1
|
Liu S, Luo L, Zuo F, Huang X, Zhong L, Liu S, Geng Y, Ou Y, Chen D, Cai W, Deng Y. Ammonia nitrogen stress damages the intestinal mucosal barrier of yellow catfish ( Pelteobagrus fulvidraco) and induces intestinal inflammation. Front Physiol 2023; 14:1279051. [PMID: 37791345 PMCID: PMC10542119 DOI: 10.3389/fphys.2023.1279051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/04/2023] [Indexed: 10/05/2023] Open
Abstract
Nitrogen from ammonia is one of the most common pollutants toxics to aquatic species in aquatic environment. The intestinal mucosa is one of the key mucosal defenses of aquatic species, and the accumulation of ammonia nitrogen in water environment will cause irreversible damage to intestinal function. In this study, histology, immunohistochemistry, ultrastructural pathology, enzyme activity analysis and qRT-PCR were performed to reveal the toxic effect of ammonia nitrogen stress on the intestine of Pelteobagrus fulvidraco. According to histological findings, ammonia nitrogen stress caused structural damage to the intestine and reduced the number of mucous cells. Enzyme activity analysis revealed that the activity of bactericidal substances (Lysozyme, alkaline phosphatase, and ACP) had decreased. The ultrastructure revealed sparse and shortened microvilli as well as badly degraded tight junctions. Immunohistochemistry for ZO-1 demonstrated an impaired intestinal mucosal barrier. Furthermore, qRT-PCR revealed that tight junction related genes (ZO-1, Occludin, Claudin-1) were downregulated, while the pore-forming protein Claudin-2 was upregulated. Furthermore, as ammonia nitrogen concentration grew, so did the positive signal of Zap-70 (T/NK cell) and the expression of inflammation-related genes (TNF, IL-1β, IL-8, IL-10). In light of the above findings, we conclude that ammonia nitrogen stress damages intestinal mucosal barrier of Pelteobagrus fulvidraco and induces intestinal inflammation.
Collapse
Affiliation(s)
- Senyue Liu
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lin Luo
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Fengyuan Zuo
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaoli Huang
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Liang Zhong
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
- State Key Lab of Marine Pollution, Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Sha Liu
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yi Geng
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yangping Ou
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Defang Chen
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Wenlong Cai
- State Key Lab of Marine Pollution, Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yongqiang Deng
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Baldissera MD, Souza CF, Barroso DC, Pereira RS, Alessio KO, Bizzi C, Baldisserotto B, Val AL. Acute exposure to environmentally relevant concentrations of copper affects branchial and hepatic phosphoryl transfer network of Cichlasoma amazonarum: Impacts on bioenergetics homeostasis. Comp Biochem Physiol C Toxicol Pharmacol 2020; 238:108846. [PMID: 32777469 DOI: 10.1016/j.cbpc.2020.108846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 12/13/2022]
Abstract
The toxic effects of copper (Cu) are linked to dysfunction of metabolism and depletion of adenosine triphosphate (ATP). Nevertheless, the effects related to phosphoryl transfer network, a network of enzymes to precise coupling of the ATP-production and ATP-consuming process for maintenance of bioenergetic, remain unknown. Therefore, the aim of this study was to determine whether the phosphoryl transfer network could be one pathway involved in the bioenergetic imbalance of Cichlasoma amazonarum exposed for 96 h to environmentally relevant concentrations of Cu found in Amazonia water around mines. Branchial mitochondrial creatine kinase (CK) activity was significantly lower in fish exposed to 1500 μg/L Cu than in the control group, while branchial cytosolic CK activity was significantly greater. Branchial (exposed to 750 and 1500 μg/L Cu) and hepatic (exposed to 1500 μg/L Cu) pyruvate kinase (PK) activity was significantly lower in fish exposed to Cu than in the control group. Branchial and hepatic ATP levels were significantly lower in fish exposed to 1500 μg/L than in the control group. Branchial reactive oxygen species (ROS) and lipid peroxidation (LPO) levels were significantly higher in fish exposed to 750 and 1500 μg/L Cu compared to control. Hepatic ROS and LPO levels were significantly higher in fish exposed to 1500 μg/L than in the control group. Branchial and hepatic Cu levels were significantly higher in fish exposed to 1500 μg/L compared to other groups. Exposure to 750 and 1500 μg/L Cu impairs bioenergetics homeostasis, which appears to be mediated by ROS overproduction and lipid peroxidation.
Collapse
Affiliation(s)
- Matheus D Baldissera
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil.
| | - Carine F Souza
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Danilo C Barroso
- LEEM-Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research of the Amazon, Manaus, Amazonas, Brazil
| | - Rogério Santos Pereira
- LEEM-Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research of the Amazon, Manaus, Amazonas, Brazil
| | - Keiti O Alessio
- Department of Chemistry, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Cézar Bizzi
- Department of Chemistry, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Bernardo Baldisserotto
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Adalberto L Val
- LEEM-Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research of the Amazon, Manaus, Amazonas, Brazil
| |
Collapse
|
3
|
Chen GH, Lv W, Xu YH, Wei XL, Xu YC, Luo Z. Functional analysis of MTF-1 and MT promoters and their transcriptional response to zinc (Zn) and copper (Cu) in yellow catfish Pelteobagrus fulvidraco. CHEMOSPHERE 2020; 246:125792. [PMID: 31918101 DOI: 10.1016/j.chemosphere.2019.125792] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/27/2019] [Accepted: 12/29/2019] [Indexed: 06/10/2023]
Abstract
Metal-responsive transcription factor-1 (MTF-1) and metallothionein (MT) expression are involved in metal homeostasis and detoxification. Here, we characterized the structure and functions of mtf-1 and mt promoters in yellow catfish Pelteobagrus fulvidraco. Many important binding sites of transcriptional factors, such as heat shock promoter element (HSE) and metal responsive element (MRE), were predicted on their promoter regions. Cu did not significantly influence the activity of mtf-1 promoter, but Zn increased its promoter activity. Cu and Zn induced the increase of mt promoter activity. HSE site of mtf-1 promoter was the functional binding locus responsible for Zn-induced mtf-1 transcriptional activation. Zn and Cu induced transcriptional activation of mt gene through the MTF-1- and MRE-dependent pathway. Using primary hepatocytes of yellow catfish, we found that Cu and Zn induced the mt expression; Cu did not significantly influence the mRNA and total protein levels of MTF-1, but Zn up-regulated its mRNA and total protein expression. Both Zn and Cu treatment also up-regulated MTF-1 nuclear protein expression, which in turn increased the mt expression. Taken together, these findings delineated the transcriptional regulation of MT and MTF-1 under Zn or Cu treatments, and provided some mechanisms for the regulation of Cu and Zn homeostasis in vertebrates.
Collapse
Affiliation(s)
- Guang-Hui Chen
- Laboratory of Molecular Nutrition for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wuhong Lv
- Laboratory of Molecular Nutrition for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yi-Huan Xu
- Laboratory of Molecular Nutrition for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiao-Lei Wei
- Laboratory of Molecular Nutrition for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yi-Chuang Xu
- Laboratory of Molecular Nutrition for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhi Luo
- Laboratory of Molecular Nutrition for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
4
|
Cadmium Uptake, MT Gene Activation and Structure of Large-Sized Multi-Domain Metallothioneins in the Terrestrial Door Snail Alinda biplicata (Gastropoda, Clausiliidae). Int J Mol Sci 2020; 21:ijms21051631. [PMID: 32120996 PMCID: PMC7084494 DOI: 10.3390/ijms21051631] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 02/06/2023] Open
Abstract
Terrestrial snails (Gastropoda) possess Cd-selective metallothioneins (CdMTs) that inactivate Cd2+ with high affinity. Most of these MTs are small Cysteine-rich proteins that bind 6 Cd2+ equivalents within two distinct metal-binding domains, with a binding stoichiometry of 3 Cd2+ ions per domain. Recently, unusually large, so-called multi-domain MTs (md-MTs) were discovered in the terrestrial door snail Alinda biplicata (A.b.). The aim of this study is to evaluate the ability of A.b. to cope with Cd stress and the potential involvement of md-MTs in its detoxification. Snails were exposed to increasing Cd concentrations, and Cd-tissue concentrations were quantified. The gene structure of two md-MTs (9md-MT and 10md-MT) was characterized, and the impact of Cd exposure on MT gene transcription was quantified via qRT PCR. A.b. efficiently accumulates Cd at moderately elevated concentrations in the feed, but avoids food uptake at excessively high Cd levels. The structure and expression of the long md-MT genes of A.b. were characterized. Although both genes are intronless, they are still transcribed, being significantly upregulated upon Cd exposure. Overall, our results contribute new knowledge regarding the metal handling of Alinda biplicata in particular, and the potential role of md-MTs in Cd detoxification of terrestrial snails, in general.
Collapse
|
5
|
Ali JM, Montecinos A, Schulze TT, Allmon LG, Kallenbach AT, Watson GF, Davis PH, Snow DD, Bertin A, Gouin N, Kolok AS. Assessment of Gene Expression Biomarkers in the Chilean Pencil Catfish, Trichomycterus areolatus, from the Choapa River Basin, Coquimbo Chile. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 78:137-148. [PMID: 31646361 DOI: 10.1007/s00244-019-00678-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/03/2019] [Indexed: 06/10/2023]
Abstract
The objective of this study was to describe changes in the gene expression in the Chilean catfish, Trichomycterus areolatus, based on their geographic location within the Choapa River. Genes of choice included those that are biomarkers of exposure to metals, oxidative stress, and endocrine disruption. Male and female T. areolatus were sampled from four sites in January 2015 differently impacted by human activities. In males, but not females, hepatic gene expression of heat shock protein (HSP70) and cytochrome P450 1A (CYP1A) were significantly elevated at the site adjacent to the small city of Salamanca, relative to the other sites. In females, hepatic HSP70, the aryl hydrocarbon receptor (AHR), and the estrogen responsive genes, vitellogenin (VTG) and estrogen receptor alpha (ERα), were significantly lower at the site located furthest downstream. A similar downstream pattern of lower expression levels also was found in ovarian tissue for the genes, HSP70 and ERα. Gill gene expression showed a unique pattern in females as levels of metallothionein were elevated at the site furthest downstream. While analytical chemistry of water samples provided limited evidence of agrichemical contamination, the gene expression data are consistent with an exposure to agrichemicals and metals. T. areolatus may be a valuable sentinel organism and its use as a bioindicator species in some rivers within Chile can provide considerable insight, particularly in situations analytical chemistry is limited by environmental constraints.
Collapse
Affiliation(s)
- Jonathan M Ali
- Department of Environmental, Agricultural and Occupational Health, University of Nebraska - Medical Center, Omaha, NE, 68198-6805, USA
| | - Angela Montecinos
- Departamento de Biología, Universidad de La Serena, Raúl Bitrán 1305, La Serena, Chile
| | - Thomas T Schulze
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, 68182-0040, USA
| | - Luke G Allmon
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, 68182-0040, USA
| | - Alex T Kallenbach
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, 68182-0040, USA
| | - Gabrielle F Watson
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, 68182-0040, USA
| | - Paul H Davis
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, 68182-0040, USA
| | - Daniel D Snow
- School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE, 68583-0844, USA
| | - Angéline Bertin
- Departamento de Biología, Universidad de La Serena, Raúl Bitrán 1305, La Serena, Chile
| | - Nicolas Gouin
- Departamento de Biología, Universidad de La Serena, Raúl Bitrán 1305, La Serena, Chile
- Centro de Estudios Avanzados en Zonas Aridas (CEAZA), Raúl Bitrán 1305, La Serena, Chile
- Instituto de Investigación Multidisciplinar en Ciencia y Tecnología, Universidad de La Serena, La Serena, Chile
| | - Alan S Kolok
- Idaho Water Resources Research Institute, University of Idaho, 875 Perimeter Drive, MS 3002, Moscow, ID, 83844-3002, USA.
| |
Collapse
|
6
|
Xie D, Li Y, Liu Z, Chen Q. Inhibitory effect of cadmium exposure on digestive activity, antioxidant capacity and immune defense in the intestine of yellow catfish (Pelteobagrus fulvidraco). Comp Biochem Physiol C Toxicol Pharmacol 2019; 222:65-73. [PMID: 31028931 DOI: 10.1016/j.cbpc.2019.04.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 04/08/2019] [Accepted: 04/19/2019] [Indexed: 11/22/2022]
Abstract
Cadmium (Cd) is a toxic heavy metal that can pose a serious threat to aquatic organisms. To evaluate the physiological response and defense mechanism of fish intestine to Cd toxicity, yellow catfish (Pelteobagrus fulvidraco) were exposed to 0 (control), 50 μg/L and 200 μg/L Cd2+ for a period of 8 weeks, and then histological changes, digestive activity, antioxidant status and immune responses in the anterior intestine were assessed. After exposure, significant growth retardation and Cd accumulation were observed, and obvious histopathological lesions in the intestine such as increased goblet cells, excessive mucus, vacuolization and thickened lamina propria were detected. Intestinal digestive enzymes activities and related gene expression were inhibited markedly in Cd2+ treatments. Furthermore, Cd exposure induced oxidative stress inhibiting antioxidant activity, characterized by an increase in malondialdehyde level as well as the decrease in the activity and transcription level of antioxidant enzymes. In addition, exposure to Cd2+ down-regulated the expression of key genes involved in the immune response (lys, c3, tor, tgf-β, il-10, tnf-α and il-8), suggesting immune defense was inhibited. Taken together, the decreased digestive enzyme activity and Cd-induced toxicity stress for antioxidant and immune systems in the intestine might be account for individual growth retardation.
Collapse
Affiliation(s)
- Dongmei Xie
- Chongqing Key Laboratory of Animal Biology, School of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Yingwen Li
- Chongqing Key Laboratory of Animal Biology, School of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Zhihao Liu
- Chongqing Key Laboratory of Animal Biology, School of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Qiliang Chen
- Chongqing Key Laboratory of Animal Biology, School of Life Sciences, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
7
|
Kan G, Ju Y, Zhou Y, Shi C, Qiao Y, Yang Y, Wang R, Wang X. Cloning and functional characterization of a novel metallothionein gene in Antarctic sea-ice yeast (Rhodotorula mucilaginosa). J Basic Microbiol 2019; 59:879-889. [DOI: 10.1002/jobm.201900240] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 06/07/2019] [Accepted: 06/20/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Guangfeng Kan
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai; Weihai China
| | - Yun Ju
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai; Weihai China
| | - Ying Zhou
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai; Weihai China
| | - Cuijuan Shi
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai; Weihai China
| | - Yongping Qiao
- Department of Traumatology; Wendeng Osteopath Hospital; Wendeng China
| | - Yu Yang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai; Weihai China
| | - Ruiqi Wang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai; Weihai China
| | - Xiaofei Wang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai; Weihai China
| |
Collapse
|
8
|
Abou Anni IS, Zebral YD, Afonso SB, Moreno Abril SI, Lauer MM, Bianchini A. Life-time exposure to waterborne copper III: Effects on the energy metabolism of the killifish Poecilia vivipara. CHEMOSPHERE 2019; 227:580-588. [PMID: 31009864 DOI: 10.1016/j.chemosphere.2019.04.080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
Copper ions (Cu) are essential to life maintenance, nonetheless, elevated concentrations can be hazardous. Acute and sub-chronic toxic effects of this metal are well known and are usually related to enzymatic inhibition, elevated ROS production and dysfunction of energy metabolism. Despite that, chronic studies are extremely rare. Therefore, the aim of this study was to assess the effects of chronic exposure to 5, 9 and 20 μg/L Cu (28 ad 345 days) on the energy metabolism and survival of the killifish Poecilia vivipara. To accomplish that, we evaluated the activity of enzymes related to aerobic (pyruvate kinase (PK); citrate synthase (CS)) and anaerobic metabolism (lactate dehydrogenase (LDH)) in whole-body (28 days) or in gills, liver and muscle (345 days) of exposed fish. Additionally, whole-body oxygen consumption was evaluated in fish exposed for 28 days and hepatic and muscular expression of genes involved in mitochondrial metabolism (cox I, II and III and atp5a1) was assessed in animals exposed for 345 days. Finally, final survival was evaluated. Following 28 days, Cu did not affect survival neither enzyme activities. However, increased whole-body oxygen consumption was observed in comparison to control condition. After 345 days, 76.8%, 63.9%, 60.9% and 0% survival were observed for control, 5, 9 and 20 μg/L groups, respectively. Animals exposed to 5 and 9 μg/L had a significant reduction in branchial and muscular LDH activity and in hepatic PK activity. Also, exposure to 9 μg/L significantly increased hepatic CS activity. For gene expression, Cu down-regulated muscular cox II (9 μg/L) and III (5 and 9 μg/L), and up-regulated hepatic atp5a1 (9 μg/L). Findings reported in the present study indicate that chronic exposure to Cu induces tissue-specific responses in key aspects of the energetic metabolism. In gills and muscle, Cu leads to reduced energy production through inhibition of anaerobic pathways and mitochondrial respiratory chain. This effect is paralleled by an increased ATP consumption in the liver, characterized by the augmented CS activity and atp5a1 expression. Finally, reduced PK activity indicate that oxidative stress may be involved with the observed outcomes.
Collapse
Affiliation(s)
- Iuri Salim Abou Anni
- Programa de Pós-graduação Em Ciências Fisiológicas, Universidade Federal Do Rio Grande, Avenida Itália Km 8, Campus Carreiros, 96203-900, Rio Grande, RS, Brazil
| | - Yuri Dornelles Zebral
- Programa de Pós-graduação Em Ciências Fisiológicas, Universidade Federal Do Rio Grande, Avenida Itália Km 8, Campus Carreiros, 96203-900, Rio Grande, RS, Brazil
| | - Sidnei Braz Afonso
- Instituto de Ciências Biológicas, Universidade Federal Do Rio Grande, Avenida Itália Km 8, Campus Carreiros, 96203-900, Rio Grande, RS, Brazil
| | - Sandra Isabel Moreno Abril
- Programa de Pós-graduação Em Ciências Fisiológicas, Universidade Federal Do Rio Grande, Avenida Itália Km 8, Campus Carreiros, 96203-900, Rio Grande, RS, Brazil
| | - Mariana Machado Lauer
- Instituto de Ciências Biológicas, Universidade Federal Do Rio Grande, Avenida Itália Km 8, Campus Carreiros, 96203-900, Rio Grande, RS, Brazil
| | - Adalto Bianchini
- Programa de Pós-graduação Em Ciências Fisiológicas, Universidade Federal Do Rio Grande, Avenida Itália Km 8, Campus Carreiros, 96203-900, Rio Grande, RS, Brazil; Instituto de Ciências Biológicas, Universidade Federal Do Rio Grande, Avenida Itália Km 8, Campus Carreiros, 96203-900, Rio Grande, RS, Brazil.
| |
Collapse
|
9
|
Osman AG, Wuertz S, Mohammed-Geba K. Lead-induced heat shock protein (HSP70) and metallothionein (MT) gene expression in the embryos of African catfish Clarias gariepinus (Burchell, 1822). SCIENTIFIC AFRICAN 2019. [DOI: 10.1016/j.sciaf.2019.e00056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
10
|
Bioaccumulation of trace metals in octocorals depends on age and tissue compartmentalization. PLoS One 2018; 13:e0196222. [PMID: 29684058 PMCID: PMC5912762 DOI: 10.1371/journal.pone.0196222] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/09/2018] [Indexed: 11/26/2022] Open
Abstract
Trace metal dynamics have not been studied with respect to growth increments in octocorals. It is particularly unknown whether ontogenetic compartmentalization of trace metal accumulation is species-specific. We studied here for the first time the intracolonial distribution and concentrations of 18 trace metals in the octocorals Subergorgia suberosa, Echinogorgia complexa and E. reticulata that were retrieved from the northern coast of Taiwan. Levels of trace metals were considerably elevated in corals collected at these particular coral habitats as a result of diverse anthropogenic inputs. There was a significant difference in the concentration of metals among octocorals except for Sn. Both species of Echinogorgia contained significantly higher concentrations of Cu, Zn and Al than Subergorgia suberosa. We used for the first time exponential growth curves that describe an age-specific relationship of octocoral trace metal concentrations of Cu, Zn, Cd, Cr and Pb where the distance from the grip point was reflecting younger age as linear regressions. The larger colony (C7) had a lower accumulation rate constant than the smaller one (C6) for Cu, Zn, Cd, Cr and Pb, while other trace metals showed an opposite trend. The Cu concentration declined exponentially from the grip point, whereas the concentrations of Zn, Cd, Cr and Pb increased exponentially. In S. suberosa and E. reticulata, Zn occurred primarily in coenosarc tissues and Zn concentrations increased with distance from the grip point in both skeletal and coenosarc tissues. Metals which appeared at high concentrations (e.g. Ca, Zn and Fe) generally tended to accumulate in the outer coenosarc tissues, while metals with low concentrations (e.g. V) tended to accumulate in the soft tissues of the inner skeleton.
Collapse
|
11
|
García CF, Pedrini N, Sánchez-Paz A, Reyna-Blanco CS, Lavarias S, Muhlia-Almazán A, Fernández-Giménez A, Laino A, de-la-Re-Vega E, Lukaszewicz G, López-Zavala AA, Brieba LG, Criscitello MF, Carrasco-Miranda JS, García-Orozco KD, Ochoa-Leyva A, Rudiño-Piñera E, Sanchez-Flores A, Sotelo-Mundo RR. De novo assembly and transcriptome characterization of the freshwater prawn Palaemonetes argentinus: Implications for a detoxification response. Mar Genomics 2018; 37:74-81. [DOI: 10.1016/j.margen.2017.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/25/2017] [Accepted: 08/26/2017] [Indexed: 12/14/2022]
|
12
|
Thinh DD, Rasid MHFA, Deris ZM, Shazili NAM, De Boeck G, Wong LL. Putative Roles for Metallothionein and HSP70 Genes in Relation with Heavy Metal Accumulation and Parasitic Cymothoid in the Fish Nemipterus furcosus. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2016; 71:530-540. [PMID: 27638714 DOI: 10.1007/s00244-016-0310-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 08/24/2016] [Indexed: 06/06/2023]
Abstract
To assess stress level induced by multiple stressors in aquatic organism, biomarkers have been adopted as early warning indicator due to their high accuracy, rapidity, and sensitivity. We investigated the effects of ectoparasitic isopod infection on heavy metal bioaccumulation (Fe, Cu, Zn, and Cd) in the fish Nemipterus furcosus and profiled the expression of metallothionein (MT) and heat shock proteins 70 (HSP70) genes of the fish host. Sixty individuals (parasitized and nonparasitized with Cymothoa truncata) were collected from three sites differing in the levels of anthropogenic activities off the South China Sea. Our results revealed no significant difference in heavy metal concentrations between infected and nonparasitized fish. We observed a positive correlation between heavy metal bioaccumulation in the fish host and anthropogenic activities. Accordingly, expression analysis of MT genes in fish liver showed significant differences in expression level between sampling sites, with lowest level in the least exploited site (Batu Rakit). A reverse pattern in HSP70 gene expression was demonstrated in fish muscle, showing the highest expression at Batu Rakit. While cymothoid infection in N. furcosus had no significant impact on fish MT gene expression, it resulted in a reduction of HSP70 level in liver of parasitized fish. These findings highlight the putative roles of MT in heavy metal assessment. Future studies should determine the kinetics of cymothoid infection and other potential stressors in characterizing the HSP70 gene expression profile.
Collapse
Affiliation(s)
- Do Dinh Thinh
- Institute of Aquaculture Tropical, Universiti Malaysia Terengganu, 21030, Kuala-Terengganu, Terengganu, Malaysia
- Institute of Marine Environment and Resources, Vietnam Academy of Science and Technology, 246 Danang Street, Haiphong, Vietnam
| | | | - Zulaikha Mat Deris
- Institute of Aquaculture Tropical, Universiti Malaysia Terengganu, 21030, Kuala-Terengganu, Terengganu, Malaysia
| | - Noor Azhar Mohamed Shazili
- Institute of Oceanography and Environment, Universiti Malaysia Terengganu, 21030, Kuala-Terengganu, Terengganu, Malaysia
| | - Gudrun De Boeck
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Li Lian Wong
- Institute of Aquaculture Tropical, Universiti Malaysia Terengganu, 21030, Kuala-Terengganu, Terengganu, Malaysia.
| |
Collapse
|
13
|
Liu L, Yan Y, Wang J, Wu W, Xu L. Generation of mt:egfp transgenic zebrafish biosensor for the detection of aquatic zinc and cadmium. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:2066-2073. [PMID: 26752424 DOI: 10.1002/etc.3362] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 12/13/2015] [Accepted: 01/04/2016] [Indexed: 06/05/2023]
Abstract
Zebrafish embryo toxicity testing has become a popular method for detecting environmental pollutions. However, the present research showed that zebrafish embryos exhibited no visible paramorphia, malformation, or mortality when exposed to heavy metals in a range above environmental standard limits, indicating that zebrafish embryos are an imprecise model for monitoring environmental heavy metals concentrations above regulatory limits. Aiming to obtain a biosensor for aquatic heavy metals, a metal-sensitive vector including zebrafish metallothionein (MT) promoter and enhanced green fluorescent protein (EGFP) was reconstructed and microinjected into 1-cell stage zebrafish embryos. The authors obtained an mt:egfp transgenic zebrafish line sensitive to aquatic zinc and cadmium. A quantitative experiment showed that zinc and cadmium treatment significantly induced the expression of EGFP in a dose- and time-dependent manner. In particular, EGFP messenger RNA levels increased remarkably when exposed to heavy metals above the standard limits. The results suggest that the transgenic zebrafish is a highly sensitive biosensor for detecting environmental levels of zinc and cadmium. Environ Toxicol Chem 2016;35:2066-2073. © 2016 SETAC.
Collapse
Affiliation(s)
- Lili Liu
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanchun Yan
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jian Wang
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Wu
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Xu
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
14
|
Wang C, Sheng J, Hong Y, Peng K, Wang J, Wu D, Shi J, Hu B. Molecular characterization and expression of metallothionein from freshwater pearl mussel, Hyriopsis schlegelii. Biosci Biotechnol Biochem 2016; 80:1327-35. [PMID: 26931774 DOI: 10.1080/09168451.2016.1153954] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Two metallothionein genes (HsMT1 and HsMT2) were first identified and described from Hyriopsis schlegelii. The open reading frame of HsMT1 and HsMT2 were 216 and 222 bp, encoding a protein of 71 and 73 amino acid residues. The deduced amino acid sequences showed they contained parts of typical MT characteristics, apart from HsMT2 lacked Cys-Cys motifs. The phylogenetic tree showed HsMT1 shared a high similarity with that of other molluscs, but HsMT2 was split into a distinct group separated from known molluscan MTs. HsMT1 exhibited constitutive expression in all examined tissues and the highest expression occurred in hepatopancreas, however, nearly all HsMT2 was just detected in gonad. After Cd exposure, their mRNA levels presented similar expression patterns. The transgenic bacteria of HsMT1 showed higher tolerance than HsMT2 in Cd environment. It was implied that HsMT1 and HsMT2 were involved in metal response but HsMT2 might have other physiological functions.
Collapse
Affiliation(s)
- Chengyuan Wang
- a College of Life Sciences , Nanchang University , Nanchang , China
| | - Junqing Sheng
- a College of Life Sciences , Nanchang University , Nanchang , China
| | - Yijiang Hong
- a College of Life Sciences , Nanchang University , Nanchang , China.,b Key Laboratory of Molecular Biology and Genetic Engineering of Jiangxi , Nanchang University , Jiangxi , China
| | - Kou Peng
- a College of Life Sciences , Nanchang University , Nanchang , China
| | - Junhua Wang
- a College of Life Sciences , Nanchang University , Nanchang , China
| | - Di Wu
- a College of Life Sciences , Nanchang University , Nanchang , China
| | - Jianwu Shi
- a College of Life Sciences , Nanchang University , Nanchang , China
| | - Beijuan Hu
- a College of Life Sciences , Nanchang University , Nanchang , China
| |
Collapse
|
15
|
Lee S, Kim C, Kim J, Kim WK, Shin HS, Lim ES, Lee JW, Kim S, Kim KT, Lee SK, Choi CY, Choi K. Cloning metallothionein gene in Zacco platypus and its potential as an exposure biomarker against cadmium. ENVIRONMENTAL MONITORING AND ASSESSMENT 2015; 187:447. [PMID: 26092240 DOI: 10.1007/s10661-015-4649-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 06/01/2015] [Indexed: 06/04/2023]
Abstract
Zacco platypus, pale chub, is an indigenous freshwater fish of East Asia including Korea and has many useful characteristics as indicator species for water pollution. While utility of Z. platypus as an experimental species has been recognized, genetic-level information is very limited and warrants extensive research. Metallothionein (MT) is widely used and well-known biomarker for heavy metal exposure in many experimental species. In the present study, we cloned MT in Z. platypus and evaluated its utility as a biomarker for metal exposure. For this purpose, we sequenced complete complementary DNA (cDNA) of MT in Z. platypus and carried out phylogenetic analysis with its sequences. The transcription-level responses of MT gene following the exposure to CdCl2 were also assessed to validate the utility of this gene as an exposure biomarker. Analysis of cDNA sequence of MT gene demonstrated high conformity with those of other fish. MT messenger RNA (mRNA) expression and enzymatic MT content significantly increased following CdCl2 exposure in a concentration-dependent manner. The level of CdCl2 that resulted in significant MT changes in Z. platypus was within the range that was reported from other fish. The MT gene of Z. platypus sequenced in the present study can be used as a useful biomarker for heavy metal exposure in the aquatic environment of Korea and other countries where this freshwater fish species represents the ecosystem.
Collapse
Affiliation(s)
- Sangwoo Lee
- School of Public Health, Seoul National University, Gwanak, Seoul, 151-742, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Doering JA, Beitel SC, Eisner BK, Heide T, Hollert H, Giesy JP, Hecker M, Wiseman SB. Identification and response to metals of metallothionein in two ancient fishes: white sturgeon (Acipenser transmontanus) and lake sturgeon (Acipenser fulvescens). Comp Biochem Physiol C Toxicol Pharmacol 2015; 171:41-8. [PMID: 25795035 DOI: 10.1016/j.cbpc.2015.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 03/06/2015] [Accepted: 03/11/2015] [Indexed: 01/31/2023]
Abstract
White sturgeon (Acipenser transmontanus) are among the most sensitive species of fishes to Cu, Cd, and Zn, but there is no information about sensitivity of lake sturgeon (Acipenser fulvescens). To begin to elucidate molecular mechanism(s) of sensitivity of sturgeons to metals a cDNA encoding metallothionein (MT) was amplified from livers of white sturgeon (WS-MT) and lake sturgeon (LS-MT), and expression in response to Cu, Cd, or Zn was characterized in liver explants from each species. The primary structure of WS-MT and LS-MT contained 20 cysteine residues, which is the same as MTs of teleost fishes. However, the primary structure of WS-MT and LS-MT contained 63 amino acids, which is longer than any MT identified in teleost fishes. Abundance of transcripts of WS-MT in explants exposed to 0.3, 3, 30, or 100 μg/L of Cu was 1.7-, 1.7-, 2.1-, and 2.6-fold less than in controls, respectively. In contrast, abundances of transcripts of WS-MT were 3.3- and 2.4-fold greater in explants exposed to 30 μg/L of Cd and 1000 μg/L of Zn, respectively. Abundance of transcripts of LS-MT was not significantly different at any concentration of Cu, Cd, or Zn. MT is hypothesized to represent a critical mechanism for detoxification of metals. Therefore, results of this study suggest that sensitivity of sturgeons to exposure to Cu, Cd, or Zn might be a result of the relatively lesser maximal response of MT to metals. The study also suggestslake sturgeon might be more sensitive than white sturgeon to metals.
Collapse
Affiliation(s)
- Jon A Doering
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada; Toxicology Graduate Program, University of Saskatchewan, Saskatoon, SK, Canada
| | - Shawn C Beitel
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada; Toxicology Graduate Program, University of Saskatchewan, Saskatoon, SK, Canada
| | - Bryanna K Eisner
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Timon Heide
- Institute for Environmental Research, RWTH University, Aachen, Germany
| | - Henner Hollert
- Institute for Environmental Research, RWTH University, Aachen, Germany
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada; Department of Biology and Chemistry, State Key Laboratory for Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; School of Biological Science, University of Hong Kong, Hong Kong, China
| | - Markus Hecker
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada; School of the Environment and Sustainability, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Steve B Wiseman
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
17
|
Peng K, Wang CY, Wang JH, Sheng JQ, Shi JW, Li J, Hong YJ. Molecular cloning, sequence analysis, and cadmium stress-rated expression changes of BTG1 in freshwater pearl mussel (Hyriopsis schlegelii). DONG WU XUE YAN JIU = ZOOLOGICAL RESEARCH 2015; 35:389-97. [PMID: 25297078 DOI: 10.13918/j.issn.2095-8137.2014.5.389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The B cells translocation gene 1 (BTG1) is a member of the BTG/TOB family of anti-proliferative genes, which have recently emerged as important regulators of cell growth and differentiation among verteates. Here, for the first time we cloned the full-length cDNA sequence of Hyriopsis schlegelii (Hs-BTG1), an economically important freshwater shellfish and potential indicator of environmental heavy metal pollution, for the first time. Using rapid amplification of cDNA ends (RACE) together with splicing the EST sequence from a haemocyte cDNA liary, we found that Hs-BTG1 contains a 525 bp open reading frame (ORF) encoding a 174 amino-acid polypeptide, a 306 bp 5' untranslated region (5' UTR), and a 571 bp 3' UTR with a Poly(A) tail as well as a transcription termination signal (AATAAA). Homologue searching against GenBank revealed that Hs-BTG1 was closest to Crassostrea gigas BTG1, sharing 50.57% of protein identities. Hs-BTG1 also shares some typical features of the BTG/TOB family, possessing two well-conserved A and B boxes. Clustering analysis of Hs-BTG1 and other known BTGs showed that Hs-BTG1 was also closely related to BTG1 of C. gigas from the inverteate BTG1 clade. Function prediction via homology modeling showed that both Hs-BTG1 and C. gigas BTG1 share a similar three-dimensional structure with Homo sapiens BTG1. Tissue-specific expression analysis of the Hs-BTG1 via real-time PCR showed that the transcripts were constitutively expressed, with the highest levels in the hepatopancreas and gills, and the lowest in both haemocyte and muscle tissue. Expression levels of Hs-BTG1 in hepatopancreas (2.03-fold), mantle (2.07-fold), kidney (2.2-fold) and haemocyte (2.5-fold) were enhanced by cadmium (Cd²⁺) stress, suggesting that Hs-BTG1 may have played a significant role in H. schlegelii adaptation to adverse environmental conditions.
Collapse
Affiliation(s)
- Kou Peng
- School of Life Sciences and Food Engineering, Nanchang University, Nanchang 330031, China
| | - Cheng-Yuan Wang
- School of Life Sciences and Food Engineering, Nanchang University, Nanchang 330031, China
| | - Jun-Hua Wang
- School of Life Sciences and Food Engineering, Nanchang University, Nanchang 330031, China
| | - Jun-Qing Sheng
- School of Life Sciences and Food Engineering, Nanchang University, Nanchang 330031, China
| | - Jian-Wu Shi
- School of Life Sciences and Food Engineering, Nanchang University, Nanchang 330031, China
| | - Jian Li
- School of Life Sciences and Food Engineering, Nanchang University, Nanchang 330031, China
| | - Yi-Jiang Hong
- School of Life Sciences and Food Engineering, Nanchang University, Nanchang 330031, China; Institute of Life Science, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
18
|
Groh KJ, Carvalho RN, Chipman JK, Denslow ND, Halder M, Murphy CA, Roelofs D, Rolaki A, Schirmer K, Watanabe KH. Development and application of the adverse outcome pathway framework for understanding and predicting chronic toxicity: II. A focus on growth impairment in fish. CHEMOSPHERE 2015; 120:778-792. [PMID: 25456049 DOI: 10.1016/j.chemosphere.2014.10.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 10/01/2014] [Accepted: 10/02/2014] [Indexed: 06/04/2023]
Abstract
Adverse outcome pathways (AOPs) organize knowledge on the progression of toxicity through levels of biological organization. By determining the linkages between toxicity events at different levels, AOPs lay the foundation for mechanism-based alternative testing approaches to hazard assessment. Here, we focus on growth impairment in fish to illustrate the initial stages in the process of AOP development for chronic toxicity outcomes. Growth is an apical endpoint commonly assessed in chronic toxicity tests for which a replacement is desirable. Based on several criteria, we identified reduction in food intake to be a suitable key event for initiation of middle-out AOP development. To start exploring the upstream and downstream links of this key event, we developed three AOP case studies, for pyrethroids, selective serotonin reuptake inhibitors (SSRIs) and cadmium. Our analysis showed that the effect of pyrethroids and SSRIs on food intake is strongly linked to growth impairment, while cadmium causes a reduction in growth due to increased metabolic demands rather than changes in food intake. Locomotion impairment by pyrethroids is strongly linked to their effects on food intake and growth, while for SSRIs their direct influence on appetite may play a more important role. We further discuss which alternative tests could be used to inform on the predictive key events identified in the case studies. In conclusion, our work demonstrates how the AOP concept can be used in practice to assess critically the knowledge available for specific chronic toxicity cases and to identify existing knowledge gaps and potential alternative tests.
Collapse
Affiliation(s)
- Ksenia J Groh
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; ETH Zürich, Department of Chemistry and Applied Biosciences, 8093 Zürich, Switzerland.
| | - Raquel N Carvalho
- European Commission, Joint Research Centre, Institute for Environment and Sustainability, Water Resources Unit, 21027 Ispra, Italy
| | | | - Nancy D Denslow
- University of Florida, Department of Physiological Sciences, Center for Environmental and Human Toxicology and Genetics Institute, 32611 Gainesville, FL, USA
| | - Marlies Halder
- European Commission, Joint Research Centre, Institute for Health and Consumer Protection, Systems Toxicology Unit, 21027 Ispra, Italy
| | - Cheryl A Murphy
- Michigan State University, Fisheries and Wildlife, Lyman Briggs College, 48824 East Lansing, MI, USA
| | - Dick Roelofs
- VU University, Institute of Ecological Science, 1081 HV Amsterdam, The Netherlands
| | - Alexandra Rolaki
- European Commission, Joint Research Centre, Institute for Health and Consumer Protection, Systems Toxicology Unit, 21027 Ispra, Italy
| | - Kristin Schirmer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; ETH Zürich, Department of Environmental Systems Science, 8092 Zürich, Switzerland; EPF Lausanne, School of Architecture, Civil and Environmental Engineering, 1015 Lausanne, Switzerland
| | - Karen H Watanabe
- Oregon Health & Science University, Institute of Environmental Health, Division of Environmental and Biomolecular Systems, 97239-3098 Portland, OR, USA
| |
Collapse
|
19
|
Won EJ, Ra K, Kim KT, Lee JS, Lee YM. Three novel superoxide dismutase genes identified in the marine polychaete Perinereis nuntia and their differential responses to single and combined metal exposures. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 107:36-45. [PMID: 24905695 DOI: 10.1016/j.ecoenv.2014.03.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 03/19/2014] [Accepted: 03/21/2014] [Indexed: 06/03/2023]
Abstract
To identify superoxide dismutase (SOD) genes and evaluate their usefulness as potential markers for monitoring metal toxicity in aquatic environment, we cloned, sequenced, and characterized 3 SOD genes (Cu/Zn-SOD1, Cu/Zn-SOD2, and Mn-SOD) from the marine polychaete Perinereis nuntia. The accumulated metal contents and expressions of 3 SOD genes were compared after exposure to single and combinations of heavy metals, As, Ni, and Pb. The deduced amino acid sequences of the 3 SODs had evolutionary conserved domains, such as metal binding sites, and signature sequences. The phylogenetic analysis revealed that Cu/Zn-SOD1, Cu/Zn-SOD2, and Mn-SOD were clustered with extracellular Cu/Zn-SOD, intracellular Cu/Zn-SOD and mitochondrial Mn-SOD, respectively, of other species. The accumulated contents of Ni and Pb increased significantly in a time - dependent manner after exposure to both single and combination of the metals. However, the concentration of As did not change significantly in the exposure test. The quantitative real-time polymerase chain reaction (PCR) array showed that the 3 SOD genes had differential expression patterns depending on the exposure condition. The expression of all SODs mRNAs was significantly elevated in response to Pb alone and in combination with As. The mRNA level of Cu/Zn-SOD1 was the highest after exposure to Pb alone, while that of Mn-SOD was remarkably enhanced after exposure to a combination of As and Pb. Exposure to Ni alone rapidly elevated the expression of Cu/Zn-SOD1 and Mn-SOD mRNA, which then gradually decreased. Exposure to As had no significant effect on the modulation of any of the SOD genes of P. nuntia. These results suggest that all SOD genes might play important roles in cellular protection as antioxidant enzymes against heavy metal toxicity via different modes of action in P. nuntia and might have the potential to act as indicators in an environment containing a mixture of metals.
Collapse
Affiliation(s)
- Eun-Ji Won
- Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746, South Korea
| | - Kongtae Ra
- Marine Environment and Conservation Department, Korea Institute of Ocean Science and Technology (KIOST), Ansan 426-744, South Korea
| | - Kyung-Tae Kim
- Marine Environment and Conservation Department, Korea Institute of Ocean Science and Technology (KIOST), Ansan 426-744, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746, South Korea
| | - Young-Mi Lee
- Department of Life Science, College of Natural Sciences, Sangmyung University, Seoul 110-743, South Korea.
| |
Collapse
|