1
|
Guo R, Yu K, Huang K, Li J, Huang J, Yang X, Wu Y, Wang D. Regulatory mechanism of Sarmentosin and Quercetin on lipid accumulation in primary hepatocyte of GIFT tilapia (Oreochromis niloticus) with fatty liver. PLoS One 2024; 19:e0309976. [PMID: 39236049 PMCID: PMC11376590 DOI: 10.1371/journal.pone.0309976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/18/2024] [Indexed: 09/07/2024] Open
Abstract
Sarmentosin (SA) and Quercetin (QC) are two active components of Sedum Sarmentosum Bunge, which is a traditional Chinese herbal medicine. This study aimed to investigate the role and regulatory mechanism of SA and QC in fatty liver of Genetic Improvement of Farmed Tilapia (GIFT) tilapia. GIFT tilapia were randomly divided into two groups with three replicates per treatment (30 fish in each replicate): normal diet group (average weight 3.51±0.31 g) and high-fat diet group (average weight 3.44±0.09 g). After 8 weeks feeding trial, growth index, lipid deposition, and biochemical indexes were measured. Lipid deposition, and lipid and inflammation-related gene expression were detected in a primary hepatocyte model of fatty liver of GIFT tilapia treated with SA or QC. Our results showed that high-fat diet caused lipid deposition and peroxidative damage in the liver of GIFT tilapia. The cell counting kit-8 assay results indicated that 10 μM SA and 10 μM of QC both had the least effect on hepatocyte proliferation. Moreover, both 10 μM of SA and 10 μM of QC showed lipolytic effects and inhibited the expression of lipid-related genes (FAS, Leptin, SREBP-1c, and SREBP2) in fatty liver cells. Interestingly, QC induced autophagosome-like subcellular structure and increased the expression of IL-8 in fatty liver cells. In conclusion, this study confirmed that SA and QC improved fatty liver caused by high-fat diet, providing a novel therapeutic approach for fatty liver of GIFT tilapia.
Collapse
Affiliation(s)
- Ruijie Guo
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Kai Yu
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Kai Huang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Jinghua Li
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Jiao Huang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xuhong Yang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yaoting Wu
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Dandan Wang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
2
|
Li J, Lu Y, Chen H, Zheng P, Zhang X, Zhang Z, Ding L, Wang D, Xu C, Ai X, Zhang Q, Xian J, Hong M. Effects of Dietary Fish Oil Supplementation on the Growth, Proximate Composition, and Liver Health of Chinese Stripe-Necked Turtle ( Mauremys sinensis). Animals (Basel) 2024; 14:2511. [PMID: 39272296 PMCID: PMC11394261 DOI: 10.3390/ani14172511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Dietary lipids provide energy for animals and can also be converted into other nutrients (such as non-essential amino acids), which play a role in saving protein. The Chinese stripe-necked turtle is a protected and endangered species that has been bred in captivity; however, basic data on lipid requirements remain unavailable. In this study, 360 Mauremys sinensis (body weight of 65.32 ± 0.15 g) were randomly divided into six groups with three replicates per group; the turtles were fed experimental diets supplemented with various levels of fish oil (i.e., 1% (control group, CG), 3.5% (HF-1), 6% (HF-2), 8.5% (HF-3), 11% (HF-4), and 13.5% (HF-5)) for 10 weeks. The results showed that compared with CG, increasing the fish oil level promoted the growth performance of turtles, and the HF-3 group achieved the best effect. The HF-4 group showed the highest increases in the hepatosomatic index and viscerosomatic index. In addition, increased lipid levels also increased the crude lipid content and reduced the crude protein content in muscle tissue. Oil red O staining showed that the liver lipid content increased with the level of supplemented fish oil, which is consistent with the results of the hepatosomatic index. Compared with CG, triglyceride, total cholesterol, and low-density lipoprotein cholesterol increased significantly in both the liver and serum when fish oil levels exceeded 8.5% (p < 0.05), while high-density lipoprotein cholesterol decreased significantly. Aspartate transaminase and cerealthirdtransaminase levels in serum increased significantly when fish oil levels exceeded 8.5% (p < 0.05). Moreover, the activities of antioxidant enzymes (GSH-Px, SOD, T-AOC, and CAT) and MDA showed similar results, indicating that high fish oil levels (8.5-13.5%) caused liver tissue damage in M. sinensis. Increased fish oil levels significantly upregulated the expression levels of cytokines (IFN-γ, TNF-α, TGF-β1, IL-10, and IL-12) (p < 0.05), downregulated the expression levels of antioxidant enzyme-related genes (cat, mn-sod, and gsh-px), and increased apoptosis of liver cells. Supplementation of the diet with 3.5-6% fish oil improved the growth performance of M. sinensis, and the turtles maintained a beneficial immune status. The results provide a scientific basis for optimizing the commercial feed formula of M. sinensis.
Collapse
Affiliation(s)
- Juntao Li
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-Resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yaopeng Lu
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-Resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Huiqin Chen
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-Resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Peihua Zheng
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-Resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Xiuxia Zhang
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-Resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Zelong Zhang
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-Resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Li Ding
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Dongmei Wang
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-Resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Chi Xu
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-Resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Xiaoqi Ai
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Qiongyu Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Jianan Xian
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-Resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Meiling Hong
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| |
Collapse
|
3
|
Rashwan AG, Assar DH, Salah AS, Liu X, Al-Hawary II, Abu-Alghayth MH, Salem SMR, Khalil K, Hanafy NAN, Abdelatty A, Sun L, Elbialy ZI. Dietary Chitosan Attenuates High-Fat Diet-Induced Oxidative Stress, Apoptosis, and Inflammation in Nile Tilapia ( Oreochromis niloticus) through Regulation of Nrf2/Kaep1 and Bcl-2/Bax Pathways. BIOLOGY 2024; 13:486. [PMID: 39056682 PMCID: PMC11273726 DOI: 10.3390/biology13070486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024]
Abstract
Fatty liver injury is a prevalent condition in most farmed fish, yet the molecular mechanisms underpinning this pathology remain largely elusive. A comprehensive feeding trial spanning eight weeks was conducted to discern the potential of dietary chitosan in mitigating the deleterious effects of a high-fat diet (HFD) while concurrently exploring the underlying mechanism. Growth performance, haemato-biochemical capacity, antioxidant capacity, apoptotic/anti-apoptotic gene expression, inflammatory gene expression, and histopathological changes in the liver, kidney, and intestine were meticulously assessed in Nile tilapia. Six experimental diets were formulated with varying concentrations of chitosan. The first three groups were administered a diet comprising 6% fat with chitosan concentrations of 0%, 5%, and 10% and were designated as F6Ch0, F6Ch5, and F6Ch10, respectively. Conversely, the fourth, fifth, and sixth groups were fed a diet containing 12% fat with chitosan concentrations of 0%, 5%, and 10%, respectively, for 60 days and were termed F12Ch0, F12Ch5, and F12Ch10. The results showed that fish fed an HFD demonstrated enhanced growth rates and a significant accumulation of fat in the perivisceral tissue, accompanied by markedly elevated serum hepatic injury biomarkers and serum lipid levels, along with upregulation of pro-apoptotic and inflammatory markers. In stark contrast, the expression levels of nrf2, sod, gpx, and bcl-2 were notably decreased when compared with the control normal fat group. These observations were accompanied by marked diffuse hepatic steatosis, diffuse tubular damage, and shortened intestinal villi. Intriguingly, chitosan supplementation effectively mitigated the aforementioned findings and alleviated intestinal injury by upregulating the expression of tight junction-related genes. It could be concluded that dietary chitosan alleviates the adverse impacts of an HFD on the liver, kidney, and intestine by modulating the impaired antioxidant defense system, inflammation, and apoptosis through the variation in nrf2 and cox2 signaling pathways.
Collapse
Affiliation(s)
- Aya G. Rashwan
- Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; (A.G.R.); (I.I.A.-H.)
| | - Doaa H. Assar
- Clinical Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Abdallah S. Salah
- Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - Xiaolu Liu
- Single-Cell Center, Shandong Key Laboratory of Energy Genetics and Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, CAS Key Laboratory of Biofuels, Chinese Academy of Sciences, Qingdao 266101, China;
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Ibrahim I. Al-Hawary
- Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; (A.G.R.); (I.I.A.-H.)
| | - Mohammed H. Abu-Alghayth
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, P.O. Box 255, Bisha 67714, Saudi Arabia;
| | - Shimaa M. R. Salem
- Department of Animal Nutrition and Nutritional Deficiency Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura 33516, Egypt;
| | - Karim Khalil
- Department of Veterinary Medicine, College of Applied & Health Sciences, A’Sharqiyah University, P.O. Box 42, Ibra 400, Oman;
| | - Nemany A. N. Hanafy
- Group of Molecular Cell Biology and Bionanotechnology, Nanomedicine Department, Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Alaa Abdelatty
- Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Luyang Sun
- Single-Cell Center, Shandong Key Laboratory of Energy Genetics and Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, CAS Key Laboratory of Biofuels, Chinese Academy of Sciences, Qingdao 266101, China;
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Zizy I. Elbialy
- Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; (A.G.R.); (I.I.A.-H.)
| |
Collapse
|
4
|
Jia R, Hou Y, Zhang L, Li B, Zhu J. Effects of Berberine on Lipid Metabolism, Antioxidant Status, and Immune Response in Liver of Tilapia ( Oreochromis niloticus) under a High-Fat Diet Feeding. Antioxidants (Basel) 2024; 13:548. [PMID: 38790653 PMCID: PMC11117941 DOI: 10.3390/antiox13050548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 04/28/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
Berberine, a natural alkaloid found abundantly in various medicinal plants, exhibits antioxidative, anti-inflammatory, and lipid metabolism-regulatory properties. Nonetheless, its protective effects and the molecular mechanisms underlying liver injury in fish have not been fully elucidated. The aims of this study were to investigate the antioxidative, anti-inflammatory, and lipid metabolism-regulating effects of berberine against high-fat diet (HFD)-induced liver damage and to clarify the underlying molecular mechanisms. Tilapia were fed diets containing two doses of berberine (50 and 100 mg/kg diet) alongside high fat for 60 days. The results showed that berberine treatments (50 and/or 100 mg/kg) significantly reduced elevated aminotransferases, triglycerides (TG), total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-c) in the plasma. In the liver, berberine treatments significantly increased the expression of peroxisome proliferator-activated receptor α (pparα) and carnitine palmitoyltransferase 1 (cpt-1) genes, leading to a reduction in lipid accumulation. Meanwhile, berberine treatment suppressed lipid peroxidation formation and enhanced antioxidant capacity. Berberine upregulated the mRNA levels of erythroid 2-related factor 2 (nrf2) and its downstream genes including heme oxygenase 1 (ho-1) and glutathione-S-transferase (gstα). Additionally, berberine attenuated the inflammation by inhibiting the expression of toll-like receptor 2 (tlr2), myeloid differential protein-88 (myd88), relb, and inflammatory cytokines such as interleukin-1β (il-1β), tumor necrosis factor-α (tnf-α), and il-8. In summary, this study suggested that berberine offers protection against HFD-induced liver damage in tilapia via regulating lipid metabolism, antioxidant status, and immune response. This protective effect may be attributed to the modulation of the Nrf2, TLR2/MyD88/NF-κB, and PPARα signaling pathways.
Collapse
Affiliation(s)
- Rui Jia
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (R.J.); (Y.H.); (L.Z.)
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Yiran Hou
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (R.J.); (Y.H.); (L.Z.)
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Liqiang Zhang
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (R.J.); (Y.H.); (L.Z.)
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Bing Li
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (R.J.); (Y.H.); (L.Z.)
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Jian Zhu
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (R.J.); (Y.H.); (L.Z.)
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| |
Collapse
|
5
|
Zheng H, Xu YC, Zhao T, Luo Z, Zhang DG, Song CC, Yu AG, Tan X. Dietary chenodeoxycholic acid attenuates high-fat diet-induced growth retardation, lipid accumulation and bile acid metabolism disorder in the liver of yellow catfish Pelteobagrus fulvidraco. Br J Nutr 2024; 131:921-934. [PMID: 37905695 DOI: 10.1017/s0007114523002489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
This experiment was conducted to investigate whether dietary chenodeoxycholic acid (CDCA) could attenuate high-fat (HF) diet-induced growth retardation, lipid accumulation and bile acid (BA) metabolism disorder in the liver of yellow catfish Pelteobagrus fulvidraco. Yellow catfish (initial weight: 4·40 (sem 0·08) g) were fed four diets: the control (105·8 g/kg lipid), HF diet (HF group, 159·6 g/kg lipid), the control supplemented with 0·9 g/kg CDCA (CDCA group) and HF diet supplemented with 0·9 g/kg CDCA (HF + CDCA group). CDCA supplemented in the HF diet significantly improved growth performance and feed utilisation of yellow catfish (P < 0·05). CDCA alleviated HF-induced increment of hepatic lipid and cholesterol contents by down-regulating the expressions of lipogenesis-related genes and proteins and up-regulating the expressions of lipololysis-related genes and proteins. Compared with the control group, CDCA group significantly reduced cholesterol level (P < 0·05). CDCA significantly inhibited BA biosynthesis and changed BA profile by activating farnesoid X receptor (P < 0·05). The contents of CDCA, taurochenodeoxycholic acid and glycochenodeoxycholic acid were significantly increased with the supplementation of CDCA (P < 0·05). HF-induced elevation of cholic acid content was significantly attenuated by the supplementation of CDCA (P < 0·05). Supplementation of CDCA in the control and HF groups could improve the liver antioxidant capacity. This study proved that CDCA could improve growth retardation, lipid accumulation and BA metabolism disorder induced by HF diet, which provided new insight into understanding the physiological functions of BA in fish.
Collapse
Affiliation(s)
- Hua Zheng
- Laboratory of Molecular Nutrition, Huazhong Agricultural University, Wuhan430070, People's Republic of China
| | - Yi-Chuang Xu
- Laboratory of Molecular Nutrition, Huazhong Agricultural University, Wuhan430070, People's Republic of China
| | - Tao Zhao
- Laboratory of Molecular Nutrition, Huazhong Agricultural University, Wuhan430070, People's Republic of China
| | - Zhi Luo
- Laboratory of Molecular Nutrition, Huazhong Agricultural University, Wuhan430070, People's Republic of China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao266237, People's Republic of China
| | - Dian-Guang Zhang
- Laboratory of Molecular Nutrition, Huazhong Agricultural University, Wuhan430070, People's Republic of China
| | - Chang-Chun Song
- Laboratory of Molecular Nutrition, Huazhong Agricultural University, Wuhan430070, People's Republic of China
| | - An-Gen Yu
- Laboratory of Molecular Nutrition, Huazhong Agricultural University, Wuhan430070, People's Republic of China
| | - Xiaoying Tan
- Laboratory of Molecular Nutrition, Huazhong Agricultural University, Wuhan430070, People's Republic of China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao266237, People's Republic of China
| |
Collapse
|
6
|
Balbuena-Pecino S, Montblanch M, Rosell-Moll E, González-Fernández V, García-Meilán I, Fontanillas R, Gallardo Á, Gutiérrez J, Capilla E, Navarro I. Impact of Hydroxytyrosol-Rich Extract Supplementation in a High-Fat Diet on Gilthead Sea Bream ( Sparus aurata) Lipid Metabolism. Antioxidants (Basel) 2024; 13:403. [PMID: 38671851 PMCID: PMC11047642 DOI: 10.3390/antiox13040403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/19/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
High-fat diets (HFDs) enhance fish growth by optimizing nutrient utilization (i.e., protein-sparing effect); however, their potential negative effects have also encouraged the search for feed additives. This work has investigated the effects of an extract rich in a polyphenolic antioxidant, hydroxytyrosol (HT), supplemented (0.52 g HT/kg feed) in a HFD (24% lipid) in gilthead sea bream (Sparus aurata). Fish received the diet at two ration levels, standard (3% of total fish weight) or restricted (40% reduction) for 8 weeks. Animals fed the supplemented diet at a standard ration had the lowest levels of plasma free fatty acids (4.28 ± 0.23 mg/dL versus 6.42 ± 0.47 in the non-supplemented group) and downregulated hepatic mRNA levels of lipid metabolism markers (ppara, pparb, lpl, fatp1, fabp1, acox1, lipe and lipa), supporting potential fat-lowering properties of this compound in the liver. Moreover, the same animals showed increased muscle lipid content and peroxidation (1.58- and 1.22-fold, respectively, compared to the fish without HT), suggesting the modulation of body adiposity distribution and an enhanced lipid oxidation rate in that tissue. Our findings emphasize the importance of considering this phytocompound as an optimal additive in HFDs for gilthead sea bream to improve overall fish health and condition.
Collapse
Affiliation(s)
- Sara Balbuena-Pecino
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain; (S.B.-P.); (M.M.); (E.R.-M.); (V.G.-F.); (I.G.-M.); (Á.G.); (J.G.); (E.C.)
| | - Manel Montblanch
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain; (S.B.-P.); (M.M.); (E.R.-M.); (V.G.-F.); (I.G.-M.); (Á.G.); (J.G.); (E.C.)
| | - Enrique Rosell-Moll
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain; (S.B.-P.); (M.M.); (E.R.-M.); (V.G.-F.); (I.G.-M.); (Á.G.); (J.G.); (E.C.)
| | - Verónica González-Fernández
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain; (S.B.-P.); (M.M.); (E.R.-M.); (V.G.-F.); (I.G.-M.); (Á.G.); (J.G.); (E.C.)
| | - Irene García-Meilán
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain; (S.B.-P.); (M.M.); (E.R.-M.); (V.G.-F.); (I.G.-M.); (Á.G.); (J.G.); (E.C.)
| | | | - Ángeles Gallardo
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain; (S.B.-P.); (M.M.); (E.R.-M.); (V.G.-F.); (I.G.-M.); (Á.G.); (J.G.); (E.C.)
| | - Joaquim Gutiérrez
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain; (S.B.-P.); (M.M.); (E.R.-M.); (V.G.-F.); (I.G.-M.); (Á.G.); (J.G.); (E.C.)
| | - Encarnación Capilla
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain; (S.B.-P.); (M.M.); (E.R.-M.); (V.G.-F.); (I.G.-M.); (Á.G.); (J.G.); (E.C.)
| | - Isabel Navarro
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain; (S.B.-P.); (M.M.); (E.R.-M.); (V.G.-F.); (I.G.-M.); (Á.G.); (J.G.); (E.C.)
| |
Collapse
|
7
|
Lin J, Zhang J, Dai W, Li X, Mohsen M, Li X, Lu K, Song K, Wang L, Zhang C. Low phosphorus increases hepatic lipid deposition, oxidative stress and inflammatory response via Acetyl-CoA carboxylase-dependent manner in zebrafish liver cells. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109387. [PMID: 38272331 DOI: 10.1016/j.fsi.2024.109387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024]
Abstract
Acetyl-CoA carboxylase (ACC) plays a regulatory role in both fatty acid synthesis and oxidation, controlling the process of lipid deposition in the liver. Given that existing studies have shown a close relationship between low phosphorus (P) and hepatic lipid deposition, this study was conducted to investigate whether ACC plays a crucial role in this relationship. Zebrafish liver cell line (ZFL) was incubated under low P medium (LP, P concentration: 0.77 mg/L) or adequate P medium (AP, P concentration: 35 mg/L) for 240 h. The results showed that, compared with AP-treated cells, LP-treated cells displayed elevated lipid accumulation, and reduced fatty acid β-oxidation, ATP content, and mitochondrial mass. Furthermore, transcriptomics analysis revealed that LP-treated cells significantly increased lipid synthesis (Acetyl-CoA carboxylases (acc), Stearyl coenzyme A dehydrogenase (scd)) but decreased fatty acid β-oxidation (Carnitine palmitoyltransferase I (cptI)) and (AMP-activated protein kinase (ampk)) mRNA levels compared to AP-treated cells. The phosphorylation of AMPK and ACC, and the protein expression of CPTI were significantly decreased in LP-treated cells compared with those in AP-treated cells. After 240 h of LP treatment, PF-05175157 (an ACC inhibitor) was supplemented in the LP treatment for an additional 12 h. PF-05175157-treated cells showed higher phosphorylation of ACC, higher protein expression of CPTI, and lower protein expression of FASN, lower TG content, enhanced fatty acid β-oxidation, increased ATP content, and mitochondrial mass compared with LP-treated cells. PF-05175157 also relieved the LP-induced oxidative stress and inflammatory response. Overall, these findings suggest that ACC is a promising target for treating LP-induced elevation of lipid deposition in ZFL, and can alleviate oxidative stress and inflammatory response.
Collapse
Affiliation(s)
- Jibin Lin
- State Key Laboratory for Mariculture Breeding, Fisheries College of Jimei University, Xiamen, 361021, PR China
| | - Jilei Zhang
- State Key Laboratory for Mariculture Breeding, Fisheries College of Jimei University, Xiamen, 361021, PR China
| | - Weiwei Dai
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, 215000, PR China
| | - Xiao Li
- State Key Laboratory for Mariculture Breeding, Fisheries College of Jimei University, Xiamen, 361021, PR China
| | - Mohamed Mohsen
- State Key Laboratory for Mariculture Breeding, Fisheries College of Jimei University, Xiamen, 361021, PR China
| | - Xueshan Li
- State Key Laboratory for Mariculture Breeding, Fisheries College of Jimei University, Xiamen, 361021, PR China
| | - Kangle Lu
- State Key Laboratory for Mariculture Breeding, Fisheries College of Jimei University, Xiamen, 361021, PR China
| | - Kai Song
- State Key Laboratory for Mariculture Breeding, Fisheries College of Jimei University, Xiamen, 361021, PR China
| | - Ling Wang
- State Key Laboratory for Mariculture Breeding, Fisheries College of Jimei University, Xiamen, 361021, PR China
| | - Chunxiao Zhang
- State Key Laboratory for Mariculture Breeding, Fisheries College of Jimei University, Xiamen, 361021, PR China.
| |
Collapse
|
8
|
Grădinariu L, Dediu L, Crețu M, Grecu IR, Docan A, Istrati DI, Dima FM, Stroe MD, Vizireanu C. The Antioxidant and Hepatoprotective Potential of Berberine and Silymarin on Acetaminophen Induced Toxicity in Cyprinus carpio L. Animals (Basel) 2024; 14:373. [PMID: 38338016 PMCID: PMC10854737 DOI: 10.3390/ani14030373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Berberine (BBR) and silymarin (SM) are natural compounds extracted from plants known for their antioxidant and chemoprotective effects on the liver. The present study aimed to investigate the beneficial properties of BBR and SM and the association of BBR with SM on liver function using fish as "in vivo" models. Moreover, the study investigated their hepatoprotective role after acetaminophen (APAP) exposure. For this purpose, the fish (N = 360; 118.4 ± 11.09 g) were fed with control or experimental diets for 9 weeks. In the experimental diets, the feed was supplemented with either SM (1 g/kg feed), BBR (100 and 200 mg/kg feed), or a combination of BBR with SM (SM 1 g/kg feed + BBR 100 mg/kg feed and, respectively, SM 1 g/kg feed + BBR 200 mg/kg feed). After the feeding trial, seven fish from each tank were randomly selected and exposed to a single APAP dose. The selected serum biochemical markers, oxidative stress markers, and lysozyme activity were used to evaluate the efficiency of the supplements on carp's health profile, particularly regarding the hepatopancreas function. Our results showed that the inclusion of SM and BBR (either as a single or in combination) reduced the serum contents of total cholesterol, triglyceride, and alanine transaminase. An increase in the high-density cholesterol was observed after the administration of BBR or BBR in association with SM. Both supplements showed hepatoprotective activity against APAP-induced hepatotoxicity, especially BBR. The ameliorative effects of SM (1 g) in association with BBR (100 mg) were highlighted by the modulation of the nonspecific immune system and oxidative stress alleviation after APAP exposure.
Collapse
Affiliation(s)
- Lăcrămioara Grădinariu
- Faculty of Food Science and Engineering, “Dunărea de Jos” University of Galați, 47 Domnească Street, 800008 Galați, Romania (M.C.); (I.R.G.); (A.D.); (D.I.I.); (C.V.)
| | - Lorena Dediu
- Faculty of Food Science and Engineering, “Dunărea de Jos” University of Galați, 47 Domnească Street, 800008 Galați, Romania (M.C.); (I.R.G.); (A.D.); (D.I.I.); (C.V.)
| | - Mirela Crețu
- Faculty of Food Science and Engineering, “Dunărea de Jos” University of Galați, 47 Domnească Street, 800008 Galați, Romania (M.C.); (I.R.G.); (A.D.); (D.I.I.); (C.V.)
- Institute of Research and Development for Aquatic Ecology, Fishing and Aquaculture, 54 Portului Street, 800211 Galați, Romania; (F.M.D.); (M.D.S.)
| | - Iulia Rodica Grecu
- Faculty of Food Science and Engineering, “Dunărea de Jos” University of Galați, 47 Domnească Street, 800008 Galați, Romania (M.C.); (I.R.G.); (A.D.); (D.I.I.); (C.V.)
| | - Angelica Docan
- Faculty of Food Science and Engineering, “Dunărea de Jos” University of Galați, 47 Domnească Street, 800008 Galați, Romania (M.C.); (I.R.G.); (A.D.); (D.I.I.); (C.V.)
| | - Daniela Ionela Istrati
- Faculty of Food Science and Engineering, “Dunărea de Jos” University of Galați, 47 Domnească Street, 800008 Galați, Romania (M.C.); (I.R.G.); (A.D.); (D.I.I.); (C.V.)
| | - Floricel Maricel Dima
- Institute of Research and Development for Aquatic Ecology, Fishing and Aquaculture, 54 Portului Street, 800211 Galați, Romania; (F.M.D.); (M.D.S.)
- Faculty of Engineering and Agronomy, 29 Calea Calărașilor Street, 810017 Brăila, Romania
| | - Maria Desimira Stroe
- Institute of Research and Development for Aquatic Ecology, Fishing and Aquaculture, 54 Portului Street, 800211 Galați, Romania; (F.M.D.); (M.D.S.)
| | - Camelia Vizireanu
- Faculty of Food Science and Engineering, “Dunărea de Jos” University of Galați, 47 Domnească Street, 800008 Galați, Romania (M.C.); (I.R.G.); (A.D.); (D.I.I.); (C.V.)
| |
Collapse
|
9
|
Wang C, Wang L, Yang L, Gao C, Wang B, Shu Y, Wang H, Yan Y. Protective effects of berberine in chronic copper-induced liver and gill injury in freshwater grouper (Acrossocheilus fasciatus). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115672. [PMID: 37951092 DOI: 10.1016/j.ecoenv.2023.115672] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/25/2023] [Accepted: 11/08/2023] [Indexed: 11/13/2023]
Abstract
This experiment aimed to investigate the protective effects of berberine on copper-induced liver and gill toxicities in freshwater grouper (Acrossocheilus fasciatus). Fish (initial weight 1.56 ± 0.10 g) were randomly distributed into 12 tanks (80 L, 20 fish per tank) and divided into four experimental groups: The control group, exposed to 0.02 mg/L Cu2+ (Cu group), exposed to 0.02 mg/L Cu2+ and fed 100 mg/kg berberine (BBR100 group), and exposed to 0.02 mg/L Cu2+ and fed 400 mg/kg berberine (BBR400 group). After a 30-day experiment, the results showed that berberine significantly increased the activities of catalase and glutathione peroxidase in the liver, gills, and serum inhibited by Cu2+ exposure (P < 0.05). Berberine inclusion significantly decreased the activities of lysozyme and acid phosphatase, as well as the content of immunoglobulin M compared to the Cu group (P < 0.05). Berberine significantly suppressed the expression of the proinflammatory cytokines interleukin-1β, interleukin-6 signaling transducer, and NLR family pyrin domain containing 3 in the liver and gills induced by Cu2+ exposure while downregulating the expression of the anti-inflammatory cytokine transforming growth factor β1. Additionally, berberine significantly reduced the activities of the liver injury markers alanine transaminase and aspartate transaminase, the levels of total cholesterol and triglyceride in serum, as well as alleviated the histopathological damage in the liver and gills caused by Cu2+ exposure. In summary, berberine enhanced antioxidant capacity, mitigated inflammation, and exerted significant protective effects on liver and gill damage in freshwater grouper under Cu2+ exposure.
Collapse
Affiliation(s)
- Chenyang Wang
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Lei Wang
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241002, China; Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui, Wuhu 241002, China.
| | - Leqi Yang
- College of Life Sciences, Anhui Normal University, Wuhu 241002, China
| | - Chang Gao
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Bin Wang
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Yilin Shu
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241002, China; Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui, Wuhu 241002, China
| | - Heng Wang
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Yunzhi Yan
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241002, China; Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui, Wuhu 241002, China.
| |
Collapse
|
10
|
Ming JH, Wang T, Wang TH, Ye JY, Zhang YX, Yang X, Shao XP, Ding ZY. Effects of dietary berberine on growth performance, lipid metabolism, antioxidant capacity and lipometabolism-related genes expression of AMPK signaling pathway in juvenile black carp (Mylopharyngodon piceus) fed high-fat diets. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:769-786. [PMID: 36418662 DOI: 10.1007/s10695-022-01143-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
This study aimed to investigate the effects of high-fat diet (HFD) supplemented with berberine on growth, lipid metabolism, antioxidant capacity and lipometabolism-related genes expression of AMPK signaling pathway in juvenile black carp (Mylopharyngodon piceus). Five hundred and forty healthy fish (4.04 ± 0.01 g) were randomly distributed into six groups, and fed six experimental diets: normal-fat diet (NFD, 5% fat), HFD (15% fat), and four HFDs supplemented with graded levels of berberine, respectively. The results showed that, compared with fish fed NFD, HFD had no effects on the growth of fish except for reducing survival rate, whereas HFD caused extensive lipid accumulation, oxidative stress injury and hepatic abnormalities. However, compared with the HFD group, fish fed HFD containing an appropriate berberine (98.26 or 196.21 mg/kg) improved the growth performance, increased hepatic lipid metabolism and antioxidant enzymes activities, and up-regulated the mRNA expression levels of ampk subunits and lipolysis genes such as pparα, cpt-1, acox, atgl and hsl (P < 0.05). Meanwhile, HFD supplemented with an appropriate berberine reduced crude lipid contents in liver and whole-body, decreased serum lipid contents, and ALT and AST activities, and down-regulated the mRNA expression levels of lipogenesis genes such as srebp-1, acc1, gpat, fas and pparγ, and lipid transporter genes such as fatp, fabp and fat/cd36 (P < 0.05). Thus, HFD supplemented with an appropriate berberine could improve growth of black carp, promote lipid metabolism and enhance antioxidant capacity. The lipid-lowering mechanism of berberine might be mediated by activating AMPK pathway, up-regulating lipolysis genes expression, and down-regulating lipogenesis and transport genes expression.
Collapse
Affiliation(s)
- Jian-Hua Ming
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, Huzhou, 313000, China.
- College of Life Science, Huzhou University, No. 759 East 2Nd Road, Huzhou, 313000, People's Republic of China.
| | - Ting Wang
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, Huzhou, 313000, China
| | - Ting-Hui Wang
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, Huzhou, 313000, China
| | - Jin-Yun Ye
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, Huzhou, 313000, China
- College of Life Science, Huzhou University, No. 759 East 2Nd Road, Huzhou, 313000, People's Republic of China
| | - Yi-Xiang Zhang
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, Huzhou, 313000, China
| | - Xia Yang
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, Huzhou, 313000, China
| | - Xian-Ping Shao
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, Huzhou, 313000, China
| | - Zhong-Ying Ding
- Huzhou Maternity & Child Health Care Hospital, Huzhou University, Huzhou, 313000, China
| |
Collapse
|
11
|
Feng T, Tao Y, Yan Y, Lu S, Li Y, Zhang X, Qiang J. Transcriptional Inhibition of AGPAT2 Induces Abnormal Lipid Metabolism and Oxidative Stress in the Liver of Nile Tilapia Oreochromis niloticus. Antioxidants (Basel) 2023; 12:antiox12030700. [PMID: 36978948 PMCID: PMC10045202 DOI: 10.3390/antiox12030700] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/01/2023] [Accepted: 03/01/2023] [Indexed: 03/15/2023] Open
Abstract
The enzyme 1-acylglycerol-3-phosphate O-acyltransferase 2 (AGPAT2) is an intermediate enzyme in triglyceride synthesis. The aim was to study the regulatory mechanism of AGPAT2 on Nile tilapia, Oreochromis niloticus. In this study, antisense RNA technology was used to knock-down AGPAT2 in Nile tilapia. Compared with the control groups (transfected with ultrapure water or the blank expression vector), the AGPAT2 knock-down group showed a significantly higher weight gain rate, special growth rate, visceral somatic index, and hepatopancreas somatic index; and significantly increased the total cholesterol, triglycerides, glucose, low-density lipoprotein cholesterol, and insulin levels in serum. In addition, the contents of total cholesterol and triglycerides and the abundance of superoxide dismutase, catalase, and glutathione peroxidase in the liver significantly increased, while the malondialdehyde content significantly decreased. The liver cells became severely vacuolated and accumulated lipids in the AGPAT2 knock-down group. Comparative transcriptome analyses (AGPAT2 knock-down vs. control group) revealed 1789 differentially expressed genes (DEGs), including 472 upregulated genes and 1313 downregulated genes in the AGPAT2 knock-down group. Functional analysis showed that the main pathway of differentially expressed genes enrichment was lipid metabolism and oxidative stress, such as steroid biosynthesis, unsaturated fatty acid biosynthesis, the PPAR signaling pathway, and the P53 pathway. We used qRT-PCR to verify the mRNA expression changes of 13 downstream differential genes in related signaling pathways. These findings demonstrate that knock-down of AGPAT2 in tilapia leads to abnormal lipid metabolism and oxidative stress.
Collapse
Affiliation(s)
- Tiantian Feng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Yifan Tao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yue Yan
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Siqi Lu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yan Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Jun Qiang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Sciences, Wuxi 214081, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- Correspondence:
| |
Collapse
|
12
|
Xia Y, Yang HC, Zhang K, Tian JJ, Li ZF, Yu EM, Li HY, Gong WB, Xie WP, Wang GJ, Xie J. Berberine regulates glucose metabolism in largemouth bass by modulating intestinal microbiota. Front Physiol 2023; 14:1147001. [PMID: 36969581 PMCID: PMC10033662 DOI: 10.3389/fphys.2023.1147001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/24/2023] [Indexed: 03/11/2023] Open
Abstract
This study examined the role of intestinal microbiota in berberine (BBR)-mediated glucose (GLU) metabolism regulation in largemouth bass. Four groups of largemouth bass (133.7 ± 1.43 g) were fed with control diet, BBR (1 g/kg feed) supplemented diet, antibiotic (ATB, 0.9 g/kg feed) supplemented diet and BBR + ATB (1g/kg feed +0.9 g/kg feed) supplemented diet for 50 days. BBR improved growth, decreased the hepatosomatic and visceral weight indices, significantly downregulated the serum total cholesterol and GLU levels, and significantly upregulated the serum total bile acid (TBA) levels. The hepatic hexokinase, pyruvate kinase, GLU-6-phosphatase and glutamic oxalacetic transaminase activities in the largemouth bass were significantly upregulated when compared with those in the control group. The ATB group exhibited significantly decreased final bodyweight, weight gain, specific growth rates and serum TBA levels, and significantly increased hepatosomatic and viscera weight indices, hepatic phosphoenolpyruvate carboxykinase, phosphofructokinase, and pyruvate carboxylase activities, and serum GLU levels. Meanwhile, the BBR + ATB group exhibited significantly decreased final weight, weight gain and specific growth rates, and TBA levels and significantly increased hepatosomatic and viscera weight indices and GLU levels. High-throughput sequencing revealed that compared with those in the control group, the Chao one index and Bacteroidota contents were significantly upregulated and the Firmicutes contents were downregulated in the BBR group. Additionally, the Shannon and Simpson indices and Bacteroidota levels were significantly downregulated, whereas the Firmicutes levels were significantly upregulated in ATB and BBR + ATB groups. The results of in-vitro culture of intestinal microbiota revealed that BBR significantly increased the number of culturable bacteria. The characteristic bacterium in the BBR group was Enterobacter cloacae. Biochemical identification analysis revealed that E. cloacae metabolizes carbohydrates. The size and degree of vacuolation of the hepatocytes in the control, ATB, and ATB + BBR groups were higher than those in the BBR group. Additionally, BBR decreased the number of nuclei at the edges and the distribution of lipids in the liver tissue. Collectively, BBR reduced the blood GLU level and improved GLU metabolism in largemouth bass. Comparative analysis of experiments with ATB and BBR supplementation revealed that BBR regulated GLU metabolism in largemouth bass by modulating intestinal microbiota.
Collapse
Affiliation(s)
- Yun Xia
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Hainan Fisheries Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya, China
| | - Hui-Ci Yang
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Hainan Fisheries Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya, China
| | - Kai Zhang
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Hainan Fisheries Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya, China
| | - Jing-Jing Tian
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Hainan Fisheries Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya, China
| | - Zhi-Fei Li
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Hainan Fisheries Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya, China
| | - Er-Meng Yu
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Hainan Fisheries Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya, China
| | - Hong-Yan Li
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Hainan Fisheries Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya, China
| | - Wang-Bao Gong
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Hainan Fisheries Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya, China
| | - Wen-Ping Xie
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Hainan Fisheries Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya, China
| | - Guang-Jun Wang
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Hainan Fisheries Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya, China
- *Correspondence: Guang-Jun Wang, ; Jun Xie,
| | - Jun Xie
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Hainan Fisheries Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya, China
- *Correspondence: Guang-Jun Wang, ; Jun Xie,
| |
Collapse
|
13
|
Ye Z, Wang Q, Dai S, Ji X, Cao P, Xu C, Bao G. The Berberis vulgaris L. extract berberine exerts its anti-oxidant effects to ameliorate cholesterol overloading-induced cell apoptosis in the primary mice hepatocytes: an in vitro study. In Vitro Cell Dev Biol Anim 2022; 58:855-866. [PMID: 36481977 DOI: 10.1007/s11626-022-00737-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/03/2022] [Indexed: 12/14/2022]
Abstract
Cholesterol overloading stress damages normal cellular functions in hepatocytes and induces metabolic disorders to facilitate the development of multiple diseases, including cardiovascular diseases, which seriously degrades the life quality of human beings. Recent data suggest that the Berberis vulgaris L. extract berberine is capable of regulating cholesterol homeostasis, which is deemed as potential therapeutic drug for the treatment of cholesterol overloading-associated diseases, but its detailed functions and molecular mechanisms are still largely unknown. In the present study, we evidenced that berberine suppressed cell apoptosis in high-cholesterol-diet mice liver and cholesterol-overloaded mice hepatocytes. Also, cholesterol overloading promoted reactive oxygen species (ROS) generation to trigger oxidative damages in hepatocytes, which were reversed by co-treating cells with both berberine and the ROS scavenger N-acetylcysteine (NAC). Moreover, the underlying mechanisms were uncovered, and we validated that berberine downregulated Keap1, and upregulated Nrf2 to activate the anti-oxidant Nrf2/HO-1 signaling pathway in cholesterol overloading-treated hepatocytes, and both Keap1 upregulation and Nrf2 downregulation abrogated the suppressing effects of berberine on cell apoptosis in the hepatocytes with cholesterol exposure. Taken together, we concluded that berberine activated the anti-oxidant Keap1/Nrf2/HO-1 pathway to eliminate cholesterol overloading-induced oxidative stress and apoptotic cell death in mice hepatocytes, and those evidences hinted that berberine might be used as putative therapeutic drug for the treatment of cholesterol overloading-associated cardiovascular diseases.
Collapse
Affiliation(s)
- Zhengchen Ye
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Kunming Medical University, Xichang Road No. 295, Kunming, 650032, Yunnan Province, China
| | - Qiang Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Kunming Medical University, Xichang Road No. 295, Kunming, 650032, Yunnan Province, China
| | - Shupeng Dai
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Kunming Medical University, Xichang Road No. 295, Kunming, 650032, Yunnan Province, China
| | - Xiang Ji
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Kunming Medical University, Xichang Road No. 295, Kunming, 650032, Yunnan Province, China
| | - Pingli Cao
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Kunming Medical University, Xichang Road No. 295, Kunming, 650032, Yunnan Province, China
| | - Chenglei Xu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Kunming Medical University, Xichang Road No. 295, Kunming, 650032, Yunnan Province, China
| | - Guoqing Bao
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Kunming Medical University, Xichang Road No. 295, Kunming, 650032, Yunnan Province, China.
| |
Collapse
|
14
|
4-PBA Attenuates Fat Accumulation in Cultured Spotted Seabass Fed High-Fat-Diet via Regulating Endoplasmic Reticulum Stress. Metabolites 2022; 12:metabo12121197. [PMID: 36557235 PMCID: PMC9784988 DOI: 10.3390/metabo12121197] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/13/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
Excessive fat accumulation is a common phenomenon in cultured fish, which can cause metabolic disease such as fatty liver. However, the relative regulatory approach remains to be explored. Based on this, two feeding trials were conducted. Firstly, fish were fed either a normal-fat diet (NFD) or a high-fat diet (HFD) for eight weeks and sampled at the 2nd, 4th, 6th, and 8th week after feeding (Experiment I). In the first four weeks, fish fed an HFD grew faster than those fed an NFD. Conversely, the body weight and weight gain were higher in the NFD group at the 6th and 8th weeks. Under light and transmission electron microscopes, fat accumulation of the liver was accompanied by an obvious endoplasmic reticulum (ER) swell. Accordingly, the expressions of atf-6, ire-1, perk, eif-2α, atf-4, grp78, and chop showed that ER stress was activated at the 6th and 8th weeks. In Experiment II, 50 mg/kg 4-PBA (an ERs inhibitor) was supplemented to an HFD; this was named the 4-PBA group. Then, fish was fed with an NFD, an HFD, and a 4-PBA diet for eight weeks. As the result, the excessive fat deposition caused by an HFD was reversed by 4-PBA. The expression of ER stress-related proteins CHOP and GRP78 was down-regulated by 4-PBA, and the transmission electron microscope images also showed that 4-PBA alleviated ER stress induced by the feeding of an HFD. Furthermore, 4-PBA administration down-regulated SREBP-1C/ACC/FAS, the critical pathways of fat synthesis. In conclusion, the results confirmed that ER stress plays a contributor role in the fat deposition by activating the SREBP-1C/ACC/FAS pathway. 4-PBA as an ER stress inhibitor could reduce fat deposition caused by an HFD via regulating ER stress.
Collapse
|
15
|
Zhang M, Liu J, Yu C, Tang S, Jiang G, Zhang J, Zhang H, Xu J, Xu W. Berberine Regulation of Cellular Oxidative Stress, Apoptosis and Autophagy by Modulation of m 6A mRNA Methylation through Targeting the Camk1db/ERK Pathway in Zebrafish-Hepatocytes. Antioxidants (Basel) 2022; 11:antiox11122370. [PMID: 36552577 PMCID: PMC9774189 DOI: 10.3390/antiox11122370] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Berberine (BBR) ameliorates cellular oxidative stress, apoptosis and autophagy induced by lipid metabolism disorder, however, the molecular mechanism associated with it is not well known. To study the mechanism, we started with m6A methylation modification to investigate its role in lipid deposition zebrafish hepatocytes (ZFL). The results showed that BBR could change the cellular m6A RNA methylation level, increase m6A levels of Camk1db gene transcript and alter Camk1db gene mRNA expression. Via knockdown of the Camk1db gene, Camk1db could promote cellular ERK phosphorylation levels. Berberine regulated the expression level of Camk1db mRNA by altering the M6A RNA methylation of the Camk1db gene, which further affected the synthesis of calmodulin-dependent protein kinase and activated ERK signaling pathway resulting in changes in downstream physiological indicators including ROS production, cell proliferation, apoptosis and autophagy. In conclusion, berberine could regulate cellular oxidative stress, apoptosis and autophagy by mediating Camk1db m6A methylation through the targeting of the Camk1db/ERK pathway in zebrafish-hepatocyte.
Collapse
Affiliation(s)
- Meijuan Zhang
- Shanghai Key Laboratory for Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No. 800 Jiangchuan Road, Shanghai 200240, China
| | - Jin Liu
- Shanghai Key Laboratory for Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No. 800 Jiangchuan Road, Shanghai 200240, China
| | - Chengbing Yu
- Shanghai Key Laboratory for Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No. 800 Jiangchuan Road, Shanghai 200240, China
| | - Shangshang Tang
- Shanghai Key Laboratory for Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No. 800 Jiangchuan Road, Shanghai 200240, China
| | - Guangzhen Jiang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China
| | - Jing Zhang
- Shanghai Key Laboratory for Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No. 800 Jiangchuan Road, Shanghai 200240, China
| | - Hongcai Zhang
- Shanghai Key Laboratory for Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No. 800 Jiangchuan Road, Shanghai 200240, China
| | - Jianxiong Xu
- Shanghai Key Laboratory for Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No. 800 Jiangchuan Road, Shanghai 200240, China
| | - Weina Xu
- Shanghai Key Laboratory for Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No. 800 Jiangchuan Road, Shanghai 200240, China
- Correspondence:
| |
Collapse
|
16
|
Wu D, Li J, Fan Z, Wang L, Zheng X. Resveratrol ameliorates oxidative stress, inflammatory response and lipid metabolism in common carp ( Cyprinus carpio) fed with high-fat diet. Front Immunol 2022; 13:965954. [PMID: 36405693 PMCID: PMC9669426 DOI: 10.3389/fimmu.2022.965954] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/21/2022] [Indexed: 12/02/2023] Open
Abstract
High-fat diet is regarded as crucial inducers of oxidative stress, inflammation, and metabolic imbalance. In order to investigate the ameliorative potential of resveratrol against the progression of liver injury towards steatohepatitis, common carp (Cyprinus carpio) were distributed into six experimental groups and were fed with a normal-fat diet, a high-fat diet, and supplemented with resveratrol (0.8, 1.6, 2.4, and 3.2 g/kg diet) for 8 weeks. The high-fat diet decreased the antioxidant capacities, as well as causing the inflammatory response and lipid deposition of common carp. Resveratrol induced a marked elevation in the final body weight, weight gain rate, condition factor and significant decrease in the feed conversion ratio. Moreover, dietary resveratrol showed a significant decrease in the alanine aminotransferase, aspartate aminotransferase, triglyceride and low-density lipoprotein levels, which was accompanied by an increase in high-density lipoprotein concentration in serum. A significant elevation in total superoxide dismutase, catalase, glutathione peroxidase and a decreased malondialdehyde content were observed, along with a substantial elevation in antioxidant activities were found. Additionally, fish fed with resveratrol had an up-regulation of hepatic catalase, copper, zinc superoxide dismutase, glutathione peroxidase 1a, and glutathione peroxidase 1b gene expression via Nrf2 signaling pathway. Expectedly, our results also demonstrated that resveratrol regulates hepatic lipid metabolism in fish by inhibiting the expression of hepatic lipogenesis genes (acetyl-CoA carboxylase 1, fatty acid synthase, and sterol regulatory element binding protein 1), fatty acid uptake-related genes of lipoprotein lipase, and β-oxidation-related genes via PPAR-γ signaling pathway. Furthermore, dietary resveratrol reduced inflammation, as evident by down-regulating the interleukin-1β, interleukin-6, interleukin-8, and tumor necrosis factor-α expression levels and upregulating the interleukin-10 and transforming growth factor-β2 expression levels via NF-κB signaling pathway. As a whole, our results demonstrated that resveratrol defensed the impacts against high-fat diet on the serum biochemical, hepatic antioxidants, inflammation, and lipid metabolism.
Collapse
Affiliation(s)
| | | | | | - Liansheng Wang
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Xianhu Zheng
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| |
Collapse
|
17
|
Gong Y, Lu Q, Liu Y, Xi L, Zhang Z, Liu H, Jin J, Yang Y, Zhu X, Xie S, Han D. Dietary berberine alleviates high carbohydrate diet-induced intestinal damages and improves lipid metabolism in largemouth bass (Micropterus salmoides). Front Nutr 2022; 9:1010859. [PMID: 36211485 PMCID: PMC9539808 DOI: 10.3389/fnut.2022.1010859] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/05/2022] [Indexed: 11/15/2022] Open
Abstract
High carbohydrate diet (HCD) causes metabolism disorder and intestinal damages in aquaculture fish. Berberine has been applied to improve obesity, diabetes and NAFLD. However, whether berberine contributes to the alleviation of HCD-induced intestinal damages in aquaculture fish is still unclear. Here we investigated the effects and mechanism of berberine on HCD-induced intestinal damages in largemouth bass (Micropterus salmoides). We found dietary berberine (50 mg/kg) improved the physical indexes (VSI and HSI) without affecting the growth performance and survival rate of largemouth bass. Importantly, the results showed that dietary berberine reduced the HCD-induced tissue damages and repaired the barrier in the intestine of largemouth bass. We observed dietary berberine significantly suppressed HCD-induced intestinal apoptosis rate (from 31.21 to 8.35%) and the activity level of Caspase3/9 (P < 0.05) by alleviating the inflammation (il1β, il8, tgfβ, and IL-6, P < 0.05) and ER stress (atf6, xbp1, perk, eif2α, chopa, chopb, and BIP, P < 0.05) in largemouth bass. Further results showed that dietary berberine declined the HCD-induced excessive lipogenesis (oil red O area, TG content, acaca, fasn, scd, pparγ, and srebp1, P < 0.05) and promoted the lipolysis (hsl, lpl, cpt1a, and cpt2, P < 0.05) via activating adenosine monophosphate-activated protein kinase (AMPK, P < 0.05) and inhibiting sterol regulatory element-binding protein 1 (SREBP1, P < 0.05) in the intestine of largemouth bass. Besides, we also found that dietary berberine significantly promoted the hepatic lipid catabolism (hsl, lpl, cpt1a, and cpt2, P < 0.05) and glycolysis (pk and ira, P < 0.05) to reduce the systematic lipid deposition in largemouth bass fed with HCD. Therefore, we elucidated that 50 mg/kg dietary berberine alleviated HCD-induced intestinal damages and improved AMPK/SREBP1-mediated lipid metabolism in largemouth bass, and evaluated the feasibility for berberine as an aquafeed additive to enhance the intestinal function of aquaculture species.
Collapse
Affiliation(s)
- Yulong Gong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Qisheng Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yulong Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Longwei Xi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhimin Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Haokun Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Junyan Jin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Yunxia Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xiaoming Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Shouqi Xie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Dong Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- Hubei Engineering Research Center for Aquatic Animal Nutrition and Feed, Wuhan, China
- *Correspondence: Dong Han,
| |
Collapse
|
18
|
Naiel MAE, Negm SS, Ghazanfar S, Shukry M, Abdelnour SA. The risk assessment of high-fat diet in farmed fish and its mitigation approaches: A review. J Anim Physiol Anim Nutr (Berl) 2022; 107:948-969. [PMID: 35934925 DOI: 10.1111/jpn.13759] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/10/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022]
Abstract
In the era of intensification of fish farms, the high-fat diet (HFD) has been applied to promote growth and productivity, provide additional energy and substitute partial protein in fish feeds. Certainly, HFD within specific concentrations was found to be beneficial in boosting fish performance throughout a short-term feeding. However, excessive dietary fat levels displayed vast undesirable impacts on growth, feed efficiency, liver function, antioxidant capacity and immune function and finally reduced the economic revenue of cultured fish. Moreover, studies have shown that fish diets containing a high level of fats resulted in increasing lipid accumulation, stimulated endoplasmic reticulum stress and suppressed autophagy in fish liver. Investigations showed that HFD could impair the intestinal barrier of fish via triggering inflammation, metabolic disorders, oxidative stress and microbiota imbalance. Several approaches have been widely used for reducing the undesirable influences of HFD in fish. Dietary manipulation could mitigate the adverse impacts triggered by HFD, and boost growth and productivity via reducing blood lipids profile, attenuating oxidative stress and hepatic lipid deposition and improving mitochondrial activity, immune function and antioxidant activity in fish. As well, dietary feed additives have been shown to decrease hepatic lipogenesis and modulate the inflammatory response in fish. Based on the literature, previous studies indicated that phytochemicals could reduce apoptosis and enhance the immunity of fish fed with HFD. Thus, the present review will explore the potential hazards of HFD on fish species. It will also provide light on the possibility of employing some safe feed additives to mitigate HFD risks in farmed fish.
Collapse
Affiliation(s)
- Mohammed A E Naiel
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Samar S Negm
- Fish Biology and Ecology Department, Central Lab for Aquaculture Research (CLAR), Abassa, Agriculture Research Center, Giza, Egypt
| | - Shakira Ghazanfar
- National Institute for Genomics Advanced and Biotechnology (NIGAB), National Agricultural Research Centre, Islamabad, Pakistan
| | - Mustafa Shukry
- Physiology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Sameh A Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| |
Collapse
|
19
|
Shen Y, Li X, Bao Y, Zhu T, Wu Z, Yang B, Jiao L, Zhou Q, Jin M. Lipid metabolic disorders and physiological stress caused by a high-fat diet have lipid source-dependent effects in juvenile black seabream Acanthopagrus schlegelii. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:955-971. [PMID: 35771297 DOI: 10.1007/s10695-022-01095-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
This study was conducted to evaluate the effects of different dietary lipid sources on growth performance, lipid metabolism, and physiological stress responses including oxidative stress (OS) and endoplasmic reticulum stress (ERS) of juvenile Acanthopagrus schlegelii (initial weight 0.88 ± 0.01 g) fed a high-fat diet (HFD). Four isonitrogenous and isolipidic experimental diets containing different lipid sources were formulated: fish oil (FO), palm oil (PO), linseed oil (LO), and soybean oil (SO), respectively. Results indicated that fish fed HFD supplemented with FO significantly improved growth than SO treatment. The high concentrations of aspartate aminotransferase and alanine transaminase were found in HFD supplemented with SO. Fish fed dietary LO supplementation showed significantly lower serum cholesterol, triglyceride, low-density lipoprotein, and high-density lipoprotein contents than those in SO group. Likewise, hepatic paraffin section analysis indicated that HFD with PO or SO supplementation increased fat drop. The expression levels of peroxisome proliferators-activated receptor alpha (pparα) and silent regulator 1 (sirt1) were significantly elevated by HFD with FO or LO supplementation. Additionally, the key marker of OS malonaldehyde was significantly increased in FO and SO groups. ERS-related genes were activated in dietary PO or SO supplementation and, hence, triggering inflammation and apoptosis by promoting the expression levels of nuclear factor kappa B (nf-κb) and c-Jun N-terminal kinase (jnk). Overall, the present study reveals that lipid metabolic disorders and physiological stress caused by a HFD have significant lipid source-dependent effects, which have important guiding significance for the use of HFD in marine fish.
Collapse
Affiliation(s)
- Yuedong Shen
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Xuejiao Li
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Yangguang Bao
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Tingting Zhu
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Zhaoxun Wu
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Bingqian Yang
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Lefei Jiao
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Qicun Zhou
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, 315211, China.
| | - Min Jin
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
20
|
Dong Y, Li L, Xia T, Wang L, Xiao L, Ding N, Wu Y, Lu K. Oxidative Stress Can Be Attenuated by 4-PBA Caused by High-Fat or Ammonia Nitrogen in Cultured Spotted Seabass: The Mechanism Is Related to Endoplasmic Reticulum Stress. Antioxidants (Basel) 2022; 11:1276. [PMID: 35883767 PMCID: PMC9312264 DOI: 10.3390/antiox11071276] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 12/21/2022] Open
Abstract
Oxidative stress is a common phenomenon in aquaculture, which can be induced by nutritional or environmental factors. Generally, oxidative stress causes poor growth performance, metabolic dysregulation, and even the death of aquatic animals. To identify a nutritional intervention strategy, high-fat diet (HFD) feeding (Experiment I) and acute ammonia nitrogen challenge (Experiment II) tests were carried out. In Experiment I, HFD feeding significantly decreased the growth performance concomitantly with excessive fat deposition in the liver and abdomen. The addition of 4-PBA in the diet improved the excessive fat accumulation. The activities of antioxidative enzymes were suppressed, and the levels of lipid and protein peroxidation were increased, indicating that HFD feeding induced oxidative stress. The endoplasmic reticulum stress (ERs) related genes were downregulated in the HFD group. Under a transmission electron microscope (TEM), more swollen and dilated ER lumen could be observed. These results indicated that the HFD induced ERs activation. Although 4-PBA acted as a potent ERs inhibitor, as evidenced by the alleviated alterations of ERs molecules and the ER ultrastructure, the oxidative stress was also attenuated by 4-PBA. In Experiment II, dietary 4-PBA improved the tolerance to the acute ammonia nitrogen challenge, as lower mortality and serum aminotransferase activity was found. Further results showed that 4-PBA decreased the peroxidation content and attenuated ERs, thus confirming the correlation between oxidative stress and ERs. Our findings showed that dietary 4-PBA supplementation can attenuate oxidative stress induced by a HFD or acute ammonia challenge; the mechanism is related to its potent inhibition effect for ERs.
Collapse
Affiliation(s)
- Yanzou Dong
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China; (Y.D.); (L.L.); (T.X.)
| | - Lei Li
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China; (Y.D.); (L.L.); (T.X.)
| | - Tian Xia
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China; (Y.D.); (L.L.); (T.X.)
| | - Lina Wang
- Key Laboratory of Swine Nutrition and Feed Science of Fujian Province, Fujian Aonong Biological Science and Technology Group Co., Ltd., Zhangzhou 363000, China; (L.W.); (L.X.); (N.D.)
| | - Liping Xiao
- Key Laboratory of Swine Nutrition and Feed Science of Fujian Province, Fujian Aonong Biological Science and Technology Group Co., Ltd., Zhangzhou 363000, China; (L.W.); (L.X.); (N.D.)
| | - Nengshui Ding
- Key Laboratory of Swine Nutrition and Feed Science of Fujian Province, Fujian Aonong Biological Science and Technology Group Co., Ltd., Zhangzhou 363000, China; (L.W.); (L.X.); (N.D.)
| | - Youlin Wu
- Key Laboratory of Swine Nutrition and Feed Science of Fujian Province, Fujian Aonong Biological Science and Technology Group Co., Ltd., Zhangzhou 363000, China; (L.W.); (L.X.); (N.D.)
| | - Kangle Lu
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China; (Y.D.); (L.L.); (T.X.)
| |
Collapse
|
21
|
Dong Y, Yu M, Wu Y, Xia T, Wang L, Song K, Zhang C, Lu K, Rahimnejad S. Hydroxytyrosol Promotes the Mitochondrial Function through Activating Mitophagy. Antioxidants (Basel) 2022; 11:893. [PMID: 35624756 PMCID: PMC9138034 DOI: 10.3390/antiox11050893] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 02/06/2023] Open
Abstract
Emerging evidence suggests that mitochondrial dysfunction mediates the pathogenesis for non-alcoholic fatty liver disease (NAFLD). Hydroxytyrosol (HT) is a key component of extra virgin olive oil which can exert beneficial effects on NAFLD through modulating mitochondria. However, the mechanism of the impacts of HT still remains elusive. Thus, an in vivo and a series of in vitro experiments were carried out to examine the impacts of hydroxytyrosol (HT) on lipid metabolism and mitochondrial function in fish. For the in vivo experiment, two diets were produced to contain 10% and 16% fat as normal-fat and high-fat diets (NFD and HFD) and two additional diets were prepared by supplementing 200 mg/kg of HT to the NFD and HFD. The test diets were fed to triplicate groups of spotted seabass (Lateolabrax maculatus) juveniles for 8 weeks. The results showed that feeding HFD leads to increased fat deposition in the liver and induces oxidative stress, both of which were ameliorated by HT application. Furthermore, transmission electron microscopy revealed that HFD destroyed mitochondrial cristae and matrix and induced severe hydropic phenotype, while HT administration relieved these alterations. The results of in vitro studies using zebrafish liver cell line (ZFL) showed that HT promotes mitochondrial function and activates PINK1-mediated mitophagy. These beneficial effects of HT disappeared when the cells were treated with cyclosporin A (Csa) as a mitophagy inhibitor. Moreover, the PINK1-mediated mitophagy activation by HT was blocked when compound C (CC) was used as an AMPK inhibitor. In conclusion, our findings demonstrated that HT alleviates fat accumulation, oxidative stress and mitochondrial dysfunction, and its effects are deemed to be mediated via activating mitophagy through the AMPK/PINK1 pathway.
Collapse
Affiliation(s)
- Yanzou Dong
- Key Laboratory for Feed Quality Testing and Safety, Fisheries College, Jimei University, Xiamen 361021, China; (Y.D.); (M.Y.); (T.X.); (L.W.); (K.S.); (C.Z.)
| | - Manhan Yu
- Key Laboratory for Feed Quality Testing and Safety, Fisheries College, Jimei University, Xiamen 361021, China; (Y.D.); (M.Y.); (T.X.); (L.W.); (K.S.); (C.Z.)
- Key Laboratory of Swine Nutrition and Feed Science of Fujian Province, Fujian Aonong Biological Science and Technology Group Co., Ltd., Zhangzhou 363000, China;
| | - Youlin Wu
- Key Laboratory of Swine Nutrition and Feed Science of Fujian Province, Fujian Aonong Biological Science and Technology Group Co., Ltd., Zhangzhou 363000, China;
| | - Tian Xia
- Key Laboratory for Feed Quality Testing and Safety, Fisheries College, Jimei University, Xiamen 361021, China; (Y.D.); (M.Y.); (T.X.); (L.W.); (K.S.); (C.Z.)
| | - Ling Wang
- Key Laboratory for Feed Quality Testing and Safety, Fisheries College, Jimei University, Xiamen 361021, China; (Y.D.); (M.Y.); (T.X.); (L.W.); (K.S.); (C.Z.)
| | - Kai Song
- Key Laboratory for Feed Quality Testing and Safety, Fisheries College, Jimei University, Xiamen 361021, China; (Y.D.); (M.Y.); (T.X.); (L.W.); (K.S.); (C.Z.)
| | - Chunxiao Zhang
- Key Laboratory for Feed Quality Testing and Safety, Fisheries College, Jimei University, Xiamen 361021, China; (Y.D.); (M.Y.); (T.X.); (L.W.); (K.S.); (C.Z.)
| | - Kangle Lu
- Key Laboratory for Feed Quality Testing and Safety, Fisheries College, Jimei University, Xiamen 361021, China; (Y.D.); (M.Y.); (T.X.); (L.W.); (K.S.); (C.Z.)
| | - Samad Rahimnejad
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Zatisi 728/II, 389 25 Vodnany, Czech Republic;
| |
Collapse
|
22
|
Hydroxytyrosol Attenuates High-Fat-Diet-Induced Oxidative Stress, Apoptosis and Inflammation of Blunt Snout Bream (Megalobrama amblycephala) through Its Regulation of Mitochondrial Homeostasis. FISHES 2022. [DOI: 10.3390/fishes7020078] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The present study was conducted to investigate the effects of dietary hydroxytyrosol (HT) on oxidative stress, inflammation and mitochondrial homeostasis in blunt snout bream (Megalobrama amblycephala). Fish were fed a low-fat diet (LFD, 5% lipid), a high-fat diet (HFD, 15% lipid), an LFD supplementing 200 mg/kg HT, or an HFD supplementing 200 mg/kg HT. After 10-week feeding, significant reduction of growth was observed in fish fed HFD, compared with other groups. HFD caused oxidative stress and more apoptosis of hepatocytes, while HT addition resulted in significant decrease of ROS and MDA contents, and the apoptotic hepatocytes. Moreover, the expression of genes involving inflammation of HFD group were elevated. Supplementing HT to HFD can attenuate this. All the activities of complexes of mitochondria in the HFD group were decreased compared with those in the LFD group, while supplementing HT to HFD significantly increased complex I-III activities. Furthermore, HFD downregulated the expressions of Atg5 and NRF-1 which induced the failure of mitophagy and biogenesis, while, supplementing HT to HFD reversed these expressions involving mitochondrial autophagy and biogenesis. In summary, adding HT to HFD relieved oxidative stress, apoptosis and inflammation, likely due to its regulation of mitochondrial homeostasis.
Collapse
|
23
|
Sun C, Shan F, Liu M, Liu B, Zhou Q, Zheng X, Xu X. High-Fat-Diet-Induced Oxidative Stress in Giant Freshwater Prawn ( Macrobrachium rosenbergii) via NF-κB/NO Signal Pathway and the Amelioration of Vitamin E. Antioxidants (Basel) 2022; 11:antiox11020228. [PMID: 35204111 PMCID: PMC8868509 DOI: 10.3390/antiox11020228] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/14/2022] Open
Abstract
Lipids work as essential energy sources for organisms. However, prawns fed on high-fat diets suffer from oxidative stress, whose potential mechanisms are poorly understood. The present study aimed to explore the regulation mechanism of oxidative stress induced by high fat and the amelioration by vitamin E (VE) of oxidative stress. Macrobrachium rosenbergii were fed with two dietary fat levels (LF 9% and HF 13%) and two VE levels (200 mg/kg and 600 mg/kg) for 8 weeks. The results showed that the HF diet decreased the growth performance, survival rate and antioxidant capacity of M. rosenbergii, as well as inducing hypertrophied lipid droplets, lipophagy and apoptosis. A total of 600 mg/kg of VE in the HF diet alleviated the negative effects induced by HF. In addition, the HF diet suppressed the expression of toll-dorsal and imd-relish signal pathways. After the relish and dorsal pathways were knocked down, the downstream iNOS and NO levels decreased and the MDA level increased. The results indicated that M. rosenbergii fed with a high-fat diet could cause oxidative damage. Its molecular mechanism may be attributed to the fact that high fat suppresses the NF-κB/NO signaling pathway mediating pro-oxidant and antioxidant targets for regulation of oxidative stress. Dietary VE in an HF diet alleviated hepatopancreas oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Cunxin Sun
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (C.S.); (Q.Z.); (X.Z.)
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (F.S.); (M.L.); (X.X.)
| | - Fan Shan
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (F.S.); (M.L.); (X.X.)
| | - Mingyang Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (F.S.); (M.L.); (X.X.)
| | - Bo Liu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (C.S.); (Q.Z.); (X.Z.)
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (F.S.); (M.L.); (X.X.)
- Correspondence: ; Tel.: +86-0510-8555-6101
| | - Qunlan Zhou
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (C.S.); (Q.Z.); (X.Z.)
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (F.S.); (M.L.); (X.X.)
| | - Xiaochuan Zheng
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (C.S.); (Q.Z.); (X.Z.)
| | - Xiaodi Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (F.S.); (M.L.); (X.X.)
| |
Collapse
|
24
|
Abasubong KP, Li XF, Adjoumani JJY, Jiang GZ, Desouky HE, Liu WB. Effects of dietary xylooligosaccharide prebiotic supplementation on growth, antioxidant and intestinal immune-related genes expression in common carp Cyprinus carpio fed a high-fat diet. J Anim Physiol Anim Nutr (Berl) 2021; 106:403-418. [PMID: 34957599 DOI: 10.1111/jpn.13669] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/14/2021] [Indexed: 12/25/2022]
Abstract
This study investigated the effects of xylooligosaccharide (XOS) supplementation on growth, intestinal enzyme, antioxidant and immune-related genes in common carp Cyprinus carpio fed a high-fat diet (HFD). One hundred and ninety two fish with an initial weight of 19.61 ± 0.96 g were allocated into 24 tanks (eight fish per tank in four replicate) and were fed the control diet, HFD, HFD with 0.5%, 1%, 2% and 3% XOS supplementation. From the result, fish offered HFD with 1% XOS supplementation significantly obtained a higher body mass index and feed efficiency ratio, whereas condition factor was higher in fish fed HFD supplemented with 2% XOS but no difference was attributed to other supplemented group compared to control group. Also, fish fed HFD supplemented with 1%-2% XOS significantly improved protease, lipase, creatine kinase and sodium/potassium ATPase activities compared to other groups. Fish offered HFD were significantly lower in superoxide dismutase (SOD), catalase, glutathione peroxidase (GPX), myeloperoxidase, acid phosphatase, lysozyme activities and immunoglobulin content, but the opposite result was found for aspartate transaminase, alanine transaminase activities, malondialdehyde, protein carbonyl and cortisol content as compared with the control. However, this effect was reversed with HFD supplemented with XOS. Also, interleukin 1β, interleukin 8, tumour necrosis factors, interferons, caspase-3 and caspase-9 in the intestine were all up-regulated in the HFD group, while the reverse pattern was found in SOD, GPX, lysozyme-C, complement 3 and mucin 5b (muc5b), than the control group. These effects were all enhanced by feeding the XOS diet, especially those fed 1%-3% supplementation. In conclusion, XOS inclusion can improve the growth, digestive enzymes, antioxidants and immune response of common carp fed HFD.
Collapse
Affiliation(s)
| | - Xiang-Fei Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jean-Jacques Y Adjoumani
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Guang-Zhen Jiang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Hesham E Desouky
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China.,Department of Animal, Poultry and Fish Production, Faculty of Agriculture, Damanhour University, Damanhour, Beheria, Egypt
| | - Wen-Bin Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
25
|
Li X, Liu H, Li D, Lei H, Wei X, Schlenk D, Mu J, Chen H, Yan B, Xie L. Dietary Seleno-l-Methionine Causes Alterations in Neurotransmitters, Ultrastructure of the Brain, and Behaviors in Zebrafish ( Danio rerio). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:11894-11905. [PMID: 34488355 DOI: 10.1021/acs.est.1c03457] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Elevated concentrations of dietary selenium (Se) cause abnormalities and extirpation of fish inhabiting in Se-contaminated environments. However, its effect on fish behavior and the underlying mechanisms remain largely unknown. In this study, two-month-old zebrafish (Danio rerio) was fed seleno-l-methionine (Se-Met) at environmentally relevant concentrations (i.e., control (2.61), low (5.43), medium (12.16), and high (34.61) μg Se/g dry weight (dw), respectively, corresponding to the C, L, M, and H treatments) for 60 days. Targeted metabolomics, histopathological, and targeted transcriptional endpoints were compared to behavioral metrics to evaluate the effects of dietary exposure to Se-Met . The results showed that the levels of total Se and malondialdehyde in fish brains were increased in a dose-dependent pattern. Meanwhile, mitochondrial damages and decreased activities of the mitochondria respiratory chain complexes were observed in the neurons at the M and H treatments. In addition, dietary Se-Met affected neurotransmitters, metabolites, and transcripts of the genes associated with the dopamine, serotonin, gamma-aminobutyric acid, acetylcholine, and histamine signaling pathways in zebrafish brains at the H treatments. The total swimming distance and duration in the Novel Arm were lowered in fish from the H treatment. This study has demonstrated that dietary Se-Met affects the ultrastructure of the zebrafish brain, neurotransmitters, and associated fish behaviors and may help enhance adverse outcome pathways for neurotransmitter-behavior key events in zebrafish.
Collapse
Affiliation(s)
- Xiao Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Hongsong Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Dan Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Haojun Lei
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Xinrong Wei
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California Riverside, Riverside, California 92507, United States
| | - Jingli Mu
- Fujian Key Laboratory of Functional Marine Sensing Materials, Institute of Oceanography, Minjiang University, Fuzhou 350108, China
| | - Hongxing Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Bo Yan
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Lingtian Xie
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| |
Collapse
|
26
|
Zhang L, Zheng XC, Huang YY, Ge YP, Sun M, Chen WL, Liu WB, Li XF. Carbonyl cyanide 3-chlorophenylhydrazone induced the imbalance of mitochondrial homeostasis in the liver of Megalobrama amblycephala: A dynamic study. Comp Biochem Physiol C Toxicol Pharmacol 2021; 244:109003. [PMID: 33617998 DOI: 10.1016/j.cbpc.2021.109003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/07/2021] [Accepted: 02/11/2021] [Indexed: 12/22/2022]
Abstract
Carbonylcyanide-3-chlorophenylhydrazone (CCCP) is a protonophore, which causes uncoupling of proton gradient in the inner mitochondrial membrane, thus inhibiting the rate of ATP synthesis. However, this information is manly derived from mammals, while its effects on the mitochondrial homeostasis of aquatic animals are largely unknown. In this study, the mitochondrial homeostasis of a carp fish Megalobrama amblycephala was investigated systematically in a time-course manner by using CCCP. Fish was injected intraperitoneally with CCCP (1.8 mg/kg per body weight) and DMSO (control), respectively. The results showed that CCCP treatment induced hepatic mitochondrial oxidative stress, as was evidenced by the significantly increased MDA and PC contents coupled with the decreased SOD and MnSOD activities. Meanwhile, mitochondrial fission was up-regulated remarkably characterized by the increased transcriptions of Drp-1, Fis-1 and Mff. However, the opposite was true for mitochondrial fusion, as was indicative of the decreased transcriptions of Mfn-1, Mfn-2 and Opa-1. This consequently triggered mitophagy, as was supported by the accumulated mitochondrial autophagosomes and the increased protein levels of PINK1, Parkin, LC3-II and P62 accompanied by the increased LC3-II/LC3-I ratio. Mitochondrial biogenesis and function both decreased significantly addressed by the decreased activities of CS, SDH and complex I, IV and V, as well as the protein levels of PGC-1β coupled with the decreased transcriptions of TFAM, COX-1, COX-2 and ATP-6. Unlikely, DMSO treatment exerted little influence. Overall, CCCP treatment resulted in the imbalance of mitochondrial homeostasis in Megalobrama amblycephala by promoting mitochondrial oxidative stress, fission and mitophagy, but depressing mitochondrial fusion, biogenesis and function.
Collapse
Affiliation(s)
- Ling Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, People's Republic of China
| | - Xiao-Chuan Zheng
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, People's Republic of China
| | - Yang-Yang Huang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, People's Republic of China
| | - Ya-Ping Ge
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, People's Republic of China
| | - Miao Sun
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, People's Republic of China
| | - Wei-Liang Chen
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, People's Republic of China
| | - Wen-Bin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, People's Republic of China
| | - Xiang-Fei Li
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, People's Republic of China.
| |
Collapse
|
27
|
Jia R, Du J, Cao L, Feng W, Xu P, Yin G. Effects of dietary baicalin supplementation on growth performance, antioxidative status and protection against oxidative stress-induced liver injury in GIFT tilapia (Oreochromis niloticus). Comp Biochem Physiol C Toxicol Pharmacol 2021; 240:108914. [PMID: 33141079 DOI: 10.1016/j.cbpc.2020.108914] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/21/2020] [Accepted: 10/12/2020] [Indexed: 12/19/2022]
Abstract
Baicalin, a main bioactive compound of Scutellaria baicalensis, has a variety of pharmacological activities including antioxidation, anti-inflammation and hepatoprotection. However, there are few reports on these biological activities in fish. Therefore, the aim of this study was to assess the effects of baicalin on growth performance, antioxidative status and hepatoprotection in tilapia. The fish were fed on different doses of baicalin (0, 0.4, 0.8 and 1.6 g/kg diet). After feeding 60 days, parts of fishes were netted, and the blood, liver, gills and muscle tissues were collected to analyze the antioxidative effect. The remaining fishes were injected with saline or hydrogen peroxide (H2O2) for challenge test. The results showed that the specific growth rate of fish was slightly increased in three baicalin treatments, and the feed efficiency was clearly improved in 0.4 g/kg baicalin treatment. Meanwhile, the antioxidative capacity in blood, liver and/or gill was enhanced in treatments with 0.4, 0.8 and/or 1.6 g/kg baicalin. After challenge test, the pre-treatments with baicalin effectively alleviated H2O2-induced liver injury. In serum and liver, pre-treatments with 0.8 and/or 1.6 g/kg baicalin suppressed the oxidative damage induced by H2O2, as evidenced by improvement of the levels of SOD, T-AOC and GSH and the decline of MDA level. More important, pre-treatments with 0.4, 0.8 and/or 1.6 g/kg baicalin blocked the upregulation of mRNA levels of tlr1, myd88, irak4, rela, tnf-α and il-1β in H2O2-induced liver injury. In summary, dietary baicalin supplementation could improve feed efficiency, enhance antioxidative ability and alleviate oxidative stress-induced hepatotoxicity in tilapia.
Collapse
Affiliation(s)
- Rui Jia
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jinliang Du
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Liping Cao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Wengrong Feng
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Pao Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Guojun Yin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| |
Collapse
|
28
|
Zheng T, Jia R, Cao L, Du J, Gu Z, He Q, Xu P, Yin G. Effects of chronic glyphosate exposure on antioxdative status, metabolism and immune response in tilapia (GIFT, Oreochromis niloticus). Comp Biochem Physiol C Toxicol Pharmacol 2021; 239:108878. [PMID: 32861895 DOI: 10.1016/j.cbpc.2020.108878] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/10/2020] [Accepted: 08/24/2020] [Indexed: 12/19/2022]
Abstract
Glyphosate (Gly) is an active ingredient of herbicide, its underlying toxicity on fish is still unclear. The aim of this study was to evaluate chronic toxicity of Gly on tilapia via determining antioxidative status, metabolism, inflammation and immune response. The fish were exposed to different concentrations of Gly (0, 0.2, 0.8, 4 and 16 mg/L) for 80 days. The blood, liver, gills and spleen were collected to assay biochemical parameters and genes expression after 80 days of exposure. The results showed that treatments with higher Gly (4 and/16 mg/L) significantly increased the levels of TC, TG, AST, ALT, LDL-C and MDA, and apparently decreased the levels of SOD, GSH, CAT, HDL-C, HK, G3PDH, FBPase and G6PD in serum, liver and/or gills. The gene expression data showed that the treatments with Gly adversely affected Nrf2 pathway in liver, gills and spleen, as shown by significant changes of nrf2, keap1, ho-1, nqo1 and gsta mRNA levels. Meanwhile, inflammatory response was activated via enhancing the mRNA levels of nf-κb2, rel, rela tnf-α, and il-1β, and immunotoxicity was caused through downregulating the genes expression of c-lzm, hep, igm, hsp70 and c3 in liver, gills and/or spleen of tilapia after Gly exposure. Moreover, the mRNA levels of cyp1a and cyp3a were upregulated in 16 or 0.2 mg/kg Gly group in liver. Overall results suggested chronic Gly exposure reduced antioxidative ability, disturbed liver metabolism, promoted inflammation and suppressed immunity. Interestingly, the Nrf2 and NF-κB signaling pathways played key roles in Gly chronic toxicity.
Collapse
Affiliation(s)
- Tao Zheng
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Rui Jia
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Liping Cao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jinliang Du
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Zhengyan Gu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Qin He
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Pao Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Guojun Yin
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| |
Collapse
|
29
|
Jia R, Du J, Cao L, Feng W, He Q, Xu P, Yin G. Chronic exposure of hydrogen peroxide alters redox state, apoptosis and endoplasmic reticulum stress in common carp (Cyprinus carpio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 229:105657. [PMID: 33075616 DOI: 10.1016/j.aquatox.2020.105657] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
Hydrogen peroxide (H2O2) appears to be ubiquitous in natural water. Higher level of H2O2 can cause physiological stress, immunosuppression and even death in aquatic animals, but the physiological and molecular mechanisms of H2O2 toxicity are not well studied. Thus, the aim of the present study was to exposure potential toxic mechanisms of H2O2 via assessing the effects on redox state, apoptosis and endoplasmic reticulum (ER) stress in common carp. The fish were subjected to four concentrations of H2O2 (0, 0.25, 0.5 and 1 mM) for 14 days. And then, the tissues including blood, liver, muscle, gills, intestines, heart, kidney and spleen were collected to measure biochemical parameter and gene expression. The results showed that H2O2 exposure suppressed the majority antioxidative parameters in serum, liver, muscle and intestines, but enhanced T-SOD, CAT and T-AOC levels in gills. In all tested tissues, the MDA content was significantly promoted by H2O2 exposure. The oxidative stress-related genes including nrf2, gstα, sod, cat and/or gpx1 were upregulated in liver, gills, muscle, intestines, and/or kidney, but downregulated in heart after H2O2 exposure. Moreover, the ho-1 mRNA level was inhibited by H2O2 exposure in all tissues except intestines and spleen. After 14 days of exposure, H2O2 induced ER stress and initiated IRE1 and PERK pathways, which activated downstream genes, including chop, grp78 and/or xbp1s, to regulate UPR in liver, gills, muscle and/or heart. Meanwhile, H2O2 exposure activated MAPK pathway to regulate mitochondria-related genes including bcl-2, bax and cytc, which further triggered cas-8, cas-9 and cas-3, and accelerated apoptosis in liver, gills, muscle and heart. Importantly, in different tissues, the genes associated with oxidative stress, ER stress and apoptosis showed a different influence, and more significant influence was observed in the muscle, gills and liver. Overall results suggested that long-term H2O2 exposure induced oxidative stress, ER stress and apoptosis in the majority of tested tissues of common carp. The Nrf2, IRE1, PERK and MAPK pathways played important roles in H2O2-induced toxicity in fish. These data enriched the toxicity mechanism of H2O2 in fish, which might contribute to the risk assessment of H2O2 in aquatic environment.
Collapse
Affiliation(s)
- Rui Jia
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Jinliang Du
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Liping Cao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Wenrong Feng
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Qin He
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Pao Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Guojun Yin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| |
Collapse
|
30
|
Zhang C, Lu K, Wang J, Qian Q, Yuan X, Pu C. Molecular cloning, expression HSP70 and its response to bacterial challenge and heat stress in Microptenus salmoides. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:2389-2402. [PMID: 33029752 DOI: 10.1007/s10695-020-00883-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 09/27/2020] [Indexed: 06/11/2023]
Abstract
The gene encoding HSP70 was isolated from Microptenus salmoides by homologous cloning and rapid amplification of cDNA ends (RACE). The HSP70 transcripts were 2116 bp long and contained 1953 open reading frames encoding proteins of 650 amino acids with a molecular mass of 71.2 kDa and theoretical isoelectric point of 5.22. The qRT-PCR analysis showed that the HSP70 gene was differentially expressed in various tissues under normal conditions, and the highest HSP70 level was observed in the spleen and the lowest levels in the muscle and heart. The clear time-dependent expression level of HSP70 was observed after bacterial challenge and heat stress. A significant increase in HSP70 expression level was detected and reached a maximum at 3 h and 6 h in liver, spleens and gill tissues after Aeromonas hydrophila infection and heat stress, respectively (P < 0.05). As time progressed, the expression of HSP70 transcript was downregulated and mostly dropped back to the original level at 48 h. The concentration of cortisol, aspartate aminotransferase (AST) and alanine aminotransferase (ALT) increased as the time of stress progressed, with the highest level found on 3 h and later declined rapidly and reached to the control levels at the 48 h. Those results suggested that HSP70 was involved in the immune response to bacterial challenge and heat stress. The cloning and expression analysis of the HSP70 provide theoretical basis to further study the mechanism of anti-adverseness in Microptenus salmoides.
Collapse
Affiliation(s)
- Chunnuan Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, People's Republic of China.
| | - Kangle Lu
- Laboratory of Aquatic Animal Nutrition and Physiology, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Junhui Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, People's Republic of China
| | - Qi Qian
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, People's Republic of China
| | - Xiaoyu Yuan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, People's Republic of China
| | - Changchang Pu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, People's Republic of China
| |
Collapse
|
31
|
Rahimnejad S, Yuan XY, Liu WB, Jiang GZ, Cao XF, Dai YJ, Wang CC, Desouky HE. Evaluation of antioxidant capacity and immunomodulatory effects of yeast hydrolysates for hepatocytes of blunt snout bream (Megalobrama amblycephala). FISH & SHELLFISH IMMUNOLOGY 2020; 106:142-148. [PMID: 32540503 DOI: 10.1016/j.fsi.2020.06.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
An in-vitro study was carried out to examine the effects of yeast hydrolysate (YH) on antioxidant capacity and innate immunity of blunt snout bream (Megalobrama amblycephala) hepatocytes. Fish primary hepatocytes were seeded at a density of 3 × 105 cells mL-1 in 6-well tissue culture plates and treated with two different media including: 1) DMEM/F12 medium (control), and 2) YH medium [DMEM/F12 + 0.1 g L-1 YH]. After incubation for 24 h, the culture medium and primary hepatocytes were collected for subsequent analyses. The results showed no significant (P > 0.05) effect of YH on aspartate aminotransferase (AST), alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) activities and urea nitrogen (UN) concentration in the conditioned medium. However, significantly (P < 0.05) higher ALT and AST activities were found in YH treated hepatocytes compared to control. Moreover, YH supplementation led to significant enhancement of superoxide dismutase (SOD), catalase (CAT), alternative complement pathway (ACH50) and glutathione peroxidase (GPX) activities and reduction of malondialdehyde (MDA) concentration in the conditioned medium. Furthermore, YH application upregulated the expression of SOD, CAT and NOX2 genes and downregulated mRNA levels of Keap1, Nrf2 and Bach1 in hepatocytes. Also, markedly higher lysozyme activity and albumin concentration were found in the conditioned medium of YH group compared to the control. Additionally, expression of immune-related genes such as antimicrobial peptides 1 (Leap 1) and Leap 2 were significantly upregulated by YH application. Down-regulated expression of NADPH oxidase-2 (NOX2), Kelch-like-ECH-associated protein 1 (Keap1), NF-E2-related factor 2 (Nrf2) and BTB and CNC homolog 1 (Bach1) were observed in YH treated hepatocytes. To conclude, YH supplementation improved antioxidant capacity and innate immunity of blunt snout bream hepatocytes.
Collapse
Affiliation(s)
- Samad Rahimnejad
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/ II, 389 25, Vodnany, Czech Republic
| | - Xiang-Yang Yuan
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, PR China.
| | - Wen-Bin Liu
- National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Guang-Zhen Jiang
- National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Xiu-Fei Cao
- The Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture and Rural Affairs, The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao, 266003, PR China
| | - Yong-Jun Dai
- National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Cong-Cong Wang
- National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Hesham Eed Desouky
- National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| |
Collapse
|
32
|
The pharmacological activity of berberine, a review for liver protection. Eur J Pharmacol 2020; 890:173655. [PMID: 33068590 DOI: 10.1016/j.ejphar.2020.173655] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/06/2020] [Accepted: 10/13/2020] [Indexed: 12/14/2022]
Abstract
Liver plays an important role in bile synthesis, metabolic function, degradation of toxins, new substances synthesis in body. However, hepatopathy morbidity and mortality are increasing year by year around the world, which become a major public health problem. Traditional Chinese medicine (TCM) has a prominent role in the treatment of liver diseases due to its definite curative effect and small side effects. The hepatoprotective effect of berberine has been extensively studied, so we comprehensively summarize the pharmacological activities of lipid metabolism regulation, bile acid adjustment, anti-inflammation, oxidation resistance, anti-fibrosis and anti-cancer and so on. Besides, the metabolism and toxicity of berberine and its new formulations to improve its effectiveness are expounded, providing a reference for the safe and effective clinical use of berberine.
Collapse
|
33
|
Zhang JL, Liu M, Cui W, Yang L, Zhang CN. Quercetin affects shoaling and anxiety behaviors in zebrafish: Involvement of neuroinflammation and neuron apoptosis. FISH & SHELLFISH IMMUNOLOGY 2020; 105:359-368. [PMID: 32693159 DOI: 10.1016/j.fsi.2020.06.058] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/14/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Quercetin, a potential fish food supplement, has been reported to process many beneficial properties. However, some negative effects of quercetin have been observed, which pointed out necessity for additional studies to evaluate its safety. Therefore, the present study investigated effects of quercetin (0.01, 0.1, 1, 10, 100 and 1000 μg/L) on shoaling and anxiety behaviors through novel tank tests in zebrafish (Danio rerio). Furthermore, oxidative stress, neuroinflammation and apoptosis in the brains were examined to learn more about mechanisms of action related to quercetin. The results showed that quercetin at the lower concentrations exerted beneficial effects on shoaling and anxiety behaviors. On the contrary, when quercetin was up to 1000 μg/L, it exerted detrimental effects shown as decreases of movement and increases of anxiety behaviors. Generally, U-shaped responses of antioxidant enzyme activities (superoxide dismutase and catalase), and inversed U-shaped responses of inflammatory mediators (cyclooxygenase-2) and cytokines (interleukin-1β, interleukin-6, interleukin-10, and tumor necrosis factor α) to quercetin treatment were found in the brains. In addition, quercetin at the lower concentrations attenuated cell apoptosis, while even more apoptosis was found at the 1000 μg/L quercetin group. In conclusion, quercetin could exert beneficial or detrimental effects on the shoaling and anxiety behaviors depending on the treatment concentrations, and the underlying mechanisms are potentially associated with neuroinflammation and neuron apoptosis.
Collapse
Affiliation(s)
- Ji-Liang Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China; College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China.
| | - Min Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Wei Cui
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Li Yang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Chun-Nuan Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| |
Collapse
|
34
|
Luo Y, Hu CT, Qiao F, Wang XD, Qin JG, Du ZY, Chen LQ. Gemfibrozil improves lipid metabolism in Nile tilapia Oreochromis niloticus fed a high-carbohydrate diet through peroxisome proliferator activated receptor-α activation. Gen Comp Endocrinol 2020; 296:113537. [PMID: 32540489 DOI: 10.1016/j.ygcen.2020.113537] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 05/27/2020] [Accepted: 06/08/2020] [Indexed: 10/24/2022]
Abstract
High carbohydrate diet (HCD) can induce lipid metabolism disorder, characterized by excessive lipid in farmed fish. Peroxisome proliferator activated receptor-α (PPARα) plays an important role in lipid homeostasis. In this study, we hypothesize that PPARα can improve lipid metabolism in fish fed HCD. Fish (3.03 ± 0.11 g) were fed with three diets: control (30% carbohydrate), HCD (45% carbohydrate) and HCG (HCD supplemented with 200 mg/kg gemfibrozil, an agonist of PPARα) for eight weeks. The fish fed HCG had higher growth rate and protein effiency than those fed the HCD diet, whereas the opposite trend was observed in feed conversion ratio, hepatosomatic index and mesenteric fat index. Additionally, fish fed HCG significantly decreased lipid accumulation in the whole body, liver and adipose tissues compared to those fed the HCD diet. Furthermore, fish in the HCG group significantly increased the mRNA and protein expression and protein dephosphorylation of PPARα. The HCG group also significantly increased the mRNA level of the downstream target genes of PPARα, whereas the opposite trend occured in the mRNA level of lipolysis-related genes compared to the HCD group. Besides, fish in the HCG group remarkably decreased the contents of alanine aminotransferase, aspartate aminotransferase and malondialdehyde, whereas the opposite occured in the activities of antioxidative enzymes and anti-inflammatory cytokine genes compared to the HCD group. This study indicates that gemfibrozil can improve lipid metabolism and maintain high antioxidant and anti-inflammatory capacity through activating PPARα in Nile tilapia fed a high carbohydrate diet.
Collapse
Affiliation(s)
- Yuan Luo
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai 200241, China
| | - Chun-Ting Hu
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai 200241, China
| | - Fang Qiao
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai 200241, China
| | - Xiao-Dan Wang
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai 200241, China
| | - Jian G Qin
- College of Science and Engineering, Flinders University, Adelaide, SA 5001, Australia
| | - Zhen-Yu Du
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai 200241, China.
| | - Li-Qiao Chen
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai 200241, China.
| |
Collapse
|
35
|
Liu Y, Yang S, Wang K, Lu J, Bao X, Wang R, Qiu Y, Wang T, Yu H. Cellular senescence and cancer: Focusing on traditional Chinese medicine and natural products. Cell Prolif 2020; 53:e12894. [PMID: 32881115 PMCID: PMC7574878 DOI: 10.1111/cpr.12894] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/05/2020] [Accepted: 08/11/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer is the principal cause of death and a dominant public health problem which seriously threatening human life. Among various ways to treat cancer, traditional Chinese medicine (TCM) and natural products have outstanding anti‐cancer effects with their unique advantages of high efficiency and minimal side effects. Cell senescence is a physiological process of cell growth stagnation triggered by stress, which is an important line of defence against tumour development. In recent years, active ingredients of TCM and natural products, as an interesting research hotspot, can induce cell senescence to suppress the occurrence and development of tumours, by inhibiting telomerase activity, triggering DNA damage, inducing SASP, and activating or inactivating oncogenes. In this paper, the recent research progress on the main compounds derived from TCM and natural products that play anti‐cancer roles by inducing cell senescence is systematically reviewed, aiming to provide a reference for the clinical treatment of pro‐senescent cancer.
Collapse
Affiliation(s)
- Yiman Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shenshen Yang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Kailong Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jia Lu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaomei Bao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Rui Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuling Qiu
- School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Tao Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Haiyang Yu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
36
|
Dong YZ, Li L, Espe M, Lu KL, Rahimnejad S. Hydroxytyrosol Attenuates Hepatic Fat Accumulation via Activating Mitochondrial Biogenesis and Autophagy through the AMPK Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9377-9386. [PMID: 32786840 DOI: 10.1021/acs.jafc.0c03310] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Two experiments were carried out to examine the impacts of hydroxytyrosol (HT) on lipid metabolism and mitochondrial function in Megalobrama amblycephala. Triplicate groups of fish were fed four test diets: (1) low-fat diet (LFD, 5% fat), (2) high-fat diet (HFD, 15% fat), (3) LFD + 100 mg/kg HT (LFD + HT), and (4) HFD + 100 mg/kg HT (HFD + HT) (in vivo). Hepatocytes from the same batch were exposed to three media including L-15 medium (L15), oleic acid (OA) medium [L15 + 400 μM OA], and OA + HT medium [L15 + 400 μM OA + 10 μM HT] to explore the roles of HT in mitochondrial function (in vitro). Fish fed HFD had excessive fat deposition in the liver, and HT inclusion in the HFD decreased hepatic fat deposition. Transmission electron microscopy revealed that the HFD triggers loss of cristae and metrical density and hydropic changes in mitochondria and that HT supplementation attenuates the ultrastructural alterations of mitochondria. The in vitro test showed that HT decreases fat deposition in hepatocytes, suppresses the reactive oxygen species formation, and facilitates the expression of phospho-AMPK protein and the genes involved in mitochondria biogenesis (PGC-1, NRF-1, TFAM) and autophagy (PINK1, Mul1, Atg5). These findings suggest the lipid-lowering effect of HT mediated by activation of mitochondrial biogenesis and autophagy through the AMPK pathway.
Collapse
Affiliation(s)
- Yan-Zou Dong
- Key Laboratory for Feed Quality Testing and Safety, Fisheries College, Jimei University, Xiamen 361021, China
| | - Lei Li
- Key Laboratory for Feed Quality Testing and Safety, Fisheries College, Jimei University, Xiamen 361021, China
| | - Marit Espe
- Institute of Marine Research (IMR), Bergen NO-5817, Norway
| | - Kang-Le Lu
- Key Laboratory for Feed Quality Testing and Safety, Fisheries College, Jimei University, Xiamen 361021, China
| | - Samad Rahimnejad
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/ II, Vodnany 389 25, Czech Republic
| |
Collapse
|
37
|
Jia R, Cao LP, Du JL, He Q, Gu ZY, Jeney G, Xu P, Yin GJ. Effects of high-fat diet on antioxidative status, apoptosis and inflammation in liver of tilapia (Oreochromis niloticus) via Nrf2, TLRs and JNK pathways. FISH & SHELLFISH IMMUNOLOGY 2020; 104:391-401. [PMID: 32553566 DOI: 10.1016/j.fsi.2020.06.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/09/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
Fatty liver injury (or disease) is a common disease in farmed fish, but its pathogenic mechanism is not fully understood. Therefore the present study aims to investigate high-fat diet (HFD)-induced liver injury and explore the underlying mechanism in fish. The tilapia were fed on control diet and HFD for 90 days, and then the blood and liver tissues were collected to determine biochemical parameter, gene expression and protein level. The results showed that HFD feeding signally increased the levels of plasma aminotransferases and pro-inflammatory factors after 60 days. In liver and plasma, HFD feeding significantly suppressed antioxidant ability, but enhanced lipid peroxidation formation, protein oxidation and DNA damage after 60 or 90 days. Further, the Nrf2 pathway and antioxidative function-related genes were adversely changed in liver of HFD-fed tilapia after 60 and/or 90 days. Meanwhile, HFD treatment induced apoptosis via initiating mitochondrial pathway in liver after 90 days. Furthermore, after 90 days of feeding, the expression of genes or proteins related to JNK pathway and TLRs-Myd88-NF-κB pathway was clearly upregulated in HFD treatment. Similarly, the mRNA levels of inflammatory factors including tumor necrosis factor (TNF-α), interleukin-1β (IL-1β), IL-6, IL-8 and IL-10 were also upregulated in liver of HFD-fed tilapia after 60 and/or 90 days. In conclusion, the current study suggested that HFD feeding impaired antioxidant defense system, induced apoptosis, enhanced inflammation and led to liver injury. The adverse influences of HFD in the liver might be due to the variation of Nrf2, JNK and TLRs-Myd88-NF-κB signaling pathways.
Collapse
Affiliation(s)
- Rui Jia
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Li-Ping Cao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Jin-Liang Du
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Qin He
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Zheng-Yan Gu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Galina Jeney
- International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China; National Agricultural Research Center, Research Institute for Fisheries and Aquaculture, Anna Light 8, Szarvas, 5440, Hungary
| | - Pao Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Guo-Jun Yin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| |
Collapse
|
38
|
Xu H, Meng X, Jia L, Wei Y, Sun B, Liang M. Tissue distribution of transcription for 29 lipid metabolism-related genes in Takifugu rubripes, a marine teleost storing lipid predominantly in liver. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:1603-1619. [PMID: 32415410 DOI: 10.1007/s10695-020-00815-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
The tissue distribution pattern of lipid is highly diverse among different fish species. Tiger puffer has a special lipid storage pattern, storing lipid predominantly in liver. In order to better understand the lipid physiology in fish storing lipid in liver, the present study preliminarily investigated the tissue distribution of transcription for 29 lipid metabolism-related genes in tiger puffer, which are involved in lipogenesis, fatty acid oxidation, biosynthesis and hydrolysis of glycerides, lipid transport, and relevant transcription regulation. Samples of eight tissues, brain, eye, heart, spleen, liver, intestine, skin, and muscle, from fifteen juvenile tiger puffer were used in the qRT-PCR analysis. The intestine and brain had high transcription of lipogenic genes, whereas the liver and muscle had low expression levels. The intestine also had the highest transcription level of most apolipoproteins and lipid metabolism-related transcription factors. The transcription of fatty acid β-oxidation-related genes was low in the muscle. The peroxisomal fatty acid oxidation may dominate over mitochondrial β-oxidation in the liver and intestine of tiger puffer, and the MAG pathway probably predominates over the G3P pathway in re-acylation of absorbed lipids in the intestine. The intracellular glyceridases were highly transcribed in the brain, eye, and heart. In conclusion, in tiger puffer, the intestine could be a center of lipid metabolism whereas the liver is more likely a pure storage organ for lipid. The lipid metabolism in the muscle could also be inactive, possibly due to the very low level of intramuscular lipid.
Collapse
Affiliation(s)
- Houguo Xu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, 266237, China
| | - Xiaoxue Meng
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, 266071, China
- College of Fisheries and Life Sciences, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai, 201306, China
| | - Linlin Jia
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, 266071, China
| | - Yuliang Wei
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, 266237, China
| | - Bo Sun
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, 266071, China
| | - Mengqing Liang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, 266071, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, 266237, China.
| |
Collapse
|
39
|
Dietary berberine regulates lipid metabolism in muscle and liver of black sea bream ( Acanthopagrus schlegelii) fed normal or high-lipid diets. Br J Nutr 2020; 125:481-493. [PMID: 32718379 DOI: 10.1017/s0007114520003025] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The present study investigated the influence of berberine (BBR) supplementation in normal and high-lipid (HL) diets on lipid metabolism and accumulation in black sea bream (Acanthopagrus schlegelii). BBR was supplemented at 50 mg/kg to control (Con, 11·1 % crude lipid) and high-lipid (HL, 20·2 % crude lipid) diets and named as ConB and HLB, respectively. After the 8-week feeding trial, fish body length and specific growth rate were significantly reduced by HL diets (P < 0·05). Muscle and whole-body crude lipid contents were significantly influenced by both BBR supplementation and dietary lipid level. Fish fed the HLB diet had significantly lower serum TAG, LDL-cholesterol contents and alanine aminotransferase activity compared with the HL group. The HL group presented vast lipid accumulation in the liver, and hypertrophied hepatocytes along with large lipid droplets, and translocation of nuclear to the cell periphery. These abnormalities in black sea bream were alleviated in the HLB group. BBR supplementation in the HL diet significantly down-regulated the hepatic expression levels of acetyl-CoA carboxylase α, sterol regulatory element-binding protein-1, 6-phosphogluconate dehydrogenase, glucose 6-phosphate dehydrogenase and pparγ, whereas the lipoprotein lipase, hormone-sensitive lipase and carnitine palmitoyltransferase 1a expression levels were significantly up-regulated. However, the expression levels of these genes showed opposite trends in muscle (except for pparγ). In conclusion, dietary BBR supplementation in the HL diet reduced hepatic lipid accumulation by down-regulating lipogenesis gene expression and up-regulating lipolysis gene expression, and it increased muscle lipid contents with opposite trends of the mechanism observed in the liver.
Collapse
|
40
|
Yu C, Zhang J, Qin Q, Liu J, Xu J, Xu W. Berberine improved intestinal barrier function by modulating the intestinal microbiota in blunt snout bream (Megalobrama amblycephala) under dietary high-fat and high-carbohydrate stress. FISH & SHELLFISH IMMUNOLOGY 2020; 102:336-349. [PMID: 32360278 DOI: 10.1016/j.fsi.2020.04.052] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
The study investigated whether dietary berberine supplementation could improve intestinal barrier against inflammation induced by high-fat and high-carbohydrate diets in blunt snout bream. Fish (average initial weight 44.83 ± 0.06 g) were fed with six kinds of diets (control, high-fat diet (10% lipid) and high-carbohydrate (43% nitrogen-free extract) diet, control/berberine, high-fat/berberine or high-carbohydrate/berberine) for 8 weeks, respectively. Feeding mode of berberine (50 mg/kg diet) was adopted to two-week interval. After feeding trial, fish growth performance and intestinal barrier function were estimated. The result showed that no significant interactions between diet and berberine in growth performance, whole body composition or protein utilization were observed (P > 0.05). Specific growth rate (SGR) and feed conversion ratio (FCR) were significantly affected by berberine (P < 0.05). Protein efficiency ratio (PER), nitrogen retention (NRE), fish whole-body lipid contents increased greatly in high-fat or high-carbohydrate diets (P < 0.05). Significant interactions between diet and berberine were observed in fish intestinal barrier (physical, chemical, immunological and microbiological barriers) (P < 0.05). High-fat and high-carbohydrate diets could increase significantly intestinal permeability and inflammatory response, decrease intestinal mucins gene expression levels, and make the intestinal microbiota out of balance (P < 0.05). Berberine significantly inhibited inflammation response and modulated intestinal microflora profile (P < 0.05). Taken together, berberine could alleviate intestinal barrier damage injured by high-fat or high-carbohydrate diet and improve the growth performance of blunt snout bream.
Collapse
Affiliation(s)
- Chengbing Yu
- Shanghai Key Laboratory for Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai, 200240, PR China
| | - Jing Zhang
- Shanghai Key Laboratory for Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai, 200240, PR China
| | - Qin Qin
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No.725 Wanping South Road, Shanghai, 200032, PR China
| | - Jin Liu
- Shanghai Key Laboratory for Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai, 200240, PR China
| | - Jianxiong Xu
- Shanghai Key Laboratory for Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai, 200240, PR China
| | - Weina Xu
- Shanghai Key Laboratory for Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai, 200240, PR China.
| |
Collapse
|
41
|
Xie S, Wei D, Tan B, Liu Y, Tian L, Niu J. Schizochytrium limacinum Supplementation in a Low Fish-Meal Diet Improved Immune Response and Intestinal Health of Juvenile Penaeus monodon. Front Physiol 2020; 11:613. [PMID: 32714197 PMCID: PMC7344155 DOI: 10.3389/fphys.2020.00613] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/15/2020] [Indexed: 01/01/2023] Open
Abstract
The aim of the present experiment was to evaluate the effects of Schizochytrium limacinum supplementation on the immune response, gut microbiota, and health of Penaeus monodon fed a low fish-meal (FM) diet. A diet containing 25% FM was used as a control (Diet A), and three other diets were formulated to contain 15% FM and supplemented with 0, 0.75, and 1.5% S. limacinum (Diet B, C, and D, respectively). The experiment was carried out in quadruplicates (30 shrimp per replicate, average weight 1.01 ± 0.01 g), and the shrimps were fed the test diets to apparent satiation three times daily for 8 weeks. Shrimp fed diet B and D showed lower weight gain than those fed diet A. Supplementation of 0.75% S. limacinum enhanced expression of antioxidative genes (superoxide dismutase and catalase) and immune-response-related genes in hepatopancreas but could not affect the gene expression of immune deficiency in hepatopancreas and Tube in the intestine. A low FM diet induced endoplasmic reticulum swelling of the intestinal epithelial cells, which was alleviated by S. limacinum supplementation. Ultra-performance liquid chromatography coupled with quadrupole time of flight mass spectrometry was employed to analyze the changes of hemolymph metabolomics, 49 significantly different metabolites were identified, and lysoPCs, deoxyinosine, inosine, and highly unsaturated fatty acids were lower in fish fed with low FM diets. Intestinal microbial diversity was lower in shrimp fed Diet B than those fed the control diet. Dietary supplementation of 0.75% S. limacinum increased intestinal microbial diversity of shrimp and decreased the ratio of pathogenic bacterium (Thalassotalea and Tenacibaculum). These results indicated that supplementing S. limacinum into a low FM diet improves the growth performance, immune response, and intestinal health of P. monodon. The optimum inclusion level of seems to be 0.75% of diet.
Collapse
Affiliation(s)
- Shiwei Xie
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Dan Wei
- Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Beiping Tan
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Yongjian Liu
- Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lixia Tian
- Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jin Niu
- Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
42
|
Wang J, Zhang C, Zhang J, Xie J, Yang L, Xing Y, Li Z. The effects of quercetin on immunity, antioxidant indices, and disease resistance in zebrafish (Danio rerio). FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:759-770. [PMID: 31897859 DOI: 10.1007/s10695-019-00750-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 12/20/2019] [Indexed: 06/10/2023]
Abstract
The main purpose of this study was to evaluate the immunity, antioxidant indices, and disease resistance of quercetin in zebrafish (Danio rerio). A total of 630 fish were assigned to 21 tanks with 30 fish/tank, and they were exposed to 0, 0.01, 0.1, 1, 10, 100, and 1000 μg/L quercetin, respectively, for 56 days. Results indicated that the immune indices including acid phosphatase (ACP), myeloperoxidase (MPO), lysozyme activities, and Complement 3 (C3), C4, IgM contents were significantly higher in 1 μg/L quercetin group than these parameters in the control group (P < 0.05). TNF-α and IL-8 mRNA expressions significantly decreased as the levels of quercetin increased up to 1 μg/L and increased thereafter (P < 0.05). 1 and 10 μg/L quercetin groups showed significantly lower TNF-α and IL-8 mRNA levels than the quercetin-free group. Transforming growth factor-β and IL-10 mRNA levels showed an obviously opposite trend with TNF-α expression. The SOD, GPX, CAT, T-AOC activities, and SOD and GPX gene expression in the liver were enhanced with increasing quercetin up to 1 μg/L, and decreased thereafter. MDA contents were affected by quercetin, in which 1 and 10 μg/L quercetin had a significantly lower level than that of the control group (P < 0.05). Defensin and Leap-II mRNA expression in the liver were the highest for fish exposed to 1 μg/L quercetin. The fish that exposed to 1 μg/L quercetin also showed a significantly higher survival rate than these of fish exposed to 0, 0.01, and 1000 μg/L quercetin (P < 0.05). In conclusion, the optimal level of quercetin promotes immunostimulant properties, antioxidant indices, and disease resistance of zebrafish.
Collapse
Affiliation(s)
- Junhui Wang
- Henan Open Laboratory of Key Subjects of Environmental and Animal Products Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, People's Republic of China
| | - Chunnuan Zhang
- College of Animal Science and Technology, Henan University of Scientific and Technology, Luoyang, 471003, People's Republic of China.
| | - Jiliang Zhang
- Henan Open Laboratory of Key Subjects of Environmental and Animal Products Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, People's Republic of China
| | - Jun Xie
- Henan Open Laboratory of Key Subjects of Environmental and Animal Products Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, People's Republic of China
| | - Li Yang
- Henan Open Laboratory of Key Subjects of Environmental and Animal Products Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, People's Republic of China
| | - Yunfei Xing
- Henan Open Laboratory of Key Subjects of Environmental and Animal Products Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, People's Republic of China
| | - Zhenfei Li
- Henan Open Laboratory of Key Subjects of Environmental and Animal Products Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, People's Republic of China
| |
Collapse
|
43
|
Yuan XY, Liu WB, Wang CC, Huang YY, Dai YJ, Cheng HH, Jiang GZ. Evaluation of antioxidant capacity and immunomodulatory effects of cottonseed meal protein hydrolysate and its derivative peptides for hepatocytes of blunt snout bream (Megalobrama amblycephala). FISH & SHELLFISH IMMUNOLOGY 2020; 98:10-18. [PMID: 31911287 DOI: 10.1016/j.fsi.2020.01.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/30/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
Two in vitro trials were conducted to identify a peptide with antioxidant activity and immunoenhancement from cottonseed meal protein hydrolysate (CPH) for fish. Primary hepatocytes of Megalobrama amblycephala were treated with CPH. In experiment 1, CPH significantly increased aspartate aminotransferase (GOT), alanine aminotransferase (GPT), total superoxide dismutase (t-SOD), catalase (CAT), and lysozyme activities, as well as up-regulated SOD, CAT, antimicrobial peptides 1 (Leap 1) and Leap 2 mRNA levels (p < 0.05). However, CPH significantly down-regulated the expression of NADPH oxidase-2 (NOX2), Kelch-like-ECH-associated protein 1 (Keap1), NF-E2-related factor 2 (Nrf2) and BTB and CNC homolog 1 (Bach1) mRNA (p < 0.05) in fish hepatocytes. Experiment 2 showed that the molecular mass of CPH was distributed mainly in the 700-1024 Da range. Peptide 1 (P1) and P2 significantly decreased GOT and GPT activities in conditioned medium (p < 0.05); however, P4 and P6 did not affect GOT and GPT activities (p > 0.05). Furthermore, P4 significantly increased hepatocyte GOT, GPT, t-SOD, CAT levels and lysozyme activities (p < 0.05), up-regulated SOD, CAT, Leap1 and Leap2 mRNA expression levels, and down-regulated the expression of Nrf2 and NOX2 mRNA (p < 0.05) in fish hepatocytes. The above results indicated that CPH and P4 enhanced hepatocyte metabolism, as well as improved antioxidant capacities and innate immunity of blunt snout bream hepatocytes.
Collapse
Affiliation(s)
- Xiang-Yang Yuan
- National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China; Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, PR China
| | - Wen-Bin Liu
- National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Cong-Cong Wang
- National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yang-Yang Huang
- National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yong-Jun Dai
- National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Hui-Hui Cheng
- National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Guang-Zhen Jiang
- National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
44
|
Yu H, Liang H, Ren M, Ji K, Yang Q, Ge X, Xi B, Pan L. Effects of dietary fenugreek seed extracts on growth performance, plasma biochemical parameters, lipid metabolism, Nrf2 antioxidant capacity and immune response of juvenile blunt snout bream (Megalobrama amblycephala). FISH & SHELLFISH IMMUNOLOGY 2019; 94:211-219. [PMID: 31499200 DOI: 10.1016/j.fsi.2019.09.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/01/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
Dietary administration of some plant-derived substances have been proved of great economic value in aquaculture. In order to investigate the effects of dietary fenugreek seed extracts (FSE) on juvenile blunt snout bream (Megalobrama amblycephala), a feeding trial was conducted for 8 weeks. The results showed that final weight (FW), weight gain (WG), feed conversion ratio (FCR) and specific growth rate (SGR) were not significantly affected by dietary FSE levels. The whole body lipid contents of fish fed with 0.04%, 0.08% and 0.16% FSE diets were significantly lowered compared to the control group. Dietary FSE diets significantly affected plasma complement component 3 (C3), immunoglobulin M (IgM), albumin (ALB) and total protein (TP). The relative expressions of acetyl CoA carboxylase (ACC), fatty acid synthase (FAS) and sterol regulatory element binding protein-1 (SREBP1) mRNA in the liver of fish decreased significantly with increasing dietary FSE levels from 0% up to 0.04%. FSE supplementation diets lowered the liver pro-inflammatory genes expressions by regulating tumor necrosis factor-α (TNF-α) and interleukin 8 (IL-8) mRNA levels and increased anti-inflammatory genes expression by regulating transforming growth factor (TGF-β) and interleukin 10 (IL-10). FSE diets increased growth factor-1 (IGF-1) and target of rapamycin (TOR) mRNA levels from 0% up to 0.04%, 0.04% FSE diets significantly increased growth factor-1 (IGF-1) mRNA levels and S6 kinase-polypeptide 1 (S6K1) mRNA levels compared to the control group. 0.04% FSE diets significantly increased superoxide dismutase (SOD) activities and 0.08% FSE diets significantly increased catalase (CAT) and glutathione peroxidase (GPx) activities, 0.16% FSE diets significantly increased total antioxidant capacity (T-AOC) activities compared to the control group. Additionally, compared to the control group, 0.04% dietary FSE significantly up-regulated nuclear factor erythroid 2-related factor 2 (Nrf2) mRNA levels and glutathione peroxidase-1 (GPx1) mRNA levels, at the same time, 0.02%, 0.04%, 0.08%, 0.16% FSE diets significantly down-regulated kelch-like ECH-associated protein 1 (Keap1) mRNA levels. However, no significant effects were observed on copper zinc superoxide dismutase (Cu/Zn-SOD) and manganese superoxide dismutase (Mn-SOD). Our study indicated that dietary FSE could improve plasma biochemical parameters, regulate lipid metabolism related genes, promote Nrf2 antioxidant capacity and enhance immune response of juvenile blunt snout bream.
Collapse
Affiliation(s)
- Heng Yu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Hualiang Liang
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, 214081, China
| | - Mingchun Ren
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China; Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, 214081, China.
| | - Ke Ji
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Qiang Yang
- Jiangsu Tianshen Co., Ltd, Huai'an, 223003, China
| | - Xianping Ge
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China; Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, 214081, China
| | - Bingwen Xi
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China; Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, 214081, China
| | - Liangkun Pan
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, 214081, China
| |
Collapse
|
45
|
Liu C, Yang S, Wang K, Bao X, Liu Y, Zhou S, Liu H, Qiu Y, Wang T, Yu H. Alkaloids from Traditional Chinese Medicine against hepatocellular carcinoma. Biomed Pharmacother 2019; 120:109543. [PMID: 31655311 DOI: 10.1016/j.biopha.2019.109543] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) has become one of the major diseases that are threatening human health in the 21st century. Currently there are many approaches to treat liver cancer, but each has its own advantages and disadvantages. Among various methods of treating liver cancer, natural medicine treatment has achieved promising results because of their superiorities of high efficiency and availability, as well as low side effects. Alkaloids, as a class of natural ingredients derived from traditional Chinese medicines, have previously been shown to exert prominent anti-hepatocarcinogenic effects, through various mechanisms including inhibition of proliferation, metastasis and angiogenesis, changing cell morphology, promoting apoptosis and autophagy, triggering cell cycle arrest, regulating various cancer-related genes as well as pathways and so on. As a consequence, alkaloids suppress the development and progression of liver cancer. In this study, the mechanisms of representative alkaloids against hepatocarcinoma in each class are described systematically according to the structure classification, which mainly divides alkaloids into piperidine alkaloids, isoquinoline alkaloids, indole alkaloids, terpenoids alkaloids, steroidal alkaloids and other alkaloids. Besides using them alone, synergistic effects created together with other chemotherapy drugs and some special preparation methods also have been demonstrated. In this review, we have summarized the potential roles of several common alkaloids in the prevention and treatment of HCC, by revising the preclinical studies, highlighting the potential applications of alkaloids when they function as a therapeutic choice for HCC treatment, and integrating them into clinical practices.
Collapse
Affiliation(s)
- Caiyan Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Shenshen Yang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Kailong Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Xiaomei Bao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Yiman Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Shiyue Zhou
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Hongwei Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Yuling Qiu
- School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Tao Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Haiyang Yu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| |
Collapse
|
46
|
Gahramanova M. THE USE OF HERBAL REMEDIES IN THE TREATMENT OF HEPATOBILIARY DISEASES: TRENDS AND PROSPECTS. BIOTECHNOLOGIA ACTA 2019. [DOI: 10.15407/biotech12.05.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
47
|
Han SL, Wang J, Zhang YX, Qiao F, Chen LQ, Zhang ML, Du ZY. Inhibited autophagy impairs systemic nutrient metabolism in Nile tilapia. Comp Biochem Physiol A Mol Integr Physiol 2019; 236:110521. [DOI: 10.1016/j.cbpa.2019.06.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 06/27/2019] [Accepted: 06/27/2019] [Indexed: 12/13/2022]
|
48
|
Yang SS, Yu CB, Luo Z, Luo WL, Zhang J, Xu JX, Xu WN. Berberine attenuates sodium palmitate-induced lipid accumulation, oxidative stress and apoptosis in grass carp(Ctenopharyngodon idella)hepatocyte in vitro. FISH & SHELLFISH IMMUNOLOGY 2019; 88:518-527. [PMID: 30880233 DOI: 10.1016/j.fsi.2019.02.055] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/21/2019] [Accepted: 02/25/2019] [Indexed: 06/09/2023]
Abstract
The objective of this work was to investigate the effect of berberine (BBR) on the Cell viability, lipid accumulation, apoptosis, cytochrome c, caspase-9 and caspase-3 in lipid accumulation-hepatocytes induced by sodium palmitate in vitro. The lipid accumulation-hepatocytes (induced by 0.5 mM sodium palmitate for 24 h) were treated with 5 μM berberine for 12 h. Then, the Cell viability, intracellular triglyceride (TG) content, lipid peroxide (LPO), malonaldehyde (MDA) content, cytochrome c, caspase-9, caspase-3 and apoptosis were detected. Sodium palmitate decreased Cell viability and increased intracellular TG content, lipid droplet accumulation, LPO and MDA concentrations, caused caspase-3 and caspase-9 activation, then led to apoptosis accompanied by cytochrome c release from mitochondria into the cytoplasm. Beberine could improve intracellular lipid droplet accumulation and oxidative stress, while reduce apoptosis induced by sodium palmitate.
Collapse
Affiliation(s)
- Shuo-Shuo Yang
- Shanghai Key Laboratory for Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Cheng-Bing Yu
- Shanghai Key Laboratory for Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Zhen Luo
- Shanghai Key Laboratory for Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Wen-Li Luo
- Shanghai Key Laboratory for Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Jing Zhang
- Shanghai Key Laboratory for Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Jian-Xiong Xu
- Shanghai Key Laboratory for Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Wei-Na Xu
- Shanghai Key Laboratory for Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
49
|
Prisingkorn W, Jakovlić I, Yi SK, Deng FY, Zhao YH, Wang WM. Gene expression patterns indicate that a high-fat–high-carbohydrate diet causes mitochondrial dysfunction in fish. Genome 2019; 62:53-67. [DOI: 10.1139/gen-2018-0159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Expensive and unsustainable fishmeal is increasingly being replaced with cheaper lipids and carbohydrates as sources of energy in aquaculture. Although it is known that the excess of lipids and carbohydrates has negative effects on nutrient utilization, growth, metabolic homeostasis, and health of fish, our current understanding of mechanisms behind these effects is limited. To improve the understanding of diet-induced metabolic disorders (both in fish and other vertebrates), we conducted an eight-week high-fat–high-carbohydrate diet feeding trial on blunt snout bream (Megalobrama amblycephala), and studied gene expression changes (transcriptome and qPCR) in the liver. Disproportionately large numbers of differentially expressed genes were associated with mitochondrial metabolism, neurodegenerative diseases (Alzheimer’s, Huntington’s, and Parkinson’s), and functional categories indicative of liver dysfunction. A high-fat–high-carbohydrate diet may have caused mitochondrial dysfunction, and possibly downregulated the mitochondrial biogenesis in the liver. While the relationship between diet and neurodegenerative disorders is well-established in mammals, this is the first report of this connection in fish. We propose that fishes should be further explored as a potentially promising model to study the mechanisms of diet-associated neurodegenerative disorders in humans.
Collapse
Affiliation(s)
- Wassana Prisingkorn
- College of Fisheries Huazhong Agricultural University, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, P.R. China
| | - Ivan Jakovlić
- Bio-Transduction Lab, Wuhan Institute of Biotechnology, Wuhan 430075, P.R. China
| | - Shao-Kui Yi
- College of Fisheries Huazhong Agricultural University, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, P.R. China
| | - Fang-Yu Deng
- College of Fisheries Huazhong Agricultural University, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, P.R. China
| | - Yu-Hua Zhao
- College of Fisheries Huazhong Agricultural University, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, P.R. China
| | - Wei-Min Wang
- College of Fisheries Huazhong Agricultural University, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, P.R. China
| |
Collapse
|
50
|
Zhou W, Rahimnejad S, Lu K, Wang L, Liu W. Effects of berberine on growth, liver histology, and expression of lipid-related genes in blunt snout bream (Megalobrama amblycephala) fed high-fat diets. FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:83-91. [PMID: 29984398 DOI: 10.1007/s10695-018-0536-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 07/02/2018] [Indexed: 06/08/2023]
Abstract
Fatty liver of cultured fish often correlates closely with poor growth and low harvest yield. Some Chinese herbs can reduce hepatic fat storage. This study aimed to examine lipid-lowering effect of berberine (BBR) in blunt snout bream (Megalobrama amblycephala). Triplicate groups of fish were fed four experimental diets: low-fat diet (LFD, 5% fat), high-fat diet (HFD, 15% fat), and HFD supplemented with 50 or 100 mg BBR/kg diet (BBR50, BBR100). After 8-week feeding, growth performance, liver histology and fat deposition, and hepatic genes expression were examined. The results showed significant reduction of growth performance and feed intake in fish fed HFD compared to those fed the LFD and BBR50 diets. Supplementing 50 mg BBR/kg to the HFD significantly improved weight gain and feed intake. Higher hepatic fat content and histological abnormalities were found in the liver of fish receiving HFD, and BBR50 and BBR100 could attenuate these abnormalities of liver. Expression of CPT I, AOX, ApoB100, ApoE, and PGC-1α genes was significantly decreased in fish fed HFD, and 50 and 100 mg/kg BBR supplementation could revert the downregulation of these genes. Also, the expression of FATP, LPL, and LDLR genes was upregulated in HFD-fed fish, and their expression was significantly decreased by 50 and 100 mg/kg BBR supplementation. In conclusion, supplementing BBR to HFD could attenuate liver fat deposition and disorders. The fat-lowering effects of BBR appear to be mediated by activating genes related with fatty acid oxidation and decreasing genes for fatty acid uptake.
Collapse
Affiliation(s)
- Wenhao Zhou
- Fisheries College, Jimei University, Xiamen, 361021, China
| | | | - Kangle Lu
- Fisheries College, Jimei University, Xiamen, 361021, China.
| | - Lina Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenbin Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|