirmed by RT-PCR. We found that the expression of Paired-like Homeobox Transcription factor-2 (PITX2) is absent in the BM of normal healthy volunteers and, when detected in the BM of breast cancer patients, is significantly correlated with early metastatic disease development (p = 0.0062). Suppression of PITX2 expression significantly reduced invasiveness in MDAMB231 cells. Three genes-NKD1, LEF1, and DKK4-were significantly downregulated in response to PITX2 suppression. Expression of PITX2 in BM of early-stage breast cancer patients is associated with risk for early disease recurrence. Furthermore, PITX2 likely plays a role in the metastatic process through its effect on the expression of genes associated with the Wnt/beta-Catenin signaling pathway.
Collapse
Affiliation(s)
- Sreeraj G Pillai
- Department of Surgery, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - Nupur Dasgupta
- Department of Surgery, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Chidananda M Siddappa
- Department of Surgery, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - Mark A Watson
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Department of Surgery, Biostatistics Shared Resource, Washington University School of Medicine, St. Louis, MO, USA
| | - Timothy Fleming
- Department of Surgery, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - Kathryn Trinkaus
- Siteman Cancer Center, Department of Surgery, Biostatistics Shared Resource, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center at the Washington University School of Medicine, St. Louis, MO, USA
| | - Rebecca Aft
- Department of Surgery, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110, USA.
- Siteman Cancer Center at the Washington University School of Medicine, St. Louis, MO, USA.
- John Cochran Veterans Administration Hospital, St. Louis, MO, USA.
| |
Collapse
|
38
|
Cava C, Bertoli G, Castiglioni I. Integrating genetics and epigenetics in breast cancer: biological insights, experimental, computational methods and therapeutic potential. BMC SYSTEMS BIOLOGY 2015; 9:62. [PMID: 26391647 PMCID: PMC4578257 DOI: 10.1186/s12918-015-0211-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 09/15/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Development of human cancer can proceed through the accumulation of different genetic changes affecting the structure and function of the genome. Combined analyses of molecular data at multiple levels, such as DNA copy-number alteration, mRNA and miRNA expression, can clarify biological functions and pathways deregulated in cancer. The integrative methods that are used to investigate these data involve different fields, including biology, bioinformatics, and statistics. RESULTS These methodologies are presented in this review, and their implementation in breast cancer is discussed with a focus on integration strategies. We report current applications, recent studies and interesting results leading to the identification of candidate biomarkers for diagnosis, prognosis, and therapy in breast cancer by using both individual and combined analyses. CONCLUSION This review presents a state of art of the role of different technologies in breast cancer based on the integration of genetics and epigenetics, and shares some issues related to the new opportunities and challenges offered by the application of such integrative approaches.
Collapse
Affiliation(s)
- Claudia Cava
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Milan, Italy.
| | - Gloria Bertoli
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Milan, Italy.
| | - Isabella Castiglioni
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Milan, Italy.
| |
Collapse
|
39
|
Basu M, Bhattacharya R, Ray U, Mukhopadhyay S, Chatterjee U, Roy SS. Invasion of ovarian cancer cells is induced byPITX2-mediated activation of TGF-β and Activin-A. Mol Cancer 2015; 14:162. [PMID: 26298390 PMCID: PMC4546816 DOI: 10.1186/s12943-015-0433-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 08/12/2015] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Most ovarian cancers are highly invasive in nature and the high burden of metastatic disease make them a leading cause of mortality among all gynaecological malignancies. The homeodomain transcription factor, PITX2 is associated with cancer in different tissues. Our previous studies demonstrated increased PITX2 expression in human ovarian tumours. Growing evidence linking activation of TGF-β pathway by homeodomain proteins prompted us to look for the possible involvement of this signalling pathway in PITX2-mediated progression of ovarian cancer. METHODS The status of TGF-β signalling in human ovarian tissues was assessed by immunohistochemistry. The expression level of TGFB/INHBA and other invasion-associated genes was measured by quantitative-PCR (Q-PCR) and Western Blot after transfection/treatments with clones/reagents in normal/cancer cells. The physiological effect of PITX2 on invasion/motility was checked by matrigel invasion and wound healing assay. The PITX2- and activin-induced epithelial-mesenchymal transition (EMT) was evaluated by Q-PCR of respective markers and confocal/phase-contrast imaging of cells. RESULTS Human ovarian tumours showed enhanced TGF-β signalling. Our study uncovers the PITX2-induced expression of TGFB1/2/3 as well as INHBA genes (p < 0.01) followed by SMAD2/3-dependent TGF-β signalling pathway. PITX2-induced TGF-β pathway regulated the expression of invasion-associated genes, SNAI1, CDH1 and MMP9 (p < 0.01) that accounted for enhanced motility/invasion of ovarian cancers. Snail and MMP9 acted as important mediators of PITX2-induced invasiveness of ovarian cancer cells. PITX2 over-expression resulted in loss of epithelial markers (p < 0.01) and gain of mesenchymal markers (p < 0.01) that contributed significantly to ovarian oncogenesis. PITX2-induced INHBA expression (p < 0.01) contributed to EMT in both normal and ovarian cancer cells. CONCLUSIONS Overall, our findings suggest a significant contributory role of PITX2 in promoting invasive behaviour of ovarian cancer cells through up-regulation of TGFB/INHBA. We have also identified the previously unknown involvement of activin-A in promoting EMT. Our work provides novel mechanistic insights into the invasive behavior of ovarian cancer cells. The extension of this study have the potential for therapeutic applications in future.
Collapse
Affiliation(s)
- Moitri Basu
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 4 Raja S. C. Mullick Road, Kolkata, 700032, India.
| | - Rahul Bhattacharya
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 4 Raja S. C. Mullick Road, Kolkata, 700032, India.
| | - Upasana Ray
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 4 Raja S. C. Mullick Road, Kolkata, 700032, India.
| | - Satinath Mukhopadhyay
- Department of Endocrinology and Metabolism, IPGMER and SSKM Hospital, 244 AJC Bose Road, Kolkata, India.
| | - Uttara Chatterjee
- Department of Pathology, IPGMER and SSKM Hospital, 244 AJC Bose Road, Kolkata, India.
| | - Sib Sankar Roy
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 4 Raja S. C. Mullick Road, Kolkata, 700032, India.
| |
Collapse
|
40
|
Wu D, Zhu X, Jimenez-Cowell K, Mold AJ, Sollecito CC, Lombana N, Jiao M, Wei Q. Identification of the GTPase-activating protein DEP domain containing 1B (DEPDC1B) as a transcriptional target of Pitx2. Exp Cell Res 2015; 333:80-92. [PMID: 25704760 PMCID: PMC4387072 DOI: 10.1016/j.yexcr.2015.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 01/17/2015] [Accepted: 02/10/2015] [Indexed: 10/25/2022]
Abstract
Pitx2 is a bicoid-related homeobox transcription factor implicated in regulating left-right patterning and organogenesis. However, only a limited number of Pitx2 downstream target genes have been identified and characterized. Here we demonstrate that Pitx2 is a transcriptional repressor of DEP domain containing 1B (DEPDC1B). The first intron of the human and mouse DEP domain containing 1B genes contains multiple consensus DNA-binding sites for Pitx2. Chromatin immunoprecipitation assays revealed that Pitx2, along with histone deacetylase 1, was recruited to the first intron of Depdc1b. In contrast, RNAi-mediated depletion of Pitx2 not only enhanced the acetylation of histone H4 in the first intron of Depdc1b, but also increased the protein level of Depdc1b. Luciferase reporter assays also showed that Pitx2 could repress the transcriptional activity mediated by the first intron of human DEPDC1B. The GAP domain of DEPDC1B interacted with nucleotide-bound forms of RAC1 in vitro. In addition, exogenous expression of DEPDC1B suppressed RAC1 activation and interfered with actin polymerization induced by the guanine nucleotide exchange factor TRIO. Moreover, DEPDC1B interacted with various signaling molecules such as U2af2, Erh, and Salm. We propose that Pitx2-mediated repression of Depdc1b expression contributes to the regulation of multiple molecular pathways, such as Rho GTPase signaling.
Collapse
Affiliation(s)
- Di Wu
- Department of Biological Sciences, Fordham University, Bronx, NY 10458, United States
| | - Xiaoxi Zhu
- Experimental and Clinical Research Center (ECRC), a Cooperation between Max Delbrück Center and Charité Universitätsmedizin Berlin, Campus Buch, Berlin, Germany
| | - Kevin Jimenez-Cowell
- Department of Biological Sciences, Fordham University, Bronx, NY 10458, United States
| | - Alexander J Mold
- Department of Biological Sciences, Fordham University, Bronx, NY 10458, United States
| | | | - Nicholas Lombana
- Department of Biological Sciences, Fordham University, Bronx, NY 10458, United States
| | - Meng Jiao
- Department of Biological Sciences, Fordham University, Bronx, NY 10458, United States
| | - Qize Wei
- Department of Biological Sciences, Fordham University, Bronx, NY 10458, United States.
| |
Collapse
|
41
|
DNA methylation biomarkers: cancer and beyond. Genes (Basel) 2014; 5:821-64. [PMID: 25229548 PMCID: PMC4198933 DOI: 10.3390/genes5030821] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 08/17/2014] [Accepted: 09/01/2014] [Indexed: 12/23/2022] Open
Abstract
Biomarkers are naturally-occurring characteristics by which a particular pathological process or disease can be identified or monitored. They can reflect past environmental exposures, predict disease onset or course, or determine a patient's response to therapy. Epigenetic changes are such characteristics, with most epigenetic biomarkers discovered to date based on the epigenetic mark of DNA methylation. Many tissue types are suitable for the discovery of DNA methylation biomarkers including cell-based samples such as blood and tumor material and cell-free DNA samples such as plasma. DNA methylation biomarkers with diagnostic, prognostic and predictive power are already in clinical trials or in a clinical setting for cancer. Outside cancer, strong evidence that complex disease originates in early life is opening up exciting new avenues for the detection of DNA methylation biomarkers for adverse early life environment and for estimation of future disease risk. However, there are a number of limitations to overcome before such biomarkers reach the clinic. Nevertheless, DNA methylation biomarkers have great potential to contribute to personalized medicine throughout life. We review the current state of play for DNA methylation biomarkers, discuss the barriers that must be crossed on the way to implementation in a clinical setting, and predict their future use for human disease.
Collapse
|
42
|
Vela I, Morrissey C, Zhang X, Chen S, Corey E, Strutton GM, Nelson CC, Nicol DL, Clements JA, Gardiner EM. PITX2 and non-canonical Wnt pathway interaction in metastatic prostate cancer. Clin Exp Metastasis 2014; 31:199-211. [PMID: 24162257 DOI: 10.1007/s10585-013-9620-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 10/06/2013] [Indexed: 10/26/2022]
Abstract
The non-canonical Wnt pathway, a regulator of cellular motility and morphology, is increasingly implicated in cancer metastasis. In a quantitative PCR array analysis of 84 Wnt pathway associated genes, both non-canonical and canonical pathways were activated in primary and metastatic tumors relative to normal prostate. Expression of the Wnt target gene PITX2 in a prostate cancer (PCa) bone metastasis was strikingly elevated over normal prostate (over 2,000-fold) and primary prostate cancer (over 200-fold). The elevation of PITX2 protein was also evident on tissue microarrays, with strong PITX2 immunostaining in PCa skeletal and, to a lesser degree, soft tissue metastases. PITX2 is associated with cell migration during normal tissue morphogenesis. In our studies, overexpression of individual PITX2A/B/C isoforms stimulated PC-3 PCa cell motility, with the PITX2A isoform imparting a specific motility advantage in the presence of non-canonical Wnt5a stimulation. Furthermore, PITX2 specific shRNA inhibited PC-3 cell migration toward bone cell derived chemoattractant. These experimental results support a pivotal role of PITX2A and non-canonical Wnt signaling in enhancement of PCa cell motility, suggest PITX2 involvement in homing of PCa to the skeleton, and are consistent with a role for PITX2 in PCa metastasis to soft and bone tissues. Our findings, which significantly expand previous evidence that PITX2 is associated with risk of PCa biochemical recurrence, indicate that variation in PITX2 expression accompanies and may promote prostate tumor progression and metastasis.
Collapse
Affiliation(s)
- I Vela
- Department of Urology, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Basu M, Mukhopadhyay S, Chatterjee U, Roy SS. FGF16 promotes invasive behavior of SKOV-3 ovarian cancer cells through activation of mitogen-activated protein kinase (MAPK) signaling pathway. J Biol Chem 2014; 289:1415-28. [PMID: 24253043 PMCID: PMC3894325 DOI: 10.1074/jbc.m113.535427] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Indexed: 12/12/2022] Open
Abstract
Uncontrolled cell growth and tissue invasion define the characteristic features of cancer. Several growth factors regulate these processes by inducing specific signaling pathways. We show that FGF16, a novel factor, is expressed in human ovary, and its expression is markedly increased in ovarian tumors. This finding indicated possible involvement of FGF16 in ovarian cancer progression. We observed that FGF16 stimulates the proliferation of human ovarian adenocarcinoma cells, SKOV-3 and OAW-42. Furthermore, through the activation of FGF receptor-mediated intracellular MAPK pathway, FGF16 regulates the expression of MMP2, MMP9, SNAI1, and CDH1 and thus facilitates cellular invasion. Inhibition of FGFR as well as MAPK pathway reduces the proliferative and invasive behavior of ovarian cancer cells. Moreover, ovarian tumors with up-regulated PITX2 expression also showed activation of Wnt/β-catenin pathway that prompted us to investigate possible interaction among FGF16, PITX2, and Wnt pathway. We identified that PITX2 homeodomain transcription factor interacts with and regulates FGF16 expression. Furthermore, activation of the Wnt/β-catenin pathway induces FGF16 expression. Moreover, FGF16 promoter possesses the binding elements of PITX2 as well as T-cell factor (Wnt-responsive), in close proximity, where PITX2 and β-catenin binds to and synergistically activates the same. A detail study showed that both PITX2 and T-cell factor elements and the interaction with their binding partners are necessary for target gene expression. Taken together, our findings indicate that FGF16 in conjunction with Wnt pathway contributes to the cancer phenotype of ovarian cells and suggests that modulation of its expression in ovarian cells might be a promising therapeutic strategy for the treatment of invasive ovarian cancers.
Collapse
Affiliation(s)
- Moitri Basu
- From the Cell Biology and Physiology Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India and
| | | | - Uttara Chatterjee
- Department of Pathology, Institute of Post Graduate Medical Education and Research and Seth Sukhlal Karnani Memorial Hospital, 244 AJC Bose Road, Kolkata 700020, India
| | - Sib Sankar Roy
- From the Cell Biology and Physiology Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India and
| |
Collapse
|
44
|
Wan Abdul Rahman WF, Fauzi MH, Jaafar H. Expression of DNA methylation marker of paired-like homeodomain transcription factor 2 and growth receptors in invasive ductal carcinoma of the breast. Asian Pac J Cancer Prev 2014; 15:8441-5. [PMID: 25339043 DOI: 10.7314/apjcp.2014.15.19.8441] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Paired-like homeodomain transcription factor 2 (PITX2) is another new marker in breast carcinoma since hypermethylation at P2 promoter of this gene was noted to be associated with poor prognosis. We investigated the expression of PITX2 protein using immunohistochemistry in invasive ductal carcinoma and its association with the established growth receptors such as estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth receptor 2 (HER2). METHODS We conducted a cross sectional study using 100 samples of archived formalin-fixed paraffin embedded tissue blocks of invasive ductal carcinoma and stained them with immunohistochemistry for PITX2, ER, PR and HER2. All HER2 with scoring of 2+ were confirmed with chromogenic in-situ hybridization (CISH). RESULTS PITX2 protein was expressed in 53% of invasive ductal carcinoma and lack of PITX2 expression in 47%. Univariate analysis revealed a significant association between PITX2 expression with PR (p=0.001), ER (p=0.006), gland formation (p=0.044) and marginal association with molecular subtypes of breast carcinoma (p=0.051). Combined ER and PR expression with PITX2 was also significantly associated (p=0.003) especially in double positive cases. Multivariate analysis showed the most significant association between PITX2 and PR (RR 4.105, 95% CI 1.765-9.547, p=0.001). CONCLUSION PITX2 is another potential prognostic marker in breast carcinoma adding significant information to established prognostic factors of ER and PR. The expression of PITX2 together with PR may carry a very good prognosis.
Collapse
Affiliation(s)
- Wan Faiziah Wan Abdul Rahman
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kelantan, Malaysia E-mail :
| | | | | |
Collapse
|
45
|
Dietrich D, Uhl B, Sailer V, Holmes EE, Jung M, Meller S, Kristiansen G. Improved PCR performance using template DNA from formalin-fixed and paraffin-embedded tissues by overcoming PCR inhibition. PLoS One 2013; 8:e77771. [PMID: 24155973 PMCID: PMC3796491 DOI: 10.1371/journal.pone.0077771] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 09/05/2013] [Indexed: 02/06/2023] Open
Abstract
Formalin-fixed and paraffin-embedded (FFPE) tissues represent a valuable source for biomarker studies and clinical routine diagnostics. However, they suffer from degradation of nucleic acids due to the fixation process. Since genetic and epigenetic studies usually require PCR amplification, this degradation hampers its use significantly, impairing PCR robustness or necessitating short amplicons. In routine laboratory medicine a highly robust PCR performance is mandatory for the clinical utility of genetic and epigenetic biomarkers. Therefore, methods to improve PCR performance using DNA from FFPE tissue are highly desired and of wider interest. The effect of template DNA derived from FFPE tissues on PCR performance was investigated by means of qPCR and conventional PCR using PCR fragments of different sizes. DNA fragmentation was analyzed via agarose gel electrophoresis. This study showed that poor PCR amplification was partly caused by inhibition of the DNA polymerase by fragmented DNA from FFPE tissue and not only due to the absence of intact template molecules of sufficient integrity. This PCR inhibition was successfully minimized by increasing the polymerase concentration, dNTP concentration and PCR elongation time thereby allowing for the robust amplification of larger amplicons. This was shown for genomic template DNA as well as for bisulfite-converted template DNA required for DNA methylation analyses. In conclusion, PCR using DNA from FFPE tissue suffers from inhibition which can be alleviated by adaptation of the PCR conditions, therefore allowing for a significant improvement of PCR performance with regard to variability and the generation of larger amplicons. The presented solutions to overcome this PCR inhibition are of tremendous value for clinical chemistry and laboratory medicine.
Collapse
Affiliation(s)
- Dimo Dietrich
- University Hospital Bonn (UKB), Institute of Pathology, Bonn, Germany
- * E-mail:
| | - Barbara Uhl
- University Hospital Bonn (UKB), Institute of Pathology, Bonn, Germany
| | - Verena Sailer
- University Hospital Bonn (UKB), Institute of Pathology, Bonn, Germany
| | - Emily Eva Holmes
- University Hospital Bonn (UKB), Institute of Pathology, Bonn, Germany
| | - Maria Jung
- University Hospital Bonn (UKB), Institute of Pathology, Bonn, Germany
| | - Sebastian Meller
- University Hospital Bonn (UKB), Institute of Pathology, Bonn, Germany
| | - Glen Kristiansen
- University Hospital Bonn (UKB), Institute of Pathology, Bonn, Germany
| |
Collapse
|
46
|
Vinarskaja A, Schulz WA, Ingenwerth M, Hader C, Arsov C. Association of PITX2 mRNA down-regulation in prostate cancer with promoter hypermethylation and poor prognosis. Urol Oncol 2013; 31:622-7. [PMID: 21803613 DOI: 10.1016/j.urolonc.2011.04.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 03/30/2011] [Accepted: 04/24/2011] [Indexed: 11/24/2022]
Abstract
BACKGROUND Hypermethylation of the PITX2 (paired-like homeodomain transcription factor 2) gene promoter is strongly associated with recurrence after radical prostatectomy. We hypothesized that PITX2 hypermethylation leads to PITX2 silencing and that decreased PITX2 expression is likewise associated with poor prognosis in prostate cancers. Moreover, it is unknown so far how PITX2 hypermethylation relates to other molecular changes in prostate cancer, such as ERG oncogenic activation in about half of all cases. OBJECTIVE To investigate how PITX2 expression and methylation are related, whether biochemical recurrence after radical prostatectomy can be predicted by PITX2 mRNA levels, and how changes in PITX2 relate to ERG overexpression. MATERIAL AND METHODS We measured PITX2 and ERG expression in 45 cancerous and 13 benign tissues from patients undergoing radical prostatectomy (age range: 59-74 years). Methylation of the PITX2 gene was analyzed in an extended series of 93 cancers. Follow-up was performed for all patients for a 98-month median period. Additionally, expression and methylation changes of PITX2 were investigated in prostate carcinoma cell lines. Gene expression and methylation were determined by quantitative RT-PCR and methylation-specific PCR, respectively. Biochemical recurrence defined as a total PSA of >0.2 ng/ml on 2 consecutive tests was considered as the surrogate endpoint for survival analysis. RESULTS PITX2 expression was significantly and strongly decreased in prostate cancer compared to benign tissues. Cases with decreased PITX2 experienced significantly earlier biochemical recurrences. PITX2 down-regulation was associated with PITX2 promoter hypermethylation in tumor samples and cell lines. PITX2 hypermethylation was more pronounced in cases with ERG overexpression. CONCLUSIONS PITX2 down-regulation is associated with promoter hypermethylation and is a good predictor of clinical outcomes after radical prostatectomy. PITX2 methylation might be influenced by oncogenic ERG.
Collapse
Affiliation(s)
- Anna Vinarskaja
- Department of Urology, Heinrich-Heine University, Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
47
|
Zhang JX, Tong ZT, Yang L, Wang F, Chai HP, Zhang F, Xie MR, Zhang AL, Wu LM, Hong H, Yin L, Wang H, Wang HY, Zhao Y. PITX2: a promising predictive biomarker of patients' prognosis and chemoradioresistance in esophageal squamous cell carcinoma. Int J Cancer 2013; 132:2567-77. [PMID: 23132660 DOI: 10.1002/ijc.27930] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 10/17/2012] [Indexed: 12/14/2022]
Abstract
The paired-like homeodomain transcription factor 2 (PITX2), a downstream effector of wnt/β-catenin signaling, is well known to play critical role during normal embryonic development. However, the possible involvement of PITX2 in human tumorigenesis remains unclear. In this study, we extend its function in human esophageal squamous cell carcinoma (ESCC). The real-time PCR, Western blotting and immunohistochemistry (IHC) methods were applied to examine expression pattern of PITX2 in two different cohorts of ESCC cases treated with definitive chemoradiotherapy (CRT). Receiver operating characteristic (ROC) curve analysis was used to determine the cutoff point for PITX2 high expression in the training cohort. The ROC-derived cutoff point was then subjected to analyze the association of PITX2 expression with patients' survival and clinical characteristics in training and validation cohort, respectively. The expression level of PITX2 was significantly higher in ESCCs than that in normal esophageal mucosa. There was a positive correlation between PITX2 expression and clinical aggressiveness of ESCC. Importantly, high expression of PITX2 was observed more frequently in CRT resistant group than that in CRT effective group (p < 0.05). Furthermore, high expression of PITX2 was associated with poor disease-specific survival (p < 0.05) in ESCC. Then, the MTS, clonogenic survival fraction and cell apoptosis experiments showed that knockdown of PITX2 substantially increased ESCC cells sensitivity to ionizing radiation (IR) or cisplatin in vitro. Thus, the expression of PITX2, as detected by IHC, may be a useful tool for predicting CRT resistance and serves as an independent molecular marker for poor prognosis of ESCC patients treated with definite CRT.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Blotting, Western
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/mortality
- Carcinoma, Squamous Cell/therapy
- Case-Control Studies
- Cell Proliferation
- Chemoradiotherapy
- Cisplatin/pharmacology
- Cohort Studies
- Drug Resistance, Neoplasm
- Esophageal Neoplasms/metabolism
- Esophageal Neoplasms/mortality
- Esophageal Neoplasms/therapy
- Esophagus/metabolism
- Female
- Flow Cytometry
- Follow-Up Studies
- Homeodomain Proteins/antagonists & inhibitors
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Humans
- Immunoenzyme Techniques
- Male
- Middle Aged
- Neoplasm Grading
- Neoplasm Staging
- Prognosis
- RNA, Messenger/genetics
- RNA, Small Interfering/genetics
- Radiation Tolerance
- Radiation, Ionizing
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Survival Rate
- Transcription Factors/antagonists & inhibitors
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Homeobox Protein PITX2
Collapse
Affiliation(s)
- Jia-Xing Zhang
- Department of Radiotherapy, the First Affiliated Hospital, Anhui Medical University, Hefei, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Dietrich D, Hasinger O, Bañez LL, Sun L, van Leenders GJ, Wheeler TM, Bangma CH, Wernert N, Perner S, Freedland SJ, Corman JM, Ittmann MM, Lark AL, Madden JF, Hartmann A, Schatz P, Kristiansen G. Development and clinical validation of a real-time PCR assay for PITX2 DNA methylation to predict prostate-specific antigen recurrence in prostate cancer patients following radical prostatectomy. J Mol Diagn 2013; 15:270-9. [PMID: 23266319 PMCID: PMC5707187 DOI: 10.1016/j.jmoldx.2012.11.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 10/17/2012] [Accepted: 11/05/2012] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer is the most common cancer among men. The prospective discrimination of aggressive and clinically insignificant tumors still poses a significant and, as yet, unsolved problem. PITX2 DNA methylation is a strong prognostic biomarker in prostate cancer. Recently, a diagnostic microarray for prostate cancer prognosis based on PITX2 methylation has been developed and validated. Because this microarray requires nonstandard laboratory equipment, its use in a diagnostic setting is limited. This study aimed to develop and validate an alternative quantitative real-time PCR assay for measuring PITX2 methylation that can easily be established in clinical laboratories, thereby facilitating the implementation of this biomarker in clinical practice. A methylation cut-off for patient stratification was established in a training cohort (n = 157) and validated in an independent test set (n = 523) of men treated with radical prostatectomy. In univariate Cox proportional hazards analysis, PITX2 hypermethylation was a significant predictor for biochemical recurrence (P < 0.001, hazard ratio = 2.614). Moreover, PITX2 hypermethylation added significant prognostic information (P = 0.003, hazard ratio = 1.814) to the Gleason score, pathological T stage, prostate-specific antigen, and surgical margins in a multivariate analysis. The clinical performance was particularly high in patients at intermediate risk (Gleason score of 7) and in samples containing high tumor cell content. This assay might aid in risk stratification and support the decision-making process when determining whether a patient might benefit from adjuvant treatment after radical prostatectomy.
Collapse
Affiliation(s)
- Dimo Dietrich
- Institute of Pathology, University Hospital Bonn, Bonn, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Basu M, Roy SS. Wnt/β-catenin pathway is regulated by PITX2 homeodomain protein and thus contributes to the proliferation of human ovarian adenocarcinoma cell, SKOV-3. J Biol Chem 2013; 288:4355-67. [PMID: 23250740 PMCID: PMC3567686 DOI: 10.1074/jbc.m112.409102] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 11/26/2012] [Indexed: 01/22/2023] Open
Abstract
Pituitary homeobox-2 (PITX2) plays a substantial role in the development of pituitary, heart, and brain. Although the role of PITX2 isoforms in embryonic development has been extensively studied, its possible involvement in regulating the Wnt signaling pathway has not been reported. Because the Wnt pathway is strongly involved in ovarian development and cancer, we focused on the possible association between PITX2 and Wnt pathway in ovarian carcinoma cells. Remarkably, we found that PITX2 interacts and regulates WNT2/5A/9A/6/2B genes of the canonical, noncanonical, or other pathways in the human ovarian cancer cell SKOV-3. Chromatin immunoprecipitation and promoter-reporter assays further indicated the significant association of PITX2 with WNT2 and WNT5A promoters. Detailed study further reveals that the PITX2 isoform specifically activates the canonical Wnt signaling pathway either directly or through Wnt ligands. Thus, the activated Wnt pathway subsequently enhances cell proliferation. Moreover, we found the activation of Wnt pathway reduces the expression of different FZD receptors that limit further Wnt activation, demonstrating the existence of an auto-regulatory feedback loop. In contrast, PITX2 could not activate the noncanonical pathway as the Wnt5A-specific ROR2 receptor does not express in SKOV-3 cells. Collectively, our findings demonstrated that, despite being a target of the canonical Wnt signaling pathway, PITX2 itself induces the same, thus leading to the activation of the cell cycle regulating genes as well as the proliferation of SKOV-3 cells. Collectively, we highlighted that the PITX2 and Wnt pathway exerts a positive feedback regulation, whereas frizzled receptors generate a negative feedback in this pathway. Our findings will help to understand the molecular mechanism of proliferation in ovarian cancer cells.
Collapse
Affiliation(s)
- Moitri Basu
- From the Cell Biology and Physiology Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, 4 Raja Subodh Chandra Mullick Road, Kolkata 700032, India
| | - Sib Sankar Roy
- From the Cell Biology and Physiology Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, 4 Raja Subodh Chandra Mullick Road, Kolkata 700032, India
| |
Collapse
|
50
|
Mikeska T, Bock C, Do H, Dobrovic A. DNA methylation biomarkers in cancer: progress towards clinical implementation. Expert Rev Mol Diagn 2012; 12:473-87. [PMID: 22702364 DOI: 10.1586/erm.12.45] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Altered DNA methylation is ubiquitous in human cancers and specific methylation changes are often correlated with clinical features. DNA methylation biomarkers, which use those specific methylation changes, provide a range of opportunities for early detection, diagnosis, prognosis, therapeutic stratification and post-therapeutic monitoring. Here we review current approaches to developing and applying DNA methylation biomarkers in cancer therapy. We discuss the obstacles that have so far limited the routine use of DNA methylation biomarkers in clinical settings and describe ways in which these obstacles can be overcome. Finally, we summarize the current state of clinical implementation for some of the most widely studied and well-validated DNA methylation biomarkers, including SEPT9, VIM, SHOX2, PITX2 and MGMT.
Collapse
Affiliation(s)
- Thomas Mikeska
- Molecular Pathology Research & Development Laboratory, Department of Pathology, Peter MacCallum Cancer Centre, Locked Bag 1, A'Beckett Street, Melbourne, Victoria 8006, Australia
| | | | | | | |
Collapse
|