1
|
El-Sayed AFM, Eissa ESH, Hendam BM, Dighiesh HS, Abd Elnabi HE, Abd El-Aziz YM, Eissa MEH, Ghanem SF. Dietary organic acid blend modulates hemato-immunological parameters, digestive and reproductive performances in red tilapia (Oreochromis niloticus × O. mossambicus) broodstock. FISH PHYSIOLOGY AND BIOCHEMISTRY 2025; 51:41. [PMID: 39903313 PMCID: PMC11794372 DOI: 10.1007/s10695-025-01459-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 01/26/2025] [Indexed: 02/06/2025]
Abstract
This study evaluated the effects of dietary organic acid (OA) blend on hemato-immunological responses, reproduction capacity, gene expression, and histological features of red tilapia (Oreochromis niloticus × O. mossambicus) broodstock. Four diets were formulated, containing 0 (control), 2, 3, and 4 g OAs kg-1. The diets were fed to triplicate groups (n = 3) of red tilapia broodstock (75 ± 5.56 g( (mean ± standard deviation (SD)) stocked in 10-m3 concrete tanks at a male to female ratio of 1:3, to satiation, twice a day, for 8 weeks. At the end of the feeding trial, fish in each tank were collected, counted, and weighed. Blood samples were collected from five fish from each tank and used for the determination of hematological and biochemical parameters. The fish were then dissected to study the reproductive performance and reproduction-related genes. The red blood cells (RBCs), hemoglobin (Hb), packed cell volume (PCV%), mean corpuscular volume (MCV), and lysozyme activity were significantly increased (P < 0.05) with increasing dietary OAs to 4 g kg-1. Mean corpuscular hemoglobin (MCH), white blood cells (WBCs), total protein, albumin, and globulin), and digestive enzyme activity values leveled off or slightly decreased (P > 0.05) at OA levels above 3 g kg-1. Optimum liver enzyme activity was obtained at 2 g kg-1 OA. The reproductive hormones: testosterone (T), follicle-stimulating hormone (FSH), luteinizing hormone (LH), estradiol (E2), and progesterone (Prog), organo-somatic index (GSI), reproductive performance, and the expression of reproductive genes (vasa, nanos1a, nanos2, dnd1, pum1, amh, and VTG) exhibited dose-dependent responses (P < 0.05), suggesting that 4 g OA kg-1 boosted the optimum reproductive performance. In conclusion, about 2-3 g OA kg-1 diet can improve the hemato-biochemical parameters, immune response, antioxidant status, and digestive enzyme activity in red tilapia broodstock, whereas 4 g kg-1 could accelerate their reproductive performance through upregulation of reproductive genes.
Collapse
Affiliation(s)
| | - El-Sayed Hemdan Eissa
- Fish Research Centre, Faculty of Environmental Agricultural Sciences, Arish University, El-Arish, Egypt.
| | - Basma M Hendam
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Hagar Sedeek Dighiesh
- Department of Aquaculture, Faculty of Fish Resources, Suez University, P.O.Box:43512, Suez, Egypt
| | - Heba E Abd Elnabi
- Department of Fish Resources and Aquaculture, Faculty of Environmental Agricultural Sciences, Arish University, El-Arish, Egypt
| | - Yasmin M Abd El-Aziz
- Department of Zoology, Faculty of Science, Port Said University, Port Said, 42526, Egypt
| | - Moaheda E H Eissa
- Biotechnology Department, Fish Farming and Technology Institute, Suez Canal University, Ismailia, 41522, Egypt.
| | - Sara F Ghanem
- National Institute of Oceanography and Fisheries, NIOF, Cairo, Egypt
| |
Collapse
|
2
|
Adeshina I, Paray BA, Bhat EA, Sherzada S, Fawole OO, Bawa DJ, da Cruz TP, Tiamiyu LO. Dietary β-Mannanase Affects the Growth, Antioxidant, and Immunes Responses of African Catfish, Clarias gariepinus, and Its Challenge Against Aeromonas hydrophila Infection. AQUACULTURE NUTRITION 2024; 2024:5263495. [PMID: 39555532 PMCID: PMC11535281 DOI: 10.1155/2024/5263495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/08/2024] [Indexed: 11/19/2024]
Abstract
One of the most farmed fishes is the African catfish, Clarias gariepinus. Its production has increased by 20% annually on average during the last 20 years, but the occurrence of fish diseases, especially bacterial such as Aeromonas hydrophila infections, is hindering its activities. Also, the incorporation of plant-derived substances in aquafeeds is limited since they frequently contain different antinutritional factors, like nonstarch polysaccharides (NSPs). However, supplementing fish diets with β-mannanase could increase growth, antioxidants, and immunity. Despite the advantage of β-mannanase, its effects on growth, digestive enzymes, antioxidants, and immunity in African catfish need to be elucidated. This study examined the effects of dietary β-mannanase on the growth performance, liver enzymes, antioxidant profiles, immunity, and protection of African catfish, C. gariepinus, against A. hydrophila infection. Five isonitrogenous diets were prepared to have 400 g/kg crude protein and supplemented with β-mannanase at 0, 1500, 3000, 4500, or 6000 thermostable endo, 1,4-β-mannanase units (TMUs)/kg diet and fed to 300 juveniles of the African catfish, C. gariepinus (mean weight 12.1 ± 0.1 g) for 12 weeks. Then, 10 fish from each tank received an intraperitoneal injection of 0.1 mL of A. hydrophila (5.0 × 105 CFU/mL) and observed for 14 days. Results showed dietary β-mannanase levels considerably improved growth performance but did not affect fish survival. Also, amylase, protease, and lipase levels were significantly promoted in the fish fed with β-mannanase-fortified diets than the control group (p < 0.05). Enhanced gut villi and intestinal absorption areas, haematlogical profiles, and liver enzymes but reduced gut viscosity were observed in fish-fed β-mannanase-fortified diets (p < 0.05). In a dose-dependent order, including β-mannanase in the meals of African catfish raised the levels of glutathione (GSH), glutathione peroxidase (GPx), superoxide dismutase (SOD), glutathione-S-transferase (GST), and glutamate cysteine ligase (GCL) activities and decreased the malondialdehyde (MDA) values in African catfish (p < 0.05). Also, fish immunity was greatly (p < 0.05) enhanced due to supplementation of the diet with β-mannanase. In addition, fish-fed diets comprising 6000 TMU β-mannanase/kg diet showed the lowest rates of fish mortality (7.5%) (p < 0.05). Therefore, feeding African catfish, Clarias gariepinus, β-mannanase enhanced growth performance, increased activity of digestive enzymes, gut morphology, enhanced generation of short-chain fatty acids, digesta potential of hydrogen (pH), and improved antioxidant profiles and immunity at the optimum dose of 5800 TMU/kg diet. Additionally, β-mannanase protected African catfish against A. hydrophila infection.
Collapse
Affiliation(s)
- Ibrahim Adeshina
- School of Aquaculture, National University of Agriculture, Port Nove, Benin
- Department of Aquaculture and Fisheries, University of Ilorin, Ilorin, Nigeria
| | - Bilal Ahamad Paray
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Eijaz Ahmed Bhat
- Microbiology/Molecular Physiology of Prokaryotes, Institute of Biology II, University of Freiburg, Schänzlestraße 1, Freiburg 79104, Germany
| | - Shahid Sherzada
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Olaolu O. Fawole
- Department of Fisheries and Aquaculture, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Dalhatu J. Bawa
- Department of Forestry and Fisheries, Kebbi State University of Science and Technology Aliero, Lagos, Nigeria
| | - Thais Pereira da Cruz
- Animal Science Graduate Degree Program, State University of Maringa, Maringa, PR, Brazil
| | - Lateef O. Tiamiyu
- Department of Aquaculture and Fisheries, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
3
|
Gunathilaka BE, Jeong SM, Kim KW, Lee S, Hur SW, You SG, Lee SM. Evaluation of Gamma Aminobutyric Acid and Sodium Butyrate in Juvenile Red Seabream ( Pagrus major) Diets Containing Graded Levels of Fish Meal and Soy Protein Concentrate. Animals (Basel) 2024; 14:1973. [PMID: 38998085 PMCID: PMC11240378 DOI: 10.3390/ani14131973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024] Open
Abstract
The experiment was conducted to evaluate the supplementary effects of gamma aminobutyric acid (GABA) and sodium butyrate (SB) when a graded level of fish meal (FM) was replaced with soy protein concentrate (SPC) in diets for juvenile red seabream (Pagrus major). A control diet was designed to contain 60% FM (F60). Two other diets were formulated by reducing FM levels to 40% and 20% with SPC (F40 and F20). Six more diets were formulated by adding 0.02% GABA or 0.2% SB to each F60, F40 and F20 diets (F60G, F60S, F40G, F40S, F20G and F20S). Each diet was randomly assigned to a triplicate group of fish (5.52 g/fish) and provided for eight weeks. Final body weight, weight gain and specific growth rate of fish fed F60G, F60S, F40G and F40S diets were comparable and significantly higher (p < 0.05) than other groups. The growth of fish fed SB-containing diets was significantly increased (p < 0.05) compared to fish fed the respective control diets. The feed efficiency and protein efficiency ratios were significantly higher (p < 0.05) in the fish fed all diets containing 60% and 40% FM compared to F20 and F20G groups. The F40S diet resulted in the highest feed utilization values. The F20S group exhibited significantly higher (p < 0.05) feed utilization than the F20 and F20G groups. Serum lysozyme activity was significantly higher (p < 0.05) in fish fed the GABA- and SB-containing diets compared to the F20 group. The F60S group exhibited the highest lysozyme activity which was significantly higher (p < 0.05) than in the F20 and F40 groups. Therefore, the growth performance, feed utilization and innate immunity of red seabream can be enhanced by dietary supplementation with GABA or SB in low-FM diets containing SPC. The FM level in the juvenile red seabream diet can be reduced to 40% with SPC and GABA or SB while maintaining performance better than a diet containing 60% FM.
Collapse
Affiliation(s)
- Buddhi E. Gunathilaka
- Department of Aquatic Life Medicine, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea;
| | - Seong-Mok Jeong
- Aquafeed Research Center, National Institute of Fisheries Science, Pohang 37517, Republic of Korea; (S.-M.J.)
| | - Kang-Woong Kim
- Aquafeed Research Center, National Institute of Fisheries Science, Pohang 37517, Republic of Korea; (S.-M.J.)
| | - Seunghan Lee
- Aquafeed Research Center, National Institute of Fisheries Science, Pohang 37517, Republic of Korea; (S.-M.J.)
| | - Sang-Woo Hur
- Aquafeed Research Center, National Institute of Fisheries Science, Pohang 37517, Republic of Korea; (S.-M.J.)
| | - Sang-Guan You
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea;
| | - Sang-Min Lee
- Department of Aquatic Life Medicine, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea;
| |
Collapse
|
4
|
Louvado A, Coelho FJRC, Palma M, Magnoni LJ, Silva-Brito F, Ozório ROA, Cleary DFR, Viegas I, Gomes NCM. Study of the influence of tributyrin-supplemented diets on the gut bacterial communities of rainbow trout (Oncorhynchus mykiss). Sci Rep 2024; 14:5645. [PMID: 38454011 PMCID: PMC10920674 DOI: 10.1038/s41598-024-55660-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/26/2024] [Indexed: 03/09/2024] Open
Abstract
Dietary supplementation with triglyceride tributyrin (TBT), a butyrate precursor, has been associated with beneficial effects on fish health and improvements in the ability of carnivorous fish to tolerate higher levels of plant-based protein. In this study, we aimed to investigate the effects of a plant-based diet supplemented with TBT on the structural diversity and putative function of the digesta-associated bacterial communities of rainbow trout (Oncorhynchus mykiss). In addition to this, we also assessed the response of fish gut digestive enzyme activities and chyme metabolic profile in response to TBT supplementation. Our results indicated that TBT had no significant effects on the overall fish gut bacterial communities, digestive enzyme activities or metabolic profile when compared with non-supplemented controls. However, a more in-depth analysis into the most abundant taxa showed that diets at the highest TBT concentrations (0.2% and 0.4%) selectively inhibited members of the Enterobacterales order and reduced the relative abundance of a bacterial population related to Klebsiella pneumoniae, a potential fish pathogen. Furthermore, the predicted functional analysis of the bacterial communities indicated that increased levels of TBT were associated with depleted KEGG pathways related to pathogenesis. The specific effects of TBT on gut bacterial communities observed here are intriguing and encourage further studies to investigate the potential of this triglyceride to promote pathogen suppression in the fish gut environment, namely in the context of aquaculture.
Collapse
Affiliation(s)
- A Louvado
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - F J R C Coelho
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - M Palma
- Centre for Functional Ecology, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal
| | - L J Magnoni
- Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal
- The New Zealand Institute for Plant and Food Research Limited, Nelson, New Zealand
| | - F Silva-Brito
- Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal
| | - R O A Ozório
- Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal
| | - D F R Cleary
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - I Viegas
- Centre for Functional Ecology, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal
| | - N C M Gomes
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
5
|
Zhao L, Cheng L, Hu Y, Li X, Yang Y, Mu J, Shen L, Hu G, He K, Yan H, Liu Q, Yang S. Dietary sodium acetate and sodium butyrate attenuate intestinal damage and improve lipid metabolism in juvenile largemouth bass ( Micropterus salmoides) fed a high carbohydrate diet by reducing endoplasmic reticulum stress. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 16:443-456. [PMID: 38425445 PMCID: PMC10901750 DOI: 10.1016/j.aninu.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 03/02/2024]
Abstract
High-carbohydrate (HC) diets decrease the intestinal levels of sodium acetate (SA) and sodium butyrate (SB) and impair the gut health of largemouth bass; however, SA and SB have been shown to enhance immunity and improve intestinal health in farmed animals. Thus, the present study was to investigate the effects of dietary SA and SB on HC diet-induced intestinal injury and the potential mechanisms in juvenile largemouth bass. The experiment set five isonitrogenous and isolipidic diets, including a low-carbohydrate diet (9% starch) (LC), a high carbohydrate diet (18% starch) (HC), and the HC diet supplemented with 2 g/kg SA (HCSA), 2 g/kg SB (HCSB) or a combination of 1 g/kg SA and 1 g/kg SB (HCSASB). The feeding experiment was conducted for 8 weeks. A total of 525 juvenile largemouth bass with an initial body weight of 7.00 ± 0.20 g were used. The results showed that dietary SA and SB improved the weight gain rate and specific growth rate (P < 0.05) and ameliorated serum parameters (alkaline phosphatase, acid phosphatase, glutamate transaminase, and glutamic oxaloacetic transaminase) (P < 0.05). And, importantly, dietary SA and SB repaired the intestinal barrier by increasing the expression levels of zonula occludens-1, occludin, and claudin-7 (P < 0.05), reduced HC-induced intestinal damage, and alleviated intestinal inflammation and cell apoptosis by attenuating HC-induced intestinal endoplasmic reticulum stress (P < 0.05). Further results revealed that dietary SA and SB reduced HC-induced intestinal fat deposition by inhibiting adipogenesis and promoting lipolysis (P < 0.05). In summary, this study demonstrated that dietary SA and SB attenuated HC-induced intestinal damage and reduced excessive intestinal fat deposition in largemouth bass.
Collapse
Affiliation(s)
| | | | | | - Xiaohui Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yihui Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Jin Mu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Lianfeng Shen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Guojun Hu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Kuo He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Haoxiao Yan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Qiao Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| |
Collapse
|
6
|
Cardoso L, Owatari MS, Chaves FCM, Ferreira TH, Costa DS, Furtado WE, Tedesco M, Honorato LA, Mouriño JLP, Martins ML. Lippia sidoides essential oil at concentration of 0.25% provided improvements in microbiota and intestine integrity of Danio rerio. BRAZILIAN JOURNAL OF VETERINARY MEDICINE 2024; 46:e005323. [PMID: 38362241 PMCID: PMC10868529 DOI: 10.29374/2527-2179.bjvm005323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/31/2024] [Indexed: 02/17/2024] Open
Abstract
The study evaluated the effects of dietary supplementation with Lippia sidoides essential oil on the microbiota and intestinal morphology of Danio rerio. For this, 448 fish were randomly distributed in 28 tanks divided into a control group fed a commercial diet without supplementation, a group fed a commercial diet containing grain alcohol and five groups fed a commercial diet containing essential oil of L. sidoides (LSEO) at concentrations of 0.25%, 0.50%, 0.75%, 1.00% and 1.25%. After the period of dietary supplementation, biological materials were collected for microbiological and histological analyses. There were no significant differences regarding the microbiological count between the groups. Diversity of the microbiome was higher in 0.25% group than in control group. LSEO inhibited the growth of potentially pathogenic bacteria. Fish fed LSEO0.25% showed greater intestinal histomorphometric indices. The inclusion of LSEO at 0.25% in the diet of D. rerio provided improvements in fish microbiota and intestine integrity.
Collapse
Affiliation(s)
- Lucas Cardoso
- Aquaculture engineer. DSc., Aquatic Organisms Health Laboratory (AQUOS), Departamento de Aquicultura, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil.
| | - Marco Shizuo Owatari
- Aquaculture engineer. DSc., Aquatic Organisms Health Laboratory (AQUOS), Departamento de Aquicultura, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil.
| | | | - Tamiris Henrique Ferreira
- Aquaculture engineer. DSc., Aquatic Organisms Health Laboratory (AQUOS), Departamento de Aquicultura, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil.
| | - Domickson Silva Costa
- Aquaculture engineer. DSc., Aquatic Organisms Health Laboratory (AQUOS), Departamento de Aquicultura, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil.
| | - William Eduardo Furtado
- Aquaculture engineer, DSc., Departamento de Doenças Infecciosas e Saúde Pública, Colégio do Jockey Club de Medicina Veterinária e Ciências da Vida, Universidade da Cidade de Hong Kong, Hong Kong, China.
| | - Marília Tedesco
- Aquaculture engineer. DSc., Aquatic Organisms Health Laboratory (AQUOS), Departamento de Aquicultura, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil.
| | | | - José Luiz Pedreira Mouriño
- Aquaculture engineer. DSc., Aquatic Organisms Health Laboratory (AQUOS), Departamento de Aquicultura, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil.
| | - Maurício Laterça Martins
- Aquaculture engineer. DSc., Aquatic Organisms Health Laboratory (AQUOS), Departamento de Aquicultura, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil.
| |
Collapse
|
7
|
Cui Y, Huang P, Duan H, Song S, Gan L, Liu Z, Lin Q, Wang J, Qi G, Guan J. Role of microencapsulated Lactobacillus plantarum in alleviating intestinal inflammatory damage through promoting epithelial proliferation and differentiation in layer chicks. Front Microbiol 2023; 14:1287899. [PMID: 38053557 PMCID: PMC10694250 DOI: 10.3389/fmicb.2023.1287899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 10/23/2023] [Indexed: 12/07/2023] Open
Abstract
The alleviating effects of Lactobacillus plantarum in microencapsulation (LPM) on lipopolysaccharide (LPS)-induced intestinal inflammatory injury were investigated in layer chicks. A total of 252 healthy Hy-Line Brown layer chicks were randomly divided into six groups. Birds were injected with saline or LPS except for the control, and the diets of birds subjected to LPS were supplemented with nothing, L. plantarum, LPM, and wall material of LPM, respectively. The viable counts of LPM reached 109 CFU/g, and the supplemental levels of L. plantarum, LPM, and WM were 0.02 g (109 CFU), 1.0 g, and 0.98 g, per kilogram feed, respectively. LPS administration caused intestinal damage in layer chicks, evidenced by increased proinflammatory factors accompanied by poor intestinal development and morphology (p < 0.05). LPM/LPS significantly increased body weight, small intestine weight and length, villus height, villus height/crypt depth, and mRNA relative expression of tight junction protein genes (p < 0.05) and performed better than free L. plantarum. These findings could be attributed to the significant increase in viable counts of L. plantarum in the small intestine (p < 0.05), as well as the enhanced levels of Actinobacteriota, Lactobacillaceae, and Lactobacillus in intestinal microbiota (p < 0.05). Such results could further significantly increase goblet and PCNA+ cell percentage (p < 0.05); the mRNA relative expressions of epithelial cell, fast-cycling stem cell, quiescent stem cell, endocrine cell, and Paneth cell; and goblet and proliferative cell marker genes, including E-cadherin, Lgr-5, Bmi-1, ChA, Lysozome, Mucin-2, and PCNA (p < 0.05). Furthermore, the mRNA relative expressions of key genes involved in epithelial cell proliferation, namely, c-Myc, Cyclin-1, Wnt-3, Lrp-5, and Olfm-4, exhibited significant upregulation compared with the LPS treatment, as well as the differentiating genes Notch-1 and Hes-1 (p < 0.05). To sum up, microencapsulated L. plantarum supplementation could alleviate intestinal injury in layer chicks induced by LPS by promoting the proliferation and differentiation of intestinal epithelial cells, which could be attributed to the increase in viable count of L. plantarum in the gut and optimization in intestinal microbial flora.
Collapse
Affiliation(s)
- Yaoming Cui
- School of Biological Engineering, Henan University of Technology, Zhengzhou, Henan, China
| | - Peiyu Huang
- School of Biological Engineering, Henan University of Technology, Zhengzhou, Henan, China
| | - Haitao Duan
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Shijia Song
- School of Biological Engineering, Henan University of Technology, Zhengzhou, Henan, China
| | - Liping Gan
- School of Biological Engineering, Henan University of Technology, Zhengzhou, Henan, China
| | - Zhen Liu
- School of Biological Engineering, Henan University of Technology, Zhengzhou, Henan, China
| | - Qiaohan Lin
- School of Biological Engineering, Henan University of Technology, Zhengzhou, Henan, China
| | - Jinrong Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou, Henan, China
| | - Gunghai Qi
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junjun Guan
- School of Biological Engineering, Henan University of Technology, Zhengzhou, Henan, China
| |
Collapse
|
8
|
Hou D, Li M, Li P, Chen B, Huang W, Guo H, Cao J, Zhao H. Effects of sodium butyrate on growth performance, antioxidant status, inflammatory response and resistance to hypoxic stress in juvenile largemouth bass ( Micropterus salmoides). Front Immunol 2023; 14:1265963. [PMID: 38022555 PMCID: PMC10656595 DOI: 10.3389/fimmu.2023.1265963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023] Open
Abstract
The aim of this study was to investigate the effects of sodium butyrate (SB) supplementation on growth performance, antioxidant enzyme activities, inflammatory factors, and hypoxic stress in largemouth bass (Micropterus salmoides). Diets were supplemented with different doses of SB at 0 (SB0), 0.5 (SB1), 1.0 (SB2) and 2.0 (SB3) g/kg. The hypoxic stress experiment was performed after 56 days of culture. The results showed that compared with the SB0 group, the final body weight, weight gain rate and protein deposition rate of the SB3 group were significantly increased (P<0.05), while FCR was significantly decreased (P<0.05). The contents of dry matter, crude lipids, and ash in the SB2 group were significantly higher than those in the SB0 group (P<0.05). The urea level was significantly decreased (P<0.05), and the glucose content was significantly increased (P<0.05) in the SB supplement group. Compared with the SB0 group, the SB2 group had significant reductions in the levels of serum triglyceride, cholesterol, elevated-density lipoprotein cholesterol, and low-density lipoprotein (P<0.05), and significant reductions in the levels of liver alkaline phosphatase and malondialdehyde (P<0.05). The total antioxidant capacity of the SB1 group was higher than that of other groups (P<0.05). Compared with the SB0 group, the mRNA expression of TLR22, MyD88, TGF-β1, IL-1β and IL-8 in the SB2 group significantly decreased (P<0.05). The cumulative mortality rate was significantly decreased in the SB2 and SB3 groups in comparison with that in the SB0 group after three hours of hypoxic stress (P<0.05). In a 56-day feeding trial, SB enhanced largemouth bass growth by increasing antioxidant enzyme activity and inhibiting TLR22-MyD88 signaling, therefore increasing cumulative mortality from hypoxic stress in largemouth bass.
Collapse
Affiliation(s)
- Dongqiang Hou
- Collaborative Innovation Center of Aquatic Sciences, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Min Li
- Collaborative Innovation Center of Aquatic Sciences, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Peijia Li
- Collaborative Innovation Center of Aquatic Sciences, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Bing Chen
- Collaborative Innovation Center of Aquatic Sciences, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Wen Huang
- Collaborative Innovation Center of Aquatic Sciences, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Hui Guo
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Junming Cao
- Collaborative Innovation Center of Aquatic Sciences, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Hongxia Zhao
- Collaborative Innovation Center of Aquatic Sciences, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
9
|
Ma X, Kong Y, Xu H, Bi Q, Liang M, Mai K, Zhang Y. Short-Term Alternate Feeding between Terrestrially Sourced Oil- and Fish Oil-Based Diets Modulates the Intestinal Microecology of Juvenile Turbot. BIOLOGY 2023; 12:biology12050650. [PMID: 37237464 DOI: 10.3390/biology12050650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/15/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023]
Abstract
A nine-week feeding trial was conducted to investigate changes in the intestinal microbiota of turbot in response to alternate feeding between terrestrially sourced oil (TSO)- and fish oil (FO)-based diets. The following three feeding strategies were designed: (1) continuous feeding with the FO-based diet (FO group); (2) weekly alternate feeding between soybean oil (SO)- and FO-based diets (SO/FO group); and (3) weekly alternate feeding between beef tallow (BT)- and FO-based diets (BT/FO group). An intestinal bacterial community analysis showed that alternate feeding reshaped the intestinal microbial composition. Higher species richness and diversity of the intestinal microbiota were observed in the alternate-feeding groups. A PCoA analysis showed that the samples clustered separately according to the feeding strategy, and among the three groups, the SO/FO group clustered relatively closer to the BT/FO group. The alternate feeding significantly decreased the abundance of Mycoplasma and selectively enriched specific microorganisms, including short-chain fatty acid (SCFA)-producing bacteria, digestive bacteria (Corynebacterium and Sphingomonas), and several potential pathogens (Desulfovibrio and Mycobacterium). Alternate feeding may maintain the intestinal microbiota balance by improving the connectivity of the ecological network and increasing the competitive interactions within the ecological network. The alternate feeding significantly upregulated the KEGG pathways of fatty acid and lipid metabolism, glycan biosynthesis, and amino acid metabolism in the intestinal microbiota. Meanwhile, the upregulation of the KEGG pathway of lipopolysaccharide biosynthesis indicates a potential risk for intestinal health. In conclusion, short-term alternate feeding between dietary lipid sources reshapes the intestinal microecology of the juvenile turbot, possibly resulting in both positive and negative effects.
Collapse
Affiliation(s)
- Xiuhua Ma
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
| | - Yaoyao Kong
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
| | - Houguo Xu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Qingzhu Bi
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Mengqing Liang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
| | - Yanjiao Zhang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
| |
Collapse
|
10
|
López Nadal A, Boekhorst J, Lute C, van den Berg F, Schorn MA, Bergen Eriksen T, Peggs D, McGurk C, Sipkema D, Kleerebezem M, Wiegertjes GF, Brugman S. Omics and imaging combinatorial approach reveals butyrate-induced inflammatory effects in the zebrafish gut. Anim Microbiome 2023; 5:15. [PMID: 36869372 PMCID: PMC9985269 DOI: 10.1186/s42523-023-00230-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/01/2023] [Indexed: 03/05/2023] Open
Abstract
BACKGROUND Prebiotic feed additives aim to improve gut health by influencing the microbiota and the gut barrier. Most studies on feed additives concentrate on one or two (monodisciplinary) outcome parameters, such as immunity, growth, microbiota or intestinal architecture. A combinatorial and comprehensive approach to disclose the complex and multifaceted effects of feed additives is needed to understand their underlying mechanisms before making health benefit claims. Here, we used juvenile zebrafish as a model species to study effects of feed additives by integrating gut microbiota composition data and host gut transcriptomics with high-throughput quantitative histological analysis. Zebrafish received either control, sodium butyrate or saponin-supplemented feed. Butyrate-derived components such as butyric acid or sodium butyrate have been widely used in animal feeds due to their immunostimulant properties, thereby supporting intestinal health. Soy saponin is an antinutritional factor from soybean meal that promotes inflammation due to its amphipathic nature. RESULTS We observed distinct microbial profiles associated with each diet, discovering that butyrate (and saponin to a lesser extent) affected gut microbial composition by reducing the degree of community-structure (co-occurrence network analysis) compared to controls. Analogously, butyrate and saponin supplementation impacted the transcription of numerous canonical pathways compared to control-fed fish. For example, both butyrate and saponin increased the expression of genes associated with immune response and inflammatory response, as well as oxidoreductase activity, compared to controls. Furthermore, butyrate decreased the expression of genes associated with histone modification, mitotic processes and G-coupled receptor activity. High-throughput quantitative histological analysis depicted an increase of eosinophils and rodlet cells in the gut tissue of fish receiving butyrate after one week of feeding and a depletion of mucus-producing cells after 3 weeks of feeding this diet. Combination of all datasets indicated that in juvenile zebrafish, butyrate supplementation increases the immune and the inflammatory response to a greater extent than the established inflammation-inducing anti-nutritional factor saponin. Such comprehensive analysis was supplemented by in vivo imaging of neutrophil and macrophage transgenic reporter zebrafish (mpeg1:mCherry/mpx:eGFPi114) larvae. Upon exposure to butyrate and saponin, these larvae displayed a dose-dependent increase of neutrophils and macrophages in the gut area. CONCLUSION The omics and imaging combinatorial approach provided an integrated evaluation of the effect of butyrate on fish gut health and unraveled inflammatory-like features not previously reported that question the usage of butyrate supplementation to enhance fish gut health under basal conditions. The zebrafish model, due to its unique advantages, provides researchers with an invaluable tool to investigate effects of feed components on fish gut health throughout life.
Collapse
Affiliation(s)
- Adrià López Nadal
- grid.4818.50000 0001 0791 5666Cell Biology and Immunology Group, Wageningen University and Research, Wageningen, The Netherlands ,grid.4818.50000 0001 0791 5666Aquaculture and Fisheries Group, Wageningen University and Research, Wageningen, The Netherlands ,grid.4818.50000 0001 0791 5666Host-Microbe Interactomics, Wageningen University and Research, De Elst 1, 6708 WD Wageningen, The Netherlands
| | - Jos Boekhorst
- grid.4818.50000 0001 0791 5666Host-Microbe Interactomics, Wageningen University and Research, De Elst 1, 6708 WD Wageningen, The Netherlands
| | - Carolien Lute
- grid.4818.50000 0001 0791 5666Cell Biology and Immunology Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Frank van den Berg
- grid.4818.50000 0001 0791 5666Aquaculture and Fisheries Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Michelle A. Schorn
- grid.4818.50000 0001 0791 5666Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | | | - David Peggs
- Skretting Aquaculture Innovation, Stavanger, Norway
| | | | - Detmer Sipkema
- grid.4818.50000 0001 0791 5666Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Michiel Kleerebezem
- grid.4818.50000 0001 0791 5666Host-Microbe Interactomics, Wageningen University and Research, De Elst 1, 6708 WD Wageningen, The Netherlands
| | - Geert F. Wiegertjes
- grid.4818.50000 0001 0791 5666Aquaculture and Fisheries Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Sylvia Brugman
- Host-Microbe Interactomics, Wageningen University and Research, De Elst 1, 6708 WD, Wageningen, The Netherlands.
| |
Collapse
|
11
|
Vargas RA, Soto-Aguilera S, Parra M, Herrera S, Santibañez A, Kossack C, Saavedra CP, Mora O, Pineda M, Gonzalez O, Gonzalez A, Maisey K, Torres-Maravilla E, Bermúdez-Humarán LG, Suárez-Villota EY, Tello M. Analysis of microbiota-host communication mediated by butyrate in Atlantic Salmon. Comput Struct Biotechnol J 2023; 21:2558-2578. [PMID: 37122632 PMCID: PMC10130356 DOI: 10.1016/j.csbj.2023.03.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Butyrate is a microbiota-produced metabolite, sensed by host short-chain fatty acid receptors FFAR2 (Gpr43), FFAR3 (Gpr41), HCAR2 (Gpr109A), and Histone deacetylase (HDAC) that promotes microbiota-host crosstalk. Butyrate influences energy uptake, developmental and immune response in mammals. This microbial metabolite is produced by around 79 anaerobic genera present in the mammalian gut, yet little is known about the role of butyrate in the host-microbiota interaction in salmonid fish. To further our knowledge of this interaction, we analyzed the intestinal microbiota and genome of Atlantic salmon (Salmo salar), searching for butyrate-producing genera and host butyrate receptors. We identified Firmicutes, Proteobacteria, and Actinobacteria as the main butyrate-producing bacteria in the salmon gut microbiota. In the Atlantic salmon genome, we identified an expansion of genes orthologous to FFAR2 and HCAR2 receptors, and class I and IIa HDACs that are sensitive to butyrate. In addition, we determined the expression levels of orthologous of HCAR2 in the gut, spleen, and head-kidney, and FFAR2 in RTgutGC cells. The effect of butyrate on the Atlantic salmon immune response was evaluated by analyzing the pro and anti-inflammatory cytokines response in vitro in SHK-1 cells by RT-qPCR. Butyrate decreased the expression of the pro-inflammatory cytokine IL-1β and increased anti-inflammatory IL-10 and TGF-β cytokines. Butyrate also reduced the expression of interferon-alpha, Mx, and PKR, and decreased the viral load at a higher concentration (4 mM) in cells treated with this molecule before the infection with Infectious Pancreatic Necrosis Virus (IPNV) by mechanisms independent of FFAR2, FFAR3 and HCAR2 expression that probably inhibit HDAC. Moreover, butyrate modified phosphorylation of cytoplasmic proteins in RTgutGC cells. Our data allow us to infer that Atlantic salmon have the ability to sense butyrate produced by their gut microbiota via different specific targets, through which butyrate modulates the immune response of pro and anti-inflammatory cytokines and the antiviral response.
Collapse
|
12
|
Wang X, Wan M, Wang Z, Zhang H, Zhu S, Cao X, Xu N, Zheng J, Bu X, Xu W, Mai K, Ai Q. Effects of Tributyrin Supplementation on Growth Performance, Intestinal Digestive Enzyme Activity, Antioxidant Capacity, and Inflammation-Related Gene Expression of Large Yellow Croaker ( Larimichthys crocea) Fed with a High Level of Clostridium autoethanogenum Protein. AQUACULTURE NUTRITION 2023; 2023:2687734. [PMID: 36860969 PMCID: PMC9973137 DOI: 10.1155/2023/2687734] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/16/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
An 8-week growth experiment was conducted to investigate effects of tributyrin (TB) supplementation on growth performance, intestinal digestive enzyme activity, antioxidant capacity, and inflammation-related gene expression of juvenile large yellow croaker (Larimichthys crocea) (initial weight of 12.90 ± 0.02 g) fed diets with high level of Clostridium autoethanogenum protein (CAP). In the negative control diet, 40% fish meal was used as the major source of protein (named as FM), while 45% fish meal protein of FM was substituted with CAP (named as FC) to form a positive control diet. Based on the FC diet, grade levels of 0.05%, 0.1%, 0.2%, 0.4%, and 0.8% tributyrin were added to formulate other five experimental diets. Results showed that fish fed diets with high levels of CAP significantly decreased the weight gain rate (WGR) and specific growth rate (SGR) compared with fish fed the FM diet (P < 0.05). WGR and SGR were significantly higher than in fish fed diets with 0.05% and 0.1% tributyrin that fed the FC diet (P < 0.05). Supplementation of 0.1% tributyrin significantly elevated fish intestinal lipase and protease activities compared to FM and FC diets (P < 0.05). Meanwhile, compared to fish fed the FC diet, fish fed diets with 0.05% and 0.1% tributyrin showed remarkably higher intestinal total antioxidant capacity (T-AOC). Malondialdehyde (MDA) content in the intestine of fish fed diets with 0.05%-0.4% tributyrin was remarkably lower than those in the fish fed the FC diet (P < 0.05). The mRNA expressions of tumor necrosis factor α (tnfα), interleukin-1β (il-1β), interleukin-6 (il-6), and interferon γ (ifnγ) were significantly downregulated in fish fed diets with 0.05%-0.2% tributyrin, and the mRNA expression of il-10 was significantly upregulated in fish fed the 0.2% tributyrin diet (P < 0.05). In regard to antioxidant genes, as the supplementation of tributyrin increased from 0.05% to 0.8%, the mRNA expression of nuclear factor erythroid 2-related factor 2 (nrf2) demonstrated a trend of first rising and then decreasing. However, the mRNA expression of Kelch-like ECH-associated protein 1 (keap1) was remarkably lower in fish fed the FC diet than that fed diets with tributyrin supplementation (P < 0.05). Overall, fish fed tributyrin supplementation diets can ameliorate the negative effects induced by high proportion of CAP in diets, with an appropriate supplementation of 0.1%.
Collapse
Affiliation(s)
- Xiuneng Wang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
| | - Min Wan
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
| | - Zhen Wang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
| | - Haitao Zhang
- Guangdong Evergreen Feed Industry Co., Ltd., Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture and Rural Affairs, Zhanjiang 524000, China
| | - Si Zhu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
| | - Xiufei Cao
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
| | - Ning Xu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
| | - Jichang Zheng
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
| | - Xianyong Bu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
| | - Wei Xu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266003, China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266003, China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266003, China
| |
Collapse
|
13
|
Liu S, Zhang S, Wang Y, Lu S, Han S, Liu Y, Jiang H, Wang C, Liu H. Dietary Sodium Butyrate Improves Intestinal Health of Triploid Oncorhynchus mykiss Fed a Low Fish Meal Diet. BIOLOGY 2023; 12:biology12020145. [PMID: 36829424 PMCID: PMC9952962 DOI: 10.3390/biology12020145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/08/2023] [Accepted: 01/14/2023] [Indexed: 01/20/2023]
Abstract
This study aimed to determine the effects of dietary sodium butyrate (NaB) on the growth and gut health of triploid Oncorhynchus mykiss juveniles (8.86 ± 0.36 g) fed a low fish meal diet for 8 weeks, including the inflammatory response, histomorphology, and the composition and functional prediction of microbiota. Five isonitrogenous and isoenergetic practical diets (15.00% fish meal and 21.60% soybean meal) were supplemented with 0.00% (G1), 0.10% (G2), 0.20% (G3), 0.30% (G4), and 0.40% NaB (G5), respectively. After the feeding trial, the mortality for G3 challenged with Aeromonas salmonicida for 7 days was lower than that for G1 and G5. The optimal NaB requirement for triploid O. mykiss based on weight gain rate (WGR) and the specific growth rate (SGR) was estimated to be 0.22% and 0.20%, respectively. The activities of intestinal digestive enzymes increased in fish fed a NaB diet compared to G1 (p < 0.05). G1 also showed obvious signs of inflammation, but this inflammation was significantly alleviated with dietary NaB supplementation. In comparison, G3 exhibited a more complete intestinal mucosal morphology. Dietary 0.20% NaB may play an anti-inflammatory role by inhibiting the NF-κB-P65 inflammatory signaling pathway. Additionally, the relative abundance of probiotics was altered by dietary NaB. In conclusion, dietary 0.20% NaB improved the intestinal health of triploid O. mykiss fed a low fish meal diet.
Collapse
Affiliation(s)
- Siyuan Liu
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Shuze Zhang
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150006, China
| | - Yaling Wang
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Shaoxia Lu
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Shicheng Han
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Yang Liu
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Haibo Jiang
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Chang’an Wang
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
- Correspondence: (C.W.); (H.L.); Tel.: +86-13936508461 (C.W.); +86-13796050776 (H.L.)
| | - Hongbai Liu
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
- Correspondence: (C.W.); (H.L.); Tel.: +86-13936508461 (C.W.); +86-13796050776 (H.L.)
| |
Collapse
|
14
|
Lin X, Zhang C, Cao K, Li Z, Zhao Z, Li X, Leng X. Dietary Sodium Butyrate Changed Intestinal Histology and Microbiota of Rainbow Trout ( Oncorhynchus mykiss), but Did Not Promote Growth and Nutrient Utilization. AQUACULTURE NUTRITION 2023; 2023:3706109. [PMID: 36860983 PMCID: PMC9973217 DOI: 10.1155/2023/3706109] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/10/2022] [Accepted: 05/21/2022] [Indexed: 06/18/2023]
Abstract
The study investigated the effects of dietary sodium butyrate (SB) on the growth performance, nutrient utilization, intestinal histology, and microbiota of rainbow trout (Oncorhynchus mykiss). A high fishmeal diet and a low fishmeal diet were formulated to contain 200 g/kg or 100 g/kg fishmeal, respectively. Coated SB (50%) was supplemented to each of the diets at levels of 0, 1.0, and 2.0 g/kg to create 6 diets. The diets were fed to rainbow trout with initial body weight of 29.9 ± 0.2 g for 8 weeks. Compared to the high fishmeal group, the low fishmeal group showed significantly lower weight gain (WG), intestine muscle thickness, and significantly higher feed conversion ratio (FCR) and amylase activity (P < 0.05). The supplementation of SB in high or low fishmeal diet did not significantly affect the WG, FCR, protein retention, and the digestibility of dry matter and crude protein (P > 0.05). The supplementation of 2.0 g/kg SB in low fishmeal diet significantly increased the villus height, villus width, and muscular thickness, while the supplementation of 2.0 g/kg SB in high fishmeal diet also significantly increased the intestinal villus height (P < 0.05). In intestinal microbiota, the supplementation of 2.0 g/kg SB significantly increased the abundance of Proteobacteria and Aeromonas, and decreased the abundance of Firmicutes and Mycoplasma (P < 0.05), but the flora at genus and phylum level were not affected by SB supplementation in low fishmeal diet (P > 0.05). In conclusion, the addition of SB in diets containing 100 or 200 g/kg fishmeal did not enhance the growth performance and nutrient utilization of rainbow trout, but improved intestinal morphology and changed intestinal microbial flora.
Collapse
Affiliation(s)
- Xia Lin
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Ocean University, Centre for Research on Environmental Ecology and Fish Nutrition of Ministry of Agriculture, Shanghai 201306, China
| | - Chunyan Zhang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Ocean University, Centre for Research on Environmental Ecology and Fish Nutrition of Ministry of Agriculture, Shanghai 201306, China
| | - Kailin Cao
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Ocean University, Centre for Research on Environmental Ecology and Fish Nutrition of Ministry of Agriculture, Shanghai 201306, China
| | - Zhendong Li
- Zhumadian Huazhong Chia Tai Co., Ltd., Henan 463023, China
| | - Zhongshen Zhao
- Zhumadian Huazhong Chia Tai Co., Ltd., Henan 463023, China
| | - Xiaoqin Li
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Ocean University, Centre for Research on Environmental Ecology and Fish Nutrition of Ministry of Agriculture, Shanghai 201306, China
| | - Xiangjun Leng
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Ocean University, Centre for Research on Environmental Ecology and Fish Nutrition of Ministry of Agriculture, Shanghai 201306, China
| |
Collapse
|
15
|
Zhou J, Feng M, Zhang W, Kuang R, Zou Q, Su J, Yuan G. Oral administration of hepcidin and chitosan benefits growth, immunity, and gut microbiota in grass carp ( Ctenopharyngodon idella). Front Immunol 2022; 13:1075128. [PMID: 36591242 PMCID: PMC9798086 DOI: 10.3389/fimmu.2022.1075128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Intensive high-density culture patterns are causing an increasing number of bacterial diseases in fish. Hepcidin links iron metabolism with innate immunity in the process of resisting bacterial infection. In this study, the antibacterial effect of the combination of hepcidin (Cihep) and chitosan (CS) against Flavobacterium columnare was investigated. The dosing regimen was also optimized by adopting a feeding schedule of every three days and every seven days. After 56 days of feeding experiment, grass carp growth, immunity, and gut microbiota were tested. In vitro experiments, Cihep and CS can regulate iron metabolism and antibacterial activity, and that the combination of Cihep and CS had the best protective effect. In vivo experiments, Cihep and CS can improve the growth index of grass carp. After challenge with Flavobacterium columnare, the highest survival rate was observed in the Cihep+CS-3d group. By serum biochemical indicators assay and Prussian blue staining, Cihep and CS can increase iron accumulation and decrease serum iron levels. The contents of lysozyme and superoxide dismutase in Cihep+CS-3d group increased significantly. Meanwhile, Cihep and CS can significantly reduce the pathological damage of gill tissue. The 16S rRNA sequencing results showed that Cihep and CS can significantly increase the abundance and diversity of grass carp gut microbiota. These results indicated that the protective effect of consecutive 3-day feeding followed by a 3-day interval was better than that of consecutive 7-day feeding followed by a 7-day interval, and that the protective effect of Cihep in combination with chitosan was better than that of Cihep alone. Our findings optimize the feeding pattern for better oral administration of Cihep in aquaculture.
Collapse
Affiliation(s)
- Jiancheng Zhou
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China,Wuhan DaBeiNong (DBN) Aquaculture Technology Co. LTD, Wuhan, Hubei, China
| | - Mengzhen Feng
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Weixiang Zhang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Rui Kuang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Qi Zou
- Wuhan DaBeiNong (DBN) Aquaculture Technology Co. LTD, Wuhan, Hubei, China
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Gailing Yuan
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China,*Correspondence: Gailing Yuan,
| |
Collapse
|
16
|
Ding Q, Lu C, Hao Q, Zhang Q, Yang Y, Olsen RE, Ringo E, Ran C, Zhang Z, Zhou Z. Dietary Succinate Impacts the Nutritional Metabolism, Protein Succinylation and Gut Microbiota of Zebrafish. Front Nutr 2022; 9:894278. [PMID: 35685883 PMCID: PMC9171437 DOI: 10.3389/fnut.2022.894278] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/07/2022] [Indexed: 11/29/2022] Open
Abstract
Succinate is widely used in the food and feed industry as an acidulant, flavoring additive, and antimicrobial agent. This study investigated the effects of dietary succinate on growth, energy budget, nutritional metabolism, protein succinylation, and gut microbiota composition of zebrafish. Zebrafish were fed a control-check (0% succinate) or four succinate-supplemented diets (0.05, 0.10, 0.15, and 0.2%) for 4 weeks. The results showed that dietary succinate at the 0.15% additive amount (S0.15) can optimally promote weight gain and feed intake. Whole body protein, fat, and energy deposition increased in the S0.15 group. Fasting plasma glucose level decreased in fish fed the S0.15 diet, along with improved glucose tolerance. Lipid synthesis in the intestine, liver, and muscle increased with S0.15 feeding. Diet with 0.15% succinate inhibited intestinal gluconeogenesis but promoted hepatic gluconeogenesis. Glycogen synthesis increased in the liver and muscle of S0.15-fed fish. Glycolysis was increased in the muscle of S0.15-fed fish. In addition, 0.15% succinate-supplemented diet inhibited protein degradation in the intestine, liver, and muscle. Interestingly, different protein succinylation patterns in the intestine and liver were observed in fish fed the S0.15 diet. Intestinal proteins with increased succinylation levels were enriched in the tricarboxylic acid cycle while proteins with decreased succinylation levels were enriched in pathways related to fatty acid and amino acid degradation. Hepatic proteins with increased succinylation levels were enriched in oxidative phosphorylation while proteins with decreased succinylation levels were enriched in the processes of protein processing and transport in the endoplasmic reticulum. Finally, fish fed the S0.15 diet had a higher abundance of Proteobacteria but a lower abundance of Fusobacteria and Cetobacterium. In conclusion, dietary succinate could promote growth and feed intake, promote lipid anabolism, improve glucose homeostasis, and spare protein. The effects of succinate on nutritional metabolism are associated with alterations in the levels of metabolic intermediates, transcriptional regulation, and protein succinylation levels. However, hepatic fat accumulation and gut microbiota dysbiosis induced by dietary succinate suggest potential risks of succinate application as a feed additive for fish. This study would be beneficial in understanding the application of succinate as an aquatic feed additive.
Collapse
Affiliation(s)
- Qianwen Ding
- China-Norway Joint Lab on Fish Gastrointestinal Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Norway-China Joint Lab on Fish Gastrointestinal Microbiota, Institute of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Chenyao Lu
- China-Norway Joint Lab on Fish Gastrointestinal Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qiang Hao
- China-Norway Joint Lab on Fish Gastrointestinal Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingshuang Zhang
- China-Norway Joint Lab on Fish Gastrointestinal Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yalin Yang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rolf Erik Olsen
- Norway-China Joint Lab on Fish Gastrointestinal Microbiota, Institute of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Einar Ringo
- Norwegian College of Fishery Science, Faculty of Bioscience, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway
| | - Chao Ran
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhen Zhang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Zhen Zhang,
| | - Zhigang Zhou
- China-Norway Joint Lab on Fish Gastrointestinal Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Zhigang Zhou,
| |
Collapse
|
17
|
Abdel-Latif HMR, Hendam BM, Shukry M, El-Shafai NM, El-Mehasseb IM, Dawood MAO, Abdel-Tawwab M. Effects of sodium butyrate nanoparticles on the hemato-immunological indices, hepatic antioxidant capacity, and gene expression responses in Oreochromisniloticus. FISH & SHELLFISH IMMUNOLOGY 2021; 119:516-523. [PMID: 34718125 DOI: 10.1016/j.fsi.2021.10.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
Recently, nanotechnology has been greatly developed to provide the aquaculture industry with new beneficial nanomaterials to improve the health and welfare of aquatic animals. Herein, an eight-week experiment was designed to examine the dietary impacts of sodium butyrate nanoparticles (SB-NPs) on the hematological profile, blood proteins, immunological indices, antioxidant capacity, and expression analysis of cytokines and antioxidant-related genes in Oreochromis niloticus. Fish were randomly assigned into 5 experimental groups (3 replicates per group) and were fed diets supplemented with 5 levels of SB-NPs as 0.0 (control), 0.5, 1.0, 1.5, and 2.0 mg kg-1. The results revealed that supplementing diets with SB-NPs (1.0-2.0 mg kg-1) significantly elevated erythrocyte and leukocyte counts, hemoglobin concentrations, hematocrit values, total albumin, globulin, serum lysozyme activities, and total immunoglobulin M values compared with the control group. Notably, the highest levels of the parameters mentioned above were noticed in the group fed diet supplemented with 1.5 mg kg-1 SB-NPs. Moreover, dietary SB-NPs modulated the fish's antioxidant defense mechanisms, whereas there was a significant increase in hepatic superoxide dismutase, catalase, and glutathione peroxidase enzyme activities along with a significant decline in hepatic malondialdehyde concentrations in fish groups fed diets supplemented with SB-NPs (1.0-2.0 mg kg-1). A significant upregulation of antioxidant enzyme genes (gpx and sod), anti-inflammatory cytokine (il-10), and pro-inflammatory cytokines (il-1β and il-8) were noticed in liver tissues of SB-NPs groups (0.5-1.5 mg kg-1). The highest mRNA expression folds of the above genes were recorded in the fish group fed diet supplemented with 1.5 mg kg-1 SB-NPs. In this context, we hypothesized that dietary supplementation with SB-NPs can boost the antioxidant status and immunity of O. niloticus. However, further research studies are still recommended.
Collapse
Affiliation(s)
- Hany M R Abdel-Latif
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 22758, Egypt.
| | - Basma M Hendam
- Department of Husbandry and Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Nagi M El-Shafai
- Nanotechnology Center, Faculty of Science, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Ibrahim M El-Mehasseb
- Nanotechnology Center, Faculty of Science, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Mahmoud A O Dawood
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Mohsen Abdel-Tawwab
- Department of Fish Biology and Ecology, Central Laboratory for Aquaculture Research, Agriculture Research Center, Abbassa, Abo-Hammad, Sharqia, Egypt
| |
Collapse
|
18
|
Alves Jesus GF, Owatari MS, Pereira SA, Silva BC, Syracuse NM, Lopes GR, Addam K, Cardoso L, Pedreira Mouriño JL, Martins ML. Effects of sodium butyrate and Lippia origanoides essential oil blend on growth, intestinal microbiota, histology, and haemato-immunological response of Nile tilapia. FISH & SHELLFISH IMMUNOLOGY 2021; 117:62-69. [PMID: 34280520 DOI: 10.1016/j.fsi.2021.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/07/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
This study aimed to verify the effects of dietary supplementation with sodium butyrate and Lippia origanoides, combined and isolated, on the health and zootechnical performance of Nile tilapia juveniles Oreochromis niloticus. A total of 120 fish (5.38 ± 0.65 g) were randomly distributed in 12 experimental units and fed different experimental diets for 30 days, namely: commercial diet without supplementation (Unsupplemented); commercial diet supplemented with 0.5% sodium butyrate (Butyrate); commercial diet supplemented with 0.125% L. origanoides (Lippia) and commercial diet supplemented with a mixture of 0.5% sodium butyrate and 0.125% L. origanoides (Butyrate + Lippia). After preparing the experimental diets there was an increase in the pH of diet Butyrate when compared to the other diets. After 30 days the fish supplemented with Butyrate + Lippia showed reduction significate in the mean corpuscular haemoglobin, concentration of total heterotrophic bacteria in the intestine, and lymphocyte infiltrates in the liver. Besides that, the supplementation with Butyrate + Lippia promoted an increased number of intestinal villi compared to the fish Unsupplemented ones. Additionally, fish fed a diet containing only Lippia presented an increase in the villus perimeter in the posterior region of the gut and in the red blood cell number. Animals supplemented only with sodium butyrate demonstrated increased lactic acid bacterium in the gut and macrosteatosis in the liver, besides decreased melanomacrophages in the spleen. The use of sodium butyrate associated with essential oil had positive effects on the intestinal microbiota, intestinal structure, liver, and spleen integrity, suggesting a greater efficiency of the compounds when used together in the nutrition of Nile tilapia juveniles.
Collapse
Affiliation(s)
- Gabriel Fernandes Alves Jesus
- AQUOS - Aquatic Organisms Health Laboratory, Aquaculture Department, Federal University of Santa Catarina (UFSC), Rod. Admar Gonzaga 1346. CEP 88040-900, Florianópolis, SC, Brazil
| | - Marco Shizuo Owatari
- AQUOS - Aquatic Organisms Health Laboratory, Aquaculture Department, Federal University of Santa Catarina (UFSC), Rod. Admar Gonzaga 1346. CEP 88040-900, Florianópolis, SC, Brazil.
| | - Scheila Anelise Pereira
- AQUOS - Aquatic Organisms Health Laboratory, Aquaculture Department, Federal University of Santa Catarina (UFSC), Rod. Admar Gonzaga 1346. CEP 88040-900, Florianópolis, SC, Brazil
| | - Bruno Corrêa Silva
- EPAGRI - Company of Agricultural Research and Rural Extension of Santa Catarina, Rod. Antônio Heil, 6800. CEP 88318-112, Itajaí, SC, Brazil
| | - Nicholas Milis Syracuse
- AQUOS - Aquatic Organisms Health Laboratory, Aquaculture Department, Federal University of Santa Catarina (UFSC), Rod. Admar Gonzaga 1346. CEP 88040-900, Florianópolis, SC, Brazil
| | - Gustavo Ruschel Lopes
- AQUOS - Aquatic Organisms Health Laboratory, Aquaculture Department, Federal University of Santa Catarina (UFSC), Rod. Admar Gonzaga 1346. CEP 88040-900, Florianópolis, SC, Brazil
| | - Kennya Addam
- AQUOS - Aquatic Organisms Health Laboratory, Aquaculture Department, Federal University of Santa Catarina (UFSC), Rod. Admar Gonzaga 1346. CEP 88040-900, Florianópolis, SC, Brazil
| | - Lucas Cardoso
- AQUOS - Aquatic Organisms Health Laboratory, Aquaculture Department, Federal University of Santa Catarina (UFSC), Rod. Admar Gonzaga 1346. CEP 88040-900, Florianópolis, SC, Brazil
| | - José Luiz Pedreira Mouriño
- AQUOS - Aquatic Organisms Health Laboratory, Aquaculture Department, Federal University of Santa Catarina (UFSC), Rod. Admar Gonzaga 1346. CEP 88040-900, Florianópolis, SC, Brazil
| | - Maurício Laterça Martins
- AQUOS - Aquatic Organisms Health Laboratory, Aquaculture Department, Federal University of Santa Catarina (UFSC), Rod. Admar Gonzaga 1346. CEP 88040-900, Florianópolis, SC, Brazil
| |
Collapse
|
19
|
Zhao H, Wang G, Wang H, Mo W, Huang Y, Cao J, Li P. Effects of dietary sodium butyrate on growth, digestive enzymes, body composition and nutrient retention-related gene expression of juvenile yellow catfish ( Pelteobagrus fulvidraco). ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2021; 7:539-547. [PMID: 34258443 PMCID: PMC8245809 DOI: 10.1016/j.aninu.2020.12.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 12/15/2020] [Accepted: 12/20/2020] [Indexed: 01/14/2023]
Abstract
An 8-week feeding trial was conducted to evaluate the effects of sodium butyrate (SB) on growth, digestive enzymes, body composition and nutrient retention-related gene expression of juvenile yellow catfish (Pelteobagrus fulvidraco). Five isonitrogenous and isolipidic diets (420 g/kg protein and 90 g/kg lipid) were formulated to contain 0 (control), 250, 500, 1,000 or 2,000 mg/kg SB. Triplicate groups of 40 fish (BW = 1.26 ± 0.01 g) per tank (300-L cylindrical fiberglass tanks) for each diet were fed to apparent satiation twice daily. Stomach, hepatopancreas and intestine samples were obtained for digestive enzymes activities analyses. A real-time quantitative PCR analysis was performed to determine the relative expression of target of rapamycin (TOR) and lipoprotein lipase (LPL) in the hepatopancreas and intestine. Fish fed the diets supplemented with SB at 500 and 1,000 mg/kg showed significantly higher specific growth rate and significantly lower feed conversion ratio compared to the control (P < 0.05). Dietary SB inclusion did not alter activities of intestinal amylase, creatine kinase and sodium–potassium adenosine triphosphatase (Na+/K+-ATPase), but increased activities of hepatic trypsin, stomachic lipase, intestinal lipase, alkaline phosphatase and γ-glutamyl transpeptidase for fish fed 1,000 mg/kg SB compared to the control (P < 0.05). Intestine length index, intestine somatic index, fold height and muscular thickness of distal intestine were significantly higher in 1,000 mg/kg SB groups compared to the control (P < 0.05). Significantly higher levels of whole-body crude protein, ash, calcium, phosphorus, nutrition retention and relative mRNA of intestinal TOR were observed in 1,000 mg/kg SB group (P < 0.05). Whole-body lipid content and hepatopancreas LPL mRNA expression in 2,000 mg/kg SB group were significantly higher than the control (P < 0.05). Relative mRNA levels of intestinal LPL and hepatopancreas TOR were significantly higher in the 500 mg/kg SB group compared to those in other groups (P < 0.05). The increased growth performance, digestive enzymes and nutrient retention in fish fed the diets supplemented with SB at 500 and 1,000 mg/kg suggests that SB can be a desirable growth promoter as an antibiotic alternative in diets.
Collapse
Affiliation(s)
- Hongxia Zhao
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.,Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China.,Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Guoxia Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.,Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China.,Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Hairui Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.,Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China.,Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Wenyan Mo
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.,Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China.,Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Yanhua Huang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.,Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China.,Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Junming Cao
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.,Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China.,Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China.,Guangdong Ocean University, Zhanjiang 524088, China
| | - Peijia Li
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.,Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China.,Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China.,Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
20
|
Tarnecki AM, Levi NJ, Resley M, Main K. Effect of copper sulfate on the external microbiota of adult common snook (Centropomus undecimalis). Anim Microbiome 2021; 3:21. [PMID: 33653402 PMCID: PMC7923503 DOI: 10.1186/s42523-021-00085-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/18/2021] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The environment exerts a strong influence on the fish external microbiota, with lower diversity and increased abundances of opportunistic bacterial groups characterizing cultured fish compared to their wild counterparts. Deviation from a healthy external microbiota structure has been associated with increased susceptibility to bacterial pathogens. Treatment of wild-caught broodstock with copper sulfate for the removal of external parasites is a common aquaculture practice. Despite the microbiota's importance to fish health, the effects of copper sulfate on mucosal bacterial communities and their ability to recover following this chemical treatment have not been examined. The skin microbiota of adult common snook was characterized from wild individuals (Wild), and wild-caught fish maintained in recirculating aquaculture systems (RAS) immediately following a month-long copper sulfate treatment (Captive-1), and then two-weeks (Captive-2) and 2 years (Captive-3) after cessation of copper treatment. RESULTS The skin microbiota of wild fish were characterized by high diversity and taxa including Synechocococcus, SAR11, and a member of the Roseobacter clade. Bacterial diversity decreased in Captive individuals during the 2-year sampling period. Captive fish harbored greater abundances of Firmicutes, which may reflect glycan differences between aquaculture and natural feeds. Bacterial taxa with copper resistance mechanisms and indicative of metal contamination were enriched in Captive-1 and Captive-2 fish. Vibrionaceae were dominant in Captive fish, particularly immediately and 2 weeks following copper treatment. Based on our observations and previous literature, our results suggest putatively beneficial taxa amass over time in captivity. Within 2 years, Captive individuals harbored Bacillus which contains numerous probiotic candidates and the complex carbon degraders of the family Saprospiraceae. Predicted butanoate metabolism exceeded that of Wild fish, and its reported roles in immunity and energy provision suggest a prebiotic effect for fishes. CONCLUSIONS The mucosal microbiota contains bacterial taxa that may act as bioindicators of environmental pollution. Increases in mutualistic groups indicate a return to a beneficial skin microbiota following copper sulfate treatment. Our data also suggests that vastly different taxa, influenced by environmental conditions, can be associated with adult fish without noticeable health impairment, perhaps due to establishment of various mutualists to maintain fish mucosal health.
Collapse
Affiliation(s)
- Andrea M Tarnecki
- Marine Immunology Program, Mote Marine Laboratory, 1600 Ken Thompson Parkway, Sarasota, FL, 34236, USA.
| | - Noah J Levi
- Biology Department, Wabash College, 301 West Wabash Avenue, Crawfordsville, IN, 47933, USA
- Current affiliation: Medical Scientist Training Program, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, Miami, FL, 33101, USA
| | - Matthew Resley
- Directorate of Fisheries and Aquaculture, Mote Aquaculture Research Park, 874 WR Mote Way, Sarasota, FL, 34240, USA
| | - Kevan Main
- Directorate of Fisheries and Aquaculture, Mote Aquaculture Research Park, 874 WR Mote Way, Sarasota, FL, 34240, USA
| |
Collapse
|
21
|
Sun X, Luo S, Jiang C, Tang Y, Cao Z, Jia H, Xu Q, Zhao C, Loor JJ, Xu C. Sodium butyrate reduces bovine mammary epithelial cell inflammatory responses induced by exogenous lipopolysaccharide, by inactivating NF-κB signaling. J Dairy Sci 2020; 103:8388-8397. [PMID: 32622605 DOI: 10.3168/jds.2020-18189] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 04/22/2020] [Indexed: 12/13/2022]
Abstract
Exogenous molecules derived from catabolic states (e.g., fatty acids, β-hydroxybutyrate) during periods of stress such as the periparturient period or pathogen challenges [e.g., lipopolysaccharide (LPS)] can trigger an inflammatory response in tissues such as the liver and the mammary gland. Butyrate is one of the major short-chain fatty acids produced in the rumen, and work with non-ruminants has demonstrated that it can alter inflammatory processes. The primary objective of this study was to explore the preventive effect of sodium butyrate (SB) on LPS-induced inflammation in bovine mammary epithelial cells along with underlying molecular mechanisms. Immortalized bovine mammary epithelial cells (MAC-T) were treated with SB (0.1, 0.25, 0.5, 1, 2, or 5 mM) or with the histone deacetylase inhibitor trichostatin A (TSA; 6.25, 12.5, 25, or 50 nM) for 18 h, followed by a challenge with 1 µg/mL LPS for an additional 6 h. Pretreatment with SB prevented increase in apoptosis of LPS-challenged MAC-T cells in a dose-dependent manner. The LPS treatment upregulated mRNA abundance of tumor necrosis factor α (TNFA), interleukin-6 (IL6), and interleukin-1B (IL1B), whereas inhibition of histone deacetylase with TSA dampened this effect. More importantly, SB had clear dose-dependent effects on the inflammatory response by preventing upregulation of TNFA, IL6, and IL1B. Furthermore, pretreatment with TSA or SB attenuated the downregulation of histone H3 acetylation protein abundance induced by LPS. The greater ratio of p-IκB α/IκB α and p-p65/p65 protein abundance and the increase in nuclear localization of NF-κB p65 protein in response to LPS were attenuated by pretreatment with SB. Overall, the data indicated that exogenous SB alleviates mammary cell pro-inflammatory responses partly through post-translational mechanisms that diminish NF-κB signaling. Thus, the cytoprotective effect of SB against an inflammatory challenge might represent a preventive tool to help the mammary gland against pathogens such as those causing mastitis.
Collapse
Affiliation(s)
- Xudong Sun
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, China
| | - Shengbin Luo
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, China
| | - Chunhui Jiang
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, China
| | - Yan Tang
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Hongdou Jia
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, China
| | - Qiushi Xu
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, China
| | - Chenxu Zhao
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, China
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Chuang Xu
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, China.
| |
Collapse
|
22
|
Tran NT, Tang Y, Li Z, Zhang M, Wen X, Ma H, Li S. Galactooligosaccharides and Resistant Starch Altered Microbiota and Short-Chain Fatty Acids in an in vitro Fermentation Study Using Gut Contents of Mud Crab ( Scylla paramamosain). Front Microbiol 2020; 11:1352. [PMID: 32695078 PMCID: PMC7338486 DOI: 10.3389/fmicb.2020.01352] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/26/2020] [Indexed: 11/18/2022] Open
Abstract
Dietary carbohydrates are anaerobically fermented by gut microbiota to short-chain fatty acids (SCFAs), conferring gut health benefits. Of all tested prebiotics, galactooligosaccharides (GOS) and resistant starch (RS) stimulated the SCFA production in mud crab (Scylla paramamosain), a crustacean model, to a greater extent than the other carbohydrates tested. Using in vitro anaerobic fermentation cultures, this study further explored the prebiotic potential of GOS and RS in mud crab by assessing their impacts on gut microbiota changes and SCFA production. Both GOS and RS significantly promoted SCFA production. Bacterial diversity in the GOS group was lower than in the RS or control group. GOS promoted the growth of Bacteroidetes, while RS promoted Tenericutes. A strong positive correlation was found between SCFA production and bacterial abundance; most bacteria per se correlated with each other. The findings demonstrated the prebiotic potential of GOS and RS in mud crab.
Collapse
Affiliation(s)
- Ngoc Tuan Tran
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China.,Institute of Marine Sciences, Shantou University, Shantou, China.,STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Yong Tang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China.,Institute of Marine Sciences, Shantou University, Shantou, China.,STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Zhongzhen Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China.,Institute of Marine Sciences, Shantou University, Shantou, China.,STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Ming Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China.,Institute of Marine Sciences, Shantou University, Shantou, China.,STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Xiaobo Wen
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China.,Institute of Marine Sciences, Shantou University, Shantou, China.,STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Hongyu Ma
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China.,Institute of Marine Sciences, Shantou University, Shantou, China.,STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China.,Institute of Marine Sciences, Shantou University, Shantou, China.,STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| |
Collapse
|
23
|
Ting CH, Pan CY, Chen YC, Lin YC, Chen TY, Rajanbabu V, Chen JY. Impact of Tilapia hepcidin 2-3 dietary supplementation on the gut microbiota profile and immunomodulation in the grouper (Epinephelus lanceolatus). Sci Rep 2019; 9:19047. [PMID: 31836758 PMCID: PMC6910925 DOI: 10.1038/s41598-019-55509-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 11/30/2019] [Indexed: 12/31/2022] Open
Abstract
Hepcidin regulates iron homeostasis and host-defense mechanisms, while the hepcidin-like protein, Tilapia hepcidin (TH)2-3, functions as an antimicrobial peptide (AMP). Since AMP dietary supplements may be used as alternatives to antibiotics in livestock, we tested the effects of recombinant (r)TH2-3 as a dietary supplement in grouper aquaculture. rTH2-3 was produced by a Pichia pastoris expression system and exhibited thermostability and broad-spectrum antimicrobial activity. The feed conversion ratio and feed efficiency were determined in Epinephelus lanceolatus (grouper) fed with rTH2-3-supplemented diet for 28 days. In addition, grouper showed enhanced superoxide dismutase (SOD) activity after rTH2-3 feeding compared to regular-diet-fed fish. Gut microbiota analysis revealed that microbial diversity was enhanced by feeding grouper with 1% rTH2-3. After challenging grouper with Vibrio alginolyticus, differential regulation of immune-related genes in the liver and spleen was observed between the TH2-3 and regular-diet groups, including for genes associated with antimicrobial and pro-inflammatory functions, complement components, and major histocompatibility complex (Mhc). These findings suggest that overall immunity was improved. Thus, our results suggest long-term supplementation with rTH2-3 may be beneficial for aquacultured grouper. The beneficial effects of the supplement are likely based on changes in the commensal microbial community as well as immunomodulation.
Collapse
Affiliation(s)
- Chen-Hung Ting
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10 Dahuen Road, Jiaushi, Ilan, 262, Taiwan
| | - Chieh-Yu Pan
- Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung, 811, Taiwan
| | - Yi-Chun Chen
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10 Dahuen Road, Jiaushi, Ilan, 262, Taiwan
| | - Yu-Chun Lin
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10 Dahuen Road, Jiaushi, Ilan, 262, Taiwan
| | - Tzong-Yueh Chen
- Institute of Biotechnology & Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan
| | - Venugopal Rajanbabu
- Anbil Dharmalingam Agricultural College and Research Institute, Tamil Nadu Agricultural university, Tiruchchirapalli, 620027, Tamil Nadu, India
| | - Jyh-Yih Chen
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10 Dahuen Road, Jiaushi, Ilan, 262, Taiwan.
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan.
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 202, Taiwan.
| |
Collapse
|
24
|
Gupta S, Lokesh J, Abdelhafiz Y, Siriyappagouder P, Pierre R, Sørensen M, Fernandes JMO, Kiron V. Macroalga-Derived Alginate Oligosaccharide Alters Intestinal Bacteria of Atlantic Salmon. Front Microbiol 2019; 10:2037. [PMID: 31572312 PMCID: PMC6753961 DOI: 10.3389/fmicb.2019.02037] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 08/19/2019] [Indexed: 01/21/2023] Open
Abstract
Prebiotics are substrates intended to sculpt gut microbial communities as they are selectively utilized by the microorganisms to exert beneficial health effects on hosts. Macroalga-derived oligosaccharides are candidate prebiotics, and herein, we determined the effects of Laminaria sp.-derived alginate oligosaccharide (AlgOS) on the distal intestinal microbiota of Atlantic salmon (Salmo salar). Using a high-throughput 16S rRNA gene amplicon sequencing technique, we investigated the microbiota harbored in the intestinal content and mucus of the fish offered feeds supplemented with 0.5 and 2.5% AlgOS. We found that the prebiotic shifts the intestinal microbiota profile; alpha diversity was significantly reduced with 2.5% AlgOS while with 0.5% AlgOS the alteration occurred without impacting the bacterial diversity. Beta diversity analysis indicated the significant differences between control and prebiotic-fed groups. The low supplementation level of AlgOS facilitated the dominance of Proteobacteria (including Photobacterium phosphoreum, Aquabacterium parvum, Achromobacter insolitus), and Spirochaetes (Brevinema andersonii) in the content or mucus of the fish, and few of these bacteria (Aliivibrio logei, A. parvum, B. andersonii, A. insolitus) have genes associated with butyrate production. The results indicate that the low inclusion of AlgOS can plausibly induce a prebiotic effect on the distal intestinal microbiota of Atlantic salmon. These findings can generate further interest in the potential of macroalgae-derived oligosaccharides for food and feed applications.
Collapse
Affiliation(s)
- Shruti Gupta
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Jep Lokesh
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Yousri Abdelhafiz
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | | | - Ronan Pierre
- CEVA (Centre d'Etude et de Valorisation des Algues), Pleubian, France
| | - Mette Sørensen
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | | | - Viswanath Kiron
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| |
Collapse
|
25
|
Mirghaed AT, Yarahmadi P, Soltani M, Paknejad H, Hoseini SM. Dietary sodium butyrate (Butirex ® C4) supplementation modulates intestinal transcriptomic responses and augments disease resistance of rainbow trout (Oncorhynchus mykiss). FISH & SHELLFISH IMMUNOLOGY 2019; 92:621-628. [PMID: 31260736 DOI: 10.1016/j.fsi.2019.06.046] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/13/2019] [Accepted: 06/24/2019] [Indexed: 06/09/2023]
Abstract
Intestine in fish is a complex multifunctional organ, not only plays roles in digestion and absorption of nutrient, but also has critical role in immunity. The present study evaluated the effects of different levels of dietary sodium butyrate [Butirex® C4 (Butirex)] on intestinal immune-,antioxidant-and tight junction-related gene expression injuvenile rainbow trout(Oncorhynchusmykiss). 240 healthy rainbow trout were dispensed in 12 fiberglass tanks appointed to four treatments [0 (control), 1.5 (B1.5), 2.5 (B2.5) and 5 (B5)g Butirex per kg diet]. After a 45-day feeding trial, the fish fed with the Butirex-supplemented diets showed higher intestinal lysozyme (LYZ), complement(ACH50) and bactericidal activities; the elevations in ACH50 and bactericidal activities depended on Butirex levels (P < 0.05). The Butirex-supplemented groups, particularly the B2.5 group, had significantly higher LYZ gene expression compared to the control group (P < 0.05). Butirex at 2.5 and 5 g/kg levels led to significantly higher IL-1β gene expression. B2.5 and B5 had significantly lower and higher TNF-α gene expression compared to the control group (P < 0.05). The B2.5 group had significantly higher TGF-B, and significantly lower IL-8 compared to the control group (P < 0.05). The B1.5 and B2.5 group had significantly higher IL-10 gene expression compared to the control group (P < 0.05). The B2.5 and B5 groups had significantly higher SOD gene expression compared to the other groups; the highest expression was related to the B2.5 group (P < 0.05). Dietary Butirex supplementation significantly up-regulated CAT and GPx genes expression compared to the control group; the highest expression as related to the B2.5 and B5 groups (P < 0.05). The B2.5 group had significantly lower CLD12 gene expression compared to the control group (P < 0.05). The B2.5 and B5 groups had significantly higher CLD3, OCLD and ZO-1 gene expression compared to the control. The highest CLD3, ZO-1 gene expressions was related to the B2.5, and B5 groups respectively (P < 0.05). After challenge with Streptococcus iniae, B2.5 and B5 had significantly higher survival compared to the control group (55.6 ± 7.70 and 68.9 ± 10.2 vs. 33.3 ± 6.67). In conclusion, Butirex is efficient immune stimulant and health booster in rainbow trout, which augments the fish resistance to disease. Modulation of immune components, cytokines, antioxidant system and intestinal integrity might involve in improving disease resistance in Butirex-treated fish. Although most of the examined genes were modulated by 2.5 g/kg Butirex under normal conditions, 5 g/kg level is recommended under pathogenic state to mitigate mortality.
Collapse
Affiliation(s)
- Ali Taheri Mirghaed
- Department of Aquatic Animal Health, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Peyman Yarahmadi
- Department of Aquatic Animal Health, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mehdi Soltani
- Department of Aquatic Animal Health, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Hamed Paknejad
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seyyed Morteza Hoseini
- Inland Waters Aquatics Resources Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research, Education and Extension Organization, Gorgan, Iran
| |
Collapse
|
26
|
Foysal MJ, Nguyen TTT, Chaklader MR, Siddik MAB, Tay CY, Fotedar R, Gupta SK. Marked variations in gut microbiota and some innate immune responses of fresh water crayfish, marron ( Cherax cainii, Austin 2002) fed dietary supplementation of Clostridium butyricum. PeerJ 2019; 7:e7553. [PMID: 31523510 PMCID: PMC6716501 DOI: 10.7717/peerj.7553] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 07/25/2019] [Indexed: 12/20/2022] Open
Abstract
This study aimed to investigate the effects of Clostridium butyricum as a dietary probiotic supplement in fishmeal based diet on growth, gut microbiota and immune performance of marron (Cherax cainii). Marron were randomly distributed into two different treatment groups, control and probiotic fed group. After 42 days of feeding trial, the results revealed a significant (P < 0.05) increase in growth due to increase in number of moults in marron fed probiotics. The probiotic diet also significantly enhanced the total haemocyte counts (THC), lysozyme activity in the haemolymph and protein content of the tail muscle in marron. Compared to control, the 16S rRNA sequences data demonstrated an enrichment of bacterial diversity in the probiotic fed marron where significant increase of Clostridium abundance was observed. The abundance for crayfish pathogen Vibrio and Aeromonas were found to be significantly reduced post feeding with probiotic diet. Predicted metabolic pathway revealed an increased activity for the metabolism and absorption of carbohydrate, degradation of amino acid, fatty acid and toxic compounds, and biosynthesis of secondary metabolites. C. butyricum supplementation also significantly modulated the expression level of immune-responsive genes of marron post challenged with Vibrio mimicus. The overall results suggest that C. butyricum could be used as dietary probiotic supplement in marron aquaculture.
Collapse
Affiliation(s)
- Md Javed Foysal
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia.,Department of Genetic Engineering and Biotechnology, Shahjalal University of Science & Technology, Sylhet, Bangladesh
| | - Thi Thu Thuy Nguyen
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Md Reaz Chaklader
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Muhammad A B Siddik
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia.,Department of Fisheries Biology and Genetics, Patuakhali Science and Technology University, Patuakhali, Bangladesh
| | - Chin-Yen Tay
- Helicobacter Research Laboratory, Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Ravi Fotedar
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Sanjay Kumar Gupta
- ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, India
| |
Collapse
|
27
|
Abd El-Naby AS, Khattaby AERA, Samir F, Awad SM, Abdel-Tawwab M. Stimulatory effect of dietary butyrate on growth, immune response, and resistance of Nile tilapia, Oreochromis niloticus against Aeromonas hydrophila infection. Anim Feed Sci Technol 2019. [DOI: 10.1016/j.anifeedsci.2019.114212] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
Zhou JS, Guo P, Yu HB, Ji H, Lai ZW, Chen YA. Growth performance, lipid metabolism, and health status of grass carp (Ctenopharyngodon idella) fed three different forms of sodium butyrate. FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:287-298. [PMID: 30238219 DOI: 10.1007/s10695-018-0561-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 08/20/2018] [Indexed: 06/08/2023]
Abstract
Sodium butyrate (SB) can be coated with fatty acid matrix. In this study, the effects of three SB forms, being zero-lipid-coated (SB-A), half-lipid-coated (SB-B), and 2/3 lipid-coated (SB-C) (w/w), on growth, lipid metabolism, and health status of grass carp (Ctenopharyngodon idella) were investigated. The three forms of SB were added to a control diet to form three SB diets, Con., SB-A, SB-B, and SB-C, where the pure SB in each SB diet was kept at the same level (500 mg kg-1). A total of 216 C. idella (14.10 ± 0.60 g/fish) were allotted into four groups (triplicate per group) and fed the four diets respectively for 56 days, and then fish were sampled and determined. Fish growth was not affected by any of the three forms of SB. Viscerosomatic index, intraperitoneal fat index, and crude lipid of hepatopancreas and muscle were significantly decreased and villus height of intestine and mRNA expression of MyD88 and TLR22 in hepatopancreas were significantly improved in SB diets compared with control (p < 0.05), respectively. MiSeq sequencing of the V3-V4 region of bacterial 16S rRNA gene revealed that SB increased the relative abundances of intestinal healthy bacteria, Fusobacteria and Bacteroides, and the abundances of Cetobacterium decreased in the SB-C group. In conclusion, the present results showed that three forms of SB, without affecting the growth of fish, respectively decreased lipid accumulation and probably have a beneficial effect on health of C. idella.
Collapse
Affiliation(s)
- Ji Shu Zhou
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Pan Guo
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hai Bo Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hong Ji
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Zhou Wen Lai
- New Austrian Biotechnology Co., Ltd., Xiamen, 361004, Fujian Province, China
| | - Yi An Chen
- New Austrian Biotechnology Co., Ltd., Xiamen, 361004, Fujian Province, China
| |
Collapse
|
29
|
Yu N, Ding Q, Li E, Qin JG, Chen L, Wang X. Growth, energy metabolism and transcriptomic responses in Chinese mitten crab (Eriocheir sinensis) to benzo[α]pyrene (BaP) toxicity. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 203:150-158. [PMID: 30138799 DOI: 10.1016/j.aquatox.2018.08.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/14/2018] [Accepted: 08/14/2018] [Indexed: 06/08/2023]
Abstract
Benzo(a)pyrene (BaP) is a highly toxic polycyclic aromatic hydrocarbon and has strong affinity to suspended materials and sediments in the aquatic environment. Most crustaceans are benthic species and are easily affected by the pollution in the sediments, but there is little information on the response mechanism of crustaceans to BaP exposure. This study compared the growth and hepatopancreas transcriptomic responses of the Chinse mitten crab (Eriocheir sinensis) exposed to 0, 0.15 (BaP1) and 0.45 μg /L (BaP2) for 28 days. Crab survival and weight gain were reduced in the water born BaP in a dose-dependent way. The contents of hepatopancreas glycogen, triglyceride, total amino acids and lactic acid were all decreased after BaP exposure, indicating possible more energy consumption during detoxification. In the transcriptome analysis, a total of 106.65 million clean reads were obtained and assembled into 81,714 unigenes with an average length of 594 bp and N50 of 808 bp. Under 0.15 or 0.45 μg /L BaP exposure, 922 and 1129 unigenes in crabs were significantly expressed, annotated to 676 and 802 Gene Ontology (GO) terms respectively. The "cellular process" was the leading category for both concentrations. Thirteen significantly changed pathways were identified in both Control vs BaP1 and Control vs BaP2 groups. These pathways were divided into four different parts according to their reported functions, including metabolism, environmental information processing, organismal systems and cellular processes. Nice out of thirteen pathways in BaP1 were related to metabolism, containing amino acid metabolism, phenylpropanoid biosynthesis, monobactam biosynthesis and styrene degradation. Almost all the pathways related with the biosynthesis processes were down-regulated, while the degradation pathways were up-regulated. Seven out of thirteen pathways were classified into metabolism category in BaP2. These pathways were mostly associated with stress resistance rather than supplying energy. This study indicates that both concentrations of BaP disturbed nutrient metabolism, immune response and defense system in the crabs, while exposure to a higher concentration had a greater impact on immunity system than on metabolism. This study provides a better understanding of the underlying molecular and regulatory mechanisms in crustaceans coping with BaP toxicity.
Collapse
Affiliation(s)
- Na Yu
- East China Normal University, Shanghai, 200241, China
| | - Qingqing Ding
- East China Normal University, Shanghai, 200241, China
| | - Erchao Li
- East China Normal University, Shanghai, 200241, China; Department of Aquaculture, College of Marine Sciences, Hainan University, Haikou, Hainan, 570228, China
| | - Jian G Qin
- School of Biological Sciences, Flinders University, Adelaide, SA, 5001, Australia
| | - Liqiao Chen
- East China Normal University, Shanghai, 200241, China
| | - Xiaodan Wang
- East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
30
|
Rimoldi S, Gliozheni E, Ascione C, Gini E, Terova G. Effect of a specific composition of short- and medium-chain fatty acid 1-Monoglycerides on growth performances and gut microbiota of gilthead sea bream ( Sparus aurata). PeerJ 2018; 6:e5355. [PMID: 30083467 PMCID: PMC6074759 DOI: 10.7717/peerj.5355] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 07/07/2018] [Indexed: 01/21/2023] Open
Abstract
In aquaculture research, one important aim of gut microbiota studies is to provide the scientific basis for developing effective strategies to manipulate gut microbial communities through the diet, promoting fish health and improving productivity. Currently, there is an increasing commercial and research interest towards the use of organic acids in aquafeeds, due to several beneficial effects they have on growth performance and intestinal tract's health of farmed fish. Among organic acids, monoglycerides of short-chain fatty acids (SCFAs) and medium-chain fatty acids (MCFAs) have attracted particular research attention also for their bacteriostatic and bactericidal properties. Accordingly, the present study aimed to evaluate the potential beneficial effects of SCFA and MCFA monoglycerides, used as a feed additive, on fish growth performance, and intestinal microbiota composition. For this purpose, a specific combination of short- and medium-chain 1-monoglycerides (SILOhealth 108Z) was tested in 600 juvenile gilthead sea bream (Sparus aurata) of about 60 g mean initial weight that were fed for 90 days with plant-based diets. Two isoproteic and isolipidic diets were formulated. The control fish group received a plant-based diet, whereas the other group received the same control feed, but supplemented with 0.5% of SILOhealth 108Z. The Illumina MiSeq platform for high-throughput amplicon sequencing of 16S rRNA gene and QIIME pipeline were used to analyse and characterize the whole microbiome associated both to feeds and S. aurata intestine. The number of reads taxonomically classified according to the Greengenes database was 394,611. We identified 259 OTUs at 97% identity in sea bream fecal samples; 90 OTUs constituted the core gut microbiota. Firmicutes, Proteobacteria and Actinobacteria represented the dominant phyla in both experimental groups. Among them, relative abundance of Firmicutes and Proteobacteria were positively and negatively affected by dietary SCFA monoglycerides supplementation, respectively. In summary, our findings clearly indicated that SILOhealth 108Z positively modulated the fish intestinal microbiota by increasing the number of beneficial lactic acid bacteria, namely, Lactobacillus, and reducing Gammaproteobacteria, which include several potential pathogenic bacteria. The specific composition of 1-monoglycerides of short- and medium-chain fatty acids contained in SILOhealth 108Z could thus have a great potential as a feed additive in aquaculture.
Collapse
Affiliation(s)
- Simona Rimoldi
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Emi Gliozheni
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Chiara Ascione
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Elisabetta Gini
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Genciana Terova
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- Inter-University Centre for Research in Protein Biotechnologies, “The Protein Factory”, Polytechnic University of Milan and University of Insubria, Varese, Italy
| |
Collapse
|
31
|
Piazzon MC, Calduch-Giner JA, Fouz B, Estensoro I, Simó-Mirabet P, Puyalto M, Karalazos V, Palenzuela O, Sitjà-Bobadilla A, Pérez-Sánchez J. Under control: how a dietary additive can restore the gut microbiome and proteomic profile, and improve disease resilience in a marine teleostean fish fed vegetable diets. MICROBIOME 2017; 5:164. [PMID: 29282153 PMCID: PMC5745981 DOI: 10.1186/s40168-017-0390-3] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 12/18/2017] [Indexed: 05/15/2023]
Abstract
BACKGROUND The constant increase of aquaculture production and wealthy seafood consumption has forced the industry to explore alternative and more sustainable raw aquafeed materials, and plant ingredients have been used to replace marine feedstuffs in many farmed fish. The objective of the present study was to assess whether plant-based diets can induce changes in the intestinal mucus proteome, gut autochthonous microbiota and disease susceptibility of fish, and whether these changes could be reversed by the addition of sodium butyrate to the diets. Three different trials were performed using the teleostean gilthead sea bream (Sparus aurata) as model. In a first preliminary short-term trial, fish were fed with the additive (0.8%) supplementing a basal diet with low vegetable inclusion (D1) and then challenged with a bacteria to detect possible effects on survival. In a second trial, fish were fed with diets with greater vegetable inclusion levels (D2, D3) and the long-term effect of sodium butyrate at a lower dose (0.4%) added to D3 (D4 diet) was tested on the intestinal proteome and microbiome. In a third trial, the long-term effectiveness of sodium butyrate (D4) to prevent disease outcome after an intestinal parasite (Enteromyxum leei) challenge was tested. RESULTS The results showed that opposed forces were driven by dietary plant ingredients and sodium butyrate supplementation in fish diet. On the one hand, vegetable diets induced high parasite infection levels that provoked drops in growth performance, decreased intestinal microbiota diversity, induced the dominance of the Photobacterium genus, as well as altered the gut mucosal proteome suggesting detrimental effects on intestinal function. On the other hand, butyrate addition slightly decreased cumulative mortality after bacterial challenge, avoided growth retardation in parasitized fish, increased intestinal microbiota diversity with a higher representation of butyrate-producing bacteria and reversed most vegetable diet-induced changes in the gut proteome. CONCLUSIONS This integrative work gives insights on the pleiotropic effects of a dietary additive on the restoration of intestinal homeostasis and disease resilience, using a multifaceted approach.
Collapse
Affiliation(s)
- María Carla Piazzon
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Josep Alvar Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Belén Fouz
- Department of Microbiology and Ecology, Faculty of Biology, University of Valencia, Valencia, Spain
| | - Itziar Estensoro
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Paula Simó-Mirabet
- Nutrigenomics and Fish Growth Endocrinology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
| | | | | | - Oswaldo Palenzuela
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Ariadna Sitjà-Bobadilla
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
| |
Collapse
|
32
|
Huynh TG, Shiu YL, Nguyen TP, Truong QP, Chen JC, Liu CH. Current applications, selection, and possible mechanisms of actions of synbiotics in improving the growth and health status in aquaculture: A review. FISH & SHELLFISH IMMUNOLOGY 2017; 64:367-382. [PMID: 28336489 DOI: 10.1016/j.fsi.2017.03.035] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/16/2017] [Accepted: 03/17/2017] [Indexed: 06/06/2023]
Abstract
Synbiotics, a conjunction between prebiotics and probiotics, have been used in aquaculture for over 10 years. However, the mechanisms of how synbiotics work as growth and immunity promoters are far from being unraveled. Here, we show that a prebiotic as part of a synbiotic is hydrolyzed to mono- or disaccharides as the sole carbon source with diverse mechanisms, thereby increasing biomass and colonization that is established by specific crosstalk between probiotic bacteria and the surface of intestinal epithelial cells of the host. Synbiotics may indirectly and directly promote the growth of aquatic animals through releasing extracellular bacterial enzymes and bioactive products from synbiotic metabolic processes. These compounds may activate precursors of digestive enzymes of the host and augment the nutritional absorptive ability that contributes to the efficacy of food utilization. In fish immune systems, synbiotics cause intestinal epithelial cells to secrete cytokines which modulate immune functional cells as of dendritic cells, T cells, and B cells, and induce the ability of lipopolysaccharides to trigger tumor necrosis factor-α and Toll-like receptor 2 gene transcription leading to increased respiratory burst activity, phagocytosis, and nitric oxide production. In shellfish, synbiotics stimulate the proliferation and degranulation of hemocytes of shrimp due to the presence of bacterial cell walls. Pathogen-associated molecular patterns are subsequently recognized and bound by specific pattern-recognition proteins, triggering melanization and phagocytosis processes.
Collapse
Affiliation(s)
- Truong-Giang Huynh
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung 912, Taiwan, ROC; College of Aquaculture and Fisheries, CanTho University, CanTho, Viet Nam
| | - Ya-Li Shiu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung 912, Taiwan, ROC
| | | | - Quoc-Phu Truong
- College of Aquaculture and Fisheries, CanTho University, CanTho, Viet Nam
| | - Jiann-Chu Chen
- Department of Aquaculture, College of Life Sciences, National Taiwan Ocean University, Keelung 202, Taiwan, ROC
| | - Chun-Hung Liu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung 912, Taiwan, ROC.
| |
Collapse
|
33
|
Gonçalves AT, Gallardo-Escárate C. Microbiome dynamic modulation through functional diets based on pre- and probiotics (mannan-oligosaccharides and Saccharomyces cerevisiae) in juvenile rainbow trout (Oncorhynchus mykiss). J Appl Microbiol 2017; 122:1333-1347. [PMID: 28256031 DOI: 10.1111/jam.13437] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/06/2017] [Accepted: 02/25/2017] [Indexed: 12/26/2022]
Abstract
AIMS This study used high-throughput sequencing to evaluate the intestinal microbiome dynamics in rainbow trout (Oncorhynchus mykiss) fed commercial diets supplemented with either pre- or probiotics (0·6% mannan-oligosaccharides and 0·5% Saccharomyces cerevisiae respectively) or the mixture of both. METHODS AND RESULTS A total of 57 fish whole intestinal mucosa and contents bacterial communities were characterized by high-throughput sequencing and analysis of the V3-V4 region of the 16S rRNA gene, as well as the relationship between plasma biochemical health indicators and microbiome diversity. This was performed at 7, 14 and 30 days after start feeding functional diets, and microbiome diversity increased when fish fed functional diets after 7 days and it was positively correlated with plasma cholesterol levels. Dominant phyla were, in descending order, Proteobacteria, Firmicutes, Actinobacteria, Acidobacteria, Bacteroidetes and Fusobacteria. However, functional diets reduced the abundance of Gammaproteobacteria to favour abundances of organisms from Firmicutes and Fusobacteria, two phyla with members that confer beneficial effects. A dynamic shift of the microbiome composition was observed with changes after 7 days of feeding and the modulation by functional diets tend to cluster the corresponding groups apart from CTRL group. The core microbiome showed an overall stability with functional diets, except genus such as Escherichia-Shigella that suffered severe reductions on their abundances when feeding any of the functional diets. CONCLUSIONS Functional diets based on pre- or probiotics dynamically modulate intestinal microbiota of juvenile trout engaging taxonomical abundance shifts that might impact fish physiological performance. SIGNIFICANCE AND IMPACT OF THE STUDY This study shows for the first time the microbiome modulation dynamics by functional diets based on mannan-oligosaccharides and S. cerevisiae and their synergy using culture independent high-throughput sequencing technology, revealing the complexity behind the dietary modulation with functional feeds in aquatic organisms.
Collapse
Affiliation(s)
- A T Gonçalves
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, Concepción, Chile
| | - C Gallardo-Escárate
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, Concepción, Chile
| |
Collapse
|
34
|
Estensoro I, Ballester-Lozano G, Benedito-Palos L, Grammes F, Martos-Sitcha JA, Mydland LT, Calduch-Giner JA, Fuentes J, Karalazos V, Ortiz Á, Øverland M, Sitjà-Bobadilla A, Pérez-Sánchez J. Dietary Butyrate Helps to Restore the Intestinal Status of a Marine Teleost (Sparus aurata) Fed Extreme Diets Low in Fish Meal and Fish Oil. PLoS One 2016; 11:e0166564. [PMID: 27898676 PMCID: PMC5127657 DOI: 10.1371/journal.pone.0166564] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 10/30/2016] [Indexed: 01/21/2023] Open
Abstract
There is a constant need to find feed additives that improve health and nutrition of farmed fish and lessen the intestinal inflammation induced by plant-based ingredients. The objective of this study was to evaluate the effects of adding an organic acid salt to alleviate some of the detrimental effects of extreme plant-ingredient substitution of fish meal (FM) and fish oil (FO) in gilthead sea bream diet. Three experiments were conducted. In a first trial (T1), the best dose (0.4%) of sodium butyrate (BP-70 ®NOREL) was chosen after a short (9-weeks) feeding period. In a second longer trial (T2) (8 months), four diets were used: a control diet containing 25% FM (T2-D1) and three experimental diets containing 5% FM (T2-D2, T2-D3, T2-D4). FO was the only added oil in D1, while a blend of plant oils replaced 58% and 84% of FO in T2-D2, and T2-D3 and T2-D4, respectively. The latter was supplemented with 0.4% BP-70. In a third trial (T3), two groups of fish were fed for 12 and 38 months with D1, D3 and D4 diets of T2. The effects of dietary changes were studied using histochemical, immunohistochemical, molecular and electrophysiological tools. The extreme diet (T2-D3) modified significantly the transcriptomic profile, especially at the anterior intestine, up-regulating the expression of inflammatory markers, in coincidence with a higher presence of granulocytes and lymphocytes in the submucosa, and changing genes involved in antioxidant defences, epithelial permeability and mucus production. Trans-epithelial electrical resistance (Rt) was also decreased (T3-D3). Most of these modifications were returned to control values with the addition of BP-70. None of the experimental diets modified the staining pattern of PCNA, FABP2 or ALPI. These results further confirm the potential of this additive to improve or reverse the detrimental effects of extreme fish diet formulations.
Collapse
Affiliation(s)
- Itziar Estensoro
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Gabriel Ballester-Lozano
- Nutrigenomics and Fish Endocrinology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Laura Benedito-Palos
- Nutrigenomics and Fish Endocrinology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Fabian Grammes
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ass, Norway
| | - Juan Antonio Martos-Sitcha
- Nutrigenomics and Fish Endocrinology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Liv-Torunn Mydland
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ass, Norway
| | - Josep Alvar Calduch-Giner
- Nutrigenomics and Fish Endocrinology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Juan Fuentes
- Comparative Endocrinology and Integrative Biology. CCMar, University of Algarve, Faro, Portugal
| | | | | | - Margareth Øverland
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ass, Norway
| | - Ariadna Sitjà-Bobadilla
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Endocrinology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
- * E-mail:
| |
Collapse
|
35
|
Terova G, Díaz N, Rimoldi S, Ceccotti C, Gliozheni E, Piferrer F. Effects of Sodium Butyrate Treatment on Histone Modifications and the Expression of Genes Related to Epigenetic Regulatory Mechanisms and Immune Response in European Sea Bass (Dicentrarchus Labrax) Fed a Plant-Based Diet. PLoS One 2016; 11:e0160332. [PMID: 27471849 PMCID: PMC4966935 DOI: 10.1371/journal.pone.0160332] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 07/18/2016] [Indexed: 01/21/2023] Open
Abstract
Bacteria that inhabit the epithelium of the animals' digestive tract provide the essential biochemical pathways for fermenting otherwise indigestible dietary fibers, leading to the production of short-chain fatty acids (SCFAs). Of the major SCFAs, butyrate has received particular attention due to its numerous positive effects on the health of the intestinal tract and peripheral tissues. The mechanisms of action of this four-carbon chain organic acid are different; many of these are related to its potent regulatory effect on gene expression since butyrate is a histone deacetylase inhibitor that play a predominant role in the epigenetic regulation of gene expression and cell function. In the present work, we investigated in the European sea bass (Dicentrarchus labrax) the effects of butyrate used as a feed additive on fish epigenetics as well as its regulatory role in mucosal protection and immune homeostasis through impact on gene expression. Seven target genes related to inflammatory response and reinforcement of the epithelial defense barrier [tnfα (tumor necrosis factor alpha) il1β, (interleukin 1beta), il-6, il-8, il-10, and muc2 (mucin 2)] and five target genes related to epigenetic modifications [dicer1(double-stranded RNA-specific endoribonuclease), ehmt2 (euchromatic histone-lysine-N-methyltransferase 2), pcgf2 (polycomb group ring finger 2), hdac11 (histone deacetylase-11), and jarid2a (jumonji)] were analyzed in fish intestine and liver. We also investigated the effect of dietary butyrate supplementation on histone acetylation, by performing an immunoblotting analysis on liver core histone extracts. Results of the eight-week-long feeding trial showed no significant differences in weight gain or SGR (specific growth rate) of sea bass that received 0.2% sodium butyrate supplementation in the diet in comparison to control fish that received a diet without Na-butyrate. Dietary butyrate led to a twofold increase in the acetylation level of histone H4 at lysine 8, but showed no effect on the histone H3 at Lys9. Moreover, two different isoforms of histone H3 that might correspond to the H3.1 and H3.2 isoforms previously found in terrestrial animals were separated on the immunoblots. The expression of four (il1 β, il8, irf1, and tnfα) out of seven analyzed genes related to mucosal protection and inflammatory response was significantly different between the two analyzed tissues but only il10 showed differences in expression due to the interaction between tissue and butyrate treatment. In addition, butyrate caused significant changes in vivo in the expression of genes related to epigenetic regulatory mechanisms such as hdac11, ehmt2, and dicer1. Statistical analysis by two-way ANOVA for these genes showed not only significant differences due to the butyrate treatment, but also due to the interaction between tissue and treatment.
Collapse
Affiliation(s)
- Genciana Terova
- Department of Biotechnology and Life Sciences, University of Insubria, Via J.H.Dunant, 3, 21100, Varese, Italy
- Inter-University Centre for Research in Protein Biotechnologies "The Protein Factory"- Polytechnic University of Milan and University of Insubria, Varese, Italy
| | - Noelia Díaz
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Passeig Marítim, 37–49, 08003, Barcelona, Spain
| | - Simona Rimoldi
- Department of Biotechnology and Life Sciences, University of Insubria, Via J.H.Dunant, 3, 21100, Varese, Italy
| | - Chiara Ceccotti
- Department of Biotechnology and Life Sciences, University of Insubria, Via J.H.Dunant, 3, 21100, Varese, Italy
| | - Emi Gliozheni
- Department of Biotechnology and Life Sciences, University of Insubria, Via J.H.Dunant, 3, 21100, Varese, Italy
| | - Francesc Piferrer
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Passeig Marítim, 37–49, 08003, Barcelona, Spain
| |
Collapse
|