1
|
Pan R, Yi X, Xu Y, Song J, Yi W, Liu J, Song R, Li X, Liu L, Yuan J, Wei N, Huang Y, Cui Z, Kuang L, Zhang Z, Li M, Cheng J, Zhang X, Su H. Association between indoor PM 2.5 components and accelerated biological aging in schizophrenia patients: Evidence from multi-omics mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136162. [PMID: 39490163 DOI: 10.1016/j.jhazmat.2024.136162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/06/2024] [Accepted: 10/11/2024] [Indexed: 11/05/2024]
Abstract
Indoor fine particulate matter (PM2.5) poses a considerable hazard to the aging process, particularly in vulnerable populations such as schizophrenia patients who frequently spend extended periods in indoor environments. Currently, the evidence on which PM2.5 components contribute to accelerated aging remains unclear. To address these issues, we conducted a prospective, repeated-measurement study on 104 schizophrenia patients. Our findings indicated that exposure to PM2.5 components was significantly associated with accelerated biological aging in schizophrenia patients. Notably, the most prominent effects were observed for thallium (1.303, 95 % CI: 0.481-2.125), chromium (1.029, 95 % CI: 0.303-1.756), lead (1.021, 95 % CI: 0.296-1.746), antimony (0.915, 95 % CI: 0.233-1.597), selenium (0.854, 95 % CI: 0.209-1.499), and manganese (0.833, 95 % CI: 0.186-1.480). Multivariate analysis revealed that PM2.5 components predominantly induced alterations in serum glycerophospholipid metabolites, accelerating the aging process. This intricate connection was closely linked to the gut microbiota, particularly to species such as Dorea and Blautia. Mediation analysis showed that the Blautia-PC (16:0/0:0) pathway mediated the largest proportion (30.69 %) of the effect of manganese exposure on accelerating immune biological aging in schizophrenia patients, as measured using the Klemera-Doubal method. These results underscore the need to address pollution sources that harm health, and provide new evidence for improving regional air quality.
Collapse
Affiliation(s)
- Rubing Pan
- School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Xingxu Yi
- School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Yanlong Xu
- Anhui Provincial Center for Disease Control and Prevention, Hefei, Anhui, China
| | - Jian Song
- School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Weizhuo Yi
- School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Jintao Liu
- School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Rong Song
- School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Xuanxuan Li
- School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Li Liu
- School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Jiajun Yuan
- School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Ning Wei
- School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Yuxing Huang
- School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Zhiqian Cui
- School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Lingmei Kuang
- School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Zichen Zhang
- School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Ming Li
- School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Jian Cheng
- School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Xulai Zhang
- Anhui Mental Health Center (Affiliated Psychological Hospital of Anhui Medical University), Hefei, Anhui, China.
| | - Hong Su
- School of Public Health, Anhui Medical University, Hefei, Anhui, China; Center for Big Data and Population Health of IHM, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China.
| |
Collapse
|
2
|
Liu H, Li Z, Xie L, Jing G, Liang W, He J, Dang Y. The Relationship Between Heavy Metals and Missed Abortion: Using Mediation of Serum Hormones. Biol Trace Elem Res 2024; 202:3401-3412. [PMID: 37982984 DOI: 10.1007/s12011-023-03931-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/23/2023] [Indexed: 11/21/2023]
Abstract
Accumulating evidence suggests that heavy metal exposure may have adverse effects on the fetal development. Furthermore, disruption of serum hormone homeostasis can result in the adverse pregnancy outcomes. Therefore, this study aimed to investigate the potential association between heavy metals and missed abortion, with a focus on whether serum hormones mediate this relationship. The concentrations of heavy metals and hormones in serum were measured in this case-control study. Statistical models including, logistic regression model, principal component analysis (PCA), and weighted quantile sum (WQS) regression model were employed to examine the relationship between heavy metals, serum hormones, and missed abortion. Furthermore, the mediation analysis was performed to assess the role of serum hormones as potential mediators in this relationship. This study revealed significant associations between heavy metal exposure and missed abortion. Notable, the WQS index weight, which was mainly influenced by copper (Cu) and zine (Zn), is associated with missed abortion. Moreover, heavy metals including manganese (Mn), nickel (Ni), Zn, arsenic (As), Cu, cadmium (Cd), and lead (Pb) were found to be associated with serum levels of β-human chorionic gonadotropin (β-hCG), progesterone (P), estradiol (E2), and lactogen (HPL). In addition, the mediation analysis indicated that β-hCG explained a portion of the association (ranging from 18.77 to 43.51%) of between Mn, Ni, Zn, and As exposure and missed abortion. Serum P levels explained 17.93 to 51.70% of the association between Ni, Cu, and As exposure and missed abortion. Serum E2 levels played a significant mediating role, explaining a portion of the association (ranging from 22.14 to 73.60%) between Mn, Ni, Cu, As, Cd, and Pb exposure and missed abortion. Our results suggested that β-hCG, P, and E2 are one of the potential mediators in the complex relationship between heavy metals exposure and missed abortion. These results highlight the importance of considering both heavy metal exposure and serum hormone levels in understanding the etiology of missed abortion.
Collapse
Affiliation(s)
- Haixia Liu
- Institute of Maternal, Child and Adolescent Health, School of Public Health, Lanzhou University, Chengguan District, No. 199, Donggang West Road, LanzhouGansu Province, 730000, China
| | - Zhilan Li
- Institute of Maternal, Child and Adolescent Health, School of Public Health, Lanzhou University, Chengguan District, No. 199, Donggang West Road, LanzhouGansu Province, 730000, China
| | - Li'ao Xie
- Institute of Maternal, Child and Adolescent Health, School of Public Health, Lanzhou University, Chengguan District, No. 199, Donggang West Road, LanzhouGansu Province, 730000, China
| | - Guangzhuang Jing
- Institute of Maternal, Child and Adolescent Health, School of Public Health, Lanzhou University, Chengguan District, No. 199, Donggang West Road, LanzhouGansu Province, 730000, China
| | - Weitao Liang
- Institute of Maternal, Child and Adolescent Health, School of Public Health, Lanzhou University, Chengguan District, No. 199, Donggang West Road, LanzhouGansu Province, 730000, China
| | - Jie He
- Institute of Maternal, Child and Adolescent Health, School of Public Health, Lanzhou University, Chengguan District, No. 199, Donggang West Road, LanzhouGansu Province, 730000, China
| | - Yuhui Dang
- Institute of Maternal, Child and Adolescent Health, School of Public Health, Lanzhou University, Chengguan District, No. 199, Donggang West Road, LanzhouGansu Province, 730000, China.
| |
Collapse
|
3
|
Wang TT, Zhu HL, Ouyang KW, Wang H, Luo YX, Zheng XM, Ling Q, Wang KW, Zhang J, Chang W, Lu Q, Zhang YF, Yuan Z, Li H, Xiong YW, Wei T, Wang H. Environmental cadmium inhibits testicular testosterone synthesis via Parkin-dependent MFN1 degradation. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134142. [PMID: 38555669 DOI: 10.1016/j.jhazmat.2024.134142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/12/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
Low testosterone (T) levels are associated with many common diseases, such as obesity, male infertility, depression, and cardiovascular disease. It is well known that environmental cadmium (Cd) exposure can induce T decline, but the exact mechanism remains unclear. We established a murine model in which Cd exposure induced testicular T decline. Based on the model, we found Cd caused mitochondrial fusion disorder and Parkin mitochondrial translocation in mouse testes. MFN1 overexpression confirmed that MFN1-dependent mitochondrial fusion disorder mediated the Cd-induced T synthesis suppression in Leydig cells. Further data confirmed Cd induced the decrease of MFN1 protein by increasing ubiquitin degradation. Testicular specific Parkin knockdown confirmed Cd induced the ubiquitin-dependent degradation of MFN1 protein through promoting Parkin mitochondrial translocation in mouse testes. Expectedly, testicular specific Parkin knockdown also mitigated testicular T decline. Mito-TEMPO, a targeted inhibitor for mitochondrial reactive oxygen species (mtROS), alleviated Cd-caused Parkin mitochondrial translocation and mitochondrial fusion disorder. As above, Parkin mitochondrial translocation induced mitochondrial fusion disorder and the following T synthesis repression in Cd-exposed Leydig cells. Collectively, our study elucidates a novel mechanism through which Cd induces T decline and provides a new treatment strategy for patients with androgen disorders.
Collapse
Affiliation(s)
- Tian-Tian Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Hua-Long Zhu
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Kong-Wen Ouyang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Department of Respiratory Medicine, Anhui Provincial Children's Hospital, Hefei, Anhui 230000, China
| | - Ye-Xin Luo
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Xin-Mei Zheng
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Qing Ling
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Kai-Wen Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Jin Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Wei Chang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Qi Lu
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Yu-Feng Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Zhi Yuan
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Hao Li
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Yong-Wei Xiong
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Tian Wei
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China.
| |
Collapse
|
4
|
Białowąs W, Blicharska E, Drabik K. Biofortification of Plant- and Animal-Based Foods in Limiting the Problem of Microelement Deficiencies-A Narrative Review. Nutrients 2024; 16:1481. [PMID: 38794719 PMCID: PMC11124325 DOI: 10.3390/nu16101481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
With a burgeoning global population, meeting the demand for increased food production presents challenges, particularly concerning mineral deficiencies in diets. Micronutrient shortages like iron, iodine, zinc, selenium, and magnesium carry severe health implications, especially in developing nations. Biofortification of plants and plant products emerges as a promising remedy to enhance micronutrient levels in food. Utilizing agronomic biofortification, conventional plant breeding, and genetic engineering yields raw materials with heightened micronutrient contents and improved bioavailability. A similar strategy extends to animal-derived foods by fortifying eggs, meat, and dairy products with micronutrients. Employing "dual" biofortification, utilizing previously enriched plant materials as a micronutrient source for livestock, proves an innovative solution. Amid biofortification research, conducting in vitro and in vivo experiments is essential to assess the bioactivity of micronutrients from enriched materials, emphasizing digestibility, bioavailability, and safety. Mineral deficiencies in human diets present a significant health challenge. Biofortification of plants and animal products emerges as a promising approach to alleviate micronutrient deficiencies, necessitating further research into the utilization of biofortified raw materials in the human diet, with a focus on bioavailability, digestibility, and safety.
Collapse
Affiliation(s)
- Wojciech Białowąs
- Faculty of Medicine, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Eliza Blicharska
- Department of Pathobiochemistry and Interdyscyplinary Applications of Ion Chromatography, Faculty of Biomedicine, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Kamil Drabik
- Institute of Biological Basis of Animal Production, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| |
Collapse
|
5
|
Ciftel S, Ozkaya AL. Heavy Metal Levels in Males With Idiopathic Hypogonadotropic Hypogonadism. Cureus 2024; 16:e53128. [PMID: 38420092 PMCID: PMC10899717 DOI: 10.7759/cureus.53128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2024] [Indexed: 03/02/2024] Open
Abstract
INTRODUCTION The toxic effects of heavy metals on biological systems are being investigated with increasing interest day by day. Our purpose was to investigate heavy metals such as aluminum (Al), cadmium (Cd), arsenic (As), lead (Pb), and nickel (Ni) in males with idiopathic hypogonadotropic hypogonadism (IHH) and to determine whether there is a relationship between heavy metals and testosterone levels. METHODS Twenty-six male patients with IHH aged 18-50 and 22 healthy males aged 21-50 admitted to the Outpatient Department of Endocrinology for follow-up were enrolled. BMIs were calculated by measuring the height and weight of all participants. Al, Cd, As, Pb, and Ni levels were measured and compared between groups. Testosterone levels were measured to investigate whether there was a correlation with heavy metal levels. RESULTS Al, Cd, As, Pb, and Ni levels were statistically higher in the patient group compared to the control group (p<0.001). A moderately strong significant negative correlation was detected between the patients' testosterone and As levels (p=0.001, r=-0.609, R2=0.371). Decreased As and Cd levels were observed as the patients' ages increased (p=0.013, r=-0.471). CONCLUSION Heavy metals might play potential roles in IHH. We hope that investigating heavy metal levels in IHH and adding toxicity-preventive treatments to hormonal therapies will be beneficial in the multifaceted management of the disease in clinical practice.
Collapse
Affiliation(s)
- Serpil Ciftel
- Department of Endocrinology and Metabolism, Erzurum Health Science University, Erzurum, TUR
| | | |
Collapse
|
6
|
Gao X, Li G, Pan X, Xia J, Yan D, Xu Y, Ruan X, He H, Wei Y, Zhai J. Environmental and occupational exposure to cadmium associated with male reproductive health risk: a systematic review and meta-analysis based on epidemiological evidence. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:7491-7517. [PMID: 37584848 DOI: 10.1007/s10653-023-01719-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/31/2023] [Indexed: 08/17/2023]
Abstract
There is an abundance of epidemiological evidence and animal experiments concerning the correlation between cadmium exposure and adverse male reproductive health outcomes. However, the evidence remains inconclusive. We conducted a literature search from PubMed, Embase, and Web of Science over the past 3 decades. Pooled r and 95% confidence intervals (CIs) were derived from Cd levels of the type of biological materials and different outcome indicators to address the large heterogeneity of existing literature. Cd was negatively correlated with semen parameters (r = - 0.122, 95% CI - 0.151 to - 0.092) and positively correlated with sera sex hormones (r = 0.104, 95% CI 0.060 to 0.147). Among them, Cd in three different biological materials (blood, semen, and urine) was negatively correlated with semen parameters, while among sex hormones, only blood and urine were statistically positively correlated. In subgroup analysis, blood Cd was negatively correlated with semen density, sperm motility, sperm morphology, and sperm count. Semen Cd was negatively correlated with semen concentration. As for serum sex hormones, blood Cd had no statistical significance with three hormones, while semen Cd was negatively correlated with testosterone. In summary, cadmium exposure might be associated with the risk of a decline in sperm quality and abnormal levels of sex hormones.
Collapse
Affiliation(s)
- Xin Gao
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China
| | - Guangying Li
- Department of Public Affairs Administration, School of Health Management, Anhui Medical University, Meishan Rd 81, Heifei, 230032, China
| | - Xingchen Pan
- School of the First Clinical Medicine, Anhui Medical University, Meishan Rd 81, Heifei, 230032, China
| | - Jiajia Xia
- Department of Public Affairs Administration, School of Health Management, Anhui Medical University, Meishan Rd 81, Heifei, 230032, China
| | - Di Yan
- Department of Public Affairs Administration, School of Health Management, Anhui Medical University, Meishan Rd 81, Heifei, 230032, China
| | - Yang Xu
- School of the First Clinical Medicine, Anhui Medical University, Meishan Rd 81, Heifei, 230032, China
| | - Xiang Ruan
- School of the First Clinical Medicine, Anhui Medical University, Meishan Rd 81, Heifei, 230032, China
| | - Huan He
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China
| | - Yu Wei
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China
| | - Jinxia Zhai
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China.
| |
Collapse
|
7
|
Zhang W, Cui Y, Liu J. The association between blood heavy metals level and sex hormones among postmenopausal women in the US. Front Endocrinol (Lausanne) 2023; 14:1175011. [PMID: 37534216 PMCID: PMC10391169 DOI: 10.3389/fendo.2023.1175011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/29/2023] [Indexed: 08/04/2023] Open
Abstract
Introduction Environmental pollutants could be implicated in female endocrine setting Q6 beyond traditional factors. Until now, few study has focused on the association of environmental exposure to heavy metals with sex hormones in postmenopausal women. This study intended to investigate whether serum levels of heavy metals(i.e., Cd, Pb, Hg, Mn, Se) would influence sex hormones in postmenopausal women. Methods and results A cross-sectional study was performed on 614 nationally representative participants from 2013-2016 National Health and Nutrition Examination Survey (NHANES) in the US. Multivariate linear regression models and restricted cubic spline plots revealed cadmium(Cd) had linear positive association with TT(β=3.25, 95%CI= 1.12, 5.38), bioavailable TT(β=1.78, 95%CI=0.36,3.21) and TT/E2(β=0.76, 95%CI=0.28,1.24), which was more apparent in natural menopausal and obese women. Lead(Pb) had linear positive association with SHBG(β=12.84, 95%CI= 6.77,18.91), which was apparent in nearly all subgroups except in normal BMI group, and TT/E2 (β=0.69, 95%CI 0.134,1.25), which was apparent in natural menopausal and normal BMI women. Manganese(Mn) had non-linear association with SHBG, which was more apparent in natural menopausal and obese women, and TT/E2, which was more apparent in natural menopausal and normal BMI women. Selenium(Se) had U shaped non-linear association with TT, which was more apparent in hysterectomy, overweight and obese women, and SHBG, which was apparent in nearly all subgroups except in normal BMI group. Conclusion In summary, this cross-sectional study indicates a possible role that various degree of environmental exposure to heavy metals plays in the disruption of sex Q5 hormone levels in postmenopausal women. Further experiments are needed to elucidate the underlying mechanisms.
Collapse
|
8
|
Liu Q, Hu S, Fan F, Zheng Z, Zhou X, Zhang Y. Association of blood metals with serum sex hormones in adults: A cross-sectional study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:69628-69638. [PMID: 37140863 DOI: 10.1007/s11356-023-27384-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/28/2023] [Indexed: 05/05/2023]
Abstract
Heavy metals such as lead, mercury, and cadmium have been identified to have negative impacts on human health. Although the individual effects of these metals have been extensively researched, the present study aims to explore their combined effects and their association with serum sex hormones among adults. Data for this study were obtained from the general adult population of the 2013-2016 National Health and Nutrition Survey (NHANES) and included five metal (mercury, cadmium, manganese, lead, and selenium) exposures and three sex hormones (total testosterone [TT], estradiol [E2], and sex hormone-binding globulin [SHBG]) levels. The free androgen index (FAI) and TT/E2 ratio were also calculated. The relationships between blood metals and serum sex hormones were analysed using linear regression and restricted cubic spline regression. The effect of blood metal mixtures on sex hormone levels was examined using the quantile g-computation (qgcomp) model. There were 3,499 participants in this study, including 1,940 males and 1,559 females. In males, positive relationships between blood cadmium and serum SHBG (β=0.049 [0.006, 0.093]), lead and SHBG (β=0.040 [0.002, 0.079]), manganese and FAI (β=0.080 [0.016, 0.144]), and selenium and FAI (β=0.278 [0.054, 0.502]) were observed. In contrast, manganese and SHBG (β=-0.137 [-0.237, -0.037]), selenium and SHBG (β=-0.281 [-0.533, -0.028]), and manganese and TT/E2 ratio (β=-0.094 [-0.158, -0.029]) were negative associations. In females, blood cadmium and serum TT (β=0.082 [0.023, 0.141]), manganese and E2 (β=0.282 [0.072, 0.493]), cadmium and SHBG (β=0.146 [0.089, 0.203]), lead and SHBG (β=0.163 [0.095, 0.231]), and lead and TT/E2 ratio (β=0.174 [0.056, 0.292]) were positive relationships, while lead and E2 (β=-0.168 [-0.315, -0.021]) and FAI (β=-0.157 [-0.228, -0.086]) were negative associations. This correlation was stronger among elderly women (>50 years old). The qgcomp analysis revealed that the positive effect of mixed metals on SHBG was mainly driven by cadmium, while the negative effect of mixed metals on FAI was mainly driven by lead. Our findings indicate that exposure to heavy metals may disrupt hormonal homeostasis in adults, particularly in older women.
Collapse
Affiliation(s)
- Qiongshan Liu
- Department of Gynecology, Shantou Central Hospital, Shantou, 515031, China
| | - Shijian Hu
- Department of Rheumatology and Immunology, Shantou Central Hospital, Shantou, 515031, China
| | - Fufang Fan
- Department of Gynecology, Shantou Central Hospital, Shantou, 515031, China
| | - Zhixiang Zheng
- Department of Gynecology, Shantou Central Hospital, Shantou, 515031, China
| | - Xinye Zhou
- Centre for Reproductive Medicine, Shantou Central Hospital, Shantou, 515031, China
| | - Yuanfeng Zhang
- Department of Urology, Shantou Central Hospital, Shantou, 515031, China.
| |
Collapse
|
9
|
Zhang Y, Xing H, Hu Z, Xu W, Tang Y, Zhang J, Niu Q. Independent and combined associations of urinary arsenic exposure and serum sex steroid hormones among 6-19-year old children and adolescents in NHANES 2013-2016. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160883. [PMID: 36526194 DOI: 10.1016/j.scitotenv.2022.160883] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Arsenic exposure may disrupt sex steroid hormones, causing endocrine disruption. However, human evidence is limited and inconsistent, especially for children and adolescents. To evaluate the independent and combined associations between arsenic exposure and serum sex steroid hormones in children and adolescents, we conducted a cross-sectional analysis of data from 1063 participants aged 6 to 19 years from the 2013-2016 National Health and Nutrition Examination Survey (NHANES). Three urine arsenic metabolites were examined, as well as three serum sex steroid hormones, estradiol (E2), total testosterone (TT), and sex hormone-binding globulin (SHBG). The ratio of TT to E2 (TT/E2) and the free androgen index (FAI) generated by TT/SHBG were also assessed. Linear regression, weighted quantile sum (WQS) regression, and Bayesian kernel machine regression (BKMR) were used to evaluate the associations of individual or arsenic metabolite combinations with sex steroid hormones by gender and age stratification. Positive associations were found between total arsenic and arsenic metabolites with TT, E2, and FAI. In contrast, negative associations were found between arsenic metabolites and SHBG. Furthermore, there was an interaction after gender-age stratification between DMA and SHBG in female adolescents. Notably, based on the WQS and BKMR model results, the combined association of arsenic and its metabolites was positively associated with TT, E2, and FAI and negatively associated with SHBG. Moreover, DMA and MMA dominated the highest weights among the arsenic metabolites. Overall, our results indicate that exposure to arsenic, either alone or in mixtures, may alter sex steroid hormone levels in children and adolescents.
Collapse
Affiliation(s)
- Yuanli Zhang
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Hengrui Xing
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Zeyu Hu
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Wanjing Xu
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Yanling Tang
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Jingjing Zhang
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Qiang Niu
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China.
| |
Collapse
|
10
|
Vukelić D, Djordjevic AB, Anđelković M, Repić A, Baralić K, Ćurčić M, Đukić-Ćosić D, Boričić N, Antonijević B, Bulat Z. Derivation of benchmark doses for male reproductive toxicity in a subacute low-level Pb exposure model in rats. Toxicol Lett 2023; 375:69-76. [PMID: 36610527 DOI: 10.1016/j.toxlet.2023.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 11/10/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
The objectives of the study were to simulate low-level Pb exposure scenario in an animal model and to examine reproductive adverse effects. Based on obtained data, we have performed Benchmark dose (BMD)-response modelling. Male Wistar rats were randomized in seven groups (n = 6): one control and six treated with: 0.1, 0.5, 1, 3, 7, and 15 mg Pb/kg body weight, daily for 28 days by oral gavage. The rats were sacrificed and the blood and testes were used for further analysis of testosterone levels in serum, testicular essential metal levels and histological analysis. The Pb treatment led to a dose-dependent decrease of serum testosterone levels with a negative trend (BMDI 0.17-6.13 mg Pb/kg). Increase of Zn (dose-dependent, BMDI 0.004-19.7 mg Pb/kg) and Cu and a decrease of Mn testicular levels were also detected with unscathed histology of the testes. The presented results might be used in further evaluation of the point of departure in human health risk assessment for Pb.
Collapse
Affiliation(s)
- Dragana Vukelić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, 11221 Belgrade, Serbia.
| | - Aleksandra Buha Djordjevic
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, 11221 Belgrade, Serbia
| | - Milena Anđelković
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, 11221 Belgrade, Serbia; Health Center Kosovska Mitrovica, 38220 Kosovska Mitrovica, Serbia
| | - Aleksandra Repić
- Institute of Forensic Medicine, Faculty of Medicine University of Belgrade, 11000 Belgrade, Serbia
| | - Katarina Baralić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, 11221 Belgrade, Serbia
| | - Marijana Ćurčić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, 11221 Belgrade, Serbia
| | - Danijela Đukić-Ćosić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, 11221 Belgrade, Serbia
| | - Novica Boričić
- Institute of Pathology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Biljana Antonijević
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, 11221 Belgrade, Serbia
| | - Zorica Bulat
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, 11221 Belgrade, Serbia
| |
Collapse
|
11
|
Chao HH, Zhang Y, Dong PY, Gurunathan S, Zhang XF. Comprehensive review on the positive and negative effects of various important regulators on male spermatogenesis and fertility. Front Nutr 2023; 9:1063510. [PMID: 36726821 PMCID: PMC9884832 DOI: 10.3389/fnut.2022.1063510] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/23/2022] [Indexed: 01/17/2023] Open
Abstract
With the increasing global incidence of infertility, the influence of environmental factors, lifestyle habits, and nutrients on reproductive health has gradually attracted the attention of researchers. The quantity and quality of sperm play vital roles in male fertility, and both characteristics can be affected by external and internal factors. In this review, the potential role of genetic, environmental, and endocrine factors; nutrients and trace elements in male reproductive health, spermatozoa function, and fertility potency and the underlying mechanisms are considered to provide a theoretical basis for clinical treatment of infertility.
Collapse
Affiliation(s)
- Hu-He Chao
- Development Center for Medical Science and Technology, National Health Commission of the People's Republic of China, Beijing, China
| | - Ye Zhang
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong, China
| | - Pei-Yu Dong
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | | | - Xi-Feng Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China,*Correspondence: Xi-Feng Zhang ✉ ; ✉
| |
Collapse
|
12
|
Javorac D, Baralić K, Marić Đ, Mandić-Rajčević S, Đukić-Ćosić D, Bulat Z, Djordjevic AB. Exploring the endocrine disrupting potential of lead through benchmark modelling - Study in humans. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120428. [PMID: 36244500 DOI: 10.1016/j.envpol.2022.120428] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/01/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Exposure to low levels of a toxic metal lead (Pb) affects human health, and its effect as an endocrine disruptor has been reported. However, the precise role of Pb in endocrine health is still unclear because no dose-response relationship has been established for such an effect. The present study aimed to examine blood Pb levels (BLLs) in relation to serum levels of free triiodothyronine (fT3), free thyroxine (fT4), thyroid stimulating hormone (TSH), and insulin in 435 nonoccupationally exposed Serbian subjects (218 women, 217 men, 18-94 years of age, mean age 48). In addition, benchmark dose (BMD) values were calculated for these endocrine endpoints using the PROAST 70.1 software. An explicit dose-response dependency between BLL and TSH, fT3, fT4, testosterone, and insulin serum levels was evident from BMD modelling. The results support the positive association between BLLs and serum insulin levels, with observed dose-response and calculated BMD values of 1.49 and 0.74 μg Pb/dL in males and females, respectively. Collectively, our findings reported potential endocrine-disrupting effects of Pb at the environmental exposure levels experienced by current Serbian population. They also strengthen the notion that the blood Pb threshold level for an endocrine effect is low.
Collapse
Affiliation(s)
- Dragana Javorac
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, 11221, Belgrade, Serbia
| | - Katarina Baralić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, 11221, Belgrade, Serbia
| | - Đurđica Marić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, 11221, Belgrade, Serbia
| | - Stefan Mandić-Rajčević
- Institute of Social Medicine and School of Public Health and Health Management, Faculty of Medicine, University of Belgrade, Dr Subotića 15, Belgrade, Serbia
| | - Danijela Đukić-Ćosić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, 11221, Belgrade, Serbia
| | - Zorica Bulat
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, 11221, Belgrade, Serbia
| | - Aleksandra Buha Djordjevic
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, 11221, Belgrade, Serbia.
| |
Collapse
|
13
|
Pan K, Tu R, Cai Z, Huang Y, Zhang C. Association of blood lead with estradiol and sex hormone-binding globulin in 8-19-year-old children and adolescents. Front Endocrinol (Lausanne) 2023; 14:1096659. [PMID: 36843598 PMCID: PMC9944751 DOI: 10.3389/fendo.2023.1096659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND Metals can interfere with hormonal functioning through indirect mechanisms and by binding at the receptor site; thus, they may be associated with hormonal changes. However, there have been few studies on the health impact of metal exposure among children and adolescents. Thus, we aimed to examine the associations of blood lead level (BLL) with estradiol (E2) and sex hormone-binding globulin (SHBG) among children and adolescents aged 8-19 years in the National Health and Nutrition Examination Survey (NHANES) database. METHODS This was a cohort study of 2188 individuals from the NHANES. BLL was taken as independent variables, E2 and SHBG as dependent variable. We conducted weighted multivariate linear regression models and smooth curve fittings to evaluate the association between them. RESULTS The BLL was significantly positively associated with serum SHBG level in females, especially when the LnBLL quartiles are between Q3 and Q4. There was an inverted U-shaped association between BLL and E2 with the point of inflection at 1.86 μg/L and a U-shaped association between BLL and SHBG with the point of inflection at 1.86 μg/L in female adolescents aged 16-19 years. Meanwhile, In males, there was a positive trend of correlation between BLL and E2 in the 8-11 years, and 16-19 years groups. CONCLUSIONS This study found an inverted U-shaped association of BLL with E2 and a U-shaped association between BLL and SHBG in female adolescents aged 16-19 years. This indicates that adjusting blood lead exposure to mitigate the effects of lead on growth and development is important for adolescents aged 16-19 years. Controlling the BLL below 1.86 μg/L may minimize the damage to E2.
Collapse
Affiliation(s)
- Kaiyu Pan
- Department of Paediatrics, The First People’s Hospital of Xiaoshan District, Hangzhou, Zhejiang, China
| | - Rongliang Tu
- Department of Neonatology, Zhejiang Xiaoshan Hospital, Hangzhou, Zhejiang, China
| | - Zixiu Cai
- Department of Paediatrics, The First People’s Hospital of Xiaoshan District, Hangzhou, Zhejiang, China
| | - Yingdan Huang
- Department of Paediatrics, The Second People's Hospital of Xiaoshan District, Hangzhou, Zhejiang, China
| | - Chengyue Zhang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- *Correspondence: Chengyue Zhang,
| |
Collapse
|
14
|
Ge X, Ye G, He J, Bao Y, Zheng Y, Cheng H, Feng X, Yang W, Wang F, Zou Y, Yang X. Metal mixtures with longitudinal changes in lipid profiles: findings from the manganese-exposed workers healthy cohort. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:85103-85113. [PMID: 35793018 DOI: 10.1007/s11356-022-21653-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
The majority of epidemiological investigations on metal exposures and lipid metabolism employed cross-sectional designs and focused on individual metal. We explored the associations between metal mixture exposures and longitudinal changes in lipid profiles and potential sexual heterogeneity. We recruited 250 men and 73 women, aged 40 years at baseline (2012), and followed them up in 2020, from the manganese-exposed workers healthy cohort. We detected metal concentrations of blood cells at baseline with inductively coupled plasma mass spectrometry. Lipid profiles were repeatedly measured over 8 years of follow-up. We performed sparse partial least squares (sPLS) model to evaluate multi-pollutant associations. Bayesian kernel machine regression was utilized for metal mixtures as well as evaluating their joint impacts on lipid changes. In sPLS models, a positive association was found between manganese and change in total cholesterol (TC) (beta = 0.169), while a negative association was observed between cobalt (beta = - 0.134) and change in low density lipoprotein cholesterol (LDL-C) (beta = - 0.178) among overall participants, which were consistent in men. Interestingly, rubidium was positively associated with change in LDL-C (beta = 0.273) in women, while copper was negatively associated with change in TC (beta = - 0.359) and LDL-C (beta = - 0.267). Magnesium was negatively associated with change in TC (beta = - 0.327). We did not observe the significantly cumulative effect of metal mixtures on lipid changes. In comparison to other metals, manganese had a more significant influence on lipid change [group PIP (0.579) and conditional PIP (0.556) for TC change in men]. Furthermore, male rats exposed to manganese (20 mg/kg) had higher levels of LDL-C in plasma and more apparent inflammatory infiltration, vacuolation of liver cells, nuclear pyknosis, and fatty change than the controls. These findings highlight the potential role of metal mixtures in lipid metabolism with sex-dependent heterogeneity. More researches are needed to explore the underlying mechanisms.
Collapse
Affiliation(s)
- Xiaoting Ge
- Department of Public Health, School of Medicine, Guangxi University of Science and Technology, Liuzhou, 545006, China
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Guohong Ye
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Junxiu He
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Yu Bao
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Yuan Zheng
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Hong Cheng
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Xiuming Feng
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Wenjun Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Fei Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Yunfeng Zou
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China
| | - Xiaobo Yang
- Department of Public Health, School of Medicine, Guangxi University of Science and Technology, Liuzhou, 545006, China.
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, China.
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
15
|
Qiu Y, Lv Y, Zhang M, Ji S, Wu B, Zhao F, Qu Y, Sun Q, Guo Y, Zhu Y, Lin X, Zheng X, Li Z, Fu H, Li Y, Song H, Wei Y, Ding L, Chen G, Zhu Y, Cao Z, Shi X. Cadmium exposure is associated with testosterone levels in men: A cross-sectional study from the China National Human Biomonitoring. CHEMOSPHERE 2022; 307:135786. [PMID: 35872064 DOI: 10.1016/j.chemosphere.2022.135786] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/21/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Sex hormone disorders can cause adverse health consequences. While experimental data suggests that cadmium (Cd) disrupts the endocrine system, little is known about the link between Cd exposure and sex hormones in men. METHODS We measured blood cadmium (B-Cd), urine cadmium (U-Cd), serum testosterone and serum estradiol in men aged ≥18 years old participating in the China National Human Biomonitoring program, from 2017 to 2018. Urine cadmium adjusted for creatinine (Ucr-Cd) and the serum testosterone to serum estradiol ratio (T/E2) were calculated. The association of Cd exposure to serum testosterone and T/E2 in men was analyzed with multiple linear regression models. RESULTS Among Chinese men ≥18 years old, the weighted geometric mean (95% CI) of B-Cd and Ucr-Cd levels were 1.23 (1.12-1.35) μg/L and 0.53 (0.47-0.59) μg/g, respectively. The geometric means (95% CI) of serum testosterone and T/E2 were 18.56 (17.92-19.22) nmol/L and 143.86 (137.24-150.80). After adjusting for all covariates, each doubling of B-Cd level was associated with a 5.04% increase in serum testosterone levels (β = 0.071; 95%CI: 0.057-0.086) and a 4.03% increase in T/E2 (β = 0.057; 95%CI: 0.040-0.075); similar findings were found in Ucr-Cd. CONCLUSIONS In Chinese men, Cd may be an endocrine disruptor, which is positively associated with serum testosterone and T/E2.
Collapse
Affiliation(s)
- Yidan Qiu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; Department of Big Data in Health Science, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuebin Lv
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Miao Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Saisai Ji
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Bing Wu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Feng Zhao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yingli Qu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qi Sun
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yanbo Guo
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Yuanduo Zhu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiao Lin
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xulin Zheng
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zheng Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hui Fu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yawei Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Haocan Song
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuan Wei
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Liang Ding
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Guangdi Chen
- Institute of Environmental Health, School of Public Health, and Bioelectromagnetics Laboratory, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ying Zhu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhaojin Cao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaoming Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; Department of Big Data in Health Science, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
16
|
Sarzo B, Ballester F, Soler-Blasco R, Lopez-Espinosa MJ, Lozano M, Iriarte G, Beneito A, Riutort-Mayol G, Murcia M, Llop S. Pre and postnatal exposure to mercury and sexual development in 9-year-old children in Spain: The role of brain-derived neurotrophic factor. ENVIRONMENTAL RESEARCH 2022; 213:113620. [PMID: 35697081 DOI: 10.1016/j.envres.2022.113620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Early exposure to mercury has been related to endocrine disruption. Steroid hormones play a crucial role in neural cell migration, differentiation, etc., as well as protecting against several neurotoxic compounds. We investigate the relation between mercury exposure and children's sexual development, and we evaluate the possible influence of different brain-derived neurotrophic factor (BDNF) polymorphisms on this association. Our study sample comprised 412 9-year-old children participating in the INMA cohort (2004-2015). Mercury concentrations were measured at birth (cord blood) and at 4 and 9 years of age (hair). Sexual development was assessed by levels of sex steroid hormones (estradiol and testosterone) in saliva and the Tanner stages of sex development at 9 years (categorized as 1: prepuberty and >1: pubertal onset). Covariates and confounders were collected through questionnaires during pregnancy and childhood. Polymorphisms in the BDNF gene were genotyped in cord blood DNA. Multivariate linear regression analyses were performed between mercury levels and children's sexual development by sex. Effect modification by genetic polymorphisms and fish intake was assessed. We found marginally significant inverse associations between postnatal exposure to mercury (at 9 years) and testosterone levels (β[95%CI] = -0.16[-0.33,0.001], and -0.20[-0.42,0.03], for boys and girls, respectively). Additionally, we found that prenatal mercury was negatively associated with Tanner stage >1 in boys. Finally, we found significant genetic interactions for some single nucleotide polymorphisms in the BDNF gene. In conclusion, pre and postnatal exposure to mercury seems to affect children's sexual development and BDNF may play a role in this association, but further research would be needed.
Collapse
Affiliation(s)
- Blanca Sarzo
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Department of Microbiology and Ecology, Universitat de València, Valencia, Spain; School of Mathematics, University of Edinburgh, Edinburgh, UK
| | - Ferran Ballester
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; Faculty of Nursing and Chiropody, Universitat de València, Valencia, Spain
| | - Raquel Soler-Blasco
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Maria-Jose Lopez-Espinosa
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; Faculty of Nursing and Chiropody, Universitat de València, Valencia, Spain.
| | - Manuel Lozano
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Universitat de València, Valencia, Spain
| | - Gorka Iriarte
- Laboratorio de Salud Pública, Vitoria Gasteiz, Alava, Spain
| | - Andrea Beneito
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain
| | - Gabriel Riutort-Mayol
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Spain
| | - Mario Murcia
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Health Information Systems Analysis Service, Conselleria de Sanitat, Generalitat Valenciana, Valencia, Spain
| | - Sabrina Llop
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| |
Collapse
|
17
|
Rami Y, Ebrahimpour K, Maghami M, Shoshtari-Yeganeh B, Kelishadi R. The Association Between Heavy Metals Exposure and Sex Hormones: a Systematic Review on Current Evidence. Biol Trace Elem Res 2022; 200:3491-3510. [PMID: 34668113 DOI: 10.1007/s12011-021-02947-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Abstract
The general population is voluntarily or unintentionally exposed to heavy metals through ingestion of food, polluted water, or contact with soil, dust, or polluted air. A number of metals are considered as endocrine disruptors and can alter the level of reproductive hormones. This study aims to systematically review the epidemiological studies on the association between heavy metals exposure and sex hormones level. We conducted a systematic search from available databases, including PubMed, Clarivate Web of Science, Scopus, Google Scholar, and Cochrane Collaboration, until April 2021. The relevant studies were selected, and two reviewers conducted the quality assessment. Then, data were extracted based on the inclusion criteria. We identified nine articles related to the association between heavy metals exposure and sex hormones level. We summarized the relevant information. Due to the diversity of metals and the variety of sex hormones, the effect of exposure on hormones level was not clear; however in most studies, at least for one metal, a significant association (inverse or positive) was observed between metals exposure and hormones level. Heavy metals exposure may potentially alter sex hormone levels; however, further research is needed to evaluate the impact of this association.
Collapse
Affiliation(s)
- Yasaman Rami
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Karim Ebrahimpour
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahboobeh Maghami
- Department of Bio-Statistics and Epidemiology, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bahareh Shoshtari-Yeganeh
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Roya Kelishadi
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
18
|
Xiao L, Yang C, Gu W, Liu R, Chen D. Associations between serum copper, zinc, selenium level and sex hormones among 6-19 years old children and adolescents in NHANES 2013-2016. Front Endocrinol (Lausanne) 2022; 13:924338. [PMID: 36171898 PMCID: PMC9511025 DOI: 10.3389/fendo.2022.924338] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/19/2022] [Indexed: 12/04/2022] Open
Abstract
Copper, zinc, and selenium are essential trace elements for human and have important effects on sex hormones. There are few studies on the relationships between the three trace elements and sex hormones. Therefore, our study aimed to investigate the relationships between serum copper, zinc, selenium and testosterone, estradiol, SHBG using data from the National Health and Nutrition Examination Survey (NHANES) 2013-2016 in participants 6-19 years. 1097 participants were enrolled and stratified into male/female children and adolescents. Weighted linear regression models combined regression diagnosis were used to estimate the relationships between trace elements and sex hormones according to the different stratifications. Our results showed that copper was inversely associated with testosterone and estradiol but positively correlated with SHBG. Zinc had positive relationships with testosterone in male adolescents and female children but an inverse relationship with testosterone in female adolescents. Furthermore, a negative association was observed between zinc and SHBG. With the rise of selenium level, testosterone and estradiol were increased but SHBG was decreased. In general, this study used more standardized statistical methods to investigate the relationships between copper, zinc, selenium and testosterone, estradiol, SHBG. Further study should pay attention to some details in statistical methods.
Collapse
Affiliation(s)
- Lishun Xiao
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China
- Center for Medical Statistics and Data Analysis, Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, China
| | - Chengcheng Yang
- The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Wen Gu
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Rong Liu
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China
- Center for Medical Statistics and Data Analysis, Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Rong Liu, ; Ding Chen,
| | - Ding Chen
- School of medical information and engineering, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Rong Liu, ; Ding Chen,
| |
Collapse
|
19
|
Colucci S, Marques O, Altamura S. 20 years of Hepcidin: How far we have come. Semin Hematol 2021; 58:132-144. [PMID: 34389105 DOI: 10.1053/j.seminhematol.2021.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/12/2021] [Accepted: 05/31/2021] [Indexed: 12/20/2022]
Abstract
Twenty years ago the discovery of hepcidin deeply changed our understanding of the regulation of systemic iron homeostasis. It is now clear that hepcidin orchestrates systemic iron levels by controlling the amount of iron exported into the bloodstream through ferroportin. Hepcidin expression is increased in situations where systemic iron levels should be reduced, such as in iron overload and infection. Conversely, hepcidin is repressed during iron deficiency, hypoxia or expanded erythropoiesis, to increase systemic iron availability and sustain erythropoiesis. In this review, we will focus on molecular mechanisms of hepcidin regulation and on the pathological consequences of their disruption.
Collapse
Affiliation(s)
- Silvia Colucci
- Department of Pediatric Hematology, Oncology and Immunology - University of Heidelberg, Heidelberg, Germany.; Molecular Medicine Partnership Unit, EMBL and University of Heidelberg, Heidelberg, Germany
| | - Oriana Marques
- Department of Pediatric Hematology, Oncology and Immunology - University of Heidelberg, Heidelberg, Germany.; Molecular Medicine Partnership Unit, EMBL and University of Heidelberg, Heidelberg, Germany
| | - Sandro Altamura
- Department of Pediatric Hematology, Oncology and Immunology - University of Heidelberg, Heidelberg, Germany.; Molecular Medicine Partnership Unit, EMBL and University of Heidelberg, Heidelberg, Germany..
| |
Collapse
|
20
|
Zan G, Li L, Cheng H, Huang L, Huang S, Luo X, Xiao L, Liu C, Zhang H, Mo Z, Yang X. Mediated relationships between multiple metals exposure and fasting blood glucose by reproductive hormones in Chinese men. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 278:116791. [PMID: 33684679 DOI: 10.1016/j.envpol.2021.116791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
Previous studies have reported metals exposure contribute to the change of fasting blood glucose (FBG) level. However, the roles of reproductive hormones in their associations have not been fully elucidated. The aim of the study is to investigate the associations of multiple serum metals with reproductive hormones, and to further explore potential roles of reproductive hormones in relationships between metals exposure and FBG level. A total of 1911 Chinese Han men were analyzed by a cross-sectional study. We measured serum levels of 22 metals by inductively coupled plasma mass spectrometer (ICP-MS). FBG, total testosterone (TT), estradiol (E2), follicle stimulating hormone (FSH), and sex hormone-binding globulin (SHBG) levels were determined. Least absolute shrinkage and selection operator (LASSO) regression models were conducted to select important metals, and restricted cubic spline models were then used to estimate dose-response relationships between selected metals and reproductive hormones. We also conducted mediation analyses to evaluate whether reproductive hormones played mediating roles in the associations between metals and FBG. We found significant inverse dose-dependent trends of copper, tin and zinc with E2; zinc with SHBG; copper and nickel with TT, while significant positive dose-dependent trend of iron with E2, respectively. Moreover, approximately inverted U-shaped associations existed between lead and SHBG, iron and TT. In addition, E2, SHBG and TT were negatively associated with FBG level. In mediation analyses, the association of copper with FBG was mediated by E2 and TT, with a mediation ratio of 10.4% and 22.1%, respectively. Furthermore, E2 and SHBG mediated the relationship of zinc with FBG, with a mediation ratio of 7.8% and 14.5%, respectively. E2 mediated 11.5% of positive relationship between tin with FBG. Our study suggested that the associations of metals exposure with FBG may be mediated by reproductive hormones.
Collapse
Affiliation(s)
- Gaohui Zan
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China; Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Key Laboratory for Genomic and Personalized Medicine, Nanning, Guangxi, China; Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi, China
| | - Longman Li
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Key Laboratory for Genomic and Personalized Medicine, Nanning, Guangxi, China; Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi, China
| | - Hong Cheng
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China; Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Key Laboratory for Genomic and Personalized Medicine, Nanning, Guangxi, China; Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi, China
| | - Lulu Huang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China; Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Key Laboratory for Genomic and Personalized Medicine, Nanning, Guangxi, China; Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi, China
| | - Sifang Huang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China; Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Key Laboratory for Genomic and Personalized Medicine, Nanning, Guangxi, China; Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi, China
| | - Xiaoyu Luo
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China; Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Key Laboratory for Genomic and Personalized Medicine, Nanning, Guangxi, China; Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi, China
| | - Lili Xiao
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Chaoqun Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Haiying Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China; Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Key Laboratory for Genomic and Personalized Medicine, Nanning, Guangxi, China; Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi, China
| | - Zengnan Mo
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Key Laboratory for Genomic and Personalized Medicine, Nanning, Guangxi, China; Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi, China
| | - Xiaobo Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China; Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Key Laboratory for Genomic and Personalized Medicine, Nanning, Guangxi, China; Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, Guangxi, China; Department of Public Health, School of Medicine, Guangxi University of Science and Technology, Liuzhou, Guangxi, China.
| |
Collapse
|
21
|
Tian M, Wang YX, Wang X, Wang H, Liu L, Zhang J, Nan B, Shen H, Huang Q. Environmental doses of arsenic exposure are associated with increased reproductive-age male urinary hormone excretion and in vitro Leydig cell steroidogenesis. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124904. [PMID: 33385727 DOI: 10.1016/j.jhazmat.2020.124904] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/04/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Humans are ubiquitously exposed to arsenic from multiple sources, and chronic arsenic exposure may be associated with male reproductive health. Although association regarding arsenic exposure and sex hormone secretion in blood has been reported, sex hormone excretion in urine studies is lacking. Urinary sex hormone excretion has emerged as a complementary strategy to evaluate gonadal function. Herein, we determined the associations between environmental exposure to arsenic and urinary sex hormone elimination and in vitro Leydig cell steroidogenesis. Concentrations of arsenic and testosterone (T), estradiol (E2) and progesterone (P) in repeated urine samples were determined among 451 reproductive-age males. Moreover, an in vitro Leydig cell MLTC-1 steroidogenesis experiment was designed to simulate real-world scenarios of low human exposure. Multivariable linear regression models were used to assess the associations of urinary arsenic levels with urinary hormones. Urinary arsenic concentrations were positively associated with urinary sex hormone (T, E2, and P) levels. An in vitro test further demonstrated that a population-based environmental exposure range (0.01-5 μM) of arsenic induced Leydig cell steroidogenesis potency. Our results indicate that low-dose arsenic exposure exhibits an endocrine disrupting effect by stimulating Leydig cell steroidogenesis and accelerating urinary steroid excretion, which extends previous knowledge of the inverse association of high-dose arsenic exposure with sexual steroid production that is assumed to be anti-androgen.
Collapse
Affiliation(s)
- Meiping Tian
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Yi-Xin Wang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Xiaofei Wang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Heng Wang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan Municipal Center for Disease Control and Prevention, Zhoushan, Zhejiang 316021, China
| | - Liangpo Liu
- School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Jie Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Bingru Nan
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Heqing Shen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Qingyu Huang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
22
|
Ge X, Yang A, Huang S, Luo X, Hou Q, Huang L, Zhou Y, Li D, Lv Y, Li L, Cheng H, Chen X, Zan G, Tan Y, Liu C, Xiao L, Zou Y, Yang X. Sex-specific associations of plasma metals and metal mixtures with glucose metabolism: An occupational population-based study in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:143906. [PMID: 33341635 DOI: 10.1016/j.scitotenv.2020.143906] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Studies with multi-pollutant approach on the relationships between multiple metals and fasting plasma glucose (FPG) are limited. Few studies are available on the potential sex-specific associations between metal exposures and glucose metabolism. We explored the associations between 22 plasma metals and FPG level among the 769 participants from the manganese-exposed workers healthy cohort in China. We applied a sparse partial least squares (sPLS) regression followed by ordinary least-squares regression to evaluate multi-pollutant association. Bayesian kernel machine regression (BKMR) model was used to deal with metal mixtures and evaluate their joint effects on FPG level. In the sPLS model, negative associations on FPG levels were observed for plasma iron (belta = -0.066), cobalt (belta = -0.075), barium (belta = -0.109), and positive associations for strontium (belta = 0.082), and selenium (belta = 0.057) in men, which overlapped with the results among the overall participants. Among women, plasma copper (belta = 0.112) and antimony (belta = 0.137) were positively associated with elevated FPG level. Plasma magnesium was negatively associated with FPG level in both sexes (belta = -0.071 in men and belta = -0.144 in women). The results of overlapped for plasma magnesium was selected as the significant contributor to decreasing FPG level in the multi-pollutant, single-metal, and multi-metal models. BKMR model showed a significantly negative over-all effect of six metal mixtures (magnesium, iron, cobalt, selenium, strontium and barium) on FPG level among the overall participants from all the metals fixed at 50th percentile. In summary, our findings underline the probable role of metals in glucose homeostasis with potential sex-dependent heterogeneities, and suggest more researches are needed to explore the sex-specific associations of metal exposures with risk of diabetes.
Collapse
Affiliation(s)
- Xiaoting Ge
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Aimin Yang
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, SAR 999077, China
| | - Sifang Huang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Xiaoyu Luo
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Qingzhi Hou
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Lulu Huang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Yanting Zhou
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Defu Li
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Yingnan Lv
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Longman Li
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Hong Cheng
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Xiang Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Gaohui Zan
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Yanli Tan
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Chaoqun Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Lili Xiao
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Yunfeng Zou
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China
| | - Xiaobo Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China; Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, Guangxi, China; Department of Public Health, School of Medicine, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, China.
| |
Collapse
|
23
|
|
24
|
Janjuha R, Bunn D, Hayhoe R, Hooper L, Abdelhamid A, Mahmood S, Hayden-Case J, Appleyard W, Morris S, Welch A. Effects of Dietary or Supplementary Micronutrients on Sex Hormones and IGF-1 in Middle and Older Age: A Systematic Review and Meta-Analysis. Nutrients 2020; 12:E1457. [PMID: 32443563 PMCID: PMC7284480 DOI: 10.3390/nu12051457] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/29/2020] [Accepted: 05/06/2020] [Indexed: 12/11/2022] Open
Abstract
Observational research suggests that micronutrients may be protective for sarcopenia, a key health issue during ageing, potentially via effects on hormone synthesis and metabolism. We aimed to carry out a systematic review of RCTs investigating effects of increasing dietary or supplemental micronutrient intake on sex hormones and IGF-1 in individuals aged 45 years or older. We searched MEDLINE, EMBASE and Cochrane databases for RCTs reporting the effects of different micronutrients (vitamins A, C, D, or E; carotenoids; iron; copper; zinc; magnesium; selenium; and potassium) on sex hormones or IGF-1. Of the 26 RCTs identified, nine examined effects of vitamin D, nine of multi-nutrients, four of carotenoids, two of selenium, one of zinc, and one of vitamin E. For IGF-1 increasing vitamin D (MD: -0.53 nmol/L, 95% CI: -1.58, 0.52), multi-nutrients (MD: 0.60 nmol/L, 95% CI -1.12 to 2.33) and carotenoids (MD -1.32 nmol/L; 95% CI -2.76 to 0.11) had no significant effect on circulating concentrations. No significant effects on sex hormones of other micronutrients were found, but data were very limited. All trials had significant methodological limitations making effects of micronutrient supplementation on sex hormones unclear. Further high quality RCTs with physiological doses of micronutrients in people with low baseline intakes or circulating concentrations, using robust methodology, are required to assess effects of supplementation adequately.
Collapse
Affiliation(s)
- Ryan Janjuha
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK; (R.J.); (R.H.); (L.H.); (A.A.); (S.M.); (J.H.-C.); (W.A.); (S.M.)
| | - Diane Bunn
- School of Health Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK;
| | - Richard Hayhoe
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK; (R.J.); (R.H.); (L.H.); (A.A.); (S.M.); (J.H.-C.); (W.A.); (S.M.)
| | - Lee Hooper
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK; (R.J.); (R.H.); (L.H.); (A.A.); (S.M.); (J.H.-C.); (W.A.); (S.M.)
| | - Asmaa Abdelhamid
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK; (R.J.); (R.H.); (L.H.); (A.A.); (S.M.); (J.H.-C.); (W.A.); (S.M.)
| | - Shaan Mahmood
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK; (R.J.); (R.H.); (L.H.); (A.A.); (S.M.); (J.H.-C.); (W.A.); (S.M.)
| | - Joseph Hayden-Case
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK; (R.J.); (R.H.); (L.H.); (A.A.); (S.M.); (J.H.-C.); (W.A.); (S.M.)
| | - Will Appleyard
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK; (R.J.); (R.H.); (L.H.); (A.A.); (S.M.); (J.H.-C.); (W.A.); (S.M.)
| | - Sophie Morris
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK; (R.J.); (R.H.); (L.H.); (A.A.); (S.M.); (J.H.-C.); (W.A.); (S.M.)
| | - Ailsa Welch
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK; (R.J.); (R.H.); (L.H.); (A.A.); (S.M.); (J.H.-C.); (W.A.); (S.M.)
| |
Collapse
|
25
|
The Relationship between Selected Bioelements and Depressiveness Associated with Testosterone Deficiency Syndrome in Aging Men. ACTA ACUST UNITED AC 2020; 56:medicina56030125. [PMID: 32183007 PMCID: PMC7143167 DOI: 10.3390/medicina56030125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/11/2020] [Accepted: 03/11/2020] [Indexed: 11/26/2022]
Abstract
Background and Objectives: Abnormal concentrations of bioelements (magnesium, manganese, chromium, copper, zinc) have been associated with physical and emotional dysfunctions, including depression. This association, however, has not been analyzed in testosterone deficiency syndrome (TDS) or patients with depressiveness, i.e., when individual symptoms do not form the picture of a full-syndrome depressive disorder. This study aimed to assess the relationship between concentrations of selected bioelements and the incidence of depressive symptoms in men aged 50 years and older with a concurrent testosterone deficiency syndrome. Material and Methods: Blood samples were taken from 314 men; the mean age of the population was 61.36 ± 6.38 years. Spectrophotometric method for biochemical analysis of magnesium (Mg), manganese (Mn), chromium (Cr), copper (Cu), and zinc (Zn) was used. The diagnosis of testosterone deficiency syndrome (TDS) was based on the total testosterone (TT), free testosterone (FT), estradiol (E2), and dehydroepiandrosterone sulfate (DHEAS) levels by ELISA. Each participant completed the Androgen Deficiency in Aging Male (ADAM) questionnaire, as well as the Beck Depression Inventory (BDI-Ia) measuring the severity of depressive symptoms. Results: Emotional disturbances manifested as depressive symptoms were diagnosed in 28.7% of all participants and testosterone deficiency syndrome in 49.3%. In the TDS group, the analysis showed a significant correlation between the level of manganese (R = 0.225, p = 0.005) and chromium (R = 0.185, p = 0.021) with the incidence of depression. Conclusions: The results of our study demonstrated a relationship between manganese and chromium concentrations with the incidence of depression in men aged 50 years and older with a concurrent testosterone deficiency syndrome. This may indicate that there is a correlation between these bioelements, as well as emotional disorders manifested as depressive symptoms in aging men with a diagnosed testosterone deficiency.
Collapse
|
26
|
Robberecht H, De Bruyne T, Davioud-Charvet E, Mackrill J, Hermans N. Selenium Status in Elderly People: Longevity and Age-Related Diseases. Curr Pharm Des 2020; 25:1694-1706. [PMID: 31267854 DOI: 10.2174/1381612825666190701144709] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 06/18/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Selenium (Se) is a trace element active in selenoproteins, which can regulate oxidative stress. It is generally perceived as an import factor for maintaining health in the elderly. METHODS The goal of this review is to discuss selenium concentration in biological samples, primarily serum or plasma, as a function of age and its relation with longevity. The elemental level in various age-related diseases is reviewed. CONCLUSION Highest selenium values were observed in healthy adults, while in an elderly population significantly lower concentrations were reported. Variables responsible for contradictory findings are mentioned. Risk and benefits of Se-supplementation still remain under debate.
Collapse
Affiliation(s)
- Harry Robberecht
- Research Group NatuRA, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Tess De Bruyne
- Research Group NatuRA, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Elisabeth Davioud-Charvet
- Laboratoire d'Innovation Moleculaire et Application (LIMA), UMR7042 CNRSUnistra- UHA, European School of Chemistry, Polymers and Materials (ECPM), 25, rue Becquerel, F-67087 Strasbourg, France
| | - John Mackrill
- Department of Physiology, School of Medicine, University College Cork, Western Gateway Building, Western Road, Cork, T12XF62, Ireland
| | - Nina Hermans
- Research Group NatuRA, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Antwerp, Belgium
| |
Collapse
|
27
|
Adjepong D, Jahangir S, Malik BH. The Effect of Zinc on Post-neurosurgical Wound Healing: A Review. Cureus 2020; 12:e6770. [PMID: 32140337 PMCID: PMC7039353 DOI: 10.7759/cureus.6770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 01/25/2020] [Indexed: 01/24/2023] Open
Abstract
The aim of this article is to explore neurosurgeons' knowledge and understanding of the physiology of zinc and provide current information about the role zinc plays in post-neurological wound healing. We review several medical journals and bring together the most updated information related to lesion-healing after surgery.
Collapse
Affiliation(s)
- Dennis Adjepong
- Neurological Surgery, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Saira Jahangir
- Neuroscience, California Institute of Behavioral Neuroscience and Psychology, Fairfield, USA
| | - Bilal Haider Malik
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| |
Collapse
|
28
|
Siblerud R, Mutter J, Moore E, Naumann J, Walach H. A Hypothesis and Evidence That Mercury May be an Etiological Factor in Alzheimer's Disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E5152. [PMID: 31861093 PMCID: PMC6950077 DOI: 10.3390/ijerph16245152] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 12/19/2022]
Abstract
Mercury is one of the most toxic elements and causes a multitude of health problems. It is ten times more toxic to neurons than lead. This study was created to determine if mercury could be causing Alzheimer's disease (AD) by cross referencing the effects of mercury with 70 factors associated with AD. The results found that all these factors could be attributed to mercury. The hallmark changes in AD include plaques, beta amyloid protein, neurofibrillary tangles, phosphorylated tau protein, and memory loss-all changes that can be caused by mercury. Neurotransmitters such as acetylcholine, serotonin, dopamine, glutamate, and norepinephrine are inhibited in patients with Alzheimer's disease, with the same inhibition occurring in mercury toxicity. Enzyme dysfunction in patients with Alzheimer's disease include BACE 1, gamma secretase, cyclooxygenase-2, cytochrome-c-oxidase, protein kinases, monoamine oxidase, nitric oxide synthetase, acetyl choline transferase, and caspases, all which can be explained by mercury toxicity. Immune and inflammatory responses seen in patients with Alzheimer's disease also occur when cells are exposed to mercury, including complement activation, cytokine expression, production of glial fibrillary acid protein antibodies and interleukin-1, transforming growth factor, beta 2 microglobulins, and phosphodiesterase 4 stimulation. Genetic factors in patients with Alzheimer's disease are also associated with mercury. Apolipoprotein E 4 allele increases the toxicity of mercury. Mercury can inhibit DNA synthesis in the hippocampus, and has been associated with genetic mutations of presenilin 1 and 2, found in AD. The abnormalities of minerals and vitamins, specifically aluminum, calcium, copper, iron, magnesium, selenium, zinc, and vitamins B1, B12, E, and C, that occur in patients with Alzheimer's disease, also occur in mercury toxicity. Aluminum has been found to increase mercury's toxicity. Likewise, similar biochemical factors in AD are affected by mercury, including changes in blood levels of homocysteine, arachidonic acid, DHEA sulfate, glutathione, hydrogen peroxide, glycosamine glycans, acetyl-L carnitine, melatonin, and HDL. Other factors seen in Alzheimer's disease, such as increased platelet activation, poor odor identification, hypertension, depression, increased incidences of herpes virus and chlamydia infections, also occur in mercury exposure. In addition, patients diagnosed with Alzheimer's disease exhibit higher levels of brain mercury, blood mercury, and tissue mercury in some studies. The greatest exogenous sources of brain mercury come from dental amalgams. Conclusion: This review of the literature strongly suggests that mercury can be a cause of Alzheimer's Disease.
Collapse
Affiliation(s)
- Robert Siblerud
- Rocky Mountain Research Institute, 9435 Olsen Court, Wellington, CO 80549, USA
| | | | - Elaine Moore
- Memorial Hospital, Colorado Springs, CO 80549 (Retired), USA;
| | - Johannes Naumann
- European Institute for Physical Therapy and Balneology, Stadtsr 7, D-79104 Freiburg, Germany;
| | - Harald Walach
- Department of Psychology, University Witten-Herdecke, 58455 Witten, Germany;
| |
Collapse
|
29
|
Wang YX, Pan A, Feng W, Liu C, Huang LL, Ai SH, Zeng Q, Lu WQ. Variability and exposure classification of urinary levels of non-essential metals aluminum, antimony, barium, thallium, tungsten and uranium in healthy adult men. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2019; 29:424-434. [PMID: 29269756 DOI: 10.1038/s41370-017-0002-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 08/18/2017] [Indexed: 06/07/2023]
Abstract
Arsenic, cadmium and lead are well-known toxic metals, and there are substantial studies on variability of these metals in urine to optimize design of exposure assessment. For urinary levels of other nonessential metals such as aluminum (Al), antimony (Sb), barium (Ba), thallium (Tl), tungsten (W) and uranium (U), however, their within-individual and between-individual variability are unclear. Therefore, we collected 529 samples from 11 healthy adult men on 8 days during a 3-month period. We measured urinary metals and creatinine (Cr) levels, assessed the reproducibility using intraclass correlation coefficients (ICCs), and performed sensitivity and specificity analyses to assess how well 1, 2 or 3 specimens could classify exposure. Al, Sb, Ba, W and U levels measured from spot samples varied greatly over days and months (Cr-adjusted ICCs = 0.01-0.14). Serial measures of Tl levels measured from spot samples had fair-to-good reproducibility over 5 consecutive days (Cr-adjusted ICC = 0.40), but worsened when the specimens were collected months apart (Cr-adjusted ICC = 0.16). To identify men who were highly exposed (top 33%) based on their 3-month averages, tests of single spot samples and tests of first-morning voids had high specificities (0.73-0.85) but relatively low sensitivities (0.27-0.60). Collection of repeated urine specimens from each individual improved the classification.
Collapse
Affiliation(s)
- Yi-Xin Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - An Pan
- Department of Epidemiology and Biostatistics School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Feng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Chong Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Li-Li Huang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Song-Hua Ai
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Wen-Qing Lu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
30
|
Van Hemelrijck M, Sollie S, Nelson WG, Yager JD, Kanarek NF, Dobs A, Platz EA, Rohrmann S. Selenium and Sex Steroid Hormones in a U.S. Nationally Representative Sample of Men: A Role for the Link between Selenium and Estradiol in Prostate Carcinogenesis? Cancer Epidemiol Biomarkers Prev 2018; 28:578-583. [PMID: 30482876 DOI: 10.1158/1055-9965.epi-18-0520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/25/2018] [Accepted: 11/14/2018] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Given the recent findings from pooled studies about a potential inverse association between selenium levels and prostate cancer risk, this cross-sectional study aimed to investigate the association between serum selenium and serum concentrations of sex steroid hormones including estradiol in a nationally representative sample of U.S. men to investigate one mechanism by which selenium may influence prostate cancer risk. METHODS The study included 1,420 men ages 20 years or older who participated in the Third National Health and Nutrition Examination Survey between 1988 and 1994. We calculated age/race-ethnicity-adjusted and multivariable-adjusted geometric mean serum concentrations of total and estimated free testosterone and estradiol, androstanediol glucuronide, and sex hormone binding globulin, and compared them across quartiles of serum selenium. RESULTS Adjusting for age, race/ethnicity, smoking status, serum cotinine, household income, physical activity, alcohol consumption, and percent body fat, mean total estradiol [e.g., Q1, 38.00 pg/mL (95% confidence interval (CI), 36.03-40.08) vs. Q4, 35.29 pg/mL (95% CI, 33.53-37.14); P trend = 0.050] and free estradiol [e.g., Q1, 0.96 pg/mL (95% CI, 0.92-1.01) vs. Q4, 0.90 (95% CI, 0.85-0.95); P trend = 0.065] concentrations decreased over quartiles of selenium. Stratification by smoking and alcohol consumption, showed that the latter observation was stronger for never smokers (P interaction = 0.073) and those with limited alcohol intake (P interaction = 0.017). No associations were observed for the other sex steroid hormones studied. CONCLUSIONS Our findings suggests that a possible mechanism by which selenium may be protective for prostate cancer is related to estrogen. IMPACT Further studies of longitudinal measurements of serum and toenail selenium in relation to serum measurements of sex steroid hormones are needed.
Collapse
Affiliation(s)
- Mieke Van Hemelrijck
- King's College London, School of Cancer and Pharmaceutical Sciences, Translational Oncology and Urology Research (TOUR), London, United Kingdom.
| | - Sam Sollie
- King's College London, School of Cancer and Pharmaceutical Sciences, Translational Oncology and Urology Research (TOUR), London, United Kingdom
| | - William G Nelson
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - James D Yager
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Norma F Kanarek
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Adrian Dobs
- Division of Endocrinology, Diabetes and Metabolism, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Elizabeth A Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Sabine Rohrmann
- Department of Chronic Disease Epidemiology, Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland.
| |
Collapse
|
31
|
Yang H, Wang J, Yang X, Wu F, Qi Z, Xu B, Liu W, Deng Y. Occupational manganese exposure, reproductive hormones, and semen quality in male workers: A cross-sectional study. Toxicol Ind Health 2018; 35:53-62. [PMID: 30466360 DOI: 10.1177/0748233718810109] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
It has been found that exposure to manganese (Mn) could induce reproductive dysfunction, but its occupational risk in male workers is unclear. This study aims to assess the association of occupational Mn exposure with reproductive hormones and semen quality in a cross-sectional study. Urinary Mn, semen quality, and reproductive hormones were explored in 84 male workers occupationally exposed to Mn and 92 referents. Multiple linear regression analyses were used to assess the relationship. Urinary Mn levels in Mn-exposed workers ranged from 0.56 to 34.25 µg/L, and the average level was 15.92 ± 8.49 µg/L. Compared with the control group, gonadotropin-releasing hormone (GnRH) levels and luteinizing hormone (LH) levels increased significantly and the levels of testosterone (TSTO) decreased significantly in the Mn-exposed group. There was a significant positive linear association between urinary Mn and GnRH and LH, while the linear association between urinary Mn and TSTO was negative. Sperm progressive motility and total motility decreased significantly in the Mn-exposed group. There was a significantly negative linear association between urinary Mn and sperm progressive motility and total motility. In conclusion, occupational Mn exposure was inversely associated with reproductive health of male workers, resulting in the abnormality of hormones secretion and decrease of sperm motility.
Collapse
Affiliation(s)
- Haibo Yang
- 1 Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Jifeng Wang
- 2 Department of Clinical Laboratory, Linyi People's Hospital, Linyi, China
| | - Xinxin Yang
- 1 Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Fengdi Wu
- 1 Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Zhipeng Qi
- 1 Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Bin Xu
- 1 Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Wei Liu
- 1 Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Yu Deng
- 1 Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China
| |
Collapse
|
32
|
Potential Health Risk of Endocrine Disruptors in Construction Sector and Plastics Industry: A New Paradigm in Occupational Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15061229. [PMID: 29891786 PMCID: PMC6025531 DOI: 10.3390/ijerph15061229] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/25/2018] [Accepted: 06/07/2018] [Indexed: 12/12/2022]
Abstract
Endocrine disruptors (EDs) belong to large and diverse groups of agents that may cause multiple biological effects associated with, for example, hormone imbalance and infertility, chronic diseases such as diabetes, genome damage and cancer. The health risks related with the exposure to EDs are typically underestimated, less well characterized, and not regulated to the same extent as, for example, carcinogens. The increased production and utilization of identified or suspected EDs in many different technological processes raises new challenges with respect to occupational exposure settings and associated health risks. Due to the specific profile of health risk, occupational exposure to EDs demands a new paradigm in health risk assessment, redefinition of exposure assessment, new effects biomarkers for occupational health surveillance and definition of limit values. The construction and plastics industries are among the strongest economic sectors, employing millions of workers globally. They also use large quantities of chemicals that are known or suspected EDs. Focusing on these two industries, this short communication discusses: (a) why occupational exposure to EDs needs a more specific approach to occupational health risk assessments, (b) identifies the current knowledge gaps, and (c) identifies and gives a rationale for a future occupational health paradigm, which will include ED biomarkers as a relevant parameter in occupational health risk assessment, surveillance and exposure prevention.
Collapse
|
33
|
Lin PH, Sermersheim M, Li H, Lee PHU, Steinberg SM, Ma J. Zinc in Wound Healing Modulation. Nutrients 2017; 10:E16. [PMID: 29295546 PMCID: PMC5793244 DOI: 10.3390/nu10010016] [Citation(s) in RCA: 242] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 12/17/2017] [Accepted: 12/21/2017] [Indexed: 02/07/2023] Open
Abstract
Wound care is a major healthcare expenditure. Treatment of burns, surgical and trauma wounds, diabetic lower limb ulcers and skin wounds is a major medical challenge with current therapies largely focused on supportive care measures. Successful wound repair requires a series of tightly coordinated steps including coagulation, inflammation, angiogenesis, new tissue formation and extracellular matrix remodelling. Zinc is an essential trace element (micronutrient) which plays important roles in human physiology. Zinc is a cofactor for many metalloenzymes required for cell membrane repair, cell proliferation, growth and immune system function. The pathological effects of zinc deficiency include the occurrence of skin lesions, growth retardation, impaired immune function and compromised would healing. Here, we discuss investigations on the cellular and molecular mechanisms of zinc in modulating the wound healing process. Knowledge gained from this body of research will help to translate these findings into future clinical management of wound healing.
Collapse
Affiliation(s)
- Pei-Hui Lin
- Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
- Department of Surgery, Division of Cardiac Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | - Matthew Sermersheim
- Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
- Department of Surgery, Division of Cardiac Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | - Haichang Li
- Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
- Department of Surgery, Division of Cardiac Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | - Peter H U Lee
- Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
- Department of Surgery, Division of Cardiac Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | - Steven M Steinberg
- Department of Surgery, Division of Trauma, Critical Care and Burn, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | - Jianjie Ma
- Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
- Department of Surgery, Division of Cardiac Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| |
Collapse
|
34
|
Gabrielsen JS. Iron and Testosterone: Interplay and Clinical Implications. CURRENT SEXUAL HEALTH REPORTS 2017. [DOI: 10.1007/s11930-017-0097-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
35
|
Guillette LJ, Parrott BB, Nilsson E, Haque MM, Skinner MK. Epigenetic programming alterations in alligators from environmentally contaminated lakes. Gen Comp Endocrinol 2016; 238:4-12. [PMID: 27080547 PMCID: PMC5064863 DOI: 10.1016/j.ygcen.2016.04.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 03/31/2016] [Accepted: 04/09/2016] [Indexed: 11/29/2022]
Abstract
Previous studies examining the reproductive health of alligators in Florida lakes indicate that a variety of developmental and health impacts can be attributed to a combination of environmental quality and exposures to environmental contaminants. The majority of these environmental contaminants have been shown to disrupt normal endocrine signaling. The potential that these environmental conditions and contaminants may influence epigenetic status and correlate to the health abnormalities was investigated in the current study. The red blood cell (RBC) (erythrocyte) in the alligator is nucleated so was used as an easily purified marker cell to investigate epigenetic programming. RBCs were collected from adult male alligators captured at three sites in Florida, each characterized by varying degrees of contamination. While Lake Woodruff (WO) has remained relatively pristine, Lake Apopka (AP) and Merritt Island (MI) convey exposures to different suites of contaminants. DNA was isolated and methylated DNA immunoprecipitation (MeDIP) was used to isolate methylated DNA that was then analyzed in a competitive hybridization using a genome-wide alligator tiling array for a MeDIP-Chip analysis. Pairwise comparisons of alligators from AP and MI to WO revealed alterations in the DNA methylome. The AP vs. WO comparison identified 85 differential DNA methylation regions (DMRs) with ⩾3 adjacent oligonucleotide tiling array probes and 15,451 DMRs with a single oligo probe analysis. The MI vs. WO comparison identified 75 DMRs with the ⩾3 oligo probe and 17,411 DMRs with the single oligo probe analysis. There was negligible overlap between the DMRs identified in AP vs. WO and MI vs. WO comparisons. In both comparisons DMRs were primarily associated with CpG deserts which are regions of low CpG density (1-2CpG/100bp). Although the alligator genome is not fully annotated, gene associations were identified and correlated to major gene class functional categories and pathways of endocrine relevance. Observations demonstrate that environmental quality may be associated with epigenetic programming and health status in the alligator. The epigenetic alterations may provide biomarkers to assess the environmental exposures and health impacts on these populations of alligators.
Collapse
Affiliation(s)
- Louis J Guillette
- Department of Obstetrics and Gynecology, Marine Biomedicine and Environmental Sciences Program, Medical University of South Carolina, Hollings Marine Laboratory, Charleston, SC 29412, USA
| | - Benjamin B Parrott
- Department of Obstetrics and Gynecology, Marine Biomedicine and Environmental Sciences Program, Medical University of South Carolina, Hollings Marine Laboratory, Charleston, SC 29412, USA
| | - Eric Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - M M Haque
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA.
| |
Collapse
|