1
|
Arndt P, Turkowski K, Cekay M, Eul B, Grimminger F, Savai R. Endothelin and the tumor microenvironment: a finger in every pie. Clin Sci (Lond) 2024; 138:617-634. [PMID: 38785410 PMCID: PMC11130555 DOI: 10.1042/cs20240426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
The tumor microenvironment (TME) plays a central role in the development of cancer. Within this complex milieu, the endothelin (ET) system plays a key role by triggering epithelial-to-mesenchymal transition, causing degradation of the extracellular matrix and modulating hypoxia response, cell proliferation, composition, and activation. These multiple effects of the ET system on cancer progression have prompted numerous preclinical studies targeting the ET system with promising results, leading to considerable optimism for subsequent clinical trials. However, these clinical trials have not lived up to the high expectations; in fact, the clinical trials have failed to demonstrate any substantiated benefit of targeting the ET system in cancer patients. This review discusses the major and recent advances of the ET system with respect to TME and comments on past and ongoing clinical trials of the ET system.
Collapse
Affiliation(s)
- Philipp F. Arndt
- Lung Microenvironmental Niche in Cancerogenesis, Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Centre (UGMLC), Member of the Cardio-Pulmonary Institute (CPI), Member of the German Centre for Lung Research (DZL), Giessen, Germany
- Max Planck Institute for Heart and Lung Research, Member of the DZL, Member of the CPI, Bad Nauheim, Germany
| | - Kati Turkowski
- Lung Microenvironmental Niche in Cancerogenesis, Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Max Planck Institute for Heart and Lung Research, Member of the DZL, Member of the CPI, Bad Nauheim, Germany
| | - Michael J. Cekay
- Lung Microenvironmental Niche in Cancerogenesis, Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Centre (UGMLC), Member of the Cardio-Pulmonary Institute (CPI), Member of the German Centre for Lung Research (DZL), Giessen, Germany
| | - Bastian Eul
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Centre (UGMLC), Member of the Cardio-Pulmonary Institute (CPI), Member of the German Centre for Lung Research (DZL), Giessen, Germany
| | - Friedrich Grimminger
- Lung Microenvironmental Niche in Cancerogenesis, Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Centre (UGMLC), Member of the Cardio-Pulmonary Institute (CPI), Member of the German Centre for Lung Research (DZL), Giessen, Germany
| | - Rajkumar Savai
- Lung Microenvironmental Niche in Cancerogenesis, Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Centre (UGMLC), Member of the Cardio-Pulmonary Institute (CPI), Member of the German Centre for Lung Research (DZL), Giessen, Germany
- Max Planck Institute for Heart and Lung Research, Member of the DZL, Member of the CPI, Bad Nauheim, Germany
| |
Collapse
|
2
|
Lami I, Wiemer AJ. Antibody-Drug Conjugates in the Pipeline for Treatment of Melanoma: Target and Pharmacokinetic Considerations. Drugs R D 2024; 24:129-144. [PMID: 38951479 PMCID: PMC11315830 DOI: 10.1007/s40268-024-00473-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2024] [Indexed: 07/03/2024] Open
Abstract
Melanoma is an aggressive, rapidly developing form of skin cancer that affects about 22 per 100,000 individuals. Treatment options for melanoma patients are limited and typically involve surgical excision of moles and chemotherapy. Survival has been improved in recent years through targeted small molecule inhibitors and antibody-based immunotherapies. However, the long-term side effects that arise from taking chemotherapies can negatively impact the lives of patients because they lack specificity and impact healthy cells along with the cancer cells. Antibody-drug conjugates are a promising new class of drugs for the treatment of melanoma. This review focuses on the development of antibody-drug conjugates for melanoma and discusses the existing clinical trials of antibody-drug conjugates and their use as a melanoma treatment. So far, the antibody-drug conjugates have struggled from efficacy problems, with modest effects at best, leading many to be discontinued for melanoma. At the same time, conjugates such as AMT-253, targeting melanoma cell adhesion molecule, and mecbotamab vedotin targeting AXL receptor tyrosine kinase, are among the most exciting for melanoma treatment in the future.
Collapse
Affiliation(s)
- Ina Lami
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, 69 N Eagleville Road, Storrs, CT, 06269, USA
| | - Andrew J Wiemer
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, 69 N Eagleville Road, Storrs, CT, 06269, USA.
| |
Collapse
|
3
|
Ribeiro E, Vale N. Repurposing of the Drug Tezosentan for Cancer Therapy. Curr Issues Mol Biol 2023; 45:5118-5131. [PMID: 37367074 DOI: 10.3390/cimb45060325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/02/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023] Open
Abstract
Tezosentan is a vasodilator drug that was originally developed to treat pulmonary arterial hypertension. It acts by inhibiting endothelin (ET) receptors, which are overexpressed in many types of cancer cells. Endothelin-1 (ET1) is a substance produced by the body that causes blood vessels to narrow. Tezosentan has affinity for both ETA and ETB receptors. By blocking the effects of ET1, tezosentan can help to dilate blood vessels, improve the blood flow, and reduce the workload on the heart. Tezosentan has been found to have anticancer properties due to its ability to target the ET receptors, which are involved in promoting cellular processes such as proliferation, survival, neovascularization, immune cell response, and drug resistance. This review intends to demonstrate the potential of this drug in the field of oncology. Drug repurposing can be an excellent way to improve the known profiles of first-line drugs and to solve several resistance problems of these same antineoplastic drugs.
Collapse
Affiliation(s)
- Eduarda Ribeiro
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| |
Collapse
|
4
|
Liu J, Wang H, Zhang M, Li Y, Wang R, Chen H, Wang B, Gao X, Song S, Wang Y, Ren Y, Li J, Liu P. Metformin and simvastatin synergistically suppress endothelin 1-induced hypoxia and angiogenesis in multiple cancer types. Cancer Sci 2022; 114:640-653. [PMID: 36156330 PMCID: PMC9899631 DOI: 10.1111/cas.15602] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/08/2022] [Accepted: 09/20/2022] [Indexed: 01/07/2023] Open
Abstract
Multiple cancers have been reported to be associated with angiogenesis and are sensitive to anti-angiogenic therapies. Vascular normalization, by restoring proper tumor perfusion and oxygenation, could limit tumor cell invasiveness and improve the effectiveness of anticancer treatments. However, the underlying anticancer mechanisms of antiangiogenic drugs are still unknown. Metformin (MET) and simvastatin (SVA), two metabolic-related drugs, have been shown to play important roles in modulating the hypoxic tumor microenvironment and angiogenesis. Whether the combination of MET and SVA could exert a more effective antitumor effect than individual treatments has not been examined. The antitumor effect of the synergism of SVA and MET was detected in mouse models, breast cancer patient-derived organoids, and multiple tumor cell lines compared with untreated, SVA, or MET alone. RNA sequencing revealed that the combination of MET and SVA (but not MET or SVA alone) inhibited the expression of endothelin 1 (ET-1), an important regulator of angiogenesis and the hypoxia-related pathway. We demonstrate that the MET and SVA combination showed synergistic effects on inhibiting tumor cell proliferation, promoting apoptosis, alleviating hypoxia, decreasing angiogenesis, and increasing vessel normalization compared with the use of a single agent alone. The MET and SVA combination suppressed ET-1-induced hypoxia-inducible factor 1α expression by increasing prolyl hydroxylase 2 (PHD2) expression. Furthermore, the MET and SVA combination showed a more potent anticancer effect compared with bosentan. Together, our findings suggest the potential application of the MET and SVA combination in antitumor therapy.
Collapse
Affiliation(s)
- Jie Liu
- Center for Translational MedicineThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi ProvinceChina,Key Laboratory for Tumor Precision Medicine of Shaanxi ProvinceThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi ProvinceChina
| | - Huxia Wang
- Center for Translational MedicineThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi ProvinceChina,Mammary DepartmentShaanxi Provincial Cancer HospitalXi'anShaanxi ProvinceChina
| | - Miao Zhang
- Center for Translational MedicineThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi ProvinceChina,Key Laboratory for Tumor Precision Medicine of Shaanxi ProvinceThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi ProvinceChina
| | - Yazhao Li
- Center for Translational MedicineThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi ProvinceChina,Key Laboratory for Tumor Precision Medicine of Shaanxi ProvinceThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi ProvinceChina
| | - Ruiqi Wang
- Center for Translational MedicineThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi ProvinceChina,Key Laboratory for Tumor Precision Medicine of Shaanxi ProvinceThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi ProvinceChina
| | - He Chen
- Center for Translational MedicineThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi ProvinceChina,Key Laboratory for Tumor Precision Medicine of Shaanxi ProvinceThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi ProvinceChina
| | - Bo Wang
- Center for Translational MedicineThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi ProvinceChina,Key Laboratory for Tumor Precision Medicine of Shaanxi ProvinceThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi ProvinceChina
| | - Xiaoqian Gao
- Center for Translational MedicineThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi ProvinceChina,Key Laboratory for Tumor Precision Medicine of Shaanxi ProvinceThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi ProvinceChina
| | - Shaoran Song
- Center for Translational MedicineThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi ProvinceChina,Key Laboratory for Tumor Precision Medicine of Shaanxi ProvinceThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi ProvinceChina
| | - Yaochun Wang
- Center for Translational MedicineThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi ProvinceChina,Key Laboratory for Tumor Precision Medicine of Shaanxi ProvinceThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi ProvinceChina
| | - Yu Ren
- Department of Surgical OncologyThe First Affiliated Hospital of Xi' an Jiaotong UniversityXi'anShaanxi ProvinceChina
| | - Juan Li
- Center for Translational MedicineThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi ProvinceChina,Key Laboratory for Tumor Precision Medicine of Shaanxi ProvinceThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi ProvinceChina
| | - Peijun Liu
- Center for Translational MedicineThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi ProvinceChina,Key Laboratory for Tumor Precision Medicine of Shaanxi ProvinceThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi ProvinceChina
| |
Collapse
|
5
|
Gautam SK, Dalal V, Sajja BR, Gupta S, Gulati M, Dwivedi NV, Aithal A, Cox JL, Rachagani S, Liu Y, Chung V, Salgia R, Batra SK, Jain M. Endothelin-axis antagonism enhances tumor perfusion in pancreatic cancer. Cancer Lett 2022; 544:215801. [PMID: 35732216 PMCID: PMC10198578 DOI: 10.1016/j.canlet.2022.215801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/02/2022] [Accepted: 06/16/2022] [Indexed: 11/20/2022]
Abstract
Delivery of therapeutic agents in pancreatic cancer (PC) is impaired due to its hypovascular and desmoplastic tumor microenvironment. The Endothelin (ET)-axis is the major regulator of vasomotor tone under physiological conditions and is highly upregulated in multiple cancers. We investigated the effect of dual endothelin receptor antagonist bosentan on perfusion and macromolecular transport in a PC cell-fibroblast co-implantation tumor model using Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI). Following bosentan treatment, the contrast enhancement ratio and wash-in rates in tumors were two- and nine times higher, respectively, compared to the controls, whereas the time to peak was significantly shorter (7.29 ± 1.29 min v/s 22.08 ± 5.88 min; p = 0.04). Importantly, these effects were tumor selective as the magnitudes of change for these parameters were much lower in muscles. Bosentan treatment also reduced desmoplasia and improved intratumoral distribution of high molecular weight FITC-dextran. Overall, these findings support that targeting the ET-axis can serve as a potential strategy to selectively enhance tumor perfusion and improve the delivery of therapeutic agents in pancreatic tumors.
Collapse
Affiliation(s)
- Shailendra K Gautam
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Vipin Dalal
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Balasrinivasa R Sajja
- Department of Radiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Suprit Gupta
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Mansi Gulati
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Nidhi V Dwivedi
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Abhijit Aithal
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Jesse L Cox
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Yutong Liu
- Department of Radiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Vincent Chung
- Department of Medical Oncology and Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA, 91010, USA
| | - Ravi Salgia
- Department of Medical Oncology and Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA, 91010, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
6
|
Targeting GPCRs and Their Signaling as a Therapeutic Option in Melanoma. Cancers (Basel) 2022; 14:cancers14030706. [PMID: 35158973 PMCID: PMC8833576 DOI: 10.3390/cancers14030706] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Sixteen G-protein-coupled receptors (GPCRs) have been involved in melanogenesis or melanomagenesis. Here, we review these GPCRs, their associated signaling, and therapies. Abstract G-protein-coupled receptors (GPCRs) serve prominent roles in melanocyte lineage physiology, with an impact at all stages of development, as well as on mature melanocyte functions. GPCR ligands are present in the skin and regulate melanocyte homeostasis, including pigmentation. The role of GPCRs in the regulation of pigmentation and, consequently, protection against external aggression, such as ultraviolet radiation, has long been established. However, evidence of new functions of GPCRs directly in melanomagenesis has been highlighted in recent years. GPCRs are coupled, through their intracellular domains, to heterotrimeric G-proteins, which induce cellular signaling through various pathways. Such signaling modulates numerous essential cellular processes that occur during melanomagenesis, including proliferation and migration. GPCR-associated signaling in melanoma can be activated by the binding of paracrine factors to their receptors or directly by activating mutations. In this review, we present melanoma-associated alterations of GPCRs and their downstream signaling and discuss the various preclinical models used to evaluate new therapeutic approaches against GPCR activity in melanoma. Recent striking advances in our understanding of the structure, function, and regulation of GPCRs will undoubtedly broaden melanoma treatment options in the future.
Collapse
|
7
|
Schäfer A, Haenig B, Erupathil J, Strickner P, Sabato D, Welford RWD, Klaeylé L, Simon E, Krepler C, Brafford P, Xiao M, Herlyn M, Gstaiger M, Lehembre F, Renz I. Inhibition of endothelin-B receptor signaling synergizes with MAPK pathway inhibitors in BRAF mutated melanoma. Oncogene 2021; 40:1659-1673. [PMID: 33500549 DOI: 10.1038/s41388-020-01628-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 12/03/2020] [Accepted: 12/15/2020] [Indexed: 01/30/2023]
Abstract
The clinical benefit of MAPK pathway inhibition in melanoma patients carrying BRAF mutations is temporal. After the initial response to treatment, the majority of tumors will develop resistance and patients will relapse. Here we demonstrate that the endothelin-endothelin receptor B (ETBR) signaling pathway confers resistance to MAPK pathway inhibitors in BRAF mutated melanoma. MAPK blockade, in addition to being anti-proliferative, induces a phenotypic change which is characterized by increased expression of melanocyte-specific genes including ETBR. In the presence of MAPK inhibitors, activation of ETBR by endothelin enables the sustained proliferation of melanoma cells. In mouse models of melanoma, including patient-derived xenograft models, concurrent inhibition of the MAPK pathway and ETBR signaling resulted in a more effective anti-tumor response compared to MAPK pathway inhibition alone. The combination treatment significantly reduced tumor growth and prolonged survival compared to therapies with MAPK pathway inhibitors alone. The phosphoproteomic analysis revealed that ETBR signaling did not induce resistance towards MAPK pathway inhibitors by restoring MAPK activity, but instead via multiple alternative signaling pathways downstream of the small G proteins GNAq/11. Together these data indicate that a combination of MAPK pathway inhibitors with ETBR antagonists could have a synergistically beneficial effect in melanoma patients with hyperactivated MAPK signaling pathways.
Collapse
Affiliation(s)
- Alexander Schäfer
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Otto-Stern-Weg 3, 8093, Zürich, Switzerland.,Swiss BioQuant AG, 4153, Reinach, Switzerland
| | - Benedicte Haenig
- Drug Discovery Biology, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, 4123, Allschwil, Switzerland
| | - Julie Erupathil
- Drug Discovery Biology, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, 4123, Allschwil, Switzerland
| | - Panja Strickner
- Drug Discovery Biology, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, 4123, Allschwil, Switzerland
| | - Daniela Sabato
- Drug Discovery Biology, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, 4123, Allschwil, Switzerland
| | - Richard W D Welford
- Drug Discovery Biology, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, 4123, Allschwil, Switzerland
| | - Lhéanna Klaeylé
- Drug Discovery Biology, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, 4123, Allschwil, Switzerland
| | - Elise Simon
- Drug Discovery Biology, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, 4123, Allschwil, Switzerland.,Novartis Institutes for BioMedical Research, 4002, Basel, Switzerland
| | - Clemens Krepler
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, PA, 19104, USA.,Merck, North Wales, PA, 19454, USA
| | - Patricia Brafford
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Min Xiao
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Meenhard Herlyn
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Matthias Gstaiger
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Otto-Stern-Weg 3, 8093, Zürich, Switzerland
| | - Francois Lehembre
- Drug Discovery Biology, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, 4123, Allschwil, Switzerland
| | - Imke Renz
- Drug Discovery Biology, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, 4123, Allschwil, Switzerland.
| |
Collapse
|
8
|
Jain F, Longakit A, Huang JLY, Van Raamsdonk CD. Endothelin signaling promotes melanoma tumorigenesis driven by constitutively active GNAQ. Pigment Cell Melanoma Res 2020; 33:834-849. [PMID: 32453908 DOI: 10.1111/pcmr.12900] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 05/15/2020] [Accepted: 05/17/2020] [Indexed: 12/20/2022]
Abstract
The G-protein-coupled receptor, endothelin receptor B (EDNRB), is an important regulator of melanocyte survival and proliferation. It acts by stimulating downstream heterotrimeric G proteins, such as Gαq and Gα1 . Constitutively active, oncogenic versions of Gαq and Gα11 drive melanomagenesis, but the role of Ednrb in the context of these mutant G proteins has not been previously examined. In this paper, we used a knock-in mouse allele at the Rosa26 locus to force oncogenic GNAQQ209L expression in melanocytes in combination with Ednrb gene knockout. The resulting pathological analysis revealed that every aspect of melanomagenesis driven by GNAQQ209L was inhibited. We conclude that even in the presence of oncogenic Gαq , the Ednrb receptor activates normal Gαq and Gα11 proteins. This likely promotes tumorigenesis by activating phospholipase C-beta, the immediate effector of Gαq/11 . These findings suggest that it might be possible to target upstream receptors to offset the effects of hyperactive G proteins, recognized as the cause of a growing number of human disorders.
Collapse
Affiliation(s)
- Fagun Jain
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Anne Longakit
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Jenny Li-Ying Huang
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Catherine D Van Raamsdonk
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
9
|
Ahn HM, Kim DG, Kim YJ. Blockade of endothelin receptor A enhances the therapeutic efficacy of gemcitabine in pancreatic cancer cells. Biochem Biophys Res Commun 2020; 527:568-573. [PMID: 32423820 DOI: 10.1016/j.bbrc.2020.04.118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 04/23/2020] [Indexed: 01/23/2023]
Abstract
Pancreatic adenocarcinoma is currently one of the leading causes of cancer-related death worldwide. The high rate of mortality in pancreatic cancer patients is due to the inability to detect early-stage disease and the disease being highly refractory to therapy. Gemcitabine has been the standard chemotherapy for advanced pancreatic cancer patients for the last two decades. However, gemcitabine resistance develops within a few weeks of treatment, and the associated mechanism remains poorly understood. Therefore, a novel therapeutic strategy is needed to overcome the limited clinical efficacy of gemcitabine in pancreatic adenocarcinoma. In this study, we demonstrated that ET-1/ETAR axis gene expression was upregulated in pancreatic cancer cells after treatment with gemcitabine. Additionally, ETAR expression was significantly higher in tumor tissues than in normal tissues, and patients with high ETAR expression had a notably worse overall survival rate than those with low ETAR expression. Furthermore, our results revealed that bosentan, an ETAR antagonist, enhanced the growth-inhibiting and proapoptotic effects of gemcitabine on pancreatic cancer cells. Thus, our findings indicate that blockade of the ET-1/ETAR axis signaling pathway promotes the antiproliferative effect of gemcitabine on pancreatic cancer. Therefore, combination of ETAR blockade and gemcitabine serves as an effective therapeutic approach to achieve clinical benefits in pancreatic adenocarcinoma patients.
Collapse
Affiliation(s)
- Hye-Mi Ahn
- Division of Translational Science, Research Institute, National Cancer Center, Goyang, Gyeonggi, 10408, Republic of Korea
| | - Dong-Gun Kim
- Division of Translational Science, Research Institute, National Cancer Center, Goyang, Gyeonggi, 10408, Republic of Korea
| | - Youn-Jae Kim
- Division of Translational Science, Research Institute, National Cancer Center, Goyang, Gyeonggi, 10408, Republic of Korea.
| |
Collapse
|
10
|
Enevoldsen FC, Sahana J, Wehland M, Grimm D, Infanger M, Krüger M. Endothelin Receptor Antagonists: Status Quo and Future Perspectives for Targeted Therapy. J Clin Med 2020; 9:jcm9030824. [PMID: 32197449 PMCID: PMC7141375 DOI: 10.3390/jcm9030824] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 02/06/2023] Open
Abstract
The endothelin axis, recognized for its vasoconstrictive action, plays a central role in the pathology of pulmonary arterial hypertension (PAH). Treatment with approved endothelin receptor antagonists (ERAs), such as bosentan, ambrisentan, or macitentan, slow down PAH progression and relieves symptoms. Several findings have indicated that endothelin is further involved in the pathogenesis of certain other diseases, making ERAs potentially beneficial in the treatment of various conditions. In addition to PAH, this review summarizes the use and perspectives of ERAs in cancer, renal disease, fibrotic disorders, systemic scleroderma, vasospasm, and pain management. Bosentan has proven to be effective in systemic sclerosis PAH and in decreasing the development of vasospasm-related digital ulcers. The selective ERA clazosentan has been shown to be effective in preventing cerebral vasospasm and delaying ischemic neurological deficits and new infarcts. Furthermore, in the SONAR (Study Of Diabetic Nephropathy With Atrasentan) trial, the selective ERA atrasentan reduced the risk of renal events in patients with diabetes and chronic kidney disease. These data suggest atrasentan as a new therapy in the treatment of diabetic nephropathy and possibly other renal diseases. Preclinical studies regarding heart failure, cancer, and fibrotic diseases have demonstrated promising effects, but clinical trials have not yet produced measurable results. Nevertheless, the potential benefits of ERAs may not be fully realized.
Collapse
Affiliation(s)
- Frederik C. Enevoldsen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, 8000 Aarhus C, Denmark; (F.C.E.); (J.S.); (D.G.)
| | - Jayashree Sahana
- Department of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, 8000 Aarhus C, Denmark; (F.C.E.); (J.S.); (D.G.)
| | - Markus Wehland
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany; (M.W.); (M.I.)
| | - Daniela Grimm
- Department of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, 8000 Aarhus C, Denmark; (F.C.E.); (J.S.); (D.G.)
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany; (M.W.); (M.I.)
| | - Manfred Infanger
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany; (M.W.); (M.I.)
| | - Marcus Krüger
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany; (M.W.); (M.I.)
- Correspondence: ; Tel.: +49-391-6721267
| |
Collapse
|
11
|
A high affinity nanobody against endothelin receptor type B: a new approach to the treatment of melanoma. Mol Biol Rep 2020; 47:2137-2147. [PMID: 32080807 DOI: 10.1007/s11033-020-05313-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 02/07/2020] [Indexed: 12/31/2022]
Abstract
The aim of the study was to produce a single-domain antibody (nanobody) specific for endothelin receptor type B (EDNRB) which has high expression in melanoma. Cultured human melanoma cells were used as antigens to immunize alpacas. After antibody generation was verified in alpaca serum, total RNA was extracted from alpaca lymphocytes and the target VHH fragment was amplified by two-step PCR, cloned in the pCANTAB5E phagemid vector, and used to transform Escherichia coli TG1 cells to obtain a phage-display nanobody library, which was enriched by panning. The results indicated successful construction of a phage-display anti-human melanoma A375 nanobodies library with a size of 1.2 × 108/ml and insertion rate of 80%. After screening, eight positive clones of anti-EDNRB nanobodies were used to infect E. coli HB2151 for production of soluble nanobodies, which were identified by ELISA. Finally, we obtained a high-affinity anti-EDNRB nanobody, which consisted of 119 amino acids (molecular weight: 12.97 kDa) with 22 amino acids in CDR3 and had good affinity in vitro. The results suggest that the nanobody may be potentially used for the treatment of human melanoma.
Collapse
|
12
|
Abstract
Discovered in 1987 as a potent endothelial cell-derived vasoconstrictor peptide, endothelin-1 (ET-1), the predominant member of the endothelin peptide family, is now recognized as a multifunctional peptide with cytokine-like activity contributing to almost all aspects of physiology and cell function. More than 30 000 scientific articles on endothelin were published over the past 3 decades, leading to the development and subsequent regulatory approval of a new class of therapeutics-the endothelin receptor antagonists (ERAs). This article reviews the history of the discovery of endothelin and its role in genetics, physiology, and disease. Here, we summarize the main clinical trials using ERAs and discuss the role of endothelin in cardiovascular diseases such as arterial hypertension, preecclampsia, coronary atherosclerosis, myocardial infarction in the absence of obstructive coronary artery disease (MINOCA) caused by spontaneous coronary artery dissection (SCAD), Takotsubo syndrome, and heart failure. We also discuss how endothelins contributes to diabetic kidney disease and focal segmental glomerulosclerosis, pulmonary arterial hypertension, as well as cancer, immune disorders, and allograft rejection (which all involve ETA autoantibodies), and neurological diseases. The application of ERAs, dual endothelin receptor/angiotensin receptor antagonists (DARAs), selective ETB agonists, novel biologics such as receptor-targeting antibodies, or immunization against ETA receptors holds the potential to slow the progression or even reverse chronic noncommunicable diseases. Future clinical studies will show whether targeting endothelin receptors can prevent or reduce disability from disease and improve clinical outcome, quality of life, and survival in patients.
Collapse
Affiliation(s)
- Matthias Barton
- From Molecular Internal Medicine, University of Zürich, Switzerland (M.B.)
- Andreas Grüntzig Foundation, Zürich, Switzerland (M.B.)
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS) and Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Japan (M.Y.)
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX (M.Y.)
| |
Collapse
|
13
|
Chen YS, Liu F, Luo YH, Fan Y, Xu FG, Li P, Zhou B, Pan XY, Wang CC, Cui L. EDNRB isoform 3 confers Temozolomide resistance in A375 melanoma cells by modulating membrane potential, reactive oxygen species and mitochondrial Ca 2. Cancer Manag Res 2019; 11:7353-7367. [PMID: 31496797 PMCID: PMC6689146 DOI: 10.2147/cmar.s208604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/10/2019] [Indexed: 12/24/2022] Open
Abstract
Background The role of endothelin receptor type B (EDNRB) isoform 3 involved in Temozolomide (TMZ)-induced melanoma cell death has not yet been elucidated. Methods The subcellular localization of EDNRB isoform 3 was determined by confocal and immunoblotting assays. Silencing EDNRB isoform 3 was performed by CRISPR/Cas9. Apoptosis was assessed by annexin V/propium iodide staining and caspases 3/7/9 activity. Mitochondrial membrane potential, reactive oxygen species and mitochondrial Ca2+ were measured by flow cytometry. Apoptosis protein array was applied. Results Confocal and immunoblot analyses indicate mitochondrial localization of EDNRB isoform 3 and the first N-terminal (1–22) amino acids are sufficient for its mitochondrial targeting. EDNRB isoform 3 depleted A375 cells significantly confers chemoresistance with mitochondrial depolarization, reduced reactive oxygen species, enhanced mitochondrial Ca2+ uptake and decreased caspase 9 activation. Additionally, apoptosis array shows that lack of EDNRB isoform 3 has relatively lower expression of phosphorylation of p53 at S392 and a slightly higher expression of Paraoxonase 2. Conclusion Our findings raise the possibility of targeting EDNRB isoform 3 as a new therapeutic strategy in combination with TMZ for melanoma treatment.
Collapse
Affiliation(s)
- Yun Shan Chen
- Department of Obstetrics and Gynaecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, People's Republic of China
| | - Fen Liu
- Department of Obstetrics and Gynaecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, People's Republic of China
| | - Yi Hong Luo
- Department of Obstetrics and Gynaecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, People's Republic of China
| | - Yue Fan
- Department of Obstetrics and Gynaecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, People's Republic of China
| | - Fang Gui Xu
- Department of Obstetrics and Gynaecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, People's Republic of China
| | - Pin Li
- Department of Obstetrics and Gynaecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, People's Republic of China
| | - Bei Zhou
- Department of Obstetrics and Gynaecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, People's Republic of China
| | - Xiu Yu Pan
- Department of Obstetrics and Gynaecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, People's Republic of China
| | - Chi Chiu Wang
- Reproduction and Development Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong.,School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong.,Department of Obstetrics and Gynaecology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Long Cui
- Department of Obstetrics and Gynaecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, People's Republic of China.,Department of Obstetrics and Gynaecology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
14
|
Mazaki Y, Higashi T, Onodera Y, Nam JM, Hashimoto A, Hashimoto S, Horinouchi T, Miwa S. Endothelin type B receptor interacts with the 78-kDa glucose-regulated protein. FEBS Lett 2019; 593:644-651. [PMID: 30801683 DOI: 10.1002/1873-3468.13347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/13/2019] [Accepted: 02/19/2019] [Indexed: 12/21/2022]
Abstract
Endothelin (ET)-1 is involved in the vascular system, cell proliferation and apoptosis. ET receptors consist of ET type A receptor (ETA R) and ET type B receptor (ETB R). ETA R and ETB R generally exhibit opposite responses, although many exceptions exist. In the present study, we attempted to identify ETA R- or ETB R-specific binding proteins to understand the differences in ETA R- and ETB R-mediated responses after ET-1 stimulation. The 78-kDa glucose-regulated protein (GRP78) showed a stronger binding affinity towards ETB R than towards ETA R. Moreover, GRP78 overexpression promoted ETB R-mediated ERK activation and GRP78 silencing suppressed ETB R-mediated ERK activation. Furthermore, ETB R can localize GRP78 to the cell periphery. These results suggest that the interaction of ETB R with GRP78 affects ERK activation and GRP78 localization.
Collapse
Affiliation(s)
- Yuichi Mazaki
- Department of Cellular Pharmacology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Tsunehito Higashi
- Department of Cellular Pharmacology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yasuhito Onodera
- Department of Molecular Biology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Jin-Min Nam
- GSQ, GI-CoRE, Hokkaido University, Sapporo, Japan
| | - Ari Hashimoto
- Department of Molecular Biology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shigeru Hashimoto
- Laboratory of Immune Regulation, Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Takahiro Horinouchi
- Department of Cellular Pharmacology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Soichi Miwa
- Department of Cellular Pharmacology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
15
|
Aubert JD, Juillerat-Jeanneret L. Endothelin-Receptor Antagonists beyond Pulmonary Arterial Hypertension: Cancer and Fibrosis. J Med Chem 2016; 59:8168-88. [PMID: 27266371 DOI: 10.1021/acs.jmedchem.5b01781] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The endothelin axis and in particular the two endothelin receptors, ETA and ETB, are targets for therapeutic intervention in human diseases. Endothelin-receptor antagonists are in clinical use to treat pulmonary arterial hypertension and have been under clinical investigation for the treatment of several other diseases, such as systemic hypertension, cancer, vasospasm, and fibrogenic diseases. In this Perspective, we review the molecules that have been evaluated in human clinical trials for the treatment of pulmonary arterial hypertension, as well as other cardiovascular diseases, cancer, and fibrosis. We will also discuss the therapeutic consequences of receptor selectivity with regard to ETA-selective, ETB-selective, or dual ETA/ETB antagonists. We will also consider which chemical characteristics are relevant to clinical use and the properties of molecules necessary for efficacy in treating diseases against which known molecules displayed suboptimal efficacy.
Collapse
Affiliation(s)
- John-David Aubert
- Pneumology Division and Transplantation Center, Centre Hospitalier Universitaire Vaudois (CHUV) , CH1011 Lausanne, Switzerland
| | - Lucienne Juillerat-Jeanneret
- University Institute of Pathology and Transplantation Center, Centre Hospitalier Universitaire Vaudois (CHUV), and University of Lausanne (UNIL), CH1011 Lausanne, Switzerland
| |
Collapse
|
16
|
Urtatiz O, Van Raamsdonk CD. Gnaq and Gna11 in the Endothelin Signaling Pathway and Melanoma. Front Genet 2016; 7:59. [PMID: 27148356 PMCID: PMC4837292 DOI: 10.3389/fgene.2016.00059] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 04/01/2016] [Indexed: 12/21/2022] Open
Abstract
In this article, we first briefly outline the function of G protein coupled receptors in cancer, and then specifically examine the roles of the seven transmembrane G protein coupled Endothelin B receptor (Ednrb) and the G proteins, GNAQ and GNA11, in both melanocyte development and melanoma. Ednrb plays an essential role in melanocyte development. GNAQ and GNA11 are oncogenes when mutated in certain types of melanocytic lesions, being extremely frequent in uveal melanoma, which forms from melanocytes located in the eye. Previously, we reported that in mice, Schwann cell precursor derived melanocytes colonize the dermis and hair follicles, while the inter-follicular epidermis is populated by other melanocytes. A pattern has emerged whereby melanocytes whose activities are affected by gain-of-function mutations of the Endothelin 3 ligand and Gαq/11 are the same subset that arise from Schwann cell precursors. Furthermore, the forced expression of the constitutively active human GNAQQ209L oncogene in mouse melanocytes only causes hyper-proliferation in the subset that arise from Schwann cell precursors. This has led us to hypothesize that in Schwann cell precursor derived melanocytes, Ednrb signals through Gαq/11. Ednrb is promiscuous and may signal through other G protein alpha subunits in melanomas located in the inter-follicular epidermis.
Collapse
Affiliation(s)
- Oscar Urtatiz
- Department of Medical Genetics, University of British Columbia Vancouver, BC, Canada
| | | |
Collapse
|
17
|
Davenport AP, Hyndman KA, Dhaun N, Southan C, Kohan DE, Pollock JS, Pollock DM, Webb DJ, Maguire JJ. Endothelin. Pharmacol Rev 2016; 68:357-418. [PMID: 26956245 PMCID: PMC4815360 DOI: 10.1124/pr.115.011833] [Citation(s) in RCA: 517] [Impact Index Per Article: 57.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The endothelins comprise three structurally similar 21-amino acid peptides. Endothelin-1 and -2 activate two G-protein coupled receptors, ETA and ETB, with equal affinity, whereas endothelin-3 has a lower affinity for the ETA subtype. Genes encoding the peptides are present only among vertebrates. The ligand-receptor signaling pathway is a vertebrate innovation and may reflect the evolution of endothelin-1 as the most potent vasoconstrictor in the human cardiovascular system with remarkably long lasting action. Highly selective peptide ETA and ETB antagonists and ETB agonists together with radiolabeled analogs have accurately delineated endothelin pharmacology in humans and animal models, although surprisingly no ETA agonist has been discovered. ET antagonists (bosentan, ambrisentan) have revolutionized the treatment of pulmonary arterial hypertension, with the next generation of antagonists exhibiting improved efficacy (macitentan). Clinical trials continue to explore new applications, particularly in renal failure and for reducing proteinuria in diabetic nephropathy. Translational studies suggest a potential benefit of ETB agonists in chemotherapy and neuroprotection. However, demonstrating clinical efficacy of combined inhibitors of the endothelin converting enzyme and neutral endopeptidase has proved elusive. Over 28 genetic modifications have been made to the ET system in mice through global or cell-specific knockouts, knock ins, or alterations in gene expression of endothelin ligands or their target receptors. These studies have identified key roles for the endothelin isoforms and new therapeutic targets in development, fluid-electrolyte homeostasis, and cardiovascular and neuronal function. For the future, novel pharmacological strategies are emerging via small molecule epigenetic modulators, biologicals such as ETB monoclonal antibodies and the potential of signaling pathway biased agonists and antagonists.
Collapse
Affiliation(s)
- Anthony P Davenport
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Kelly A Hyndman
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Neeraj Dhaun
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Christopher Southan
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Donald E Kohan
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Jennifer S Pollock
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - David M Pollock
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - David J Webb
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Janet J Maguire
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| |
Collapse
|
18
|
Aladowicz E, Ferro L, Vitali GC, Venditti E, Fornasari L, Lanfrancone L. Molecular networks in melanoma invasion and metastasis. Future Oncol 2013; 9:713-26. [PMID: 23647299 DOI: 10.2217/fon.13.9] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Metastatic melanoma accounts for approximately 80% of skin cancer-related deaths. Up to now there has been no effective treatment for stage IV melanoma patients due to the complexity and dissemination potential of this disease. Melanomas are heterogeneous tumors in which conventional therapies fail to improve overall survival. Targeted therapies are being developed, but the final outcome can be hampered by the incomplete knowledge of the process of melanoma progression. Even if the intracellular pathways are similar, the interaction of the cells with the surrounding environment should be taken into consideration. This article seeks to highlight some of the advances in the understanding of the molecular mechanisms underlying melanoma dissemination.
Collapse
Affiliation(s)
- Ewa Aladowicz
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, Milan, Italy
| | | | | | | | | | | |
Collapse
|
19
|
Irani S, Salajegheh A, Smith RA, Lam AKY. A review of the profile of endothelin axis in cancer and its management. Crit Rev Oncol Hematol 2013; 89:314-21. [PMID: 24035584 DOI: 10.1016/j.critrevonc.2013.08.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 08/18/2013] [Accepted: 08/22/2013] [Indexed: 12/25/2022] Open
Abstract
The endothelins and their associated receptors are important controllers of vascular growth, inflammation and vascular tone. In cancer, they have roles in the control of numerous factors in cancer development and progression, including angiogenesis, stromal reaction, epithelial mesenchymal transitions, apoptosis, invasion, metastases and drug resistance. Also, we consider current information on the role of this signalling system in cancer and examine the state of the current cell, animal and clinical trials utilizing endothelin targeted drugs for cancer management. Although targeting the endothelin axis in cell lines and xenografts show some promise in retarding cellular growth, results from limited clinical trials in prostatic cancer are less encouraging and did not offer significant survival benefit. The ability to target both cancer cells and vasculature via endothelin is an important consideration that necessitates the further refining of therapeutic strategies as we continue to explore the possibilities of the endothelin axis in cancer treatment.
Collapse
Affiliation(s)
- Soussan Irani
- Cancer Molecular Pathology, School of Medicine and Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia
| | - Ali Salajegheh
- Cancer Molecular Pathology, School of Medicine and Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia
| | - Robert Anthony Smith
- Cancer Molecular Pathology, School of Medicine and Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia
| | - Alfred King-Yin Lam
- Cancer Molecular Pathology, School of Medicine and Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia.
| |
Collapse
|
20
|
Rosanò L, Spinella F, Bagnato A. Endothelin 1 in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer 2013; 13:637-51. [PMID: 23884378 DOI: 10.1038/nrc3546] [Citation(s) in RCA: 233] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Activation of autocrine and paracrine signalling by endothelin 1 (ET1) binding to its receptors elicits pleiotropic effects on tumour cells and on the host microenvironment. This activation modulates cell proliferation, apoptosis, migration, epithelial-to-mesenchymal transition, chemoresistance and neovascularization, thus providing a strong rationale for targeting ET1 receptors in cancer. In this Review, we discuss the advances in our understanding of the diverse biological roles of ET1 in cancer and describe the latest preclinical and clinical progress that has been made using small-molecule antagonists of ET1 receptors that inhibit ET1-driven signalling.
Collapse
Affiliation(s)
- Laura Rosanò
- Laboratory of Molecular Pathology A, Regina Elena National Cancer Institute, Via Elio Chianesi 53, Rome 00144, Italy
| | | | | |
Collapse
|
21
|
Differential expression of the G-protein-coupled formyl Peptide receptor in melanoma associates with aggressive phenotype. Am J Dermatopathol 2013; 35:184-90. [PMID: 23147350 DOI: 10.1097/dad.0b013e31825b2506] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Melanoma, due to its metastatic rate, is among the most aggressive forms of skin cancer. Human formyl peptide receptor (FPR) and its variant FPR-like 1 (FPRL1) have been associated with cell migration and invasiveness in neoplasms. We have studied the in situ expression of these receptors in a large series of melanocytic lesions and correlated the expression with clinicopathological features and prognosis. Tissue microarray blocks of 141 cases including nevi (31 cases), primary (84 cases), and metastatic melanomas (26 cases) were semiquantitatively evaluated by immunohistochemistry for the expression of FPR and FPRL1 proteins. A significant association was observed regarding diagnosis and percentage of cells showing expression of FPR (P = 0.0311) and FPRL1 (P = 0.0053). A gain of FPR immunoreactivity was observed in the lesions having ulceration (P = 0.0194) and Breslow thickness (P = 0.044). Also, high FPRL1 cytoplasmic immunoreactivity was seen in lesions without tumor regression (P = 0.04). In addition, in patients with increased cytoplasmic staining for FPR, the probability of disease-specific survival was significantly lower (log rank test, P = 0.0089). Our findings reveal that FPR and FPRL1 are overexpressed in primary melanoma and correlate with aggressive tumor characteristics, underscoring them as potential therapeutic targets.
Collapse
|
22
|
Haque SU, Morton D, Welch H. Biologics against cancer-specific receptors - challenges to personalised medicine from early trial results. Curr Opin Pharmacol 2012; 12:392-7. [PMID: 22738821 DOI: 10.1016/j.coph.2012.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 05/01/2012] [Accepted: 05/07/2012] [Indexed: 12/28/2022]
Abstract
Understanding molecular mechanisms of tumourigenesis underlies new therapeutic strategies that specifically target tumours. This has led to the evolution of personalised therapy that was first used in breast cancer when hormone receptor status was determined. More recently in colorectal cancer treatment the Epidermal Growth Factor receptor and its tumourigenic role has led to its targeting by using Cetuximab and Panitumumab. Addition of these drugs to existing drug regimes (FOLFOX and FOLFIRI) showed improved respectability rates in patients with liver metastasis. Most recently the Endothelin receptor has been implicated in multiple tumourigenic processes. Interest has grown in using Endothelin A receptor antagonists as adjuvant or combination therapy as suggested by the FOLFERA and FOLFIRI trials currently on-going.
Collapse
Affiliation(s)
- Samer-ul Haque
- UCL Division of Surgery and Interventional Science, UCL, London, UK.
| | | | | |
Collapse
|
23
|
Kalles V, Zografos GC, Provatopoulou X, Kalogera E, Liakou P, Georgiou G, Sagkriotis A, Nonni A, Gounaris A. Circulating levels of endothelin-1 (ET-1) and its precursor (Big ET-1) in breast cancer early diagnosis. Tumour Biol 2012; 33:1231-6. [DOI: 10.1007/s13277-012-0371-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 02/23/2012] [Indexed: 10/28/2022] Open
|
24
|
Petrillo M, Scambia G, Ferrandina G. Novel targets for VEGF-independent anti-angiogenic drugs. Expert Opin Investig Drugs 2012; 21:451-72. [PMID: 22339615 DOI: 10.1517/13543784.2012.661715] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION In the last decades, the active research in the field of tumor angiogenesis led to the development of a class of agents providing an effective inhibition of neovessels formation through the blockade of VEGF-related pathways. More recently, the identification of several non-VEGF factors such as PDGF, FGF, HGF, angiopoietins, ALK1/endoglin, endothelis and ephrins involved in tumor angiogenesis have emphasized the need to develop agents targeting multiple pro-angiogenic pathways. AREAS COVERED This review aimed at summarizing the role of non-VEGF molecular pathways in targeting tumor angiogenesis. Preclinical and clinical data for investigational agents against non-VEGF targets have been reviewed emphasizing the role of combined inhibition strategies. EXPERT OPINION Besides the successful development of drugs providing a specific VEGF blockade, novel agents targeting alternative angiogenesis-related pathways are being tested. Although it seems that the potential clinical usefulness of these novel compounds have been not yet fully investigated, sunitinib, sorafenib, pazopanib and other multikinase inhibitors have certainly displayed encouraging results. A more in-depth clarification of anti-angiogenic agents is still needed, in order to design the best clinical setting and schedule for target-based agents and possibly anticipate potential tools to overcome the emerging issue of anti-angiogenic drug resistance.
Collapse
Affiliation(s)
- Marco Petrillo
- Catholic University of the Sacred Heart, Gynecologic Oncology Unit, Department of Oncology, Campobasso, Italy
| | | | | |
Collapse
|
25
|
|
26
|
Bagnato A, Loizidou M, Pflug BR, Curwen J, Growcott J. Role of the endothelin axis and its antagonists in the treatment of cancer. Br J Pharmacol 2011; 163:220-33. [PMID: 21232046 DOI: 10.1111/j.1476-5381.2011.01217.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The endothelins (ET) are a group of proteins that act through G-protein coupled receptors. Endothelin-1 (ET-1) was initially identified as a potent vasoconstrictor and dysregulation of the ET axis contributes to pathological processes responsible for cardiovascular disease states. More recently, the ET axis, in particular ET-1 acting through the endothelin A receptor (ET(A) ), has been implicated in the development of several cancers through activation of pathways involved in cell proliferation, migration, invasion, epithelial-mesenchymal transition, osteogenesis and angiogenesis. The endothelin B receptor (ET(B) ) may counter tumour progression by promoting apoptosis and clearing ET-1; however, it has recently been implicated in the development of some tumour types including melanomas and oligodendrogliomas. Here, we review emerging preclinical and clinical data outlining the role of the ET axis in cancer, and its antagonism as an attractive and challenging approach to improve clinical cancer management. Clinical data of ET(A) antagonists in patients with prostate cancer are encouraging and provide promise for new ET(A) antagonist-based treatment strategies. Given the unexpected opportunities to affect pleiotrophic tumorigenic signals by targeting ET(A)-mediated pathways in a number of cancers, the evaluation of ET-targeted therapy in cancer warrants further investigation.
Collapse
Affiliation(s)
- A Bagnato
- Molecular Pathology Laboratory 'A', Regina Elena National Cancer Institute, Rome, Italy
| | | | | | | | | |
Collapse
|
27
|
Kandalaft LE, Motz GT, Busch J, Coukos G. Angiogenesis and the tumor vasculature as antitumor immune modulators: the role of vascular endothelial growth factor and endothelin. Curr Top Microbiol Immunol 2011; 344:129-48. [PMID: 20680802 DOI: 10.1007/82_2010_95] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cancer immunotherapies have yielded promising results in recent years, but new approaches must be utilized if more patients are to experience the benefits of these therapies. Angiogenesis and the tumor endothelium confer unique immune privilege to a growing tumor, with significant effects on diverse immunological processes such as hematopoietic cell maturation, antigen presentation, effector T cell differentiation, cytokine production, adhesion, and T cell homing and extravasation. Here, we review the role of angiogenesis and the tumor endothelium on regulation of the antitumor immune response. We place particular emphasis on the role of vascular endothelial growth factor (VEGF) in the suppression of numerous immunological processes that control tumor progression. Further, we describe the unique crosstalk between the VEGF and endothelin systems, and how their interactions may shape the antitumor immune response. These insights establish new targets for combinatorial approaches to modify existing cancer immunotherapies.
Collapse
Affiliation(s)
- Lana E Kandalaft
- Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
28
|
Macitentan (ACT-064992), a tissue-targeting endothelin receptor antagonist, enhances therapeutic efficacy of paclitaxel by modulating survival pathways in orthotopic models of metastatic human ovarian cancer. Neoplasia 2011; 13:167-79. [PMID: 21403842 DOI: 10.1593/neo.10806] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 10/18/2010] [Accepted: 10/22/2010] [Indexed: 11/18/2022] Open
Abstract
Potential treatments for ovarian cancers that have become resistant to standard chemotherapies include modulators of tumor cell survival, such as endothelin receptor (ETR) antagonist. We investigated the therapeutic efficacy of the dual ETR antagonist, macitentan, on human ovarian cancer cells, SKOV3ip1 and IGROV1, growing orthotopically in nude mice. Mice with established disease were treated with vehicle (control), paclitaxel (weekly, intraperitoneal injections), macitentan (daily oral administrations), or a combination of paclitaxel and macitentan. Treatment with paclitaxel decreased tumor weight and volume of ascites. Combination therapy with macitentan and paclitaxel reduced tumor incidence and further reduced tumor weight and volume of ascites when compared with paclitaxel alone. Macitentan alone occasionally reduced tumor weight but alone had no effect on tumor incidence or ascites. Immunohistochemical analyses revealed that treatment with macitentan and macitentan plus paclitaxel inhibited the phosphorylation of ETRs and suppressed the survival pathways of tumor cells by decreasing the levels of pVEGFR2, pAkt, and pMAPK. The dose of macitentan necessary for inhibition of phosphorylation correlated with the dose required to increase antitumor efficacy of paclitaxel. Treatment with macitentan enhanced the cytotoxicity mediated by paclitaxel as measured by the degree of apoptosis in tumor cells and tumor-associated endothelial cells. Collectively, these results show that administration of macitentan in combination with paclitaxel prevents the progression of ovarian cancer in the peritoneal cavity of nude mice in part by inhibiting survival pathways of both tumor cells and tumor-associated endothelial cells.
Collapse
|
29
|
Phase 1/2 study of atrasentan combined with pegylated liposomal doxorubicin in platinum-resistant recurrent ovarian cancer. Neoplasia 2011; 12:941-5. [PMID: 21076619 DOI: 10.1593/neo.10582] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 08/25/2010] [Accepted: 08/26/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Ovarian cancer overexpresses ET-1, and in vitro studies have shown that ET-1 confers resistance to anthracycline-containing chemotherapy. Atrasentan has been developed as an oral selective endothelin-A receptor antagonist. The objective of the study was to investigate the feasibility and toxicity of adding increasing doses of atrasentan (to a maximum of 10 mg/d) and liposomal doxorubicin in patients with progressive ovarian cancer, refractory for platinum and paclitaxel. METHODS Patients with platinum-resistant ovarian cancer were treated with pegylated liposomal doxorubicin (PLD) 50 mg/m(2) on day 1 (and repeated every 4 weeks) in combination with escalating doses of atrasentan once daily. The starting dose was 2.5 mg and escalated in cohorts of three patients from 5 to 10 mg. RESULTS Twenty-six patients (mean age = 60 years, range = 42-74 years) were treated at the three dose levels. Atrasentan could be safely administered in combination at a dose of 10 mg. All patients were evaluable for toxicity, and 19 patients, included in the phase 2 period, were evaluable for response. Adverse events included nausea, vomiting, mucositis, skin toxicity, and rhinitis. Clinical cardiac toxicity, intensively monitored, was not observed, although two patients had a decrease in cardiac ejection fraction. Three objective responses were observed and another six patients had stable disease with a median time to progression of 14 weeks and an overall survival of 13.1 months. CONCLUSIONS The addition of atrasentan to standard dose PLD in platinum-resistant ovarian cancer is feasible with some suggestion of prolonged survival.
Collapse
|
30
|
Yang X, Flaig TW. Novel targeted agents for the treatment of bladder cancer: translating laboratory advances into clinical application. Int Braz J Urol 2011; 36:273-82. [PMID: 20602819 DOI: 10.1590/s1677-55382010000300003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2009] [Indexed: 04/06/2023] Open
Abstract
Bladder cancer is a common and frequently lethal cancer. Natural history studies indicate two distinct clinical and molecular entities corresponding to invasive and non-muscle invasive disease. The high frequency of recurrence of noninvasive bladder cancer and poor survival rate of invasive bladder cancer emphasizes the need for novel therapeutic approaches. These mechanisms of tumor development and promotion in bladder cancer are strongly associated with several growth factor pathways including the fibroblast, epidermal, and the vascular endothelial growth factor pathways. In this review, efforts to translate the growing body of basic science research of novel treatments into clinical applications will be explored.
Collapse
Affiliation(s)
- Xiaoping Yang
- Department of Medicine, Division of Medical Oncology, University of Colorado Denver School of Medicine, Aurora, CO, 80045, USA
| | | |
Collapse
|
31
|
Asundi J, Reed C, Arca J, McCutcheon K, Ferrando R, Clark S, Luis E, Tien J, Firestein R, Polakis P. An Antibody–Drug Conjugate Targeting the Endothelin B Receptor for the Treatment of Melanoma. Clin Cancer Res 2011; 17:965-75. [DOI: 10.1158/1078-0432.ccr-10-2340] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Menard J, Durlach A, Barbe C, Joseph K, Lorenzato M, Azemar MD, Perez T, Birembault P, Staerman F. Endothelin-1: a predictor of extracapsular extension in clinically localized prostate cancer? BJU Int 2010; 108:E104-9. [PMID: 21091977 DOI: 10.1111/j.1464-410x.2010.09879.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
OBJECTIVE To assess the value of endothelin-1 (ET-1) expression in predicting extracapsular extension (ECE) in clinically localized prostate cancer (PCa). PATIENTS AND METHODS ET-1 expression was determined by immunohistochemistry on archival needle biopsies (NBs) from 94 patients (49 pT2 and 45 pT3a) who underwent radical prostatectomy (RP) for clinical T1-T2 PCa. Each sample was analysed independently by two pathologists blinded to the clinical data. RESULTS In univariate analysis, high ET-1 expression in NBs, pre-operative prostate-specific antigen (PSA) level >10 ng/ml, percentage of positive biopsy cores and NB Gleason score ≥7 were significantly associated with ECE as determined on subsequent RP. No significant association was found between clinical stage and ECE. In multivariate analysis, there was a significant association with high ET-1 expression in NBs (p = 0.006), pre-operative PSA level >10 ng/ml (p = 0.049), and NB Gleason score ≥7 (p = 0.002). These three pre-operative factors combined provided the best model for predicting ECE with 93.3% sensitivity, 49% specificity, 62.5% positive predictive value, 88.9% negative predictive value. The combination yielded a higher concordance index (0.760 vs 0.720) and offered a higher log partial likelihood than the same model without ET1 (112.8 vs 105.7, p = 0.01). CONCLUSIONS ET-1 expression was strongly associated with ECE and, when combined with pre-operative PSA level and Gleason score, improved the predictive accuracy of pre-operative NBs. Its assessment in patients with localized PCa might be useful when making treatment decisions. Further studies with standardisation of immunohistochemical staining and multi-institutional validation are now needed to establish the appropriate use of ET-1 staining in PCa staging and to evaluate inter-observer reproducibility.
Collapse
Affiliation(s)
- Johann Menard
- Department of Urology and Andrology, Laboratoire Pol Bouin, CHU Reims, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Russo A, Bronte G, Rizzo S, Fanale D, Di Gaudio F, Gebbia N, Bazan V. Anti-endothelin drugs in solid tumors. Expert Opin Emerg Drugs 2010; 15:27-40. [PMID: 20102289 DOI: 10.1517/14728210903571667] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
IMPORTANCE OF THE FIELD The endothelin (ET) axis, which includes the biological functions of ETs and their receptors, has played a physiological role in normal tissue, acting as a modulator of vasomotor tone, tissue differentiation and development, cell proliferation and hormone production. Interestingly, it also functions in the growth and progression of various tumors. Several researchers have identified the blockade of the ET-1 receptor as a promising therapeutic approach. AREAS COVERED IN THIS REVIEW The clinical investigation of an orally bioavailable ET antagonist, atrasentan, in prostate cancer, is encouraging. In this neoplasia, it has shown antitumor activity, bone metastasis control and amelioration of cancer-related pain but improvement in time to progression and overall survival has still not been demonstrated. The clinical trials of other ET antagonists are reported. Literature research was performed by Pubmed and Pharmaprojects. WHAT THE READER WILL GAIN A comprehensive view about the use of atrasentan in the treatment of castration-resistant prostate cancer (CRPC) is provided together with the scientific rationale based on the function of ET and its receptor in various cancer development mechanisms. TAKE HOME MESSAGE Atrasentan seems to be active in CRPC, although strong scientific evidence is still to be found. Interesting clinical findings regard zibotentan.
Collapse
Affiliation(s)
- Antonio Russo
- Università di Palermo, Section of Medical Oncology, Department of Surgical and Oncological Sciences, Via del Vespro 129, 90127 Palermo, Italy.
| | | | | | | | | | | | | |
Collapse
|
34
|
Kefford RF, Clingan PR, Brady B, Ballmer A, Morganti A, Hersey P. A randomized, double-blind, placebo-controlled study of high-dose bosentan in patients with stage IV metastatic melanoma receiving first-line dacarbazine chemotherapy. Mol Cancer 2010; 9:69. [PMID: 20350333 PMCID: PMC2856553 DOI: 10.1186/1476-4598-9-69] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 03/30/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The endothelin system is implicated in the pathogenesis of melanoma. We evaluated the effects of bosentan - a dual endothelin receptor antagonist - in patients receiving first-line dacarbazine therapy for stage IV metastatic cutaneous melanoma in a phase 2, proof-of-concept study. RESULTS Eligible patients had metastatic cutaneous melanoma naïve to chemotherapy or immunotherapy, no central nervous system involvement, and serum lactate dehydrogenase <1.5 x upper limit of normal. Treatment comprised bosentan 500 mg twice daily or matching placebo, in addition to dacarbazine 1000 mg/m2 every three weeks. Eighty patients were randomized (double-blind) and 38 in each group received study treatment. Median time to tumor progression (primary endpoint) was not significantly different between the two groups (placebo, 2.8 months; bosentan, 1.6 months; bosentan/placebo hazard ratio, 1.144; 95% CI, 0.717-1.827; p = 0.5683). Incidences of most adverse events and clinically relevant increases in hepatic transaminases were similar between treatment groups although hemoglobin decrease to >8 and < or = 10 g/dL and < or = 8 g/dL was more common in the bosentan group. CONCLUSIONS In patients receiving dacarbazine as first-line chemotherapy for metastatic melanoma, the addition of high-dose bosentan had no effect on time to tumor progression or other efficacy parameters. There were no unexpected safety findings. TRIAL REGISTRATION This study is registered in ClinicalTrials.gov under the unique identifier NCT01009177.
Collapse
Affiliation(s)
- Richard F Kefford
- Westmead Institute for Cancer research and Melanoma Institute of Australia, University of Sydney at Westmead Hospital, NSW 2145, Australia.
| | | | | | | | | | | |
Collapse
|
35
|
Eisen T, Trefzer U, Hamilton A, Hersey P, Millward M, Knight RD, Jungnelius JU, Glaspy J. Results of a multicenter, randomized, double-blind phase 2/3 study of lenalidomide in the treatment of pretreated relapsed or refractory metastatic malignant melanoma. Cancer 2010; 116:146-54. [PMID: 19862820 DOI: 10.1002/cncr.24686] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND The results of an international, multicenter, randomized, double-blind, controlled study assessing the efficacy and safety of lenalidomide treatment in patients with refractory stage IV metastatic malignant melanoma are reported. METHODS The study compared treatment with lenalidomide (25 mg/d on Days 1-21 of a 28-day cycle) to placebo in 306 patients with metastatic malignant melanoma. Treatment was continued until progression of disease or unacceptable toxicity. RESULTS There were no significant differences between lenalidomide and placebo in overall survival (median 5.9 months vs 7.4 months, respectively; P = .32), time to progression (median 3.0 months vs 2.1 months; P = .19), or Response Evaluation Criteria in Solid Tumors tumor response (5.3% vs 5.8%; P = .82). None of the patients given placebo discontinued treatment because of treatment-related adverse events, compared with 4.6% of those treated with lenalidomide. Treatment-related myelosuppression was observed in 2.0% of patients treated with placebo and 7.3% of patients treated with lenalidomide. CONCLUSIONS This study showed that treatment with lenalidomide (25 mg/d) has a manageable safety profile in patients with previously treated metastatic malignant melanoma but no benefit in tumor response, time to progression, or overall survival in these patients. Future trials for treatment of metastatic malignant melanoma with lenalidomide should focus on its use in combination therapies.
Collapse
Affiliation(s)
- Tim Eisen
- Royal Marsden Hospital, London, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Saldana-Caboverde A, Kos L. Roles of endothelin signaling in melanocyte development and melanoma. Pigment Cell Melanoma Res 2010; 23:160-70. [PMID: 20128875 DOI: 10.1111/j.1755-148x.2010.00678.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Endothelin (Edn) signaling via the G-coupled, Edn receptor type B (Ednrb) is essential for the development of melanocytes from the neural crest (NC) and has been associated with melanoma progression. Edn3 plays varying roles during melanocyte development, promoting the proliferation and self-renewal of NC-derived multi- and bi-potential precursors as well as the survival, proliferation, differentiation and migration of committed melanocyte precursors. Melanocyte differentiation is achieved via the interaction of Ednrb and Kit signaling, with Ednrb being specifically required in the final differentiation step, rather than in the initial specification of melanocytic fate. Ednrb has also been implicated in the de-differentiation of mature melanocytes, a process that takes place during the malignant transformation of these cells. Ednrb was found to be upregulated in melanoma metastases and was shown to alter tumor-host interactions leading to melanoma progression. Antagonists to this receptor were shown to inhibit melanoma cell growth and increase the apoptotic rate of these cells, and to lead to disease stabilization in melanoma patients. Thus, Edn signaling inhibition may prove useful in the treatment of certain types of melanoma.
Collapse
|
37
|
Glaspy J, Atkins MB, Richards JM, Agarwala SS, O'Day S, Knight RD, Jungnelius JU, Bedikian AY. Results of a multicenter, randomized, double-blind, dose-evaluating phase 2/3 study of lenalidomide in the treatment of metastatic malignant melanoma. Cancer 2009; 115:5228-36. [PMID: 19728370 DOI: 10.1002/cncr.24576] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND There are currently no systemic treatments for stage IV melanoma, which have been proven in randomized trials to benefit overall survival (OS). Lenalidomide has efficacy against melanoma in animal models and safety in phase 1 trials. The authors reported the results of a phase 2/3 study comparing the safety and efficacy of 2 doses of lenalidomide in patients with relapsed metastatic melanoma disease refractory to previous treatment with dacarbazine, temozolomide, interleukin-2, or interferon-alpha. METHODS A total of 294 patients were randomized to oral lenalidomide at 5 mg or 25 mg dose. Tumor response, time to progression, and OS were evaluated. Treatment continued until disease progression or unacceptable adverse events. RESULTS No significant differences in response rate, OS, or time to progression were observed between lenalidomide 25 mg versus 5 mg (overall response rate: 5.5% vs 3.4%, P = .38; median OS: 6.8 months vs 7.2 months, P = .71; and median time to progression: 2.2 months vs 1.9 months, P = .24). Myelosuppression was observed in 37.0% of patients in the 25 mg group and 13.7% of patients in the 5 mg group. Treatment-related serious adverse events were seen in 39.0% of patients at the 25 mg dose and 35.4% of patients at the 5 mg dose. CONCLUSIONS Despite the occurrence of treatment-related serious adverse events, approximately 80% of patients continued treatment. The higher dose of lenalidomide did not improve response rate, time to progression, or OS of patients with relapsed/refractory stage IV melanoma. A parallel placebo-controlled study has been conducted to further assess the efficacy of lenalidomide in stage IV melanoma patients.
Collapse
Affiliation(s)
- John Glaspy
- Department of Medicine, UCLA Medical Center, Los Angeles, CA 90095, USA.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Aubert JD, Juillerat-Jeanneret L. Therapeutic potential of endothelin receptor modulators: lessons from human clinical trials. Expert Opin Ther Targets 2009; 13:1069-84. [PMID: 19659448 DOI: 10.1517/14728220903074570] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The endothelin system, and in particular endothelin receptors, are targets for therapeutic intervention in human diseases. Endothelin receptor antagonists have reached clinical use for treating pulmonary arterial hypertension, and are under clinical investigation for several other diseases, such as cancer, vasospasm or fibrogenic diseases. We review the molecules that have been evaluated in the main clinical trials, from the point of view of receptor selectivity and of their chemical characteristics which were important for efficacy in pulmonary hypertension. We will also discuss future use of antagonists to endothelin receptor(s) in several human diseases and what should be the necessary properties of the future molecules for efficacy in diseases where the presently tested molecules displayed suboptimal efficacy.
Collapse
Affiliation(s)
- John-David Aubert
- University Institute of Pathology, University of Lausanne (UNIL), Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | | |
Collapse
|
39
|
Frantz RP. Bosentan for pulmonary hypertension and other pulmonary diseases: emerging evidence. Future Cardiol 2009; 4:459-68. [PMID: 19804340 DOI: 10.2217/14796678.4.5.459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Endothelin-1 is a potent vasoconstrictor and mitogen that is primarily synthesized and released from vascular endothelial cells. Bosentan is a dual endothelin-receptor antagonist that initially received approval for treatment of WHO group I pulmonary arterial hypertension (PAH) for patients in functional classes III and IV. Analysis of a study conducted in functional class II patients (Endothelin Antagonist Trial in Mildly Symptomatic PAH Patients [EARLY] trial) suggest its efficacy for these less symptomatic patients. In addition, bosentan has demonstrated efficacy in patients with congenital heart disease and Eisenmengers syndrome with right to left shunting and in HIV-related PAH. Studies of bosentan in inoperable or residual chronic thromboembolic pulmonary hypertension suggest possible efficacy. Bosentan appears promising in patients with idiopathic pulmonary fibrosis who do not have pulmonary hypertension. Combinations of bosentan with other PAH therapies such as iloprost and sildenafil may have incremental benefit over monotherapy.
Collapse
Affiliation(s)
- Robert P Frantz
- Mayo Pulmonary Hypertension Clinic, 200 First St SW, Rochester, MN 55905, USA.
| |
Collapse
|
40
|
Binder C, Hagemann T, Sperling S, Schulz M, Pukrop T, Grimshaw MJ, Ehrenreich H. Stromal endothelin B receptor-deficiency inhibits breast cancer growth and metastasis. Mol Cancer Ther 2009; 8:2452-60. [PMID: 19671740 DOI: 10.1158/1535-7163.mct-09-0032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The endothelin (ET) axis, often deregulated in cancers, is a promising target for anticancer strategies. Whereas previous investigations have focused mostly on ET action in malignant cells, we chose a model allowing separate assessment of the effects of ETs and their receptors ET(A)R and ET(B)R in the tumor cells and the stromal compartment, which is increasingly recognized as a key player in cancer progression. In homozygous spotting lethal rats (sl/sl), a model of constitutive ET(B)R deficiency, we showed significant reduction of growth and metastasis of MAT B III rat mammary adenocarcinoma cells overexpressing ET(A)R and ET-1 but negative for ET(B)R. Lack of stromal ET(B)R expression did not influence angiogenesis. However, it was correlated with diminished infiltration by tumor-associated macrophages and with reduced production of tumor necrosis factor-alpha, both known as powerful promoters of tumor progression. These effects were almost completely abolished in transgenic sl/sl rats, wherein ET(B)R function is restored by expression of an intact ET(B)R transgene. This shows that tumor growth and metastasis are critically dependent on ET(B)R function in cells of the microenvironment and suggests that successful ETR antagonist therapy should also target the stromal component of ET signaling
Collapse
Affiliation(s)
- Claudia Binder
- Department of Hematology/Oncology, Georg-August-University, D-37099 Goettingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
41
|
Kandalaft LE, Facciabene A, Buckanovich RJ, Coukos G. Endothelin B receptor, a new target in cancer immune therapy. Clin Cancer Res 2009; 15:4521-8. [PMID: 19567593 DOI: 10.1158/1078-0432.ccr-08-0543] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The endothelins and their G protein-coupled receptors A and B have been implicated in numerous diseases and have recently emerged as pivotal players in a variety of malignancies. Tumors overexpress the endothelin 1 (ET-1) ligand and the endothelin-A-receptor (ET(A)R). Their interaction induces tumor growth and metastasis by promoting tumor cell survival and proliferation, angiogenesis, and tissue remodeling. On the basis of results from xenograft models, drug development efforts have focused on antagonizing the autocrine-paracrine effects mediated by ET-1/ET(A)R. In this review, we discuss a novel role of the endothelin-B-receptor (ET(B)R) in tumorigenesis and the effect of its blockade during cancer immune therapy. We highlight key characteristics of the B receptor such as its specific overexpression in the tumor compartment; and specifically, in the tumor endothelium, where its activation by ET-1 suppresses T-cell adhesion and homing to tumors. We also review our recent findings on the effects of ET(B)R-specific blockade in increasing T-cell homing to tumors and enhancing the efficacy of otherwise ineffective immunotherapy.
Collapse
Affiliation(s)
- Lana E Kandalaft
- Ovarian Cancer Research Center University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | |
Collapse
|
42
|
Ceol CJ, Houvras Y, White RM, Zon LI. Melanoma biology and the promise of zebrafish. Zebrafish 2009; 5:247-55. [PMID: 19133823 DOI: 10.1089/zeb.2008.0544] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Advantageous organismal and technical attributes of the zebrafish are being increasingly applied to study cancer biology. Along with other tumor models, zebrafish that develop melanomas have been generated. In both genetics and phenotype, zebrafish melanomas are strikingly similar to their human counterparts. For this reason, studies in the zebrafish are poised to make significant contributions to melanoma biology. In this review, we summarize important features of human melanoma and discuss how the zebrafish can be used to address many questions that remain unanswered about this devastating disease.
Collapse
Affiliation(s)
- Craig J Ceol
- Stem Cell Program and Division of Hematology/Oncology, Children's Hospital Boston, 300 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
43
|
Khodorova A, Montmayeur JP, Strichartz G. Endothelin receptors and pain. THE JOURNAL OF PAIN 2009; 10:4-28. [PMID: 19111868 DOI: 10.1016/j.jpain.2008.09.009] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Revised: 09/08/2008] [Accepted: 09/30/2008] [Indexed: 12/11/2022]
Abstract
UNLABELLED The endogenous endothelin (ET) peptides participate in a remarkable variety of pain-relatedprocesses. Pain that is elevated by inflammation, by skin incision, by cancer, during a Sickle Cell Disease crisis and by treatments that mimic neuropathic and inflammatory pain and are all reduced by local administration of antagonists of endothelin receptors. Many effects of endogenously released endothelin are simulated by acute, local subcutaneous administration of endothelin, which at very high concentrations causes pain and at lower concentrations sensitizes the nocifensive reactions to mechanical, thermal and chemical stimuli. PERSPECTIVE In this paper we review the biochemistry, second messenger pathways and hetero-receptor coupling that are activated by ET receptors, the cellular physiological responses to ET receptor activation, and the contribution to pain of such mechanisms occurring in the periphery and the CNS. Our goal is to frame the subject of endothelin and pain for a broad readership, and to present the generally accepted as well as the disputed concepts, including important unanswered questions.
Collapse
Affiliation(s)
- Alla Khodorova
- Department of Anesthesiology, Perioperative and Pain Medicine, Pain Research Center, Brigham & Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115-6110, USA
| | | | | |
Collapse
|
44
|
Bagnato A, Spinella F, Rosanò L. The endothelin axis in cancer: the promise and the challenges of molecularly targeted therapy. Can J Physiol Pharmacol 2008; 86:473-84. [PMID: 18758494 DOI: 10.1139/y08-058] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The endothelin (ET) axis, which includes ET-1, ET-2, ET-3, and 2 G protein-coupled receptor subtypes, ET AR and ET BR, promotes growth and progression of a variety of tumors, such as prostatic, ovarian, renal, pulmonary, colorectal, cervical, breast, lung, bladder, endometrial carcinoma, Kaposi's sarcoma, brain tumors, and melanoma. Acting on selective receptors, ET-1 regulates mitogenesis, cell survival, angiogenesis, bone remodeling, stimulation of nociceptors, tumor-infiltrating immune cells, epithelial-to-mesenchymal transition, invasion, and metastatic dissemination. At the molecular level, endothelin receptor antagonists, besides providing ideal tools for dissecting the ET axis, have demonstrated their potential in developing novel therapeutic strategies. Emerging experimental and clinical data demonstrate that interfering with endothelin receptors provides an opportunity for the development of rational combinatorial approaches using endothelin receptor antagonists in combination with chemotherapy or molecularly targeted therapy.
Collapse
Affiliation(s)
- Anna Bagnato
- Molecular Pathology and Ultrastructure Laboratory, Regina Elena Cancer Institute, Via delle Messi d'Oro 156, Rome, Italy.
| | | | | |
Collapse
|
45
|
Bosentan: a rapidly expanding role in the management of cardio-thoracic diseases. Rheumatol Int 2008; 29:115. [DOI: 10.1007/s00296-008-0627-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Accepted: 05/13/2008] [Indexed: 11/25/2022]
|
46
|
Abstract
The genes required for stem cell specification and lineage restriction during embryogenesis also play fundamental roles in adult tissue regeneration and cancer. This "development-regeneration-cancer" axis is exemplified by the vertebrate pigmentation system. Melanocytes exhibit almost unlimited self-renewal capacity during regenerative processes such as mammalian hair recoloration and zebrafish fin regeneration. Melanoma utilizes many regulatory signals and pathways required during ontogeny and regeneration. A discussion of these interconnections highlights how studies of stem cell function in embryonic and regenerative contexts can yield insights into melanoma biology.
Collapse
Affiliation(s)
- Richard Mark White
- Dana Farber Cancer Institute, Department of Medical Oncology, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
47
|
Abstract
G-protein-coupled receptors (GPCR) are the largest family of receptors with over 500 members. Evaluation of GPCR gene expression in primary human tumors identified over-expression of GPCR in several tumor types. Analysis of cancer samples in different disease stages also suggests that some GPCR may be involved in early tumor progression and others may play a critical role in tumor invasion and metastasis. Currently, >50% of drug targets to various human diseases are based on GPCR. In this review, the relationships between several GPCR and melanoma development and/or progression will be discussed. Finally, the possibility of using one or more of these GPCR as therapeutic targets in melanoma will be summarized.
Collapse
Affiliation(s)
- Hwa Jin Lee
- Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | | | | |
Collapse
|
48
|
Hans G, Deseure K, Adriaensen H. Endothelin-1-induced pain and hyperalgesia: a review of pathophysiology, clinical manifestations and future therapeutic options. Neuropeptides 2008; 42:119-32. [PMID: 18194815 DOI: 10.1016/j.npep.2007.12.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2007] [Revised: 11/28/2007] [Accepted: 12/05/2007] [Indexed: 01/23/2023]
Abstract
Pain in patients with metastatic cancer contributes to increased suffering in those already burdened by their advancing illness. The causes of this pain are unknown, but are likely to involve the action of tumour-associated mediators and their receptors. In recent years, several chemical mediators have increasingly come to the forefront in the pathophysiology of cancer pain. One such mediator, endothelin-1 (ET-1), is a peptide of 21 amino acids that was initially shown to be a potent vasoconstrictor. Extensive research has revealed that members of the ET family are indeed produced by several epithelial cancerous tumours, in which they act as autocrine and/or paracrine growth factors. Several preclinical and clinical studies of various malignancies have suggested that the ET axis may represent an interesting contributor to tumour progression. In addition, evidence is accumulating to suggest that ET-1 may contribute to pain states both in humans and in other animals. ET-1 both stimulates nociceptors and sensitises them to painful stimuli. Selective stimulation of ET receptors has been implicated as a cause of inflammatory, neuropathic and tumoural pain. ET-1-induced pain-related behaviour seems to be mediated either solely by one receptor type or via both endothelin-A receptors (ETAR) and endothelin-B receptors (ETBR). Whereas stimulation of ETAR on nociceptors always elicits a pain response, stimulation of ETBR may cause analgesia or elicit a pain response, depending on the conditions. The administration of ETAR antagonists in the receptive fields of these nociceptors has been shown to ameliorate pain-related behaviours in animals, as well as in some patients with advanced metastatic prostate cancer. The identification of tumour-associated mediators that might directly or indirectly cause pain in patients with metastatic disease, such as ET-1, should lead to improved, targeted analgesia for patients with advanced cancer. In this review, we will describe the current status of the role of ET-1 in different types of painful syndromes, with special emphasis on its role in the pathophysiology of cancer pain. Finally, potential new treatment options that are based on the role of the ET axis in the pathophysiology of cancer are elaborated.
Collapse
Affiliation(s)
- Guy Hans
- Multidisciplinary Pain Centre, Department of Anaesthesiology, Antwerp University Hospital (UZA), Edegem, Belgium.
| | | | | |
Collapse
|
49
|
Sonveaux P. Provascular strategy: Targeting functional adaptations of mature blood vessels in tumors to selectively influence the tumor vascular reactivity and improve cancer treatment. Radiother Oncol 2008; 86:300-13. [PMID: 18313779 DOI: 10.1016/j.radonc.2008.01.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 01/30/2008] [Accepted: 01/30/2008] [Indexed: 12/22/2022]
|