1
|
Ghosh N, Mahalanobish S, Sil PC. Reprogramming of urea cycle in cancer: Mechanism, regulation and prospective therapeutic scopes. Biochem Pharmacol 2024; 228:116326. [PMID: 38815626 DOI: 10.1016/j.bcp.2024.116326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Hepatic urea cycle, previously known as ornithine cycle, is the chief biochemical pathway that deals with the disposal of excessive nitrogen in form of urea, resulted from protein breakdown and concomitant condensation of ammonia. Enzymes involved in urea cycle are expressed differentially outside hepatic tissue and are mostly involved in production of arginine from citrulline in arginine-depleted condition. Inline, cancer cells frequently adapt metabolic rewiring to support sufficient biomass production in order to sustain tumor cell survival, multiplication and subsequent growth. For the accomplishment of this aim, metabolic reprogramming in cancer cells is set in way so that cellular nitrogen and carbon repertoire can be utilized and channelized maximally towards anabolic reactions. A strategy to meet such outcome is to cut down unnecessary catabolic reactions and nitrogen elimination. Thus, transfigured urea cycle is a hallmark of neoplasia. During oncogenesis, altered expression and regulation of enzymes involved in urea cycle is a revolutionary approach meet to maximum incorporation of nitrogen for sustaining tumor specific biogenesis. Currently, we have reviewed neoplasm-specific deregulations of urea cycle-enzymes in different types and stages of cancers suggesting its context-oriented dynamic nature. Considering such insight to be valuable in terms of prospective cancer diagnosis and therapeutics adaptive evolution of deregulated urea cycle has been enlightened.
Collapse
Affiliation(s)
- Noyel Ghosh
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, West Bengal, India
| | - Sushweta Mahalanobish
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, West Bengal, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, West Bengal, India.
| |
Collapse
|
2
|
Yuxiao C, Jiachen W, Yanjie L, Shenglan L, Yuji W, Wenbin L. Therapeutic potential of arginine deprivation therapy for gliomas: a systematic review of the existing literature. Front Pharmacol 2024; 15:1446725. [PMID: 39239650 PMCID: PMC11375294 DOI: 10.3389/fphar.2024.1446725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/13/2024] [Indexed: 09/07/2024] Open
Abstract
Background Arginine deprivation therapy (ADT) hinders glioma cells' access to nutrients by reducing peripheral blood arginine, showing great efficacy in various studies, which suggests it as a potentially promising treatment for glioma. The aim of this systematic review was to explore the mechanism of ADT for gliomas, the therapeutic effect based on existing research, and possible combination therapies. Methods We performed a systematic literature review of PubMed, ScienceDirect and Web of Science databases according to PRISMA guidelines, searching for articles on the efficacy of ADT in glioma. Results We identified 17 studies among 786 search results, among which ADT therapy mainly based on Arginine free condition, Arginine Deiminase and Arginase, including three completed clinical trials. ADT therapy has shown promising results in vivo and in vitro, with its safety confirmed in clinical trials. In the early phase of treatment, glioblastoma (GBM) cells develop protective mechanisms of stress and autophagy, which eventually evolve into caspase dependent apoptosis or senescence, respectively. The immunosuppressive microenvironment is also altered by arginine depletion, such as the transformation of microglia into a pro-inflammatory phenotype and the activation of T-cells. Thus, ADT therapy demonstrates glioma-killing effect in the presence of a combination of mechanisms. In combination with various conventional therapies and investigational drugs such as radiotherapy, temozolomide (TMZ), cyclin-dependent kinase inhibitors (CDK) inhibitors and autophagy inducers, ADT therapy has been shown to be more effective. However, the phenomenon of drug resistance due to re-expression of ASS1 rather than stem cell remains to be investigated. Conclusion Despite the paucity of studies in the literature, the available data demonstrate the therapeutic potential of arginine deprivation therapy for glioma and encourage further research, especially the exploration of its combination therapies and the extrapolation of what we know about the effects and mechanisms of ADT from other tumors to glioma.
Collapse
Affiliation(s)
- Chen Yuxiao
- Department of Neuro-Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Xuanwu Hospital (The First Clinical College of Capital Medical University), Beijing, China
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Wang Jiachen
- Department of Neuro-Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lan Yanjie
- Department of Neuro-Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Li Shenglan
- Department of Neuro-Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wang Yuji
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Li Wenbin
- Department of Neuro-Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Prasad YR, Anakha J, Pande AH. Treating liver cancer through arginine depletion. Drug Discov Today 2024; 29:103940. [PMID: 38452923 DOI: 10.1016/j.drudis.2024.103940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/16/2024] [Accepted: 02/29/2024] [Indexed: 03/09/2024]
Abstract
Liver cancer, the sixth most common cancer globally and the second-leading cause of cancer-related deaths, presents a critical public health threat. Diagnosis often occurs in advanced stages of the disease, aligning incidence with fatality rates. Given that established treatments, such as stereotactic body radiation therapy and transarterial radioembolization, face accessibility and affordability challenges, the emerging focus on cancer cell metabolism, particularly arginine (Arg) depletion, offers a promising research avenue. Arg-depleting enzymes show efficacy against Arg-auxotrophic cancers, including hepatocellular carcinoma (HCC). Thus, in this review, we explore the limitations of current therapies and highlight the potential of Arg depletion, emphasizing various Arg-hydrolyzing enzymes in clinical development.
Collapse
Affiliation(s)
- Yenisetti Rajendra Prasad
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali 160062, Punjab, India
| | - J Anakha
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali 160062, Punjab, India
| | - Abhay H Pande
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali 160062, Punjab, India.
| |
Collapse
|
4
|
Tang X, Zhang L, Huang M, Wang F, Xie G, Huo R, Gao R. Selective enhanced cytotoxicity of amino acid deprivation for cancer therapy using thermozyme functionalized nanocatalyst. J Nanobiotechnology 2024; 22:53. [PMID: 38326899 PMCID: PMC10848425 DOI: 10.1186/s12951-024-02326-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 01/30/2024] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND Enzyme therapy based on differential metabolism of cancer cells has demonstrated promising potential as a treatment strategy. Nevertheless, the therapeutic benefit of reported enzyme drugs is compromised by their uncontrollable activity and weak stability. Additionally, thermozymes with high thermal-stability suffer from low catalytic activity at body temperature, preventing them from functioning independently. RESULTS Herein, we have developed a novel thermo-enzymatic regulation strategy for near-infrared (NIR)-triggered precise-catalyzed photothermal treatment of breast cancer. Our strategy enables efficient loading and delivery of thermozymes (newly screened therapeutic enzymes from thermophilic bacteria) via hyaluronic acid (HA)-coupled gold nanorods (GNRs). These nanocatalysts exhibit enhanced cellular endocytosis and rapid enzyme activity enhancement, while also providing biosafety with minimized toxic effects on untargeted sites due to temperature-isolated thermozyme activity. Locally-focused NIR lasers ensure effective activation of thermozymes to promote on-demand amino acid deprivation and photothermal therapy (PTT) of superficial tumors, triggering apoptosis, G1 phase cell cycle arrest, inhibiting migration and invasion, and potentiating photothermal sensitivity of malignancies. CONCLUSIONS This work establishes a precise, remotely controlled, non-invasive, efficient, and biosafe nanoplatform for accurate enzyme therapy, providing a rationale for promising personalized therapeutic strategies and offering new prospects for high-precision development of enzyme drugs.
Collapse
Affiliation(s)
- Xiuhui Tang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Lijuan Zhang
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Mingwang Huang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Fang Wang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Guiqiu Xie
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Rui Huo
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Renjun Gao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China.
| |
Collapse
|
5
|
Fenwick N, Weston R, Wheatley K, Hodgson J, Marshall L, Elliott M, Makin G, Ng A, Brennan B, Lowis S, Adamski J, Kilday JP, Cox R, Gattens M, Moore A, Trahair T, Ronghe M, Campbell M, Campbell H, Williams MW, Kirby M, Van Eijkelenburg N, Keely J, Scarpa U, Stavrou V, Fultang L, Booth S, Cheng P, De Santo C, Mussai F. PARC: a phase I/II study evaluating the safety and activity of pegylated recombinant human arginase BCT-100 in relapsed/refractory cancers of children and young adults. Front Oncol 2024; 14:1296576. [PMID: 38357205 PMCID: PMC10864630 DOI: 10.3389/fonc.2024.1296576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/15/2024] [Indexed: 02/16/2024] Open
Abstract
Background The survival for many children with relapsed/refractory cancers remains poor despite advances in therapies. Arginine metabolism plays a key role in the pathophysiology of a number of pediatric cancers. We report the first in child study of a recombinant human arginase, BCT-100, in children with relapsed/refractory hematological, solid or CNS cancers. Procedure PARC was a single arm, Phase I/II, international, open label study. BCT-100 was given intravenously over one hour at weekly intervals. The Phase I section utilized a modified 3 + 3 design where escalation/de-escalation was based on both the safety profile and the complete depletion of arginine (defined as adequate arginine depletion; AAD <8μM arginine in the blood after 4 doses of BCT-100). The Phase II section was designed to further evaluate the clinical activity of BCT-100 at the pediatric RP2D determined in the Phase I section, by recruitment of patients with pediatric cancers into 4 individual groups. A primary evaluation of response was conducted at eight weeks with patients continuing to receive treatment until disease progression or unacceptable toxicity. Results 49 children were recruited globally. The Phase I cohort of the trial established the Recommended Phase II Dose of 1600U/kg iv weekly in children, matching that of adults. BCT-100 was very well tolerated. No responses defined as a CR, CRi or PR were seen in any cohort within the defined 8 week primary evaluation period. However a number of these relapsed/refractory patients experienced prolonged radiological SD. Conclusion Arginine depletion is a clinically safe and achievable strategy in children with cancer. The RP2D of BCT-100 in children with relapsed/refractory cancers is established at 1600U/kg intravenously weekly and can lead to sustained disease stability in this hard to treat population. Clinical trial registration EudraCT, 2017-002762-44; ISRCTN, 21727048; and ClinicalTrials.gov, NCT03455140.
Collapse
Affiliation(s)
- Nicola Fenwick
- Children’s Cancer Trials Team, Cancer Research UK Clinical Trials Unit (CRCTU), University of Birmingham, Birmingham, United Kingdom
| | - Rebekah Weston
- Children’s Cancer Trials Team, Cancer Research UK Clinical Trials Unit (CRCTU), University of Birmingham, Birmingham, United Kingdom
| | - Keith Wheatley
- Children’s Cancer Trials Team, Cancer Research UK Clinical Trials Unit (CRCTU), University of Birmingham, Birmingham, United Kingdom
| | - Jodie Hodgson
- Children’s Cancer Trials Team, Cancer Research UK Clinical Trials Unit (CRCTU), University of Birmingham, Birmingham, United Kingdom
| | | | - Martin Elliott
- Leeds Teaching Hospital, St James University Hospital, Leeds, United Kingdom
| | - Guy Makin
- Royal Manchester Children’s Hospital, Manchester, United Kingdom
| | - Antony Ng
- Bristol Royal Hospital for Children, Bristol, United Kingdom
| | | | - Stephen Lowis
- Bristol Royal Hospital for Children, Bristol, United Kingdom
| | - Jenny Adamski
- Birmingham Children’s Hospital, Birmingham, United Kingdom
| | - John Paul Kilday
- Royal Manchester Children’s Hospital, Manchester, United Kingdom
| | - Rachel Cox
- Bristol Royal Hospital for Children, Bristol, United Kingdom
| | - Mike Gattens
- Addenbrookes Hospital, Cambridge, United Kingdom
| | - Andrew Moore
- Queensland Children’s Hospital, Brisbane, QLD, Australia
| | - Toby Trahair
- Sydney Children’s Hospital, Sydney, NSW, Australia
| | - Milind Ronghe
- Royal Hospital for Children, Glasgow, United Kingdom
| | | | - Helen Campbell
- Royal Manchester Children’s Hospital, Manchester, United Kingdom
| | | | - Maria Kirby
- Michael Rice Cancer Centre, Women’s and Children’s Hospital, North Adelaide, SA, Australia
| | | | - Jennifer Keely
- Children’s Cancer Trials Team, Cancer Research UK Clinical Trials Unit (CRCTU), University of Birmingham, Birmingham, United Kingdom
| | - Ugo Scarpa
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Victoria Stavrou
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Livingstone Fultang
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Sarah Booth
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Paul Cheng
- Bio-Cancer Treatment International, Hong Kong Science Park, Hong Kong, Hong Kong SAR, China
| | - Carmela De Santo
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Francis Mussai
- Birmingham Children’s Hospital, Birmingham, United Kingdom
| |
Collapse
|
6
|
Gercke P, Lautenschlager N, Vedder N, van Geffen C, Renz H, Kolahian S. Intranasal EP4 agonist and arginase-1 therapy in a murine model of asthma. Eur J Pharmacol 2023; 957:176040. [PMID: 37666288 DOI: 10.1016/j.ejphar.2023.176040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
Research findings evermore suggest a crucial role of myeloid-derived suppressor cells (MDSCs) in chronic lung diseases including asthma. Previously, we showed that intravenous (IV) treatment with a prostaglandin E2 receptor 4 (EP4) agonist, L-902,688, promoted MDSC suppressive activity. IV therapy with L-902,688 and BCT-100, a human pegylated arginase-1, ameliorated lung inflammatory features in a murine model of asthma. Here, we further investigate the potential therapeutic approach by studying the local therapy effects on the lungs after intranasal (IN) application. Using a two-week model of house dust mite (HDM)-induced murine asthma, the effect of IN treatment with L-902,688 or BCT-100 on in vivo lung function, inflammatory features of asthma and MDSC generation and activation was studied. Our experiments demonstrated increased suppressive activity of pulmonary MDSCs after induction of allergic airway disease. IN treatment with L-902,688 and BCT-100 further enhanced the immunosuppressive activity of pulmonary MDSCs. Additionally, treatment with BCT-100 reduced pulmonary T cell numbers. Asthmatic mice that received IN L-902,688 showed improved in vivo lung function. In conclusion, our results underline the potential of modulating MDSCs systemically or locally as a future therapeutic option in airway inflammatory diseases such as asthma.
Collapse
Affiliation(s)
- Philipp Gercke
- Institute of Laboratory Medicine, German Center for Lung Research (DZL), The Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, 35043, Marburg, Germany
| | - Nikoleta Lautenschlager
- Institute of Laboratory Medicine, German Center for Lung Research (DZL), The Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, 35043, Marburg, Germany
| | - Nora Vedder
- Institute of Laboratory Medicine, German Center for Lung Research (DZL), The Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, 35043, Marburg, Germany
| | - Chiel van Geffen
- Institute of Laboratory Medicine, German Center for Lung Research (DZL), The Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, 35043, Marburg, Germany
| | - Harald Renz
- Institute of Laboratory Medicine, German Center for Lung Research (DZL), The Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, 35043, Marburg, Germany
| | - Saeed Kolahian
- Institute of Laboratory Medicine, German Center for Lung Research (DZL), The Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, 35043, Marburg, Germany.
| |
Collapse
|
7
|
Chu YD, Lai MW, Yeh CT. Unlocking the Potential of Arginine Deprivation Therapy: Recent Breakthroughs and Promising Future for Cancer Treatment. Int J Mol Sci 2023; 24:10668. [PMID: 37445845 DOI: 10.3390/ijms241310668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Arginine is a semi-essential amino acid that supports protein synthesis to maintain cellular functions. Recent studies suggest that arginine also promotes wound healing, cell division, ammonia metabolism, immune system regulation, and hormone biosynthesis-all of which are critical for tumor growth. These discoveries, coupled with the understanding of cancer cell metabolic reprogramming, have led to renewed interest in arginine deprivation as a new anticancer therapy. Several arginine deprivation strategies have been developed and entered clinical trials. The main principle behind these therapies is that arginine auxotrophic tumors rely on external arginine sources for growth because they carry reduced key arginine-synthesizing enzymes such as argininosuccinate synthase 1 (ASS1) in the intracellular arginine cycle. To obtain anticancer effects, modified arginine-degrading enzymes, such as PEGylated recombinant human arginase 1 (rhArg1-PEG) and arginine deiminase (ADI-PEG 20), have been developed and shown to be safe and effective in clinical trials. They have been tried as a monotherapy or in combination with other existing therapies. This review discusses recent advances in arginine deprivation therapy, including the molecular basis of extracellular arginine degradation leading to tumor cell death, and how this approach could be a valuable addition to the current anticancer arsenal.
Collapse
Affiliation(s)
- Yu-De Chu
- Liver Research Center, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
| | - Ming-Wei Lai
- Liver Research Center, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
- Department of Pediatrics, Chang Gung Memorial Hospital, Linkou Branch and Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
- Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
8
|
Jiménez-Alonso JJ, López-Lázaro M. Dietary Manipulation of Amino Acids for Cancer Therapy. Nutrients 2023; 15:2879. [PMID: 37447206 DOI: 10.3390/nu15132879] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Cancer cells cannot proliferate and survive unless they obtain sufficient levels of the 20 proteinogenic amino acids (AAs). Unlike normal cells, cancer cells have genetic and metabolic alterations that may limit their capacity to obtain adequate levels of the 20 AAs in challenging metabolic environments. However, since normal diets provide all AAs at relatively constant levels and ratios, these potentially lethal genetic and metabolic defects are eventually harmless to cancer cells. If we temporarily replace the normal diet of cancer patients with artificial diets in which the levels of specific AAs are manipulated, cancer cells may be unable to proliferate and survive. This article reviews in vivo studies that have evaluated the antitumor activity of diets restricted in or supplemented with the 20 proteinogenic AAs, individually and in combination. It also reviews our recent studies that show that manipulating the levels of several AAs simultaneously can lead to marked survival improvements in mice with metastatic cancers.
Collapse
Affiliation(s)
| | - Miguel López-Lázaro
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, 41012 Sevilla, Spain
| |
Collapse
|
9
|
Anakha J, Prasad YR, Sharma N, Pande AH. Human arginase I: a potential broad-spectrum anti-cancer agent. 3 Biotech 2023; 13:159. [PMID: 37152001 PMCID: PMC10156892 DOI: 10.1007/s13205-023-03590-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 04/23/2023] [Indexed: 05/09/2023] Open
Abstract
With high rates of morbidity and mortality, cancer continues to pose a serious threat to public health on a global scale. Considering the discrepancies in metabolism between cancer and normal cells, metabolism-based anti-cancer biopharmaceuticals are gaining importance. Normal cells can synthesize arginine, but they can also take up extracellular arginine, making it a semi-essential amino acid. Arginine auxotrophy occurs when a cancer cell has abnormalities in the enzymes involved in arginine metabolism and relies primarily on extracellular arginine to support its biological functions. Taking advantage of arginine auxotrophy in cancer cells, arginine deprivation, which can be induced by introducing recombinant human arginase I (rhArg I), is being developed as a broad-spectrum anti-cancer therapy. This has led to the development of various rhArg I variants, which have shown remarkable anti-cancer activity. This article discusses the importance of arginine auxotrophy in cancer and different arginine-hydrolyzing enzymes that are in various stages of clinical development and reviews the need for a novel rhArg I that mitigates the limitations of the existing therapies. Further, we have also analyzed the necessity as well as the significance of using rhArg I to treat various arginine-auxotrophic cancers while considering the importance of their genetic profiles, particularly urea cycle enzymes.
Collapse
Affiliation(s)
- J. Anakha
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, 160062 Punjab India
| | - Yenisetti Rajendra Prasad
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, 160062 Punjab India
| | - Nisha Sharma
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, 160062 Punjab India
| | - Abhay H. Pande
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, 160062 Punjab India
| |
Collapse
|
10
|
Mussai F, De Santo C, Cheng P, Thomas IF, Ariti C, Upton L, Scarpa U, Stavrou V, Sydenham M, Burnett AK, Knapper SK, Mehta P, McMullin MF, Copland M, Russell NH, Dennis M. A randomised evaluation of low-dose Ara-C plus pegylated recombinant arginase BCT-100 versus low dose Ara-C in older unfit patients with acute myeloid leukaemia: Results from the LI-1 trial. Br J Haematol 2023; 200:573-578. [PMID: 36413792 DOI: 10.1111/bjh.18560] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 11/23/2022]
Abstract
The survival of acute myeloid leukaemia (AML) patients aged over 60 has been suboptimal historically, whether they are treated using hypomethylating agents, low-dose cytarabine (LDAC) or venetoclax-based regimens. Progress is being made, however, for subgroups with favourable molecular or cytogenetic findings. Arginine metabolism plays a key role in AML pathophysiology. We report the only randomised study of LDAC with recombinant arginase BCT-100 versus LDAC alone in older AML patients unsuitable for intensive therapy. Eighty-three patients were randomised to the study. An overall response rate was seen in 19.5% (all complete remission [CR]) and 15% (7.5% each in CR and CR without evidence of adequate count recovery [CRi]) of patients in the LDAC+BCT-100 and LDAC arms respectively (odds ratio 0.73, confidence interval 0.23-2.33; p = 0.592). No significant difference in overall or median survival between treatment arms was seen. The addition of BCT-100 to LDAC was well tolerated.
Collapse
Affiliation(s)
- Francis Mussai
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Carmela De Santo
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Paul Cheng
- Bio-Cancer Treatment International, Hong Kong City, Hong Kong
| | - Ian F Thomas
- Centre for Trials Research, Cardiff University, Cardiff, UK
| | - Cono Ariti
- Centre for Trials Research, Cardiff University, Cardiff, UK
| | - Laura Upton
- Centre for Trials Research, Cardiff University, Cardiff, UK
| | - Ugo Scarpa
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Victoria Stavrou
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Mia Sydenham
- Centre for Trials Research, Cardiff University, Cardiff, UK
| | - Alan K Burnett
- Paul O'Gorman Leukaemia Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | | | | | - Mhairi Copland
- Centre for Trials Research, Cardiff University, Cardiff, UK
| | | | | |
Collapse
|
11
|
Fevereiro-Martins M, Marques-Neves C, Guimarães H, Bicho M. Retinopathy of prematurity: A review of pathophysiology and signaling pathways. Surv Ophthalmol 2023; 68:175-210. [PMID: 36427559 DOI: 10.1016/j.survophthal.2022.11.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022]
Abstract
Retinopathy of prematurity (ROP) is a vasoproliferative disorder of the retina and a leading cause of visual impairment and childhood blindness worldwide. The disease is characterized by an early stage of retinal microvascular degeneration, followed by neovascularization that can lead to subsequent retinal detachment and permanent visual loss. Several factors play a key role during the different pathological stages of the disease. Oxidative and nitrosative stress and inflammatory processes are important contributors to the early stage of ROP. Nitric oxide synthase and arginase play important roles in ischemia/reperfusion-induced neurovascular degeneration. Destructive neovascularization is driven by mediators of the hypoxia-inducible factor pathway, such as vascular endothelial growth factor and metabolic factors (succinate). The extracellular matrix is involved in hypoxia-induced retinal neovascularization. Vasorepulsive molecules (semaphorin 3A) intervene preventing the revascularization of the avascular zone. This review focuses on current concepts about signaling pathways and their mediators, involved in the pathogenesis of ROP, highlighting new potentially preventive and therapeutic modalities. A better understanding of the intricate molecular mechanisms underlying the pathogenesis of ROP should allow the development of more effective and targeted therapeutic agents to reduce aberrant vasoproliferation and facilitate physiological retinal vascular development.
Collapse
Affiliation(s)
- Mariza Fevereiro-Martins
- Laboratório de Genética and Grupo Ecogenética e Saúde Humana, Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, Portugal; Instituto de Investigação Científica Bento da Rocha Cabral, Lisboa, Portugal; Departamento de Oftalmologia, Hospital Cuf Descobertas, Lisboa, Portugal.
| | - Carlos Marques-Neves
- Centro de Estudos das Ci.¼ncias da Visão, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Grupo Ecogenética e Saúde Humana, Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
| | - Hercília Guimarães
- Departamento de Ginecologia-Obstetrícia e Pediatria, Faculdade de Medicina, Universidade do Porto, Porto, Portugal.
| | - Manuel Bicho
- Laboratório de Genética and Grupo Ecogenética e Saúde Humana, Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, Portugal; Instituto de Investigação Científica Bento da Rocha Cabral, Lisboa, Portugal.
| |
Collapse
|
12
|
The exploitation of enzyme-based cancer immunotherapy. Hum Cell 2023; 36:98-120. [PMID: 36334180 DOI: 10.1007/s13577-022-00821-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
Abstract
Cancer immunotherapy utilizes the immune system and its wide-ranging components to deliver anti-tumor responses. In immune escape mechanisms, tumor microenvironment-associated soluble factors and cell surface-bound molecules are mainly accountable for the dysfunctional activity of tumor-specific CD8+ T cells, natural killer (NK) cells, tumor associated macrophages (TAMs) and stromal cells. The myeloid-derived suppressor cells (MDSCs) and Foxp3+ regulatory T cells (Tregs), are also key tumor-promoting immune cells. These potent immunosuppressive networks avert tumor rejection at various stages, affecting immunotherapies' outcomes. Numerous clinical trials have elucidated that disruption of immunosuppression could be achieved via checkpoint inhibitors. Another approach utilizes enzymes that can restore the body's potential to counter cancer by triggering the immune system inhibited by the tumor microenvironment. These immunotherapeutic enzymes can catalyze an immunostimulatory signal and modulate the tumor microenvironment via effector molecules. Herein, we have discussed the immuno-metabolic roles of various enzymes like ATP-dephosphorylating ectoenzymes, inducible Nitric Oxide Synthase, phenylamine, tryptophan, and arginine catabolizing enzymes in cancer immunotherapy. Understanding the detailed molecular mechanisms of the enzymes involved in modulating the tumor microenvironment may help find new opportunities for cancer therapeutics.
Collapse
|
13
|
Chu YD, Liu HF, Chen YC, Chou CH, Yeh CT. WWOX-rs13338697 genotype predicts therapeutic efficacy of ADI-PEG 20 for patients with advanced hepatocellular carcinoma. Front Oncol 2022; 12:996820. [PMID: 36530994 PMCID: PMC9756969 DOI: 10.3389/fonc.2022.996820] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/14/2022] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Previous studies have identified three single nucleotide polymorphisms (SNPs): GALNT14-rs9679162, WWOX-rs13338697 and rs6025211. Their genotypes are associated with therapeutic outcomes in hepatocellular carcinoma (HCC). Herein, we examined whether these SNP genotypes could predict the clinical outcome of HCC patients treated with ADI-PEG 20. METHODS Totally 160 patients with advanced HCC, who had previously been enrolled in clinical trials, including 113 receiving ADI-PEG 20 monotherapy (cohort-1) and 47 receiving FOLFOX/ADI-PEG 20 combination treatment (cohort-2), were included retrospectively. RESULTS The WWOX-rs13338697-GG genotype was associated with favorable overall survival in cohort-1 patients (P = 0.025), whereas the rs6025211-TT genotype was associated with unfavorable time-to-tumor progression in cohort-1 (P = 0.021) and cohort-1 plus 2 patients (P = 0.008). As ADI-PEG 20 can reduce plasma arginine levels, we examined its pretreatment levels in relation to the WWOX-rs13338697 genotypes. Pretreatment plasma arginine levels were found to be significantly higher in patients carrying the WWOX-rs13338697-GG genotype (P = 0.006). We next examined the association of the WWOX-rs13338697 genotypes with WWOX tissue protein levels in 214 paired (cancerous/noncancerous) surgically resected HCC tissues (cohort-3). The WWOX-rs13338697-GG genotype was associated with decreased tissue levels of WWOX and ASS1. Mechanistic studies showed that WWOX and ASS1 levels were downregulated in hypoxic HCC cells. Silencing WWOX to mimic low WWOX protein expression in HCC in patients with the WWOX-rs13338697-GG genotype, enhanced HIF1A increment under hypoxia, further decreased ASS1, and increased cell susceptibility to ADI-PEG 20. COMCLUSION In summary, the WWOX-rs13338697 and rs6025211 genotypes predicted treatment outcomes in ADI-PEG 20-treated advanced HCC patients. The WWOX-rs13338697-GG genotype was associated with lower tissue WWOX and ASS1 levels and higher pretreatment plasma arginine levels, resembling an arginine auxotrophic phenotype requires excessive extracellular arginine supply. Silencing WWOX to mimic HCC with the WWOX-rs13338697-GG genotype further stimulated HCC cell response to hypoxia through increased HIF1A expression, leading to further reduction of ASS1 and thus increased cell susceptibility to ADI-PEG 20.
Collapse
Affiliation(s)
- Yu-De Chu
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Hui-Fen Liu
- Polaris Pharmaceuticals, Inc., Polaris Group, Taipei, Taiwan
| | - Yi-Chen Chen
- Polaris Pharmaceuticals, Inc., Polaris Group, Taipei, Taiwan
| | - Chun-Hung Chou
- Polaris Pharmaceuticals, Inc., Polaris Group, Taipei, Taiwan
- Ph.D. Program for Biotechnology Industry, College of Life Sciences, China Medical University, Taichung, Taiwan
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
14
|
Abdelrahman AA, Bunch KL, Sandow PV, Cheng PNM, Caldwell RB, Caldwell RW. Systemic Administration of Pegylated Arginase-1 Attenuates the Progression of Diabetic Retinopathy. Cells 2022; 11:cells11182890. [PMID: 36139465 PMCID: PMC9497170 DOI: 10.3390/cells11182890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 12/02/2022] Open
Abstract
Diabetic retinopathy (DR) is a serious complication of diabetes that results from sustained hyperglycemia, hyperlipidemia, and oxidative stress. Under these conditions, inducible nitric oxide synthase (iNOS) expression is upregulated in the macrophages (MΦ) and microglia, resulting in increased production of reactive oxygen species (ROS) and inflammatory cytokines, which contribute to disease progression. Arginase 1 (Arg1) is a ureohydrolase that competes with iNOS for their common substrate, L-arginine. We hypothesized that the administration of a stable form of Arg1 would deplete L-arginine’s availability for iNOS, thus decreasing inflammation and oxidative stress in the retina. Using an obese Type 2 diabetic (T2DM) db/db mouse, this study characterized DR in this model and determined if systemic treatment with pegylated Arg1 (PEG-Arg1) altered the progression of DR. PEG-Arg1 treatment of db/db mice thrice weekly for two weeks improved visual function compared with untreated db/db controls. Retinal expression of inflammatory factors (iNOS, IL-1β, TNF-α, IL-6) was significantly increased in the untreated db/db mice compared with the lean littermate controls. The increased retinal inflammatory and oxidative stress markers in db/db mice were suppressed with PEG-Arg1 treatment. Additionally, PEG-Arg1 treatment restored the blood–retinal barrier (BRB) function, as evidenced by the decreased tissue albumin extravasation and an improved endothelial ZO-1 tight junction integrity compared with untreated db/db mice.
Collapse
Affiliation(s)
- Ammar A. Abdelrahman
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Katharine L. Bunch
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Porsche V. Sandow
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Paul N-M Cheng
- Bio-Cancer Treatment International, Bioinformatics Building, Hong Kong Science Park, Tai Po, Hong Kong SAR 511513, China
| | - Ruth B. Caldwell
- Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Cell Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - R. William Caldwell
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Correspondence: ; Tel.: +1-706-721-2345
| |
Collapse
|
15
|
Carpentier J, Pavlyk I, Mukherjee U, Hall PE, Szlosarek PW. Arginine Deprivation in SCLC: Mechanisms and Perspectives for Therapy. LUNG CANCER (AUCKLAND, N.Z.) 2022; 13:53-66. [PMID: 36091646 PMCID: PMC9462517 DOI: 10.2147/lctt.s335117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Arginine deprivation has gained increasing traction as a novel and safe antimetabolite strategy for the treatment of several hard-to-treat cancers characterised by a critical dependency on arginine. Small cell lung cancer (SCLC) displays marked arginine auxotrophy due to inactivation of the rate-limiting enzyme argininosuccinate synthetase 1 (ASS1), and as a consequence may be targeted with pegylated arginine deiminase or ADI-PEG20 (pegargiminase) and human recombinant pegylated arginases (rhArgPEG, BCT-100 and pegzilarginase). Although preclinical studies reveal that ASS1-deficient SCLC cell lines are highly sensitive to arginine-degrading enzymes, there is a clear disconnect with the clinic with minimal activity seen to date that may be due in part to patient selection. Recent studies have explored resistance mechanisms to arginine depletion focusing on tumor adaptation, such as ASS1 re-expression and autophagy, stromal cell inputs including macrophage infiltration, and tumor heterogeneity. Here, we explore how arginine deprivation may be combined strategically with novel agents to improve SCLC management by modulating resistance and increasing the efficacy of existing agents. Moreover, recent work has identified an intriguing role for targeting arginine in combination with PD-1/PD-L1 immune checkpoint inhibitors and clinical trials are in progress. Thus, future studies of arginine-depleting agents with chemoimmunotherapy, the current standard of care for SCLC, may lead to enhanced disease control and much needed improvements in long-term survival for patients.
Collapse
Affiliation(s)
- Joséphine Carpentier
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Iuliia Pavlyk
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Uma Mukherjee
- Department of Medical Oncology, Barts Health NHS Trust, St. Bartholomew’s Hospital, London, EC1A 7BE, UK
| | - Peter E Hall
- Department of Medical Oncology, Barts Health NHS Trust, St. Bartholomew’s Hospital, London, EC1A 7BE, UK
| | - Peter W Szlosarek
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
- Department of Medical Oncology, Barts Health NHS Trust, St. Bartholomew’s Hospital, London, EC1A 7BE, UK
| |
Collapse
|
16
|
Yau T, Cheng PNM, Chiu J, Kwok GGW, Leung R, Liu AM, Cheung TT, Ng CT. A phase 1 study of pegylated recombinant arginase (PEG-BCT-100) in combination with systemic chemotherapy (capecitabine and oxaliplatin)[PACOX] in advanced hepatocellular carcinoma patients. Invest New Drugs 2022; 40:314-321. [PMID: 34735674 DOI: 10.1007/s10637-021-01178-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/12/2021] [Indexed: 12/30/2022]
Abstract
INTRODUCTION We investigated the safety and efficacy of a pegylated arginase (PEG-BCT-100) in combination with chemotherapy (oxaliplatin and capecitabine) [PACOX] in advanced HCC patients. METHODS This was a single centre phase 1 trial to assess the safety and tolerability of PACOX. All the enrolled subjects received treatment in 3-weekly cycles: intravenous PEG-BCT-100 2.7 mg/kg on days 1, 8 and 15 of each cycle; oral capecitabine 1000 mg/m2 twice daily on day 1-14 of each cycle and intravenous oxaliplatin on day 1. Three dose levels of oxaliplatin (85 mg/m2, 100 mg/m2 or 130 mg/m2) were studied to define the maximum tolerated dose (MTD). Adverse events (AEs), efficacy by RECIST v1.1, time to progression (TTP), progression-free survival (PFS) and overall survival (OS) were studied. RESULTS Seventeen patients were enrolled at 3 dose levels of oxaliplatin: 85 mg/m2 (8 patients), 100 mg/m2 (3 patients), and 130 mg/m2 (6 patients). The median age was 55 years; all had had locoregional chemotherapy or targeted therapy such as sorafenib, but no systemic chemotherapy. The most common AEs were nausea (82%), injection site reaction (76%), palmar-plantar erythrodysesthesia (59%), oral mucositis (53%) and vomiting (53%). There was no dose-limiting toxicity (DLT). Median duration on study was 8 weeks overall. In 14 evaluable cases, one achieved partial response (PR), 4 had stable disease (SD); disease control rate was 36%; most responses were observed in the 130 mg/m2 cohort with 1 PR and 2 SDs. Median TTP and PFS were both 7.0 weeks. Overall median OS was 10.7 months; the median OS was not reached at 19.4 months of follow-up in the 130 mg/m2 cohort. CONCLUSION The PACOX regimen demonstrated good anti-cancer activity and survival advantage in advanced pre-treated HCC with favourable safety profile. It warrants further phase II/III studies.
Collapse
Affiliation(s)
- Thomas Yau
- Department of Medicine, The University of Hong Kong, Pok Fu Lam, Hongkong.
| | - Paul N M Cheng
- Bio-Cancer Treatment International Ltd, Shatin, Hongkong
| | - Joanne Chiu
- Department of Medicine, The University of Hong Kong, Pok Fu Lam, Hongkong
| | - Gerry Gin Wai Kwok
- Department of Medicine, The University of Hong Kong, Pok Fu Lam, Hongkong
| | - Roland Leung
- Department of Medicine, The University of Hong Kong, Pok Fu Lam, Hongkong
| | - Angela M Liu
- Bio-Cancer Treatment International Ltd, Shatin, Hongkong
| | - Tan To Cheung
- Department of Surgery, The University of Hong Kong, Pok Fu Lam, Hongkong
| | - Chi Tao Ng
- Clinical Trials Centre, The University of Hong Kong, Pok Fu Lam, Hongkong
| |
Collapse
|
17
|
Fouda AY, Eldahshan W, Xu Z, Lemtalsi T, Shosha E, Zaidi SA, Abdelrahman AA, Cheng PNM, Narayanan SP, Caldwell RW, Caldwell RB. Preclinical investigation of Pegylated arginase 1 as a treatment for retina and brain injury. Exp Neurol 2022; 348:113923. [PMID: 34780773 PMCID: PMC9122100 DOI: 10.1016/j.expneurol.2021.113923] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/12/2021] [Accepted: 11/08/2021] [Indexed: 02/03/2023]
Abstract
Arginase 1 (A1) is the enzyme that hydrolyzes the amino acid, L-arginine, to ornithine and urea. We have previously shown that A1 deletion worsens retinal ischemic injury, suggesting a protective role of A1. In this translational study, we aimed to study the utility of systemic pegylated A1 (PEG-A1, recombinant human arginase linked to polyethylene glycol) treatment in mouse models of acute retinal and brain injury. Cohorts of WT mice were subjected to retinal ischemia-reperfusion (IR) injury, traumatic optic neuropathy (TON) or brain cerebral ischemia via middle cerebral artery occlusion (MCAO) and treated with intraperitoneal injections of PEG-A1 or vehicle (PEG only). Drug penetration into retina and brain tissues was measured by western blotting and immunolabeling for PEG. Neuroprotection was measured in a blinded fashion by quantitation of NeuN (neuronal marker) immunolabeling of retina flat-mounts and brain infarct area using triphenyl tetrazolium chloride (TTC) staining. Furthermore, ex vivo retina explants and in vitro retina neuron cultures were subjected to oxygen-glucose deprivation (OGD) followed by reoxygenation (R) and treated with PEG-A1. PEG-A1 given systemically did not cross the intact blood-retina/brain barriers in sham controls but reached the retina and brain after injury. PEG-A1 provided neuroprotection after retinal IR injury, TON and cerebral ischemia. PEG-A1 treatment was also neuroprotective in retina explants subjected to OGD/R but did not improve survival in retinal neuronal cultures exposed to OGD/R. In summary, systemic PEG-A1 administration is neuroprotective and provides an excellent route to deliver the drug to the retina and the brain after acute injury.
Collapse
Affiliation(s)
- Abdelrahman Y Fouda
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Department of Clinical Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Wael Eldahshan
- Vascular Biology Center, Augusta University, Augusta, GA, USA
| | - Zhimin Xu
- Vascular Biology Center, Augusta University, Augusta, GA, USA; Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA
| | - Tahira Lemtalsi
- Vascular Biology Center, Augusta University, Augusta, GA, USA; Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA
| | - Esraa Shosha
- Department of Clinical Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Vascular Biology Center, Augusta University, Augusta, GA, USA
| | - Syed Ah Zaidi
- Vascular Biology Center, Augusta University, Augusta, GA, USA; Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA
| | - Ammar A Abdelrahman
- Department of Clinical Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA; Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, USA
| | - Paul Ning-Man Cheng
- Bio-cancer Treatment International, 511-513, Bioinformatics Building, Hong Kong Science Park, Tai Po, Hong Kong, China
| | - S Priya Narayanan
- Vascular Biology Center, Augusta University, Augusta, GA, USA; Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA; Department of Cellular Biology & Anatomy, Augusta University, Augusta, GA, USA; Charlie Norwood VA Medical Center, Augusta, GA, USA; Department of Clinical and Administrative Pharmacy, University of Georgia, Augusta, GA, United States
| | - R William Caldwell
- Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA; Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, USA
| | - Ruth B Caldwell
- Vascular Biology Center, Augusta University, Augusta, GA, USA; Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA; Department of Cellular Biology & Anatomy, Augusta University, Augusta, GA, USA; Charlie Norwood VA Medical Center, Augusta, GA, USA.
| |
Collapse
|
18
|
Li M, Qin J, Xiong K, Jiang B, Zhang T. Review of arginase as a promising biocatalyst: characteristics, preparation, applications and future challenges. Crit Rev Biotechnol 2021; 42:651-667. [PMID: 34612104 DOI: 10.1080/07388551.2021.1947962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
As a committed step in the urea cycle, arginase cleaves l-arginine to form l-ornithine and urea. l-Ornithine is essential to: cell proliferation, collagen formation and other physiological functions, while the urea cycle itself converts highly toxic ammonia to urea for excretion. Recently, arginase was exploited as an efficient catalyst for the environmentally friendly synthesis of l-ornithine, an abundant nonprotein amino acid that is widely employed as a food supplement and nutrition product. It was also proposed as an arginine-reducing agent in order to treat arginase deficiency and to be a means of depleting arginine to treat arginine auxotrophic tumors. Targeting arginase inhibitors of the arginase/ornithine pathway offers great promise as a therapy for: cardiovascular, central nervous system diseases and cancers with high arginase expression. In this review, recent advances in the characteristics, structure, catalytic mechanism and preparation of arginase were summarized, with a focus being placed on the biotechnical and medical applications of arginase. In particular, perspectives have been presented on the challenges and opportunities for the environmentally friendly utilization of arginase during l-ornithine production and in therapies.
Collapse
Affiliation(s)
- Mengli Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jiufu Qin
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Kai Xiong
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Bo Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
19
|
Wilder CS, Chen Z, DiGiovanni J. Pharmacologic approaches to amino acid depletion for cancer therapy. Mol Carcinog 2021; 61:127-152. [PMID: 34534385 DOI: 10.1002/mc.23349] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/27/2021] [Accepted: 09/02/2021] [Indexed: 11/09/2022]
Abstract
Cancer cells undergo metabolic reprogramming to support increased demands in bioenergetics and biosynthesis and to maintain reactive oxygen species at optimum levels. As metabolic alterations are broadly observed across many cancer types, metabolic reprogramming is considered a hallmark of cancer. A metabolic alteration commonly seen in cancer cells is an increased demand for certain amino acids. Amino acids are involved in a wide range of cellular functions, including proliferation, redox balance, bioenergetic and biosynthesis support, and homeostatic functions. Thus, targeting amino acid dependency in cancer is an attractive strategy for a number of cancers. In particular, pharmacologically mediated amino acid depletion has been evaluated as a cancer treatment option for several cancers. Amino acids that have been investigated for the feasibility of drug-induced depletion in preclinical and clinical studies for cancer treatment include arginine, asparagine, cysteine, glutamine, lysine, and methionine. In this review, we will summarize the status of current research on pharmacologically mediated amino acid depletion as a strategy for cancer treatment and potential chemotherapeutic combinations that synergize with amino acid depletion to further inhibit tumor growth and progression.
Collapse
Affiliation(s)
- Carly S Wilder
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| | - Zhao Chen
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| | - John DiGiovanni
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA.,Center for Molecular Carcinogenesis and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
20
|
Hajaj E, Sciacovelli M, Frezza C, Erez A. The context-specific roles of urea cycle enzymes in tumorigenesis. Mol Cell 2021; 81:3749-3759. [PMID: 34469752 DOI: 10.1016/j.molcel.2021.08.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/13/2021] [Accepted: 07/30/2021] [Indexed: 12/11/2022]
Abstract
The expression of the urea cycle (UC) proteins is dysregulated in multiple cancers, providing metabolic benefits to tumor survival, proliferation, and growth. Here, we review the main changes described in the expression of UC enzymes and metabolites in different cancers at various stages and suggest that these changes are dynamic and should hence be viewed in a context-specific manner. Understanding the evolvability in the activity of the UC pathway in cancer has implications for cancer-immune cell interactions and for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Emma Hajaj
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Marco Sciacovelli
- Medical Research Council Cancer Unit, University of Cambridge, Box 197, Biomedical Campus, Cambridge CB2 0XZ, UK
| | - Christian Frezza
- Medical Research Council Cancer Unit, University of Cambridge, Box 197, Biomedical Campus, Cambridge CB2 0XZ, UK.
| | - Ayelet Erez
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
21
|
Gopi P, Anju TR, Pillai VS, Veettil M. SARS-Coronavirus 2, A Metabolic Reprogrammer: A Review in the Context of the Possible Therapeutic Strategies. Curr Drug Targets 2021; 23:770-781. [PMID: 34533443 DOI: 10.2174/1389450122666210917113842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/17/2021] [Accepted: 08/11/2021] [Indexed: 11/22/2022]
Abstract
Novel coronavirus, SARS-CoV-2 is advancing at a staggering pace to devastate the health care system and foster the concerns over public health. In contrast to the past outbreaks, coronaviruses aren't clinging themselves as a strict respiratory virus. Rather, becoming a multifaceted virus, it affects multiple organs by interrupting a number of metabolic pathways leading to significant rates of morbidity and mortality. Following infection they rigorously reprogram multiple metabolic pathways of glucose, lipid, protein, nucleic acid and their metabolites to extract adequate energy and carbon skeletons required for their existence and further molecular constructions inside a host cell. Although the mechanism of these alterations are yet to be known, the impact of these reprogramming is reflected in the hyper inflammatory responses, so called cytokine storm and the hindrance of host immune defence system. The metabolic reprogramming during SARS-CoV-2 infection needs to be considered while devising therapeutic strategies to combat the disease and its further complication. The inhibitors of cholesterol and phospholipids synthesis and cell membrane lipid raft of the host cell can, to a great extent, control the viral load and further infection. Depletion of energy source by inhibiting the activation of glycolytic and hexoseamine biosynthetic pathway can also augment the antiviral therapy. The cross talk between these pathways also necessitates the inhibition of amino acid catabolism and tryptophan metabolism. A combinatorial strategy which can address the cross talks between the metabolic pathways might be more effective than a single approach and the infection stage and timing of therapy will also influence the effectiveness of the antiviral approach. We herein focus on the different metabolic alterations during the course of virus infection that help to exploit the cellular machinery and devise a therapeutic strategy which promotes resistance to viral infection and can augment body's antivirulence mechanisms. This review may cast the light into the possibilities of targeting altered metabolic pathways to defend virus infection in a new perspective.
Collapse
Affiliation(s)
- Poornima Gopi
- Department of Biotechnology, Cochin University of Science and Technology, Cochin 682022, Kerala, India
| | - T R Anju
- Department of Biotechnology, Newman College, Thodupuzha 685585, Kerala, India
| | - Vinod Soman Pillai
- Department of Biotechnology, Cochin University of Science and Technology, Cochin 682022, Kerala, India
| | - Mohanan Veettil
- Institute of Advanced Virology, Thonnakkal, Thiruvananthapuram 695317, Kerala, India
| |
Collapse
|
22
|
Cheng PNM, Liu AM, Bessudo A, Mussai F. Safety, PK/PD and preliminary anti-tumor activities of pegylated recombinant human arginase 1 (BCT-100) in patients with advanced arginine auxotrophic tumors. Invest New Drugs 2021; 39:1633-1640. [PMID: 34287772 DOI: 10.1007/s10637-021-01149-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/01/2021] [Indexed: 10/20/2022]
Abstract
Background The study determined the safety, pharmacokinetics/pharmacodynamics (PK/PD), and recommended Phase II dose of BCT-100 for arginine auxotrophic tumours in a non-Chinese population. Methods This is a Phase I, 3 + 3 dose-escalation, open-label, multi-centre study in two arginine auxotrophic cancers-Malignant Melanoma (MM) and Castration Resistant Prostate Cancer (CRPC). Patients were enrolled to receive weekly intravenous BCT-100. The dose cohorts were respectively 0.5 mg/kg, 1.0 mg/kg, 1.7 mg/kg and 2.7 mg/kg. Results There were 14 MM and 9 CRPC patients, 16 males and 7 females with a median age of 71. No dose-limiting toxicities were reported. Among all the AEs, 18 were drug-related (mostly were Grade 1). Although there were individual variations in PKs amongst the patients in each cohort, the median arginine level was maintained at 2.5 µM (lower limit of quantification) in all 4 cohorts of patients after the second BCT-100 injection. Therapeutic Arginine Depletion was found in the 1.7 and 2.7 mg/kg/week cohorts when anti-tumor activities were observed. The two cohorts had a similar AUC (20,947 and 19,614 h*µg/ml respectively). Since the 2.7 mg/kg/week cohort had a more sustained arginine depletion for 2 weeks, the 2.7 mg/kg/week dose is chosen as the future phase II dose. There were two complete remissions (1 MM & 1 CRPC), 1PR (MM) and 2 stable diseases with a disease control rate (CR + PR + SD) of 5/23 (22%). Conclusions BCT-100 is safe in a non-Chinese population and has anti-tumor activities in both MM and CRPC. Weekly BCT-100 at 2.7 mg/kg is defined as the optimal biological dose for future clinical phase II studies.
Collapse
Affiliation(s)
- Paul N M Cheng
- Bio-Cancer Treatment International Ltd, Hong Kong, China.
| | - Angela M Liu
- Bio-Cancer Treatment International Ltd, Hong Kong, China
| | - Alberto Bessudo
- California Cancer Associates for Research and Excellence, Fresno, CA, US
| | - Francis Mussai
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| |
Collapse
|
23
|
Wohlleber K, Heger P, Probst P, Engel C, Diener MK, Mihaljevic AL. Health-related quality of life in primary hepatic cancer: a systematic review assessing the methodological properties of instruments and a meta-analysis comparing treatment strategies. Qual Life Res 2021; 30:2429-2466. [PMID: 34283381 PMCID: PMC8405513 DOI: 10.1007/s11136-021-02810-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE Patient-reported outcomes including health-related quality of life (HRQoL) are important oncological outcome measures. The validation of HRQoL instruments for patients with hepatocellular and cholangiocellular carcinoma is lacking. Furthermore, studies comparing different treatment options in respect to HRQoL are sparse. The objective of the systematic review and meta-analysis was, therefore, to identify all available HRQoL tools regarding primary liver cancer, to assess the methodological quality of these HRQoL instruments and to compare surgical, interventional and medical treatments with regard to HRQoL. METHODS A systematic literature search was conducted in MEDLINE, the Cochrane library, PsycINFO, CINAHL and EMBASE. The methodological quality of all identified HRQoL instruments was performed according to the COnsensus-based Standards for the selection of health status Measurements INstruments (COSMIN) standard. Consequently, the quality of reporting of HRQoL data was assessed. Finally, wherever possible HRQoL data were extracted and quantitative analyses were performed. RESULTS A total of 124 studies using 29 different HRQoL instruments were identified. After the methodological assessment, only 10 instruments fulfilled the psychometric criteria and could be included in subsequent analyses. However, quality of reporting of HRQoL data was insufficient, precluding meta-analyses for 9 instruments. CONCLUSION Using a standardized methodological assessment, specific HRQoL instruments are recommended for use in patients with hepatocellular and cholangiocellular carcinoma. HRQoL data of patients undergoing treatment of primary liver cancers are sparse and reporting falls short of published standards. Meaningful comparison of established treatment options with regard to HRQoL was impossible indicating the need for future research.
Collapse
Affiliation(s)
- Kerstin Wohlleber
- Department of General, Visceral and Transplant Surgery, University of Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| | - Patrick Heger
- Department of General, Visceral and Transplant Surgery, University of Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
- The Study Centre of the German Surgical Society (SDGC), University of Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| | - Pascal Probst
- Department of General, Visceral and Transplant Surgery, University of Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
- The Study Centre of the German Surgical Society (SDGC), University of Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| | - Christoph Engel
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE), University of Leipzig, Härtelstraße 16-18, 04107, Leipzig, Germany
| | - Markus K Diener
- Department of General, Visceral and Transplant Surgery, University of Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
- The Study Centre of the German Surgical Society (SDGC), University of Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| | - André L Mihaljevic
- Department of General, Visceral and Transplant Surgery, University of Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany.
- The Study Centre of the German Surgical Society (SDGC), University of Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany.
| |
Collapse
|
24
|
Chen CL, Hsu SC, Ann DK, Yen Y, Kung HJ. Arginine Signaling and Cancer Metabolism. Cancers (Basel) 2021; 13:3541. [PMID: 34298755 PMCID: PMC8306961 DOI: 10.3390/cancers13143541] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/01/2021] [Accepted: 07/12/2021] [Indexed: 12/19/2022] Open
Abstract
Arginine is an amino acid critically involved in multiple cellular processes including the syntheses of nitric oxide and polyamines, and is a direct activator of mTOR, a nutrient-sensing kinase strongly implicated in carcinogenesis. Yet, it is also considered as a non- or semi-essential amino acid, due to normal cells' intrinsic ability to synthesize arginine from citrulline and aspartate via ASS1 (argininosuccinate synthase 1) and ASL (argininosuccinate lyase). As such, arginine can be used as a dietary supplement and its depletion as a therapeutic strategy. Strikingly, in over 70% of tumors, ASS1 transcription is suppressed, rendering the cells addicted to external arginine, forming the basis of arginine-deprivation therapy. In this review, we will discuss arginine as a signaling metabolite, arginine's role in cancer metabolism, arginine as an epigenetic regulator, arginine as an immunomodulator, and arginine as a therapeutic target. We will also provide a comprehensive summary of ADI (arginine deiminase)-based arginine-deprivation preclinical studies and an update of clinical trials for ADI and arginase. The different cell killing mechanisms associated with various cancer types will also be described.
Collapse
Affiliation(s)
- Chia-Lin Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan 350, Miaoli County, Taiwan;
| | - Sheng-Chieh Hsu
- Institute of Biotechnology, National Tsing-Hua University, Hsinchu 30035, Taiwan;
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan 350, Miaoli County, Taiwan
| | - David K. Ann
- Department of Diabetes and Metabolic Diseases Research, Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA;
| | - Yun Yen
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan;
| | - Hsing-Jien Kung
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan 350, Miaoli County, Taiwan;
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan;
- Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
- Comprehensive Cancer Center, Department of Biochemistry and Molecular Medicine, University of California at Davis, Sacramento, CA 95817, USA
| |
Collapse
|
25
|
Cioni P, Gabellieri E, Campanini B, Bettati S, Raboni S. Use of Exogenous Enzymes in Human Therapy: Approved Drugs and Potential Applications. Curr Med Chem 2021; 29:411-452. [PMID: 34259137 DOI: 10.2174/0929867328666210713094722] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/05/2021] [Accepted: 03/17/2021] [Indexed: 11/22/2022]
Abstract
The development of safe and efficacious enzyme-based human therapies has increased greatly in the last decades, thanks to remarkable advances in the understanding of the molecular mechanisms responsible for different diseases, and the characterization of the catalytic activity of relevant exogenous enzymes that may play a remedial effect in the treatment of such pathologies. Several enzyme-based biotherapeutics have been approved by FDA (the U.S. Food and Drug Administration) and EMA (the European Medicines Agency) and many are undergoing clinical trials. Apart from enzyme replacement therapy in human genetic diseases, which is not discussed in this review, approved enzymes for human therapy find applications in several fields, from cancer therapy to thrombolysis and the treatment, e.g., of clotting disorders, cystic fibrosis, lactose intolerance and collagen-based disorders. The majority of therapeutic enzymes are of microbial origin, the most convenient source due to fast, simple and cost-effective production and manipulation. The use of microbial recombinant enzymes has broadened prospects for human therapy but some hurdles such as high immunogenicity, protein instability, short half-life and low substrate affinity, still need to be tackled. Alternative sources of enzymes, with reduced side effects and improved activity, as well as genetic modification of the enzymes and novel delivery systems are constantly searched. Chemical modification strategies, targeted- and/or nanocarrier-mediated delivery, directed evolution and site-specific mutagenesis, fusion proteins generated by genetic manipulation are the most explored tools to reduce toxicity and improve bioavailability and cellular targeting. This review provides a description of exogenous enzymes that are presently employed for the therapeutic management of human diseases with their current FDA/EMA-approved status, along with those already experimented at the clinical level and potential promising candidates.
Collapse
Affiliation(s)
- Patrizia Cioni
- Institute of Biophysics, National Research Council, Via Moruzzi 1, 56124 Pisa. Italy
| | - Edi Gabellieri
- Institute of Biophysics, National Research Council, Via Moruzzi 1, 56124 Pisa. Italy
| | - Barbara Campanini
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 23/A, 43124 Parma. Italy
| | - Stefano Bettati
- Institute of Biophysics, National Research Council, Via Moruzzi 1, 56124 Pisa. Italy
| | - Samanta Raboni
- Institute of Biophysics, National Research Council, Via Moruzzi 1, 56124 Pisa. Italy
| |
Collapse
|
26
|
Wangpaichitr M, Theodoropoulos G, Nguyen DJM, Wu C, Spector SA, Feun LG, Savaraj N. Cisplatin Resistance and Redox-Metabolic Vulnerability: A Second Alteration. Int J Mol Sci 2021; 22:7379. [PMID: 34298999 PMCID: PMC8304747 DOI: 10.3390/ijms22147379] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 01/17/2023] Open
Abstract
The development of drug resistance in tumors is a major obstacle to effective cancer chemotherapy and represents one of the most significant complications to improving long-term patient outcomes. Despite early positive responsiveness to platinum-based chemotherapy, the majority of lung cancer patients develop resistance. The development of a new combination therapy targeting cisplatin-resistant (CR) tumors may mark a major improvement as salvage therapy in these patients. The recent resurgence in research into cellular metabolism has again confirmed that cancer cells utilize aerobic glycolysis ("the Warburg effect") to produce energy. Hence, this observation still remains a characteristic hallmark of altered metabolism in certain cancer cells. However, recent evidence promotes another concept wherein some tumors that acquire resistance to cisplatin undergo further metabolic alterations that increase tumor reliance on oxidative metabolism (OXMET) instead of glycolysis. Our review focuses on molecular changes that occur in tumors due to the relationship between metabolic demands and the importance of NAD+ in redox (ROS) metabolism and the crosstalk between PARP-1 (Poly (ADP ribose) polymerase-1) and SIRTs (sirtuins) in CR tumors. Finally, we discuss a role for the tumor metabolites of the kynurenine pathway (tryptophan catabolism) as effectors of immune cells in the tumor microenvironment during acquisition of resistance in CR cells. Understanding these concepts will form the basis for future targeting of CR cells by exploiting redox-metabolic changes and their consequences on immune cells in the tumor microenvironment as a new approach to improve overall therapeutic outcomes and survival in patients who fail cisplatin.
Collapse
Affiliation(s)
- Medhi Wangpaichitr
- Department of Veterans Affairs, Miami VA Healthcare System, Research Service (151), Miami, FL 33125, USA; (G.T.); (D.J.M.N.); (C.W.); (S.A.S.)
- Department of Surgery, Cardiothoracic Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - George Theodoropoulos
- Department of Veterans Affairs, Miami VA Healthcare System, Research Service (151), Miami, FL 33125, USA; (G.T.); (D.J.M.N.); (C.W.); (S.A.S.)
| | - Dan J. M. Nguyen
- Department of Veterans Affairs, Miami VA Healthcare System, Research Service (151), Miami, FL 33125, USA; (G.T.); (D.J.M.N.); (C.W.); (S.A.S.)
| | - Chunjing Wu
- Department of Veterans Affairs, Miami VA Healthcare System, Research Service (151), Miami, FL 33125, USA; (G.T.); (D.J.M.N.); (C.W.); (S.A.S.)
| | - Sydney A. Spector
- Department of Veterans Affairs, Miami VA Healthcare System, Research Service (151), Miami, FL 33125, USA; (G.T.); (D.J.M.N.); (C.W.); (S.A.S.)
| | - Lynn G. Feun
- Department of Medicine, Hematology/Oncology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (L.G.F.); (N.S.)
| | - Niramol Savaraj
- Department of Medicine, Hematology/Oncology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (L.G.F.); (N.S.)
- Department of Veterans Affairs, Miami VA Healthcare System, Hematology/Oncology, 1201 NW 16 Street, Room D1010, Miami, FL 33125, USA
| |
Collapse
|
27
|
Bhingarkar A, Vangapandu HV, Rathod S, Hoshitsuki K, Fernandez CA. Amino Acid Metabolic Vulnerabilities in Acute and Chronic Myeloid Leukemias. Front Oncol 2021; 11:694526. [PMID: 34277440 PMCID: PMC8281237 DOI: 10.3389/fonc.2021.694526] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/15/2021] [Indexed: 12/24/2022] Open
Abstract
Amino acid (AA) metabolism plays an important role in many cellular processes including energy production, immune function, and purine and pyrimidine synthesis. Cancer cells therefore require increased AA uptake and undergo metabolic reprogramming to satisfy the energy demand associated with their rapid proliferation. Like many other cancers, myeloid leukemias are vulnerable to specific therapeutic strategies targeting metabolic dependencies. Herein, our review provides a comprehensive overview and TCGA data analysis of biosynthetic enzymes required for non-essential AA synthesis and their dysregulation in myeloid leukemias. Furthermore, we discuss the role of the general control nonderepressible 2 (GCN2) and-mammalian target of rapamycin (mTOR) pathways of AA sensing on metabolic vulnerability and drug resistance.
Collapse
Affiliation(s)
- Aboli Bhingarkar
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, United States
| | - Hima V. Vangapandu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, United States
| | - Sanjay Rathod
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, United States
| | - Keito Hoshitsuki
- Division of General Internal Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Christian A. Fernandez
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, United States
| |
Collapse
|
28
|
Chiu M, Taurino G, Bianchi MG, Bussolati O. The Role of Amino Acids in the Crosstalk Between Mesenchymal Stromal Cells and Neoplastic Cells in the Hematopoietic Niche. Front Cell Dev Biol 2021; 9:714755. [PMID: 34277645 PMCID: PMC8278102 DOI: 10.3389/fcell.2021.714755] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/10/2021] [Indexed: 12/25/2022] Open
Abstract
Within the bone marrow hematopoietic cells are in close connection with mesenchymal stromal cells (MSCs), which influence the behavior and differentiation of normal or malignant lymphoid and myeloid cells. Altered cell metabolism is a hallmark of cancer, and changes in nutrient pools and fluxes are important components of the bidirectional communication between MSCs and hematological cancer cells. Among nutrients, amino acids play a significant role in cancer progression and chemo-resistance. Moreover, selected types of cancer cells are extremely greedy for glutamine, and significantly deplete the extracellular pool of the amino acid. As a consequence, this influences the behavior of MSCs in terms of either cytokine/chemokine secretion or differentiation potential. Additionally, a direct nutritional interaction exists between MSCs and immune cells. In particular, selected subpopulations of lymphocytes are dependent upon selected amino acids, such as arginine and tryptophan, for full differentiation and competence. This review describes and discusses the nutritional interactions existing in the neoplastic bone marrow niche between MSCs and other cell types, with a particular emphasis on cancer cells and immune cells. These relationships are discussed in the perspective of potential novel therapeutic strategies based on the interference on amino acid metabolism or intercellular fluxes.
Collapse
Affiliation(s)
- Martina Chiu
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Giuseppe Taurino
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | - Ovidio Bussolati
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
29
|
A phase II clinical study on the efficacy and predictive biomarker of pegylated recombinant arginase on hepatocellular carcinoma. Invest New Drugs 2021; 39:1375-1382. [PMID: 33856599 PMCID: PMC8426309 DOI: 10.1007/s10637-021-01111-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 03/28/2021] [Indexed: 11/11/2022]
Abstract
Background: Pegylated recombinant human arginase (PEG-BCT-100) is an arginine depleting drug. Preclinical studies showed that HCC is reliant on exogenous arginine for growth due to the under-expression of the arginine regenerating enzymes argininosuccinate synthetase (ASS) and ornithine transcarbamylase (OTC). Methods: This is a single arm open-label Phase II trial to assess the potential clinical efficacy of PEG-BCT-100 in chemo naïve sorafenib-failure HCC patients. Pre-treatment tumour biopsy was mandated for ASS and OTC expression by immunohistochemistry (IHC). Weekly intravenous PEG-BCT-100 at 2.7 mg/kg was given. Primary endpoint was time to progression (TTP); secondary endpoints included radiological response as per RECIST1.1, progression free survival (PFS) and overall survival (OS). Treatment outcomes were correlated with tumour immunohistochemical expressions of ASS and OTC. Results: In total 27 patients were recruited. The median TTP and PFS were both 6 weeks (95% CI, 5.9–6.0 weeks). The disease control rate (DCR) was 21.7% (5 stable disease). The drug was well tolerated. Post hoc analysis showed that duration of arginine depletion correlated with OS. For patients with available IHC results, 10 patients with ASS-negative tumour had OS of 35 weeks (95% CI: 8.3–78.0 weeks) vs. 15.14 weeks (95% CI: 13.4–15.1 weeks) in 3 with ASS-positive tumour; expression of OTC did not correlate with treatment outcomes. Conclusions: PEG-BCT-100 in chemo naïve post-sorafenib HCC is well tolerated with moderate DCR. ASS-negative confers OS advantage over ASS-positive HCC. ASS-negativity is a potential biomarker for OS in HCC and possibly for other ASS-negative arginine auxotrophic cancers. Trial registration number: NCT01092091. Date of registration: March 23, 2010.
Collapse
|
30
|
Zhao Z, Zhang P, Li W, Wang D, Ke C, Liu Y, Ho JCM, Cheng PNM, Xu S. Pegylated Recombinant Human Arginase 1 Induces Autophagy and Apoptosis via the ROS-Activated AKT/mTOR Pathway in Bladder Cancer Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5510663. [PMID: 33791071 PMCID: PMC7996046 DOI: 10.1155/2021/5510663] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/22/2021] [Accepted: 03/05/2021] [Indexed: 02/06/2023]
Abstract
Bladder cancer is one of the most commonly diagnosed cancers worldwide, especially in males. Current therapeutic interventions, including surgery, radiation therapy, chemotherapy, and immunotherapy, have not been able to improve the clinical outcome of bladder cancer patients with satisfaction. Recombinant human arginase (rhArg, BCT-100) is a novel agent with great anticancer effects on arginine-auxotrophic tumors. However, the effects of BCT-100 on bladder cancer remain unclear. In this study, the in vitro anticancer effects of BCT-100 were assessed using four bladder cancer cell lines (J82, SCaBER, T24, and 5637), while the in vivo effects were evaluated by establishing T24 nude mice xenograft models. Intracellular arginine level was observed to be sharply decreased followed by the onset of apoptotic events. Furthermore, BCT-100 was found to induce H2O2 production and mitochondrial membrane depolarization, leading to the release of mitochondrial cytochrome c and Smac to the cytosol. Treatment with BCT was observed to upregulate the expression of LC3B and Becllin-1, but downregulate the expression of p62 in a time-dependent manner. Autophagic flux was also observed upon BCT-100 treatment. Besides, the phosphorylation of the AKT/mTOR pathway was suppressed in a time-dependent fashion in BCT-100-treated T24 cells. While N-acetyl-L-cysteine was shown to alleviate BCT-100-induced apoptosis and autophagy, chloroquine, MK-2206, and rapamycin were found to potentiate BCT-100-triggered apoptosis. Finally, BCT-100 was demonstrated to induce autophagy and apoptosis via the ROS-mediated AKT/mTOR signaling pathway in bladder cancer cells.
Collapse
Affiliation(s)
- Zhuyun Zhao
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, Guangdong, China
| | - Peng Zhang
- Department of Pharmacy, Shenzhen Luohu People's Hospital, Shenzhen, Guangdong, China
| | - Wei Li
- Department of Urology, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, Guangdong, China
| | - Dengchuan Wang
- Office of Medical Ethics, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, Guangdong, China
| | - Changneng Ke
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, Guangdong, China
| | - Yueming Liu
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, Guangdong, China
| | - James Chung-Man Ho
- Division of Respiratory Medicine, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong SAR, China
| | - Paul Ning-Man Cheng
- Bio-Cancer Treatment International, 511-513, Bioinformatics Building, Hong Kong Science Park, Tai Po, Hong Kong SAR, China
| | - Shi Xu
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, Guangdong, China
| |
Collapse
|
31
|
Kuo MT, Chen HHW, Feun LG, Savaraj N. Targeting the Proline-Glutamine-Asparagine-Arginine Metabolic Axis in Amino Acid Starvation Cancer Therapy. Pharmaceuticals (Basel) 2021; 14:ph14010072. [PMID: 33477430 PMCID: PMC7830038 DOI: 10.3390/ph14010072] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/22/2022] Open
Abstract
Proline, glutamine, asparagine, and arginine are conditionally non-essential amino acids that can be produced in our body. However, they are essential for the growth of highly proliferative cells such as cancers. Many cancers express reduced levels of these amino acids and thus require import from the environment. Meanwhile, the biosynthesis of these amino acids is inter-connected but can be intervened individually through the inhibition of key enzymes of the biosynthesis of these amino acids, resulting in amino acid starvation and cell death. Amino acid starvation strategies have been in various stages of clinical applications. Targeting asparagine using asparaginase has been approved for treating acute lymphoblastic leukemia. Targeting glutamine and arginine starvations are in various stages of clinical trials, and targeting proline starvation is in preclinical development. The most important obstacle of these therapies is drug resistance, which is mostly due to reactivation of the key enzymes involved in biosynthesis of the targeted amino acids and reprogramming of compensatory survival pathways via transcriptional, epigenetic, and post-translational mechanisms. Here, we review the interactive regulatory mechanisms that control cellular levels of these amino acids for amino acid starvation therapy and how drug resistance is evolved underlying treatment failure.
Collapse
Affiliation(s)
- Macus Tien Kuo
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence:
| | - Helen H. W. Chen
- Department of Radiation Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan;
| | - Lynn G. Feun
- Department of Medicine, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| | - Niramol Savaraj
- Division of Hematology and Oncology, Miami Veterans Affairs Heaithcare System, Miami, FL 33136, USA;
| |
Collapse
|
32
|
Zhang Y, Chung SF, Tam SY, Leung YC, Guan X. Arginine deprivation as a strategy for cancer therapy: An insight into drug design and drug combination. Cancer Lett 2021; 502:58-70. [PMID: 33429005 DOI: 10.1016/j.canlet.2020.12.041] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/07/2020] [Accepted: 12/27/2020] [Indexed: 12/18/2022]
Abstract
Extensive studies have shown that cancer cells have specific nutrient auxotrophy and thus have much a higher demand for certain nutrients than normal cells. Amino acid deprivation has attracted much attention in cancer therapy with positive outcomes from clinical trials. Arginine, as one of the conditionally essential amino acids, plays a pivotal role in cellular division and metabolism. Since many types of cancer cells exhibit decreased expression of argininosuccinate synthetase and/or ornithine transcarbamylase, they are auxotrophic for arginine, which makes arginine deprivation an accessible choice for cancer treatment. Arginine deiminase (ADI) and human arginase (hArg) are the two major protein drugs used for arginine deprivation and are undergoing many clinical trials. However, the clinical application of ADI and hArg is facing some common problems, including their short half-lives, immunogenicity and inconsistent production, which underlines the importance of improving these drugs using protein engineering techniques. Thus, we systematically review the latest studies of protein engineering and anti-cancer studies based on in vitro, in vivo and clinical models of ADI and hArg, and we include the latest studies on drug combinations consisting of ADI/hArg with chemotherapeutic drugs.
Collapse
Affiliation(s)
- Yu Zhang
- School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China; Department of Applied Biology and Chemical Technology, Lo Ka Chung Research Center for Natural Anti-Cancer Drug Development and State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Shanghai Engineering Research Center for Food Rapid Detection, Shanghai, China
| | - Sai-Fung Chung
- Department of Applied Biology and Chemical Technology, Lo Ka Chung Research Center for Natural Anti-Cancer Drug Development and State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Suet-Ying Tam
- Department of Applied Biology and Chemical Technology, Lo Ka Chung Research Center for Natural Anti-Cancer Drug Development and State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yun-Chung Leung
- Department of Applied Biology and Chemical Technology, Lo Ka Chung Research Center for Natural Anti-Cancer Drug Development and State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Xiao Guan
- School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China.
| |
Collapse
|
33
|
Yang JS, Wang CC, Qiu JD, Ren B, You L. Arginine metabolism: a potential target in pancreatic cancer therapy. Chin Med J (Engl) 2020; 134:28-37. [PMID: 33395072 PMCID: PMC7862822 DOI: 10.1097/cm9.0000000000001216] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
ABSTRACT Pancreatic ductal adenocarcinoma (PDAC) is an extremely malignant disease, which has an extremely low survival rate of <9% in the United States. As a new hallmark of cancer, metabolism reprogramming exerts crucial impacts on PDAC development and progression. Notably, arginine metabolism is altered in PDAC cells and participates in vital signaling pathways. In addition, arginine and its metabolites including polyamine, creatine, agmatine, and nitric oxide regulate the proliferation, growth, autophagy, apoptosis, and metastasis of cancer cells. Due to the loss of argininosuccinate synthetase 1 (ASS1) expression, the key enzyme in arginine biosynthesis, arginine deprivation is regarded as a potential strategy for PDAC therapy. However, drug resistance develops during arginine depletion treatment, along with the re-expression of ASS1, metabolic dysfunction, and the appearance of anti-drug antibody. Additionally, arginase 1 exerts crucial roles in myeloid-derived suppressor cells, indicating its potential targeting by cancer immunotherapy. In this review, we introduce arginine metabolism and its impacts on PDAC cells. Also, we discuss the role of arginine metabolism in arginine deprivation therapy and immunotherapy for cancer.
Collapse
Affiliation(s)
- Jin-Shou Yang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | | | | | | | | |
Collapse
|
34
|
Grimes JM, Khan S, Badeaux M, Rao RM, Rowlinson SW, Carvajal RD. Arginine depletion as a therapeutic approach for patients with COVID-19. Int J Infect Dis 2020; 102:566-570. [PMID: 33160064 PMCID: PMC7641537 DOI: 10.1016/j.ijid.2020.10.100] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/15/2022] Open
Abstract
The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a source of significant morbidity and death worldwide, and effective treatments are urgently needed. Clinical trials have focused largely on direct antiviral therapies or on immunomodulation in patients with severe manifestations of COVID-19. One therapeutic approach that remains to be clinically investigated is disruption of the host-virus relationship through amino acid restriction, a strategy used successfully in the setting of cancer treatment. Arginine is an amino acid that has been shown in nonclinical studies to be essential in the life cycle of many viruses. Therefore, arginine depletion may be an effective therapeutic approach against SARS-CoV-2. Several arginine-metabolizing enzymes in clinical development may be a viable approach to induce a low arginine environment to treat COVID-19 and other viral diseases. Herein, we explore the rationale for arginine depletion as a therapeutic approach for COVID-19.
Collapse
Affiliation(s)
- Joseph M Grimes
- Columbia University Irving Medical Center, New York, NY, USA
| | - Shaheer Khan
- Columbia University Irving Medical Center, New York, NY, USA
| | | | - Ravi M Rao
- Aeglea Biotherapeutics Inc., Austin, TX, USA
| | | | - Richard D Carvajal
- Columbia University Irving Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, New York, NY, USA.
| |
Collapse
|
35
|
The Janus-like role of proline metabolism in cancer. Cell Death Discov 2020; 6:104. [PMID: 33083024 PMCID: PMC7560826 DOI: 10.1038/s41420-020-00341-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/18/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023] Open
Abstract
The metabolism of the non-essential amino acid L-proline is emerging as a key pathway in the metabolic rewiring that sustains cancer cells proliferation, survival and metastatic spread. Pyrroline-5-carboxylate reductase (PYCR) and proline dehydrogenase (PRODH) enzymes, which catalyze the last step in proline biosynthesis and the first step of its catabolism, respectively, have been extensively associated with the progression of several malignancies, and have been exposed as potential targets for anticancer drug development. As investigations into the links between proline metabolism and cancer accumulate, the complexity, and sometimes contradictory nature of this interaction emerge. It is clear that the role of proline metabolism enzymes in cancer depends on tumor type, with different cancers and cancer-related phenotypes displaying different dependencies on these enzymes. Unexpectedly, the outcome of rewiring proline metabolism also differs between conditions of nutrient and oxygen limitation. Here, we provide a comprehensive review of proline metabolism in cancer; we collate the experimental evidence that links proline metabolism with the different aspects of cancer progression and critically discuss the potential mechanisms involved.
Collapse
|
36
|
S. Clemente G, van Waarde A, F. Antunes I, Dömling A, H. Elsinga P. Arginase as a Potential Biomarker of Disease Progression: A Molecular Imaging Perspective. Int J Mol Sci 2020; 21:E5291. [PMID: 32722521 PMCID: PMC7432485 DOI: 10.3390/ijms21155291] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/11/2022] Open
Abstract
Arginase is a widely known enzyme of the urea cycle that catalyzes the hydrolysis of L-arginine to L-ornithine and urea. The action of arginase goes beyond the boundaries of hepatic ureogenic function, being widespread through most tissues. Two arginase isoforms coexist, the type I (Arg1) predominantly expressed in the liver and the type II (Arg2) expressed throughout extrahepatic tissues. By producing L-ornithine while competing with nitric oxide synthase (NOS) for the same substrate (L-arginine), arginase can influence the endogenous levels of polyamines, proline, and NO•. Several pathophysiological processes may deregulate arginase/NOS balance, disturbing the homeostasis and functionality of the organism. Upregulated arginase expression is associated with several pathological processes that can range from cardiovascular, immune-mediated, and tumorigenic conditions to neurodegenerative disorders. Thus, arginase is a potential biomarker of disease progression and severity and has recently been the subject of research studies regarding the therapeutic efficacy of arginase inhibitors. This review gives a comprehensive overview of the pathophysiological role of arginase and the current state of development of arginase inhibitors, discussing the potential of arginase as a molecular imaging biomarker and stimulating the development of novel specific and high-affinity arginase imaging probes.
Collapse
Affiliation(s)
- Gonçalo S. Clemente
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (G.S.C.); (A.v.W.); (I.F.A.)
| | - Aren van Waarde
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (G.S.C.); (A.v.W.); (I.F.A.)
| | - Inês F. Antunes
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (G.S.C.); (A.v.W.); (I.F.A.)
| | - Alexander Dömling
- Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands;
| | - Philip H. Elsinga
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (G.S.C.); (A.v.W.); (I.F.A.)
| |
Collapse
|
37
|
N-Terminal selective modification of peptides and proteins using 2-ethynylbenzaldehydes. Commun Chem 2020; 3:67. [PMID: 36703438 PMCID: PMC9814395 DOI: 10.1038/s42004-020-0309-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 04/28/2020] [Indexed: 02/06/2023] Open
Abstract
Selective modification of the N-terminus of peptides and proteins is a promising strategy for single site modification methods. Here we report N-terminal selective modification of peptides and proteins by using 2-ethynylbenzaldehydes (2-EBA) for the production of well-defined bioconjugates. After reaction screening with a series of 2-EBA, excellent N-terminal selectivity is achieved by the reaction in slightly acidic phosphate-buffered saline using 2-EBA with electron-donating substituents. Selective modification of a library of peptides XSKFR (X = either one of 20 natural amino acids) by 2-ethynyl-4-hydroxy-5-methoxybenzaldehyde (2d) results in good-to-excellent N-terminal selectivity in peptides (up to >99:1). Lysozyme, ribonuclease A and a therapeutic recombinant Bacillus caldovelox arginase mutant (BCArg mutant) are N-terminally modified using alkyne- and fluorescein-linked 2-EBA. Alkyne-linked BCArg mutant is further modified by rhodamine azide via copper(I)-catalyzed [3 + 2] cycloaddition indicating that the reaction has high functional group compatibility. Moreover, the BCArg mutant modified by 2-ethynyl-5-methoxybenzaldehyde (2b) exhibits comparable activity in enzymatic and cytotoxic assays with the unmodified one.
Collapse
|
38
|
Sun NY, Yang MH. Metabolic Reprogramming and Epithelial-Mesenchymal Plasticity: Opportunities and Challenges for Cancer Therapy. Front Oncol 2020; 10:792. [PMID: 32509584 PMCID: PMC7252305 DOI: 10.3389/fonc.2020.00792] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 04/22/2020] [Indexed: 12/27/2022] Open
Abstract
Metabolic reprogramming and epithelial-mesenchymal plasticity are both hallmarks of the adaptation of cancer cells for tumor growth and progression. For metabolic changes, cancer cells alter metabolism by utilizing glucose, lipids, and amino acids to meet the requirement of rapid proliferation and to endure stressful environments. Dynamic changes between the epithelial and mesenchymal phenotypes through epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) are critical steps for cancer invasion and metastatic colonization. Compared to the extensively studied metabolic reprogramming in tumorigenesis, the metabolic changes in metastasis are relatively unclear. Here, we review metabolic reprogramming, epithelial-mesenchymal plasticity, and their mutual influences on tumor cells. We also review the developing treatments for targeting cancer metabolism and the impact of metabolic targeting on EMT. In summary, understanding the metabolic adaption and phenotypic plasticity will be mandatory for developing new strategies to target metastatic and refractory cancers that are intractable to current treatments.
Collapse
Affiliation(s)
- Nai-Yun Sun
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Cancer Progression Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Muh-Hwa Yang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Cancer Progression Research Center, National Yang-Ming University, Taipei, Taiwan.,Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
39
|
Grzywa TM, Sosnowska A, Matryba P, Rydzynska Z, Jasinski M, Nowis D, Golab J. Myeloid Cell-Derived Arginase in Cancer Immune Response. Front Immunol 2020; 11:938. [PMID: 32499785 PMCID: PMC7242730 DOI: 10.3389/fimmu.2020.00938] [Citation(s) in RCA: 255] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/22/2020] [Indexed: 12/13/2022] Open
Abstract
Amino acid metabolism is a critical regulator of the immune response, and its modulating becomes a promising approach in various forms of immunotherapy. Insufficient concentrations of essential amino acids restrict T-cells activation and proliferation. However, only arginases, that degrade L-arginine, as well as enzymes that hydrolyze L-tryptophan are substantially increased in cancer. Two arginase isoforms, ARG1 and ARG2, have been found to be present in tumors and their increased activity usually correlates with more advanced disease and worse clinical prognosis. Nearly all types of myeloid cells were reported to produce arginases and the increased numbers of various populations of myeloid-derived suppressor cells and macrophages correlate with inferior clinical outcomes of cancer patients. Here, we describe the role of arginases produced by myeloid cells in regulating various populations of immune cells, discuss molecular mechanisms of immunoregulatory processes involving L-arginine metabolism and outline therapeutic approaches to mitigate the negative effects of arginases on antitumor immune response. Development of potent arginase inhibitors, with improved pharmacokinetic properties, may lead to the elaboration of novel therapeutic strategies based on targeting immunoregulatory pathways controlled by L-arginine degradation.
Collapse
Affiliation(s)
- Tomasz M. Grzywa
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Anna Sosnowska
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Paweł Matryba
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
- Laboratory of Neurobiology BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
- The Doctoral School of the Medical University of Warsaw, Medical University of Warsaw, Warsaw, Poland
| | - Zuzanna Rydzynska
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Marcin Jasinski
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Dominika Nowis
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
- Laboratory of Experimental Medicine, Center of New Technologies, University of Warsaw, Warsaw, Poland
- Genomic Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Jakub Golab
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
- Centre of Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
40
|
Fouda AY, Eldahshan W, Narayanan SP, Caldwell RW, Caldwell RB. Arginase Pathway in Acute Retina and Brain Injury: Therapeutic Opportunities and Unexplored Avenues. Front Pharmacol 2020; 11:277. [PMID: 32256357 PMCID: PMC7090321 DOI: 10.3389/fphar.2020.00277] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/26/2020] [Indexed: 12/20/2022] Open
Abstract
Ischemic retinopathies represent a major cause of visual impairment and blindness. They include diabetic retinopathy (DR), acute glaucoma, retinopathy of prematurity (ROP), and central (or branch) retinal artery occlusion (CRAO). These conditions share in common a period of ischemia or reduced blood supply to the retinal tissue that eventually leads to neuronal degeneration. Similarly, acute brain injury from ischemia or trauma leads to neurodegeneration and can have devastating consequences in patients with stroke or traumatic brain injury (TBI). In all of these conditions, current treatment strategies are limited by their lack of effectiveness, adverse effects or short time window for administration. Therefore, there is a great need to identify new therapies for acute central nervous system (CNS) injury. In this brief review article, we focus on the pathway of the arginase enzyme as a novel therapeutic target for acute CNS injury. We review the recent work on the role of arginase enzyme and its downstream components in neuroprotection in both retina and brain acute injury models. Delineating the similarities and differences between the role of arginase in the retina and brain neurodegeneration will allow for better understanding of the role of arginase in CNS disorders. This will also facilitate repurposing the arginase pathway as a new therapeutic target in both retina and brain diseases.
Collapse
Affiliation(s)
- Abdelrahman Y Fouda
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Charlie Norwood VA Medical Center, Augusta, GA, United States.,Clinical Pharmacy Department, Faculty of Pharmacy, Cairo University, Giza, Egypt
| | - Wael Eldahshan
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - S Priya Narayanan
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Charlie Norwood VA Medical Center, Augusta, GA, United States.,Department of Clinical and Administrative Pharmacy, University of Georgia, Athens, GA, United States
| | - R William Caldwell
- Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Ruth B Caldwell
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Charlie Norwood VA Medical Center, Augusta, GA, United States.,Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
41
|
A bioengineered arginine-depleting enzyme as a long-lasting therapeutic agent against cancer. Appl Microbiol Biotechnol 2020; 104:3921-3934. [DOI: 10.1007/s00253-020-10484-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/11/2020] [Accepted: 02/18/2020] [Indexed: 01/11/2023]
|
42
|
Brunner JS, Vulliard L, Hofmann M, Kieler M, Lercher A, Vogel A, Russier M, Brüggenthies JB, Kerndl M, Saferding V, Niederreiter B, Junza A, Frauenstein A, Scholtysek C, Mikami Y, Klavins K, Krönke G, Bergthaler A, O'Shea JJ, Weichhart T, Meissner F, Smolen JS, Cheng P, Yanes O, Menche J, Murray PJ, Sharif O, Blüml S, Schabbauer G. Environmental arginine controls multinuclear giant cell metabolism and formation. Nat Commun 2020; 11:431. [PMID: 31969567 PMCID: PMC6976629 DOI: 10.1038/s41467-020-14285-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 12/16/2019] [Indexed: 12/29/2022] Open
Abstract
Multinucleated giant cells (MGCs) are implicated in many diseases including schistosomiasis, sarcoidosis and arthritis. MGC generation is energy intensive to enforce membrane fusion and cytoplasmic expansion. Using receptor activator of nuclear factor kappa-Β ligand (RANKL) induced osteoclastogenesis to model MGC formation, here we report RANKL cellular programming requires extracellular arginine. Systemic arginine restriction improves outcome in multiple murine arthritis models and its removal induces preosteoclast metabolic quiescence, associated with impaired tricarboxylic acid (TCA) cycle function and metabolite induction. Effects of arginine deprivation on osteoclastogenesis are independent of mTORC1 activity or global transcriptional and translational inhibition. Arginine scarcity also dampens generation of IL-4 induced MGCs. Strikingly, in extracellular arginine absence, both cell types display flexibility as their formation can be restored with select arginine precursors. These data establish how environmental amino acids control the metabolic fate of polykaryons and suggest metabolic ways to manipulate MGC-associated pathologies and bone remodelling.
Collapse
Affiliation(s)
- Julia S Brunner
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University Vienna, 1090, Vienna, Austria
- Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, 1090, Vienna, Austria
| | - Loan Vulliard
- CeMM Research Centre for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Melanie Hofmann
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University Vienna, 1090, Vienna, Austria
- Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, 1090, Vienna, Austria
| | - Markus Kieler
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University Vienna, 1090, Vienna, Austria
- Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, 1090, Vienna, Austria
| | - Alexander Lercher
- CeMM Research Centre for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Andrea Vogel
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University Vienna, 1090, Vienna, Austria
- Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, 1090, Vienna, Austria
| | - Marion Russier
- Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | | | - Martina Kerndl
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University Vienna, 1090, Vienna, Austria
- Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, 1090, Vienna, Austria
| | - Victoria Saferding
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, 1090, Vienna, Austria
| | - Birgit Niederreiter
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, 1090, Vienna, Austria
| | - Alexandra Junza
- CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), 28029, Madrid, Spain
- Metabolomics Platform, IISPV, Department of Electronic Engineering, Universitat Rovira i Virgili, 43204, Tarragona, Spain
| | | | - Carina Scholtysek
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054, Erlangen, Germany
| | - Yohei Mikami
- Molecular Immunology and Inflammation Branch, NIAMS, National Institutes of Health, Bethesda, MD, Bethesda, MD, 20892, USA
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kristaps Klavins
- CeMM Research Centre for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Gerhard Krönke
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054, Erlangen, Germany
| | - Andreas Bergthaler
- CeMM Research Centre for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - John J O'Shea
- Molecular Immunology and Inflammation Branch, NIAMS, National Institutes of Health, Bethesda, MD, Bethesda, MD, 20892, USA
| | - Thomas Weichhart
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, 1090, Vienna, Austria
| | - Felix Meissner
- Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Josef S Smolen
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, 1090, Vienna, Austria
| | - Paul Cheng
- Bio Cancer Treatment International Ltd., 999077, Hong Kong, China
| | - Oscar Yanes
- CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), 28029, Madrid, Spain
- Metabolomics Platform, IISPV, Department of Electronic Engineering, Universitat Rovira i Virgili, 43204, Tarragona, Spain
| | - Jörg Menche
- CeMM Research Centre for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Peter J Murray
- Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Omar Sharif
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University Vienna, 1090, Vienna, Austria
- Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, 1090, Vienna, Austria
| | - Stephan Blüml
- Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, 1090, Vienna, Austria.
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, 1090, Vienna, Austria.
| | - Gernot Schabbauer
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University Vienna, 1090, Vienna, Austria.
- Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, 1090, Vienna, Austria.
| |
Collapse
|
43
|
Brys AK, Rodriguez-Homs LG, Suwanpradid J, Atwater AR, MacLeod AS. Shifting Paradigms in Allergic Contact Dermatitis: The Role of Innate Immunity. J Invest Dermatol 2020; 140:21-28. [PMID: 31101475 PMCID: PMC6854274 DOI: 10.1016/j.jid.2019.03.1133] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/07/2019] [Accepted: 03/07/2019] [Indexed: 12/30/2022]
Abstract
The role of the innate immune system in allergic contact dermatitis (ACD) has traditionally been confined to the initial antigen sensitization phase. However, more recent findings have shown the role of innate immunity in additional aspects of ACD, including the effector phase of the classic type IV hypersensitivity reaction. As a result, the precise immunologic mechanisms mediating ACD are more complex than previously believed. The aim of this review is to provide insight into recent advances in understanding the role of the innate immune system in the pathogenesis of ACD, including novel mechanistic roles for macrophages, innate lymphoid cells, natural killer cells, innate γδ T cells, and other signaling molecules. These insights provide new opportunities for therapeutic intervention in ACD.
Collapse
Affiliation(s)
- Adam K Brys
- Duke University Medical Center, Department of Dermatology, Duke University Medical Center, DUMC 3135, Durham, North Carolina, USA
| | - Larissa G Rodriguez-Homs
- Duke University Medical Center, Department of Dermatology, Duke University Medical Center, DUMC 3135, Durham, North Carolina, USA
| | - Jutamas Suwanpradid
- Duke University Medical Center, Department of Dermatology, Duke University Medical Center, DUMC 3135, Durham, North Carolina, USA
| | - Amber Reck Atwater
- Duke University Medical Center, Department of Dermatology, Duke University Medical Center, DUMC 3135, Durham, North Carolina, USA
| | - Amanda S MacLeod
- Duke University Medical Center, Department of Dermatology, Duke University Medical Center, DUMC 3135, Durham, North Carolina, USA.
| |
Collapse
|
44
|
Kuo MT, Long Y, Tsai WB, Li YY, Chen HHW, Feun LG, Savaraj N. Collaboration Between RSK-EphA2 and Gas6-Axl RTK Signaling in Arginine Starvation Response That Confers Resistance to EGFR Inhibitors. Transl Oncol 2019; 13:355-364. [PMID: 31887630 PMCID: PMC6938815 DOI: 10.1016/j.tranon.2019.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 12/01/2019] [Accepted: 12/01/2019] [Indexed: 02/07/2023] Open
Abstract
Many human malignancies require extracellular arginine (Arg) for survival because the key enzyme for de novo Arg biosynthesis, argininosuccinate synthetase 1 (ASS1), is silenced. Recombinant arginine deiminase (ADI-PEG20), which digests extracellular Arg, has been in clinical trials for treating ASS1-negative tumors. Reactivation of ASS1 is responsible for the treatment failure. We previously demonstrated that ASS1 reactivation is transcriptionally regulated by c-Myc via the upstream Gas6-Axl tyrosine kinase (RTK) signal. Here, we report that another RTK EphA2 is coactivated via PI3K-ERK/RSK1 pathway in a ligand-independent mechanism. EphA2 is also regulated by c-Myc. Moreover, we found that knockdown Axl upregulates EphA2 expression, demonstrating cross-talk between these RTKs. ADIR cell lines exhibits enhanced sensitivities to nutrient deprivation such as charcoal-stripped FBS and multiple RTK inhibitor foretinib but resistance to EGFR inhibitors. Knockdown EphA2, and to lesser extent, Axl, overcomes EGFRi resistance. c-Myc inhibitor JQ1 can also sensitize ADIR cells to ADI-PEG20. This study elucidates molecular interactions of multiple RTKs in Arg-stress response and offers approaches for developing strategies of overcoming ADI-PEG20 resistance.
Collapse
Affiliation(s)
- Macus Tien Kuo
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Yan Long
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wen-Bin Tsai
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ying-Ying Li
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Helen H W Chen
- Department of Radiation Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70428, Taiwan
| | - Lynn G Feun
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Niramol Savaraj
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA; Division of Hematology and Oncology, Miami Veterans Affairs Healthcare System, Miami, FL, USA.
| |
Collapse
|
45
|
Abou-Alfa GK, Qin S, Ryoo BY, Lu SN, Yen CJ, Feng YH, Lim HY, Izzo F, Colombo M, Sarker D, Bolondi L, Vaccaro G, Harris WP, Chen Z, Hubner RA, Meyer T, Sun W, Harding JJ, Hollywood EM, Ma J, Wan PJ, Ly M, Bomalaski J, Johnston A, Lin CC, Chao Y, Chen LT. Phase III randomized study of second line ADI-PEG 20 plus best supportive care versus placebo plus best supportive care in patients with advanced hepatocellular carcinoma. Ann Oncol 2019; 29:1402-1408. [PMID: 29659672 DOI: 10.1093/annonc/mdy101] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background Arginine depletion is a putative target in hepatocellular carcinoma (HCC). HCC often lacks argininosuccinate synthetase, a citrulline to arginine-repleting enzyme. ADI-PEG 20 is a cloned arginine degrading enzyme-arginine deiminase-conjugated with polyethylene glycol. The goal of this study was to evaluate this agent as a potential novel therapeutic for HCC after first line systemic therapy. Methods and patients Patients with histologically proven advanced HCC and Child-Pugh up to B7 with prior systemic therapy, were randomized 2 : 1 to ADI-PEG 20 18 mg/m2 versus placebo intramuscular injection weekly. The primary end point was overall survival (OS), with 93% power to detect a 4-5.6 months increase in median OS (one-sided α = 0.025). Secondary end points included progression-free survival, safety, and arginine correlatives. Results A total of 635 patients were enrolled: median age 61, 82% male, 60% Asian, 52% hepatitis B, 26% hepatitis C, 76% stage IV, 91% Child-Pugh A, 70% progressed on sorafenib and 16% were intolerant. Median OS was 7.8 months for ADI-PEG 20 versus 7.4 for placebo (P = 0.88, HR = 1.02) and median progression-free survival 2.6 months versus 2.6 (P = 0.07, HR = 1.17). Grade 3 fatigue and decreased appetite occurred in <5% of patients. Two patients on ADI-PEG 20 had ≥grade 3 anaphylactic reaction. Death rate within 30 days of end of treatment was 15.2% on ADI-PEG 20 versus 10.4% on placebo, none related to therapy. Post hoc analyses of arginine assessment at 4, 8, 12 and 16 weeks, demonstrated a trend of improved OS for those with more prolonged arginine depletion. Conclusion ADI-PEG 20 monotherapy did not demonstrate an OS benefit in second line setting for HCC. It was well tolerated. Strategies to enhance prolonged arginine depletion and synergize the effect of ADI-PEG 20 are underway. Clinical Trial number www.clinicaltrials.gov (NCT 01287585).
Collapse
Affiliation(s)
- G K Abou-Alfa
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA; Department of Medicine, Weill Cornell Medical College, New York, USA.
| | - S Qin
- Department of Oncology, The Chinese People's Liberation Army 81 Hospital, Nanjing, China
| | - B-Y Ryoo
- Department of Oncology, Asan Medical Center, Seoul, South Korea
| | - S-N Lu
- Department of Medical Oncology, Kaohsiung Chang Gung Memorial Hospital, Taiwan; Chang Gung University College of Medicine, Taiwan
| | - C-J Yen
- Department of Oncology, National Cheng Kung University Hospital, Taiwan
| | - Y-H Feng
- Department of Oncology, Chi Mei Medical Center-Yong Kang, Taiwan
| | - H Y Lim
- Department of Medical Oncology, Samsung Medical Center, Seoul, South Korea
| | - F Izzo
- Department of Medicine, Fondazione Giovanni Pascale, Napoli
| | - M Colombo
- Department of Medicine, Fondazione IRCCS Ca, Milan, Italy
| | - D Sarker
- Department of Medicine, King's College Hospital, London, UK
| | - L Bolondi
- Department of Medicine, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - G Vaccaro
- Department of Medicine, Oregon Health Sciences University, Portland
| | - W P Harris
- Department of Medicine, University of Washington Medical Center, Seattle, USA
| | - Z Chen
- Department of Oncology, 2nd Hospital of Anhui Medical University, Hefei, China
| | - R A Hubner
- Department of Medicine, The Christie NHS Foundation Trust, Manchester, UK
| | - T Meyer
- Department of Medicine, Royal Free Hospital and UCL Cancer Institute, London, UK
| | - W Sun
- Department of Medicine, University of Pittsburgh, Pittsburgh, USA
| | - J J Harding
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA; Department of Medicine, Weill Cornell Medical College, New York, USA
| | - E M Hollywood
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA
| | - J Ma
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA
| | - P J Wan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA
| | - M Ly
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA
| | - J Bomalaski
- Department of Research and Development, Polaris Pharmaceuticals, Inc., San Diego, USA
| | - A Johnston
- Department of Research and Development, Polaris Pharmaceuticals, Inc., San Diego, USA
| | - C-C Lin
- Department of Medical Oncology, Chang Gung Medical Foundation LK, Taipei, Tainan
| | - Y Chao
- Department of Medicine, Veterans General Hospital-Taipei, Taipei, Tainan
| | - L-T Chen
- Chang Gung University College of Medicine, Taiwan; Department of Medical Oncology, National Institute of Cancer Research, National Health Research Institutes, Tainan; Department of Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
46
|
Deng JR, Chung SF, Leung ASL, Yip WM, Yang B, Choi MC, Cui JF, Kung KKY, Zhang Z, Lo KW, Leung YC, Wong MK. Chemoselective and photocleavable cysteine modification of peptides and proteins using isoxazoliniums. Commun Chem 2019. [DOI: 10.1038/s42004-019-0193-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
47
|
Zou S, Wang X, Liu P, Ke C, Xu S. Arginine metabolism and deprivation in cancer therapy. Biomed Pharmacother 2019; 118:109210. [PMID: 31330440 DOI: 10.1016/j.biopha.2019.109210] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/28/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022] Open
Abstract
Certain cancer cells with nutrient auxotrophy and have a much higher nutrient demand compared with normal human cells. Arginine as a versatile amino acid, has multiple biological functions in metabolic and signaling pathways. Depletion of this amino acid by arginine depletor is generally well tolerated and has become a targeted therapy for arginine auxotrophic cancers. However, the modulatory eff ;ect of arginine on cancer cells is very complicated and still controversial. Therefore, this article focuses on arginine metabolism and depletion therapy in cancer treatment to provide systemical review on this issue.
Collapse
Affiliation(s)
- Songyun Zou
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Xiangmei Wang
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Po Liu
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Changneng Ke
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, China.
| | - Shi Xu
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, China; Division of Respiratory Medicine, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region.
| |
Collapse
|
48
|
Pokrovsky VS, Chepikova OE, Davydov DZ, Zamyatnin AA, Lukashev AN, Lukasheva EV. Amino Acid Degrading Enzymes and their Application in Cancer Therapy. Curr Med Chem 2019; 26:446-464. [PMID: 28990519 DOI: 10.2174/0929867324666171006132729] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 09/12/2017] [Accepted: 09/28/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Amino acids are essential components in various biochemical pathways. The deprivation of certain amino acids is an antimetabolite strategy for the treatment of amino acid-dependent cancers which exploits the compromised metabolism of malignant cells. Several studies have focused on the development and preclinical and clinical evaluation of amino acid degrading enzymes, namely L-asparaginase, L-methionine γ-lyase, L-arginine deiminase, L-lysine α-oxidase. Further research into cancer cell metabolism may therefore define possible targets for controlling tumor growth. OBJECTIVE The purpose of this review was to summarize recent progress in the relationship between amino acids metabolism and cancer therapy, with a particular focus on Lasparagine, L-methionine, L-arginine and L-lysine degrading enzymes and their formulations, which have been successfully used in the treatment of several types of cancer. METHODS We carried out a structured search among literature regarding to amino acid degrading enzymes. The main aspects of search were in vitro and in vivo studies, clinical trials concerning application of these enzymes in oncology. RESULTS Most published research are on the subject of L-asparaginase properties and it's use for cancer treatment. L-arginine deiminase has shown promising results in a phase II trial in advanced melanoma and hepatocellular carcinoma. Other enzymes, in particular Lmethionine γ-lyase and L-lysine α-oxidase, were effective in vitro and in vivo. CONCLUSION The findings of this review revealed that therapy based on amino acid depletion may have the potential application for cancer treatment but further clinical investigations are required to provide the efficacy and safety of these agents.
Collapse
Affiliation(s)
- Vadim S Pokrovsky
- Blokhin Cancer Research Center, Moscow, Russian Federation.,Orekhovich Institute of Biomedical Chemistry, Moscow, Russian Federation.,People's Friendship University, Russia (RUDN University), Moscow, Russian Federation
| | - Olga E Chepikova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | | | - Andrey A Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation.,Belozersky Institute of Physico- Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Alexander N Lukashev
- People's Friendship University, Russia (RUDN University), Moscow, Russian Federation.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Elena V Lukasheva
- People's Friendship University, Russia (RUDN University), Moscow, Russian Federation
| |
Collapse
|
49
|
Punekar S, Cho DC. Novel Therapeutics Affecting Metabolic Pathways. Am Soc Clin Oncol Educ Book 2019; 39:e79-e87. [PMID: 31099667 DOI: 10.1200/edbk_238499] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cancer cells are known to have distinct metabolic characteristics compared with normal cells, given the catabolic and anabolic demands of increased cell growth and proliferation. This altered metabolism in cancer cells imbues differential dependencies, and substantial effort has been invested in developing therapeutic strategies to exploit these potential vulnerabilities. Parallel to these efforts has been a growing appreciation for the presence of notable intratumoral metabolic heterogeneity. Although many novel agents are showing some promising results in targeting specific metabolic processes, the challenge moving forward will be to develop combination strategies to address the aforementioned metabolic heterogeneity and its interplay with both epigenetic and immune factors in the tumor microenvironment. In this review, we discuss recent developments in targeting tumor catabolism, lipid biosynthesis, glycolysis, and the citric acid cycle as well as efforts to combine these approaches with immunotherapy.
Collapse
Affiliation(s)
| | - Daniel C Cho
- 1 Perlmutter Cancer Center at NYU Langone, New York, NY
| |
Collapse
|
50
|
Endogenous arginase 2 as a potential biomarker for PEGylated arginase 1 treatment in xenograft models of squamous cell lung carcinoma. Oncogenesis 2019; 8:18. [PMID: 30808864 PMCID: PMC6391460 DOI: 10.1038/s41389-019-0128-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/30/2019] [Accepted: 02/08/2019] [Indexed: 12/12/2022] Open
Abstract
Depletion of arginine induced by PEGylated arginase 1 (ARG1) (BCT-100) has shown anticancer effects in arginine auxotrophic cancers that lack argininosuccinate synthetase (ASS1) and ornithine transcarbamylase (OTC). High levels of endogenous arginase 2 (ARG2) have been previously reported in human lung cancers. Although a high-ARG2 level neither causes immunosuppression nor affects disease progression, it may theoretically affect the efficacy of PEGylated ARG1 treatment. ARG2 was shown to be highly expressed in H520 squamous cell lung carcinoma (lung SCC) xenografts but undetectable in SK-MES-1 and SW900 lung SCC xenografts. We propose that high-endogenous expression of ARG2 could impede the anti-tumor effect of PEGylated ARG1 in lung SCC. The in vivo effect of PEGylated ARG1 was investigated using three xenograft models of lung SCC. PEGylated ARG1 (60 mg/kg) suppressed tumor growth in SK-MES-1 and SW900 but not H520 xenografts. ASS1 was expressed in SK-MES-1 and SW900 xenografts while OTC expression remained low in all xenografts. A high-endogenous ARG2 level was detected only in H520 xenografts. Serum arginine level was decreased significantly by PEGylated ARG1 in all xenografts. Nonetheless intratumoral arginine level was decreased by PEGylated ARG1 in SK-MES-1 and SW900, not H520 xenografts. In SK-MES-1 xenografts, PEGylated ARG1 treatment induced G1 arrest, downregulation of Ki67 and Mcl-1 and activation of apoptosis. In SW900 xenografts, upregulation of Bim and activation of apoptosis were observed upon PEGylated ARG1 treatment. Silencing of ARG2 re-sensitized the H520 xenografts to PEGylated ARG1 treatment, partially mediated through arginine depletion via G1 arrest and apoptosis. PEGylated ARG1 treatment (BCT-100) was effective in lung SCC xenografts with low-endogenous levels of ASS1/OTC and ARG2. High-endogenous ARG2 expression may cause resistance to PEGylated ARG1 treatment in lung SCC xenografts. ARG2 may serve as a third predictive biomarker in PEGylated ARG1 treatment in lung SCC.
Collapse
|