1
|
Ahmed SAA, Ibrahim RE, Younis EM, Abdelwarith AA, Faroh KY, El Gamal SA, Badr S, Khamis T, Mansour AT, Davies SJ, ElHady M. Antagonistic Effect of Zinc Oxide Nanoparticles Dietary Supplementation Against Chronic Copper Waterborne Exposure on Growth, Behavioral, Biochemical, and Gene Expression Alterations of African Catfish, Clarias gariepinus (Burchell, 1822). Biol Trace Elem Res 2024; 202:5697-5713. [PMID: 38416342 DOI: 10.1007/s12011-024-04115-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/17/2024] [Indexed: 02/29/2024]
Abstract
The harmful impact of waterborne copper (Cu) as a common abiotic stressor in aquatic environments has gained much more interest. The present study aimed to investigate the utilization of zinc oxide nanoparticles (ZnONPs) dietary supplementation to mitigate the chronic toxicity of Cu in African catfish (Clarias gariepinus). Two hundred and forty fish (92.94 ± 0.13 g) were assigned into six groups for 60 days. Control (C), ZnONPs20, and ZnONPs30 groups were fed on basal diets fortified with 0, 20, and 30 mg kg-1 ZnONPs without Cu exposure. Cu, Cu + ZnONPs20, and Cu + ZnONPs30 groups were exposed to Cu at a dose of 10 mg L-1 and fed on basal diets fortified with 0, 20, and 30 mg kg-1 ZnONPs, respectively. The results revealed that the Cu-exposed fish experienced abnormal clinical signs and behavioral changes. The growth indices and acetylcholine esterase activity were significantly decreased (P < 0.05) in the Cu group. Meanwhile, hepatorenal and serum stress indices (P < 0.05) were significantly elevated with chronic Cu exposure. In addition, a higher expression of stress (P < 0.05) (heat shock protein 60 and hypoxia-inducible factor-1 alpha) and apoptotic-related genes (C/EBP homologous protein, caspase-3, and Bcl-2 Associated X-protein) with down-regulation (P < 0.05) of the anti-apoptotic-related genes (B-cell lymphoma 2 and proliferating cell nuclear antigen) was noticed in the Cu-exposed fish. Histopathological alterations in the gills, liver, kidney, and spleen were markedly reported in the Cu-exposed group. The dietary supplementation with ZnONPs significantly alleviated the negative impacts of chronic waterborne-Cu exposure on growth performance, physiological changes, gene expression, and tissue architecture, especially at 30 mg kg-1 diet level. In particular, the inclusion of ZnONPs at the 30 mg kg-1 diet level produced better outcomes than the 20 mg kg-1 diet. Overall, ZnONPs could be added as a feed supplement in the C. gariepinus diet to boost the fish's health and productivity and alleviate the stress condition brought on by Cu exposure.
Collapse
Affiliation(s)
- Shaimaa A A Ahmed
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Rowida E Ibrahim
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt.
| | - Elsayed M Younis
- Department of Zoology, College of Science, King Saud University, PO Box 2455, 11451, Riyadh, Saudi Arabia
| | - Abdelwahab A Abdelwarith
- Department of Zoology, College of Science, King Saud University, PO Box 2455, 11451, Riyadh, Saudi Arabia
| | - Khaled Yehia Faroh
- Nanotechnology and Advanced Materials Central Lab, Agriculture Research Center (ARC), P.O. Box 12619, Giza, Egypt
| | - Samar A El Gamal
- Department of Fish Diseases, Mansoura Branch, Agriculture Research Center (ARC), Animal Health Research Institute (AHRI), Giza, Egypt
| | - Shereen Badr
- Department of Clinical Pathology, Mansoura Branch, Agriculture Research Center (ARC), Animal Health Research Institute (AHRI), Giza, Egypt
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Abdallah Tageldein Mansour
- Fish and Animal Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531, Egypt.
| | - Simon J Davies
- Aquaculture Nutrition Research Unit ANRU, Carna Research Station, Ryan Institute, College of Science and Engineering, University of Galway, Galway, H91V8Y1, Ireland
| | - Mohamed ElHady
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| |
Collapse
|
2
|
Kumar N, Kumar P, Reddy KS. Magical role of iron nanoparticles for enhancement of thermal efficiency and gene regulation of fish in response to multiple stresses. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109949. [PMID: 39389172 DOI: 10.1016/j.fsi.2024.109949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/22/2024] [Accepted: 10/05/2024] [Indexed: 10/12/2024]
Abstract
The present study addresses the challenges of uncontrolled temperature and pollution in aquatic environments, with a focus on fish ability to tolerate high temperature. The investigation aimed to determine the role of iron nanoparticles (Fe-NPs) in enhancing the thermal tolerance of Pangasianodon hypophthalmus exposed to high-temperature stress, arsenic (As), and ammonia (NH3) toxicity. Fe-NPs were synthesized using green approaches, specifically from fish gill. The dietary Fe-NPs were formulated and supplemented at 10, 15, and 20 mg kg⁻1 of feed. Notably, Fe-NPs at 15 mg kg⁻1 diet significantly reduced the critical thermal minimum (CTmin) (14.44 ± 0.21 °C) and the lethal thermal minimum (LTmin) (13.46 ± 0.15 °C), compared to the control and other treatment groups. Conversely, when Fe-NPs at 15 mg kg⁻1 were supplemented with or without exposure to stressors (As + NH3+T), the critical thermal maximum (CTmax) increased to 47.59 ± 0.16 °C, and the lethal thermal maximum (LTmax) increased to 48.60 ± 0.37 °C, both significantly higher than the control and other groups. A strong correlation was observed between LTmin and CTmin (R2 = 0.90) and between CTmax and LTmax (R2 = 0.98). Furthermore, dietary Fe-NPs at 15 mg kg⁻1 significantly upregulated the expression of stress-related genes, including HSP70, iNOS, Caspase-3a, CYP450, MT, cat, sod, gpx, TNFα, IL, TLR, and Ig. The enhanced thermal tolerance (LTmin and LTmax) can be attributed to these gene regulations, suggesting the mechanistic involvement of Fe-NPs in improving thermal resilience. Overall, the findings demonstrate that dietary supplementation with Fe-NPs, particularly at 15 mg kg⁻1, improves thermal tolerance and stress response in P. hypophthalmus by enhancing gene expression and overall thermal efficiency under stressor conditions.
Collapse
Affiliation(s)
- Neeraj Kumar
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, 413115, India.
| | - Paritosh Kumar
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, 413115, India
| | - Kotha Sammi Reddy
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, 413115, India
| |
Collapse
|
3
|
Sah R, Khanduri M, Chaudhary P, Thomas Paul K, Gururani S, Banwala K, Paul C, Jose MA, Bora S, Ramachandran A, Badola R, Hussain SA. Dietary exposure of potentially toxic elements to freshwater mammals in the Ganga river basin, India. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:123928. [PMID: 38615836 DOI: 10.1016/j.envpol.2024.123928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/19/2024] [Accepted: 04/03/2024] [Indexed: 04/16/2024]
Abstract
The threatened Gangetic dolphin (Platanista gangetica) and smooth-coated otter (Lutrogale perspicillata) occuring in the Ganga River Basin (GRB), are experiencing a decline in their population and distribution range owing to multiple anthropogenic pressures, including pollution by Potentially Toxic Elements (PTEs). Apex predators primarily encounter contaminants through dietary exposure. Yet, notable gaps persist in our understanding of the risks associated with the ingestion of PTE-contaminated prey for Gangetic dolphins and smooth-coated otters. In this study, we examined the occurrence and spatial variation of PTEs in the prey (fish) of both these riverine mammals across three major rivers of the Basin, while also evaluating the associated risk of ingesting contaminated prey. Our assessment revealed no statistical variation in bioaccumulation profiles of PTEs across the three rivers, attributable to comparable land use patterns and PTE consumption within the catchment. Zn and Cu were the most dominant PTEs in the prey species. The major potential sources of pollution identified in the catchment include agricultural settlements, vehicular emissions, and the presence of metal-based additives in plastics. Zn, As and Hg accumulation vary with the trophic level whereas some PTEs show concentration (Hg) and dilution (As, Cr, Pb and Zn) with fish growth. The Risk Quotient (RQ), based on the dietary intake of contaminated prey calculated using Toxicity Reference Value was consistently below 1 indicating no significant risk to these riverine mammals. Conversely, with the exception of Co and Ni, the Reference Dose-based RQs for all other PTEs indicated a substantial risk for Gangetic dolphins and smooth-coated otters through dietary exposure. This study serves as a pivotal first step in assessing the risk of PTEs for two threatened riverine mammals in a densely populated river basin, highlighting the importance of their prioritization in regular monitoring to reinforce the ongoing conservation efforts.
Collapse
Affiliation(s)
- Ruchika Sah
- Wildlife Institute of India, Chandrabani, Dehradun, 248001, India
| | - Megha Khanduri
- Wildlife Institute of India, Chandrabani, Dehradun, 248001, India
| | - Pooja Chaudhary
- Wildlife Institute of India, Chandrabani, Dehradun, 248001, India
| | - K Thomas Paul
- Agilent Technologies India Pvt Ltd, Doddanakundi Industrial Area 2, Mahadevapura, Bengaluru, 560066, India
| | | | - Kirti Banwala
- Wildlife Institute of India, Chandrabani, Dehradun, 248001, India
| | - Chitra Paul
- Wildlife Institute of India, Chandrabani, Dehradun, 248001, India
| | - Mebin Aby Jose
- Wildlife Institute of India, Chandrabani, Dehradun, 248001, India
| | - Sarita Bora
- Wildlife Institute of India, Chandrabani, Dehradun, 248001, India
| | | | - Ruchi Badola
- Wildlife Institute of India, Chandrabani, Dehradun, 248001, India
| | | |
Collapse
|
4
|
Mallett MC, Thiem JD, Butler GL, Kennard MJ. A systematic review of approaches to assess fish health responses to anthropogenic threats in freshwater ecosystems. CONSERVATION PHYSIOLOGY 2024; 12:coae022. [PMID: 38706739 PMCID: PMC11069195 DOI: 10.1093/conphys/coae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/04/2024] [Accepted: 04/05/2024] [Indexed: 05/07/2024]
Abstract
Anthropogenic threats such as water infrastructure, land-use changes, overexploitation of fishes and other biological resources, invasive species and climate change present formidable challenges to freshwater biodiversity. Historically, management of fish and fishery species has largely been based on studies of population- and community-level dynamics; however, the emerging field of conservation physiology promotes the assessment of individual fish health as a key management tool. Fish health is highly sensitive to environmental disturbances and is also a fundamental driver of fitness, with implications for population dynamics such as recruitment and resilience. However, the mechanistic links between particular anthropogenic disturbances and changes in fish health, or impact pathways, are diverse and complex. The diversity of ways in which fish health can be measured also presents a challenge for researchers deciding on methods to employ in studies seeking to understand the impact of these threats. In this review, we aim to provide an understanding of the pathway through which anthropogenic threats in freshwater ecosystems impact fish health and the ways in which fish health components impacted by anthropogenic threats can be assessed. We employ a quantitative systematic approach to a corpus of papers related to fish health in freshwater and utilize a framework that summarizes the impact pathway of anthropogenic threats through environmental alterations and impact mechanisms that cause a response in fish health. We found that land-use changes were the most prolific anthropogenic threat, with a range of different health metrics being suitable for assessing the impact of this threat. Almost all anthropogenic threats impacted fish health through two or more impact pathways. A robust understanding of the impact pathways of anthropogenic threats and the fish health metrics that are sensitive to these threats is crucial for fisheries managers seeking to undertake targeted management of freshwater ecosystems.
Collapse
Affiliation(s)
- Maxwell C Mallett
- Australian Rivers Institute, School of Environment and Science, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia
| | - Jason D Thiem
- New South Wales Department of Primary Industries, Narrandera Fisheries Centre, 70 Buckingbong Road, Narrandera, NSW 2700, Australia
| | - Gavin L Butler
- New South Wales Department of Primary Industries, Grafton Fisheries Centre,16 Experiment Farm Road, Trenayr, NSW 2460, Australia
| | - Mark J Kennard
- Australian Rivers Institute, School of Environment and Science, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia
| |
Collapse
|
5
|
Lemos CHDP, de Oliveira CPB, de Oliveira IC, Lima AO, Couto RD, Vidal LVO, Copatti CE. Responses to graded levels of zinc amino acid complex in Nile tilapia (Oreochromis niloticus). Vet Res Commun 2024; 48:1025-1036. [PMID: 38052738 DOI: 10.1007/s11259-023-10278-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/03/2023] [Indexed: 12/07/2023]
Abstract
Zinc (Zn) is an essential micronutrient that plays a crucial role in fish development and physiology. This study aimed to evaluate the effects on growth and health in Nile tilapia (Oreochromis niloticus) supplemented with graded levels of zinc amino acid complex (Zn-AA) and subjected to transport stress. Nile tilapia (21.78 ± 0.17 g; (n = 12 fish per tank; stocking density of 1.045 kg- 3) were fed with 0, 25, 50, 75, or 100 mg Zn-AA kg- 1 (equivalent to 77.49, 102.69, 127.89, 153.09, or 178.29 mg Zn kg- 1) in extruded diets (280 g kg- 1 digestible protein; isoproteic and isocaloric) for 60 days. At the end of the experimental period, after growth performance measurements, the fish were transported by car for 3 h, and blood collection was performed. The linear regression showed that the best growth performance (final weight, final biomass, weight gain, specific growth rate, and feed intake) was found in fish fed with 100 mg Zn-AA kg diet- 1 (p < 0.05). The increased dietary Zn-AA increased linearly plasma triglyceride levels, hemoglobin, mean corpuscular hemoglobin, and leukocyte values and reduced plasma total protein, cholesterol (total and LDL), and aspartate aminotransferase levels (p < 0.05). According to quadratic regression, the highest plasma glucose and alanine aminotransferase values were found in the control group (p < 0.05). In conclusion, under the conditions of this study, 100 mg Zn-AA kg diet- 1 is recommended for Nile tilapia as it can improve their growth, metabolism, physiology, and immunity.
Collapse
Affiliation(s)
- Carlos Henrique da Paixão Lemos
- Programa de Pós-Graduação em Zootecnia, Universidade Federal da Bahia, Av. Adhemar de Barros, s/n, Ondina, Salvador, BA, 40170-110, Brazil
| | | | - Iara Cruz de Oliveira
- Programa de Pós-Graduação em Zootecnia, Universidade Federal da Bahia, Av. Adhemar de Barros, s/n, Ondina, Salvador, BA, 40170-110, Brazil
| | - Alberto Oliveira Lima
- União Metropolitana de Educação e Cultura, Lauro de Freitas, Av. Luis Tarquinio Pontes, 600, Centro, Lauro de Freitas, BA, 42700-000, Brazil
| | - Ricardo David Couto
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal da Bahia, Rua Barão Geremoabo S/N, Ondina, Salvador, BA, 40170-115, Brazil
| | - Luiz Vitor Oliveira Vidal
- Programa de Pós-Graduação em Zootecnia, Universidade Federal da Bahia, Av. Adhemar de Barros, s/n, Ondina, Salvador, BA, 40170-110, Brazil
| | - Carlos Eduardo Copatti
- Programa de Pós-Graduação em Zootecnia, Universidade Federal da Bahia, Av. Adhemar de Barros, s/n, Ondina, Salvador, BA, 40170-110, Brazil.
- Universidade Federal da Bahia, Av. Milton Santos, 500, Ondina, CEP, Salvador, BA, 40170-110, Brazil.
| |
Collapse
|
6
|
Kumar N, Thorat ST, Kochewad SA, Reddy KS. Manganese nutrient mitigates ammonia, arsenic toxicity and high temperature stress using gene regulation via NFkB mechanism in fish. Sci Rep 2024; 14:1273. [PMID: 38218897 PMCID: PMC10787825 DOI: 10.1038/s41598-024-51740-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/09/2024] [Indexed: 01/15/2024] Open
Abstract
The ongoing challenges of climate change and pollution are major factors disturbing ecosystems, including aquatic systems. They also have an impact on gene regulation and biochemical changes in aquatic animals, including fish. Understanding the mechanisms of gene regulation and biochemical changes due to climate change and pollution in aquatic animals is a challenging task. However, with this backdrop, the present investigation was conducted to explore the effects of arsenic (As) and ammonia (NH3) toxicity and high-temperature (T) stress on gene regulation and biochemical profiles, mitigated by dietary manganese (Mn) in Pangasianodon hypophthalmus. The fish were exposed to different combinations of As, NH3, and T, and fed with dietary Mn at 4, 8, and 12 mg kg-1 to evaluate the gene expression of immunity, antioxidative status, cytokine, and NfKB signaling pathway genes. HSP 70, cytochrome P450 (CYP 450), metallothionein (MT), DNA damage-inducible protein (DDIP), caspase (CAS), tumor necrosis factor (TNFα), toll-like receptor (TLR), interleukin (IL), inducible nitric oxide synthase (iNOS), catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) were noticeably highly upregulated by As + NH3 + T stress, whereas Mn diet at 8 mg kg-1 downregulated these genes. Further, total immunoglobulin (Ig), myostatin (MYST), somatostatin (SMT), growth hormone (GH), growth hormone regulator 1 and β, insulin-like growth factors (IGF1X1 and IGF1X2) were significantly upregulated by Mn diets. The biochemical profiles were highly affected by stressors (As + NH3 + T). The bioaccumulation of arsenic in different tissues was also notably reduced by Mn diets. Furthermore, the infectivity of the fish was reduced, and survival against pathogenic bacteria was enhanced by Mn diet at 8 mg kg-1. The results of the present investigation revealed that dietary Mn at 8 mg kg-1 controls gene regulation against multiple stressors (As, NH3, As + NH3, NH3 + T, As + NH3 + T) in fish.
Collapse
Affiliation(s)
- Neeraj Kumar
- ICAR-National Institute of Abiotic Stress Management, Malegaon, Baramati, Pune, 413115, India.
| | - Supriya Tukaram Thorat
- ICAR-National Institute of Abiotic Stress Management, Malegaon, Baramati, Pune, 413115, India
| | | | - Kotha Sammi Reddy
- ICAR-National Institute of Abiotic Stress Management, Malegaon, Baramati, Pune, 413115, India
| |
Collapse
|
7
|
Kou H, Liu X, Hu J, Lin G, Zhang Y, Lin L. Impact of dietary zinc on the growth performance, histopathological analysis, antioxidant capability, and inflammatory response of largemouth bass Micropterus salmoides. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109025. [PMID: 37625733 DOI: 10.1016/j.fsi.2023.109025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
Zinc plays a crucial role in the antioxidant capacity, and inflammatory response of aquatic species, but its impact on largemouth bass Micropterus salmoides is rarely reported. Therefore, this paper aimed to investigate the effects of different levels of zinc on the growth performance, histopathology, antioxidant capacity, and inflammatory cytokines of largemouth bass Micropterus salmoides. Fish with an initial weight of 7.84 ± 0.06 g were cultured for 10 weeks. Five experimental diets were prepared with supplemented proteinate Zn (Bioplex Zn, Alltech) (0, 30, 60, 90, and 120 mg/kg), which were named the Zn-42, Zn-73, Zn-103, Zn-133, and Zn-164 groups. No evident difference was found between the dietary zinc level and the survival rate, the crude lipid content of the whole fish, or the visceral somatic index. Weight gain, condition factor, whole-body crude protein content, interleukin-10, and transforming growth factor beta gene expression were gradually enhanced with up to 102.68 mg/kg zinc and decreased at higher levels. The hepatosomatic index, feed conversion ratio, malondialdehyde level in the liver, aspartate aminotransferase, and alanine transaminase activity in the serum, gradually decreased up to 102.68 mg/kg zinc, and gradually increased beyond this. Activation of the nuclear factor erythroid-derived 2-like 2/Kelch-like ECH-associated protein 1 signaling pathway gradually up-regulated the mRNA levels and activities of glutathione peroxidase, total antioxidant capacity, catalase, and superoxide dismutase in the liver, this antioxidant ability was lower when the zinc was greater than 102.68 mg/kg. The gene expressions of nuclear factor-k-gene binding and pro-inflammation cytokines (interleukin-1β, interleukin-15, tumor necrosis factor alpha, and interleukin-8) were up-regulated up to 102.68 mg/kg zinc and then gradually repressed. In conclusion, using broken line analysis to estimate weight gain and Zn proteinate as the zinc source, the recommended dietary zinc for largemouth bass is 66.57 mg/kg zinc.
Collapse
Affiliation(s)
- Hongyan Kou
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Xueting Liu
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Junru Hu
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Key Laboratory of Animal Nutrition and Feed Science in South China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Gang Lin
- Alltech Biological Products (China) Co, Ltd, Beijing, 100060, China
| | - Yufan Zhang
- Alltech Biological Products (China) Co, Ltd, Beijing, 100060, China.
| | - Li Lin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China.
| |
Collapse
|
8
|
Zhang S, Chen A, Deng H, Jiang L, Liu X, Chai L. Intestinal response of Rana chensinensis larvae exposed to Cr and Pb, alone and in combination. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114774. [PMID: 36931087 DOI: 10.1016/j.ecoenv.2023.114774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 03/06/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
Although numerous investigations on the adverse impact of Cr and Pb have been performed, studies on intestinal homeostasis in amphibians are limited. Here, single and combined effects of Cr (104 μg/L) and Pb (50 μg/L) on morphological and histological features, bacterial community, digestive enzymes activities, as well as transcriptomic profile of intestines in Rana chensinensis tadpoles were assessed. Significant decrease in the relative intestine length (intestine length/snout-to-vent length, IL/SVL) was observed after exposure to Pb and Cr/Pb mixture. Intestinal histology and digestive enzymes activities were altered in metal treatment groups. In addition, treatment groups showed significantly increased bacterial richness and diversity. Tadpoles in treatment groups were observed to have differential gut bacterial composition from controls, especially for the abundance of phylum Proteobacteria, Firmicutes, Verrucomicrobia, Actinobacteria, and Fusobacteria as well as genus Citrobacter, Anaerotruncus, Akkermansia, and Alpinimonas. Moreover, transcriptomic analysis showed that the transcript expression profiles of GPx and SOD isoforms responded differently to Cr and/or Pb exposure. Besides, transcriptional activation of pro-apoptotic and glycolysis-related genes, such as Bax, Apaf 1, Caspase 3, PK, PGK, TPI, and GPI were detected in all treatment groups but downregulation of Bcl2 in Pb and Cr/Pb mixture groups. Collectively, these results suggested that Cr and Pb exposure at environmental relevant concentration, alone and in combination, could disrupt intestinal homeostasis of R. chensinensis tadpoles.
Collapse
Affiliation(s)
- Siliang Zhang
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an 710054, China
| | - Aixia Chen
- School of Water and Environment, Chang'an University, Xi'an 710054, China
| | - Hongzhang Deng
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an 710054, China
| | - Ling Jiang
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an 710054, China
| | - Xiaoli Liu
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an 710054, China
| | - Lihong Chai
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an 710054, China.
| |
Collapse
|
9
|
Kumar N, Singh DK, Chandan NK, Thorat ST, Patole PB, Gite A, Reddy KS. Nano‑zinc enhances gene regulation of non‑specific immunity and antioxidative status to mitigate multiple stresses in fish. Sci Rep 2023; 13:5015. [PMID: 36977939 PMCID: PMC10050481 DOI: 10.1038/s41598-023-32296-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 03/25/2023] [Indexed: 03/30/2023] Open
Abstract
The toxicity of ammonia surged with arsenic pollution and high temperature (34 °C). As climate change enhances the pollution in water bodies, however, the aquatic animals are drastically affected and extinct from nature. The present investigation aims to mitigate arsenic and ammonia toxicity and high-temperature stress (As + NH3 + T) using zinc nanoparticles (Zn-NPs) in Pangasianodon hypophthalmus. Zn-NPs were synthesized using fisheries waste to developing Zn-NPs diets. The four isonitrogenous and isocaloric diets were formulated and prepared. The diets containing Zn-NPs at 0 (control), 2, 4 and 6 mg kg-1 diets were included. Superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione-s-transferase (GST) were noticeably improved using Zn-NPs diets in fish reared under with or without stressors. Interestingly, lipid peroxidation was significantly reduced, whereas vitamin C and acetylcholine esterase were enhanced with supplementation of Zn-NPs diets. Immune-related attributes such as total protein, globulin, albumin, myeloperoxidase (MPO), A:G ratio, and NBT were also improved with Zn-NPs at 4 mg kg-1 diet. The immune-related genes such as immunoglobulin (Ig), tumor necrosis factor (TNFα), and interleukin (IL1b) were strengthening in the fish using Zn-NPs diets. Indeed, the gene regulations of growth hormone (GH), growth hormone regulator (GHR1), myostatin (MYST) and somatostatin (SMT) were significantly improved with Zn-NPs diets. Blood glucose, cortisol and HSP 70 gene expressions were significantly upregulated by stressors, whereas the dietary Zn-NPs downregulated the gene expression. Blood profiling (RBC, WBC and Hb) was reduced considerably with stressors (As + NH3 + T), whereas Zn-NPs enhanced the RBC, WBC, and Hb count in fish reread in control or stress conditions. DNA damage-inducible protein gene and DNA damage were significantly reduced using Zn-NPs at 4 mg kg-1 diet. Moreover, the Zn-NPs also enhanced the arsenic detoxification in different fish tissues. The present investigation revealed that Zn-NPs diets mitigate ammonia and arsenic toxicity, and high-temperature stress in P. hypophthalmus.
Collapse
Affiliation(s)
- Neeraj Kumar
- ICAR-National Institute of Abiotic Stress Management, Malegaon, Baramati, Pune, 413115, India.
| | - Dilip Kumar Singh
- ICAR-Central Institute of Fisheries Education, Kolkata Center, Kolkata, 700091, India
| | | | - Supriya Tukaram Thorat
- ICAR-National Institute of Abiotic Stress Management, Malegaon, Baramati, Pune, 413115, India
| | - Pooja Bapurao Patole
- ICAR-National Institute of Abiotic Stress Management, Malegaon, Baramati, Pune, 413115, India
| | - Archana Gite
- ICAR-National Institute of Abiotic Stress Management, Malegaon, Baramati, Pune, 413115, India
| | - Kotha Sammi Reddy
- ICAR-National Institute of Abiotic Stress Management, Malegaon, Baramati, Pune, 413115, India
| |
Collapse
|
10
|
Kumar N, Chandan NK, Bhushan S, Singh DK, Kumar S. Health risk assessment and metal contamination in fish, water and soil sediments in the East Kolkata Wetlands, India, Ramsar site. Sci Rep 2023; 13:1546. [PMID: 36707609 PMCID: PMC9883242 DOI: 10.1038/s41598-023-28801-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 01/24/2023] [Indexed: 01/29/2023] Open
Abstract
East Kolkata Wetlands (EKW) is an important site for fish culture in sewage-fed areas, which are major receivers of pollutants and wastages from Kolkata. EKW is internationally important as the Ramsar site was declared on Aug 2002 with an area of 125 km2. EKW is a natural water body where wastewater-fed natural aquaculture has been practiced for more than 70 years. It is ecologically vulnerable due to the discharge of toxic waste through sewage canals from cities. Assessing the EKW to understand the inflow and load of the toxic metal (s) in fish, water, and sediments samples is essential. The field (samples collection from 13 sites) and lab (determination of toxic level of metals) based research were carried out to assess metal toxicity and health risk assessment in EKW. The levels of eighteen metals (18), namely Chromium, Vanadium, Cobalt, Manganese, Copper, Nickel, Zinc, Silver, Molybdenum, Arsenic, Selenium, Tin, Gallium, Germanium, Strontium, Cadmium, Mercury, and Lead, were determined using Inductively coupled plasma mass spectrometry (ICP-MS) in five fish tissues viz. muscle, liver, kidney, gill and brain, along with the water samples and soil sediments in 13 sampling sites. The bioaccumulation and concentration of metals in fish tissues, soil sediments, and water samples were well within the safe level concerning the recommendation of different national and international agencies except for a few metals in a few sampling sites like Cd, As, and Pb. The geoaccumulation index (Igeo) was also determined in the soil sediments, indicating moderate arsenic, selenium, and mercury contamination in a few sites. The contamination index in water was also determined in 13 sampling sites. The estimated daily intake (EDI), reference dose (RfD), target hazard quotient (THQ), slope factor and cancer risk of Cr, Mn, Co, Ni, Cu, Zn, As, Se, Cd, Pb and Hg from fish muscle were determined. Based on the results of the present investigation, it is concluded that fish consumption in the East Kolkata Wetland (EKW) is safe. The effects of bioaccumulation of metals in muscle tissue were well within the safe level for consumption as recommended by WHO/FAO.
Collapse
Affiliation(s)
- Neeraj Kumar
- ICAR-National Institute of Abiotic Stress Management (NIASM), Malegaon, Baramati, Pune, 413115, India.
| | | | - Shashi Bhushan
- ICAR-Central Institute of Fisheries Education, Versova, Mumbai, 400061, India
| | - Dilip Kumar Singh
- ICAR-Central Institute of Fisheries Education, Versova, Mumbai, 400061, India
| | - Satish Kumar
- ICAR-National Institute of Abiotic Stress Management (NIASM), Malegaon, Baramati, Pune, 413115, India
| |
Collapse
|
11
|
Liang Z, Chen T, Yang F, Li S, Zhang S, Guo H. Toxicity of chronic waterborne zinc exposure in the hepatopancreas of white shrimp Litopenaeus vannamei. CHEMOSPHERE 2022; 309:136553. [PMID: 36155019 DOI: 10.1016/j.chemosphere.2022.136553] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Zinc (Zn) is necessary for the survival of aquatic organisms; nevertheless, the accumulation of Zn in excessive amounts may have toxic consequences. Few studies focusing on the biochemical, morphological, and transcriptional effects of aqueous Zn in Litopenaeus vannamei have been reported, and the underlying toxic mechanism remains largely unknown. The present study was performed to investigate the growth performance, morphological alterations, physiological changes, and transcriptional responses after Zn exposure at 0 (control), 0.01, 0.1, and 1 mg/L concentrations for 30 days in white shrimp L. vannamei hepatopancreas. The results found that survival rate (SR) and growth performance were significantly reduced in 1 mg/L Zn group. Significant structural damage and significant Zn accumulation in hepatopancreas were observed. The activities of trypsin and amylase (AMS), and the total antioxidant capacity (T-AOC) were attenuated, while the production of reactive oxygen species (ROS) and malondialdehyde (MDA) content were significantly increased after Zn exposure. Many differentially expressed genes (DEGs) were obtained after Zn exposure, and the majority of these DEGs were downregulated. Ten DEGs involved in oxidative stress, immunological response, apoptosis, and other processes were selected for qRT-PCR validation and the expression profiles of these DEGs kept well consistent with the transcriptome data, which confirmed the accuracy and reliability of the transcriptome results. Subsequently, we screened 12 genes to examine the changes of expression in different concentrations in more detail. All the results implying that Zn exposure caused severe histopathological changes and increased Zn accumulation in hepatopancreas, altered immune, antioxidant and detoxifying response by regulating the gene expressions of related genes, and eventually might trigger apoptosis. These findings provide valuable information and a new perspective on the molecular toxicity of crustaceans in response to environmental heavy metal exposure.
Collapse
Affiliation(s)
- Zhi Liang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524025, PR China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524025, PR China
| | - Tianci Chen
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524025, PR China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524025, PR China
| | - Furong Yang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524025, PR China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524025, PR China
| | - Shuhong Li
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524025, PR China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524025, PR China
| | - Shuang Zhang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524025, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, 524025, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China
| | - Hui Guo
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524025, PR China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524025, PR China.
| |
Collapse
|
12
|
Kumar N, Kumar S, Singh AK, Gite A, Patole PB, Thorat ST. Exploring mitigating role of zinc nanoparticles on arsenic, ammonia and temperature stress using molecular signature in fish. J Trace Elem Med Biol 2022; 74:127076. [PMID: 36126543 DOI: 10.1016/j.jtemb.2022.127076] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND The pollution and climate change in aquatic ecosystems are major problems threatening the aquatic organisms for existence in the recent timeline, which promotes the extinction of the fish species. However, the present study dealt with zinc nanoparticles (Zn-NPs) in mitigating arsenic, ammonia and high temperature stresses in Pangasianodon hypophthalmus. MATERIALS AND METHODS To studying different gene expressions, an experiment was conducted to mitigate the multiple stressors using dietary Zn-NPs at 0, 2, 4, and 6 mg kg-1 diets. In the present investigation, the gene expressions studies were performed for growth hormone regulator 1 (GHR1), growth hormone regulator β (GHRβ), growth hormone (GR) in liver and gill tissue as well as myostatin (MYST) and somatostatin (SMT) in the muscle tissue. The anti-oxidative genes CAT, SOD and GPx in liver and gill tissues were also analysed. Expression studies for stress responsive heat shock protein gene (HSP70), DNA damage inducible protein, inducible nitric oxide synthase (iNOS), immune related genes such as interleukin (IL), tumour necrosis factor (TNFα), toll like receptor (TLR) and immunoglobulin were performed. At the end of the experiment the fish were infected with Aeromonas hydrophila to evaluate the immunomodulatory role of Zn-NPs. RESULTS In the present investigation, the growth hormone regulator 1 (GHR1), growth hormone regulator β (GHRβ), growth hormone (GR) in liver and gill as well as myostatin (MYST) and somatostatin (SMT) in muscle were noticeably altered, whereas, Zn-NPs at 4 mg kg-1 diet improved gene expressions. The anti-oxidant gene viz. CAT, SOD and GPx in liver and gill tissues were upregulated by stressors such as As, NH3, NH3+T. As+T and As+NH3+T. Therefore, anti-oxidant genes were noticeably improved with dietary Zn-NPs diet. The stress protein gene (HSP70), DNA damage inducible protein, inducible nitric oxide synthase (iNOS) was significantly upregulated, whereas, Zn-NPs diet was applied to the corrected gene regulation. Similarly, immune related genes such as interleukin (IL), tumour necrosis factor (TNFα), toll like receptor (TLR) and immunoglobulin were highly affected by stressors. Dietary Zn-NPs at 4 mg kg-1 diet was improved all the immune related gene expression and mitigate arsenic, ammonia and high temperature stress in fish. CONCLUSION The present investigation revealed that Zn-NPs at 4.0 mg kg-1 diet has enormous potential to modulates arsenic, ammonia and high temperature stress, and protect against pathogenic infections in fish.
Collapse
Affiliation(s)
- Neeraj Kumar
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune 413115, India.
| | - Satish Kumar
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune 413115, India
| | - Ajay Kumar Singh
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune 413115, India
| | - Archana Gite
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune 413115, India
| | - Pooja Bapurao Patole
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune 413115, India
| | | |
Collapse
|
13
|
Krishnani KK, Boddu VM, Chadha NK, Chakraborty P, Kumar J, Krishna G, Pathak H. Metallic and non-metallic nanoparticles from plant, animal, and fisheries wastes: potential and valorization for application in agriculture. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:81130-81165. [PMID: 36203045 PMCID: PMC9540199 DOI: 10.1007/s11356-022-23301-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/23/2022] [Indexed: 05/06/2023]
Abstract
Global agriculture is facing tremendous challenges due to climate change. The most predominant amongst these challenges are abiotic and biotic stresses caused by increased incidences of temperature extremes, drought, unseasonal flooding, and pathogens. These threats, mostly due to anthropogenic activities, resulted in severe challenges to crop and livestock production leading to substantial economic losses. It is essential to develop environmentally viable and cost-effective green processes to alleviate these stresses in the crops, livestock, and fisheries. The application of nanomaterials in farming practice to minimize nutrient losses, pest management, and enhance stress resistance capacity is of supreme importance. This paper explores innovative methods for synthesizing metallic and non-metallic nanoparticles using plants, animals, and fisheries wastes and their valorization to mitigate abiotic and biotic stresses and input use efficiency in climate-smart and stress-resilient agriculture including crop plants, livestock, and fisheries.
Collapse
Affiliation(s)
- Kishore Kumar Krishnani
- ICAR-Central Institute of Fisheries Education (Deemed University), Mumbai 400061, Versova, Andheri (W), India.
| | - Veera Mallu Boddu
- Center for Environmental Solutions & Emergency Response (CESER), U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, USA
| | - Narinder Kumar Chadha
- ICAR-Central Institute of Fisheries Education (Deemed University), Mumbai 400061, Versova, Andheri (W), India
| | - Puja Chakraborty
- ICAR-Central Institute of Fisheries Education (Deemed University), Mumbai 400061, Versova, Andheri (W), India
| | - Jitendra Kumar
- Institute of Pesticide Formulation Technology, Gurugram, Haryana, India
| | - Gopal Krishna
- ICAR-Central Institute of Fisheries Education (Deemed University), Mumbai 400061, Versova, Andheri (W), India
| | - Himanshu Pathak
- Indian Council of Agricultural Research, Krishi Bhavan, New Delhi, 110012, India
| |
Collapse
|
14
|
Kumari K, Singh A, Swamy S, Singhar RS, Thakur S. Use of enzymatic biomarkers of Labeo rohita to study the effect of polybrominated diphenyl ether (BDE- 209) via dietary exposure in laboratory conditions. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:499. [PMID: 35695941 DOI: 10.1007/s10661-022-09963-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/19/2022] [Indexed: 06/15/2023]
Abstract
Fishes have been widely used as a representative to estimate the health of an aquatic ecosystem. In the present study, Labeo rohita was selected for biomarker study against decabromodiphenyl ether (BDE-209), a persistent organic pollutant (POP), as it is a widely used Indian carp. The results suggested significant effects on the optimum metabolism of Labeo rohita. After 48 to 72 h of exposure, most of the biomarkers such as lactate dehydrogenase (LDH), creatine kinase (CK), serum glutamic pyruvic transaminase (SGPT), serum glutamic oxaloacetic transaminase (SGOT), and hepatosomatic index (HSI) increased drastically indicating the higher index of tissue and liver damage. On the contrary, succinic dehydrogenase (SDH), acetylcholinesterase (AChE), and alkaline phosphatase (ALP) showed a reverse trend suggesting the shifting of fish metabolism towards anaerobic respiration mode because of induced stress. Increased catalase (CAT) activity was also observed, which indicated increased abundance of reactive hydroxyl species and therefore a possible oxidative stress in fishes. It is further suggested to understand and examine the biotransformation characteristics and degradation pathways of polybrominated diphenyl ether (PBDE)s, which would be useful to comprehend their environmental fate.
Collapse
Affiliation(s)
- Kanchan Kumari
- CSIR-National Environmental Engineering Research Institute, Kolkata Zonal Centre, Kolkata, 700 107, West Bengal, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India.
| | - Anshika Singh
- CSIR-National Environmental Engineering Research Institute, Nagpur, 440 020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Senerita Swamy
- CSIR-National Environmental Engineering Research Institute, Nagpur, 440 020, India
| | | | - Surabhi Thakur
- CSIR-National Environmental Engineering Research Institute, Nagpur, 440 020, India
| |
Collapse
|
15
|
Shukry M, Albogami S, Gewaily M, Amer AA, Soliman AA, Alsaiad SM, El-Shehawi AM, Dawood MAO. Growth Performance, Antioxidative Capacity, and Intestinal Histomorphology of Grey Mullet (Liza ramada)-Fed Dietary Zinc Nanoparticles. Biol Trace Elem Res 2022; 200:2406-2415. [PMID: 34308499 DOI: 10.1007/s12011-021-02844-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022]
Abstract
Zinc is one of the essential microelements involved in vital physiological and biological functions in the fish body. The study evaluated the growth performance, antioxidative capacity, and intestinal histomorphology of Grey Mullet (Liza ramada)-fed dietary zinc nanoparticles (ZnO-NPs) at 0, 10, 20, and 40 mg/kg for the first time. The final weight and specific growth rate (SGR) of Grey Mullet-fed dietary ZnO-NPs at 20 and 40 mg/kg were meaningfully enhanced (p < 0.05). Further, the weight gain (WG) was significantly higher in fish treated with ZnO-NPs than the control, and fish fed 20-40 mg/kg had the highest WG (p < 0.05). The feed conversion ratio (FCR) was meaningfully reduced in fish fed 20-40 mg ZnO-NPs/kg (p < 0.05). The histomorphology of the intestines revealed a significant improvement in villus height, villus width, and goblet cells by ZnO-NPs. The lysozyme activity, phagocytic activity, and phagocytic index showed higher levels in Grey Mullet-fed dietary ZnO-NPs at 20 mg/kg than fish fed 0, 10, and 40 mg/kg (p < 0.05). Superoxide dismutase (SOD) and catalase (CAT) were markedly improved in Grey Mullet treated with ZnO-NPs compared with the control, and the group of fish treated with 20 mg/kg had the highest SOD and CAT (p < 0.05). Glutathione peroxidase (GPx) was significantly higher in fish fed 20-40 mg/kg ZnO-NPs than fish fed 0-10 mg/kg and fish fed 40 mg ZnO-NPs/kg showing the highest GPx value (p < 0.05). The concentration of malondialdehyde was markedly lowered in Grey Mullet fed ZnO-NPs at varying levels (p < 0.05). Based on the overall results, the regression analysis suggests that ZnO-NPs can be included at 24.61-35.5 mg/kg for the best performances of Grey Mullet.
Collapse
Affiliation(s)
- Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr el-Sheikh, 33516, Egypt
| | - Sarah Albogami
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Mahmoud Gewaily
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr el-Sheikh, 33516, Egypt
| | - Asem A Amer
- Central Laboratory for Aquaculture Research, Sakha Aquaculture Research Unit, Abbassa, Sharkia, Kafrelsheikh, Egypt
| | - Ali A Soliman
- Fish Nutrition Laboratory, Aquaculture Division, National Institute of Oceanography and Fisheries, Alexandria, Egypt
| | - Saad M Alsaiad
- Department of Fish Production, Faculty of Agriculture, Al-Azhar University, Nasr City, Cairo, 11651, Egypt
| | - Ahmed M El-Shehawi
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Mahmoud A O Dawood
- Animal Production Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, Egypt.
| |
Collapse
|
16
|
Makaras T, Stankevičiūtė M. Swimming behaviour in two ecologically similar three-spined (Gasterosteus aculeatus L.) and nine-spined sticklebacks (Pungitius pungitius L.): a comparative approach for modelling the toxicity of metal mixtures. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:14479-14496. [PMID: 34617211 DOI: 10.1007/s11356-021-16783-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Sticklebacks (Gasterosteiformes) are increasingly used in ecological and evolutionary research and have become well established as role model species for biologists. However, ecotoxicology studies concerning behavioural effects in sticklebacks regarding stress responses, mainly induced by chemical mixtures, have hardly been addressed. For this purpose, we investigated the swimming behaviour (including mortality rate based on 96-h LC50 values) of two ecologically similar three-spined (Gasterosteus aculeatus) and nine-spined sticklebacks (Pungitius pungitius) to short-term (up to 24 h) metal mixture (MIX) exposure. We evaluated the relevance and efficacy of behavioural responses of test species in the early toxicity assessment of chemical mixtures. Fish exposed to six (Zn, Pb, Cd, Cu, Ni, and Cr) metals in the mixture were either singled out by the Water Framework Directive as priority or as relevant substances in surface water, which was prepared according to the environmental quality standards (EQSs) of these metals set for inland waters in the European Union (EU) (Directive 2013/39/EU). The performed behavioural analysis showed the main effect on the interaction between time, species, and treatment variables. Although both species exposed to MIX revealed a decreasing tendency in swimming activity, these species' responsiveness to MIX was somewhat different. Substantial changes in the activity of G. aculeatus were established after a 3-h exposure to MIX solutions, which was 1.43-fold lower, while in the case of P. pungitius, 1.96-fold higher than established 96-h LC50 values for each species. This study demonstrated species-specific differences in response sensitivity to metal-based water pollution, indicating behavioural insensitivity of P. pungitius as model species for aquatic biomonitoring and environmental risk assessments.
Collapse
Affiliation(s)
- Tomas Makaras
- Nature Research Centre, Akademijos Str. 2, 08412, Vilnius, Lithuania.
| | | |
Collapse
|
17
|
Kou H, Hu J, Vijayaraman SB, Wang AL, Zheng Y, Chen J, He G, Miao Y, Lin L. Evaluation of dietary zinc on antioxidant-related gene expression, antioxidant capability and immunity of soft-shelled turtles Pelodiscussinensis. FISH & SHELLFISH IMMUNOLOGY 2021; 118:303-312. [PMID: 34481088 DOI: 10.1016/j.fsi.2021.08.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Zinc (Zn) plays a role in the antioxidant capacity and immunity of aquatic animals. A twelve-week feeding experiment was performed to estimate the impact of dietary zinc on antioxidant enzyme-related gene expression, antioxidant enzyme activity and non-specific immune functions of soft-shelled turtles, Pelodiscus sinensis. Six fishmeal-based experimental diets with 32.45% protein were formulated, which contained 35.43, 46.23, 55.38, 66.74, 75.06 and 85.24 mg/kg Zn, respectively. Catalase (CAT), glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) levels improved with an elevation in dietary Zn from 35.43 to 55.38 mg/kg and then reduced when dietary Zn was further elevated. The expression levels of Nrf2 and antioxidant-related genes CuZnSOD, MnSOD, CAT, GPX1, GPX2, GPX3 and GPX4 escalated with elevating Zn concentration up to 55.38 mg/kg in diets and then reduced as dietary Zn elevated. The expression levels of Kelch-like ECH-associating protein 1 (keap1) showed a reverse trend with that of Nrf2. The contents of malondialdehyde (MDA) in the 55.38 and 66.74 mg/kg Zn diet-fed groups were the lowest. Alkaline phosphatase activity (AKP), superoxide anion (O2-), lysozyme activity and total antioxidant capacity (T-AOC) improved with an escalation in dietary Zn concentration up to 66.74 mg/kg. Optimal dietary Zn improved antioxidant capability, immunity, and antioxidant enzyme-related gene expression. The dietary Zn demand for soft-shelled turtles were 60.93 and 61.63 mg/kg, based on second regression analysis of SOD and T-AOC activity, respectively.
Collapse
Affiliation(s)
- Hongyan Kou
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Junru Hu
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Key Laboratory of Animal Nutrition and Feed Science in South China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Sarath Babu Vijayaraman
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - An-Li Wang
- Key Laboratory of Ecology and Environment Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Yanyun Zheng
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Jiajia Chen
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Guoping He
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Yutao Miao
- Key Laboratory of Ecology and Environment Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, China; Institute of Modern Aquaculture Science and Engineering, South China Normal University, Guangzhou, 510631, China.
| | - Li Lin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China.
| |
Collapse
|
18
|
Ding Y, Yang Y, Chen J, Chen H, Wu Y, Jin L. Toxic effects of ZnSe/ZnS quantum dots on the reproduction and genotoxiticy of rare minnow (Gobiocypris rarus). Comp Biochem Physiol C Toxicol Pharmacol 2021; 247:109065. [PMID: 33915279 DOI: 10.1016/j.cbpc.2021.109065] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 04/15/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
ZnSe/ZnS quantum dots (QDs) have excellent optical properties, but researchers have not clearly determined whether they cause harm to organisms. In the present study, the effect of ZnSe/ZnS QDs on the parents and offspring of rare minnow were evaluated for the first time. Exposure to ZnSe/ZnS QDs altered the testicular structure, caused sperm DNA damage and decreased sperm motility in males. They also suppressed the expression of reproduction-related genes, such as androgen receptor (Ar), DM-related transcription factor 1 (Dmrt1), estrogen receptor (Er), and X-ray repair cross complementing gene 1 (Xrcc1). Continued monitoring of the F1 generation revealed that the embryonic development of the F1 generation was abnormal and the growth index of the F1 generation of adult fish showed hormesis. A comet assay showed that the F1 generation still had DNA damage in the 400 and 800 nmol/L groups at 96 h post-fertilization (hpf). Thus, ZnSe/ZnS QDs damaged the reproductive system of the rare minnow, and this effect continued to the F1 generation.
Collapse
Affiliation(s)
- Yanhong Ding
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University School of Life Sciences, Chongqing 400715, China
| | - Yang Yang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University School of Life Sciences, Chongqing 400715, China
| | - Juan Chen
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University School of Life Sciences, Chongqing 400715, China
| | - Hang Chen
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University School of Life Sciences, Chongqing 400715, China
| | - Yingyi Wu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University School of Life Sciences, Chongqing 400715, China
| | - Li Jin
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University School of Life Sciences, Chongqing 400715, China.
| |
Collapse
|
19
|
Pisoschi AM, Pop A, Iordache F, Stanca L, Predoi G, Serban AI. Oxidative stress mitigation by antioxidants - An overview on their chemistry and influences on health status. Eur J Med Chem 2020; 209:112891. [PMID: 33032084 DOI: 10.1016/j.ejmech.2020.112891] [Citation(s) in RCA: 285] [Impact Index Per Article: 71.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/30/2020] [Accepted: 09/24/2020] [Indexed: 12/11/2022]
Abstract
The present review paper focuses on the chemistry of oxidative stress mitigation by antioxidants. Oxidative stress is understood as a lack of balance between the pro-oxidant and the antioxidant species. Reactive oxygen species in limited amounts are necessary for cell homeostasis and redox signaling. Excessive reactive oxygenated/nitrogenated species production, which counteracts the organism's defense systems, is known as oxidative stress. Sustained attack of endogenous and exogenous ROS results in conformational and oxidative alterations in key biomolecules. Chronic oxidative stress is associated with oxidative modifications occurring in key biomolecules: lipid peroxidation, protein carbonylation, carbonyl (aldehyde/ketone) adduct formation, nitration, sulfoxidation, DNA impairment such strand breaks or nucleobase oxidation. Oxidative stress is tightly linked to the development of cancer, diabetes, neurodegeneration, cardiovascular diseases, rheumatoid arthritis, kidney disease, eye disease. The deleterious action of reactive oxygenated species and their role in the onset and progression of pathologies are discussed. The results of oxidative attack become themselves sources of oxidative stress, becoming part of a vicious cycle that amplifies oxidative impairment. The term antioxidant refers to a compound that is able to impede or retard oxidation, acting at a lower concentration compared to that of the protected substrate. Antioxidant intervention against the radicalic lipid peroxidation can involve different mechanisms. Chain breaking antioxidants are called primary antioxidants, acting by scavenging radical species, converting them into more stable radicals or non-radical species. Secondary antioxidants quench singlet oxygen, decompose peroxides, chelate prooxidative metal ions, inhibit oxidative enzymes. Moreover, four reactivity-based lines of defense have been identified: preventative antioxidants, radical scavengers, repair antioxidants, and those relying on adaptation mechanisms. The specific mechanism of a series of endogenous and exogenous antioxidants in particular aspects of oxidative stress, is detailed. The final section resumes critical conclusions regarding antioxidant supplementation.
Collapse
Affiliation(s)
- Aurelia Magdalena Pisoschi
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, 105 Splaiul Independentei, 050097, Bucharest, Romania.
| | - Aneta Pop
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Florin Iordache
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Loredana Stanca
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Gabriel Predoi
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Andreea Iren Serban
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, 105 Splaiul Independentei, 050097, Bucharest, Romania
| |
Collapse
|