1
|
Tylińska B, Janicka-Kłos A, Gębarowski T, Nowotarska P, Plińska S, Wiatrak B. Pyrimidine Derivatives as Selective COX-2 Inhibitors with Anti-Inflammatory and Antioxidant Properties. Int J Mol Sci 2024; 25:11011. [PMID: 39456793 PMCID: PMC11507521 DOI: 10.3390/ijms252011011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/03/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Pyrimidine derivatives exhibit a wide range of biological activities, including anti-inflammatory properties. The aim of this study was to investigate the effects of tested pyrimidine derivatives on the activity of cyclooxygenase isoenzymes (COX-1 and COX-2), antioxidant properties, and their ability to inhibit the growth of inflammatory cells. In vitro tests were conducted to assess the ability of pyrimidine derivatives L1-L4 to inhibit COX-1 and COX-2 activity using the TMPD oxidation assay (N,N,N',N'-tetramethyl-p-phenylenediamine). The compounds' ability to inhibit the growth of lipopolysaccharide (LPS)-stimulated THP-1 (human leukemia monocytic) monocyte cells and their impact on reactive oxygen species (ROS) levels in an inflammatory model were also evaluated. The binding properties of human serum albumin (HSA) were assessed using UV-Vis spectroscopy, circular dichroism (CD), and isothermal titration calorimetry (ITC). Among the tested pyrimidine derivatives, L1 and L2 showed high selectivity towards COX-2, outperforming piroxicam and achieving results comparable to meloxicam. In the sulforhodamine B (SRB) assay, L1 and L2 demonstrated dose-dependent inhibition of LPS-stimulated THP-1 cell growth. Additionally, ROS assays indicated that these compounds reduced free radical levels, confirming their antioxidant properties. Binding studies with albumin revealed that L1 and L2 formed stable complexes with HSA. These results suggest that these compounds could serve as a basis for further research into anti-inflammatory and anticancer drugs with reduced toxicity.
Collapse
Affiliation(s)
- Beata Tylińska
- Department of Organic Chemistry, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Anna Janicka-Kłos
- Department of Basic Chemical Sciences, Wroclaw Medical University, Borowska 211a, 50-556 Wrocław, Poland;
| | - Tomasz Gębarowski
- Department of Biostructure and Animal Physiology, The Wroclaw University of Environmental and Life Sciences, Kożuchowska 1/3, 51-631 Wroclaw, Poland; (T.G.); (P.N.)
| | - Paulina Nowotarska
- Department of Biostructure and Animal Physiology, The Wroclaw University of Environmental and Life Sciences, Kożuchowska 1/3, 51-631 Wroclaw, Poland; (T.G.); (P.N.)
| | - Stanisława Plińska
- Department of Basic Chemical Sciences, Wroclaw Medical University, Borowska 211a, 50-556 Wrocław, Poland;
| | - Benita Wiatrak
- Department of Pharmacology, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wrocław, Poland;
| |
Collapse
|
2
|
Alzahrani AR, Hosny N, Mohamed DI, Abo Nahas HH, Albogami A, Al-Hazani TMI, Ibrahim IAA, Falemban AH, Bamagous GA, Saied EM. Unveiling the multifaceted antiproliferative efficacy of Cichorium endivia root extract by dual modulation of apoptotic and inflammatory genes, inducing cell cycle arrest, and targeting COX-2. RSC Adv 2024; 14:19400-19427. [PMID: 38887636 PMCID: PMC11182420 DOI: 10.1039/d4ra02131b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
Chicory (Cichorium endivia L. divaricatum) is a renowned medicinal plant traditionally used for various ailments, yet the pharmacological potential of its roots, particularly in terms of antitumor activity, remains elusive. In the present study, we explore, for the first time, the metabolomic profile of ethanolic extract from Cichorium endivia roots (CIR) and further unveil its antiproliferative potential. The untargeted phytochemical analysis UPLC/T-TOF-MS/MS identified 131 metabolites in the CIR extract, covering acids, amino acids, flavonoids, alkaloids, nucleotides, and carbohydrates. The antiproliferative activity of the CIR extract was tested in 14 cancer cell lines, revealing significant cytotoxicity (IC50: 2.85-29.15 μg mL-1) and a high selectivity index. Among the cells examined, the CIR extract recorded the most potent antiproliferative activity and selectivity toward HepG2 and Panc-1 cells, with an IC50 of 2.85 μg mL-1 and 3.86 μg mL-1, respectively, and SI > 10. Insights into the mode of action of the antiproliferative activity revealed that CIR extract induces cell arrest in the S phase while diminishing cell distribution in the G0/G1 and G2/M phases in HepG-2 and Panc-1 cells. Flow cytometric and RT-PCR analysis revealed that the CIR extract significantly triggers apoptosis and modulates the expression of pro-apoptotic and anti-apoptotic genes. Furthermore, the CIR extract exhibited a pronounced anti-inflammatory activity, as evidenced by down-regulating key cytokines in LPS-induced RAW 264.7 cells and selectively inhibiting the COX-2 enzyme. Finally, the CIR extract showed a robust total antioxidant capacity, together with potent free radicals and metal scavenging properties, highlighting its role in alleviating oxidative stress. Taken together, this study highlights the multifaceted therapeutic potential of CIR extract as a natural-based antitumor supplement.
Collapse
Affiliation(s)
- Abdullah R Alzahrani
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University Makkah Saudi Arabia
| | - Nora Hosny
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Suez Canal University Ismailia 41522 Egypt
- Center of Excellence in Molecular and Cellular Medicine, Faculty of Medicine, Suez Canal University Ismailia Egypt
| | - Doaa I Mohamed
- Department of Clinical Pharmacology and Therapeutics, Faculty of Medicine, Ain Shams University Cairo 11566 Egypt
| | | | - Abdulaziz Albogami
- Biology Department, Faculty of Science, Al-Baha University Al Aqiq Saudi Arabia
| | - Tahani Mohamed Ibrahim Al-Hazani
- Biology Department, College of Science and Humanities, Prince Sattam bin Abdulaziz University P. O. Box: 83 Al-Kharj 11940 Saudi Arabia
| | - Ibrahim Abdel Aziz Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University Makkah Saudi Arabia
| | - Alaa Hisham Falemban
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University Makkah Saudi Arabia
| | - Ghazi A Bamagous
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University Makkah Saudi Arabia
| | - Essa M Saied
- Chemistry Department, Faculty of Science, Suez Canal University 41522 Ismailia Egypt
- Institute for Chemistry, Humboldt Universität zu Berlin 12489 Berlin Germany
| |
Collapse
|
3
|
Qian C, Wang Q, Qiao Y, Xu Z, Zhang L, Xiao H, Lin Z, Wu M, Xia W, Yang H, Bai J, Geng D. Arachidonic acid in aging: New roles for old players. J Adv Res 2024:S2090-1232(24)00180-2. [PMID: 38710468 DOI: 10.1016/j.jare.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/26/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Arachidonic acid (AA), one of the most ubiquitous polyunsaturated fatty acids (PUFAs), provides fluidity to mammalian cell membranes. It is derived from linoleic acid (LA) and can be transformed into various bioactive metabolites, including prostaglandins (PGs), thromboxanes (TXs), lipoxins (LXs), hydroxy-eicosatetraenoic acids (HETEs), leukotrienes (LTs), and epoxyeicosatrienoic acids (EETs), by different pathways. All these processes are involved in AA metabolism. Currently, in the context of an increasingly visible aging world population, several scholars have revealed the essential role of AA metabolism in osteoporosis, chronic obstructive pulmonary disease, and many other aging diseases. AIM OF REVIEW Although there are some reviews describing the role of AA in some specific diseases, there seems to be no or little information on the role of AA metabolism in aging tissues or organs. This review scrutinizes and highlights the role of AA metabolism in aging and provides a new idea for strategies for treating aging-related diseases. KEY SCIENTIFIC CONCEPTS OF REVIEW As a member of lipid metabolism, AA metabolism regulates the important lipids that interfere with the aging in several ways. We present a comprehensivereviewofthe role ofAA metabolism in aging, with the aim of relieving the extreme suffering of families and the heavy economic burden on society caused by age-related diseases. We also collected and summarized data on anti-aging therapies associated with AA metabolism, with the expectation of identifying a novel and efficient way to protect against aging.
Collapse
Affiliation(s)
- Chen Qian
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Qing Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Yusen Qiao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Ze Xu
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui 230031, PR China
| | - Linlin Zhang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui 230031, PR China
| | - Haixiang Xiao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Zhixiang Lin
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Mingzhou Wu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Wenyu Xia
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China.
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui 230031, PR China.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China.
| |
Collapse
|
4
|
Li XJ, Suo P, Wang YN, Zou L, Nie XL, Zhao YY, Miao H. Arachidonic acid metabolism as a therapeutic target in AKI-to-CKD transition. Front Pharmacol 2024; 15:1365802. [PMID: 38523633 PMCID: PMC10957658 DOI: 10.3389/fphar.2024.1365802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/06/2024] [Indexed: 03/26/2024] Open
Abstract
Arachidonic acid (AA) is a main component of cell membrane lipids. AA is mainly metabolized by three enzymes: cyclooxygenase (COX), lipoxygenase (LOX) and cytochrome P450 (CYP450). Esterified AA is hydrolysed by phospholipase A2 into a free form that is further metabolized by COX, LOX and CYP450 to a wide range of bioactive mediators, including prostaglandins, lipoxins, thromboxanes, leukotrienes, hydroxyeicosatetraenoic acids and epoxyeicosatrienoic acids. Increased mitochondrial oxidative stress is considered to be a central mechanism in the pathophysiology of the kidney. Along with increased oxidative stress, apoptosis, inflammation and tissue fibrosis drive the progressive loss of kidney function, affecting the glomerular filtration barrier and the tubulointerstitium. Recent studies have shown that AA and its active derivative eicosanoids play important roles in the regulation of physiological kidney function and the pathogenesis of kidney disease. These factors are potentially novel biomarkers, especially in the context of their involvement in inflammatory processes and oxidative stress. In this review, we introduce the three main metabolic pathways of AA and discuss the molecular mechanisms by which these pathways affect the progression of acute kidney injury (AKI), diabetic nephropathy (DN) and renal cell carcinoma (RCC). This review may provide new therapeutic targets for the identification of AKI to CKD continuum.
Collapse
Affiliation(s)
- Xiao-Jun Li
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Department of Nephrology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Ping Suo
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yan-Ni Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Liang Zou
- School of Food and Bioengineering, Chengdu University, Chengdu, Sichuan, China
| | - Xiao-Li Nie
- Department of Nephrology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Ying-Yong Zhao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Hua Miao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Kornicka A, Balewski Ł, Lahutta M, Kokoszka J. Umbelliferone and Its Synthetic Derivatives as Suitable Molecules for the Development of Agents with Biological Activities: A Review of Their Pharmacological and Therapeutic Potential. Pharmaceuticals (Basel) 2023; 16:1732. [PMID: 38139858 PMCID: PMC10747342 DOI: 10.3390/ph16121732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Umbelliferone (UMB), known as 7-hydroxycoumarin, hydrangine, or skimmetine, is a naturally occurring coumarin in the plant kingdom, mainly from the Umbelliferae family that possesses a wide variety of pharmacological properties. In addition, the use of nanoparticles containing umbelliferone may improve anti-inflammatory or anticancer therapy. Also, its derivatives are endowed with great potential for therapeutic applications due to their broad spectrum of biological activities such as anti-inflammatory, antioxidant, neuroprotective, antipsychotic, antiepileptic, antidiabetic, antimicrobial, antiviral, and antiproliferative effects. Moreover, 7-hydroxycoumarin ligands have been implemented to develop 7-hydroxycoumarin-based metal complexes with improved pharmacological activity. Besides therapeutic applications, umbelliferone analogues have been designed as fluorescent probes for the detection of biologically important species, such as enzymes, lysosomes, and endosomes, or for monitoring cell processes and protein functions as well various diseases caused by an excess of hydrogen peroxide. Furthermore, 7-hydroxy-based chemosensors may serve as a highly selective tool for Al3+ and Hg2+ detection in biological systems. This review is devoted to a summary of the research on umbelliferone and its synthetic derivatives in terms of biological and pharmaceutical properties, especially those reported in the literature during the period of 2017-2023. Future potential applications of umbelliferone and its synthetic derivatives are presented.
Collapse
Affiliation(s)
- Anita Kornicka
- Department of Chemical Technology of Drugs, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland; (Ł.B.); (M.L.); (J.K.)
| | | | | | | |
Collapse
|
6
|
Heydeck D, Kakularam KR, Labuz D, Machelska H, Rohwer N, Weylandt K, Kuhn H. Transgenic mice overexpressing human ALOX15 under the control of the aP2 promoter are partly protected in the complete Freund's adjuvant-induced paw inflammation model. Inflamm Res 2023; 72:1649-1664. [PMID: 37498393 PMCID: PMC10499711 DOI: 10.1007/s00011-023-01770-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/28/2023] [Accepted: 07/10/2023] [Indexed: 07/28/2023] Open
Abstract
BACKGROUND, OBJECTIVES AND DESIGN Arachidonic acid 15-lipoxygenase (ALOX15) has been implicated in the pathogenesis of inflammatory diseases but since pro- and anti-inflammatory roles have been suggested, the precise function of this enzyme is still a matter of discussion. To contribute to this discussion, we created transgenic mice, which express human ALOX15 under the control of the activating protein 2 promoter (aP2-ALOX15 mice) and compared the sensitivity of these gain-of-function animals in two independent mouse inflammation models with Alox15-deficient mice (loss-of-function animals) and wildtype control animals. MATERIALS AND METHODS Transgenic aP2-ALOX15 mice were tested in comparison with Alox15 knockout mice (Alox15-/-) and corresponding wildtype control animals (C57BL/6J) in the complete Freund's adjuvant induced hind-paw edema model and in the dextran sulfate sodium induced colitis (DSS-colitis) model. In the paw edema model, the degree of paw swelling and the sensitivity of the inflamed hind-paw for mechanic (von Frey test) and thermal (Hargreaves test) stimulation were quantified as clinical readout parameters. In the dextran sodium sulfate induced colitis model the loss of body weight, the colon lengths and the disease activity index were determined. RESULTS In the hind-paw edema model, systemic inactivation of the endogenous Alox15 gene intensified the inflammatory symptoms, whereas overexpression of human ALOX15 reduced the degree of hind-paw inflammation. These data suggest anti-inflammatory roles for endogenous and transgenic ALOX15 in this particular inflammation model. As mechanistic reason for the protective effect downregulation of the pro-inflammatory ALOX5 pathways was suggested. However, in the dextran sodium sulfate colitis model, in which systemic inactivation of the Alox15 gene protected female mice from DSS-induced colitis, transgenic overexpression of human ALOX15 did hardly impact the intensity of the inflammatory symptoms. CONCLUSION The biological role of ALOX15 in the pathogenesis of inflammation is variable and depends on the kind of the animal inflammation model.
Collapse
Affiliation(s)
- Dagmar Heydeck
- Department of Biochemistry, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Kumar R. Kakularam
- Department of Biochemistry, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Dominika Labuz
- Department of Experimental Anesthesiology, Charité ˗ Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Halina Machelska
- Department of Experimental Anesthesiology, Charité ˗ Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Nadine Rohwer
- Division of Hepatology, Gastroenterology, Oncology, Hematology, Palliative Care, Endocrinology and Diabetes, Medical Department B, Brandenburg Medical School, University Hospital Ruppin-Brandenburg, Fehrbelliner Straße 38, 16816 Neuruppin, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, Brandenburg Medical School and University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam, Germany
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Karsten Weylandt
- Division of Hepatology, Gastroenterology, Oncology, Hematology, Palliative Care, Endocrinology and Diabetes, Medical Department B, Brandenburg Medical School, University Hospital Ruppin-Brandenburg, Fehrbelliner Straße 38, 16816 Neuruppin, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, Brandenburg Medical School and University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam, Germany
| | - Hartmut Kuhn
- Department of Biochemistry, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
7
|
Yang H, Rothenberger E, Zhao T, Fan W, Kelly A, Attaya A, Fan D, Panigrahy D, Deng J. Regulation of inflammation in cancer by dietary eicosanoids. Pharmacol Ther 2023:108455. [PMID: 37257760 DOI: 10.1016/j.pharmthera.2023.108455] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Cancer is a major burden of disease worldwide and increasing evidence shows that inflammation contributes to cancer development and progression. Eicosanoids are derived from dietary polyunsaturated fatty acids, such as arachidonic acid (AA), and are mainly produced by a series of enzymatic pathways that include cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P-450 epoxygenase (CYP). Eicosanoids consist of at least several hundred individual molecules and play important roles in the inflammatory response and inflammation-related cancers. SCOPE AND APPROACH Dietary sources of AA and biosynthesis of eicosanoids from AA through different metabolic pathways are summarized. The bioactivities of eicosanoids and their potential molecular mechanisms on inflammation and cancer are revealed. Additionally, current challenges and limitations in eicosanoid research on inflammation-related cancer are discussed. KEY FINDINGS AND CONCLUSIONS Dietary AA generates a large variety of eicosanoids, including prostaglandins, thromboxane A2, leukotrienes, cysteinyl leukotrienes, lipoxins, hydroxyeicosatetraenoic acids (HETEs), and epoxyeicosatrienoic acids (EETs). Eicosanoids exert different bioactivities and mechanisms involved in the inflammation and related cancer developments. A deeper understanding of eicosanoid biology may be advantageous in cancer treatment and help to define cellular targets for further therapeutic development.
Collapse
Affiliation(s)
- Haixia Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Eva Rothenberger
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Tong Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Wendong Fan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Abigail Kelly
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ahmed Attaya
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China
| | - Dipak Panigrahy
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Jianjun Deng
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China; State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
8
|
Chistyakov DV, Kovalenko LV, Donnikov MY, Sergeeva MG. Blood Oxylipin Profiles as Markers of Oncological Diseases. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:621-629. [PMID: 37331708 DOI: 10.1134/s000629792305005x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/03/2023] [Accepted: 03/11/2023] [Indexed: 06/20/2023]
Abstract
Oxylipins are signal lipid molecules formed from polyunsaturated fatty acids (PUFAs) in several multienzymatic metabolic pathways, such as cyclooxygenase (COX), lipoxygenase (LOX), epoxygenase (CYP), and anandamide pathways, as well as non-enzymatically. The pathways of PUFA transformation are activated in parallel, yielding a mixture of physiologically active substances. Although the association of oxylipins with carcinogenesis had been established a long time ago, only recently analytical methods have advanced to a degree allowing detection and quantification of oxylipins from different classes (oxylipin profiles). The review describes current approaches to the HPLC-MS/MS analysis of oxylipin profiles and compares oxylipin profiles from patients with oncological diseases (breast cancer, colorectal cancer, ovarian cancer, lung cancer, prostate cancer, liver cancer). The possibility of using blood oxylipin profiles as biomarkers in oncological diseases is discussed. Understanding the patterns of PUFA metabolism and physiological activity of combinations of oxylipins will improve early diagnostics of oncological diseases and evaluation of disease prognosis.
Collapse
Affiliation(s)
- Dmitry V Chistyakov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.
| | | | - Maxim Y Donnikov
- Medical Institute, Surgut State University, Surgut, 628416, Russia
| | | |
Collapse
|
9
|
Kennedy BM, Harris RE. Cyclooxygenase and Lipoxygenase Gene Expression in the Inflammogenesis of Colorectal Cancer: Correlated Expression of EGFR, JAK STAT and Src Genes, and a Natural Antisense Transcript, RP11-C67.2.2. Cancers (Basel) 2023; 15:cancers15082380. [PMID: 37190308 DOI: 10.3390/cancers15082380] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
We examined the expression of major inflammatory genes, cyclooxygenase-1, 2 (COX1, COX2), arachidonate-5-lipoxygenase (ALOX5), and arachidonate-5-lipoxygenase activating protein (ALOX5AP) among 469 tumor specimens of colorectal cancer in The Cancer Genome Atlas (TCGA). Among 411 specimens without mutations in mismatch repair (MMR) genes, the mean expression of each of the inflammatory genes ranked above the 80th percentile, and the overall mean cyclooxygenase expression (COX1+COX2) ranked in the upper 99th percentile of all genes. Similar levels were observed for 58 cases with MMR mutations. Pearson correlation coefficients exceeding r = 0.70 were observed between COX and LOX mRNA levels with genes of major cell-signaling pathways involved in tumorigenesis (Src, JAK STAT, MAPK, PI3K). We observed a novel association (r = 0.78) between ALOX5 expression and a natural antisense transcript (NAT), RP11-67C2.2, a long non-coding mRNA gene, 462 base pairs in length that is located within the terminal intron of the ALOX5 gene on chromosome 10q11.21. Tumor-promoting genes highly correlated with the expression of COX1, COX2, ALOX5 and ALOX5AP are known to increase mitogenesis, mutagenesis, angiogenesis, cell survival, immunosuppression and metastasis in the inflammogenesis of colorectal cancer. These genes and the novel NAT, RP1167C2.2 are potential molecular targets for chemoprevention and therapy of colorectal cancer.
Collapse
Affiliation(s)
- Brian M Kennedy
- Colleges of Public Health and Medicine, The Ohio State University Comprehensive Cancer Center, The Ohio State University, 1841 Neil Avenue, Columbus, OH 43210-1351, USA
| | - Randall E Harris
- Colleges of Public Health and Medicine, The Ohio State University Comprehensive Cancer Center, The Ohio State University, 1841 Neil Avenue, Columbus, OH 43210-1351, USA
| |
Collapse
|
10
|
Nakashima F, Giménez-Bastida JA, Luis PB, Presley SH, Boer RE, Chiusa M, Shibata T, Sulikowski GA, Pozzi A, Schneider C. The 5-lipoxygenase/cyclooxygenase-2 cross-over metabolite, hemiketal E 2, enhances VEGFR2 activation and promotes angiogenesis. J Biol Chem 2023; 299:103050. [PMID: 36813233 PMCID: PMC10040730 DOI: 10.1016/j.jbc.2023.103050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/23/2023] Open
Abstract
Consecutive oxygenation of arachidonic acid by 5-lipoxygenase and cyclooxygenase-2 yields the hemiketal eicosanoids, HKE2 and HKD2. Hemiketals stimulate angiogenesis by inducing endothelial cell tubulogenesis in culture; however, how this process is regulated has not been determined. Here, we identify vascular endothelial growth factor receptor 2 (VEGFR2) as a mediator of HKE2-induced angiogenesis in vitro and in vivo. We found that HKE2 treatment of human umbilical vein endothelial cells dose-dependently increased the phosphorylation of VEGFR2 and the downstream kinases ERK and Akt that mediated endothelial cell tubulogenesis. In vivo, HKE2 induced the growth of blood vessels into polyacetal sponges implanted in mice. HKE2-mediated effects in vitro and in vivo were blocked by the VEGFR2 inhibitor vatalanib, indicating that the pro-angiogenic effect of HKE2 was mediated by VEGFR2. HKE2 covalently bound and inhibited PTP1B, a protein tyrosine phosphatase that dephosphorylates VEGFR2, thereby providing a possible molecular mechanism for how HKE2 induced pro-angiogenic signaling. In summary, our studies indicate that biosynthetic cross-over of the 5-lipoxygenase and cyclooxygenase-2 pathways gives rise to a potent lipid autacoid that regulates endothelial cell function in vitro and in vivo. These findings suggest that common drugs targeting the arachidonic acid pathway could prove useful in antiangiogenic therapy.
Collapse
Affiliation(s)
- Fumie Nakashima
- Division of Clinical Pharmacology, Department of Pharmacology, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Juan A Giménez-Bastida
- Division of Clinical Pharmacology, Department of Pharmacology, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Paula B Luis
- Division of Clinical Pharmacology, Department of Pharmacology, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Sai H Presley
- Division of Clinical Pharmacology, Department of Pharmacology, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Robert E Boer
- Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Manuel Chiusa
- Division of Nephrology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Takahiro Shibata
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Gary A Sulikowski
- Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Ambra Pozzi
- Division of Nephrology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; Veterans Affairs Hospital, Nashville, Tennessee, USA.
| | - Claus Schneider
- Division of Clinical Pharmacology, Department of Pharmacology, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA.
| |
Collapse
|
11
|
Petinrin OO, Saeed F, Toseef M, Liu Z, Basurra S, Muyide IO, Li X, Lin Q, Wong KC. Machine learning in metastatic cancer research: Potentials, possibilities, and prospects. Comput Struct Biotechnol J 2023; 21:2454-2470. [PMID: 37077177 PMCID: PMC10106342 DOI: 10.1016/j.csbj.2023.03.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Cancer has received extensive recognition for its high mortality rate, with metastatic cancer being the top cause of cancer-related deaths. Metastatic cancer involves the spread of the primary tumor to other body organs. As much as the early detection of cancer is essential, the timely detection of metastasis, the identification of biomarkers, and treatment choice are valuable for improving the quality of life for metastatic cancer patients. This study reviews the existing studies on classical machine learning (ML) and deep learning (DL) in metastatic cancer research. Since the majority of metastatic cancer research data are collected in the formats of PET/CT and MRI image data, deep learning techniques are heavily involved. However, its black-box nature and expensive computational cost are notable concerns. Furthermore, existing models could be overestimated for their generality due to the non-diverse population in clinical trial datasets. Therefore, research gaps are itemized; follow-up studies should be carried out on metastatic cancer using machine learning and deep learning tools with data in a symmetric manner.
Collapse
Affiliation(s)
| | - Faisal Saeed
- DAAI Research Group, Department of Computing and Data Science, School of Computing and Digital Technology, Birmingham City University, Birmingham B4 7XG, UK
| | - Muhammad Toseef
- Department of Computer Science, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong SAR
| | - Zhe Liu
- Department of Computer Science, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong SAR
| | - Shadi Basurra
- DAAI Research Group, Department of Computing and Data Science, School of Computing and Digital Technology, Birmingham City University, Birmingham B4 7XG, UK
| | | | - Xiangtao Li
- School of Artificial Intelligence, Jilin University, Jilin, China
| | - Qiuzhen Lin
- School of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
| | - Ka-Chun Wong
- Department of Computer Science, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong SAR
- Hong Kong Institute for Data Science, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong SAR
| |
Collapse
|
12
|
Jiang J, Li A, Lai X, Zhang H, Wang C, Wang H, Li L, Liu Y, Xie L, Yang C, Zhang C, Lu S, Li Y. Correlation between Metabolite of Prostaglandin E2 and the incidence of colorectal adenomas. Front Oncol 2023; 13:1068469. [PMID: 36923425 PMCID: PMC10009184 DOI: 10.3389/fonc.2023.1068469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/13/2023] [Indexed: 03/02/2023] Open
Abstract
Colorectal cancer is a common malignancy, and the incidence and mortality rates continue to rise. An important factor in the emergence of inflammation-induced colorectal carcinogenesis is elevated cyclooxygenase-2. Prostaglandin E2 (PGE2) over-production is frequently equated with cyclooxygenase-2 gene over-expression. PGE2 can be assessed by measuring the level of prostaglandin's main metabolite, PGE-M, in urine. Colorectal adenoma is a precancerous lesion that can lead to colorectal cancer. We conducted research to evaluate the association between urinary levels of the PGE-M and the risk of colorectal adenomas. In a western Chinese population, we identified 152 cases of adenoma and 152 controls patients without polyps. Adenoma cases were categorized into control, low-risk and high-risk groups. There was no significant change in PGE-M levels, between the control group and the low-risk adenoma group. In the high-risk group, the PGE-M levels were 23% higher than the control group. When compared to people with the lowest urine PGE-M levels (first quartile), people with greater urinary PGE-M levels had a higher chance of developing high-risk colorectal adenomas, with an adjusted odds ratio (95% CI) of 1.65 (0.76-3.57) in the fourth quartile group, (p= 0.013). We conclude urinary PGE-M is associated with the risk of developing high-risk adenomas. Urinary PGE-M level may be used as a non-invasive indicator for estimating cancer risk.
Collapse
Affiliation(s)
- Jia Jiang
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Anjie Li
- Department of Medicine-Cardiovascular, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Xiaolian Lai
- Department of Digestive, People's Hospital of Songtao Miao Autonomous County, Tongren, China
| | - Hanqun Zhang
- Department of Oncology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Chonghong Wang
- Department of Digestive, People's Hospital of Songtao Miao Autonomous County, Tongren, China
| | - Huimin Wang
- Department of Digestive, People's Hospital of Songtao Miao Autonomous County, Tongren, China
| | - Libo Li
- Department of Oncology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Yuncong Liu
- Department of Oncology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Lu Xie
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Can Yang
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Cui Zhang
- Zunyi Medical University, Zunyi, China
| | - Shuoyan Lu
- Department of Digestive, People's Hospital of Songtao Miao Autonomous County, Tongren, China
| | - Yong Li
- Department of Oncology, Guizhou Provincial People’s Hospital, Guiyang, China
| |
Collapse
|
13
|
Zhao M, Yang Y, Nian Q, Shen C, Xiao X, Liao W, Zheng Q, Zhang G, Chen N, Gong D, Tang J, Wen Y, Zeng J. Phytochemicals and mitochondria: Therapeutic allies against gastric cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 110:154608. [PMID: 36586205 DOI: 10.1016/j.phymed.2022.154608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 12/09/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Mitochondria are the energy factories of cells with the ability to modulate the cell cycle, cellular differentiation, signal transduction, growth, and apoptosis. Existing drugs targeting mitochondria in cancer treatment have disadvantages of drug resistance and side effects. Phytochemicals, which are widely found in plants, are bioactive compounds that could facilitate the development of new drugs for gastric cancer. Studies have shown that some phytochemicals can suppress the development of gastric cancer. METHODS We searched for data from PubMed, China National Knowledge Infrastructure, Web of Science, and Embase databases from initial establishment to December 2021 to review the mechanism by which phytochemicals suppress gastric cancer cell growth by modulating mitochondrial function. Phytochemicals were classified and summarized by their mechanisms of action. RESULTS Phytochemicals can interfere with mitochondria through several mechanisms to reach the goal of promoting apoptosis in gastric cancer cells. Some phytochemicals, e.g., daidzein and tetrandrine promoted cytochrome c spillover into the cytoplasm by modulating the members of the B-cell lymphoma-2 protein family and induced apoptotic body activity by activating the caspase protein family. Phytochemicals (e.g., celastrol and shikonin) could promote the accumulation of reactive oxygen species and reduce the mitochondrial membrane potential. Several phytochemicals (e.g., berberine and oleanolic acid) activated mitochondrial apoptotic submission via the phosphatidylinositol-3-kinase/Akt signaling pathway, thereby triggering apoptosis in gastric cancer cells. Several well-known phytochemicals that target mitochondria, including berberine, ginsenoside, and baicalein, showed the advantages of multiple targets, high efficacy, and fewer side effects. CONCLUSIONS Phytochemicals could target the mitochondria in the treatment of gastric cancer, providing potential directions and evidence for clinical translation. Drug discovery focused on phytochemicals has great potential to break barriers in cancer treatment.
Collapse
Affiliation(s)
- Maoyuan Zhao
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China
| | - Yi Yang
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China
| | - Qing Nian
- Department of Blood Transfusion, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, PR China
| | - Caifei Shen
- Department of Endoscopy center, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China
| | - Xiaolin Xiao
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China
| | - Wenhao Liao
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China
| | - Qiao Zheng
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China
| | - Gang Zhang
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China
| | - Nianzhi Chen
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China
| | - Daoyin Gong
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Jianyuan Tang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China.
| | - Yueqiang Wen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China; Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China.
| |
Collapse
|
14
|
Xu F, Zhou X, Lin L, Xu J, Feng Y, He Y, Hao H. BML-111, the agonist of lipoxin A4, suppresses epithelial-mesenchymal transition and migration of MCF-7 cells via regulating the lipoxygenase pathway. Int J Immunopathol Pharmacol 2023; 37:3946320231223826. [PMID: 38134963 DOI: 10.1177/03946320231223826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023] Open
Abstract
Introduction: Aberrant epithelial-mesenchymal transition (EMT) and migration frequently occur during tumour progression. BML-111, an analogue of lipoxin A4, has been implicated in inflammation in cancer research. Methods: 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, western blot, Reverse Transcription Polymerase Chain Reaction (RT-PCR), transwell assay, immunofluorescence, and immunohistochemistry were conducted in this study. Results: In vitro experiments revealed that BML-111 inhibited EMT and migration in CoCl2-stimulated MCF-7 cells. These effects were achieved by inhibiting MMP-2 and MMP-9, which are downregulated by 5-lipoxygenase (5-LOX). Moreover, BML-111 inhibited EMT and migration of breast cancer cells in BALB/c nude mice inoculated with MCF-7 cells. Conclusion: Our results suggest that BML-111 may be a potential therapeutic drug for breast cancer and that blocking the 5-LOX pathway could be a possible approach for mining effective drug targets.
Collapse
Affiliation(s)
- Fen Xu
- Department of General Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaoyan Zhou
- Department of Pathophysiology, Medical College of Nanchang University, Nanchang, China
| | - Lan Lin
- Department of Pathology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jing Xu
- Department of Pathology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yu Feng
- Department of Pathology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yuanqiao He
- Department of Laboratory Animal Science, Medical College of Nanchang University, Nanchang, China
| | - Hua Hao
- Department of Pathology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
15
|
Mohamad NA, Rahman AA, Sheikh Abdul Kadir SH. Hydroxychavicol as a potential anticancer agent (Review). Oncol Lett 2022; 25:34. [PMID: 36589673 PMCID: PMC9773318 DOI: 10.3892/ol.2022.13620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
Piper betle leaves are widely cultivated in Malaysia, India, Indonesia and Thailand. They have been used as a traditional medicine for centuries due to their medicinal properties, including antioxidant, antiproliferative, antibacterial, antifungal and anti-inflammatory properties, which are attributable to their high phenolic contents. Hydroxychavicol (HC), a primary constituent of P. betle leaves, is known to possess antiproliferative activity at micromolar doses on various cancer cell lines of different origins while leaving normal cells unharmed. The present review summarises the mechanisms of action of HC reported in the literature, reviews the scope of work done thus far and outlines the direction of future research on the potential of HC as an anticancer agent. PubMed, Scopus and Web of Science were searched using the keywords (hydroxychavicol OR 4-allylpyrocatechol OR 4-allylcatechol) AND (cancer OR carcinogenesis OR tumour OR carcinoma) to acquire research articles. In vitro studies reported several possible mechanisms for the chemopreventive effects of HC against cancer cell lines, including chronic myelogenous leukaemia (CML), prostate, glioma, breast and colorectal cancers, while in vivo studies encompassed investigations on Ehrlich ascites carcinoma cells in Swiss albino mice and a CML mouse model. These studies suggest that HC exerts its anticancer effect via the modulation of mitochondrial membrane potential and the c-Jun N-terminal kinase, mitogen-activated protein kinase and endoplasmic reticulum-unfolded protein responses pathways and the generation of reactive oxygen species. In summary, future research should focus on combinations of HC with other anticancer drugs and testing in animal models to evaluate its bioavailability, potency and tissue and dose selectivity.
Collapse
Affiliation(s)
- Noor Azleen Mohamad
- Institute of Medical and Molecular Biotechnology, Faculty of Medicine, Universiti Teknologi MARA, Universiti Teknologi MARA, Cawangan Selangor, Kampus Sungai Buloh, Sungai Buloh, Selangor 47000, Malaysia
| | - Amirah Abdul Rahman
- Institute of Medical and Molecular Biotechnology, Faculty of Medicine, Universiti Teknologi MARA, Universiti Teknologi MARA, Cawangan Selangor, Kampus Sungai Buloh, Sungai Buloh, Selangor 47000, Malaysia,Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA, Universiti Teknologi MARA, Cawangan Selangor, Kampus Sungai Buloh, Sungai Buloh, Selangor 47000, Malaysia,Correspondence to: Dr Amirah Abdul Rahman, Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA, Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital, Sungai Buloh, Selangor 47000, Malaysia, E-mail:
| | - Siti Hamimah Sheikh Abdul Kadir
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA, Universiti Teknologi MARA, Cawangan Selangor, Kampus Sungai Buloh, Sungai Buloh, Selangor 47000, Malaysia,Institute of Pathology, Laboratory and Forensic Medicine, Faculty of Medicine, Universiti Teknologi MARA, Universiti Teknologi MARA, Cawangan Selangor, Kampus Sungai Buloh, Sungai Buloh, Selangor 47000, Malaysia
| |
Collapse
|
16
|
Kim HK, Kang EY, Go GW. Recent insights into dietary ω-6 fatty acid health implications using a systematic review. Food Sci Biotechnol 2022; 31:1365-1376. [PMID: 36060573 PMCID: PMC9433510 DOI: 10.1007/s10068-022-01152-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 04/17/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022] Open
Abstract
The American Heart Association suggests that consuming ω-6 fatty acids (5-10% of total energy) can prevent cardiovascular disease by improving lipoprotein profiles. However, some studies warn of deleterious effects of these due to eicosanoid biosynthesis. We explored the five years for clinical evidence of ω-6 fatty acids on several diseases including inflammation, cancer, cardiovascular disease, and metabolic syndrome. Predefined criteria identified a total of 21 articles in 5 databases. Some studies indicated that dietary arachidonic acid was not related to increase of pro-inflammatory cytokines. In cohort studies, ω-6 fatty acids prevented the onset of digestive and lung cancer. ω-6 Fatty acids improved blood lipoprotein profiles. Moreover, consuming ω-6 fatty acids delayed diabetes mellitus and chronic renal disease and had positive effects on muscle recovery and glaucoma. In conclusion, ω-6 fatty acids have beneficial effects on cancers, blood lipoprotein profiles, diabetes, renal disease, muscle function, and glaucoma without inflammation response.
Collapse
Affiliation(s)
- Hyun Kyung Kim
- Department of Food and Nutrition, Hanyang University, Seoul, 04763 Korea
| | - Eun Young Kang
- Department of Food and Nutrition, Hanyang University, Seoul, 04763 Korea
| | - Gwang-woong Go
- Department of Food and Nutrition, Hanyang University, Seoul, 04763 Korea
| |
Collapse
|
17
|
Sachi Das S, Singh SK, Verma PRP, Gahtori R, Sibuh BZ, Kesari KK, Jha NK, Dhanasekaran S, Thakur VK, Wong LS, Djearamane S, Gupta PK. Polyester nanomedicines targeting inflammatory signaling pathways for cancer therapy. Biomed Pharmacother 2022; 154:113654. [PMID: 36067568 DOI: 10.1016/j.biopha.2022.113654] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 12/09/2022] Open
Abstract
The growth of cancerous cells and their responses towards substantial therapeutics are primarily controlled by inflammations (acute and chronic) and inflammation-associated products, which either endorse or repress tumor progression. Additionally, major signaling pathways, including NF-κB, STAT3, inflammation-causing factors (cytokines, TNF-α, chemokines), and growth-regulating factors (VEGF, TGF-β), are vital regulators responsible for the instigation and resolution of inflammations. Moreover, the conventional chemotherapeutics have exhibited diverse limitations, including poor pharmacokinetics, unfavorable chemical properties, poor targetability to the disease-specific disease leading to toxicity; thus, their applications are restricted in inflammation-mediated cancer therapy. Furthermore, nanotechnology has demonstrated potential benefits over conventional chemotherapeutics, such as it protected the incorporated drug/bioactive moiety from enzymatic degradation within the systemic circulation, improving the physicochemical properties of poorly aqueous soluble chemotherapeutic agents, and enhancing their targetability in specified carcinogenic cells rather than accumulating in the healthy cells, leading reduced cytotoxicity. Among diverse nanomaterials, polyester-based nanoparticulate delivery systems have been extensively used to target various inflammation-mediated cancers. This review summarizes the therapeutic potentials of various polyester nanomaterials (PLGA, PCL, PLA, PHA, and others)-based delivery systems targeting multiple signaling pathways related to inflammation-mediated cancer.
Collapse
Affiliation(s)
- Sabya Sachi Das
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology - Mesra, Ranchi 835215, Jharkhand, India; School of Pharmaceutical and Population Health Informatics, DIT University, Dehradun 248009, Uttarakhand, India
| | - Sandeep Kumar Singh
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology - Mesra, Ranchi 835215, Jharkhand, India.
| | - P R P Verma
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology - Mesra, Ranchi 835215, Jharkhand, India
| | - Rekha Gahtori
- Department of Biotechnology, Sir J. C. Bose Technical Campus, Kumaun University, Bhimtal, Nainital 263136, Uttarakhand, India
| | - Belay Zeleke Sibuh
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida 201310, Uttar Pradesh, India
| | - Kavindra Kumar Kesari
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo 00076, Finland; Department of Applied Physics, Aalto University, Espoo, Finland
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida 201310, Uttar Pradesh, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, Uttarakhand, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali 140413, India
| | - Sugapriya Dhanasekaran
- Medical Laboratory Sciences Department, College of Applied Medical Sciences, University of Bisha, Bisha 67714, Saudi Arabia
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Centre, SRUC, Edinburgh EH9 3JG, United Kingdom; School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, Uttarakhand, India; Department of Biotechnology, Graphic Era Deemed to be University, Dehradun 248002, Uttarakhand, India
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Nilai 71800, Malaysia.
| | - Sinouvassane Djearamane
- Department of Biomedical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia.
| | - Piyush Kumar Gupta
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida 201310, Uttar Pradesh, India; Department of Biotechnology, Graphic Era Deemed to be University, Dehradun 248002, Uttarakhand, India.
| |
Collapse
|
18
|
Biswas P, Datta C, Rathi P, Bhattacharjee A. Fatty acids and their lipid mediators in the induction of cellular apoptosis in cancer cells. Prostaglandins Other Lipid Mediat 2022; 160:106637. [PMID: 35341977 DOI: 10.1016/j.prostaglandins.2022.106637] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 02/28/2022] [Accepted: 03/18/2022] [Indexed: 01/06/2023]
Abstract
The oxygenation of polyunsaturated fatty acids such as arachidonic and linoleic acid through enzymes like lipoxygenases (LOXs) are common and often leads to the production of various bioactive lipids that are important both in acute inflammation and its resolution and thus in disease progression. Amongst the several isoforms of LOX that are expressed in mammals, 15-lipoxygenase (15-LOX) has shown to be crucial in the context of inflammation. Moreover, being expressed in cells of the immune system, as well as in epithelial cells; the enzyme has been shown to crosstalk with a number of important signalling pathways. Mounting evidences from recent reports suggest that 15-LOX has anti-cancer activities which are dependent or independent of its metabolites, and is executed through several downstream pathways like cGMP, PPAR, p53, p21 and NAG-1. However, it is still unclear whether the up-regulation of 15-LOX is associated with cancer cell apoptosis. Monoamine oxidase A (MAO-A), on the other hand, is a mitochondrial flavoenzyme which is believed to be involved in the pathogenesis of atherosclerosis and inflammation and in many other neurological disorders. MAO-A has also been reported as a potential therapeutic target in different types of cancers like prostate cancer, lung cancer etc. In this review, we discussed about the role of fatty acids and their lipid mediators in cancer cell apoptosis. Here we particularly focused on the contribution of oxidative enzymes like 15-LOX and MAO-A in mediating apoptosis in lung cancer cell after fatty acid induction.
Collapse
Affiliation(s)
- Pritam Biswas
- Department of Biotechnology, National Institute of Technology, Durgapur 713209, West Bengal, India
| | - Chandreyee Datta
- Department of Biotechnology, National Institute of Technology, Durgapur 713209, West Bengal, India
| | - Parul Rathi
- Department of Biotechnology, National Institute of Technology, Durgapur 713209, West Bengal, India
| | - Ashish Bhattacharjee
- Department of Biotechnology, National Institute of Technology, Durgapur 713209, West Bengal, India.
| |
Collapse
|
19
|
Multi-Omics Approach Points to the Importance of Oxylipins Metabolism in Early-Stage Breast Cancer. Cancers (Basel) 2022; 14:cancers14082041. [PMID: 35454947 PMCID: PMC9032865 DOI: 10.3390/cancers14082041] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/10/2022] [Accepted: 04/14/2022] [Indexed: 02/05/2023] Open
Abstract
The involvement of oxylipins, metabolites of polyunsaturated fatty acids, in cancer pathogenesis was known long ago, but only the development of the high-throughput methods get the opportunity to study oxylipins on a system level. The study aimed to elucidate alterations in oxylipin metabolism as characteristics of breast cancer patients. We compared the ultra-high-performance liquid chromatography-mass spectrometry (UPLC-MS/MS) oxylipin profile signatures in the blood plasma of 152 healthy volunteers (HC) and 169 patients with different stages of breast cancer (BC). To integrate lipidomics, transcriptomics, and genomics data, we analyzed a transcriptome of 10 open database datasets obtained from tissues and blood cells of BC patients and SNP data for 33 genes related to oxylipin metabolism. We identified 18 oxylipins, metabolites of omega-3 or omega-6 polyunsaturated fatty acids, that were differentially expressed between BCvsHC patients, including anandamide, prostaglandins and hydroxydocosahexaenoic acids. DEGs analysis of tissue and blood samples from BC patients revealed that 19 genes for oxylipin biosynthesis change their expression level, with CYP2C19, PTGS2, HPGD, and FAAH included in the list of DEGs in the analysis of transcriptomes and the list of SNPs associated with BC. Results allow us to suppose that oxylipin signatures reflect the organism's level of response to the disease. Our data regarding changes in oxylipins at the system level show that oxylipin profiles can be used to evaluate the early stages of breast cancer.
Collapse
|
20
|
Liu H, Li X, Xie J, Lv C, Lian F, Zhang S, Duan Y, Zeng Y, Piao X. Gypenoside L and Gypenoside LI Inhibit Proliferation in Renal Cell Carcinoma via Regulation of the MAPK and Arachidonic Acid Metabolism Pathways. Front Pharmacol 2022; 13:820639. [PMID: 35370678 PMCID: PMC8964777 DOI: 10.3389/fphar.2022.820639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/03/2022] [Indexed: 11/18/2022] Open
Abstract
Renal cell carcinoma (RCC) has the highest mortality rate of all urological malignancies. Clear cell renal cell carcinoma (ccRCC) accounts for approximately 80% of all RCC cases and is often accompanied by the accumulation of lipid droplets. Growing evidence indicates that ccRCC is a metabolism-related disease. Gypenosides are commonly used for the clinical treatment of hyperlipidemia, and their antitumor activity has also been recognized. However, the potential inhibitory effects and mechanisms of action of gypenoside L (Gyp L) and gypenoside LI (Gyp LI) in ccRCC remain unclear. In this study, we confirmed that Gyp L and Gyp LI significantly inhibited proliferation and induced apoptosis in ccRCC cells in vitro. We performed network pharmacology and RNA-seq, and verified the results by Western blotting, RT-qPCR, and immunofluorescence experiments. Our results demonstrated that Gyp L and Gyp LI upregulate the expression of COX2 and downregulate the expression levels of cPLA2 and CYP1A1, resulting in reduced arachidonic acid and apoptosis. Gyp L and Gyp LI upregulated the protein levels of DUSP1, p-JUN, and p-JNK, and downregulated p-MEK1/2, p-ERK, and p-P38 levels. Moreover, gypenosides significantly inhibited tumor growth in vivo, and gypenosides significantly reduced cPLA2 and CYP1A1 expression. Furthermore, we performed absolute quantification of arachidonic acid (AA) content in ccRCC cells and tumor tissues by HPLC-MS, and found that the arachidonic acid content was significantly reduced after Gyp L, Gyp LI, and gypenoside intervention. In conclusion, our data suggest that Gyp L, Gyp LI, and gypenosides decrease the content of arachidonic acid in ccRCC cells and tumor tissues, but do not have cytotoxic effects on nude mice. Thus, Gyp L, Gyp LI, and total gypenosides extracted from Gynostemma pentaphyllum exhibited antitumor activities against ccRCC.
Collapse
Affiliation(s)
- Hui Liu
- Chengde Medical University, Chengde, China.,School of Pharmacy, Minzu University of China, Beijing, China
| | - Xiuming Li
- Department of Urology, Affiliated Hospital of Chengde Medical University, Hebei, China
| | - Jinbo Xie
- School of Pharmacy, Minzu University of China, Beijing, China
| | - Chengcheng Lv
- Department of Urology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Fangchao Lian
- Department of Urology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Shouyi Zhang
- Department of Urology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Yu Duan
- School of Pharmacy, Minzu University of China, Beijing, China
| | - Yu Zeng
- Department of Urology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Xianglan Piao
- School of Pharmacy, Minzu University of China, Beijing, China
| |
Collapse
|
21
|
Development, validation, and application of an HPLC-MS/MS method for quantification of oxidized fatty acids in plants. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1186:123006. [PMID: 34775259 DOI: 10.1016/j.jchromb.2021.123006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 10/05/2021] [Accepted: 10/17/2021] [Indexed: 12/12/2022]
Abstract
Oxylipins constitute a huge class of compounds produced by oxidation of long-chain unsaturated fatty acids either chemically (by radicals such as reactive oxygen species, ROS) or enzymatically (by lipoxygenases, LOX; cyclooxygenases, COX; or cytochrome P450 pathways). This process generates fatty acids peroxides, which can then be further modified in a broad range to epoxy, hydroxy, keto, ether fatty acids, and also hydrolyzed to generate small aldehydes and alcohols. In general, oxylipins are present in almost all living organisms and have a wide range of signaling, metabolic, physiological, and ecological roles depending on the particular organism and on their structure. In plants, oxylipins have been extensively studied over the past 35 years. However, these studies have focused mainly on the jasmonates and so-called green leaves volatiles. The function of early LOX products (like keto and hydroxy fatty acids) is yet not well understood in plants, where they are mainly analyzed by indirect methods or by GC-MS what requires a laborious sample preparation. Here, we developed and validated a straightforward, precise, accurate, and sensitive method for quantifying oxylipins in plant tissues using HPLC-MS/MS, with a one-step extraction procedure using low amount of plant tissues. We successfully applied this method to quantify the oxylipins in different plant species and Arabidopsis thaliana plants treated with various biotic and abiotic stress conditions.
Collapse
|
22
|
Zheng P, Bian X, Zhai Y, Li C, Li N, Hao C, Huang H, Luo W, Huang Z, Liao C, Xue M, Guo MQ, Sun B, Wu JL. Metabolomics reveals a correlation between hydroxyeicosatetraenoic acids and allergic asthma: Evidence from three years' immunotherapy. Pediatr Allergy Immunol 2021; 32:1654-1662. [PMID: 34087025 DOI: 10.1111/pai.13569] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 05/18/2021] [Accepted: 05/24/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Subcutaneous immunotherapy (SCIT) is an effective, safe, preventative treatment for allergic asthma; however, potential biomarkers for monitoring SCIT have rarely been reported. OBJECTIVE Metabolomics was utilized for the discovery of new biomarkers and analyzing disease pathophysiology of allergic asthma, and it was also applied to determine the metabolomic profiles of serum samples from children with asthma undergoing SCIT and identify potential biomarkers for allergic asthma and its therapeutic monitoring. METHODS Untargeted metabolomics using ultra-high-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry was performed on 15 asthmatic and 15 healthy pediatric sera to profile carboxylic acids. Statistical analysis combined with pathway enrichment analysis was applied to identify potential biomarkers. Then, targeted metabolomics was performed to study longitudinal changes of eicosanoid profiles on sera from 20 participants with asthma who received SCIT at baseline, 6 months, one, two, and three years (ChiCTR-DDT-13003728). RESULTS Metabolomic analysis revealed that levels of eicosanoids, particularly 12(S)-hydroxyeicosatetraenoic acid (HETE; AUC = 0.94, p < .0001) and 15(S)-HETE (AUC = 0.89, p = .0028), metabolized from arachidonic acid by lipoxygenase and glutathione peroxidase enzymes, were significantly higher in asthma group than in healthy individuals. Furthermore, levels of these important metabolites increased in the first year of SCIT treatment and then decreased from years one to three, being significantly lower after three years of treatment than baseline levels. CONCLUSION 12(S)- and 15(S)-HETEs are potential biomarkers to participate in the pathogenesis and treatment of allergic asthma. Moreover, these metabolites may be a new target for biological indicators to monitor the therapeutic effect of SCIT, particularly in the setting of allergic asthma.
Collapse
Affiliation(s)
- Peiyan Zheng
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiqing Bian
- State Key Laboratory for Quality Research in Chinese Medicines, Macau University of Science and Technology, Macao, China
| | - Yingying Zhai
- Pediatric Department, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Cheng Li
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Na Li
- State Key Laboratory for Quality Research in Chinese Medicines, Macau University of Science and Technology, Macao, China
| | - Chuangli Hao
- Department of Respiratory Diseases, Children's Hospital of Soochow University, Suzhou, China
| | - Huimin Huang
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenting Luo
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhifeng Huang
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chenxi Liao
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mingshan Xue
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ming-Quan Guo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - Baoqing Sun
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jian-Lin Wu
- State Key Laboratory for Quality Research in Chinese Medicines, Macau University of Science and Technology, Macao, China
| |
Collapse
|
23
|
Mohassab AM, Hassan HA, Abdelhamid D, Gouda AM, Gomaa HA, Youssif BG, Radwan MO, Fujita M, Otsuka M, Abdel-Aziz M. New quinoline/1,2,4-triazole hybrids as dual inhibitors of COX-2/5-LOX and inflammatory cytokines: Design, synthesis, and docking study. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
Metabolomics Reveals Process of Allergic Rhinitis Patients with Single- and Double-Species Mite Subcutaneous Immunotherapy. Metabolites 2021; 11:metabo11090613. [PMID: 34564431 PMCID: PMC8471092 DOI: 10.3390/metabo11090613] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 01/08/2023] Open
Abstract
Allergen immunotherapy (AIT) is the only treatment that can change the course of allergic diseases. However, there has not been any research on metabolic reactions in relation to AIT with single or mixed allergens. In this study, patients with allergic rhinitis caused by Dermatophagoides pteronyssinus (Der p) and Dermatophagoides farinae (Der f) were treated with single-mite (Der p) and double-mite (Der p:Der f = 1:1) subcutaneous immunotherapy (SCIT), respectively. To compare the efficacy and the dynamic changes of inflammation-related single- and double-species mite subcutaneous immunotherapy (SM-SCIT and DM-SCIT), we performed visual analogue scale (VAS) score, rhinoconjunctivitis quality of life questionnaire (RQLQ) score and serum metabolomics in allergic rhinitis patients during SCIT. VAS and RQLQ score showed no significant difference in efficacy between the two treatments. A total of 57 metabolites were identified, among which downstream metabolites (5(S)-HETE (Hydroxyeicosatetraenoic acid), 8(S)-HETE, 11(S)-HETE, 15(S)-HETE and 11-hydro TXB2) in the ω-6-related arachidonic acid and linoleic acid pathway showed significant differences after approximately one year of treatment in SM-SCIT or DM-SCIT, and the changes of the above serum metabolic components were correlated with the magnitude of RQLQ improvement, respectively. Notably, 11(S)-HETE decreased more with SM-SCIT, and thus it could be used as a potential biomarker to distinguish the two treatment schemes. Both SM-SCIT and DM-SCIT have therapeutic effects on patients with allergic rhinitis, but there is no significant difference in efficacy between them. The reduction of inflammation-related metabolites proved the therapeutic effect, and potential biomarkers (arachidonic acid and its downstream metabolites) may distinguish the options of SCIT.
Collapse
|
25
|
Adefisan AO, Owumi SE, Soetan KO, Adaramoye OA. Chloroform extract of Calliandra portoricensis inhibits tumourigenic effect of N-methyl- N-nitrosourea and benzo(a)pyrene in breast experimental cancer. Drug Chem Toxicol 2021; 45:2424-2438. [PMID: 34325589 DOI: 10.1080/01480545.2021.1957556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Calliandra portoricensis (C. portoricensis) is used in herbal homes in Nigeria to manage breast diseases. We investigated the anti-tumourigenic effects of chloroform extract of C. portoricensis (CP) in breast experimental cancer induced by N-methyl-N-nitrosourea (NMU) and benzo-(a)-pyrene (BaP). Fifty-six female rats were assigned into seven equal groups: Group 1 served as control, group 2 received NMU and BaP (50 mg/kg, each), groups 3 and 4 received [NMU + BaP] and treated with CP at 50 and 100 mg/kg, respectively. Group 5 received CP (100 mg/kg), group 6 received [NMU + BaP] and vincristine (0.5 mg/kg), while group 7 received vincristine (0.5 mg/kg). The NMU and BaP (i.p) were dissolved in normal saline and corn oil, respectively. The CP (oral) and vincristine (i.p) were given thrice and twice per week, respectively for 10 weeks. The [NMU + BaP] intoxication significantly decreased body weight gain by 32% while organo-somatic weight of mammary gland increased by 37%. Also, [NMU + BaP] decreased the activities of mammary catalase, glutathione-s-transferase, glutathione peroxidase, superoxide dismutase and total sulphurhydryl by 34%, 31%, 35%, 35% and 33%, respectively. The [NMU + BaP] increased inflammatory and oxidative stress markers; nitrite, lipid peroxidation and myeloperoxidase by 62%, 57% and 361%, respectively. Strong expression of BCL-2, IL-6, COX 2, β-catenin and iNOS in [NMU + BaP]-administered rats were observed. Histology revealed glands with malignant epithelial cells and high nucleocytoplasm in [NMU + BaP] rats. Treatment with CP attenuated inflammation, apoptosis and restored cyto-architecture of mammary gland. Overall, CP abates mammary tumourigenesis by targeting cellular pathways of inflammation and apoptosis.
Collapse
Affiliation(s)
- Adedoyin O Adefisan
- Molecular Drug Metabolism and Toxicology Laboratories, University of Ibadan, Ibadan, Nigeria
| | - Solomon E Owumi
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Kehinde O Soetan
- Department of Veterinary Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oluwatosin A Adaramoye
- Molecular Drug Metabolism and Toxicology Laboratories, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
26
|
Kulkarni A, Pineros AR, Walsh MA, Casimiro I, Ibrahim S, Hernandez-Perez M, Orr KS, Glenn L, Nadler JL, Morris MA, Tersey SA, Mirmira RG, Anderson RM. 12-Lipoxygenase governs the innate immune pathogenesis of islet inflammation and autoimmune diabetes. JCI Insight 2021; 6:e147812. [PMID: 34128835 PMCID: PMC8410073 DOI: 10.1172/jci.insight.147812] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022] Open
Abstract
Macrophages and related myeloid cells are innate immune cells that participate in the early islet inflammation of type 1 diabetes (T1D). The enzyme 12-lipoxygenase (12-LOX) catalyzes the formation of proinflammatory eicosanoids, but its role and mechanisms in myeloid cells in the pathogenesis of islet inflammation have not been elucidated. Leveraging a model of islet inflammation in zebrafish, we show here that macrophages contribute significantly to the loss of β cells and the subsequent development of hyperglycemia. The depletion or inhibition of 12-LOX in this model resulted in reduced macrophage infiltration into islets and the preservation of β cell mass. In NOD mice, the deletion of the gene encoding 12-LOX in the myeloid lineage resulted in reduced insulitis with reductions in proinflammatory macrophages, a suppressed T cell response, preserved β cell mass, and almost complete protection from the development of T1D. 12-LOX depletion caused a defect in myeloid cell migration, a function required for immune surveillance and tissue injury responses. This effect on migration resulted from the loss of the chemokine receptor CXCR3. Transgenic expression of the gene encoding CXCR3 rescued the migratory defect in zebrafish 12-LOX morphants. Taken together, our results reveal a formative role for innate immune cells in the early pathogenesis of T1D and identify 12-LOX as an enzyme required to promote their prodiabetogenic phenotype in the context of autoimmunity.
Collapse
Affiliation(s)
- Abhishek Kulkarni
- Center for Diabetes and Metabolic Diseases and Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Kolver Diabetes Center and Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| | - Annie R Pineros
- Center for Diabetes and Metabolic Diseases and Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Melissa A Walsh
- Kolver Diabetes Center and Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| | - Isabel Casimiro
- Kolver Diabetes Center and Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| | - Sara Ibrahim
- Center for Diabetes and Metabolic Diseases and Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Marimar Hernandez-Perez
- Center for Diabetes and Metabolic Diseases and Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Kara S Orr
- Center for Diabetes and Metabolic Diseases and Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Lindsey Glenn
- Department of Medicine, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - Jerry L Nadler
- Department of Medicine, New York Medical College, Valhalla, New York, USA
| | - Margaret A Morris
- Department of Medicine, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - Sarah A Tersey
- Kolver Diabetes Center and Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| | - Raghavendra G Mirmira
- Kolver Diabetes Center and Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| | - Ryan M Anderson
- Kolver Diabetes Center and Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
27
|
Inflammation and tumor progression: signaling pathways and targeted intervention. Signal Transduct Target Ther 2021; 6:263. [PMID: 34248142 PMCID: PMC8273155 DOI: 10.1038/s41392-021-00658-5] [Citation(s) in RCA: 868] [Impact Index Per Article: 289.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 05/11/2021] [Accepted: 05/23/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer development and its response to therapy are regulated by inflammation, which either promotes or suppresses tumor progression, potentially displaying opposing effects on therapeutic outcomes. Chronic inflammation facilitates tumor progression and treatment resistance, whereas induction of acute inflammatory reactions often stimulates the maturation of dendritic cells (DCs) and antigen presentation, leading to anti-tumor immune responses. In addition, multiple signaling pathways, such as nuclear factor kappa B (NF-kB), Janus kinase/signal transducers and activators of transcription (JAK-STAT), toll-like receptor (TLR) pathways, cGAS/STING, and mitogen-activated protein kinase (MAPK); inflammatory factors, including cytokines (e.g., interleukin (IL), interferon (IFN), and tumor necrosis factor (TNF)-α), chemokines (e.g., C-C motif chemokine ligands (CCLs) and C-X-C motif chemokine ligands (CXCLs)), growth factors (e.g., vascular endothelial growth factor (VEGF), transforming growth factor (TGF)-β), and inflammasome; as well as inflammatory metabolites including prostaglandins, leukotrienes, thromboxane, and specialized proresolving mediators (SPM), have been identified as pivotal regulators of the initiation and resolution of inflammation. Nowadays, local irradiation, recombinant cytokines, neutralizing antibodies, small-molecule inhibitors, DC vaccines, oncolytic viruses, TLR agonists, and SPM have been developed to specifically modulate inflammation in cancer therapy, with some of these factors already undergoing clinical trials. Herein, we discuss the initiation and resolution of inflammation, the crosstalk between tumor development and inflammatory processes. We also highlight potential targets for harnessing inflammation in the treatment of cancer.
Collapse
|
28
|
Feng Y, Tao L, Wang G, Li Z, Yang M, He W, Zhong X, Zhang Y, Yang J, Cheung S, McDonald F, Chen L. Aspirin inhibits prostaglandins to prevents colon tumor formation via down-regulating Wnt production. Eur J Pharmacol 2021; 906:174173. [PMID: 34033814 DOI: 10.1016/j.ejphar.2021.174173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/15/2021] [Accepted: 05/11/2021] [Indexed: 02/08/2023]
Abstract
According to numerous epidemiological studies, aspirin is a non-steroidal anti-inflammatory drug (NSAID) that reduces the occurrence and mortality of colorectal cancer (CRC). However, the underlying mechanisms are not well identified. In an effort to fill these gaps, we administered aspirin on mice one day before induction in an azoxymethane (AOM)/dextran sulfate sodium (DSS) induced CRC model. In this study, we assessed the effects of aspirin on tumorigenesis and tumor cell proliferation. Multi-layer analyses were carried out to identify changes in cytokines, metabolites, level of gene expressions, and proteins associated with tumorigenesis and aspirin treatment. The results showed that aspirin-treated mice developed fewer colon tumors in response to AOM/DSS, and aspirin can actively block cyclooxygenase (COX) metabolism and reduce levels of pro-inflammatory cytokines. In addition, the transcriptomic and proteomic analyses both indicated that aspirin has an inhibitory effect on the Wnt pathway. The in vitro results further indicated that aspirin inhibits WNT6 production, possibly by suppressing its transcription factor NR4A2, which in turn is regulated by prostaglandin E2, thereby ultimately inhibiting the Wnt pathway. These findings improve our understanding of the mechanisms behind aspirin's chemoprevention effect on CRC.
Collapse
Affiliation(s)
- Yaqian Feng
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China; Advanced Innovation Center for Human Brain Protection, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Lei Tao
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China; Collaborative Innovation Center for Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China; Advanced Innovation Center for Human Brain Protection, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Guoqiang Wang
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China; Advanced Innovation Center for Human Brain Protection, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Zhen Li
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Mingming Yang
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China; Advanced Innovation Center for Human Brain Protection, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Weishen He
- Boston College, 140 Commonwealth Ave, Chestnut Hill, MA 02467, USA
| | - Xincheng Zhong
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Yong Zhang
- Advanced Biotechnology and Application Research Center, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100024, China
| | - Jinliang Yang
- Collaborative Innovation Center for Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | | | - Fiona McDonald
- Bayer AG, Research & Development Pharmaceuticals, Berlin, 13342, Germany.
| | - Ligong Chen
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China; Collaborative Innovation Center for Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China; Advanced Innovation Center for Human Brain Protection, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
| |
Collapse
|
29
|
Alaaeddine RA, Elzahhar PA, AlZaim I, Abou-Kheir W, Belal ASF, El-Yazbi AF. The Emerging Role of COX-2, 15-LOX and PPARγ in Metabolic Diseases and Cancer: An Introduction to Novel Multi-target Directed Ligands (MTDLs). Curr Med Chem 2021; 28:2260-2300. [PMID: 32867639 DOI: 10.2174/0929867327999200820173853] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 11/22/2022]
Abstract
Emerging evidence supports an intertwining framework for the involvement of different inflammatory pathways in a common pathological background for a number of disorders. Of importance are pathways involving arachidonic acid metabolism by cyclooxygenase-2 (COX-2) and 15-lipoxygenase (15-LOX). Both enzyme activities and their products are implicated in a range of pathophysiological processes encompassing metabolic impairment leading to adipose inflammation and the subsequent vascular and neurological disorders, in addition to various pro- and antitumorigenic effects. A further layer of complexity is encountered by the disparate, and often reciprocal, modulatory effect COX-2 and 15-LOX activities and metabolites exert on each other or on other cellular targets, the most prominent of which is peroxisome proliferator-activated receptor gamma (PPARγ). Thus, effective therapeutic intervention with such multifaceted disorders requires the simultaneous modulation of more than one target. Here, we describe the role of COX-2, 15-LOX, and PPARγ in cancer and complications of metabolic disorders, highlight the value of designing multi-target directed ligands (MTDLs) modifying their activity, and summarizing the available literature regarding the rationale and feasibility of design and synthesis of these ligands together with their known biological effects. We speculate on the potential impact of MTDLs in these disorders as well as emphasize the need for structured future effort to translate these early results facilitating the adoption of these, and similar, molecules in clinical research.
Collapse
Affiliation(s)
- Rana A Alaaeddine
- Department of Pharmacology and Toxicology, Faculty of Medicine, The American University of Beirut, Beirut, Lebanon
| | - Perihan A Elzahhar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Ibrahim AlZaim
- Department of Pharmacology and Toxicology, Faculty of Medicine, The American University of Beirut, Beirut, Lebanon
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, The American University of Beirut, Beirut, Lebanon
| | - Ahmed S F Belal
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Ahmed F El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Medicine, The American University of Beirut, Beirut, Lebanon
| |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW Surgery remains integral to treating solid cancers. However, the surgical stress response, characterized by physiologic perturbation of the adrenergic, inflammatory, and immune systems, may promote procancerous pathways. Anesthetic technique per se may attenuate/enhance these pathways and thereby could be implicated in long-term cancer outcomes. RECENT FINDINGS To date, clinical studies have predominantly been retrospective and underpowered and, thus limit meaningful conclusions. More recently, prospective studies of regional anesthesia for breast and colorectal cancer surgery have failed to demonstrate long-term cancer outcome benefit. However, based on the consistent observation of protumorigenic effects of surgical stress and that of volatile anesthesia in preclinical studies, supported by in vivo models of tumor progression and metastasis, we await robust prospective clinical studies exploring the role of propofol-based total intravenous anesthesia (cf. inhalational volatiles). Additionally, anti-adrenergic/anti-inflammatory adjuncts, such as lidocaine, nonsteroidal anti-inflammatory drugs and the anti-adrenergic propranolol warrant ongoing research. SUMMARY The biologic perturbation of the perioperative period, compounded by the effects of anesthetic agents, renders patients with cancer particularly vulnerable to enhanced viability of minimal residual disease, with long-term outcome consequences. However, low level and often conflicting clinical evidence equipoise currently exists with regards to optimal oncoanesthesia techniques. Large, prospective, randomized control trials are urgently needed to inform evidence-based clinical practice guidelines.
Collapse
|
31
|
Jalali S, Shi J, Ahsan N, Wellik L, Serres M, Buko A, Paludo J, Kim H, Tang X, Yang ZZ, Novak A, Kyle R, Ansell S. Progression from Monoclonal gammopathy of undetermined significance of the immunoglobulin M class (IgM-MGUS) to Waldenstrom Macroglobulinemia is associated with an alteration in lipid metabolism. Redox Biol 2021; 41:101927. [PMID: 33690107 PMCID: PMC7941163 DOI: 10.1016/j.redox.2021.101927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/26/2021] [Accepted: 02/28/2021] [Indexed: 01/18/2023] Open
Abstract
The molecular events that modulate the progression of monoclonal gammopathy of undetermined significance of the immunoglobulin M class (IgM-MGUS) to Waldenstrom Macroglobulinemia (WM) are mostly unknown. We implemented comparative proteomics and metabolomics analyses on patient serum samples to identify differentially expressed molecules crucial to the progression from IgM-MGUS to WM. Our data identified altered lipid metabolism as a discriminating factor between MGUS, WM, and matched normal controls. Levels of many fatty acids, including polyunsaturated fatty acids and dicarboxylic acids, were significantly downregulated in WM sera when compared to MGUS. These reductions were associated with diminished 15-LOX and PPAR protein expression and increased 5-LOX and GPX4 expression in WM versus MGUS patients’ samples. Furthermore, WM serum samples showed increased lipid peroxidation compared to MGUS. Treatment with IL-6 or TNFα, upstream regulators of differentially expressed proteins between MGUS and WM, increased lipid absorption and lipid peroxidation in WM cell lines. Knock-down of 15-LOX expression increased WM cell survival, an effect accompanied by increased 5-LOX and GPX4 expression. In summary, our data show that reduced fatty acid and lipid metabolite levels in the serum of the WM patients are associated with increased lipid peroxidation and that downregulation of 15-LOX increases the survival of WM cells. These data are highly significant in identifying the biomarkers of disease progression and designing targeted therapeutic intervention.
Collapse
Affiliation(s)
- Shahrzad Jalali
- Division of Hematology and Internal Medicine, Mayo Clinic, Rochester, MN, USA.
| | - Jie Shi
- Division of Hematology and Internal Medicine, Mayo Clinic, Rochester, MN, USA; Department of Hematology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Nagib Ahsan
- COBRE Center for Cancer Research Development, Proteomics Core Facility, Rhode Island Hospital, Providence, RI, USA; Division of Biology and Medicine, Brown University, Providence, RI, USA
| | - LindaE Wellik
- Division of Hematology and Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - MaKayla Serres
- Division of Hematology and Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Alex Buko
- Human Metabolome Technologies (HMT) America, Boston, MA, USA
| | - Jonas Paludo
- Division of Hematology and Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - HyoJin Kim
- Division of Hematology and Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - XinYi Tang
- Division of Hematology and Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Zhi-Zhang Yang
- Division of Hematology and Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - AnneJ Novak
- Division of Hematology and Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - RobertA Kyle
- Division of Hematology and Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - StephenM Ansell
- Division of Hematology and Internal Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
32
|
Schultz F, Osuji OF, Wack B, Anywar G, Garbe LA. Antiinflammatory Medicinal Plants from the Ugandan Greater Mpigi Region Act as Potent Inhibitors in the COX-2/PGH 2 Pathway. PLANTS 2021; 10:plants10020351. [PMID: 33673238 PMCID: PMC7918315 DOI: 10.3390/plants10020351] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/28/2021] [Accepted: 02/09/2021] [Indexed: 12/11/2022]
Abstract
Our study investigates 16 medicinal plants via assessment of inhibition of proinflammatory enzymes such as cyclooxygenases (COX). The plants are used by traditional healers in the Greater Mpigi region in Uganda to treat inflammation and related disorders. We present results of diverse in vitro experiments performed with 76 different plant extracts, namely, (1) selective COX-2 and COX-1 inhibitor screening; (2) 15-LOX inhibition screening; (3) antibacterial resazurin assay against multidrug-resistant Staphylococcus aureus, Listeria innocua, Listeria monocytogenes, and Escherichia coli K12; (4) DPPH assay for antioxidant activity; and (5) determination of the total phenolic content (TPC). Results showed a high correlation between traditional use and pharmacological activity, e.g., extracts of 15 out of the 16 plant species displayed significant selective COX-2 inhibition activity in the PGH2 pathway. The most active COX-2 inhibitors (IC50 < 20 µg/mL) were nine extracts from Leucas calostachys, Solanum aculeastrum, Sesamum calycinum subsp. angustifolium, Plectranthus hadiensis, Morella kandtiana, Zanthoxylum chalybeum, and Warburgia ugandensis. There was no counteractivity between COX-2 and 15-LOX inhibition in these nine extracts. The ethyl acetate extract of Leucas calostachys showed the lowest IC50 value with 0.66 µg/mL (COX-2), as well as the most promising selectivity ratio with 0.1 (COX-2/COX-1). The TPCs and the EC50 values for DPPH radical scavenging activity showed no correlation with COX-2 inhibitory activity. This led to the assumption that the mechanisms of action are most likely not based on scavenging of reactive oxygen species and antioxidant activities. The diethyl ether extract of Harungana madagascariensis stem bark displayed the highest growth inhibition activity against S. aureus (MIC value: 13 µg/mL), L. innocua (MIC value: 40 µg/mL), and L. monocytogenes (MIC value: 150 µg/mL). This study provides further evidence for the therapeutic use of the previously identified plants used medicinally in the Greater Mpigi region.
Collapse
Affiliation(s)
- Fabien Schultz
- Institute of Biotechnology, Faculty III—Process Sciences, Technical University of Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
- Department of Agriculture and Food Sciences, Neubrandenburg University of Applied Sciences, Brodaer Str. 2, 17033 Neubrandenburg, Germany; (O.F.O.); (B.W.); (L.-A.G.)
- Correspondence: ; Tel.: +49-395-5693-2704
| | - Ogechi Favour Osuji
- Department of Agriculture and Food Sciences, Neubrandenburg University of Applied Sciences, Brodaer Str. 2, 17033 Neubrandenburg, Germany; (O.F.O.); (B.W.); (L.-A.G.)
| | - Barbara Wack
- Department of Agriculture and Food Sciences, Neubrandenburg University of Applied Sciences, Brodaer Str. 2, 17033 Neubrandenburg, Germany; (O.F.O.); (B.W.); (L.-A.G.)
| | - Godwin Anywar
- Department of Plant Sciences, Microbiology and Biotechnology, Makerere University, P.O. Box 7062 Kampala, Uganda;
| | - Leif-Alexander Garbe
- Department of Agriculture and Food Sciences, Neubrandenburg University of Applied Sciences, Brodaer Str. 2, 17033 Neubrandenburg, Germany; (O.F.O.); (B.W.); (L.-A.G.)
- ZELT—Neubrandenburg Center for Nutrition and Food Technology gGmbH, Seestraße 7A, 17033 Neubrandenburg, Germany
| |
Collapse
|
33
|
Bhat AA, Nisar S, Maacha S, Carneiro-Lobo TC, Akhtar S, Siveen KS, Wani NA, Rizwan A, Bagga P, Singh M, Reddy R, Uddin S, Grivel JC, Chand G, Frenneaux MP, Siddiqi MA, Bedognetti D, El-Rifai W, Macha MA, Haris M. Cytokine-chemokine network driven metastasis in esophageal cancer; promising avenue for targeted therapy. Mol Cancer 2021; 20:2. [PMID: 33390169 PMCID: PMC7780621 DOI: 10.1186/s12943-020-01294-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 12/06/2020] [Indexed: 02/08/2023] Open
Abstract
Esophageal cancer (EC) is a disease often marked by aggressive growth and poor prognosis. Lack of targeted therapies, resistance to chemoradiation therapy, and distant metastases among patients with advanced disease account for the high mortality rate. The tumor microenvironment (TME) contains several cell types, including fibroblasts, immune cells, adipocytes, stromal proteins, and growth factors, which play a significant role in supporting the growth and aggressive behavior of cancer cells. The complex and dynamic interactions of the secreted cytokines, chemokines, growth factors, and their receptors mediate chronic inflammation and immunosuppressive TME favoring tumor progression, metastasis, and decreased response to therapy. The molecular changes in the TME are used as biological markers for diagnosis, prognosis, and response to treatment in patients. This review highlighted the novel insights into the understanding and functional impact of deregulated cytokines and chemokines in imparting aggressive EC, stressing the nature and therapeutic consequences of the cytokine-chemokine network. We also discuss cytokine-chemokine oncogenic potential by contributing to the Epithelial-Mesenchymal Transition (EMT), angiogenesis, immunosuppression, metastatic niche, and therapeutic resistance development. In addition, it discusses the wide range of changes and intracellular signaling pathways that occur in the TME. Overall, this is a relatively unexplored field that could provide crucial insights into tumor immunology and encourage the effective application of modulatory cytokine-chemokine therapy to EC.
Collapse
Affiliation(s)
- Ajaz A Bhat
- Functional and Molecular Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha, Qatar
| | - Sabah Nisar
- Functional and Molecular Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha, Qatar
| | - Selma Maacha
- Research Department, Sidra Medicine, Doha, Qatar
| | | | - Sabah Akhtar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | | | - Nissar A Wani
- Department of Biotechnology, Central University of Kashmir, Ganderbal, Jammu and Kashmir, India
| | - Arshi Rizwan
- Department of Nephrology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Puneet Bagga
- Diagnostic Imaging, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Mayank Singh
- Dr. B. R. Ambedkar Institute Rotary Cancer Hospital (BRAIRCH), AIIMS, New Delhi, India
| | - Ravinder Reddy
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | | | - Gyan Chand
- Department of Endocrine Surgery, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | | | - Mushtaq A Siddiqi
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Jammu & Kashmir, India
| | - Davide Bedognetti
- Laboratory of Cancer Immunogenomics, Cancer Research Department, Sidra Medicine, Doha, Qatar
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Wael El-Rifai
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Jammu & Kashmir, India.
| | - Mohammad Haris
- Functional and Molecular Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha, Qatar.
- Laboratory Animal Research Center, Qatar University, Doha, Qatar.
| |
Collapse
|
34
|
Issa NT, Stathias V, Schürer S, Dakshanamurthy S. Machine and deep learning approaches for cancer drug repurposing. Semin Cancer Biol 2021; 68:132-142. [PMID: 31904426 PMCID: PMC7723306 DOI: 10.1016/j.semcancer.2019.12.011] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/31/2019] [Accepted: 12/15/2019] [Indexed: 02/07/2023]
Abstract
Knowledge of the underpinnings of cancer initiation, progression and metastasis has increased exponentially in recent years. Advanced "omics" coupled with machine learning and artificial intelligence (deep learning) methods have helped elucidate targets and pathways critical to those processes that may be amenable to pharmacologic modulation. However, the current anti-cancer therapeutic armamentarium continues to lag behind. As the cost of developing a new drug remains prohibitively expensive, repurposing of existing approved and investigational drugs is sought after given known safety profiles and reduction in the cost barrier. Notably, successes in oncologic drug repurposing have been infrequent. Computational in-silico strategies have been developed to aid in modeling biological processes to find new disease-relevant targets and discovering novel drug-target and drug-phenotype associations. Machine and deep learning methods have especially enabled leaps in those successes. This review will discuss these methods as they pertain to cancer biology as well as immunomodulation for drug repurposing opportunities in oncologic diseases.
Collapse
Affiliation(s)
- Naiem T Issa
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami School of Medicine, Miami, FL, USA
| | - Vasileios Stathias
- Department of Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, FL, USA
| | - Stephan Schürer
- Department of Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, FL, USA
| | - Sivanesan Dakshanamurthy
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
35
|
Johnson AM, Kleczko EK, Nemenoff RA. Eicosanoids in Cancer: New Roles in Immunoregulation. Front Pharmacol 2020; 11:595498. [PMID: 33364964 PMCID: PMC7751756 DOI: 10.3389/fphar.2020.595498] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 10/07/2020] [Indexed: 12/16/2022] Open
Abstract
Eicosanoids represent a family of active biolipids derived from arachidonic acid primarily through the action of cytosolic phospholipase A2-α. Three major downstream pathways have been defined: the cyclooxygenase (COX) pathway which produces prostaglandins and thromboxanes; the 5-lipoxygenase pathway (5-LO), which produces leukotrienes, lipoxins and hydroxyeicosatetraenoic acids, and the cytochrome P450 pathway which produces epoxygenated fatty acids. In general, these lipid mediators are released and act in an autocrine or paracrine fashion through binding to cell surface receptors. The pattern of eicosanoid production is cell specific, and is determined by cell-specific expression of downstream synthases. Increased eicosanoid production is associated with inflammation and a panel of specific inhibitors have been developed designated non-steroidal anti-inflammatory drugs. In cancer, eicosanoids are produced both by tumor cells as well as cells of the tumor microenvironment. Earlier studies demonstrated that prostaglandin E2, produced through the action of COX-2, promoted cancer cell proliferation and metastasis in multiple cancers. This resulted in the development of COX-2 inhibitors as potential therapeutic agents. However, cardiac toxicities associated with these agents limited their use as therapeutic agents. The advent of immunotherapy, especially the use of immune checkpoint inhibitors has revolutionized cancer treatment in multiple malignancies. However, the majority of patients do not respond to these agents as monotherapy, leading to intense investigation of other pathways mediating immunosuppression in order to develop rational combination therapies. Recent data have indicated that PGE2 has immunosuppressive activity, leading to renewed interest in targeting this pathway. However, little is known regarding the role of other eicosanoids in modulating the tumor microenvironment, and regulating anti-tumor immunity. This article reviews the role of eicosanoids in cancer, with a focus on their role in modulating the tumor microenvironment. While the role of PGE2 will be discussed, data implicating other eicosanoids, especially products produced through the lipoxygenase and cytochrome P450 pathway will be examined. The existence of small molecular inhibitors and activators of eicosanoid pathways such as specific receptor blockers make them attractive candidates for therapeutic trials, especially in combination with novel immunotherapies such as immune checkpoint inhibitors.
Collapse
Affiliation(s)
| | | | - Raphael A. Nemenoff
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
36
|
Li Y, Su X, Feng C, Liu S, Guan H, Sun Y, He N, Ji M, Hou P. CYP2S1 is a synthetic lethal target in BRAF V600E-driven thyroid cancers. Signal Transduct Target Ther 2020; 5:191. [PMID: 32913191 PMCID: PMC7483764 DOI: 10.1038/s41392-020-00231-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 06/11/2020] [Accepted: 06/19/2020] [Indexed: 12/19/2022] Open
Abstract
BRAFV600E is the most common genetic alteration and has become a major therapeutic target in thyroid cancers; however, intrinsic feedback mechanism limited clinical use of BRAFV600E specific inhibitors. Synthetic lethal is a kind of interaction between two genes, where only simultaneously perturbing both of the genes can lead to lethality. Here, we identified CYP2S1 as a synthetic lethal partner of BRAFV600E in thyroid cancers. First, we found that CYP2S1 was highly expressed in papillary thyroid cancers (PTCs) compared to normal thyroid tissues, particularly in conventional PTCs (CPTCs) and tall-cell PTCs (TCPTCs), and its expression was positively associated with BRAFV600E mutation. CYP2S1 knockdown selectively inhibited cell proliferation, migration, invasion and tumorigenic potential in nude mice, and promoted cell apoptosis in BRAFV600E mutated thyroid cancer cells, but not in BRAF wild-type ones. Mechanistically, BRAFV600E-mediated MAPK/ERK cascade upregulated CYP2S1 expression by an AHR-dependent pathway, while CYP2S1 in turn enhanced transcriptional activity of AHR through its metabolites. This AHR/CYP2S1 feedback loop strongly amplified oncogenic role of BRAFV600E in thyroid cancer cells, thereby causing synthetic lethal interaction between CYP2S1 and BRAFV600E. Finally, we demonstrated CYP2S1 as a potential therapeutic target in both BRAFV600E-drived xenograft and transgenic mouse models by targetedly delivering CYP2S1-specific siRNA. Altogether, our data demonstrate CYP2S1 as a synthetic lethal partner of BRAFV600E in thyroid cancers, and indicate that targeting CYP2S1 will provide a new therapeutic strategy for BRAFV600E mutated thyroid cancers.
Collapse
Affiliation(s)
- Yiqi Li
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Xi Su
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Chao Feng
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Siyu Liu
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Haixia Guan
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of China Medical University, Shenyang, 110001, P.R. China
| | - Yue Sun
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Nongyue He
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, P.R. China.
| | - Meiju Ji
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China.
| | - Peng Hou
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China. .,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China.
| |
Collapse
|
37
|
Elzahhar PA, Abd El Wahab SM, Elagawany M, Daabees H, Belal AS, EL-Yazbi AF, Eid AH, Alaaeddine R, Hegazy RR, Allam RM, Helmy MW, Bahaa Elgendy, Angeli A, El-Hawash SA, Supuran CT. Expanding the anticancer potential of 1,2,3-triazoles via simultaneously targeting Cyclooxygenase-2, 15-lipoxygenase and tumor-associated carbonic anhydrases. Eur J Med Chem 2020; 200:112439. [DOI: 10.1016/j.ejmech.2020.112439] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 12/21/2022]
|
38
|
Gawlik-Dziki U, Dziki L, Anisiewicz J, Habza-Kowalska E, Sikora M, Dziki D. Leaves of White Beetroot As a New Source of Antioxidant and Anti-Inflammatory Compounds. PLANTS (BASEL, SWITZERLAND) 2020; 9:E944. [PMID: 32722637 PMCID: PMC7464984 DOI: 10.3390/plants9080944] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 11/17/2022]
Abstract
The white beetroot cv. Śnieżna Kula is the first betanin-free beetroot registered in the European Union. The aim of this study was to compare the phenolic acids profile and antioxidant capacity of leaves of white (SK) and red (CC) beetroots and red (LC) and white (BL) Swiss chard growing in Poland. LC leaves were the richest source of total phenolics (16.55 mg GAE/g FW) and phenolic acids (1.81 mg/g FW), while the highest content of flavonoids was determined in CC leaves (1.6 mg QE/g FW). The highest antiradical activity was observed for LC, whereas CC extract exhibited the highest chelating power. BL and CC leaf extracts demonstrated high LOX inhibitory potential (EC50 = 53.23 and 56.97 mg FW/mL, respectively). An uncompetitive type of LOX inhibition was obtained for all extracts. SK extracts demonstrated the highest XO inhibitory activity (EC50 = 81.04 mg FW/mL). A noncompetitive type of XO inhibition was obtained in both extracts from red leaves (CC and LC), whereas an uncompetitive mode of inhibition was observed in the case of white leaf (SK and LC) extracts. Thus, it can be assumed that the presence of betanin influences the XO inhibition mechanism.
Collapse
Affiliation(s)
- Urszula Gawlik-Dziki
- Department of Biochemistry and Food Chemistry, University of Life Sciences, 8 Skromna Str., 20-704 Lublin, Poland; (L.D.); (J.A.); (E.H.-K.); (M.S.)
| | - Laura Dziki
- Department of Biochemistry and Food Chemistry, University of Life Sciences, 8 Skromna Str., 20-704 Lublin, Poland; (L.D.); (J.A.); (E.H.-K.); (M.S.)
| | - Jakub Anisiewicz
- Department of Biochemistry and Food Chemistry, University of Life Sciences, 8 Skromna Str., 20-704 Lublin, Poland; (L.D.); (J.A.); (E.H.-K.); (M.S.)
| | - Ewa Habza-Kowalska
- Department of Biochemistry and Food Chemistry, University of Life Sciences, 8 Skromna Str., 20-704 Lublin, Poland; (L.D.); (J.A.); (E.H.-K.); (M.S.)
| | - Małgorzata Sikora
- Department of Biochemistry and Food Chemistry, University of Life Sciences, 8 Skromna Str., 20-704 Lublin, Poland; (L.D.); (J.A.); (E.H.-K.); (M.S.)
| | - Dariusz Dziki
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, 31 Głęboka St., 20-612 Lublin, Poland;
| |
Collapse
|
39
|
Fernández-López JA, Fernández-Lledó V, Angosto JM. New insights into red plant pigments: more than just natural colorants. RSC Adv 2020; 10:24669-24682. [PMID: 35516216 PMCID: PMC9055186 DOI: 10.1039/d0ra03514a] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 06/16/2020] [Indexed: 12/02/2022] Open
Abstract
Pigments make nature both colorful and attractive. Humans have always incorporated the natural pigments of fruits, vegetables and spices into their dietary requirements. Naturally occurring red pigments in plants are carotenoids, anthocyanins and betacyanins. Natural pigments, apart from colour, provide added properties and are therefore considered to be bioactive constituents. Red natural colorants are one of the most widely used in the food industry. The interest in these pigments lies in the enhancement of the healthy effects of the diet. In this context, attention is given to carotenoids, anthocyanins and betacyanins, with emphasis on the basic chemical and biochemical attributes and wide-ranging health-promoting benefits of these pigments. Thus, in this review, we systematically present the advantages and limitations of these natural pigments as food colorants in relation to their physico-chemical properties, reactivity and bioactivity.
Collapse
Affiliation(s)
- José A Fernández-López
- Department of Chemical and Environmental Engineering, Technical University of Cartagena (UPCT) Paseo Alfonso XIII 52 E-30203 Cartagena Murcia Spain
| | - Vicente Fernández-Lledó
- Higher Technical School of Telecommunications, Technical University of Madrid (UPM) Madrid Spain
| | - José M Angosto
- Department of Chemical and Environmental Engineering, Technical University of Cartagena (UPCT) Paseo Alfonso XIII 52 E-30203 Cartagena Murcia Spain
| |
Collapse
|
40
|
Kavetsou E, Katopodi A, Argyri L, Chainoglou E, Pontiki E, Hadjipavlou-Litina D, Chroni A, Detsi A. Novel 3-aryl-5-substituted-coumarin analogues: Synthesis and bioactivity profile. Drug Dev Res 2020; 81:456-469. [PMID: 31943295 DOI: 10.1002/ddr.21639] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/02/2019] [Accepted: 12/28/2019] [Indexed: 12/19/2022]
Abstract
Eighteen 3-aryl-5-substituted-coumarins-six 5-acetyloxy-derivatives, six 5-hydroxy-derivatives, and six 5-geranyloxy-derivatives-were synthesized, structurally characterized and their antioxidant activity, lipoxygenase inhibitory ability, as well as their cytotoxic activity against human neuroblastoma SK-N-SH and HeLa adenocarcinoma cell lines were evaluated. The 5-acetyloxy-compounds 3a-3f were found to be the best cytotoxic agents among all the compounds studied. The bromo-substituted coumarins 3a and 3b were remarkably active against HeLa cell line showing IC50 1.8 and 6.1 μM, respectively. Coumarin 5e possessing a geranyloxy-chain on position 5 of the coumarin scaffold presented dual bioactivity, while 5-geranyloxy-coumarin 5f was the most competent soybean lipoxygenase inhibitor of this series (IC50 10 μM). As shown by in silico docking studies, the studied molecules present allosteric interactions with soybean lipoxygenases.
Collapse
Affiliation(s)
- Eleni Kavetsou
- Laboratory of Organic Chemistry, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Annita Katopodi
- Laboratory of Organic Chemistry, School of Chemical Engineering, National Technical University of Athens, Athens, Greece.,Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Letta Argyri
- Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Eirini Chainoglou
- Laboratory of Pharmaceutical Chemistry, Faculty of Health Sciences, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eleni Pontiki
- Laboratory of Pharmaceutical Chemistry, Faculty of Health Sciences, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitra Hadjipavlou-Litina
- Laboratory of Pharmaceutical Chemistry, Faculty of Health Sciences, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Angeliki Chroni
- Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Anastasia Detsi
- Laboratory of Organic Chemistry, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| |
Collapse
|
41
|
Beavers WN, Monteith AJ, Amarnath V, Mernaugh RL, Roberts LJ, Chazin WJ, Davies SS, Skaar EP. Arachidonic Acid Kills Staphylococcus aureus through a Lipid Peroxidation Mechanism. mBio 2019; 10:e01333-19. [PMID: 31575763 PMCID: PMC6775451 DOI: 10.1128/mbio.01333-19] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/21/2019] [Indexed: 01/14/2023] Open
Abstract
Staphylococcus aureus infects every niche of the human host. In response to microbial infection, vertebrates have an arsenal of antimicrobial compounds that inhibit bacterial growth or kill bacterial cells. One class of antimicrobial compounds consists of polyunsaturated fatty acids, which are highly abundant in eukaryotes and encountered by S. aureus at the host-pathogen interface. Arachidonic acid (AA) is one of the most abundant polyunsaturated fatty acids in vertebrates and is released in large amounts during the oxidative burst. Most of the released AA is converted to bioactive signaling molecules, but, independently of its role in inflammatory signaling, AA is toxic to S. aureus Here, we report that AA kills S. aureus through a lipid peroxidation mechanism whereby AA is oxidized to reactive electrophiles that modify S. aureus macromolecules, eliciting toxicity. This process is rescued by cotreatment with antioxidants as well as in a S. aureus strain genetically inactivated for lcpA (USA300 ΔlcpA mutant) that produces lower levels of reactive oxygen species. However, resistance to AA stress in the USA300 ΔlcpA mutant comes at a cost, making the mutant more susceptible to β-lactam antibiotics and attenuated for pathogenesis in a murine infection model compared to the parental methicillin-resistant S. aureus (MRSA) strain, indicating that resistance to AA toxicity increases susceptibility to other stressors encountered during infection. This report defines the mechanism by which AA is toxic to S. aureus and identifies lipid peroxidation as a pathway that can be modulated for the development of future therapeutics to treat S. aureus infections.IMPORTANCE Despite the ability of the human immune system to generate a plethora of molecules to control Staphylococcus aureus infections, S. aureus is among the pathogens with the greatest impact on human health. One class of host molecules toxic to S. aureus consists of polyunsaturated fatty acids. Here, we investigated the antibacterial properties of arachidonic acid, one of the most abundant polyunsaturated fatty acids in humans, and discovered that the mechanism of toxicity against S. aureus proceeds through lipid peroxidation. A better understanding of the molecular mechanisms by which the immune system kills S. aureus, and by which S. aureus avoids host killing, will enable the optimal design of therapeutics that complement the ability of the vertebrate immune response to eliminate S. aureus infections.
Collapse
Affiliation(s)
- William N Beavers
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Andrew J Monteith
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Venkataraman Amarnath
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Raymond L Mernaugh
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - L Jackson Roberts
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Walter J Chazin
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Sean S Davies
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
42
|
Resveratrol Action on Lipid Metabolism in Cancer. Int J Mol Sci 2019; 20:ijms20112704. [PMID: 31159437 PMCID: PMC6601040 DOI: 10.3390/ijms20112704] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 12/12/2022] Open
Abstract
Cancer diseases have the leading position in human mortality nowadays. The age of oncologic patients is still decreasing, and the entire scientific society is eager for new ways to fight against cancer. One of the most discussed issues is prevention by means of natural substances. Resveratrol is a naturally occurring plant polyphenol with proven antioxidant, anti-inflammatory, and anticancer effects. Tumor cells display specific changes in the metabolism of various lipids. Resveratrol alters lipid metabolism in cancer, thereby affecting storage of energy, cell signaling, proliferation, progression, and invasiveness of cancer cells. At the whole organism level, it contributes to the optimal metabolism extent with respect to the demands of the organism. Thus, resveratrol could be used as a preventive and anticancer agent. In this review, we focus on some of the plethora of lipid pathways and signal molecules which are affected by resveratrol during carcinogenesis.
Collapse
|
43
|
Uddin MJ, Wilson AJ, Crews BC, Malerba P, Uddin MI, Kingsley PJ, Ghebreselasie K, Daniel CK, Nickels ML, Tantawy MN, Jashim E, Manning HC, Khabele D, Marnett LJ. Discovery of Furanone-Based Radiopharmaceuticals for Diagnostic Targeting of COX-1 in Ovarian Cancer. ACS OMEGA 2019; 4:9251-9261. [PMID: 31172046 PMCID: PMC6545551 DOI: 10.1021/acsomega.9b01093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 05/09/2019] [Indexed: 05/03/2023]
Abstract
In vivo targeting and visualization of cyclooxygenase-1 (COX-1) using multimodal positron emission tomography/computed tomography imaging represents a unique opportunity for early detection and/or therapeutic evaluation of ovarian cancer because overexpression of COX-1 has been characterized as a pathologic hallmark of the initiation and progression of this disease. The furanone core is a common building block of many synthetic and natural products that exhibit a wide range of biological activities. We hypothesize that furanone-based COX-1 inhibitors can be designed as imaging agents for the early detection, delineation of tumor margin, and evaluation of treatment response of ovarian cancer. We report the discovery of 3-(4-fluorophenyl)-5,5-dimethyl-4-(p-tolyl)furan-2(5H)-one (FDF), a furanone-based novel COX-1-selective inhibitor that exhibits adequate in vivo stability, plasma half-life, and pharmacokinetic properties for use as an imaging agent. We describe a novel synthetic scheme in which a Lewis acid-catalyzed nucleophilic aromatic deiodo[18F]fluorination reaction is utilized for the radiosynthesis of [18F]FDF. [18F]FDF binds efficiently to COX-1 in vivo and enables sensitive detection of ovarian cancer in subcutaneous and peritoneal xenograft models in mice. These results provide the proof of principle for COX-1-targeted imaging of ovarian cancer and identify [18F]FDF as a promising lead compound for further preclinical and clinical development.
Collapse
Affiliation(s)
- Md. Jashim Uddin
- A. B.
Hancock, Jr., Memorial Laboratory for Cancer Research, Department
of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute
of Chemical Biology, Vanderbilt-Ingram Cancer Center,
and Department of Radiology
and Radiological Sciences, Vanderbilt Institute of Imaging Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- E-mail: . Phone: 615-484-8674. Fax: 615.343-0704 (M.J.U.)
| | - Andrew J. Wilson
- Department of Obstetrics & Gynecology, Women’s
Reproductive
Health Research Center, and Department of Ophthalmology and Visual Sciences,
Vanderbilt Eye Institute, Vanderbilt University
Medical Center, Nashville, Tennessee 37232, United States
| | - Brenda C. Crews
- A. B.
Hancock, Jr., Memorial Laboratory for Cancer Research, Department
of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute
of Chemical Biology, Vanderbilt-Ingram Cancer Center,
and Department of Radiology
and Radiological Sciences, Vanderbilt Institute of Imaging Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Paola Malerba
- A. B.
Hancock, Jr., Memorial Laboratory for Cancer Research, Department
of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute
of Chemical Biology, Vanderbilt-Ingram Cancer Center,
and Department of Radiology
and Radiological Sciences, Vanderbilt Institute of Imaging Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Department
of Pharmacy & Pharmaceutical Sciences, University of Bari “A. Moro”, Via Orabona 4, 70125 Bari, Italy
| | - Md. Imam Uddin
- Department of Obstetrics & Gynecology, Women’s
Reproductive
Health Research Center, and Department of Ophthalmology and Visual Sciences,
Vanderbilt Eye Institute, Vanderbilt University
Medical Center, Nashville, Tennessee 37232, United States
| | - Philip J. Kingsley
- A. B.
Hancock, Jr., Memorial Laboratory for Cancer Research, Department
of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute
of Chemical Biology, Vanderbilt-Ingram Cancer Center,
and Department of Radiology
and Radiological Sciences, Vanderbilt Institute of Imaging Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Kebreab Ghebreselasie
- A. B.
Hancock, Jr., Memorial Laboratory for Cancer Research, Department
of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute
of Chemical Biology, Vanderbilt-Ingram Cancer Center,
and Department of Radiology
and Radiological Sciences, Vanderbilt Institute of Imaging Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Cristina K. Daniel
- A. B.
Hancock, Jr., Memorial Laboratory for Cancer Research, Department
of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute
of Chemical Biology, Vanderbilt-Ingram Cancer Center,
and Department of Radiology
and Radiological Sciences, Vanderbilt Institute of Imaging Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Michael L. Nickels
- A. B.
Hancock, Jr., Memorial Laboratory for Cancer Research, Department
of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute
of Chemical Biology, Vanderbilt-Ingram Cancer Center,
and Department of Radiology
and Radiological Sciences, Vanderbilt Institute of Imaging Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Mohammed N. Tantawy
- A. B.
Hancock, Jr., Memorial Laboratory for Cancer Research, Department
of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute
of Chemical Biology, Vanderbilt-Ingram Cancer Center,
and Department of Radiology
and Radiological Sciences, Vanderbilt Institute of Imaging Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Elma Jashim
- A. B.
Hancock, Jr., Memorial Laboratory for Cancer Research, Department
of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute
of Chemical Biology, Vanderbilt-Ingram Cancer Center,
and Department of Radiology
and Radiological Sciences, Vanderbilt Institute of Imaging Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Martin Luther
King Jr. Academic Magnet School of Health Sciences and Engineering, 613 17th Avenue North, Nashville, Tennessee 37203, United States
| | - H. Charles Manning
- A. B.
Hancock, Jr., Memorial Laboratory for Cancer Research, Department
of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute
of Chemical Biology, Vanderbilt-Ingram Cancer Center,
and Department of Radiology
and Radiological Sciences, Vanderbilt Institute of Imaging Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Dineo Khabele
- Department of Obstetrics & Gynecology, Women’s
Reproductive
Health Research Center, and Department of Ophthalmology and Visual Sciences,
Vanderbilt Eye Institute, Vanderbilt University
Medical Center, Nashville, Tennessee 37232, United States
- Department
of Obstetrics and Gynecology, University
of Kansas School of Medicine, Kansas
City, Kansas 66160, United States
| | - Lawrence J. Marnett
- A. B.
Hancock, Jr., Memorial Laboratory for Cancer Research, Department
of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute
of Chemical Biology, Vanderbilt-Ingram Cancer Center,
and Department of Radiology
and Radiological Sciences, Vanderbilt Institute of Imaging Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- E-mail: (L.J.M.)
| |
Collapse
|
44
|
Oguh-Olayinka L, Agarwal V, Ranatunge D, Campbell A, Laufer S, Cawkwell L, Lind MJ. The Investigation of Lipoxygenases as Therapeutic Targets in Malignant Pleural Mesothelioma. Pathol Oncol Res 2019; 26:985-995. [PMID: 30941737 PMCID: PMC7242492 DOI: 10.1007/s12253-019-00652-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/20/2019] [Indexed: 11/30/2022]
Abstract
Advanced malignant pleural mesothelioma (MPM) has an extremely poor prognosis with limited chemotherapy options, therefore the identification of new therapeutic targets would aid in disease management. Arachidonic acid is metabolised by cyclooxygenase and lipoxygenase enzymes. The lipoxygenase isoenzymes 5-LOX and 12-LOX have been implicated in carcinogenesis. We aimed to examine 5-LOX and 12-LOX protein expression in a large retrospective series of mesothelioma samples. Further to this, the in vitro cytotoxic effects of lipoxygenase pathway inhibitors were investigated in mesothelioma cells. Archival samples from 83 patients with MPM were examined by immunohistochemistry for expression of the 5-LOX and 12-LOX proteins. The MTS assay was used to assess cell viability following 72 h treatment with the lipoxygenase pathway inhibitors baicalein, licofelone, MK-886 and zileuton in the MPM cell lines NCI-H2052, NCI-H2452 and MSTO-211H. Positive 12-LOX protein expression was recorded in 69/83 (83%) and positive 5-LOX expression was observed in 56/77 (73%) of MPM tissue samples. Co-expression of 5-LOX with 12-LOX was seen in 46/78 (58%) of MPM samples. Positive expression of 5-LOX, 12-LOX and COX-2 proteins was identified in the NCI-H2052, NCI-H2452 and MSTO-211H MPM cell lines. Baicalein (12-LOX and 15-LOX inhibitor) was effective in 3/3 MPM cell lines at low concentrations with an IC50 range of 9.6 μM to 20.7 μM. We have demonstrated that the 5-LOX and 12-LOX proteins are expressed in a significant proportion of MPM samples (73% and 83% respectively) and may represent novel therapeutic targets in this disease. We have demonstrated that the inhibition of the LOX pathway using baicalein may be effective as a novel treatment for MPM, however further human pharmacokinetic studies are required in order to establish whether the concentration used in vitro is clinically achievable.
Collapse
Affiliation(s)
- Lily Oguh-Olayinka
- Research Laboratories, Hull York Medical School, Daisy Building, Castle Hill Hospital, Hull, HU16 5JQ, UK.
| | - Vijay Agarwal
- Research Laboratories, Hull York Medical School, Daisy Building, Castle Hill Hospital, Hull, HU16 5JQ, UK.,Queens Centre for Oncology and Haematology, Hull and East Yorkshire NHS Trust, Hull, UK
| | - Dulani Ranatunge
- Research Laboratories, Hull York Medical School, Daisy Building, Castle Hill Hospital, Hull, HU16 5JQ, UK
| | - Anne Campbell
- Histopathology Department, Hull and East Yorkshire NHS Trust, Hull, UK
| | - Stefan Laufer
- Department of Pharmaceutical Chemistry, Eberhard Karls University, Tübingen, Germany
| | - Lynn Cawkwell
- Research Laboratories, Hull York Medical School, Daisy Building, Castle Hill Hospital, Hull, HU16 5JQ, UK.,Department of Biomedical Science, University of Hull, Hull, UK
| | - Michael J Lind
- Research Laboratories, Hull York Medical School, Daisy Building, Castle Hill Hospital, Hull, HU16 5JQ, UK.,Queens Centre for Oncology and Haematology, Hull and East Yorkshire NHS Trust, Hull, UK
| |
Collapse
|
45
|
Sausville LN, Williams SM, Pozzi A. Cytochrome P450 epoxygenases and cancer: A genetic and a molecular perspective. Pharmacol Ther 2019; 196:183-194. [DOI: 10.1016/j.pharmthera.2018.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
46
|
Abstract
The tumor immune landscape gained considerable interest based on the knowledge that genetic aberrations in cancer cells alone are insufficient for tumor development. Macrophages are basically supporting all hallmarks of cancer and owing to their tremendous plasticity they may exert a whole spectrum of anti-tumor and pro-tumor activities. As part of the innate immune response, macrophages are armed to attack tumor cells, alone or in concert with distinct T cell subsets. However, in the tumor microenvironment, they sense nutrient and oxygen gradients, receive multiple signals, and respond to this incoming information with a phenotype shift. Often, their functional output repertoire is shifted to become tumor-supportive. Incoming and outgoing signals are chemically heterogeneous but also comprise lipid mediators. Here, we review the current understanding whereby arachidonate metabolites derived from the cyclooxygenase and lipoxygenase pathways shape the macrophage phenotype in a tumor setting. We discuss these findings in the context of cyclooxygenase-2 (COX-2) and microsomal prostaglandin E synthase-1 (mPGES-1) expression and concomitant prostaglandin E2 (PGE2) formation. We elaborate the multiple actions of this lipid in affecting macrophage biology, which are sensors for and generators of this lipid. Moreover, we summarize properties of 5-lipoxygenases (ALOX5) and 15-lipoxygenases (ALOX15, ALOX15B) in macrophages and clarify how these enzymes add to the role of macrophages in a dynamically changing tumor environment. This review will illustrate the potential routes how COX-2/mPGES-1 and ALOX5/-15 in macrophages contribute to the development and progression of a tumor.
Collapse
Affiliation(s)
- Andreas Weigert
- Institute of Biochemistry I/Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Elisabeth Strack
- Institute of Biochemistry I/Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Ryan G Snodgrass
- Institute of Biochemistry I/Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I/Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany. .,German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt, Germany.
| |
Collapse
|
47
|
Abstract
Cancer development and metastasis are associated to perturbation in metabolic functions of tumor cells and surrounding inflammatory and stromal cell responses. Eicosanoids and lipid mediators, in this regard, attract potential attention during cancer development. Eicosanoids, which include prostaglandin, prostacyclin, thromboxane, and leukotriene, are synthesized from arachidonic acid when cells are stimulated by stress, cytokines, or other growth factors. However, the underlying mechanism of eicosanoids in cancer development, specially their interactions with proto-oncogene factors in tumor microenvironment, remain unexplored. On the other hand, matrix metalloproteinases (MMPs) are a group of zinc-dependent endopeptidases which are involved in degradation of different extracellular matrix (ECM) proteins. MMPs are associated with different physiological responses, including embryogenesis, vasculogenesis, and cellular remodeling, as well as different disease pathogenesis. Induced MMP responses are especially associated with cancer metastasis and secondary tumor development through proteolytic cleavage of several ECM and non-ECM proteins. Although both eicosanoids and MMPs are involved with cancer progression and metastasis, the interrelation between these two molecules are less explored. The present review discusses relevant studies that connect eicosanoids and MMPs and highlight the crosstalk between them offering novel therapeutic approach in cancer treatment.
Collapse
|
48
|
Lee WL, Yew PN, Lim YY. Tannic acid-rich porcupine bezoars induce apoptosis and cell cycle arrest in human colon cancer cells. Pharmacogn Mag 2019. [DOI: 10.4103/pm.pm_620_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
49
|
Lu X, Huang L, Zhang W, Ning X. Tepoxalin a dual 5-LOX-COX inhibitor and erlotinib an EGFR inhibitor halts progression of gastric cancer in tumor xenograft mice. Am J Transl Res 2018; 10:3847-3856. [PMID: 30662635 PMCID: PMC6291731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/18/2018] [Indexed: 06/09/2023]
Abstract
GC is associated with over expression of epidermal growth factor receptor (EGRF), Cyclooxygenase-2 (COX-2) and 5-Lipoxygenase (5-LOX). We postulated that targeting these pathways will result in better treatment efficacy than using a single agent with higher dose which may cause toxicity and resistance. We evaluated Tepoxalin (TPX) a dual 5-LOX-COX inhibitor and Erlotinib (ERB) an EGFR inhibitor alone and combination in MGC-803 injected tumor xenografts mice. Female nude mice were selected and injected subcutaneously with MGC-803 GC cells and were grouped after the tumor model was formed. The treatment of TPX, ERB and their combination was given for 21 days. After treatment protocol proliferating index was measured, expression of apoptosis related proteins, 5-LOX, COX-2, EGFR, vascular endothelial growth factor-C (VEGF-C) and density of lymphatic vessel density was evaluated in tumor tissues. TUNEL assay was done for apoptosis. The outcomes of study revealed that TPX and ERB alone inhibited the growth of tumor but their combination showed a synergistic antitumor activity. TPX and ERB alone resulted in apoptosis and antiproliferative effect, whereas their combination showed highly significant results (P<0.01). TPX alone and its combination with ERB suppressed 5-LOX, COX-2, EGFR and VEGF-C and caused inhibition of lymphangiogenesis, however ERB alone was unable to affect expression of VEGF-C and lymphangiogenesis. The results confirmed combination of TPX and ERB produced a synergistic anticancer and antitumor activity, possibly by promoting apoptosis and antiproliferative effect on tumor cells via suppressing expression of COX-2, 5-LOX, EGFR and VEGF-C.
Collapse
Affiliation(s)
- Xinyang Lu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jining Medical University Jining 272029, Shandong, China
| | - Lunhua Huang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jining Medical University Jining 272029, Shandong, China
| | - Wei Zhang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jining Medical University Jining 272029, Shandong, China
| | - Xiaofei Ning
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jining Medical University Jining 272029, Shandong, China
| |
Collapse
|
50
|
Çolakoğlu M, Tunçer S, Banerjee S. Emerging cellular functions of the lipid metabolizing enzyme 15-Lipoxygenase-1. Cell Prolif 2018; 51:e12472. [PMID: 30062726 DOI: 10.1111/cpr.12472] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 04/22/2018] [Indexed: 02/06/2023] Open
Abstract
The oxygenation of polyunsaturated fatty acids such as arachidonic and linoleic acid through lipoxygenases (LOXs) and cyclooxygenases (COXs) leads to the production of bioactive lipids that are important both in the induction of acute inflammation and its resolution. Amongst the several isoforms of LOX that are expressed in mammals, 15-LOX-1 was shown to be important both in the context of inflammation, being expressed in cells of the immune system, and in epithelial cells where the enzyme has been shown to crosstalk with a number of important signalling pathways. This review looks into the latest developments in understanding the role of 15-LOX-1 in different disease states with emphasis on the emerging role of the enzyme in the tumour microenvironment as well as a newly re-discovered form of cell death called ferroptosis. We also discuss future perspectives on the feasibility of use of this protein as a target for therapeutic interventions.
Collapse
Affiliation(s)
- Melis Çolakoğlu
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Sinem Tunçer
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Sreeparna Banerjee
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| |
Collapse
|