1
|
Xu J, Zhang H, Nie Z, He W, Zhao Y, Huang Z, Jia L, Du Z, Zhang B, Xia S. Cancer stem-like cells stay in a plastic state ready for tumor evolution. Neoplasia 2025; 61:101134. [PMID: 39919692 PMCID: PMC11851212 DOI: 10.1016/j.neo.2025.101134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 01/31/2025] [Indexed: 02/09/2025]
Abstract
Cell plasticity emerges as a novel cancer hallmark and is pivotal in driving tumor heterogeneity and adaptive resistance to different therapies. Cancer stem-like cells (CSCs) are considered the root of cancer. While first defined as tumor-initiating cells with the potential to develop a heterogeneous tumor, CSCs further demonstrate their roles in cancer metastasis and adaptive therapeutic resistance. Generally, CSCs come from the malignant transformation of somatic stem cells or the de-differentiation of other cancer cells. The resultant cells gain more plasticity and are ready to differentiate into different cell states, enabling them to adapt to therapies and metastatic ecosystems. Therefore, CSCs are likely the nature of tumor cells that gain cell plasticity. However, the phenotypic plasticity of CSCs has never been systematically discussed. Here, we review the distinct intrinsic signaling pathways and unique microenvironmental niches that endow CSC plasticity in solid tumors to adapt to stressful conditions, as well as emerging opportunities for CSC-targeted therapy.
Collapse
Affiliation(s)
- Jiali Xu
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Houde Zhang
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhihao Nie
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wenyou He
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yichao Zhao
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Zhenhui Huang
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, Guangdong, China
| | - Lin Jia
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, Guangdong, China.
| | - Zhiye Du
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China.
| | - Baotong Zhang
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Siyuan Xia
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
2
|
Sheikh KA, Amjad M, Irfan MT, Anjum S, Majeed T, Riaz MU, Jassim AY, Sharif EAM, Ibrahim WN. Exploring TGF-β Signaling in Cancer Progression: Prospects and Therapeutic Strategies. Onco Targets Ther 2025; 18:233-262. [PMID: 39989503 PMCID: PMC11846535 DOI: 10.2147/ott.s493643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/19/2024] [Indexed: 02/25/2025] Open
Abstract
Cancer persists as a ubiquitous global challenge despite the remarkable advances. It is caused by uncontrolled cell growth and metastasis. The Transforming Growth Factor-beta (TGF-β) signaling pathway is considered a primary regulator of various normal physiological processes in the human body. Recently, factors determining the nature of TGF-β response have received attention, specifically its signaling pathway which can be an attractive therapeutic target for various cancer treatments. The TGF-β receptor is activated by its ligands and undergoes transduction of signals via canonical (SMAD dependent) or non-canonical (SMAD independent) signaling pathways regulating several cellular functions. Furthermore, the cross talk of the TGF-β signaling pathway cross with other signaling pathways has shown the controlled regulation of cellular functions. This review highlights the cross talk between various major signaling pathways and TGF-β. These signaling pathways include Wnt, NF-κB, PI3K/Akt, and Hedgehog (Hh). TGF-β signaling pathway has a dual role at different stages. It can suppress tumor formation at early stages and promote progression at advanced stages. This complex behaviour of TGF-β has made it a promising target for therapeutic interventions. Moreover, many strategies have been designed to control TGF-β signaling pathways at different levels, inhibiting tumor-promoting while enhancing tumor-suppressive effects, each with unique molecular mechanisms and clinical implications. This review also discusses various therapeutic inhibitors including ligand traps, small molecule inhibitors (SMIs), monoclonal antibodies (mAbs), and antisense oligonucleotides which target specific components of TGF-β signaling pathway to inhibit TGF-β signaling and are studied in both preclinical and clinical trials for different types of cancer. The review also highlights the prospect of TGF-β signaling in normal physiology and in the case of dysregulation, TGF-β inhibitors, and different therapeutic effects in cancer therapy along with the perspective of combinational therapies to treat cancer.
Collapse
Affiliation(s)
- Khansa Ali Sheikh
- Department of Biotechnology, Kinnaird College for Women, Lahore, Pakistan
| | - Momna Amjad
- Department of Biotechnology, Kinnaird College for Women, Lahore, Pakistan
| | | | - Sumaira Anjum
- Department of Biotechnology, Kinnaird College for Women, Lahore, Pakistan
| | - Tanveer Majeed
- Department of Biotechnology, Kinnaird College for Women, Lahore, Pakistan
| | - Muhammad Usman Riaz
- School of Computer Science, University College Dublin, Belfield, Dublin 4, Ireland
| | | | - Elham Abdullatif M Sharif
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Wisam Nabeel Ibrahim
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
3
|
Ielpo S, Barberini F, Dabbagh Moghaddam F, Pesce S, Cencioni C, Spallotta F, De Ninno A, Businaro L, Marcenaro E, Bei R, Cifaldi L, Barillari G, Melaiu O. Crosstalk and communication of cancer-associated fibroblasts with natural killer and dendritic cells: New frontiers and unveiled opportunities for cancer immunotherapy. Cancer Treat Rev 2024; 131:102843. [PMID: 39442289 DOI: 10.1016/j.ctrv.2024.102843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024]
Abstract
Natural killer (NK) cells and dendritic cells (DCs) are critical mediators of anti-cancer immune responses. In addition to their individual roles, NK cells and DCs are involved in intercellular crosstalk which is essential for the initiation and coordination of adaptive immunity against cancer. However, NK cell and DC activity is often compromised in the tumor microenvironment (TME). Recently, much attention has been paid to one of the major components of the TME, the cancer-associated fibroblasts (CAFs), which not only contribute to extracellular matrix (ECM) deposition and tumor progression but also suppress immune cell functions. It is now well established that CAFs support T cell exclusion from tumor nests and regulate their cytotoxic activity. In contrast, little is currently known about their interaction with NK cells, and DCs. In this review, we describe the interaction of CAFs with NK cells and DCs, by secreting and expressing various mediators in the TME of adult solid tumors. We also provide a detailed overview of ongoing clinical studies evaluating the targeting of stromal factors alone or in combination with immunotherapy based on immune checkpoint inhibitors. Finally, we discuss currently available strategies for the selective depletion of detrimental CAFs and for a better understanding of their interaction with NK cells and DCs.
Collapse
Affiliation(s)
- Simone Ielpo
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Francesca Barberini
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Farnaz Dabbagh Moghaddam
- Institute for Photonics and Nanotechnologies, National Research Council, Via Fosso del Cavaliere, 100, Rome, Italy
| | - Silvia Pesce
- Department of Experimental Medicine and Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Chiara Cencioni
- Institute for Systems Analysis and Computer Science "A. Ruberti", National Research Council (IASI-CNR), Rome, Italy
| | - Francesco Spallotta
- Department of Biology and Biotechnologies Charles Darwin, Sapienza University, 00185, Rome, Italy; Pasteur Institute Italy-Fondazione Cenci Bolognetti, Italy
| | - Adele De Ninno
- Institute for Photonics and Nanotechnologies, National Research Council, Via Fosso del Cavaliere, 100, Rome, Italy
| | - Luca Businaro
- Institute for Photonics and Nanotechnologies, National Research Council, Via Fosso del Cavaliere, 100, Rome, Italy
| | - Emanuela Marcenaro
- Department of Experimental Medicine and Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Loredana Cifaldi
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - Giovanni Barillari
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Ombretta Melaiu
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
4
|
Guha M, Thibault S, Pham S, Bernales S, Pai R, Herrera FJ, Johnson TR, Vitsky A, Fernando T, Finkelstein M. Nonclinical Profile of PF-06952229 (MDV6058), a Novel TGFβRI/Activin Like Kinase 5 Inhibitor Supports Clinical Evaluation in Cancer. J Pharmacol Exp Ther 2024; 391:335-345. [PMID: 39284628 DOI: 10.1124/jpet.124.002193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/28/2024] [Indexed: 10/20/2024] Open
Abstract
The development of transforming growth factor βreceptor inhibitors (TGFβRi) as new medicines has been affected by cardiac valvulopathy and arteriopathy toxicity findings in nonclinical toxicology studies. PF-06952229 (MDV6058) selected using rational drug design is a potent and selective TGFβRI inhibitor with a relatively clean off-target selectivity profile and good pharmacokinetic properties across species. PF-06952229 inhibited clinically translatable phospho-SMAD2 biomarker (≥60%) in human and cynomolgus monkey peripheral blood mononuclear cells, as well as in mouse and rat splenocytes. Using an optimized, intermittent dosing schedule (7-day on/7-day off/cycle; 5 cycles), PF-06952229 demonstrated efficacy in a 63-day syngeneic MC38 colon carcinoma mouse model. In the pivotal repeat-dose toxicity studies (rat and cynomolgus monkey), PF-06952229 on an intermittent dosing schedule (5-day on/5-day off cycle; 5 cycles, 28 doses) showed no cardiac-related adverse findings. However, new toxicity findings related to PF-06952229 included reversible hepatocellular (hepatocyte necrosis with corresponding clinically monitorable transaminase increases) and lung (hemorrhage with mixed cell inflammation) findings at ≥ targeted projected clinical efficacious exposures. Furthermore, partially reversible cartilage hypertrophy (trachea and femur in rat; femur in monkey) and partially to fully reversible, clinically monitorable decreases in serum phosphorus and urinary phosphate at ≥ projected clinically efficacious exposures were observed. Given the integral role of TGFβ in endochondral bone formation, cartilage findings in toxicity studies have been observed with other TGFβRi classes of compounds. The favorable cumulative profile of PF-06952229 in biochemical, pharmacodynamic, pharmacokinetic, and nonclinical studies allowed for its evaluation in cancer patients using the intermittent dosing schedule (7-day on/7-day off) and careful protocol-defined monitoring. SIGNIFICANCE STATEMENT: Only a few TGFβRi have progressed for clinical evaluation due to adverse cardiac findings in pivotal nonclinical toxicity studies. The potential translations of such findings in patients are of major concern. Using a carefully optimized intermittent dosing schedule, PF-06952229 has demonstrated impressive pharmacological efficacy in the syngeneic MC38 colon carcinoma mouse model. Additionally, a nonclinical toxicology package without cardiovascular liabilities and generally monitorable toxicity profile has been completed. The compound presents an acceptable International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use S9-compliant profile for the intended-to-treat cancer patients.
Collapse
Affiliation(s)
- Mausumee Guha
- Pfizer Worldwide Research and Development, La Jolla, California (M.G., S.T., T.R.J., A.V., T.F., M.F.); 1cBio, Inc., Moraga, California (S.P.); Fundación Ciencia & Vida, Santiago, Chile (S.B.); Merck Research Laboratories, South San Francisco, California (R.P.); and Trancura Biosciences, Alameda, California (F.J.H.)
| | - Stephane Thibault
- Pfizer Worldwide Research and Development, La Jolla, California (M.G., S.T., T.R.J., A.V., T.F., M.F.); 1cBio, Inc., Moraga, California (S.P.); Fundación Ciencia & Vida, Santiago, Chile (S.B.); Merck Research Laboratories, South San Francisco, California (R.P.); and Trancura Biosciences, Alameda, California (F.J.H.)
| | - Son Pham
- Pfizer Worldwide Research and Development, La Jolla, California (M.G., S.T., T.R.J., A.V., T.F., M.F.); 1cBio, Inc., Moraga, California (S.P.); Fundación Ciencia & Vida, Santiago, Chile (S.B.); Merck Research Laboratories, South San Francisco, California (R.P.); and Trancura Biosciences, Alameda, California (F.J.H.)
| | - Sebastian Bernales
- Pfizer Worldwide Research and Development, La Jolla, California (M.G., S.T., T.R.J., A.V., T.F., M.F.); 1cBio, Inc., Moraga, California (S.P.); Fundación Ciencia & Vida, Santiago, Chile (S.B.); Merck Research Laboratories, South San Francisco, California (R.P.); and Trancura Biosciences, Alameda, California (F.J.H.)
| | - Rama Pai
- Pfizer Worldwide Research and Development, La Jolla, California (M.G., S.T., T.R.J., A.V., T.F., M.F.); 1cBio, Inc., Moraga, California (S.P.); Fundación Ciencia & Vida, Santiago, Chile (S.B.); Merck Research Laboratories, South San Francisco, California (R.P.); and Trancura Biosciences, Alameda, California (F.J.H.)
| | - Francisco J Herrera
- Pfizer Worldwide Research and Development, La Jolla, California (M.G., S.T., T.R.J., A.V., T.F., M.F.); 1cBio, Inc., Moraga, California (S.P.); Fundación Ciencia & Vida, Santiago, Chile (S.B.); Merck Research Laboratories, South San Francisco, California (R.P.); and Trancura Biosciences, Alameda, California (F.J.H.)
| | - Theodore R Johnson
- Pfizer Worldwide Research and Development, La Jolla, California (M.G., S.T., T.R.J., A.V., T.F., M.F.); 1cBio, Inc., Moraga, California (S.P.); Fundación Ciencia & Vida, Santiago, Chile (S.B.); Merck Research Laboratories, South San Francisco, California (R.P.); and Trancura Biosciences, Alameda, California (F.J.H.)
| | - Allison Vitsky
- Pfizer Worldwide Research and Development, La Jolla, California (M.G., S.T., T.R.J., A.V., T.F., M.F.); 1cBio, Inc., Moraga, California (S.P.); Fundación Ciencia & Vida, Santiago, Chile (S.B.); Merck Research Laboratories, South San Francisco, California (R.P.); and Trancura Biosciences, Alameda, California (F.J.H.)
| | - Tina Fernando
- Pfizer Worldwide Research and Development, La Jolla, California (M.G., S.T., T.R.J., A.V., T.F., M.F.); 1cBio, Inc., Moraga, California (S.P.); Fundación Ciencia & Vida, Santiago, Chile (S.B.); Merck Research Laboratories, South San Francisco, California (R.P.); and Trancura Biosciences, Alameda, California (F.J.H.)
| | - Martin Finkelstein
- Pfizer Worldwide Research and Development, La Jolla, California (M.G., S.T., T.R.J., A.V., T.F., M.F.); 1cBio, Inc., Moraga, California (S.P.); Fundación Ciencia & Vida, Santiago, Chile (S.B.); Merck Research Laboratories, South San Francisco, California (R.P.); and Trancura Biosciences, Alameda, California (F.J.H.)
| |
Collapse
|
5
|
Malek E, Rana PS, Swamydas M, Daunov M, Miyagi M, Murphy E, Ignatz-Hoover JJ, Metheny L, Kim SJ, Driscoll JJ. The TGFβ type I receptor kinase inhibitor vactosertib in combination with pomalidomide in relapsed/refractory multiple myeloma: a phase 1b trial. Nat Commun 2024; 15:7388. [PMID: 39191755 PMCID: PMC11350185 DOI: 10.1038/s41467-024-51442-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
Functional blockade of the transforming growth factor-beta (TGFβ) signalling pathway improves the efficacy of cytotoxic and immunotherapies. Here, we conducted a phase 1b study (ClinicalTrials.gov., NCT03143985) to determine the primary endpoints of safety, tolerability, and maximal tolerated dose (200 mg twice daily) for the orally-available TGFβ type I receptor kinase inhibitor vactosertib in combination with pomalidomide in relapsed and/or refractory multiple myeloma (RRMM) patients who had received ≥2 lines of chemoimmunotherapy. Secondary endpoints demonstrated sustained clinical responses, favorable pharmacokinetic parameters and a 6-month progression-free survival of 82%. Vactosertib combined with pomalidomide was well-tolerated at all dose levels and displayed a manageable adverse event profile. Exploratory analysis indicated that vactosertib co-treatment with pomalidomide also reduced TGFβ levels in patient bone marrow as well as the level of CD8+ T-cells that expressed the immunoinhibitory marker PD-1. In vitro experiments indicated that vactosertib+pomalidomide co-treatment decreased the viability of MM cell lines and patient tumor cells, and increased CD8+ T-cell cytotoxic activity. Vactosertib is a safe therapeutic that demonstrates tumor-intrinsic activity and can overcome immunosuppressive challenges within the tumor microenvironment to reinvigorate T-cell fitness. Vactosertib offers promise to improve immunotherapeutic responses in heavily-pretreated MM patients refractory to conventional agents.
Collapse
Affiliation(s)
- Ehsan Malek
- Adult Hematologic Malignancies & Stem Cell Transplant Section, Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
- Division of Hematology Oncology, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA.
| | - Priyanka S Rana
- Adult Hematologic Malignancies & Stem Cell Transplant Section, Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Division of Hematology Oncology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Muthulekha Swamydas
- Adult Hematologic Malignancies & Stem Cell Transplant Section, Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Division of Hematology Oncology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Michael Daunov
- Adult Hematologic Malignancies & Stem Cell Transplant Section, Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Division of Hematology Oncology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Masaru Miyagi
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Elena Murphy
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - James J Ignatz-Hoover
- Adult Hematologic Malignancies & Stem Cell Transplant Section, Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Division of Hematology Oncology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Leland Metheny
- Adult Hematologic Malignancies & Stem Cell Transplant Section, Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Division of Hematology Oncology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | | | - James J Driscoll
- Adult Hematologic Malignancies & Stem Cell Transplant Section, Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
- Division of Hematology Oncology, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
6
|
Mansour MA, Hassan GS, Serya RAT, Jaballah MY, Abouzid KAM. Advances in the discovery of activin receptor-like kinase 5 (ALK5) inhibitors. Bioorg Chem 2024; 147:107332. [PMID: 38581966 DOI: 10.1016/j.bioorg.2024.107332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/08/2024]
Abstract
Activin receptor‑like kinase-5 (ALK5) is an outstanding member of the transforming growth factor-β (TGF-β) family. (TGF-β) signaling pathway integrates pleiotropic proteins that regulate various cellular processes such as growth, proliferation, and differentiation. Dysregulation within the signaling pathway can cause variety of diseases, such as fibrosis, cardiovascular disease, and especially cancer, rendering ALK5 a potential drug target. Hence, various small molecules have been designed and synthesized as potent ALK5 inhibitors. In this review, we shed light on the current ATP-competitive inhibitors of ALK5 through diverse heterocyclic based scaffolds that are in clinical or pre-clinical phases of development. Moreover, we focused on the binding interactions of the compounds to the ATP binding site and the structure-activity relationship (SAR) of each scaffold, revealing new scopes for designing novel candidates with enhanced selectivity and metabolic profiles.
Collapse
Affiliation(s)
- Mai A Mansour
- Pharmaceutical Chemistry Department, School of Pharmacy, Badr University in Cairo, Egypt.
| | - Ghaneya S Hassan
- Pharmaceutical Chemistry Department, School of Pharmacy, Badr University in Cairo, Egypt; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Egypt
| | - Rabah A T Serya
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Egypt
| | - Maiy Y Jaballah
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Egypt
| | - Khaled A M Abouzid
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Egypt.
| |
Collapse
|
7
|
Danielpour D. Advances and Challenges in Targeting TGF-β Isoforms for Therapeutic Intervention of Cancer: A Mechanism-Based Perspective. Pharmaceuticals (Basel) 2024; 17:533. [PMID: 38675493 PMCID: PMC11054419 DOI: 10.3390/ph17040533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
The TGF-β family is a group of 25 kDa secretory cytokines, in mammals consisting of three dimeric isoforms (TGF-βs 1, 2, and 3), each encoded on a separate gene with unique regulatory elements. Each isoform plays unique, diverse, and pivotal roles in cell growth, survival, immune response, and differentiation. However, many researchers in the TGF-β field often mistakenly assume a uniform functionality among all three isoforms. Although TGF-βs are essential for normal development and many cellular and physiological processes, their dysregulated expression contributes significantly to various diseases. Notably, they drive conditions like fibrosis and tumor metastasis/progression. To counter these pathologies, extensive efforts have been directed towards targeting TGF-βs, resulting in the development of a range of TGF-β inhibitors. Despite some clinical success, these agents have yet to reach their full potential in the treatment of cancers. A significant challenge rests in effectively targeting TGF-βs' pathological functions while preserving their physiological roles. Many existing approaches collectively target all three isoforms, failing to target just the specific deregulated ones. Additionally, most strategies tackle the entire TGF-β signaling pathway instead of focusing on disease-specific components or preferentially targeting tumors. This review gives a unique historical overview of the TGF-β field often missed in other reviews and provides a current landscape of TGF-β research, emphasizing isoform-specific functions and disease implications. The review then delves into ongoing therapeutic strategies in cancer, stressing the need for more tools that target specific isoforms and disease-related pathway components, advocating mechanism-based and refined approaches to enhance the effectiveness of TGF-β-targeted cancer therapies.
Collapse
Affiliation(s)
- David Danielpour
- Case Comprehensive Cancer Center Research Laboratories, The Division of General Medical Sciences-Oncology, Case Western Reserve University, Cleveland, OH 44106, USA; ; Tel.: +1-216-368-5670; Fax: +1-216-368-8919
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
- Institute of Urology, University Hospitals, Cleveland, OH 44106, USA
| |
Collapse
|
8
|
Ahn JH, Lee J, Park C, Beom SH, Kim SH, Lee YH, Yun KH, Kim JE, Baek W, Han YD, Kim SK, Ryu HJ, Jung I, Lee J, Yoon HI, Kim HS. Clinical Activity of TGF-β Inhibitor Vactosertib in Combination with Imatinib in Desmoid Tumors: A Multicenter Phase Ib/II Study. Clin Cancer Res 2024; 30:1457-1465. [PMID: 38363333 DOI: 10.1158/1078-0432.ccr-23-2823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/30/2023] [Accepted: 02/14/2024] [Indexed: 02/17/2024]
Abstract
PURPOSE The study was to determine the activity and safety of the TGF-β inhibitor vactosertib in combination with imatinib in patients with desmoid tumors. PATIENTS AND METHODS In this investigator-initiated, open-label, multicenter, phase Ib/II trial, patients with desmoid tumors not amenable to locoregional therapies (surgery and/or radiotherapy) or with disease progression following at least one treatment were enrolled. Participants were administered 400 mg imatinib daily in combination with vactosertib (5 days on and 2 days off, twice a day) every 28 days. In phase Ib, the vactosertib dose was set at 100 mg (level -1) and 200 mg (level 1) to determine the recommended phase II dose (RP2D). Phase II assessed the efficacy, with the primary endpoint being progression-free rate (PFR) at 16 weeks. RESULTS No dose-limiting toxicities were observed during phase Ib; therefore RP2D was defined at doses of 400 mg imatinib daily in combination with 200 mg vactosertib. Of the 27 patients evaluated, 7 (25.9%) achieved a confirmed partial response and 19 (70.4%) were stable. The PFR at 16 weeks and 1 year were 96.3% and 81.0%, respectively. Most toxicities were mild to moderate myalgia (n = 10, 37%), anemia (n = 10, 37%), and nausea (n = 9, 33.3%). Common grade 3 to 4 toxicities included neutropenia (n = 6, 22.2%) and anemia (n = 5, 18.5%). CONCLUSIONS The vactosertib and imatinib combination was well tolerated, with promising clinical activity in patients with progressive, locally advanced desmoid tumors. This is the first study investigating a novel target agent, a TGF-β inhibitor, in this rare and difficult-to-treat desmoid tumor.
Collapse
Affiliation(s)
- Jin-Hee Ahn
- Department of Oncology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Jeeyun Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Changhee Park
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Seung-Hoon Beom
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seung Hyun Kim
- Department of Orthopedic Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young Han Lee
- Department of Radiology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kum-Hee Yun
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jeung Eun Kim
- Department of Oncology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Wooyeol Baek
- Department of Plastic Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yoon Dae Han
- Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang Kyum Kim
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyang Joo Ryu
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Inkyung Jung
- Division of Biostatistics, Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - JooHee Lee
- Department of Orthopedic Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hong In Yoon
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyo Song Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
9
|
Golán-Cancela I, Caja L. The TGF-β Family in Glioblastoma. Int J Mol Sci 2024; 25:1067. [PMID: 38256140 PMCID: PMC10816220 DOI: 10.3390/ijms25021067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Members of the transforming growth factor β (TGF-β) family have been implicated in the biology of several cancers. In this review, we focus on the role of TGFβ and bone morphogenetic protein (BMP) signaling in glioblastoma. Glioblastoma (GBM) is the most common malignant brain tumor in adults; it presents at a median age of 64 years, but can occur at any age, including childhood. Unfortunately, there is no cure, and even patients undergoing current treatments (surgical resection, radiotherapy, and chemotherapy) have a median survival of 15 months. There is a great need to identify new therapeutic targets to improve the treatment of GBM patients. TGF-βs signaling promotes tumorigenesis in glioblastoma, while BMPs suppress tumorigenic potential by inducing tumor cell differentiation. In this review, we discuss the actions of TGF-βs and BMPs on cancer cells as well as in the tumor microenvironment, and their use in potential therapeutic intervention.
Collapse
Affiliation(s)
| | - Laia Caja
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, SE-75123 Uppsala, Sweden;
| |
Collapse
|
10
|
Brent MB. Pharmaceutical treatment of bone loss: From animal models and drug development to future treatment strategies. Pharmacol Ther 2023; 244:108383. [PMID: 36933702 DOI: 10.1016/j.pharmthera.2023.108383] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/18/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023]
Abstract
Animal models are fundamental to advance our knowledge of the underlying pathophysiology of bone loss and to study pharmaceutical countermeasures against it. The animal model of post-menopausal osteoporosis from ovariectomy is the most widely used preclinical approach to study skeletal deterioration. However, several other animal models exist, each with unique characteristics such as bone loss from disuse, lactation, glucocorticoid excess, or exposure to hypobaric hypoxia. The present review aimed to provide a comprehensive overview of these animal models to emphasize the importance and significance of investigating bone loss and pharmaceutical countermeasures from perspectives other than post-menopausal osteoporosis only. Hence, the pathophysiology and underlying cellular mechanisms involved in the various types of bone loss are different, and this might influence which prevention and treatment strategies are the most effective. In addition, the review sought to map the current landscape of pharmaceutical countermeasures against osteoporosis with an emphasis on how drug development has changed from being driven by clinical observations and enhancement or repurposing of existing drugs to today's use of targeted anti-bodies that are the result of advanced insights into the underlying molecular mechanisms of bone formation and resorption. Moreover, new treatment combinations or repurposing opportunities of already approved drugs with a focus on dabigatran, parathyroid hormone and abaloparatide, growth hormone, inhibitors of the activin signaling pathway, acetazolamide, zoledronate, and romosozumab are discussed. Despite the considerable progress in drug development, there is still a clear need to improve treatment strategies and develop new pharmaceuticals against various types of osteoporosis. The review also highlights that new treatment indications should be explored using multiple animal models of bone loss in order to ensure a broad representation of different types of skeletal deterioration instead of mainly focusing on primary osteoporosis from post-menopausal estrogen deficiency.
Collapse
Affiliation(s)
- Mikkel Bo Brent
- Department of Biomedicine, Aarhus University, Denmark, Wilhelm Meyers Allé 3, 8000 Aarhus C, Denmark.
| |
Collapse
|
11
|
Hong E, Barczak W, Park S, Heo JS, Ooshima A, Munro S, Hong CP, Park J, An H, Park JO, Park SH, La Thangue NB, Kim SJ. Combination treatment of T1-44, a PRMT5 inhibitor with Vactosertib, an inhibitor of TGF-β signaling, inhibits invasion and prolongs survival in a mouse model of pancreatic tumors. Cell Death Dis 2023; 14:93. [PMID: 36765032 PMCID: PMC9918730 DOI: 10.1038/s41419-023-05630-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/12/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most lethal type of cancer and the third leading cause of cancer death with the lowest 5-year survival rate. Heterogeneity, difficulty in diagnosis, and rapid metastatic progression are the causes of high mortality in pancreatic cancer. Recent studies have shown that Protein arginine methyltransferase 5 (PRMT5) is overexpressed in pancreatic cancers, and these patients have a worse prognosis. Recently, PRMT5 as an anti-cancer target has gained considerable interest. In this study, we investigated whether inhibition of PRMT5 activity was synergistic with blockade of TGF-β1 signaling, which plays an important role in the construction of the desmoplastic matrix in pancreatic cancer and induces therapeutic vulnerability. Compared with T1-44, a selective inhibitor of PRMT5 activity, the combination of T1-44 with the TGF-β1 signaling inhibitor Vactosertib significantly reduced tumor size and surrounding tissue invasion and significantly improved long-term survival. RNA sequencing analysis of mouse tumors revealed that the combination of T1-44 and Vactosertib significantly altered the expression of genes involved in cancer progression, such as cell migration, extracellular matrix, and apoptotic processes. In particular, the expression of Btg2, known as a tumor suppressor factor in various cancers, was markedly induced by combination treatment. Ectopic overexpression of Btg2 inhibited the EMT response, blocking cell migration, and promoted cancer cell death. These data demonstrate that the combination therapy of T1-44 with Vactosertib is synergistic for pancreatic cancer, suggesting that this novel combination therapy has value in the treatment strategy of patients with pancreatic cancer.
Collapse
Affiliation(s)
- Eunji Hong
- GILO Institute, GILO Foundation, Seoul, Republic of Korea
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Gyeonggi-do, Republic of Korea
| | - Wojciech Barczak
- Laboratory of Cancer Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Old Road Campus, Oxford, UK
| | - Sujin Park
- GILO Institute, GILO Foundation, Seoul, Republic of Korea
| | - Jin Sun Heo
- GILO Institute, GILO Foundation, Seoul, Republic of Korea
| | - Akira Ooshima
- GILO Institute, GILO Foundation, Seoul, Republic of Korea
| | - Shonagh Munro
- Argonaut Therapeutics Ltd, Magdalen Centre, Oxford Science Park, Oxford, UK
| | | | - Jinah Park
- GILO Institute, GILO Foundation, Seoul, Republic of Korea
| | - Haein An
- GILO Institute, GILO Foundation, Seoul, Republic of Korea
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Gyeonggi-do, Republic of Korea
| | - Joon Oh Park
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Seok Hee Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Gyeonggi-do, Republic of Korea
| | - Nick B La Thangue
- Laboratory of Cancer Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Old Road Campus, Oxford, UK
| | - Seong-Jin Kim
- GILO Institute, GILO Foundation, Seoul, Republic of Korea.
- Medpacto Inc., Seoul, Republic of Korea.
| |
Collapse
|
12
|
Pourali G, Zafari N, Velayati M, Mehrabadi S, Maftooh M, Hassanian SM, Mobarhan MG, Ferns GA, Avan A, Khazaei M. Therapeutic Potential of Targeting Transforming Growth Factor-beta (TGF-β) and Programmed Death-ligand 1 (PD-L1) in Pancreatic Cancer. Curr Drug Targets 2023; 24:1335-1345. [PMID: 38053355 DOI: 10.2174/0113894501264450231129042256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/11/2023] [Accepted: 10/24/2023] [Indexed: 12/07/2023]
Abstract
Pancreatic cancer (PC) is one the most lethal malignancies worldwide affecting around half a million individuals each year. The treatment of PC is relatively difficult due to the difficulty in making an early diagnosis. Transforming growth factor-beta (TGF-β) is a multifunctional factor acting as both a tumor promoter in early cancer stages and a tumor suppressor in advanced disease. Programmed death-ligand 1 (PD-L1) is a ligand of programmed death-1 (PD-1), an immune checkpoint receptor, allowing tumor cells to avoid elimination by immune cells. Recently, targeting the TGF-β signaling and PD-L1 pathways has emerged as a strategy for cancer therapy. In this review, we have summarized the current knowledge regarding these pathways and their contribution to tumor development with a focus on PC. Moreover, we have reviewed the role of TGF-β and PD-L1 blockade in the treatment of various cancer types, including PC, and discussed the clinical trials evaluating TGF-β and PD-L1 antagonists in PC patients.
Collapse
Affiliation(s)
- Ghazaleh Pourali
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Doctor, Mashhad University of Medical Science, Mashhad, Iran
| | - Nima Zafari
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahla Velayati
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shima Mehrabadi
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mina Maftooh
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Science, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Science, Mashhad, Iran
| | - Majid Ghayour Mobarhan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Science, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex, BN1 9PH, UK
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Science, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Science, Mashhad, Iran
| |
Collapse
|
13
|
Tie Y, Tang F, Peng D, Zhang Y, Shi H. TGF-beta signal transduction: biology, function and therapy for diseases. MOLECULAR BIOMEDICINE 2022; 3:45. [PMID: 36534225 PMCID: PMC9761655 DOI: 10.1186/s43556-022-00109-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/15/2022] [Indexed: 12/23/2022] Open
Abstract
The transforming growth factor beta (TGF-β) is a crucial cytokine that get increasing concern in recent years to treat human diseases. This signal controls multiple cellular responses during embryonic development and tissue homeostasis through canonical and/or noncanonical signaling pathways. Dysregulated TGF-β signal plays an essential role in contributing to fibrosis via promoting the extracellular matrix deposition, and tumor progression via inducing the epithelial-to-mesenchymal transition, immunosuppression, and neovascularization at the advanced stage of cancer. Besides, the dysregulation of TGF-beta signal also involves in other human diseases including anemia, inflammatory disease, wound healing and cardiovascular disease et al. Therefore, this signal is proposed to be a promising therapeutic target in these diseases. Recently, multiple strategies targeting TGF-β signals including neutralizing antibodies, ligand traps, small-molecule receptor kinase inhibitors targeting ligand-receptor signaling pathways, antisense oligonucleotides to disrupt the production of TGF-β at the transcriptional level, and vaccine are under evaluation of safety and efficacy for the forementioned diseases in clinical trials. Here, in this review, we firstly summarized the biology and function of TGF-β in physiological and pathological conditions, elaborated TGF-β associated signal transduction. And then, we analyzed the current advances in preclinical studies and clinical strategies targeting TGF-β signal transduction to treat diseases.
Collapse
Affiliation(s)
- Yan Tie
- grid.13291.380000 0001 0807 1581Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Chengdu, 610041 China
| | - Fan Tang
- grid.13291.380000 0001 0807 1581Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Chengdu, 610041 China ,grid.13291.380000 0001 0807 1581Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, China
| | - Dandan Peng
- grid.13291.380000 0001 0807 1581Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Chengdu, 610041 China
| | - Ye Zhang
- grid.506261.60000 0001 0706 7839Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Huashan Shi
- grid.13291.380000 0001 0807 1581Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Chengdu, 610041 China
| |
Collapse
|
14
|
Zhang G, Li M, Zhou D, Yang X, Zhang W, Gao R. Loss of endothelial EMCN drives tumor lung metastasis through the premetastatic niche. J Transl Med 2022; 20:446. [PMID: 36184589 PMCID: PMC9528146 DOI: 10.1186/s12967-022-03649-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 09/18/2022] [Indexed: 11/24/2022] Open
Abstract
Background Metastasis is the primary cause of cancer-related mortality. Metastasis involves a complex multistep process during which individual tumor cells spread primarily through destruction of the endothelial barrier, entering the circulatory system to colonize distant organs. However, the role of the endothelial barrier as the rate-limiting process in tumor metastasis and how these processes affect the regulation of the host microenvironment at the molecular level are poorly understood. Methods Here, we analyzed differentially expressed genes in breast cancer and lung adenocarcinoma, including metastatic and recurrent specimens, using TCGA dataset. The effects of EMCN on endothelial cells in vitro and in vivo were analyzed by assessing angiogenesis and vascular permeability, respectively. We established a syngeneic mouse model of endothelial cell-specific knockout of EMCN (EMCNecko) to study the role of EMCN in tumor growth and metastasis. Transcriptome sequencing, Western blotting, qPCR and immunofluorescence confirmed important factors in the premetastatic niche. A mouse model of allograft tumor resection with lung metastasis was established to confirm the therapeutic effect of a notch inhibitor combined with an anti-TGF-β antibody. Results We found a strong correlation of EMCN deficiency with tumor recurrence and metastasis. Comparative experiments in WT and EMCNecko mice revealed that endothelial EMCN deficiency did not affect primary tumor growth significantly but strongly promoted spontaneous metastasis. EMCN deficiency was associated with gene profiles that regulate cell junctions in vitro and enhance vascular permeability in vivo. Mechanistically, EMCN deficiency mainly affected the host microenvironment and led to the formation of a lung premetastatic niche by recruiting Ly6G+ neutrophils and upregulating MMP9, S100A8/A9 and TGF-β expression. Anti-TGF-β antibody effectively eliminated TGF-β-induced neutrophil polarization, thereby reducing lung metastasis. Notably, the combination of a Notch inhibitor and an anti-TGF-β antibody effectively inhibited tumor growth and lung metastasis and prolonged the survival time of mice. Conclusions We present a new translational strategy of EMCN as a new key player in tumor lung metastasis by affecting the host microenvironment. These findings could provide a sound theoretical basis for clinical treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03649-4.
Collapse
Affiliation(s)
- Guoxin Zhang
- National Human Diseases Animal Model Resource Center, The Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China.,NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
| | - Mengyuan Li
- National Human Diseases Animal Model Resource Center, The Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China.,NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
| | - Dandan Zhou
- National Human Diseases Animal Model Resource Center, The Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China.,NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
| | - Xingjiu Yang
- National Human Diseases Animal Model Resource Center, The Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China.,NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
| | - Wenlong Zhang
- National Human Diseases Animal Model Resource Center, The Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China.,NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
| | - Ran Gao
- National Human Diseases Animal Model Resource Center, The Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China. .,NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China. .,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China.
| |
Collapse
|
15
|
Radiotherapy-induced oxidative stress and fibrosis in breast cancer are suppressed by vactosertib, a novel, orally bioavailable TGF-β/ALK5 inhibitor. Sci Rep 2022; 12:16104. [PMID: 36167880 PMCID: PMC9515166 DOI: 10.1038/s41598-022-20050-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Radio-resistance resulting from radiotherapy-induced fibrosis is a major clinical obstacle in breast cancer treatment because it typically leads to cancer recurrence, treatment failure, and patient death. Transforming growth factor-β (TGF-β) is a key signal messenger in fibrosis, which plays an important role in radiation-induced fibrosis and cancer stem cell (CSC) development, may be mediated through the generation of oxidative stress. This study was conducted to confirm the efficacy of vactosertib, a TGF-β/ALK5 inhibitor, as a potent inhibitor in radiation-induced oxidative stress generation, fibrosis and CSC development. We used a 4T1-Luc allograft BALB/c syngeneic mouse model and 4T1-Luc and MDA-MB-231 cells for histological analysis, qRT-PCR, western blotting, ROS analysis, mammosphere formation analysis, monolayer fluorescence imaging analysis. Radiotherapy induces TGF-β signaling, oxidative stress markers (4-HNE, NOX2, NOX4, PRDX1, NRF2, HO-1, NQO-1), fibrosis markers (PAI-1, α-SMA, FIBRONECTIN, COL1A1), and CSC properties. However, combination therapy with vactosertib not only inhibits these radiation-induced markers and properties by blocking TGF-β signaling, but also enhances the anticancer effect of radiation by reducing the volume of breast cancer. Therefore, these data suggest that vactosertib can effectively reduce radiation fibrosis and resistance in breast cancer treatment by inhibiting radiation-induced TGF-β signaling and oxidative stress, fibrosis, and CSC.
Collapse
|
16
|
Mezger MC, Conzelmann C, Weil T, von Maltitz P, Albers DPJ, Münch J, Stamminger T, Schilling EM. Inhibitors of Activin Receptor-like Kinase 5 Interfere with SARS-CoV-2 S-Protein Processing and Spike-Mediated Cell Fusion via Attenuation of Furin Expression. Viruses 2022; 14:v14061308. [PMID: 35746781 PMCID: PMC9228453 DOI: 10.3390/v14061308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 01/18/2023] Open
Abstract
Screening of a protein kinase inhibitor library identified SB431542, targeting activin receptor-like kinase 5 (ALK5), as a compound interfering with SARS-CoV-2 replication. Since ALK5 is implicated in transforming growth factor β (TGF-β) signaling and regulation of the cellular endoprotease furin, we pursued this research to clarify the role of this protein kinase for SARS-CoV-2 infection. We show that TGF-β1 induces the expression of furin in a broad spectrum of cells including Huh-7 and Calu-3 that are permissive for SARS-CoV-2. The inhibition of ALK5 by incubation with SB431542 revealed a dose-dependent downregulation of both basal and TGF-β1 induced furin expression. Furthermore, we demonstrate that the ALK5 inhibitors SB431542 and Vactosertib negatively affect the proteolytic processing of the SARS-CoV-2 Spike protein and significantly reduce spike-mediated cell-cell fusion. This correlated with an inhibitory effect of ALK5 inhibition on the production of infectious SARS-CoV-2. Altogether, our study shows that interference with ALK5 signaling attenuates SARS-CoV-2 infectivity and cell-cell spread via downregulation of furin which is most pronounced upon TGF-β stimulation. Since a TGF-β dominated cytokine storm is a hallmark of severe COVID-19, ALK5 inhibitors undergoing clinical trials might represent a potential therapy option for COVID-19.
Collapse
Affiliation(s)
- Maja C. Mezger
- Institute of Virology, Ulm University Medical Center, 89081 Ulm, Germany; (M.C.M.); (E.-M.S.)
| | - Carina Conzelmann
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany; (C.C.); (T.W.); (P.v.M.); (D.P.J.A.); (J.M.)
| | - Tatjana Weil
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany; (C.C.); (T.W.); (P.v.M.); (D.P.J.A.); (J.M.)
| | - Pascal von Maltitz
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany; (C.C.); (T.W.); (P.v.M.); (D.P.J.A.); (J.M.)
| | - Dan P. J. Albers
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany; (C.C.); (T.W.); (P.v.M.); (D.P.J.A.); (J.M.)
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany; (C.C.); (T.W.); (P.v.M.); (D.P.J.A.); (J.M.)
| | - Thomas Stamminger
- Institute of Virology, Ulm University Medical Center, 89081 Ulm, Germany; (M.C.M.); (E.-M.S.)
- Correspondence: ; Tel.: +49-731-50065100
| | - Eva-Maria Schilling
- Institute of Virology, Ulm University Medical Center, 89081 Ulm, Germany; (M.C.M.); (E.-M.S.)
| |
Collapse
|
17
|
Co-treatment with vactosertib, a novel, orally bioavailable activin receptor-like kinase 5 inhibitor, suppresses radiotherapy-induced epithelial-to-mesenchymal transition, cancer cell stemness, and lung metastasis of breast cancer. Radiol Oncol 2022; 56:185-197. [PMID: 35390248 PMCID: PMC9122287 DOI: 10.2478/raon-2022-0012] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 01/28/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Acquired metastasis and invasion of cancer cells during radiotherapy are in part due to induction of epithelial-to-mesenchymal transition (EMT) and cancer stem cell (CSC) properties, which are mediated by TGF-β signaling. Here we evaluated the anti-metastatic therapeutic potential of vactosertib, an orally bioavailable TGF-β type I receptor (activin receptor-like kinase 5, ALK5) inhibitor, via suppression of radiation-induced EMT and CSC properties, oxidative stress generation, and breast to lung metastasis in a breast cancer mouse model and breast cancer cell lines. MATERIALS AND METHODS Co-treatment of vactosertib with radiation was investigated in the 4T1-Luc allografted BALB/c syngeneic mouse model and in 4T1-Luc and MDA-MB-231 cells. The anti-metastatic therapeutic potential of vactosertib in breast cancer was investigated using fluorescence immunohistochemistry, real-time quantitative reverse transcription-polymerase chain reaction, western blotting, wound healing assay, mammosphere formation assay, and lung metastasis analysis in vitro and in vivo. RESULTS Radiation induced TGF-β signaling, EMT markers (Vimentin, Fibronectin, Snail, Slug, Twist, and N-cadherin), CSC properties (expression of pluripotent stem cell regulators, mammosphere forming ability), reactive oxygen species markers (NOX4, 4-HNE), and motility of breast cancer cells in vitro and in vivo. Vactosertib attenuated the radiation-induced EMT and CSC properties by inhibiting ROS stress in breast cancer. Moreover, vactosertib combined with radiation showed a significant anti-metastatic effect with suppression of breast to lung metastasis in vivo. CONCLUSIONS These results indicate that inhibition of TGF-β signaling with vactosertib in breast cancer patients undergoing radiotherapy would be an attractive strategy for the prevention of cancer metastasis and recurrence.
Collapse
|
18
|
Mikuła-Pietrasik J, Rutecki S, Książek K. The functional multipotency of transforming growth factor β signaling at the intersection of senescence and cancer. Cell Mol Life Sci 2022; 79:196. [PMID: 35305149 PMCID: PMC11073081 DOI: 10.1007/s00018-022-04236-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/22/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022]
Abstract
The transforming growth factor β (TGF-β) family of cytokines comprises a group of proteins, their receptors, and effector molecules that, in a coordinated manner, modulate a plethora of physiological and pathophysiological processes. TGF-β1 is the best known and plausibly most active representative of this group. It acts as an immunosuppressant, contributes to extracellular matrix remodeling, and stimulates tissue fibrosis, differentiation, angiogenesis, and epithelial-mesenchymal transition. In recent years, this cytokine has been established as a vital regulator of organismal aging and cellular senescence. Finally, the role of TGF-β1 in cancer progression is no longer in question. Because this protein is involved in so many, often overlapping phenomena, the question arises whether it can be considered a molecular bridge linking some of these phenomena together and governing their reciprocal interactions. In this study, we reviewed the literature from the perspective of the role of various TGF-β family members as regulators of a complex mutual interplay between senescence and cancer. These aspects are then considered in a broader context of remaining TGF-β-related functions and coexisting processes. The main narrative axis in this work is centered around the interaction between the senescence of normal peritoneal cells and ovarian cancer cells. The discussion also includes examples of TGF-β activity at the interface of other normal and cancer cell types.
Collapse
Affiliation(s)
- Justyna Mikuła-Pietrasik
- Department of Pathophysiology of Ageing and Civilization Diseases, Długa ½ Str, Poznań University of Medical Sciences, 61-848, Poznań, Poland
| | - Szymon Rutecki
- Department of Pathophysiology of Ageing and Civilization Diseases, Długa ½ Str, Poznań University of Medical Sciences, 61-848, Poznań, Poland
| | - Krzysztof Książek
- Department of Pathophysiology of Ageing and Civilization Diseases, Długa ½ Str, Poznań University of Medical Sciences, 61-848, Poznań, Poland.
| |
Collapse
|
19
|
Targeting TGF-β: triumphs and challenges. Future Med Chem 2022; 14:455-458. [DOI: 10.4155/fmc-2021-0344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
20
|
Benjamin DJ, Lyou Y. Advances in Immunotherapy and the TGF-β Resistance Pathway in Metastatic Bladder Cancer. Cancers (Basel) 2021; 13:cancers13225724. [PMID: 34830879 PMCID: PMC8616345 DOI: 10.3390/cancers13225724] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/12/2021] [Accepted: 11/14/2021] [Indexed: 12/31/2022] Open
Abstract
Simple Summary Bladder cancer accounts for a significant burden to global public health. Despite advances in therapeutics with the advent of immunotherapy, only a small subset of patients benefit from immunotherapy. In this review, we examine the evidence that suggests that the TGF-β pathway may present a resistance mechanism to immunotherapy. In addition, we present possible therapies that may overcome the TGF-β resistance pathway in the treatment of bladder cancer. Abstract Bladder cancer accounts for nearly 200,000 deaths worldwide yearly. Urothelial carcinoma (UC) accounts for nearly 90% of cases of bladder cancer. Cisplatin-based chemotherapy has remained the mainstay of treatment in the first-line setting for locally advanced or metastatic UC. More recently, the treatment paradigm in the second-line setting was drastically altered with the approval of several immune checkpoint inhibitors (ICIs). Given that only a small subset of patients respond to ICI, further studies have been undertaken to understand potential resistance mechanisms to ICI. One potential resistance mechanism that has been identified in the setting of metastatic UC is the TGF-β signaling pathway. Several pre-clinical and ongoing clinical trials in multiple advanced tumor types have evaluated several therapies that target the TGF-β pathway. In addition, there are ongoing and planned clinical trials combining TGF-β inhibition with ICI, which may provide a promising therapeutic approach for patients with advanced and metastatic UC.
Collapse
Affiliation(s)
- David J. Benjamin
- Chao Family Comprehensive Cancer Center, Division of Hematology/Oncology, Department of Medicine, UC Irvine Medical Center, Orange, CA 92868, USA;
| | - Yung Lyou
- Department of Medical Oncology and Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
- Correspondence: ; Tel.: +1-626-256-2805; Fax: +1-625-301-8233
| |
Collapse
|
21
|
Cook XAF, Pantaine LRE, Blakemore DC, Moses IB, Sach NW, Shavnya A, Willis MC. Base‐Activated Latent Heteroaromatic Sulfinates as Nucleophilic Coupling Partners in Palladium‐Catalyzed Cross‐Coupling Reactions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Xinlan A. F. Cook
- Department of Chemistry University of Oxford Chemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
| | - Loïc R. E. Pantaine
- Department of Chemistry University of Oxford Chemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
| | | | - Ian B. Moses
- Pharmaceutical sciences Pfizer Inc. Discovery Park, Ramsgate Road CT13 9ND UK
| | - Neal W. Sach
- Medicine Design, La Jolla Laboratories Pfizer Inc. 10777 Science Center Drive San Diego CA 92121 USA
| | - Andre Shavnya
- Medicine Design Pfizer Inc. Eastern Point Road Groton CT 06340 USA
| | - Michael C. Willis
- Department of Chemistry University of Oxford Chemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
22
|
Cook XAF, Pantaine LRE, Blakemore DC, Moses IB, Sach NW, Shavnya A, Willis MC. Base-Activated Latent Heteroaromatic Sulfinates as Nucleophilic Coupling Partners in Palladium-Catalyzed Cross-Coupling Reactions. Angew Chem Int Ed Engl 2021; 60:22461-22468. [PMID: 34342107 PMCID: PMC8518705 DOI: 10.1002/anie.202109146] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Indexed: 01/10/2023]
Abstract
Heteroaromatic sulfinates are effective nucleophilic reagents in Pd0 -catalyzed cross-coupling reactions with aryl halides. However, metal sulfinate salts can be challenging to purify, solubilize in reaction media, and are not tolerant to multi-step transformations. Here we introduce base-activated, latent sulfinate reagents: β-nitrile and β-ester sulfones. We show that under the cross-coupling conditions, these species generate the sulfinate salt in situ, which then undergo efficient palladium-catalyzed desulfinative cross-coupling with (hetero)aryl bromides to deliver a broad range of biaryls. These latent sulfinate reagents have proven to be stable through multi-step substrate elaboration, and amenable to scale-up.
Collapse
Affiliation(s)
- Xinlan A. F. Cook
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Loïc R. E. Pantaine
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | | | - Ian B. Moses
- Pharmaceutical sciencesPfizer Inc.Discovery Park, Ramsgate RoadCT13 9NDUK
| | - Neal W. Sach
- Medicine Design, La Jolla LaboratoriesPfizer Inc.10777 Science Center DriveSan DiegoCA92121USA
| | - Andre Shavnya
- Medicine DesignPfizer Inc.Eastern Point RoadGrotonCT06340USA
| | - Michael C. Willis
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| |
Collapse
|
23
|
Zhang Z, Qiao Y, Yang L, Chen Z, Li T, Gu M, Li C, Liu M, Li R. Kaempferol 3-O-gentiobioside, an ALK5 inhibitor, affects the proliferation, migration, and invasion of tumor cells via blockade of the TGF-β/ALK5/Smad signaling pathway. Phytother Res 2021; 35:6310-6323. [PMID: 34514657 DOI: 10.1002/ptr.7278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/08/2021] [Accepted: 08/24/2021] [Indexed: 12/17/2022]
Abstract
Overactivation of TGF-β/ALK5/Smad signaling pathway has been observed in the advanced stage of various human malignancies. As a key component of TGF-β/ALK5/Smad signaling pathway transduction, TGF-β type I receptor (also known as ALK5) has emerged as a promising therapeutic target for cancer treatment. In this study, to discover a novel ALK5 inhibitor, a commercial natural products library was screened using docking-based virtual screening, followed by luciferase reporter assay. A flavonoid glycoside kaempferol 3-O-gentiobioside (KPF 3-O-G) was identified as a potent ALK5 inhibitor through directly bound to the ATP-site of ALK5, resulting in the inhibitory effects on phosphorylation and translocation of Smad2 and expression of Smad4. Additionally, we found that KPF 3-O-G reduced cell proliferation and inhibited TGF-β-induced cell migration and invasion. Moreover, western blotting and immunofluorescent analysis showed that KPF 3-O-G significantly reversed the TGF-β-induced EMT biomarkers, including upregulation of E-cadherin and downregulation of N-cadherin, vimentin, and snail. In vivo study showed that KPF 3-O-G administration reduced tumor growth in human ovarian cancer xenograft mouse model, without obvious toxic effect. This study provided novel insight into the anticancer effects of KPF-3-O-G and indicated that KPF-3-O-G might be developed as potential therapeutics for cancer treatment after further validation.
Collapse
Affiliation(s)
- Zihao Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Yu Qiao
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Li Yang
- Department of Gynecologic Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Zuwang Chen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Tao Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, China
| | - MingZhen Gu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Chong Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Mingming Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Rong Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, China
| |
Collapse
|
24
|
Budi EH, Schaub JR, Decaris M, Turner S, Derynck R. TGF-β as a driver of fibrosis: physiological roles and therapeutic opportunities. J Pathol 2021; 254:358-373. [PMID: 33834494 DOI: 10.1002/path.5680] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023]
Abstract
Many chronic diseases are marked by fibrosis, which is defined by an abundance of activated fibroblasts and excessive deposition of extracellular matrix, resulting in loss of normal function of the affected organs. The initiation and progression of fibrosis are elaborated by pro-fibrotic cytokines, the most critical of which is transforming growth factor-β1 (TGF-β1). This review focuses on the fibrogenic roles of increased TGF-β activities and underlying signaling mechanisms in the activated fibroblast population and other cell types that contribute to progression of fibrosis. Insight into these roles and mechanisms of TGF-β as a universal driver of fibrosis has stimulated the development of therapeutic interventions to attenuate fibrosis progression, based on interference with TGF-β signaling. Their promise in preclinical and clinical settings will be discussed. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Erine H Budi
- Pliant Therapeutics Inc, South San Francisco, CA, USA
| | | | | | - Scott Turner
- Pliant Therapeutics Inc, South San Francisco, CA, USA
| | - Rik Derynck
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, and Department of Cell and Tissue Biology, University of California at San Francisco, San Francisco, CA, USA
| |
Collapse
|
25
|
Cook XAF, de Gombert A, McKnight J, Pantaine LRE, Willis MC. The 2-Pyridyl Problem: Challenging Nucleophiles in Cross-Coupling Arylations. Angew Chem Int Ed Engl 2021; 60:11068-11091. [PMID: 32940402 PMCID: PMC8246887 DOI: 10.1002/anie.202010631] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Indexed: 12/22/2022]
Abstract
Azine-containing biaryls are ubiquitous scaffolds in many areas of chemistry, and efficient methods for their synthesis are continually desired. Pyridine rings are prominent amongst these motifs. Transition-metal-catalysed cross-coupling reactions have been widely used for their synthesis and functionalisation as they often provide a swift and tuneable route to related biaryl scaffolds. However, 2-pyridine organometallics are capricious coupling partners and 2-pyridyl boron reagents in particular are notorious for their instability and poor reactivity in Suzuki-Miyaura cross-coupling reactions. The synthesis of pyridine-containing biaryls is therefore limited, and methods for the formation of unsymmetrical 2,2'-bis-pyridines are scarce. This Review focuses on the methods developed for the challenging coupling of 2-pyridine nucleophiles with (hetero)aryl electrophiles, and ranges from traditional cross-coupling processes to alternative nucleophilic reagents and novel main group approaches.
Collapse
Affiliation(s)
- Xinlan A. F. Cook
- Chemistry Research LaboratoryOxford University12 Mansfield RoadOxfordOX1 3TAUK
| | - Antoine de Gombert
- Chemistry Research LaboratoryOxford University12 Mansfield RoadOxfordOX1 3TAUK
| | - Janette McKnight
- Chemistry Research LaboratoryOxford University12 Mansfield RoadOxfordOX1 3TAUK
| | - Loïc R. E. Pantaine
- Chemistry Research LaboratoryOxford University12 Mansfield RoadOxfordOX1 3TAUK
| | - Michael C. Willis
- Chemistry Research LaboratoryOxford University12 Mansfield RoadOxfordOX1 3TAUK
| |
Collapse
|
26
|
Kim BG, Malek E, Choi SH, Ignatz-Hoover JJ, Driscoll JJ. Novel therapies emerging in oncology to target the TGF-β pathway. J Hematol Oncol 2021; 14:55. [PMID: 33823905 PMCID: PMC8022551 DOI: 10.1186/s13045-021-01053-x] [Citation(s) in RCA: 242] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/01/2021] [Indexed: 12/22/2022] Open
Abstract
The TGF-β signaling pathway governs key cellular processes under physiologic conditions and is deregulated in many pathologies, including cancer. TGF-β is a multifunctional cytokine that acts in a cell- and context-dependent manner as a tumor promoter or tumor suppressor. As a tumor promoter, the TGF-β pathway enhances cell proliferation, migratory invasion, metastatic spread within the tumor microenvironment and suppresses immunosurveillance. Collectively, the pleiotropic nature of TGF-β signaling contributes to drug resistance, tumor escape and undermines clinical response to therapy. Based upon a wealth of preclinical studies, the TGF-β pathway has been pharmacologically targeted using small molecule inhibitors, TGF-β-directed chimeric monoclonal antibodies, ligand traps, antisense oligonucleotides and vaccines that have been now evaluated in clinical trials. Here, we have assessed the safety and efficacy of TGF-β pathway antagonists from multiple drug classes that have been evaluated in completed and ongoing trials. We highlight Vactosertib, a highly potent small molecule TGF-β type 1 receptor kinase inhibitor that is well-tolerated with an acceptable safety profile that has shown efficacy against multiple types of cancer. The TGF-β ligand traps Bintrafusp alfa (a bifunctional conjugate that binds TGF-β and PD-L1), AVID200 (a computationally designed trap of TGF-β receptor ectodomains fused to an Fc domain) and Luspatercept (a recombinant fusion that links the activin receptor IIb to IgG) offer new ways to fight difficult-to-treat cancers. While TGF-β pathway antagonists are rapidly emerging as highly promising, safe and effective anticancer agents, significant challenges remain. Minimizing the unintentional inhibition of tumor-suppressing activity and inflammatory effects with the desired restraint on tumor-promoting activities has impeded the clinical development of TGF-β pathway antagonists. A better understanding of the mechanistic details of the TGF-β pathway should lead to more effective TGF-β antagonists and uncover biomarkers that better stratify patient selection, improve patient responses and further the clinical development of TGF-β antagonists.
Collapse
Affiliation(s)
- Byung-Gyu Kim
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Ehsan Malek
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
- Adult Hematologic Malignancies and Stem Cell Transplant Section, Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Sung Hee Choi
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - James J Ignatz-Hoover
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Adult Hematologic Malignancies and Stem Cell Transplant Section, Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - James J Driscoll
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA.
- Adult Hematologic Malignancies and Stem Cell Transplant Section, Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
| |
Collapse
|
27
|
Inhibition of TGFβ improves hematopoietic stem cell niche and ameliorates cancer-related anemia. Stem Cell Res Ther 2021; 12:65. [PMID: 33461597 PMCID: PMC7814632 DOI: 10.1186/s13287-020-02120-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 12/22/2020] [Indexed: 12/22/2022] Open
Abstract
Background Cancer cachexia is a wasting syndrome that is quite common in terminal-stage cancer patients. Cancer-related anemia is one of the main features of cancer cachexia and mostly results in a poor prognosis. The disadvantages of the current therapies are obvious, but few new treatments have been developed because the pathological mechanism remains unclear. Methods C57BL/6 mice were subcutaneously injected with Lewis lung carcinoma cells to generate a cancer-related anemia model. The treated group received daily intraperitoneal injections of SB505124. Blood parameters were determined with a routine blood counting analyzer. Erythroid cells and hematopoietic stem/progenitor cells were analyzed by flow cytometry. The microarchitecture changes of the femurs were determined by micro-computed tomography scans. Smad2/3 phosphorylation was analyzed by immunofluorescence and Western blotting. The changes in the hematopoietic stem cell niche were revealed by qPCR analysis of both fibrosis-related genes and hematopoietic genes, fibroblastic colony-forming unit assays, and lineage differentiation of mesenchymal stromal cells. Results The mouse model exhibited hematopoietic suppression, marked by a decrease of erythrocytes in the peripheral blood, as well as an increase of immature erythroblasts and reduced differentiation of multipotent progenitors in the bone marrow. The ratio of bone volume/total volume, trabecular number, and cortical wall thickness all appeared to decrease, and the increased osteoclast number has led to the release of latent TGFβ and TGFβ signaling over-activation. Excessive TGFβ deteriorated the hematopoietic stem cell niche, inducing fibrosis of the bone marrow as well as the transition of mesenchymal stromal cells. Treatment with SB505124, a small-molecule inhibitor of TGFβ signaling, significantly attenuated the symptoms of cancer-related anemia in this model, as evidenced by the increase of erythrocytes in the peripheral blood and the normalized proportion of erythroblast cell clusters. Meanwhile, hindered hematopoiesis and deteriorated hematopoietic stem cell niche were also shown to be restored with SB505124 treatment. Conclusion This study investigated the role of TGFβ released by bone remodeling in the progression of cancer-related anemia and revealed a potential therapeutic approach for relieving defects in hematopoiesis.
Collapse
|
28
|
Liu S, Ren J, Ten Dijke P. Targeting TGFβ signal transduction for cancer therapy. Signal Transduct Target Ther 2021; 6:8. [PMID: 33414388 PMCID: PMC7791126 DOI: 10.1038/s41392-020-00436-9] [Citation(s) in RCA: 202] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 12/19/2022] Open
Abstract
Transforming growth factor-β (TGFβ) family members are structurally and functionally related cytokines that have diverse effects on the regulation of cell fate during embryonic development and in the maintenance of adult tissue homeostasis. Dysregulation of TGFβ family signaling can lead to a plethora of developmental disorders and diseases, including cancer, immune dysfunction, and fibrosis. In this review, we focus on TGFβ, a well-characterized family member that has a dichotomous role in cancer progression, acting in early stages as a tumor suppressor and in late stages as a tumor promoter. The functions of TGFβ are not limited to the regulation of proliferation, differentiation, apoptosis, epithelial-mesenchymal transition, and metastasis of cancer cells. Recent reports have related TGFβ to effects on cells that are present in the tumor microenvironment through the stimulation of extracellular matrix deposition, promotion of angiogenesis, and suppression of the anti-tumor immune reaction. The pro-oncogenic roles of TGFβ have attracted considerable attention because their intervention provides a therapeutic approach for cancer patients. However, the critical function of TGFβ in maintaining tissue homeostasis makes targeting TGFβ a challenge. Here, we review the pleiotropic functions of TGFβ in cancer initiation and progression, summarize the recent clinical advancements regarding TGFβ signaling interventions for cancer treatment, and discuss the remaining challenges and opportunities related to targeting this pathway. We provide a perspective on synergistic therapies that combine anti-TGFβ therapy with cytotoxic chemotherapy, targeted therapy, radiotherapy, or immunotherapy.
Collapse
Affiliation(s)
- Sijia Liu
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2300 RC, Leiden, The Netherlands
| | - Jiang Ren
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2300 RC, Leiden, The Netherlands
| | - Peter Ten Dijke
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2300 RC, Leiden, The Netherlands.
| |
Collapse
|
29
|
Lee HJ. Recent Advances in the Development of TGF-β Signaling Inhibitors for Anticancer Therapy. J Cancer Prev 2020; 25:213-222. [PMID: 33409254 PMCID: PMC7783242 DOI: 10.15430/jcp.2020.25.4.213] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 12/24/2022] Open
Abstract
TGF-β is a multifunctional cytokine that plays an important role in both physiologic and pathologic processes, including cancer. Importantly, TGF-β has a dual role in tumorigenesis, acting as a tumor suppressor or a tumor promoter, depending on the stage of tumor development. The aberrantly upregulated production of TGF-β has been strongly implicated in tumor progression, angiogenesis, and metastasis, as well as immune evasion. Therefore, hyperactivated TGF-β signaling is considered a potential therapeutic target for cancer therapy. Numerous inhibitors of overactivated TGF-β signaling have been developed, and some of them are currently in clinical trials. This review focuses on the TGF-β signaling that contributes to tumor progression and immune evasion in the tumor microenvironment and presents recent achievements on TGF-β signaling inhibition as a single or combined therapeutic approach in cancer therapy.
Collapse
Affiliation(s)
- Ho-Jae Lee
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes Institute, Gachon University College of Medicine, Incheon, Korea
| |
Collapse
|
30
|
Cook XAF, Gombert A, McKnight J, Pantaine LRE, Willis MC. The 2‐Pyridyl Problem: Challenging Nucleophiles in Cross‐Coupling Arylations. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010631] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Xinlan A. F. Cook
- Chemistry Research Laboratory Oxford University 12 Mansfield Road Oxford OX1 3TA UK
| | - Antoine Gombert
- Chemistry Research Laboratory Oxford University 12 Mansfield Road Oxford OX1 3TA UK
| | - Janette McKnight
- Chemistry Research Laboratory Oxford University 12 Mansfield Road Oxford OX1 3TA UK
| | - Loïc R. E. Pantaine
- Chemistry Research Laboratory Oxford University 12 Mansfield Road Oxford OX1 3TA UK
| | - Michael C. Willis
- Chemistry Research Laboratory Oxford University 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
31
|
Cui Y, Song Y, Yan S, Cao M, Huang J, Jia D, Liu Y, Zhang S, Fan W, Cai L, Li C, Xing Y. CUEDC1 inhibits epithelial-mesenchymal transition via the TβRI/Smad signaling pathway and suppresses tumor progression in non-small cell lung cancer. Aging (Albany NY) 2020; 12:20047-20068. [PMID: 33099540 PMCID: PMC7655170 DOI: 10.18632/aging.103329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 08/15/2020] [Indexed: 12/15/2022]
Abstract
Lung cancer remains the most lethal cancer worldwide because of its high metastasis potential. Epithelial-mesenchymal transition (EMT) is known as the first step of the metastasis cascade, but the potential regulatory mechanisms of EMT have not been clearly established. In this study, we first found that low CUEDC1 expression correlated with lymph node metastasis in non-small cell lung cancer (NSCLC) patients using immunohistochemistry (IHC). CUEDC1 knockdown promoted the metastasis of NSCLC cells and EMT process and activated TβRI/Smad signaling pathway. Overexpression of CUEDC1 decreased the metastatic potential of lung cancer cells and inhibited the EMT process and inactivated TβRI/Smad signaling pathway. Immunoprecipitation (IP) assays showed that Smurf2 is a novel CUEDC1-interacting protein. Furthermore, CUEDC1 could regulate Smurf2 expression through the degradation of Smurf2. Overexpression of Smurf2 abolished CUEDC1 knockdown induced-EMT and the activation of TβRI/Smad signaling pathway, while siRNA Smurf2 reversed CUEDC1 overexpression-mediated regulation of EMT and TβRI/Smad signaling pathway. Additionally, CUEDC1 inhibited proliferation and promoted apoptosis of NSCLC cells. In vivo, CUEDC1-knockdown cells promoted metastasis and tumor growth compared with control cells. In conclusion, our findings indicate that the crucial role of CUEDC1 in NSCLC progression and provide support for its clinical investigation for therapeutic approaches.
Collapse
Affiliation(s)
- Yue Cui
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yang Song
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shi Yan
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Mengru Cao
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jian Huang
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Dexin Jia
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuechao Liu
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shuai Zhang
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Weina Fan
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Li Cai
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Chunhong Li
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ying Xing
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
32
|
Derynck R, Turley SJ, Akhurst RJ. TGFβ biology in cancer progression and immunotherapy. Nat Rev Clin Oncol 2020; 18:9-34. [DOI: 10.1038/s41571-020-0403-1] [Citation(s) in RCA: 199] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2020] [Indexed: 02/07/2023]
|
33
|
Hong E, Park S, Ooshima A, Hong CP, Park J, Heo JS, Lee S, An H, Kang JM, Park SH, Park JO, Kim SJ. Inhibition of TGF-β signalling in combination with nal-IRI plus 5-Fluorouracil/Leucovorin suppresses invasion and prolongs survival in pancreatic tumour mouse models. Sci Rep 2020; 10:2935. [PMID: 32076068 PMCID: PMC7031242 DOI: 10.1038/s41598-020-59893-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 01/31/2020] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive malignancies. TGF-β is strongly expressed in both the epithelial and stromal compartments of PDAC, and dysregulation of TGF-β signalling is a frequent molecular disturbance in PDAC progression and metastasis. In this study, we investigated whether blockade of TGF-β signalling synergizes with nal-IRI/5-FU/LV, a chemotherapy regimen for malignant pancreatic cancer, in an orthotopic pancreatic tumour mouse model. Compared to nal-IRI/5-FU/LV treatment, combining nal-IRI/5-FU/LV with vactosertib, a TGF-β signalling inhibitor, significantly improved long-term survival rates and effectively suppressed invasion to surrounding tissues. Through RNA-sequencing analysis, we identified that the combination treatment results in robust abrogation of tumour-promoting gene signatures and positive enrichment of tumour-suppressing and apoptotic gene signatures. Particularly, the expression of tumour-suppressing gene Ccdc80 was induced by vactosertib and further induced by vactosertib in combination with nal-IRI/5-FU/LV. Ectopic expression of CCDC80 suppressed migration and colony formation concomitant with decreased expression of epithelial-to-mesenchymal transition (EMT) markers in pancreatic cancer cells. Collectively, these results indicate that combination treatment of vactosertib with nal-IRI/5-FU/LV improves overall survival rates in a mouse model of pancreatic cancer by suppressing invasion through CCDC80. Therefore, combination therapy of nal-IRI/5-FU/LV with vactosertib could provide clinical benefits to pancreatic cancer patients.
Collapse
Affiliation(s)
- Eunji Hong
- Precision Medicine Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi-do, 16229, Republic of Korea.,Department of Biological Science, Sungkyunkwan University, Suwon, 16419, Gyeonggi-do, Republic of Korea
| | - Sujin Park
- Precision Medicine Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi-do, 16229, Republic of Korea.
| | - Akira Ooshima
- Precision Medicine Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi-do, 16229, Republic of Korea
| | - Chang Pyo Hong
- TheragenEtex Bio Institute, Suwon, Gyeonggi-do, 16229, Republic of Korea
| | - Jinah Park
- Precision Medicine Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi-do, 16229, Republic of Korea
| | - Jin Sun Heo
- Precision Medicine Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi-do, 16229, Republic of Korea
| | - Siyoung Lee
- Precision Medicine Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi-do, 16229, Republic of Korea
| | - Haein An
- Precision Medicine Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi-do, 16229, Republic of Korea
| | - Jin Muk Kang
- Precision Medicine Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi-do, 16229, Republic of Korea
| | - Seok Hee Park
- Department of Biological Science, Sungkyunkwan University, Suwon, 16419, Gyeonggi-do, Republic of Korea
| | - Joon Oh Park
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Seong-Jin Kim
- Precision Medicine Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi-do, 16229, Republic of Korea.,Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Suwon, Gyeonggi-do, 16229, Republic of Korea.,TheragenEtex Bio Institute, Suwon, Gyeonggi-do, 16229, Republic of Korea.,Medpacto Inc., Seoul, Republic of Korea
| |
Collapse
|
34
|
Population pharmacokinetics of vactosertib, a new TGF-β receptor type Ι inhibitor, in patients with advanced solid tumors. Cancer Chemother Pharmacol 2019; 85:173-183. [DOI: 10.1007/s00280-019-03979-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/17/2019] [Indexed: 12/18/2022]
|