1
|
Gebing P, Loizou S, Hänsch S, Schliehe-Diecks J, Spory L, Stachura P, Jepsen VH, Vogt M, Pandyra AA, Wang H, Zhuang Z, Zimmermann J, Schrappe M, Cario G, Alsadeq A, Schewe DM, Borkhardt A, Lenk L, Fischer U, Bhatia S. A brain organoid/ALL coculture model reveals the AP-1 pathway as critically associated with CNS involvement of BCP-ALL. Blood Adv 2024; 8:4997-5011. [PMID: 39008716 PMCID: PMC11465051 DOI: 10.1182/bloodadvances.2023011145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 05/06/2024] [Accepted: 06/26/2024] [Indexed: 07/17/2024] Open
Abstract
ABSTRACT Central nervous system (CNS) involvement remains a clinical hurdle in treating childhood B-cell precursor acute lymphoblastic leukemia (BCP-ALL). The disease mechanisms of CNS leukemia are primarily investigated using 2-dimensional cell culture and mouse models. Given the variations in cellular identity and architecture between the human and murine CNS, it becomes imperative to seek complementary models to study CNS leukemia. Here, we present a first-of-its-kind 3-dimensional coculture model combining human brain organoids and BCP-ALL cells. We noticed significantly higher engraftment of BCP-ALL cell lines and patient-derived xenograft (PDX) cells in cerebral organoids than non-ALL cells. To validate translatability between organoid coculture and in vivo murine models, we confirmed that targeting CNS leukemia-relevant pathways such as CD79a/Igα or C-X-C motif chemokine receptor 4-stromal cell-derived factor 1 reduced the invasion of BCP-ALL cells into organoids. RNA sequencing and functional validations of organoid-invading leukemia cells compared with the noninvaded fraction revealed significant upregulation of activator protein 1 (AP-1) transcription factor-complex members in organoid-invading cells. Moreover, we detected a significant enrichment of AP-1 pathway genes in PDX ALL cells recovered from the CNS compared with spleen blasts of mice that had received transplantation with TCF3::PBX1+ PDX cells, substantiating the role of AP-1 signaling in CNS disease. Accordingly, we found significantly higher levels of the AP-1 gene, jun proto-oncogene, in patients initially diagnosed as CNS-positive BCP-ALL compared with CNS-negative cases as well as CNS-relapse vs non-CNS-relapse cases in a cohort of 100 patients with BCP-ALL. Our results suggest CNS organoids as a novel model to investigate CNS involvement and identify the AP-1 pathway as a critical driver of CNS disease in BCP-ALL.
Collapse
Affiliation(s)
- Philip Gebing
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Stefanos Loizou
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sebastian Hänsch
- Center for Advanced Imaging, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Julian Schliehe-Diecks
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Lea Spory
- Department of Pediatrics I, Pediatric Hematology/Oncology, ALL-BFM Study Group, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Pawel Stachura
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Molecular Medicine II, Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Vera H. Jepsen
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Melina Vogt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Aleksandra A. Pandyra
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Herui Wang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Zhengping Zhuang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Johannes Zimmermann
- Research Group Evolutionary Ecology and Genetics, Zoological Institute, Kiel University, Kiel, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University, Jena, Germany
| | - Martin Schrappe
- Department of Pediatrics I, Pediatric Hematology/Oncology, ALL-BFM Study Group, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Gunnar Cario
- Department of Pediatrics I, Pediatric Hematology/Oncology, ALL-BFM Study Group, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Ameera Alsadeq
- Institute of Immunology, Ulm University Medical Centre, Ulm, Germany
| | - Denis M. Schewe
- Department of Pediatric Hematology and Oncology, University Hospital Dresden, Dresden, Germany
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Cancer Consortium, Partner Site Essen/Düsseldorf, Düsseldorf, Germany
| | - Lennart Lenk
- Department of Pediatrics I, Pediatric Hematology/Oncology, ALL-BFM Study Group, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Ute Fischer
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Cancer Consortium, Partner Site Essen/Düsseldorf, Düsseldorf, Germany
| | - Sanil Bhatia
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Cancer Consortium, Partner Site Essen/Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
2
|
Verbeek TCAI, Vrenken KS, Arentsen-Peters STCJM, Castro PG, van de Ven M, van Tellingen O, Pieters R, Stam RW. Selective inhibition of HDAC class IIA as therapeutic intervention for KMT2A-rearranged acute lymphoblastic leukemia. Commun Biol 2024; 7:1257. [PMID: 39362994 PMCID: PMC11450098 DOI: 10.1038/s42003-024-06916-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 09/17/2024] [Indexed: 10/05/2024] Open
Abstract
KMT2A-rearranged acute lymphoblastic leukemia (ALL) is characterized by deregulation of the epigenome and shows susceptibility towards histone deacetylase (HDAC) inhibition. Most broad-spectrum HDAC inhibitors simultaneously target multiple human HDAC isoforms. Consequently, they often induce toxicity and especially in combination with other therapeutic agents. Therefore, more specifically targeting HDAC isoforms may represent a safer therapeutic strategy. Here we show that shRNA-mediated knock-down of the class IIA HDAC isoforms HDAC4, HDAC5, and HDAC7 results in apoptosis induction and cell cycle arrest in KMT2A-rearranged ALL cells. In concordance, the HDAC4/5 selective small molecule inhibitor LMK-235 effectively eradicates KMT2A-rearranged ALL cell lines as well as primary patient samples in vitro. However, using a xenograft mouse model of KMT2A-rearranged ALL we found that the maximum achievable dose of LMK-235 was insufficient to induce anti-leukemic effects in vivo. Similar results were obtained for the specific class IIA HDAC inhibitors MC1568 and TMP195. Finally, LMK-235 appeared to exert minimal anti-leukemic effects in vivo in combination with the BCL-2 inhibitor venetoclax, but not enough to prolong survival in treated mice. In conclusion, class IIA HDAC isoforms represent attractive therapeutic target in KMT2A-rearranged ALL, although clinical applications require the development of more stable and efficient specific HDAC inhibitors.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rob Pieters
- Princess Máxima Center, Utrecht, The Netherlands
| | | |
Collapse
|
3
|
Ngo D, Tinajero J, Song JY, Ma H, Quirk E, Koller P, Pourhassan H, Agrawal V, Stein AS, Marcucci G, Murphy L, Forman SJ, Pullarkat V, Aldoss I. The characterization and the impact of CSF pleocytosis during blinatumomab therapy for adult acute lymphoblastic leukemia. Leuk Lymphoma 2024:1-9. [PMID: 39155594 DOI: 10.1080/10428194.2024.2392823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/11/2024] [Accepted: 08/11/2024] [Indexed: 08/20/2024]
Abstract
Reactive pleocytosis in the CSF has been observed with blinatumomab but has not been well-described. We performed a retrospective study of 88 patients who received intrathecal chemotherapy (IT) while on blinatumomab with CSF analyzed to determine if pleocytosis had an impact efficacy and safety. Blinatumomab was used for relapsed/refractory 62.5%, MRD-positive 31.8%, and consolidation in MRD-negative 5.7%. The incidence of pleocytosis in CSF was 51% and was more frequent after day 15 (55.8% vs. 18.2%, p = 0.025). Pleocytosis did not impact CR, clearance of MRD positivity, PFS and OS rates. Lower incidence of non-CNS extramedullary relapse was seen (3.7% vs. 30.8%, p = 0.011) with pleocytosis in CSF. Analysis of CSF by flow cytometry showed median CD4:CD8 ratio of 1.34. In conclusion, CSF pleocytosis is prevalent with blinatumomab but only demonstrated lower rates of non-CNS extramedullary relapse but no impact on CNS relapse or neurotoxicity.
Collapse
Affiliation(s)
- Dat Ngo
- Department of Pharmacy, City of Hope, Duarte, CA, USA
| | - Jose Tinajero
- Department of Pharmacy, City of Hope, Duarte, CA, USA
| | - Joo Y Song
- Department of Pathology, Division of Hematopathology, City of Hope, Duarte, CA, USA
| | - Huiyan Ma
- Department of Computational and Quantitative Medicine, Division of Health Analytics, City of Hope, Duarte, CA, USA
| | - Elizabeth Quirk
- Department of Pathology, Division of Hematopathology, City of Hope, Duarte, CA, USA
| | - Paul Koller
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
| | - Hoda Pourhassan
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
| | - Vaibhav Agrawal
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
| | - Anthony S Stein
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
| | - Guido Marcucci
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
| | | | - Stephen J Forman
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
| | - Vinod Pullarkat
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
| | - Ibrahim Aldoss
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
| |
Collapse
|
4
|
Tabassum N, Muhammad S, Mirza T, Butt Z, Mansoor N. Clinical Characteristics and Cytogenetics of Childhood Acute Lymphoblastic Leukemia in a Single Center in Pakistan. Glob Pediatr Health 2024; 11:2333794X241256863. [PMID: 39070153 PMCID: PMC11283658 DOI: 10.1177/2333794x241256863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 04/18/2024] [Accepted: 05/07/2024] [Indexed: 07/30/2024] Open
Abstract
Objectives. This study aimed to find the association between clinical characteristics, cytogenetics, and post-induction outcomes of childhood acute lymphoblastic leukemia. Methods. The study was conducted at the Indus Hospital in Karachi. Initial total leukocyte count (TLC), cytogenetics, CNS status, and post-induction remission status were recorded. Results. Out of 108 children diagnosed with ALL, 66 (61.1%) were male and 42 (38.9%) were female. The majority 90 (83.3%) had B-ALL. CNS1 status was observed in 76 (84.4%) B-ALL and 18 (88.9%) T-ALL. All T-ALL and 89 (98.8%) B-ALL achieved remission post-induction. In B-ALL, 50 (55.5%) had a normal diploid karyotype, and 22 (24.4%) had numerical abnormalities. No typical gene rearrangement was observed in 66 (73.3%), 11 (12.2%) had BCR::ABL1, 10 (11.1%) had ETV6::RUNX1 and 3 (3.3%) KMT2A on FISH. No significant difference was observed between cytogenetics and clinical characteristics (P > .05). Conclusion. The study provides valuable data on childhood acute lymphoblastic leukemia in the Pakistani population.
Collapse
|
5
|
Lyseight FLS, Pittaway C, Dennis R, Cherubini GB. Neurological manifestations in dogs with acute leukemia. Front Vet Sci 2024; 11:1385093. [PMID: 39091386 PMCID: PMC11291356 DOI: 10.3389/fvets.2024.1385093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 06/12/2024] [Indexed: 08/04/2024] Open
Abstract
Canine acute leukemia is a rare hematopoietic neoplasm. Neurological abnormalities have been frequently reported in dogs with acute leukemia (AL). However, the description of the presentation and findings are limited. This study aimed to describe the clinical findings in dogs with acute leukemia presenting with neurological signs as their primary complaint. The database of a private referral hospital was searched for cases that presented to the neurological department with neurological deficits and were subsequently diagnosed with acute leukemia. Six cases were included; all had neurological clinical signs and an abnormal neurological examination. All cases had a focal neuroanatomical localisation on neurological examination (brain n = 4; spinal = 2). Out of the four dogs with a complete magnetic resonance imaging (MRI) study, there was an ill-defined infiltrative pattern with abnormal signal intensity in the central nervous system (CNS) in three dogs and the loss of grey and white matter differentiation in the brain (n = 2) and/or spinal cord (n = 2). Other MRI findings included abnormal meningeal enhancement (n = 3), changes affecting spinal nerves and epaxial muscles (n = 2), and lymphadenopathy in the field of view (n = 2). The bone marrow assessment on MRI showed evidence of signal change (n = 3), characterized by a loss of normal fat opacity and an abnormal degree of contrast enhancement. The cerebrospinal fluid (CSF) analysis of the four dogs showed an increased protein level with non-specific pleocytosis and without evidence of malignant cells. Treatment with cytotoxic medication was implemented in two dogs. The dogs diagnosed with acute leukemia had focal neuroanatomical localisation, an infiltrative CNS pattern, and bone marrow remodulation on MRI with an increase in CSF protein and negative cytology analysis.
Collapse
Affiliation(s)
- Filipa L. S. Lyseight
- Oncology Service, Dick White Referrals, Part of Linnaeus Veterinary Limited, Cambridgeshire, United Kingdom
| | - Charles Pittaway
- Oncology Service, Dick White Referrals, Part of Linnaeus Veterinary Limited, Cambridgeshire, United Kingdom
| | - Ruth Dennis
- Diagnostic Imaging Service, Dick White Referrals, Part of Linnaeus Veterinary Limited, Cambridgeshire, United Kingdom
| | - Giunio B. Cherubini
- Neurology and Neurosurgery Service, Dick White Referrals, Part of Linnaeus Veterinary Limited, Cambridgeshire, United Kingdom
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| |
Collapse
|
6
|
Wang Y, Xue YJ, Zuo YX, Jia YP, Lu AD, Zeng HM, Zhang LP. CD19-Specific CAR-T Cell Treatment of 115 Children and Young Adults with Acute B Lymphoblastic Leukemia: Long-term Follow-up. Cancer Res Treat 2024; 56:945-955. [PMID: 38351683 PMCID: PMC11261203 DOI: 10.4143/crt.2023.1205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/08/2024] [Indexed: 07/18/2024] Open
Abstract
PURPOSE Chemotherapy has been the primary treatment for patients with B-cell acute lymphoblastic leukemia (B-ALL). However, there are still patients who are not sensitive to chemotherapy, including those with refractory/relapse (R/R) disease and those experiencing minimal residual disease (MRD) re-emergence. Chimeric antigen receptor-T lymphocytes (CAR-T) therapy may provide a new treatment option for these patients. MATERIALS AND METHODS Our institution conducted a single-arm prospective clinical trial (ChiCTR-OPN-17013507) using CAR-T-19 to treat R/R B-ALL and MRD re-emergent patients. One hundred and fifteen patients, aged 1-25 years (median age, 8 years), were enrolled, including 67 R/R and 48 MRD re-emergent CD19-positive B-ALL patients. RESULTS All patients achieved morphologic complete remission (CR), and within 1 month after infusion, 111 out of 115 (96.5%) patients achieved MRD-negative CR. With a median follow-up time of 48.4 months, the estimated 4-year leukemia-free survival (LFS) rate and overall survival (OS) rate were 68.7%±4.5% and 70.7%±4.3%, respectively. There were no significant differences in long-term efficacy observed among patients with different disease statuses before infusion (4-year OS: MRD re-emergence vs. R/R B-ALL, 70.6%±6.6% vs. 66.5%±6.1%, p=0.755; 4-year LFS: MRD re-emergence vs. R/R B-ALL, 67.3%±7.0% vs. 63.8%±6.2%, p=0.704). R/R B-ALL patients bridging to transplantation after CAR-T treatment had a superior OS and LFS compared to those who did not. However, for MRD re-emergent patients, there was no significant difference in OS and LFS, regardless of whether they underwent hematopoietic stem cell transplantation or not. CONCLUSION CD19 CAR-T therapy effectively and safely cures both R/R B-ALL and MRD re-emergent patients.
Collapse
Affiliation(s)
- Yu Wang
- Department of Pediatrics, Peking University People’s Hospital, Peking University, Beijing, China
| | - Yu-juan Xue
- Department of Pediatrics, Peking University People’s Hospital, Peking University, Beijing, China
| | - Ying-xi Zuo
- Department of Pediatrics, Peking University People’s Hospital, Peking University, Beijing, China
| | - Yue-ping Jia
- Department of Pediatrics, Peking University People’s Hospital, Peking University, Beijing, China
| | - Ai-dong Lu
- Department of Pediatrics, Peking University People’s Hospital, Peking University, Beijing, China
| | - Hui-min Zeng
- Department of Pediatrics, Peking University People’s Hospital, Peking University, Beijing, China
| | - Le-ping Zhang
- Department of Pediatrics, Peking University People’s Hospital, Peking University, Beijing, China
| |
Collapse
|
7
|
Gentile G, Poggio T, Catalano A, Voutilainen M, Lahnalampi M, Andrade-Martinez M, Ma T, Sankowski R, Goncharenko L, Tholen S, Han K, Morgens DW, Prinz M, Lübbert M, Engel S, Hartmann TN, Cario G, Schrappe M, Lenk L, Stanulla M, Duyster J, Bronsert P, Bassik MC, Cleary ML, Schilling O, Heinäniemi M, Duque-Afonso J. Development of combination therapies with BTK inhibitors and dasatinib to treat CNS-infiltrating E2A-PBX1+/preBCR+ ALL. Blood Adv 2024; 8:2846-2860. [PMID: 38598725 PMCID: PMC11176965 DOI: 10.1182/bloodadvances.2023011582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/15/2024] [Accepted: 02/27/2024] [Indexed: 04/12/2024] Open
Abstract
ABSTRACT The t(1;19) translocation, encoding the oncogenic fusion protein E2A (TCF3)-PBX1, is involved in acute lymphoblastic leukemia (ALL) and associated with a pre-B-cell receptor (preBCR+) phenotype. Relapse in patients with E2A-PBX1+ ALL frequently occurs in the central nervous system (CNS). Therefore, there is a medical need for the identification of CNS active regimens for the treatment of E2A-PBX1+/preBCR+ ALL. Using unbiased short hairpin RNA (shRNA) library screening approaches, we identified Bruton tyrosine kinase (BTK) as a key gene involved in both proliferation and dasatinib sensitivity of E2A-PBX1+/preBCR+ ALL. Depletion of BTK by shRNAs resulted in decreased proliferation of dasatinib-treated E2A-PBX1+/preBCR+ cells compared with control-transduced cells. Moreover, the combination of dasatinib with BTK inhibitors (BTKi; ibrutinib, acalabrutinib, or zanubrutinib) significantly decreased E2A-PBX1+/preBCR+ human and murine cell proliferation, reduced phospholipase C gamma 2 (PLCG2) and BTK phosphorylation and total protein levels and increased disease-free survival of mice in secondary transplantation assays, particularly reducing CNS-leukemic infiltration. Hence, dasatinib with ibrutinib reduced pPLCG2 and pBTK in primary ALL patient samples, including E2A-PBX1+ ALLs. In summary, genetic depletion and pharmacological inhibition of BTK increase dasatinib effects in human and mouse with E2A-PBX1+/preBCR+ ALL across most of performed assays, with the combination of dasatinib and BTKi proving effective in reducing CNS infiltration of E2A-PBX1+/preBCR+ ALL cells in vivo.
Collapse
Affiliation(s)
- Gaia Gentile
- Department of Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Teresa Poggio
- Department of Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Antonella Catalano
- Department of Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Minna Voutilainen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Mari Lahnalampi
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Marta Andrade-Martinez
- Department of Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tobias Ma
- Department of Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Roman Sankowski
- Department of Neuropathology, University of Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lina Goncharenko
- Institute for Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Proteomics Platform – Core Facility, University of Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stefan Tholen
- Institute of Surgical Pathology, University of Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Proteomics Platform – Core Facility, University of Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kyuho Han
- Department of Genetics, Stanford University School of Medicine, Stanford, CA
| | - David W. Morgens
- Department of Genetics, Stanford University School of Medicine, Stanford, CA
| | - Marco Prinz
- Department of Neuropathology, University of Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for NeuroModulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Michael Lübbert
- Department of Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sophia Engel
- Department of Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tanja Nicole Hartmann
- Department of Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gunnar Cario
- Department of Pediatrics, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Martin Schrappe
- Department of Pediatrics, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Lennart Lenk
- Department of Pediatrics, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Martin Stanulla
- Department of Pediatrics, University Medical Center Hannover, Hannover, Germany
| | - Justus Duyster
- Department of Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter Bronsert
- Institute of Surgical Pathology, University of Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael C. Bassik
- Department of Genetics, Stanford University School of Medicine, Stanford, CA
| | - Michael L. Cleary
- Department of Pathology, Stanford University School of Medicine, Stanford, CA
| | - Oliver Schilling
- Institute for Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Proteomics Platform – Core Facility, University of Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Merja Heinäniemi
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Jesús Duque-Afonso
- Department of Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
8
|
Enlund S, Sinha I, Neofytou C, Amor AR, Papadakis K, Nilsson A, Jiang Q, Hermanson O, Holm F. The CNS microenvironment promotes leukemia cell survival by disrupting tumor suppression and cell cycle regulation in pediatric T-cell acute lymphoblastic leukemia. Exp Cell Res 2024; 437:114015. [PMID: 38561062 DOI: 10.1016/j.yexcr.2024.114015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024]
Abstract
A major obstacle in improving survival in pediatric T-cell acute lymphoblastic leukemia is understanding how to predict and treat leukemia relapse in the CNS. Leukemia cells are capable of infiltrating and residing within the CNS, primarily the leptomeninges, where they interact with the microenvironment and remain sheltered from systemic treatment. These cells can survive in the CNS, by hijacking the microenvironment and disrupting normal functions, thus promoting malignant transformation. While the protective effects of the bone marrow niche have been widely studied, the mechanisms behind leukemia infiltration into the CNS and the role of the CNS niche in leukemia cell survival remain unknown. We identified a dysregulated gene expression profile in CNS infiltrated T-ALL and CNS relapse, promoting cell survival, chemoresistance, and disease progression. Furthermore, we discovered that interactions between leukemia cells and human meningeal cells induced epigenetic alterations, such as changes in histone modifications, including H3K36me3 levels. These findings are a step towards understanding the molecular mechanisms promoting leukemia cell survival in the CNS microenvironment. Our results highlight genetic and epigenetic alterations induced by interactions between leukemia cells and the CNS niche, which could potentially be utilized as biomarkers to predict CNS infiltration and CNS relapse.
Collapse
Affiliation(s)
- Sabina Enlund
- Deparment of Women's and Children's Health, Division of Pediatric Oncology and Surgery, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Indranil Sinha
- Deparment of Women's and Children's Health, Division of Pediatric Oncology and Surgery, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Christina Neofytou
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Amanda Ramilo Amor
- Deparment of Women's and Children's Health, Division of Pediatric Oncology and Surgery, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Konstantinos Papadakis
- Deparment of Women's and Children's Health, Division of Pediatric Oncology and Surgery, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Anna Nilsson
- Deparment of Women's and Children's Health, Division of Pediatric Oncology and Surgery, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Qingfei Jiang
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Ola Hermanson
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Frida Holm
- Deparment of Women's and Children's Health, Division of Pediatric Oncology and Surgery, Karolinska Institutet, 171 77, Stockholm, Sweden.
| |
Collapse
|
9
|
Li Z, Guo Z, Xiao H, Chen X, Liu W, Zhou H. Simulating neuronal development: exploring potential mechanisms for central nervous system metastasis in acute lymphoblastic leukemia. Front Oncol 2024; 13:1331802. [PMID: 38239636 PMCID: PMC10794646 DOI: 10.3389/fonc.2023.1331802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/07/2023] [Indexed: 01/22/2024] Open
Abstract
Background Acute lymphoblastic leukemia (ALL) is prone to metastasize to the central nervous system (CNS), which is an important cause of poor treatment outcomes and unfavorable prognosis. However, the pathogenesis of CNS metastasis of ALL cells has not been fully illuminated. Recent reports have shed some light on the correlation between neural mechanisms and ALL CNS metastasis. These progressions prompt us to study the relationship between ALL central nervous system metastasis and neuronal development, exploring potential biomarkers and therapeutic targets of CNS metastasis. Materials and methods ALL central nervous system metastasis- and neuronal development-related differentially expressed genes (DEGs) were identified by analyzing gene expression datasets GSE60926 and GSE13715. Target prediction and network analysis methods were applied to assess protein-protein interaction networks. Gene Ontology (GO) terms and pathway enrichment for DEGs were assessed. Co-expressed differentially expressed genes (co-DEGs) coupled with corresponding predicted microRNAs (miRNAs) were studied as well. Reverse transcription-polymerase chain reaction (RT-PCR) and flow cytometry were employed for the validation of key co-DEGs in primary ALL cells. Furthermore, ALL cells were treated with a vascular endothelial growth factor (VEGF) inhibitor to block neuronal development and assess changes in the co-DEGs. Results We identified 216, 208, and 204 DEGs in ALL CNS metastasis specimens and neuronal development samples (GSE60926 and GSE13715). CD2, CD3G, CD3D, and LCK may be implicated in ALL CNS metastasis. LAMB1, MATN3, IGFBP3, LGALS1, and NEUROD1 may be associated with neuronal development. Specifically, four co-DEGs (LGALS1, TMEM71, SHISA2, and S100A11) may link ALL central nervous system metastasis and neuronal development process. The miRNAs for each co-DEG could be potential biomarkers or therapeutic targets for ALL central nervous system metastasis, especially hsa-miR-22-3p, hsa-miR-548t-5p, and hsa-miR-6134. Additionally, four co-DEGs (LGALS1, TMEM71, SHISA2, and S100A11) were validated in CNS-infiltrated ALL cells. The VEGF inhibitor demonstrated a suppressive effect on mRNA and protein expression of key co-DEGs. Conclusion The bioinformatic survey and key gene validation suggest a possible correlation between ALL CNS metastasis and the neuronal development process. Simulating the neuronal development process might be a possible strategy for CNS metastasis in ALL. LGALS1, TMEM71, SHISA2, and S100A11 genes are promising and novel biomarkers and targets in ALL CNS metastasis.
Collapse
Affiliation(s)
- Ziping Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi Guo
- Department of Hematology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Haitao Xiao
- Department of Anatomy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuexing Chen
- Institute of Hematology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Wei Liu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Zhou
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Yoon JH, Lee S. Diagnostic and therapeutic advances in adults with acute lymphoblastic leukemia in the era of gene analysis and targeted immunotherapy. Korean J Intern Med 2024; 39:34-56. [PMID: 38225824 PMCID: PMC10790045 DOI: 10.3904/kjim.2023.407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/03/2023] [Accepted: 12/23/2023] [Indexed: 01/17/2024] Open
Abstract
Acute lymphoblastic leukemia (ALL) is one of the most rapidly changing hematological malignancies with advanced understanding of the genetic landscape, detection methods of minimal residual disease (MRD), and the development of immunotherapeutic agents with good clinical outcomes. The annual incidence of adult ALL in Korea is 300-350 patients per year. The WHO classification of ALL was revised in 2022 to reflect the molecular cytogenetic features and suggest new adverse- risk subgroups, such as Ph-like ALL and ETP-ALL. We continue to use traditional adverse-risk features and cytogenetics, with MRD-directed post-remission therapy including allogeneic hematopoietic cell transplantation. However, with the introduction of novel agents, such as ponatinib, blinatumomab, and inotuzumab ozogamicin incorporated into frontline therapy, good MRD responses have been achieved, and overall survival outcomes are improving. Accordingly, some clinical trials have suggested a possible era of chemotherapy-free or transplantation-free approaches in the near future. Nevertheless, relapse of refractory ALL still occurs, and some poor ALL subtypes, such as Ph-like ALL and ETP-ALL, are unsolved problems for which novel agents and treatment strategies are needed. In this review, we summarize the currently applied diagnostic and therapeutic practices in the era of advanced genetic analysis and targeted immunotherapies in United States and Europe and introduce real-world Korean data.
Collapse
Affiliation(s)
- Jae-Ho Yoon
- Department of Hematology, Catholic Hematology Hospital and Leukemia Research Institute, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seok Lee
- Department of Hematology, Catholic Hematology Hospital and Leukemia Research Institute, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
11
|
León-Domínguez A, Cansino-Román R, Martínez-Salas JM, Farrington DM. Clinical examination and imaging resources in children and adolescent back pain. J Child Orthop 2023; 17:512-526. [PMID: 38050588 PMCID: PMC10693837 DOI: 10.1177/18632521231215860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/03/2023] [Indexed: 12/06/2023] Open
Abstract
Back pain is a relatively common complaint in children and adolescents. The pediatric patient presenting with back pain can often be challenging, and there are many well-known organic diagnoses that should not be missed. In younger children, an organic cause of back pain can often be found. However, back pain in older children and adolescents is often "non-specific." The differential diagnosis of back pain in children includes neoplasms, developmental, and inflammatory conditions. Basic steps should include an in-depth anamnesis, a systematic physical examination, and standard spine radiographs (anteroposterior and lateral). Nevertheless, advanced diagnostic imaging and laboratory studies should be included when indicated to avoid missing or delaying a serious diagnosis. If other types of imaging tests are necessary (magnetic resonance imaging, computed tomography, bone scan, or single photon emission computed tomography), they should be guided by diagnostic suspicion.
Collapse
|
12
|
Zhang S, Tu Y, Lai H, Chen H, Tu H, Li J. PPARG, GNG12, and CD19 are potential independent predictors of central nerve recurrence in childhood acute lymphoblastic leukemia. Hematology 2023; 28:2182169. [PMID: 36861936 DOI: 10.1080/16078454.2023.2182169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
OBJECTIVE To identify biomarkers that can predict the recurrence of the central nervous system (CNS) in children with acute lymphoblastic leukemia (ALL). MATERIALS AND METHODS The transcriptome and clinical data of ALL in children were downloaded from the TARGET database. Transcriptome data were analyzed by bioinformatics method to identify core (hub) genes and establish a risk assessment model. Univariate Cox analysis was performed on each clinical data, and multivariate Cox regression analysis was performed on the obtained results and risk score. The children ALL phase I samples from TARGET database were used for validation. RESULTS Univariate multivariate Cox analysis of 10 hub genes identified showed that PPARG (HR = 0.78, 95%CI = 0.67-0.91, p = 0.007), CD19 (HR = 1.15, 95%CI = 1.05-1.26, p = 0.003) and GNG12 (HR = 1.25, 95%CI = 1.04-1.51, p = 0.017) had statistical differences. The risk score was statistically significant in univariate (HR = 3.06, 95%CI = 1.30-7.19, p = 0.011) and multivariate (HR = 1.81, 95%CI = 1.16-2.32, p = 0.046) Cox regression analysis. The survival analysis results of the high and low-risk groups were different when the validation dataset was substituted into the model (p = 0.018). Then, we constructed a Nomogram which had a concordance index of survival prediction of 0.791(95%CI= 0.779-0.803). In addition, the CNS involvement grading status at first diagnosis CNS3 vs. CNS1 (HR = 5.74, 95%CI = 2.01-16.4, p = 0.001), T cell vs B cell (HR = 1.63, 95% CI = 1.06-2.49, p = 0.026) were also statistically significant. CONCLUSIONS PPARG, GNG12, and CD19 may be predictors of CNS relapse in childhood ALL.
Collapse
Affiliation(s)
- Shan Zhang
- The Key Laboratory of Hematology of Jiangxi Province, The Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China.,Graduate School of Medicine, Nanchang University, Nanchang, People's Republic of China
| | - Yansong Tu
- Faculty of Environment, University of Waterloo, Waterloo, Canada
| | - Hurong Lai
- The Key Laboratory of Hematology of Jiangxi Province, The Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China.,Graduate School of Medicine, Nanchang University, Nanchang, People's Republic of China
| | - Huijun Chen
- The Key Laboratory of Hematology of Jiangxi Province, The Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Huaijun Tu
- Graduate School of Medicine, Nanchang University, Nanchang, People's Republic of China.,The Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Jian Li
- The Key Laboratory of Hematology of Jiangxi Province, The Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China.,Graduate School of Medicine, Nanchang University, Nanchang, People's Republic of China
| |
Collapse
|
13
|
Spory L, Zimmermann J, Vossen-Gajcy M, Beder T, Bastian L, Alsadeq A, Winterberg D, Vogiatzi F, Wirbelauer T, Bhat H, Borkhardt A, Bhatia S, Schrappe M, Cario G, Schewe DM, Lenk L. AP-1 Transcription Factor Complex Members FOSB and FOS are Linked With CNS Infiltration and Inferior Prognosis in Childhood T-ALL. Hemasphere 2023; 7:e945. [PMID: 37670804 PMCID: PMC10476750 DOI: 10.1097/hs9.0000000000000945] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/20/2023] [Indexed: 09/07/2023] Open
Affiliation(s)
- Lea Spory
- Department of Paediatrics I, Paediatric Haematology/Oncology, ALL-BFM Study Group, University Medical Centre Schleswig-Holstein, Kiel, Germany
| | - Johannes Zimmermann
- Department of Evolutionary Ecology and Genetics, Zoological Institute, University of Kiel, Germany
| | - Michaela Vossen-Gajcy
- Department of Paediatrics I, Paediatric Haematology/Oncology, ALL-BFM Study Group, University Medical Centre Schleswig-Holstein, Kiel, Germany
| | - Thomas Beder
- Medical Department II, Haematology and Oncology, University Medical Centre Schleswig-Holstein, Kiel, Germany
| | - Lorenz Bastian
- Medical Department II, Haematology and Oncology, University Medical Centre Schleswig-Holstein, Kiel, Germany
| | - Ameera Alsadeq
- Institute of Immunology, Ulm University Medical Centre, Ulm, Germany
| | - Dorothee Winterberg
- Division of Antibody-Based Immunotherapy, Department of Medicine II, Christian Albrechts University Kiel and University Medical Centre Schleswig-Holstein, Germany
| | - Fotini Vogiatzi
- Department of Paediatrics I, Paediatric Haematology/Oncology, ALL-BFM Study Group, University Medical Centre Schleswig-Holstein, Kiel, Germany
| | - Tim Wirbelauer
- Department of Paediatrics I, Paediatric Haematology/Oncology, ALL-BFM Study Group, University Medical Centre Schleswig-Holstein, Kiel, Germany
| | - Hilal Bhat
- Faculty of Medicine, Otto-von-Guericke University, Magdeburg, Germany
| | - Arndt Borkhardt
- Department of Paediatric Oncology, Haematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Germany
| | - Sanil Bhatia
- Department of Paediatric Oncology, Haematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Germany
| | - Martin Schrappe
- Department of Paediatrics I, Paediatric Haematology/Oncology, ALL-BFM Study Group, University Medical Centre Schleswig-Holstein, Kiel, Germany
| | - Gunnar Cario
- Department of Paediatrics I, Paediatric Haematology/Oncology, ALL-BFM Study Group, University Medical Centre Schleswig-Holstein, Kiel, Germany
| | - Denis M. Schewe
- Faculty of Medicine, Otto-von-Guericke University, Magdeburg, Germany
| | - Lennart Lenk
- Department of Paediatrics I, Paediatric Haematology/Oncology, ALL-BFM Study Group, University Medical Centre Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
14
|
Khademi R, Malekzadeh H, Bahrami S, Saki N, Khademi R, Villa-Diaz LG. Regulation and Functions of α6-Integrin (CD49f) in Cancer Biology. Cancers (Basel) 2023; 15:3466. [PMID: 37444576 DOI: 10.3390/cancers15133466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Over the past decades, our knowledge of integrins has evolved from being understood as simple cell surface adhesion molecules to receptors that have a complex range of intracellular and extracellular functions, such as delivering chemical and mechanical signals to cells. Consequently, they actively control cellular proliferation, differentiation, and apoptosis. Dysregulation of integrin signaling is a major factor in the development and progression of many tumors. Many reviews have covered the broader integrin family in molecular and cellular studies and its roles in diseases. Nevertheless, further understanding of the mechanisms specific to an individual subunit of different heterodimers is more useful. Thus, we describe the current understanding of and exploratory investigations on the α6-integrin subunit (CD49f, VLA6; encoded by the gene itga6) in normal and cancer cells. The roles of ITGA6 in cell adhesion, stemness, metastasis, angiogenesis, and drug resistance, and as a diagnosis biomarker, are discussed. The role of ITGA6 differs based on several features, such as cell background, cancer type, and post-transcriptional alterations. In addition, exosomal ITGA6 also implies metastatic organotropism. The importance of ITGA6 in the progression of a number of cancers, including hematological malignancies, suggests its potential usage as a novel prognostic or diagnostic marker and useful therapeutic target for better clinical outcomes.
Collapse
Affiliation(s)
- Rahele Khademi
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran 1419733151, Iran
- Immunology Board for Transplantation and Cell-Based Therapeutics (Immuno_TACT), Universal Scientific Education and Research Network (USERN), Tehran 1419733151, Iran
| | - Hossein Malekzadeh
- Department of Oral Medicine, Faculty of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715794, Iran
| | - Sara Bahrami
- Resident of Restorative Dentistry, Qazvin University of Medical Sciences, Qazvin 3419759811, Iran
| | - Najmaldin Saki
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715794, Iran
| | - Reyhane Khademi
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran 1419733151, Iran
- Immunology Board for Transplantation and Cell-Based Therapeutics (Immuno_TACT), Universal Scientific Education and Research Network (USERN), Tehran 1419733151, Iran
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715794, Iran
- Department of Medical Laboratory Sciences, School of Para-Medicine, Ahvaz Jundishapour University of Medical Sciences, Ahvaz 6135715794, Iran
| | - Luis G Villa-Diaz
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
- Department of Bioengineering, Oakland University, Rochester, MI 48309, USA
| |
Collapse
|
15
|
Abstract
Back pain is common, in up to 30% of children, increasing with age. Eighty percent is benign, mechanical type, improving within 2 weeks of conservative care. Required for those not improving is in-depth evaluation, including MRI, laboratory, and peer consultations. Spondylolysis and spondylolisthesis comprise almost 10% of pediatric back pain, often caused by lumbar hyperextension activities and treated conservatively in most cases. Osteoid osteomas and osteoblastomas constitute the most common benign spinal tumors in childhood. Aggressive and malignant tumors of the spine are rare but when present require tertiary care referral and a comprehensive oncology team for optimal life-sustaining outcomes.
Collapse
Affiliation(s)
- Kevin P Murphy
- Department of Physical Medicine and Rehabilitation, Sanford Health Systems, Bismarck North Dakota and Northern Minnesota, Northland Pediatric Rehabilitation Medicine LLC, 4710 Matterhorn Circle #309, Duluth, MN 55811, USA.
| | - Cristina Sanders
- Pediatric Rehabilitation Medicine, Monument Health Department Neurology and Rehabilitation, Monument Health System, 677 Cathedral Drive, Suite 240, Rapid City, SD 57701, USA
| | - Amy E Rabatin
- Division of Pediatric Rehabilitation Medicine, Department of Physical Medicine and Rehabilitation, Mayo Clinic, 200 1st Street Southwest, Rochester, MN 55905, USA; Department of Pediatric and Adolescent Medicine, Mayo Clinic, 200 1st Street Southwest, Rochester, MN 55905, USA
| |
Collapse
|
16
|
Jonart LM, Ostergaard J, Brooks A, Fitzpatrick G, Chen L, Gordon PM. CXCR4 antagonists disrupt leukaemia-meningeal cell adhesion and attenuate chemoresistance. Br J Haematol 2023; 201:459-469. [PMID: 36535585 PMCID: PMC10121760 DOI: 10.1111/bjh.18607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/28/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
The effective prophylaxis and treatment of central nervous system (CNS) involvement in acute lymphoblastic leukaemia (ALL) remains a significant clinical challenge. Developing novel and more effective CNS-directed therapies has been hampered, in part, by our limited understanding of the leukaemia niche in the CNS relative to the bone marrow. Accordingly, defining the molecular and cellular components critical for the establishment and maintenance of the CNS leukaemia niche may lead to new therapeutic opportunities. In prior work we showed that direct intercellular interactions between leukaemia and meningeal cells enhance leukaemia chemoresistance in the CNS. Herein, we show that the CXCR4/CXCL12 chemokine axis contributes to leukaemia-meningeal cell adhesion. Importantly, clinically tested CXCR4 antagonists, which are likely to cross the blood-brain and blood-cerebral spinal fluid barriers and penetrate the CNS, effectively disrupted leukaemia-meningeal cell adhesion. Moreover, by disrupting these intercellular interactions, CXCR4 antagonists attenuated leukaemia chemoresistance in leukaemia-meningeal cell co-culture experiments and enhanced the efficacy of cytarabine in targeting leukaemia cells in the meninges in vivo. This work identifies the CXCR4/CXCL12 axis as an important regulator of intercellular interactions within the CNS leukaemia niche and supports further testing of the therapeutic efficacy of CXCR4 antagonists in overcoming CNS niche-mediated chemoresistance.
Collapse
Affiliation(s)
- Leslie M Jonart
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jason Ostergaard
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Athena Brooks
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Garrett Fitzpatrick
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Liam Chen
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Peter M Gordon
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
17
|
Badawi M, Menon R, Place AE, Palenski T, Sunkersett G, Arrendale R, Deng R, Federico SM, Cooper TM, Salem AH. Venetoclax Penetrates the Blood Brain Barrier: A Pharmacokinetic Analysis in Pediatric Leukemia Patients. J Cancer 2023; 14:1151-1156. [PMID: 37215448 PMCID: PMC10197937 DOI: 10.7150/jca.81795] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/04/2023] [Indexed: 05/24/2023] Open
Abstract
Infiltration of malignant cells into the central nervous system in hematological malignancies correlates with poor clinical outcomes. Investigations into the penetration of venetoclax into the central nervous system have been limited. We report venetoclax pharmacokinetics in plasma and cerebrospinal fluid samples from a Phase 1 study in pediatric patients with relapsed or refractory malignancies that demonstrate venetoclax ability to cross into the central nervous system. Venetoclax was detected in cerebrospinal fluid (CSF) samples, with concentrations ranging from < 0.1 to 26 ng/mL (mean, 3.6 ng/mL) and a plasma:CSF ratio ranging from 44 to 1559 (mean, 385). Plasma:CSF ratios were comparable among patients with AML and ALL and no clear trend was observed in the ratios over the course of treatment. Moreover, improvement in central nervous system (CNS) involvement status was observed in patients who had measurable concentrations of venetoclax in the CSF. CNS resolution was observed for up to six months while on treatment. These findings highlight the potential role of venetoclax and provide the opportunity to further investigate its utility in improving clinical outcomes for patients with CNS complications.
Collapse
Affiliation(s)
| | | | - Andrew E. Place
- Dana-Farber/Boston Children's Cancer & Blood Disorders Center, Boston, MA, USA
| | | | | | | | - Rong Deng
- Genentech, Inc, South San Francisco, CA, USA
| | - Sara M. Federico
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Todd M. Cooper
- Cancer and Blood Disorders Center, Seattle Children's Hospital, Seattle, Washington, USA
| | - Ahmed Hamed Salem
- AbbVie, Inc, North Chicago, IL, USA
- Clinical Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
18
|
Kopmar NE, Cassaday RD. How I prevent and treat central nervous system disease in adults with acute lymphoblastic leukemia. Blood 2023; 141:1379-1388. [PMID: 36548957 PMCID: PMC10082377 DOI: 10.1182/blood.2022017035] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/28/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
The central nervous system (CNS) is the most important site of extramedullary disease in adults with acute lymphoblastic leukemia (ALL). Although CNS disease is identified only in a minority of patients at the time of diagnosis, subsequent CNS relapses (either isolated or concurrent with other sites) occur in some patients even after the delivery of prophylactic therapy targeted to the CNS. Historically, prophylaxis against CNS disease has included intrathecal (IT) chemotherapy and radiotherapy (RT), although the latter is being used with decreasing frequency. Treatment of a CNS relapse usually involves intensive systemic therapy and cranial or craniospinal RT along with IT therapy and consideration of allogeneic hematopoietic cell transplant. However, short- and long-term toxicities can make these interventions prohibitively risky, particularly for older adults. As new antibody-based immunotherapy agents have been approved for relapsed/refractory B-cell ALL, their use specifically for patients with CNS disease is an area of keen interest not only because of the potential for efficacy but also concerns of unique toxicity to the CNS. In this review, we discuss data-driven approaches for these common and challenging clinical scenarios as well as highlight how recent findings potentially support the use of novel immunotherapeutic strategies for CNS disease.
Collapse
Affiliation(s)
- Noam E. Kopmar
- Division of Hematology, Department of Medicine, University of Washington School of Medicine, University of Washington, Seattle, WA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Ryan D. Cassaday
- Division of Hematology, Department of Medicine, University of Washington School of Medicine, University of Washington, Seattle, WA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
| |
Collapse
|
19
|
Lin LP, Su S, Hou W, Huang L, Zhou Q, Zou M, Qian L, Cui W, Yang Z, Tang Y, Chen Y. Glymphatic system dysfunction in pediatric acute lymphoblastic leukemia without clinically diagnosed central nervous system infiltration: a novel DTI-ALPS method. Eur Radiol 2023; 33:3726-3734. [PMID: 36882529 DOI: 10.1007/s00330-023-09473-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/04/2022] [Accepted: 01/23/2023] [Indexed: 03/09/2023]
Abstract
BACKGROUND AND OBJECTIVE Central nervous system (CNS) infiltration commonly occurs in children with acute lymphoblastic leukemia (ALL). Nevertheless, CNS infiltration is rarely detected at the initial diagnosis. The glymphatic system, which regulates cerebrospinal fluid (CSF) and interstitial fluid transport, is considered one of the possible routes of CNS infiltration by leukemia cells. In this study, we used diffusion tensor image analysis along the perivascular space (DTI-ALPS) method to investigate glymphatic system function and obtained CSF volume using synthetic magnetic resonance imaging (SyMRI) in pediatric ALL without clinically diagnosed CNS infiltration. MATERIALS AND METHODS Twenty-nine ALL and 29 typically developing (TD) children were prospectively recruited (age 4-16 years) in the present study. Group differences in brain volumetric parameters, brain water diffusivities, and the ALPS index were evaluated after controlling for age, gender, and handedness. Furthermore, significant group-different parameters were correlated with clinical information using partial correlations analysis. RESULTS Lower Dxassoc and ALPS index, and increased CSF volume were found in pediatric ALL (all pFDR-corrected < 0.05). Moreover, the ALPS index was negatively associated with the risk classification (r = - 0.59, pFDR-corrected = 0.04) in pediatric ALL. CONCLUSIONS Dysfunction of the glymphatic system and accumulation of CSF were presented in pediatric ALL without clinically diagnosed CNS infiltration. These novel findings suggested that the glymphatic system might be essential in the early-stage process of ALL CNS infiltration, which provides a new direction for exploring underlying mechanisms and early detection of pediatric ALL CNS infiltration. KEY POINTS • Lower Dxassoc and ALPS index, and increased CSF volume were found in pediatric ALL (all pFDR-corrected < 0.05). • The ALPS index was negatively associated with the risk classification (r = -0.59, pFDR-corrected = 0.04) in pediatric ALL. • Dysfunction of the glymphatic system and accumulation of CSF were presented in pediatric ALL without clinically diagnosed CNS infiltration, which suggested that the ALPS index and CSF volume might be promising imaging markers for early detection of pediatric ALL CNS infiltration.
Collapse
Affiliation(s)
- Li-Ping Lin
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Shu Su
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Weifeng Hou
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Libin Huang
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China
| | - Qin Zhou
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Mengsha Zou
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Long Qian
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, People's Republic of China
| | - Wei Cui
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, People's Republic of China
| | - Zhiyun Yang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Yanlai Tang
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China.
| | - Yingqian Chen
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou, 510080, Guangdong, People's Republic of China.
| |
Collapse
|
20
|
Cui J, Zheng J, Niu W, Bian W, Wang J, Niu J. Quantitative IVIM parameters evaluating perfusion changes in brain parenchyma in patients newly diagnosed with acute leukemia: Compared with healthy participants. Front Neurol 2023; 14:1093003. [PMID: 36816571 PMCID: PMC9932664 DOI: 10.3389/fneur.2023.1093003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/03/2023] [Indexed: 02/05/2023] Open
Abstract
Purpose To study the value of quantitative IVIM parameters in evaluating cerebral blood perfusion changes in patients newly diagnosed with acute leukemia (AL) by comparing them with healthy participants. Materials and methods This prospective study consecutively recruited 49 participants with newly diagnosed AL and 40 normal controls between July 2020 and September 2022. All participants underwent an MRI of the brain using an axial T1-weighted and an IVIM sequence. The IVIM parameters (water diffusion coefficient, sADC, pseudoperfusion fraction, f; diffusion coefficient, D, pseudodiffusion coefficient, D *, and perfusion-diffusion ratio, PDR) and peripheral white blood cell (WBC) counts were obtained. An unpaired t-test or the Mann-Whitney U-test was performed to compare the differences in gray matter (GM) and white matter (WM) of healthy participants and AL patients and the differences in IVIM parameters between healthy participants and patients with AL. In addition, multivariate (logistic regression) analyses were used to identify independent predictors and then, the receiver operating characteristic curve (ROC) analyses were performed. Results 40 healthy participants and 49 patients with newly diagnosed AL were evaluated. In healthy participants, sADC, PDR, D and f values of GM were significantly higher than those of WM (t = 5.844, t = 3.838, t = 7.711, z = -2.184, respectively, all P < 0.05). In AL patients, the D, f and sADC values of GM were significantly higher than those of WM (t = 3.450, t = 6.262, t = 4.053, respectively, all P < 0.05). The sADC and f value from AL patients were significantly lower than those from healthy participants in GM (z = -2.537, P = 0.011; and z = -2.583, P = 0.010, respectively) and WM (z = -2.969, P = 0.003; z = -2.923, P = 0.003, respectively). The WBC counts of AL patients were significantly higher than those of healthy participants (t = 3.147, P = 0.002). Multivariate analyses showed that the f values of GM and WM were independent predictors of AL (P = 0.030, and 0.010, respectively), with the optimal cut-off value at 7.08% (AUC ROC curve: 0.661, specificity: 11.4%, sensitivity: 98%) and 13.77% (AUC ROC curve: 0.682, specificity: 79.5%, sensitivity: 59.2%). Conclusion The IVIM parameters of brain parenchyma in patients newly diagnosed with AL differed from those of the healthy participants. The changes of cerebral blood flow perfusion are expected to provide new ideas for studying central nervous system infiltration in AL.
Collapse
Affiliation(s)
- Jianing Cui
- Medical Imaging Department, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jing Zheng
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Weiran Niu
- Department of Mental Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Wenjin Bian
- Medical Imaging Department, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jun Wang
- Department of Radiology, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jinliang Niu
- Department of Radiology, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi, China,*Correspondence: Jinliang Niu ✉
| |
Collapse
|
21
|
Therapeutic Monitoring of Orally Administered, Small-Molecule Anticancer Medications with Tumor-Specific Cellular Protein Targets in Peripheral Fluid Spaces-A Review. Pharmaceutics 2023; 15:pharmaceutics15010239. [PMID: 36678867 PMCID: PMC9864625 DOI: 10.3390/pharmaceutics15010239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/13/2023] Open
Abstract
Orally administered, small-molecule anticancer drugs with tumor-specific cellular protein targets (OACD) have revolutionized oncological pharmacotherapy. Nevertheless, the differences in exposure to these drugs in the systemic circulation and extravascular fluid compartments have led to several cases of therapeutic failure, in addition to posing unknown risks of toxicity. The therapeutic drug monitoring (TDM) of OACDs in therapeutically relevant peripheral fluid compartments is therefore essential. In this work, the available knowledge regarding exposure to OACD concentrations in these fluid spaces is summarized. A review of the literature was conducted by searching Embase, PubMed, and Web of Science for clinical research articles and case reports published between 10 May 2001 and 31 August 2022. Results show that, to date, penetration into cerebrospinal fluid has been studied especially intensively, in addition to breast milk, leukocytes, peripheral blood mononuclear cells, peritoneal fluid, pleural fluid, saliva and semen. The typical clinical indications of peripheral fluid TDM of OACDs were (1) primary malignancy, (2) secondary malignancy, (3) mental disorder, and (4) the assessment of toxicity. Liquid chromatography-tandem mass spectrometry was most commonly applied for analysis. The TDM of OACDs in therapeutically relevant peripheral fluid spaces is often indispensable for efficient and safe treatments.
Collapse
|
22
|
Cao HY, Chen H, Liu SB, Gong WJ, Qian CS, Zhang TT, Wan CL, Huang SM, Xu N, Dai HP, Xue SL. Case Report: Blinatumomab therapy for the treatment of B-cell acute lymphoblastic leukemia patients with central nervous system infiltration. Front Immunol 2023; 14:1181620. [PMID: 37143650 PMCID: PMC10151792 DOI: 10.3389/fimmu.2023.1181620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/03/2023] [Indexed: 05/06/2023] Open
Abstract
The treatment of B-cell acute lymphoblastic leukemia (B-ALL) with central nervous system (CNS) involvement poses a significant clinical challenge because most chemotherapeutic agents exhibit weak permeability to the blood-brain barrier (BBB). In addition, current anti-CNS leukemia treatments often bring short or long-term complications. Immunotherapy including chimeric antigen T-cell therapy and bispecific antibody have shown profound treatment responses in relapsed/refractory B-ALL. However, there is a lack of data on the efficacy of bispecific antibody in treating B-ALL with CNS involvement. Here, we report two ALL patients with CNS leukemia who received blinatumomab. Case 1 was diagnosed with chronic myeloid leukemia in lymphoid blast phase. The patient developed CNS leukemia and bone marrow relapse during the treatment with dasatinib. Case 2 was diagnosed with B-ALL and suffered early hematologic relapse and cerebral parenchyma involvement. After treatment with one cycle of blinatumomab, both patients achieved complete remission in the bone marrow and CNS. Furthermore, this is the first report on the efficacy of blinatumomab in treating CNS leukemia with both of the cerebral spinal fluid and the cerebral parenchymal involvement. Our results suggest that blinatumomab might be a potential option for the treatment of CNS leukemia.
Collapse
Affiliation(s)
- Han-Yu Cao
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Hui Chen
- Hematological Department, The First People’s Hospital of Yancheng, Yancheng, China
| | - Song-Bai Liu
- Suzhou Key Laboratory of Medical Biotechnology, Suzhou Vocational Health College, Suzhou, China
| | - Wen-Jie Gong
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Chong-Sheng Qian
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Tong-Tong Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Chao-Ling Wan
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Si-Man Huang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Nan Xu
- Research and Development Department, Shanghai Unicar-Therapy Bio-Medicine Technology Co. Ltd, Shanghai, China
| | - Hai-Ping Dai
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- *Correspondence: Sheng-Li Xue, ; Hai-Ping Dai,
| | - Sheng-Li Xue
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- *Correspondence: Sheng-Li Xue, ; Hai-Ping Dai,
| |
Collapse
|
23
|
Sampathi S, Chernyavskaya Y, Haney MG, Moore LH, Snyder IA, Cox AH, Fuller BL, Taylor TJ, Yan D, Badgett TC, Blackburn JS. Nanopore sequencing of clonal IGH rearrangements in cell-free DNA as a biomarker for acute lymphoblastic leukemia. Front Oncol 2022; 12:958673. [PMID: 36591474 PMCID: PMC9795051 DOI: 10.3389/fonc.2022.958673] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Background Acute Lymphoblastic Leukemia (ALL) is the most common pediatric cancer, and patients with relapsed ALL have a poor prognosis. Detection of ALL blasts remaining at the end of treatment, or minimal residual disease (MRD), and spread of ALL into the central nervous system (CNS) have prognostic importance in ALL. Current methods to detect MRD and CNS disease in ALL rely on the presence of ALL blasts in patient samples. Cell-free DNA, or small fragments of DNA released by cancer cells into patient biofluids, has emerged as a robust and sensitive biomarker to assess cancer burden, although cfDNA analysis has not previously been applied to ALL. Methods We present a simple and rapid workflow based on NanoporeMinION sequencing of PCR amplified B cell-specific rearrangement of the (IGH) locus in cfDNA from B-ALL patient samples. A cohort of 5 pediatric B-ALL patient samples was chosen for the study based on the MRD and CNS disease status. Results Quantitation of IGH-variable sequences in cfDNA allowed us to detect clonal heterogeneity and track the response of individual B-ALL clones throughout treatment. cfDNA was detected in patient biofluids with clinical diagnoses of MRD and CNS disease, and leukemic clones could be detected even when diagnostic cell-count thresholds for MRD were not met. These data suggest that cfDNA assays may be useful in detecting the presence of ALL in the patient, even when blasts are not physically present in the biofluid sample. Conclusions The Nanopore IGH detection workflow to monitor cell-free DNA is a simple, rapid, and inexpensive assay that may ultimately serve as a valuable complement to traditional clinical diagnostic approaches for ALL.
Collapse
Affiliation(s)
- Shilpa Sampathi
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States
| | - Yelena Chernyavskaya
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States
| | - Meghan G. Haney
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States,Markey Cancer Center, University of Kentucky, Lexington, KY, United States,College of Medicine, University of Kentucky, Lexington, KY, United States
| | - L. Henry Moore
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States,College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Isabel A. Snyder
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States
| | - Anna H. Cox
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States,College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Brittany L. Fuller
- Department of Pediatric Oncology, University of Kentucky, Lexington, KY, United States
| | - Tamara J. Taylor
- Department of Pediatric Oncology, University of Kentucky, Lexington, KY, United States
| | - Donglin Yan
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States,Department of Biostatistics, University of Kentucky, Lexington, KY, United States
| | - Tom C. Badgett
- Department of Pediatric Oncology, University of Kentucky, Lexington, KY, United States
| | - Jessica S. Blackburn
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States,Markey Cancer Center, University of Kentucky, Lexington, KY, United States,*Correspondence: Jessica S. Blackburn,
| |
Collapse
|
24
|
Thastrup M, Duguid A, Mirian C, Schmiegelow K, Halsey C. Central nervous system involvement in childhood acute lymphoblastic leukemia: challenges and solutions. Leukemia 2022; 36:2751-2768. [PMID: 36266325 PMCID: PMC9712093 DOI: 10.1038/s41375-022-01714-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/17/2022] [Accepted: 09/22/2022] [Indexed: 11/10/2022]
Abstract
Delivery of effective anti-leukemic agents to the central nervous system (CNS) is considered essential for cure of childhood acute lymphoblastic leukemia. Current CNS-directed therapy comprises systemic therapy with good CNS-penetration accompanied by repeated intrathecal treatments up to 26 times over 2-3 years. This approach prevents most CNS relapses, but is associated with significant short and long term neurotoxicity. Despite this burdensome therapy, there have been no new drugs licensed for CNS-leukemia since the 1960s, when very limited anti-leukemic agents were available and there was no mechanistic understanding of leukemia survival in the CNS. Another major barrier to improved treatment is that we cannot accurately identify children at risk of CNS relapse, or monitor response to treatment, due to a lack of sensitive biomarkers. A paradigm shift in treating the CNS is needed. The challenges are clear - we cannot measure CNS leukemic load, trials have been unable to establish the most effective CNS treatment regimens, and non-toxic approaches for relapsed, refractory, or intolerant patients are lacking. In this review we discuss these challenges and highlight research advances aiming to provide solutions. Unlocking the potential of risk-adapted non-toxic CNS-directed therapy requires; (1) discovery of robust diagnostic, prognostic and response biomarkers for CNS-leukemia, (2) identification of novel therapeutic targets combined with associated investment in drug development and early-phase trials and (3) engineering of immunotherapies to overcome the unique challenges of the CNS microenvironment. Fortunately, research into CNS-ALL is now making progress in addressing these unmet needs: biomarkers, such as CSF-flow cytometry, are now being tested in prospective trials, novel drugs are being tested in Phase I/II trials, and immunotherapies are increasingly available to patients with CNS relapses. The future is hopeful for improved management of the CNS over the next decade.
Collapse
Affiliation(s)
- Maria Thastrup
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Alasdair Duguid
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Christian Mirian
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, Proteomics Program, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kjeld Schmiegelow
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christina Halsey
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
25
|
Lanier OL, Pérez-Herrero E, Andrea APD, Bahrami K, Lee E, Ward DM, Ayala-Suárez N, Rodríguez-Méndez SM, Peppas NA. Immunotherapy approaches for hematological cancers. iScience 2022; 25:105326. [PMID: 36325064 PMCID: PMC9619355 DOI: 10.1016/j.isci.2022.105326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hematological cancers such as leukemia, lymphoma, and multiple myeloma have traditionally been treated with chemo and radiotherapy approaches. Introduction of immunotherapies for treatment of these diseases has led to patient remissions that would not have been possible with traditional approaches. In this critical review we identify main disease characteristics, symptoms, and current treatment options. Five common immunotherapies, namely checkpoint inhibitors, vaccines, cell-based therapies, antibodies, and oncolytic viruses, are described, and their applications in hematological cancers are critically discussed.
Collapse
Affiliation(s)
- Olivia L. Lanier
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
| | - Edgar Pérez-Herrero
- Departamento de Ingeniería Química y Tecnología Farmacéutica, Universidad de La Laguna, La Laguna, 38206 Tenerife, Spain
- Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, La Laguna, 38206 Tenerife, Spain
- Instituto Universitario de Tecnologías Biomédicas, Universidad de La Laguna, La Laguna, 38200 Tenerife, Spain
| | - Abielle P. D.’ Andrea
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
| | - Kiana Bahrami
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
| | - Elaine Lee
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
| | - Deidra M. Ward
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
| | - Nilaya Ayala-Suárez
- Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, La Laguna, 38206 Tenerife, Spain
| | - Sheyla M. Rodríguez-Méndez
- Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, La Laguna, 38206 Tenerife, Spain
| | - Nicholas A. Peppas
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
- Department of Surgery and Perioperative Care, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
26
|
Sousa B, de Almeida CR, Barahona AF, Lopes R, Martins-Logrado A, Cavaco M, Neves V, Carvalho LA, Labão-Almeida C, Coelho AR, Leal Bento M, Lopes RMR, Oliveira BL, Castanho MARB, Neumeister P, Deutsch A, Vladimer GI, Krall N, João C, Corzana F, Seixas JD, Fior R, Bernardes GJL. Selective Inhibition of Bruton's Tyrosine Kinase by a Designed Covalent Ligand Leads to Potent Therapeutic Efficacy in Blood Cancers Relative to Clinically Used Inhibitors. ACS Pharmacol Transl Sci 2022; 5:1156-1168. [PMID: 36407952 PMCID: PMC9667546 DOI: 10.1021/acsptsci.2c00163] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Indexed: 11/06/2022]
Abstract
Bruton's tyrosine kinase (BTK) is a member of the TEC-family kinases and crucial for the proliferation and differentiation of B-cells. We evaluated the therapeutic potential of a covalent inhibitor (JS25) with nanomolar potency against BTK and with a more desirable selectivity and inhibitory profile compared to the FDA-approved BTK inhibitors ibrutinib and acalabrutinib. Structural prediction of the BTK/JS25 complex revealed sequestration of Tyr551 that leads to BTK's inactivation. JS25 also inhibited the proliferation of myeloid and lymphoid B-cell cancer cell lines. Its therapeutic potential was further tested against ibrutinib in preclinical models of B-cell cancers. JS25 treatment induced a more pronounced cell death in a murine xenograft model of Burkitt's lymphoma, causing a 30-40% reduction of the subcutaneous tumor and an overall reduction in the percentage of metastasis and secondary tumor formation. In a patient model of diffuse large B-cell lymphoma, the drug response of JS25 was higher than that of ibrutinib, leading to a 64% "on-target" efficacy. Finally, in zebrafish patient-derived xenografts of chronic lymphocytic leukemia, JS25 was faster and more effective in decreasing tumor burden, producing superior therapeutic effects compared to ibrutinib. We expect JS25 to become therapeutically relevant as a BTK inhibitor and to find applications in the treatment of hematological cancers and other pathologies with unmet clinical treatment.
Collapse
Affiliation(s)
- Bárbara
B. Sousa
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina,
Universidade de Lisboa, Avenida Prof. Egas Moniz, 1649-028, Lisbon, Portugal
| | | | - Ana F. Barahona
- Champalimaud
Foundation, Avenida de Brasília, 1400-038, Lisbon, Portugal
| | - Raquel Lopes
- Champalimaud
Foundation, Avenida de Brasília, 1400-038, Lisbon, Portugal
| | | | - Marco Cavaco
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina,
Universidade de Lisboa, Avenida Prof. Egas Moniz, 1649-028, Lisbon, Portugal
| | - Vera Neves
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina,
Universidade de Lisboa, Avenida Prof. Egas Moniz, 1649-028, Lisbon, Portugal
| | - Luís A.
R. Carvalho
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Carlos Labão-Almeida
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina,
Universidade de Lisboa, Avenida Prof. Egas Moniz, 1649-028, Lisbon, Portugal
| | - Ana R. Coelho
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina,
Universidade de Lisboa, Avenida Prof. Egas Moniz, 1649-028, Lisbon, Portugal
| | - Marta Leal Bento
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina,
Universidade de Lisboa, Avenida Prof. Egas Moniz, 1649-028, Lisbon, Portugal
- Centro
Hospitalar Lisboa Norte, Department of Hematology and Bone Marrow
Transplantation, Avenida
Prof. Egas Moniz, 1649-035 Lisbon, Portugal
| | - Ricardo M. R.
M. Lopes
- Research
Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1600-277 Lisbon, Portugal
| | - Bruno L. Oliveira
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina,
Universidade de Lisboa, Avenida Prof. Egas Moniz, 1649-028, Lisbon, Portugal
| | - Miguel A. R. B. Castanho
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina,
Universidade de Lisboa, Avenida Prof. Egas Moniz, 1649-028, Lisbon, Portugal
| | - Peter Neumeister
- Division
of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036 Graz, Austria
| | - Alexander Deutsch
- Division
of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036 Graz, Austria
| | - Gregory I. Vladimer
- Exscientia, The Schrödinger Building,
Oxford Science Park, Oxford OX4 4GE, U.K.
| | - Nikolaus Krall
- Exscientia, The Schrödinger Building,
Oxford Science Park, Oxford OX4 4GE, U.K.
| | - Cristina João
- Champalimaud
Foundation, Avenida de Brasília, 1400-038, Lisbon, Portugal
| | - Francisco Corzana
- Centro
de Investigación en Síntesis Química, Departamento
de Química, Universidad de La Rioja, 26006 Logroño, Spain
| | - João D. Seixas
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina,
Universidade de Lisboa, Avenida Prof. Egas Moniz, 1649-028, Lisbon, Portugal
- TARGTEX
S.A., Avenida Tenente
Valadim, N°17, 2F, 2560-275 Torres Vedras, Portugal
| | - Rita Fior
- Champalimaud
Foundation, Avenida de Brasília, 1400-038, Lisbon, Portugal
| | - Gonçalo J. L. Bernardes
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina,
Universidade de Lisboa, Avenida Prof. Egas Moniz, 1649-028, Lisbon, Portugal
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|
27
|
Raza S, Rajak S, Tewari A, Gupta P, Chattopadhyay N, Sinha RA, Chakravarti B. Multifaceted role of chemokines in solid tumors: From biology to therapy. Semin Cancer Biol 2022; 86:1105-1121. [PMID: 34979274 PMCID: PMC7613720 DOI: 10.1016/j.semcancer.2021.12.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 02/07/2023]
Abstract
Chemokines are small secretory chemotactic cytokines that control the directed migration of immune cells. Chemokines are involved in both anti-and pro-tumorigenic immune responses. Accumulating evidence suggests that the balance between these responses is influenced by several factors such as the stage of tumorigenesis, immune cell activation, recruitment of immune activating or immunosuppressive cells in the tumor microenvironment (TME), and chemokine receptor expression on effector and regulatory target cells. Cancer cells engage in a complex network with their TME components via several factors including growth factors, cytokines and chemokines that are critical for the growth of primary tumor and metastasis. However, chemokines show a multifaceted role in tumor progression including maintenance of stem-like properties, tumor cell proliferation/survival/senescence, angiogenesis, and metastasis. The heterogeneity of solid tumors in primary and metastatic cancers presents a challenge to the development of successful cancer therapy. Despite extensive research on how solid tumors escape immune cell-mediated anti-tumor response, finding an effective therapy for metastatic cancer still remains a challenge. This review discusses the multifarious roles of chemokines in solid tumors including various chemokine signaling pathways such as CXCL8-CXCR1/2, CXCL9, 10, 11-CXCR3, CXCR4-CXCL12, CCL(X)-CCR(X) in primary and metastatic cancers. We further discuss the novel therapeutic approaches that have been developed by major breakthroughs in chemokine research to treat cancer patients by the strategic blockade/activation of these signaling axes alone or in combination with immunotherapies.
Collapse
Affiliation(s)
- Sana Raza
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014, India
| | - Sangam Rajak
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014, India
| | - Archana Tewari
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014, India
| | - Pratima Gupta
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014, India
| | - Naibedya Chattopadhyay
- Division of Endocrinology and CSIR-Central Drug Research Institute, Sitapur Road, Lucknow, 226 031, India
| | - Rohit Anthony Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014, India
| | - Bandana Chakravarti
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014, India.
| |
Collapse
|
28
|
Xavier T, Vijayachandran LS, Chandran R, Mony U, Augustine A, Sidharthan N, Ganapathy R, Keechilat P, Sundaram KR, Menon KN. Interactome based identification and validation of prefoldin 5-α for prognosing CNS leukemia in B-ALL patients. Sci Rep 2022; 12:15491. [PMID: 36109530 PMCID: PMC9477816 DOI: 10.1038/s41598-022-19489-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 08/30/2022] [Indexed: 12/04/2022] Open
Abstract
We report here the identification and validation of prefoldin 5-alpha (PFDN5-α) for the first time as prognostic biomarker for prediction of central nervous system (CNS) leukemia of B cell acute lymphoblastic leukemia (B-ALL) origin. Since cerebrospinal fluid (CSF) cytology being the gold standard of diagnosis for CNS leukemia with poor sensitivity, mandatory prophylactic intrathecal chemotherapy is administered irrespective of patients develop CNS leukemia. Thus, using interactome studies, we identified PFDN5-α as a prognostic biomarker for predicting CNS leukemia by interacting lymphoblastic proteins and CSF from B-ALL patients using far-western clinical proteomics approach. Validation by both western and ELISA methods confirmed our results. For further clinical translation, we performed Receiver Operating Characteristic (ROC) curve analysis generated from CNS +ve (n = 25) and −ve (n = 40) CSF samples from B-ALL patients and identified PFDN5-α-CSF reactivity cut-off value as 0.456. Values below 0.456 indicate the patient is at risk of developing CNS leukemia and suggestive of having intrathecal chemotherapy. Further flow cytometry validation for CNS leukemia positivity revealed that with increasing blast cells, a decrease in PFDN5-α-CSF reactivity confirming ELISA based PFDN5α-CSF reactivity assay. Predicting CNS leukemia development risk by ELISA based PFDN5-α-CSF reactivity assay could have potential in the clinical management of CNS leukemia.
Collapse
|
29
|
Wang S, Feng Y, Chen L, Yu J, Van Ongeval C, Bormans G, Li Y, Ni Y. Towards updated understanding of brain metastasis. Am J Cancer Res 2022; 12:4290-4311. [PMID: 36225632 PMCID: PMC9548021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/06/2022] [Indexed: 06/16/2023] Open
Abstract
Brain metastasis (BM) is a common complication in cancer patients with advanced disease and attributes to treatment failure and final mortality. Currently there are several therapeutic options available; however these are only suitable for limited subpopulation: surgical resection or radiosurgery for cases with a limited number of lesions, targeted therapies for approximately 18% of patients, and immune checkpoint inhibitors with a response rate of 20-30%. Thus, there is a pressing need for development of novel diagnostic and therapeutic options. This overview article aims to provide research advances in disease model, targeted therapy, blood brain barrier (BBB) opening strategies, imaging and its incorporation with artificial intelligence, external radiotherapy, and internal targeted radionuclide theragnostics. Finally, a distinct type of BM, leptomeningeal metastasis is also covered.
Collapse
Affiliation(s)
- Shuncong Wang
- KU Leuven, Biomedical Group, Campus GasthuisbergLeuven 3000, Belgium
| | - Yuanbo Feng
- KU Leuven, Biomedical Group, Campus GasthuisbergLeuven 3000, Belgium
| | - Lei Chen
- KU Leuven, Biomedical Group, Campus GasthuisbergLeuven 3000, Belgium
| | - Jie Yu
- KU Leuven, Biomedical Group, Campus GasthuisbergLeuven 3000, Belgium
| | - Chantal Van Ongeval
- Department of Radiology, University Hospitals Leuven, KU LeuvenHerestraat 49, Leuven 3000, Belgium
| | - Guy Bormans
- KU Leuven, Biomedical Group, Campus GasthuisbergLeuven 3000, Belgium
| | - Yue Li
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health SciencesShanghai 201318, China
| | - Yicheng Ni
- KU Leuven, Biomedical Group, Campus GasthuisbergLeuven 3000, Belgium
| |
Collapse
|
30
|
Rao HR, Barron MA, Biswas A, Branson HM, Mitton GD, Naqvi A. Malnutrition in a child with T-cell ALL leading to superior mesenteric artery syndrome and Wernicke's encephalopathy. Pediatr Blood Cancer 2022; 69:e29651. [PMID: 35441467 DOI: 10.1002/pbc.29651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/24/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Harini R Rao
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, Canada.,Department of Paediatrics, University of Toronto, Toronto, Canada
| | - Mary A Barron
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, Canada
| | - Asthik Biswas
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Canada.,Department of Medical Imaging, University of Toronto, Canada
| | - Helen M Branson
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Canada.,Department of Medical Imaging, University of Toronto, Canada
| | - Gregory D Mitton
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Canada.,Department of Medical Imaging, University of Toronto, Canada
| | - Ahmed Naqvi
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, Canada.,Department of Paediatrics, University of Toronto, Toronto, Canada
| |
Collapse
|
31
|
Cruz-Chávez DA, López-Pérez BJ, Solórzano-Gómez E, Venta-Sobero JA, Flores-Villegas LV, Toledo-Lozano CG, Castro-Loza GV, Sandoval-Pacheco R, Torres-Vallejo A, Marmol-Realpe KSF, Flores-Jurado YE, Hernández-Soriano CL, Alcaraz-Estrada SL, Mondragón-Terán P, Suárez-Cuenca JA, Coral-Vázquez RM, Garcia S. Neurological Involvement in Pediatric Patients with Acute Leukemia: A Retrospective Cohort. CHILDREN 2022; 9:children9091268. [PMID: 36138577 PMCID: PMC9496928 DOI: 10.3390/children9091268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022]
Abstract
Acute leukemia (AL) is an important cause of morbidity and mortality in children, and neurological manifestations (NM) are frequent. The objective of this study was to analyze neurological manifestations in children with acute leukemia from cases attended in the last five years at the Centro Médico Nacional “20 de Noviembre”. Methods: Conducting a retrospective and analytical study from 1 January 2015 to 31 December 2020 in children with AL classified according to sex, age range and AL type. Participants were grouped according the presence of NM. Results: We analyzed 607 patients: 54.85% boys and 44.14% girls, with a mean age of 7.27 ± 4.54 years. When comparing groups, the NM group was significantly older (p = 0.01), and the highest prevalence was between 6 and 12 years old. ALL was predominant over the other lineages (p ≤ 0.01). The most frequent NM was CNS infiltration, seizures, headache and neuropathy. Death outcomes occurred in 18.7% of children with AML, 11.8% with ALL and 50% with MPAL (p ≤ 0.002). The NM group was associated with higher mortality during a follow-up time of 77.9 ± 49 months (44.4% vs. 8.9% deaths, NM vs. non-NM, respectively; OR = 3.3; 95% CI 2.4 to 4.6; p ≤ 0.0001). Conclusions: ALL was the most prevalent leukemia type. CNS infiltration, seizures, headache, neuropathy and PRES were the most frequent symptoms in the NM group. NM was associated with a higher mortality rate.
Collapse
Affiliation(s)
- Diana Alejandra Cruz-Chávez
- Department of Pediatric Neurology, Centro Médico Nacional “20 de Noviembre”, Instituto de Seguridad y Servicios Sociales para los Trabajadores del Estado, Mexico City 03229, Mexico
| | - Brian Javier López-Pérez
- Department of Pediatric Neurology, Centro Médico Nacional “20 de Noviembre”, Instituto de Seguridad y Servicios Sociales para los Trabajadores del Estado, Mexico City 03229, Mexico
| | - Elsa Solórzano-Gómez
- Department of Pediatric Neurology, Centro Médico Nacional “20 de Noviembre”, Instituto de Seguridad y Servicios Sociales para los Trabajadores del Estado, Mexico City 03229, Mexico
| | - José Antonio Venta-Sobero
- Department of Pediatric Neurology, Centro Médico Nacional “20 de Noviembre”, Instituto de Seguridad y Servicios Sociales para los Trabajadores del Estado, Mexico City 03229, Mexico
| | - Luz Victoria Flores-Villegas
- Department of Pediatric Hematology, Centro Médico Nacional “20 de Noviembre”, Instituto de Seguridad y Servicios Sociales para los Trabajadores del Estado, Mexico City 03229, Mexico
| | - Christian Gabriel Toledo-Lozano
- Department of Clinical Research, Centro Médico Nacional “20 de Noviembre”, Instituto de Seguridad y Servicios Sociales para los Trabajadores del Estado, Mexico City 03229, Mexico
- Correspondence: (C.G.T.-L.); (S.G.); Tel.: +52-5519562089 (C.G.T.-L.); +52-5554377491 (S.G.)
| | - Gabriela Vianney Castro-Loza
- Department of Undergraduate Research, Hospital Militar de Especialidades de la Mujer y Neonatología, Mexico City 11200, Mexico
| | - Roberto Sandoval-Pacheco
- Department of Undergraduate Research, Hospital Militar de Especialidades de la Mujer y Neonatología, Mexico City 11200, Mexico
| | - Andrea Torres-Vallejo
- Department of Pediatric Endocrinology, Instituto Nacional de Pediatría, Mexico City 03700, Mexico
| | - Karen Sharlot Faisury Marmol-Realpe
- Department of Pediatric Neurology, Centro Médico Nacional “20 de Noviembre”, Instituto de Seguridad y Servicios Sociales para los Trabajadores del Estado, Mexico City 03229, Mexico
| | - Yazmín Evelyn Flores-Jurado
- Department of Pediatric Neurology, Centro Médico Nacional “20 de Noviembre”, Instituto de Seguridad y Servicios Sociales para los Trabajadores del Estado, Mexico City 03229, Mexico
| | - Cristal Lucero Hernández-Soriano
- Department of Pediatric Neurology, Centro Médico Nacional “20 de Noviembre”, Instituto de Seguridad y Servicios Sociales para los Trabajadores del Estado, Mexico City 03229, Mexico
| | - Sofía Lizeth Alcaraz-Estrada
- Department of Genomic Medicine, Centro Médico Nacional “20 de Noviembre”, Instituto de Seguridad y Servicios Sociales para los Trabajadores del Estado, Mexico City 03229, Mexico
| | - Paul Mondragón-Terán
- Department of Clinical Research, Centro Médico Nacional “20 de Noviembre”, Instituto de Seguridad y Servicios Sociales para los Trabajadores del Estado, Mexico City 03229, Mexico
| | - Juan Antonio Suárez-Cuenca
- Department of Clinical Research, Centro Médico Nacional “20 de Noviembre”, Instituto de Seguridad y Servicios Sociales para los Trabajadores del Estado, Mexico City 03229, Mexico
| | - Ramón Mauricio Coral-Vázquez
- Department of Teaching and Research, Centro Médico Nacional “20 de Noviembre”, Instituto de Seguridad y Servicios Sociales para los Trabajadores del Estado, Mexico City 03229, Mexico
- Postgraduate Section, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Silvia Garcia
- Department of Neuroscience, Centro Médico Nacional “20 de Noviembre”, Instituto de Seguridad y Servicios Sociales para los Trabajadores del Estado, Mexico City 03229, Mexico
- Correspondence: (C.G.T.-L.); (S.G.); Tel.: +52-5519562089 (C.G.T.-L.); +52-5554377491 (S.G.)
| |
Collapse
|
32
|
Anastasopoulou S, Harila-Saari A, Als-Nielsen B, Eriksson MA, Heyman M, Johannsdottir IM, Marquart HV, Niinimäki R, Pronk CJ, Schmiegelow K, Vaitkeviciene G, Thastrup M, Ranta S. Does minimal central nervous system involvement in childhood acute lymphoblastic leukemia increase the risk for central nervous system toxicity? Pediatr Blood Cancer 2022; 69:e29745. [PMID: 35488712 DOI: 10.1002/pbc.29745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 12/17/2022]
Abstract
Central nervous system (CNS) involvement in childhood acute lymphoblastic leukemia (ALL) implicates enhanced intrathecal chemotherapy, which is related to CNS toxicity. Whether CNS involvement alone contributes to CNS toxicity remains unclear. We studied the occurrence of all CNS toxicities, seizures, and posterior reversible encephalopathy syndrome (PRES) in children with ALL without enhanced intrathecal chemotherapy with CNS involvement (n = 64) or without CNS involvement (n = 256) by flow cytometry. CNS involvement increased the risk for all CNS toxicities, seizures, and PRES in univariate analysis and, after adjusting for induction therapy, for seizures (hazard ratio [HR] = 3.33; 95% confidence interval [CI]: 1.26-8.82; p = 0.016) and PRES (HR = 4.85; 95% CI: 1.71-13.75; p = 0.003).
Collapse
Affiliation(s)
- Stavroula Anastasopoulou
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden.,Department of Women's and Children's Health, Childhood Cancer Research Unit, Karolinska Institutet, Stockholm, Sweden
| | - Arja Harila-Saari
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Bodil Als-Nielsen
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Mats Anders Eriksson
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden.,Department of Women's and Children's Health, Neuropediatric Unit, Karolinska Institutet, Stockholm, Sweden
| | - Mats Heyman
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden.,Department of Women's and Children's Health, Childhood Cancer Research Unit, Karolinska Institutet, Stockholm, Sweden
| | | | - Hanne Vibeke Marquart
- Department of Clinical Immunology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Riitta Niinimäki
- Department of Children and Adolescents, Oulu University Hospital and University of Oulu, PEDEGO Research Unit, Oulu, Finland
| | | | - Kjeld Schmiegelow
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, Copenhagen, Denmark.,Institute of Clinical Medicine, Faculty of Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Goda Vaitkeviciene
- Children's Hospital, Affiliate of Vilnius University Hospital Santaros Klinikos and Vilnius University, Vilnius, Lithuania
| | - Maria Thastrup
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Susanna Ranta
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden.,Department of Women's and Children's Health, Childhood Cancer Research Unit, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
33
|
Ngo D, Otoukesh S, Stein AS, Forman S, Pullarkat V, Aldoss I. The safety of concurrent intrathecal chemotherapy during blinatumomab in adults with acute lymphoblastic leukemia. Leuk Lymphoma 2022; 63:2754-2756. [DOI: 10.1080/10428194.2022.2090555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Dat Ngo
- Department of Pharmacy, City of Hope, Duarte, CA, USA
| | - Salman Otoukesh
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
| | - Anthony S. Stein
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
| | - Stephen Forman
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
| | - Vinod Pullarkat
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
| | - Ibrahim Aldoss
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
| |
Collapse
|
34
|
Thastrup M, Marquart HV, Schmiegelow K. Flow Cytometric Detection of Malignant Blasts in Cerebrospinal Fluid: A Biomarker of Central Nervous System Involvement in Childhood Acute Lymphoblastic Leukemia. Biomolecules 2022; 12:biom12060813. [PMID: 35740938 PMCID: PMC9221543 DOI: 10.3390/biom12060813] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 02/06/2023] Open
Abstract
Despite the excellent prognosis for children and adolescents with acute lymphoblastic lymphoma (ALL), the involvement of the central nervous system (CNS) represents a major therapeutic challenge. Patients who develop CNS relapse have a very poor prognosis, and since current methods cannot reliably identify patients with CNS involvement or patients at high risk of CNS relapse, all children with ALL receive CNS-directed treatment. The current golden standard for detecting CNS involvement is the assessment of cytomorphology on cytospin slides of cerebrospinal fluid (CSF). This technique is inadequate due to low sensitivity and reproducibility. Flow cytometric analysis of CSF represent a novel, highly specific and sensitive technique for the detection of leukemic cells in the CNS. In prospective studies, CSF flow cytometry demonstrated two to three times higher rates of CNS involvement at diagnosis of childhood ALL than conventional cytospin, and especially demonstrated superior sensitivity in detecting low-level CNS disease. CNS involvement determined via flow cytometry has been linked to a higher risk of CNS relapse and poor outcomes in several studies. In this review, we discuss the central analytical concepts of CSF flow cytometry and summarize the current evidence supporting the use of flow cytometric detection of malignant blasts as a biomarker of CNS involvement in childhood ALL.
Collapse
Affiliation(s)
- Maria Thastrup
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark;
| | - Hanne Vibeke Marquart
- Department of Clinical Immunology, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark;
| | - Kjeld Schmiegelow
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark;
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
- Correspondence:
| |
Collapse
|
35
|
Smets L, Claerhout H, Van Laer C, Boeckx N. Malignant invasion of the cerebrospinal fluid in adult and paediatric patients with haematological and solid malignancies: a monocentric retrospective study. Acta Clin Belg 2022; 77:524-532. [PMID: 33729099 DOI: 10.1080/17843286.2021.1900493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVES In this study, we describe the clinical presentation, the cerebrospinal fluid (CSF) characteristics and outcome of children and adults with leptomeningeal invasion due to haematological and solid malignancies. METHODS Routine CSF samples analyzed from 2008 to 2018 at our institution were retrospectively reviewed for the presence of malignant cells based on cytomorphological analysis. RESULTS Leptomeningeal invasion was identified in 212 patients: 45 children versus 167 adults, and 92 haematological versus 120 solid malignancies. Leukaemic invasion in childhood was mainly due to ALL, and lymphoma invasion was often due to a high-grade B-cell lymphoma in adults. Metastatic invasion by solid tumours was almost exclusively seen in adults. Patients suffered most frequently from cranial neuropathy and headache (both 32%), while asymptomatic presentations were seen mainly in children (33%) and haematological malignancies (17%). Laboratory CSF parameters often showed an elevated WBC count (87%), total protein (74%) and lactate (76%) and a decreased glucose (77%). These deviations were especially found in solid malignancies (>84%) and adults (>82%). Brain and/or spinal cord imaging was more often suggestive for the leptomeningeal invasion in solid than in haematological malignancies (86% vs. 46%). The 5-year overall survival (OS) rates for patients with haematological and solid malignancies were 21.5% and 5.9%, respectively. The 5-year OS rate for children (55.6%) was significantly better than for adults (3.5%). CONCLUSION Leptomeningeal invasion is more often asymptomatic, and CSF parameters and imaging are more often normal in children and haematological malignancies than in adults and solid malignancies, possibly leading to underdiagnosis.
Collapse
Affiliation(s)
- Leonie Smets
- Clinical Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Helena Claerhout
- Clinical Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Christine Van Laer
- Clinical Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium. Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, Leuven, Belgium
| | - Nancy Boeckx
- Clinical Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium. Departement of Oncology, Leuven, Belgium
| |
Collapse
|
36
|
Maimaitiyiming Y, Ye L, Yang T, Yu W, Naranmandura H. Linear and Circular Long Non-Coding RNAs in Acute Lymphoblastic Leukemia: From Pathogenesis to Classification and Treatment. Int J Mol Sci 2022; 23:ijms23084442. [PMID: 35457264 PMCID: PMC9033105 DOI: 10.3390/ijms23084442] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 02/07/2023] Open
Abstract
The coding regions account for only a small part of the human genome, and the remaining vast majority of the regions generate large amounts of non-coding RNAs. Although non-coding RNAs do not code for any protein, they are suggested to work as either tumor suppressers or oncogenes through modulating the expression of genes and functions of proteins at transcriptional, posttranscriptional and post-translational levels. Acute Lymphoblastic Leukemia (ALL) originates from malignant transformed B/T-precursor-stage lymphoid progenitors in the bone marrow (BM). The pathogenesis of ALL is closely associated with aberrant genetic alterations that block lymphoid differentiation and drive abnormal cell proliferation as well as survival. While treatment of pediatric ALL represents a major success story in chemotherapy-based elimination of a malignancy, adult ALL remains a devastating disease with relatively poor prognosis. Thus, novel aspects in the pathogenesis and progression of ALL, especially in the adult population, need to be further explored. Accumulating evidence indicated that genetic changes alone are rarely sufficient for development of ALL. Recent advances in cytogenic and sequencing technologies revealed epigenetic alterations including that of non-coding RNAs as cooperating events in ALL etiology and progression. While the role of micro RNAs in ALL has been extensively reviewed, less attention, relatively, has been paid to other non-coding RNAs. Herein, we review the involvement of linear and circular long non-coding RNAs in the etiology, maintenance, and progression of ALL, highlighting the contribution of these non-coding RNAs in ALL classification and diagnosis, risk stratification as well as treatment.
Collapse
Affiliation(s)
- Yasen Maimaitiyiming
- The Affiliated Sir Run Run Shaw Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China; (Y.M.); (L.Y.); (T.Y.)
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China
| | - Linyan Ye
- The Affiliated Sir Run Run Shaw Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China; (Y.M.); (L.Y.); (T.Y.)
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Tao Yang
- The Affiliated Sir Run Run Shaw Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China; (Y.M.); (L.Y.); (T.Y.)
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Wenjuan Yu
- Department of Hematology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Correspondence: (W.Y.); (H.N.)
| | - Hua Naranmandura
- The Affiliated Sir Run Run Shaw Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China; (Y.M.); (L.Y.); (T.Y.)
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- Department of Hematology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China
- Correspondence: (W.Y.); (H.N.)
| |
Collapse
|
37
|
Boettcher M, Joechner A, Li Z, Yang SF, Schlegel P. Development of CAR T Cell Therapy in Children-A Comprehensive Overview. J Clin Med 2022; 11:2158. [PMID: 35456250 PMCID: PMC9024694 DOI: 10.3390/jcm11082158] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 01/27/2023] Open
Abstract
CAR T cell therapy has revolutionized immunotherapy in the last decade with the successful establishment of chimeric antigen receptor (CAR)-expressing cellular therapies as an alternative treatment in relapsed and refractory CD19-positive leukemias and lymphomas. There are fundamental reasons why CAR T cell therapy has been approved by the Food and Drug administration and the European Medicines Agency for pediatric and young adult patients first. Commonly, novel therapies are developed for adult patients and then adapted for pediatric use, due to regulatory and commercial reasons. Both strategic and biological factors have supported the success of CAR T cell therapy in children. Since there is an urgent need for more potent and specific therapies in childhood malignancies, efforts should also include the development of CAR therapeutics and expand applicability by introducing new technologies. Basic aspects, the evolution and the drawbacks of childhood CAR T cell therapy are discussed as along with the latest clinically relevant information.
Collapse
Affiliation(s)
- Michael Boettcher
- Department of Pediatric Surgery, University Medical Centre Mannheim, University of Heidelberg, 69117 Heidelberg, Germany;
| | - Alexander Joechner
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney 2006, Australia;
- Cellular Cancer Therapeutics Unit, Children’s Medical Research Institute, Sydney 2145, Australia; (Z.L.); (S.F.Y.)
| | - Ziduo Li
- Cellular Cancer Therapeutics Unit, Children’s Medical Research Institute, Sydney 2145, Australia; (Z.L.); (S.F.Y.)
| | - Sile Fiona Yang
- Cellular Cancer Therapeutics Unit, Children’s Medical Research Institute, Sydney 2145, Australia; (Z.L.); (S.F.Y.)
| | - Patrick Schlegel
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney 2006, Australia;
- Cellular Cancer Therapeutics Unit, Children’s Medical Research Institute, Sydney 2145, Australia; (Z.L.); (S.F.Y.)
- Department of Pediatric Hematology and Oncology, Westmead Children’s Hospital, Sydney 2145, Australia
| |
Collapse
|
38
|
Isolated CNS Relapse in 2 High-Risk B-cell Acute Lymphoblastic Leukemia Patients Following SARS-CoV-2 Infection. J Pediatr Hematol Oncol 2022; 44:e723-e727. [PMID: 34935738 DOI: 10.1097/mph.0000000000002377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/04/2021] [Indexed: 11/25/2022]
Abstract
B-cell acute lymphoblastic leukemia (B-ALL) is the most common pediatric malignancy with a highly favorable overall prognosis. Central nervous system (CNS) relapse of B-ALL is relatively rare and is associated with inferior survival outcomes. We present two patients with B-ALL who developed isolated CNS relapse following confirmed infection with severe acute respiratory syndrome coronavirus 2. In addition to individual and disease factors, we posit that delays in therapy together with immune system modulation because of severe acute respiratory syndrome coronavirus 2 may account for these 2 cases of CNS relapsed B-ALL. We report on this clinical observation to raise awareness of this potential association.
Collapse
|
39
|
Zhang W, Li Y, Chen G, Yang X, Hu J, Zhang X, Feng G, Wang H. Integrin α6-Targeted Molecular Imaging of Central Nervous System Leukemia in Mice. Front Bioeng Biotechnol 2022; 10:812277. [PMID: 35284414 PMCID: PMC8905628 DOI: 10.3389/fbioe.2022.812277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/17/2022] [Indexed: 11/14/2022] Open
Abstract
Central nervous system leukemia (CNS-L) is caused by leukemic cells infiltrating into the meninges or brain parenchyma and remains the main reason for disease relapse. Currently, it is hard to detect CNS-L accurately by clinically available imaging models due to the relatively low amount of tumor cells, confined blood supply, and the inferior glucose metabolism intensity. Recently, integrin α6-laminin interactions have been identified to mediate CNS-L, which suggests that integrin α6 may be a promising molecular imaging target for the detection of CNS-L. The acute lymphoblastic leukemia (ALL) cell line NALM6 stabled and transfected with luciferase was used to establish the CNS-L mouse model. CNS-L-bearing mice were monitored and confirmed by bioluminescence imaging. Three of our previously developed integrin α6-targeted peptide-based molecular imaging agents, Cy5-S5 for near-infrared fluorescence (NIRF), Gd-S5 for magnetic resonance (MR), and 18F-S5 for positron emission tomography (PET) imaging, were employed for the molecular imaging of these CNS-L-bearing mice. Bioluminescence imaging showed a local intensive signal in the heads among CNS-L-bearing mice; meanwhile, Cy5-S5/NIRF imaging produced intensive fluorescence intensity in the same head regions. Moreover, Gd-S5/MR imaging generated superior MR signal enhancement at the site of meninges, which were located between the skull bone and brain parenchyma. Comparatively, MR imaging with the clinically available MR enhancer Gd-DTPA did not produce the distinguishable MR signal in the same head regions. Additionally, 18F-S5/PET imaging also generated focal radio-concentration at the same head regions, which generated nearly 5-times tumor-to-background ratio compared to the clinically available PET radiotracer 18F-FDG. Finally, pathological examination identified layer-displayed leukemic cells in the superficial part of the brain parenchyma tissue, and immunohistochemical staining confirmed the overexpression of the integrin α6 within the lesion. These findings suggest the potential application of these integrin α6-targeted molecular imaging agents for the accurate detection of CNS-L.
Collapse
Affiliation(s)
- Wenbiao Zhang
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yongjiang Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Guanjun Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Hematological Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiaochun Yang
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Junfeng Hu
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiaofei Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- *Correspondence: Xiaofei Zhang, ; Guokai Feng, ; Hua Wang,
| | - Guokai Feng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- *Correspondence: Xiaofei Zhang, ; Guokai Feng, ; Hua Wang,
| | - Hua Wang
- Department of Hematological Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- *Correspondence: Xiaofei Zhang, ; Guokai Feng, ; Hua Wang,
| |
Collapse
|
40
|
McNeer JL, Schmiegelow K. Management of CNS Disease in Pediatric Acute Lymphoblastic Leukemia. Curr Hematol Malig Rep 2022; 17:1-14. [PMID: 35025035 DOI: 10.1007/s11899-021-00640-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2021] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW The treatment of acute lymphoblastic leukemia (ALL) is one of the success stories of pediatric oncology, but challenges and questions remain, including the optimal approach to the treatment of central nervous system (CNS) leukemia. It is unclear why some children with ALL develop CNS leukemia and others do not, and there remains debate regarding optimal regimens for prophylaxis, upfront treatment, and the treatment of CNS relapses. These topics are especially important since both cranial radiation therapy (CRT) and intensive intrathecal therapy carry risks of both short- and long-term adverse effects. In this review, we aim to identify areas of ongoing debate on this topic, review the biology of CNS leukemia, and summarize clinical trial data that address some of these questions. RECENT FINDINGS Both retrospective and meta-analyses have demonstrated that few patients with ALL benefit from CRT as a component of CNS-directed treatment for de novo disease, allowing cooperative groups to greatly limit the number of patients undergoing CRT as part of their initial ALL regimens. More recent efforts are focusing on how best to assay for low levels of CNS disease at the time of diagnosis, as well as the biological drivers that may result in CNS leukemia in certain patients. Progress remains to be made in the identification and treatment of CNS leukemia in pediatric ALL. Advancements have occurred to limit the number of children undergoing CRT, but much has yet to be learned to better understand the biology of and risk factors for CNS leukemia, and novel approaches are required to approach CNS relapse of ALL.
Collapse
Affiliation(s)
- Jennifer L McNeer
- Section of Pediatric Hematology/Oncology/Stem Cell Transplant, University of Chicago Comer Children's Hospital, 5841 S. Maryland Ave, MC 4060, Chicago, IL, 60637, USA.
| | - Kjeld Schmiegelow
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
41
|
Central Nervous System Prophylaxis and Treatment in Acute Leukemias. Curr Treat Options Oncol 2022; 23:1829-1844. [PMID: 36510037 PMCID: PMC9767998 DOI: 10.1007/s11864-022-01032-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2022] [Indexed: 12/15/2022]
Abstract
OPINION STATEMENT Improvements in systemic therapy in the treatment of acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) have improved patient outcomes and reduced the incidence of CNS relapse. However, management of patients with CNS disease remains challenging, and relapses in the CNS can be difficult to salvage. In addition to treatment with CNS-penetrant systemic therapy (high-dose methotrexate and cytarabine), intrathecal prophylaxis is indicated in all patients with ALL, however is not uniformly administered in patients with AML without high-risk features. There is a limited role for radiation treatment in CNS prophylaxis; however, radiation should be considered for consolidative treatment in patients with CNS disease, or as an option for palliation of symptoms. Re-examining the role of established treatment paradigms and investigating the role of radiation as bridging therapy in the era of cellular therapy, particularly in chemotherapy refractory patients, is warranted.
Collapse
|
42
|
Xu LH, Geng X, Liao N, Yang LH, Mai HR, Wan WQ, Huang LB, Zheng MC, Tian C, Chen HQ, Chen QW, Long XJ, Zhen ZJ, Liu RY, Li QR, Wu BY, Wang LN, Kong XL, Chen GH, Fang JP, Li Y. Prognostic significance of CNSL at diagnosis of childhood B-cell acute lymphoblastic leukemia: A report from the South China Children's Leukemia Group. Front Oncol 2022; 12:943761. [PMID: 36033509 PMCID: PMC9399517 DOI: 10.3389/fonc.2022.943761] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/20/2022] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES The prognostic significance of acute lymphoblastic leukemia (ALL) patients with central nervous system leukemia (CNSL) at diagnosis is controversial. We aimed to determine the impact of CNSL at diagnosis on the clinical outcomes of childhood B-cell ALL in the South China Children's Leukemia Group (SCCLG). METHODS A total of 1,872 childhood patients were recruited for the study between October 2016 and July 2021. The diagnosis of CNSL depends on primary cytological examination of cerebrospinal fluid, clinical manifestations, and imaging manifestations. Patients with CNSL at diagnosis received two additional courses of intrathecal triple injections during induction. RESULTS The frequency of CNLS at the diagnosis of B-cell ALL was 3.6%. Patients with CNSL at diagnosis had a significantly higher mean presenting leukocyte count (P = 0.002) and poorer treatment response (P <0.05) compared with non-CNSL patients. Moreover, CNSL status was associated with worse 3-year event-free survival (P = 0.030) and a higher risk of 3-year cumulative incidence of relapse (P = 0.008), while no impact was observed on 3-year overall survival (P = 0.837). Multivariate analysis revealed that CNSL status at diagnosis was an independent predictor with a higher cumulative incidence of relapse (hazard ratio = 2.809, P = 0.016). CONCLUSION CNSL status remains an adverse prognostic factor in childhood B-cell ALL, indicating that additional augmentation of CNS-directed therapy is warranted for patients with CNSL at diagnosis.
Collapse
Affiliation(s)
- Lu-Hong Xu
- Department of Pediatric Hematology/Oncology, Children’s Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xu Geng
- Department of Pediatric Hematology/Oncology, Children’s Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ning Liao
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Li-Hua Yang
- Department of Pediatric Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hui-Rong Mai
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Wu-Qing Wan
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Li-Bin Huang
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Min-Cui Zheng
- Department of Hematology, Hunan Children’s Hospital, Changsha, China
| | - Chuan Tian
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hui-Qin Chen
- Department of Pediatrics, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qi-Wen Chen
- Department of Pediatrics, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xing-Jiang Long
- Department of Pediatrics, Liuzhou People’s Hospital, Liuzhou, China
| | - Zi-Jun Zhen
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ri-Yang Liu
- Department of Pediatrics, Huizhou Central People’s Hospital, Huizhou, China
| | - Qiao-Ru Li
- Department of Pediatrics, Zhongshan People’s Hospital, Zhongshan, China
| | - Bei-Yan Wu
- Department of Pediatrics, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Li-Na Wang
- Department of Pediatrics, Guangzhou First People’s Hospital, Guangzhou, China
| | - Xian-Ling Kong
- Department of Pediatrics, Boai Hospital of Zhongshan, Zhongshan, China
| | - Guo-Hua Chen
- Department of Pediatrics, Huizhou First People’s Hospital, Huizhou, China
| | - Jian-Pei Fang
- Department of Pediatric Hematology/Oncology, Children’s Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yang Li
- Department of Pediatric Hematology/Oncology, Children’s Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Yang Li,
| |
Collapse
|
43
|
Otto F, Harrer C, Pilz G, Wipfler P, Harrer A. Role and Relevance of Cerebrospinal Fluid Cells in Diagnostics and Research: State-of-the-Art and Underutilized Opportunities. Diagnostics (Basel) 2021; 12:diagnostics12010079. [PMID: 35054246 PMCID: PMC8774636 DOI: 10.3390/diagnostics12010079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/07/2021] [Accepted: 12/28/2021] [Indexed: 01/15/2023] Open
Abstract
Cerebrospinal fluid (CSF) has recently experienced a revival in diagnostics and research. However, little progress has been made regarding CSF cell analysis. For almost a century, CSF cell count and cytomorphological examination have been central diagnostic parameters, with CSF pleocytosis as a hallmark finding of neuroinflammation and cytology offering valuable clues regarding infectious, autoimmune, and malignant aetiologies. A great deal of information, however, remains unattended as modern immune phenotyping technologies have not yet been broadly incorporated into routine CSF analysis. This is a serious deficit considering the central role of CSF cells as effectors in central nervous system (CNS) immune defence and autoimmune CNS processes, and the diagnostic challenges posed by clinically overlapping infectious and immune-mediated CNS diseases. Here, we summarize historical, specimen-intrinsic, methodological, and technical issues determining the state-of-the-art diagnostics of CSF cells and outline future perspectives for this underutilized window into meningeal and CNS immunity.
Collapse
Affiliation(s)
- Ferdinand Otto
- Department of Neurology, Paracelsus Medical University, Christian-Doppler-Klinik, 5020 Salzburg, Austria; (F.O.); (C.H.); (G.P.); (P.W.)
| | - Christine Harrer
- Department of Neurology, Paracelsus Medical University, Christian-Doppler-Klinik, 5020 Salzburg, Austria; (F.O.); (C.H.); (G.P.); (P.W.)
| | - Georg Pilz
- Department of Neurology, Paracelsus Medical University, Christian-Doppler-Klinik, 5020 Salzburg, Austria; (F.O.); (C.H.); (G.P.); (P.W.)
| | - Peter Wipfler
- Department of Neurology, Paracelsus Medical University, Christian-Doppler-Klinik, 5020 Salzburg, Austria; (F.O.); (C.H.); (G.P.); (P.W.)
| | - Andrea Harrer
- Department of Neurology, Paracelsus Medical University, Christian-Doppler-Klinik, 5020 Salzburg, Austria; (F.O.); (C.H.); (G.P.); (P.W.)
- Department of Dermatology and Allergology, Paracelsus Medical University, Landeskrankenhaus, 5020 Salzburg, Austria
- Correspondence:
| |
Collapse
|
44
|
Sharma ND, Keewan E, Matlawska-Wasowska K. Metabolic Reprogramming and Cell Adhesion in Acute Leukemia Adaptation to the CNS Niche. Front Cell Dev Biol 2021; 9:767510. [PMID: 34957100 PMCID: PMC8703109 DOI: 10.3389/fcell.2021.767510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022] Open
Abstract
Involvement of the Central Nervous System (CNS) in acute leukemia confers poor prognosis and lower overall survival. Existing CNS-directed therapies are associated with a significant risk of short- or long-term toxicities. Leukemic cells can metabolically adapt and survive in the microenvironment of the CNS. The supporting role of the CNS microenvironment in leukemia progression and dissemination has not received sufficient attention. Understanding the mechanism by which leukemic cells survive in the nutrient-poor and oxygen-deprived CNS microenvironment will lead to the development of more specific and less toxic therapies. Here, we review the current literature regarding the roles of metabolic reprogramming in leukemic cell adhesion and survival in the CNS.
Collapse
Affiliation(s)
- Nitesh D Sharma
- Department of Pediatrics, Division of Hematology-Oncology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States.,Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, United States
| | - Esra'a Keewan
- Department of Pediatrics, Division of Hematology-Oncology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States.,Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, United States
| | - Ksenia Matlawska-Wasowska
- Department of Pediatrics, Division of Hematology-Oncology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States.,Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
45
|
El-Khazragy N, Abdel Aziz MA, Hesham M, Matbouly S, Mostafa SA, Bakkar A, Abouelnile M, Noufal Y, Mahran NA, Abd Elkhalek MA, Abdelmaksoud MF. Upregulation of leukemia-induced non-coding activator RNA (LUNAR1) predicts poor outcome in pediatric T-acute lymphoblastic leukemia. Immunobiology 2021; 226:152149. [PMID: 34735923 DOI: 10.1016/j.imbio.2021.152149] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/12/2021] [Accepted: 10/16/2021] [Indexed: 12/20/2022]
Abstract
T-cell Acute Lymphoblastic Leukemia (T-ALL) accounts for around 10-15% of all lymphoblastic leukemia in children. Previous studies have proven that dysregulation of Leukemia-induced non-coding activator RNA-1 (LUNAR1) expression promotes T-ALL cell growth by enhancing the NOTCH1/IGF-1R signaling pathway. We aimed to investigate the prognostic value of LUNAR1 in pediatric T-ALL, in addition, to find out its association with NOTCH1 and IGF-1R. The LUNAR1, NOTCH1, and IGF-IR gene expression were measured in peripheral blood (PB) samples of l85 children with T-ALL and forty non-leukemic samples as a control group. Cox regression analysis revealed that overexpression of LUNAR1, NOTCH1, and IGF-IR was significantly correlated with poor prognosis, short overall survival, and progression-free survival. We concluded that LUNAR1 could serve as an independent prognostic biomarker for T-ALL in children.
Collapse
Affiliation(s)
- Nashwa El-Khazragy
- Department of Clinical Pathology-Hematology and Ain Shams Medical Research Institute (MASRI), Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | | | - Manar Hesham
- Department of Chemistry, Faculty of Science, Cairo University, Cairo, Egypt
| | - Safa Matbouly
- Department of Pediatrics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Sally Abdallah Mostafa
- Medical Biochemistry Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ashraf Bakkar
- Faculty of Biotechnology, October University for Modern Sciences and Arts, Giza, Egypt
| | - Mariam Abouelnile
- Faculty of Biotechnology, October University for Modern Sciences and Arts, Giza, Egypt
| | - Yassmin Noufal
- Faculty of Biotechnology, October University for Modern Sciences and Arts, Giza, Egypt
| | - Nievin Ahmed Mahran
- Biochemistry Department, Faculty of Dentistry, Sinai University, Kanatra, Egypt
| | - Marwa Ali Abd Elkhalek
- Department of Medical Biochemistry & Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | |
Collapse
|
46
|
Córdova-Serrano RD, Almanza-Huante E, Fernández-Sánchez E, Hernández-Alcántara A, Espinosa-Bautista K. Central nervous system (CNS) involvement has an adverse impact on survival in newly diagnosed adult acute lymphoblastic leukemia (ALL) assessed by flow cytometry. Leuk Lymphoma 2021; 62:3264-3270. [PMID: 34369244 DOI: 10.1080/10428194.2021.1957872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The role of CNS involvement detected by flow cytometry (FCM) in patients with acute lymphoblastic leukemia has been discussed previously; however, its impact on survival has not been described enough. We analyzed a retrospective cohort of newly diagnosed ALL adult patients who had a cerebrospinal fluid (CSF) analysis by FCM and conventional cytology. We evaluated 81 patients; 19 (23.4%) were only positive by FCM, five (6.3%) were double-positive (DP) and 57 (70.4%) were double-negative (DN). The detection of CNS involvement was increased from 6% to 24%, employing FCM; In our final analysis, patients with FCM + had a lower survival of 7.01 months [95% CI (5.90-8.24)], compared with 11.71 months [IC95% (9.49-13.94)] in the DN group (p = 0.03).
Collapse
|
47
|
Factors associated with treatment response to CD19 CAR-T therapy among a large cohort of B cell acute lymphoblastic leukemia. Cancer Immunol Immunother 2021; 71:689-703. [PMID: 34365516 DOI: 10.1007/s00262-021-03009-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 07/03/2021] [Indexed: 12/11/2022]
Abstract
CD19-targeted chimeric antigen receptor (CAR) T cell therapy has demonstrated striking responses among B cell acute lymphoblastic leukemia (B-ALL), but analyses of potential factors associated with poor response and relapse are lacking. Here, we summarize the long-term follow-up of 254 B-ALL treated with CD19 CAR-T cells from 5 clinical trials (NCT03173417, NCT02546739, and NCT03671460 retrospectively registered on May 23, 2017, March 1, 2018, and September 7, 2018, respectively, at www.clinicaltrials.gov ; ChiCTR-ONC-17012829, and ChiCTR1800016541 retrospectively registered on September 28, 2017, and June 7, 2018, at www.chictr.org.cn ). Our data showed that TP53 mutation, bone marrow blasts > 20%, prior CAR-T/blinatumomab treatment, and severe cytokine release syndrome (CRS) were associated with a lower complete remission (CR) rate while age, extramedullary disease, complex cytogenetics, history of prior transplant, prior courses of chemotherapy, CAR-T cell dose, and manufacturing source of the cellular product did not affect patients' CR rate. Risk factors related to leukemia-free survival (LFS) and overall survival (OS) were history of prior transplant, complex cytogenetics, TP53 mutation, severe CRS, neurotoxicity, and CAR-T therapy without consolidative allogeneic hematopoietic stem cell transplantation (allo-HSCT). Age and CAR-T cell dose did not influence LFS and OS. Patients with consolidative allo-HSCT after CAR-T therapy had a superior OS and LFS compared to those who did not. This benefit was also observed in both pediatric and adult patients as well as in patients either in high- or low-risk groups. This large study to identify risk factors of CR, LFS, and OS may help to maximize clinical outcomes of CAR-T therapy. Précis TP53 mutation and BM blasts > 20% are two independent factors associated with the CR rate. Patients with high tumor burden as well as those with bone marrow blasts < 5% can benefit from consolidative allo-HSCT post-CAR-T therapy.
Collapse
|
48
|
Rivas-Alarcón AA, Gómez-Gómez Y, Organista-Nava J, Jiménez-López MA, Rivera-Ramírez AB, Ibarra-Sierra E, Saavedra-Herrera MV, Illades-Aguiar B, Leyva-Vázquez MA. Plasma levels of YKL-40 as a prognostic factor in childhood acute lymphoblastic leukemia. Mol Clin Oncol 2021; 15:168. [PMID: 34194746 PMCID: PMC8237154 DOI: 10.3892/mco.2021.2330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 01/27/2021] [Indexed: 11/05/2022] Open
Abstract
YKL-40, also known as chitinase-3-like protein 1 (CHI3L1), is an inflammatory glycoprotein secreted by different types of cells, such as inflammatory cells. The levels of this protein are elevated in the serum or plasma of patients with different types of cancer, and high concentrations are associated with poor prognosis and short survival in patients with liver, breast, lung, bladder and endometrial cancers. In Mexico, acute lymphoblastic leukemia (ALL) is the most common type of cancer affecting the pediatric population. The prognosis of patients with ALL is difficult to establish. Hence, the objective of the present study was to analyze the plasma levels of YKL-40 in Mexican children with ALL and investigate its role as a prognostic factor. A case-control study was performed in a population of 90 children aged 1-18 years, among whom 45 had ALL and 45 were hematologically healthy. The levels of YKL-40 in plasma samples were measured using ELISA and were found to be significantly higher in children with ALL compared with those in controls (P<0.0001). Children with ALL who had high plasma levels of YKL-40 (≥36.34 ng/ml) had shorter survival compared with those with low levels (<36.34 ng/ml; P<0.05). The findings of the present study revealed that the YKL-40 plasma level, age/initial leukocyte count and central nervous system invasion were associated with the prognosis of children with ALL [odds ratio (OR)=6.06, 95% confidence interval (CI): 1.1-31.6, P=0.03; OR=8.53, 95% CI: 1.2-58.2, P=0.03; and OR=6.45, 95% CI: 1.01-41.2, P=0.04, respectively]. Therefore, YKL-40 plasma levels may serve as a prognostic biomarker in pediatric patients with ALL.
Collapse
Affiliation(s)
- Alinne Ayulieth Rivas-Alarcón
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero 39070, México
| | - Yazmin Gómez-Gómez
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero 39070, México
| | - Jorge Organista-Nava
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero 39070, México
| | - Marco Antonio Jiménez-López
- Departamento de Investigación, Instituto Estatal de Cancerología 'Arturo Beltrán Ortega', Acapulco, Guerrero 39570, México
| | - Ana Berta Rivera-Ramírez
- Departamento de Investigación, Instituto Estatal de Cancerología 'Arturo Beltrán Ortega', Acapulco, Guerrero 39570, México
| | - Eloisa Ibarra-Sierra
- Departamento de Investigación, Instituto Estatal de Cancerología 'Arturo Beltrán Ortega', Acapulco, Guerrero 39570, México
| | | | - Berenice Illades-Aguiar
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero 39070, México
| | - Marco Antonio Leyva-Vázquez
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero 39070, México
| |
Collapse
|
49
|
Ikonomidou C. Cerebrospinal Fluid Biomarkers in Childhood Leukemias. Cancers (Basel) 2021; 13:cancers13030438. [PMID: 33498882 PMCID: PMC7866046 DOI: 10.3390/cancers13030438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 02/06/2023] Open
Abstract
Involvement of the central nervous system (CNS) in childhood leukemias remains a major cause of treatment failures. Analysis of the cerebrospinal fluid constitutes the most important diagnostic pillar in the detection of CNS leukemia and relies primarily on cytological and flow-cytometry studies. With increasing survival rates, it has become clear that treatments for pediatric leukemias pose a toll on the developing brain, as they may cause acute toxicities and persistent neurocognitive deficits. Preclinical research has demonstrated that established and newer therapies can injure and even destroy neuronal and glial cells in the brain. Both passive and active cell death forms can result from DNA damage, oxidative stress, cytokine release, and acceleration of cell aging. In addition, chemotherapy agents may impair neurogenesis as well as the function, formation, and plasticity of synapses. Clinical studies show that neurocognitive toxicity of chemotherapy is greatest in younger children. This raises concerns that, in addition to injury, chemotherapy may also disrupt crucial developmental events resulting in impairment of the formation and efficiency of neuronal networks. This review presents an overview of studies demonstrating that cerebrospinal fluid biomarkers can be utilized in tracing both CNS disease and neurotoxicity of administered treatments in childhood leukemias.
Collapse
Affiliation(s)
- Chrysanthy Ikonomidou
- Department of Neurology, University of Wisconsin Madison, 1685 Highland Avenue, Madison, WI 53705, USA
| |
Collapse
|
50
|
Lenk L, Carlet M, Vogiatzi F, Spory L, Winterberg D, Cousins A, Vossen-Gajcy M, Ibruli O, Vokuhl C, Cario G, El Ayoubi O, Kramer L, Ritgen M, Brüggemann M, Häsler R, Schrappe M, Fuhrmann S, Halsey C, Jeremias I, Hobeika E, Jumaa H, Alsadeq A, Schewe DM. CD79a promotes CNS-infiltration and leukemia engraftment in pediatric B-cell precursor acute lymphoblastic leukemia. Commun Biol 2021; 4:73. [PMID: 33452446 PMCID: PMC7810877 DOI: 10.1038/s42003-020-01591-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/25/2020] [Indexed: 02/06/2023] Open
Abstract
Central nervous system (CNS) involvement remains a challenge in the diagnosis and treatment of acute lymphoblastic leukemia (ALL). In this study, we identify CD79a (also known as Igα), a signaling component of the preB cell receptor (preBCR), to be associated with CNS-infiltration and –relapse in B-cell precursor (BCP)-ALL patients. Furthermore, we show that downregulation of CD79a hampers the engraftment of leukemia cells in different murine xenograft models, particularly in the CNS. Lenk et al find that the preB cell receptor (preBCR) is associated with infiltration and relapse of acute lymphoblastic leukemia in the central nervous system (CNS). They also show that downregulation of preBCR component CD79a reduces the engraftment of leukemia cells in different murine xenograft models, particularly in the CNS.
Collapse
Affiliation(s)
- Lennart Lenk
- Department of Pediatrics I, ALL-BFM Study Group, Christian-Albrechts University Kiel and University Medical Center Schleswig-Holstein, Arnold-Heller-Str. 3, Haus C, 24105, Kiel, Germany
| | - Michela Carlet
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Zentrum München, German Center for Environmental Health (HMGU), Marchioninistraße 25, 81377, Munich, Germany
| | - Fotini Vogiatzi
- Department of Pediatrics I, ALL-BFM Study Group, Christian-Albrechts University Kiel and University Medical Center Schleswig-Holstein, Arnold-Heller-Str. 3, Haus C, 24105, Kiel, Germany
| | - Lea Spory
- Department of Pediatrics I, ALL-BFM Study Group, Christian-Albrechts University Kiel and University Medical Center Schleswig-Holstein, Arnold-Heller-Str. 3, Haus C, 24105, Kiel, Germany
| | - Dorothee Winterberg
- Department of Pediatrics I, ALL-BFM Study Group, Christian-Albrechts University Kiel and University Medical Center Schleswig-Holstein, Arnold-Heller-Str. 3, Haus C, 24105, Kiel, Germany
| | - Antony Cousins
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1QH, UK
| | - Michaela Vossen-Gajcy
- Department of Pediatrics I, ALL-BFM Study Group, Christian-Albrechts University Kiel and University Medical Center Schleswig-Holstein, Arnold-Heller-Str. 3, Haus C, 24105, Kiel, Germany
| | - Olta Ibruli
- Department of Pediatrics I, ALL-BFM Study Group, Christian-Albrechts University Kiel and University Medical Center Schleswig-Holstein, Arnold-Heller-Str. 3, Haus C, 24105, Kiel, Germany
| | - Christian Vokuhl
- Department of Pathology, Section of Pediatric Pathology, Venusberg-Campus 1, Gebäude 62, 53127, Bonn, Germany
| | - Gunnar Cario
- Department of Pediatrics I, ALL-BFM Study Group, Christian-Albrechts University Kiel and University Medical Center Schleswig-Holstein, Arnold-Heller-Str. 3, Haus C, 24105, Kiel, Germany
| | - Omar El Ayoubi
- Institute of Immunology, Ulm University Medical Center, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Lisa Kramer
- Institute of Immunology, Ulm University Medical Center, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Matthias Ritgen
- Department of Medicine II, University Hospital Schleswig-Holstein, Langer Segen 8-10, 24105, Kiel, Germany
| | - Monika Brüggemann
- Department of Medicine II, University Hospital Schleswig-Holstein, Langer Segen 8-10, 24105, Kiel, Germany
| | - Robert Häsler
- Institute of Clinical Molecular Biology, Christian-Albrechts University Kiel and University Medical Center Schleswig-Holstein, Campus Kiel, Rosalind-Franklin-Straße 12, 24105, Kiel, Germany
| | - Martin Schrappe
- Department of Pediatrics I, ALL-BFM Study Group, Christian-Albrechts University Kiel and University Medical Center Schleswig-Holstein, Arnold-Heller-Str. 3, Haus C, 24105, Kiel, Germany
| | - Stephan Fuhrmann
- Department of Hematology and Oncology, HELIOS Hospital Berlin-Buch, Rosalind-Franklin-Straße 12, 24105, Kiel, Germany
| | - Christina Halsey
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1QH, UK
| | - Irmela Jeremias
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Zentrum München, German Center for Environmental Health (HMGU), Marchioninistraße 25, 81377, Munich, Germany.,German Cancer Consortium (DKTK), Partnering Site Munich, Pettenkoferstr. 8a, 80336, München, Germany.,Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Lindwurmstraße 4, 80337, München, Germany
| | - Elias Hobeika
- Institute of Immunology, Ulm University Medical Center, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Hassan Jumaa
- Institute of Immunology, Ulm University Medical Center, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Ameera Alsadeq
- Institute of Immunology, Ulm University Medical Center, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Denis M Schewe
- Department of Pediatrics I, ALL-BFM Study Group, Christian-Albrechts University Kiel and University Medical Center Schleswig-Holstein, Arnold-Heller-Str. 3, Haus C, 24105, Kiel, Germany.
| |
Collapse
|