1
|
Ren SH, Shao B, Wang HD, Zhang JY, Qin H, Sun CL, Zhu YL, Wang ZB, Lan X, Gao YC, Wang H. Oxymatrine attenuates chronic allograft rejection by modulating immune responses and inhibiting fibrosis. Eur J Pharmacol 2024; 985:177082. [PMID: 39486768 DOI: 10.1016/j.ejphar.2024.177082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND Chronic rejection (CR) is a significant obstacle to long-term allograft survival. Oxymatrine (OMT) is a prominent bioactive compound widely utilized in traditional Chinese medicine for the management of inflammatory disorders and it has considerable potential as a therapeutic candidate for the treatment of CR. METHODS Well-established major histocompatibility complex (MHC) class II mismatched B6 mice. C-H-2bm12-to-C57BL/6 mouse transplantation was used as a CR model. Hematoxylin and eosin (H&E) staining, immunohistochemistry, and Masson's trichrome staining were used to assess pathological changes in the grafts, and the percentages of immune cells were determined by flow cytometry. The effects of OMT on the regulation of CD4+ T cell differentiation and cytokine secretion were verified in vitro. RESULTS OMT effectively alleviated pathological graft damage, characterized by chronic changes in intimal lesions, vasculopathy, and fibrosis and significantly prolonged cardiac allograft survival. OMT exerted its immunomodulatory effects by inhibiting T helper 1 (Th1) and T helper 17 (Th17) cell differentiation while promoting Treg differentiation both in vivo and in vitro. Further studies revealed that OMT inhibited the phosphorylation of mammalian target of rapamycin (mTOR), which is a potential mechanism underlying its immunosuppressive effects. OMT also inhibited the activation of B cells and the production of donor-specific antibody (DSA). In addition, OMT effectively alleviated chronic changes in fibrosis in cardiac allografts, and these changes may be related to the inhibition of the transforming growth factor-β (TGF-β)-Smad 2/3 pathway. CONCLUSIONS OMT attenuated CR by modulating the immune response and inhibiting graft fibrosis. Further in-depth investigations of OMT may provide valuable insights into the development of novel therapeutic strategies for CR inhibition.
Collapse
Affiliation(s)
- Shao-Hua Ren
- Department of General Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China; Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Bo Shao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hong-da Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing-Yi Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hong Qin
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Cheng-Lu Sun
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yang-Lin Zhu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhao-Bo Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xu Lan
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Yong-Chang Gao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hao Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Key Laboratory of Precise Vascular Reconstruction and Organ Function Repair, Tianjin, China.
| |
Collapse
|
2
|
Wang X, Wang Y, Geng X, Wang Z, Zhang J, Liu T, Chen W, Yang J, Xiao L, Dong W. Oxymatrine antagonises oxidative stress and apoptosis in Nemopilema nomurai toxin-induced cardiotoxicity by inhibiting mitogen-activated protein kinase. Toxicol Lett 2024; 403:120-131. [PMID: 39672287 DOI: 10.1016/j.toxlet.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/12/2024] [Accepted: 12/09/2024] [Indexed: 12/15/2024]
Abstract
Jellyfish stings can trigger abrupt heart failure via toxins, leading acute mortality rise. Proposed mechanisms involve oxidative stress and apoptosis, but evidence for effective treatments is lacking. To explore the concrete molecular mechanisms of jellyfish toxin-induced cardiotoxicity and to explore effective therapeutic approaches, we established tentacle extract (TE) of jellyfish Nemopilema nomurai induced cardiotoxicity models in vivo and in vitro based Intelligent Character Recognition (ICR) mice and H9C2 cells, respectively,.We assessed toxin-induced cardiac injury and screened antagonists from natural compounds to evaluate their antagonistic effects and explore their mechanisms of action. In vitro experiments showed that TE reduced the viability of H9C2 cells and induced a large number of cells apoptotic, accompanied by the elevation of reactive oxygen species (ROS), malondialdehyde (MDA) and the decrease of total superoxide dismutase (T-SOD), activated the phosphorylation level of mitogen-activated protein kinase (MAPK) nuclear transcription factors p38, extracellular regulated protein kinases (ERK) and c-Jun N-terminal kinase (JNK), and increased the transcription level of upstream cytokines interleukin-1β (IL-1β) and tumour necrosis factor-α (TNF-α), and OMT can significantly antagonize the above changes caused by TE; in vivo experiments demonstrated that TE could lead to the death of mice, as well as induce cardiac edema and rupture of myocardial fibers. In contrast, Oxymatrine (OMT) effectively counteracts the lethal effects of TE and reduces both cardiac edema and myocardial fiber rupture. In summary, OMT can antagonise TE-induced cardiac injury and lethal effects by inhibiting the activation of the MAPK pathway and reducing oxidative stress and apoptosis. As a natural compound, OMT offers a potential therapeutic strategy for jellyfish stings.
Collapse
Affiliation(s)
- Xinming Wang
- School of Life Sciences, Liaoning Normal University, Dalian 116081, China.
| | - Yongfang Wang
- Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai 200433, China.
| | - Xiaoyu Geng
- Naval Medical Center of PLA, Naval Medical University, Shanghai 200052, China.
| | - Zengfa Wang
- Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai 200433, China; College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China.
| | - Jinyu Zhang
- School of Life Sciences, Liaoning Normal University, Dalian 116081, China.
| | - Tianwen Liu
- Unit 91951 of the People's Liberation Army, qingdao 266000, China.
| | - Wei Chen
- Disease Control Department, Naval Hospital of Eastern theater, Zhoushan, Zhejiang 316000, China.
| | - Jishun Yang
- Naval Medical Center of PLA, Naval Medical University, Shanghai 200052, China.
| | - Liang Xiao
- Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai 200433, China.
| | - Weibing Dong
- School of Life Sciences, Liaoning Normal University, Dalian 116081, China.
| |
Collapse
|
3
|
Khan MZ, Li L, Wang T, Liu X, Chen W, Ma Q, Zahoor M, Wang C. Bioactive Compounds and Probiotics Mitigate Mastitis by Targeting NF-κB Signaling Pathway. Biomolecules 2024; 14:1011. [PMID: 39199398 PMCID: PMC11352841 DOI: 10.3390/biom14081011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 09/01/2024] Open
Abstract
Mastitis is a significant inflammatory condition of the mammary gland in dairy cows. It is caused by bacterial infections and leads to substantial economic losses worldwide. The disease can be either clinical or sub-clinical and presents challenges such as reduced milk yield, increased treatment costs, and the need to cull affected cows. The pathogenic mechanisms of mastitis involve the activation of Toll-like receptors (TLRs), specifically TLR2 and TLR4. These receptors play crucial roles in recognizing pathogen-associated molecular patterns (PAMPs) and initiating immune responses through the NF-κB signaling pathway. Recent in vitro studies have emphasized the importance of the TLR2/TLR4/NF-κB signaling pathway in the development of mastitis, suggesting its potential as a therapeutic target. This review summarizes recent research on the role of the TLR2/TLR4/NF-κB signaling pathway in mastitis. It focuses on how the activation of TLRs leads to the production of proinflammatory cytokines, which, in turn, exacerbate the inflammatory response by activating the NF-κB signaling pathway in mammary gland tissues. Additionally, the review discusses various bioactive compounds and probiotics that have been identified as potential therapeutic agents for preventing and treating mastitis by targeting TLR2/TLR4/NF-κB signaling pathway. Overall, this review highlights the significance of targeting the TLR2/TLR4/NF-κB signaling pathway to develop effective therapeutic strategies against mastitis, which can enhance dairy cow health and reduce economic losses in the dairy industry.
Collapse
Affiliation(s)
- Muhammad Zahoor Khan
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Liangliang Li
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Tongtong Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Xiaotong Liu
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Wenting Chen
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Qingshan Ma
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Muhammad Zahoor
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien, 90372 Oslo, Norway
| | - Changfa Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| |
Collapse
|
4
|
Sanguinarine Enhances the Integrity of the Blood-Milk Barrier and Inhibits Oxidative Stress in Lipopolysaccharide-Stimulated Mastitis. Cells 2022; 11:cells11223658. [PMID: 36429086 PMCID: PMC9688596 DOI: 10.3390/cells11223658] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Mastitis is a common clinical disease which threatens the welfare and health of dairy cows and causes huge economic losses. Sanguinarine (SG) is a plant-derived alkaloid which has many biological functions, including antibacterial and antioxidant properties. The present study attempted to evaluate the effect of SG on lipopolysaccharide (LPS)-induced oxidative stress reactions and explore its potential mechanisms. The expression profile of SG was analyzed by network pharmacology, and it was found that differentially expressed genes were mainly involved in the Wnt signaling pathway and oxidative stress through GO and KEGG enrichment. In in vitro experiments, the dosage of SG was non-toxic to mouse mammary epithelial cells (mMECs) (p > 0.05). SG not only inhibited the increase in ROS induced by LPS, but also enhanced the activity of antioxidant enzymes (p < 0.05). Moreover, the results of the in vivo experiments showed that SG alleviated LPS-induced inflammatory damage of mouse mammary glands and enhanced the integrity of the blood-milk barrier (p < 0.05). Further studies suggested that SG promoted Nrf2 expression and suppressed the activation of the Wnt signaling pathway (p < 0.05). Conclusively, this study clarified the protective effect of SG on mastitis and provided evidence for new potential mechanisms. SG exerted its antioxidant function through activating Nrf2 and inhibiting the Wnt/β-catenin pathway, repairing the blood-milk barrier.
Collapse
|
5
|
Sun Y, Xu L, Cai Q, Wang M, Wang X, Wang S, Ni Z. Research progress on the pharmacological effects of matrine. Front Neurosci 2022; 16:977374. [PMID: 36110092 PMCID: PMC9469773 DOI: 10.3389/fnins.2022.977374] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/05/2022] [Indexed: 12/03/2022] Open
Abstract
Matrine possesses anti-cancer properties, as well as the prevention and treatment of allergic asthma, and protection against cerebral ischemia-reperfusion injury. Its mechanism of action may be (1) regulation of cancer cell invasion, migration, proliferation, and cell cycle to inhibit tumor growth; (2) reduction of oxidized low-density lipoprotein and advanced glycation end products from the source by exerting anti-inflammatory and antioxidant effects; (3) protection of brain damage and cortical neurons by regulating apoptosis; (4) restoration of the intestinal barrier and regulation of the intestinal microbiota. This article aims to explore matrine’s therapeutic potential by summarizing comprehensive information on matrine’s pharmacology, toxicity, and bioavailability.
Collapse
Affiliation(s)
- Yanan Sun
- College of Traditional Chinese Medicine, Hebei University, Baoding, China
| | - Lu Xu
- School of Basic Medical Science, Hebei University, Baoding, China
| | - Qihan Cai
- School of Basic Medical Science, Hebei University, Baoding, China
| | - Mengmeng Wang
- School of Basic Medical Science, Hebei University, Baoding, China
| | - Xinliang Wang
- School of Basic Medical Science, Hebei University, Baoding, China
| | - Siming Wang
- School of Basic Medical Science, Hebei University, Baoding, China
- *Correspondence: Siming Wang,
| | - Zhiyu Ni
- Affiliated Hospital of Hebei University, Baoding, China
- Clinical Medical College, Hebei University, Baoding, China
- Hebei Collaborative Innovation Center of Tumor Microecological Metabolism Regulation, Baoding, China
- *Correspondence: Siming Wang,
| |
Collapse
|
6
|
Fan J, Jia F, Liu Y, Zhou X. Astragalus polysaccharides and astragaloside IV alleviate inflammation in bovine mammary epithelial cells by regulating Wnt/β-catenin signaling pathway. PLoS One 2022; 17:e0271598. [PMID: 35877777 PMCID: PMC9312414 DOI: 10.1371/journal.pone.0271598] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/03/2022] [Indexed: 11/18/2022] Open
Abstract
The Wnt/β-catenin signaling regulates cell renewal and repair and is closely associated with inflammation. Astragalus polysaccharides (APS) and astragaloside IV (AS-IV), which are the main active substances extracted from Radix Astragali, protect cells by regulating Wnt signaling in cells, exerting antiinflammatory, antioxidant, and antistress effects. However, the mechanisms by which APS and AS-IV interact with Wnt signaling to achieve their therapeutic effects in bovine mammary epithelial cells (BMECs) are not understood. In this study, we used lipopolysaccharide (LPS)-stimulated BMECs as an in vitro model of inflammation to investigate the effects of APS and AS-IV on Wnt signaling in inflamed BMECs. Drug concentrations were screened using the CCK-8 method, the effect on protein expression was analyzed using immunoblotting, the effect on inflammatory factors using enzyme-linked immunosorbent assay, and the effect on oxidative factors using enzyme labeling and flow cytometry. LPS activated the expression of inflammatory and oxidative factors in cells and inhibited Wnt/β-catenin signaling. APS and AS-IV antagonized the inhibitory effect of LPS, protecting BMECs. They inhibited the expression of the IL-6, IL-8, and TNF-α inflammatory factors, and that of the MDA oxidative factor, and activated Wnt signaling in LPS-stimulated BMECs. Silencing of β-catenin abolished the protective effect of APS and AS-IV against LPS-stimulated BMECs. Thus, APS and AS-IV mediate protective effects in inflammatory BMECs model through activation of the Wnt signaling pathway. Wnt signaling pathway is one of the targets of the inhibitory effects of APS and AS-IV on inflammation.
Collapse
Affiliation(s)
- Jiaqi Fan
- Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Ningxia University, Yinchuan, Ningxia, China
| | - Fang Jia
- Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Ningxia University, Yinchuan, Ningxia, China
| | - Yang Liu
- Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Ningxia University, Yinchuan, Ningxia, China
| | - Xuezhang Zhou
- Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Ningxia University, Yinchuan, Ningxia, China
- * E-mail:
| |
Collapse
|
7
|
Peng J, Cai Z, Wang Q, Zhou J, Xu J, Pan D, Chen T, Zhang G, Tao L, Chen Y, Shen X. Carboxymethyl Chitosan Modified Oxymatrine Liposomes for the Alleviation of Emphysema in Mice via Pulmonary Administration. Molecules 2022; 27:molecules27113610. [PMID: 35684546 PMCID: PMC9182538 DOI: 10.3390/molecules27113610] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 02/05/2023] Open
Abstract
Pulmonary emphysema is a fatal lung disease caused by the progressive thinning, enlargement and destruction of alveoli that is closely related to inflammation and oxidative stress. Oxymatrine (OMT), as a bioactive constituent of traditional Chinese herbal Sophora flavescens, has great potential to alleviate pulmonary emphysema via its anti-inflammatory and antioxidative activities. Pulmonary administration is the most preferable way for the treatment of lung diseases. To improve the in vivo stability and pulmonary retention of OMT, OMT-loaded liposome with carboxymethyl chitosan (CMCS) modification was developed. The CMCS was modified on the surface of OMT liposomes via electrostatic attraction and covalent conjugation to obtain Lipo/OMT@CMCS and CMCS-Lipo/OMT, respectively. A porcine pancreatic elastase (PPE)-induced emphysema mice model was established to evaluate the alleviation effects of OMT on alveolar expansion and destruction. CMCS-modified liposomal OMT exhibited superior ameliorative effects on emphysema regardless of the preparation methods, and higher sedimentation and longer retention in the lung were observed in the CMCS-Lipo group. The mechanisms of OMT on emphysema were related to the downregulation of inflammatory cytokines and the rebalancing of antioxidant/oxidation via the Nrf2/HO-1 and NF-κB/IκB-α signaling pathways, leading to reduced cell apoptosis. Moreover, the OMT liposomal preparations further enhanced its anti-inflammatory and antioxidative effects. In conclusion, pulmonary administration of OMT is a potential strategy for the treatment of emphysema and the therapeutic effects can be further improved by CMCS-modified liposomes.
Collapse
Affiliation(s)
- Jianqing Peng
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China; (J.P.); (Z.C.); (Q.W.); (J.Z.); (J.X.); (D.P.); (G.Z.); (L.T.)
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
| | - Zimin Cai
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China; (J.P.); (Z.C.); (Q.W.); (J.Z.); (J.X.); (D.P.); (G.Z.); (L.T.)
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
| | - Qin Wang
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China; (J.P.); (Z.C.); (Q.W.); (J.Z.); (J.X.); (D.P.); (G.Z.); (L.T.)
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
| | - Jia Zhou
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China; (J.P.); (Z.C.); (Q.W.); (J.Z.); (J.X.); (D.P.); (G.Z.); (L.T.)
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
| | - Jinzhuan Xu
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China; (J.P.); (Z.C.); (Q.W.); (J.Z.); (J.X.); (D.P.); (G.Z.); (L.T.)
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
| | - Di Pan
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China; (J.P.); (Z.C.); (Q.W.); (J.Z.); (J.X.); (D.P.); (G.Z.); (L.T.)
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
| | - Tingting Chen
- Guiyang Maternal and Child Health Care Hospital, Guiyang 550003, China;
| | - Guangqiong Zhang
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China; (J.P.); (Z.C.); (Q.W.); (J.Z.); (J.X.); (D.P.); (G.Z.); (L.T.)
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
| | - Ling Tao
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China; (J.P.); (Z.C.); (Q.W.); (J.Z.); (J.X.); (D.P.); (G.Z.); (L.T.)
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
| | - Yi Chen
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China; (J.P.); (Z.C.); (Q.W.); (J.Z.); (J.X.); (D.P.); (G.Z.); (L.T.)
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
- Correspondence: (Y.C.); (X.S.); Tel.: +86-0851-8841-6153 (Y.C.); +86-0851-8817-4180 (X.S.)
| | - Xiangchun Shen
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China; (J.P.); (Z.C.); (Q.W.); (J.Z.); (J.X.); (D.P.); (G.Z.); (L.T.)
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
- Correspondence: (Y.C.); (X.S.); Tel.: +86-0851-8841-6153 (Y.C.); +86-0851-8817-4180 (X.S.)
| |
Collapse
|
8
|
Ma Q, Wei Y, Meng Z, Chen Y, Zhao G. Effects of Water Extract from Artemisia argyi Leaves on LPS-Induced Mastitis in Mice. Animals (Basel) 2022; 12:ani12070907. [PMID: 35405895 PMCID: PMC8997000 DOI: 10.3390/ani12070907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/31/2022] [Accepted: 03/31/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Mastitis is a common disease in dairy cows. On the one hand, it will reduce milk yield and milk quality of dairy cows, thus increasing the cost of animal husbandry, and, on the other hand, it will influence the health of infected animals and even human beings. Generally speaking, because mastitis is caused by pathogenic microorganisms, antibiotic treatment is commonly used. However, antibiotic resistance of microorganisms caused by wrongful use of antibiotics and antibiotic residues after treatment has become an urgent problem to be solved. Chinese herbal medicines are pure natural substances, and many of them have antibacterial, anti-inflammatory, or immune-enhancing effects. In this experiment, Artemisia argyi (A. argyi) was selected as the research object to construct the cell model of cow mastitis. Studies have found that A. argyi extract can play a positive role in the regulation of inflammation, which is rich in organic acids and flavonoids. Therefore, A. argyi extract may be a potential treatment for mastitis. Abstract In the context of the unsatisfactory therapeutic effect of antibiotics, the natural products of plants have become a research hotspot. Artemisia argyi (A. argyi) is known as a traditional medicine in China, and its extracts have been reported to have a variety of active functions, including anti-inflammatory. Therefore, after establishing the mouse mastitis model by lipopolysaccharide (LPS), the effects of A. argyi leaves extract (ALE) were evaluated by pathological morphology of the mammary gland tissue, gene expression, and serum oxidation index. Studies have shown that ALE has a restorative effect on LPS-induced mammary gland lesions and significantly down-regulated the rise of myeloperoxidase (MPO) induced by LPS stimulation. In addition, ALE played a positive role in LPS-induced oxidative imbalance by restoring the activities of glutathione peroxidase (GSH-PX) and superoxide dismutase (SOD) and preventing the increase in nitric oxide (NO) concentration caused by the over-activation of total nitric oxide synthase (T-NOS). Further analysis of gene expression in the mammary gland showed that ALE significantly down-regulated LPS-induced up-regulation of inflammatory factors IL6, TNFα, and IL1β. ALE also regulated the expression of MyD88, a key gene for toll-like receptors (TLRs) signaling, which, in turn, regulated TLR2 and TLR4. The effect of ALE on iNOS expression was similar to the effect of T-NOS activity and NO content, which also played a positive role. The IκB gene is closely related to the NF-κB signaling pathway, and ALE was found to significantly alleviate the LPS-induced increase in IκB. All of these results indicated that ALE may be considered a potential active substance for mastitis.
Collapse
|
9
|
Li Z, Wang K, Ji X, Wang H, Zhang Y. ACE2 suppresses the inflammatory response in LPS-induced porcine intestinal epithelial cells via regulating the NF-κB and MAPK pathways. Peptides 2022; 149:170717. [PMID: 34933009 DOI: 10.1016/j.peptides.2021.170717] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/06/2021] [Accepted: 12/17/2021] [Indexed: 12/13/2022]
Abstract
ACE2 can regulate the development of intestinal inflammatory response, while the effect on LPS-induced inflammatory changes in porcine intestinal epithelial cells is still unclear. The present study investigated the role of ACE2 in inflammatory injury and the possible signaling pathways. The current results show that LPS cause inflammatory damage in IPEC-J2 cells and local RAS system was activated, with a significant correlation. ACE2 gene of IPEC-J2 cells are knocked down, and the inflammatory response are aggravated. ACE2 resist LPS-induced inflammation by degrading Ang II to produce Ang (1-7). The anti-inflammatory effect of ACE2 are mainly achieved by regulating the phosphorylation level of p65 in the NF-κB pathway and ERK1/2 in the MAPK pathway, reducing the expression and release of cellular inflammatory factors. These results reveal the biochemical mechanism of ACE2 against cellular inflammatory response and its potential application.
Collapse
Affiliation(s)
- Zhiqiang Li
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Kai Wang
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Xiaoxia Ji
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Huanhuan Wang
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yuanshu Zhang
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
10
|
Lan X, Hu YH, Li X, Kong DJ, Qin YF, Wang H. Oxymatrine protects cardiac allografts by regulating immunotolerant cells. Int Immunopharmacol 2021; 100:108080. [PMID: 34454287 DOI: 10.1016/j.intimp.2021.108080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 11/28/2022]
Abstract
Organ transplantation is an effective treatment strategy for patients with irreversible organ failure or congenital organ dysfunction. Oxymatrine (OMT) is a quinolizidine alkaloid with protective and anti-inflammatory effects on tissues and organs. The objective of this study was to investigate whether OMT could exert protective effects in cardiac allografts by regulating immune cells. In vitro cell proliferation and co-culture experiments were used to measure the effects of OMT on splenocyte proliferation and differentiation. In the in vivo study, C57BL/6 mice transplanted with BALB/c cardiac grafts were randomly divided into untreated, low-dose OMT treated, middle-dose OMT treated, high-dose OMT treated, and rapamycin-treated groups. Haematoxylin and eosin and immunohistochemical staining were used to assess pathological changes in the grafts, and fluorescence-activated cell sorting analysis was performed to measure the percentages of immune cells. The results showed that, in the in vitro study, OMT inhibited splenocyte proliferation, decreased the percentage of mature dendritic cells (DCs), and increased the percentage of regulatory T cells (Tregs) and regulatory B cells (Bregs). In the in vivo study, OMT exerted allograft protective effects by prolonging survival time, alleviating pathological damages to the cardiac allograft, decreasing intragraft CD3+ cell and increasing intragraft Foxp3+ cell infiltration, decreasing the percentages of mature DCs, increasing the percentages of Tregs and Bregs, and inhibiting the function of DCs. In conclusion, our study demonstrates that OMT exerted a protective effect on cardiac allografts by regulating immunotolerant cells. More in-depth studies of OMT may provide additional insight into the use of immunosuppressive drugs as a post-transplantation treatment strategy.
Collapse
Affiliation(s)
- Xu Lan
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Yong-Hao Hu
- Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xiang Li
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin, China
| | - De-Jun Kong
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin, China
| | - Ya-Fei Qin
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin, China
| | - Hao Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin, China.
| |
Collapse
|
11
|
Wang YS, Teng GQ, Zhou H, Dong CL. Germanium Reduces Inflammatory Damage in Mammary Glands During Lipopolysaccharide-Induced Mastitis in Mice. Biol Trace Elem Res 2020; 198:617-626. [PMID: 32144718 DOI: 10.1007/s12011-020-02106-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 02/27/2020] [Indexed: 01/03/2023]
Abstract
Ge is a trace element needed for good nutrition and health protection in animals and humans. Ge can be consumed by drinking or eating or administered by injection and transferred with the blood to exert pharmacological activities. The blood is important in the formation of milk. Mastitis is a serious health hazard in animals and humans. The present study explored the effect of Ge on mastitis and the potential underlying mechanism. A mastitis mouse model was established with LPS. mMECs were prepared for study in vitro. Histopathological changes showed that Ge had a protective effect on mammary gland tissues. Ge inhibited MPO activity to reduce inflammatory cell infiltration during mastitis. ELISA and qPCR results for tissues and cells showed that the expression of TNF-α, IL-1β, and IL-6 was decreased and that of IL-10 was increased by Ge in a dose-dependent manner in mastitis. An analysis of protein phosphorylation was performed with sandwich ELISAs for both tissues and mMECs. The results showed that Ge significantly inhibited the phosphorylation of IκB, NF-κB p65, p38, ERK, and JNK, which was dramatically increased by LPS. These results demonstrate that Ge has an inhibitory effect on inflammation that protects mammary gland tissues by inhibiting NF-κB and MAPK pathway activation and reducing TNF-α, IL-1β, and IL-6 expression. Ge may be an effective clinical treatment for mastitis and other inflammatory diseases.
Collapse
Affiliation(s)
- Yong-Sheng Wang
- Animal Science and Technology College, Jilin Agricultural Science and Technology University, Jilin, 132101, People's Republic of China.
| | - Guo-Qing Teng
- Animal Science and Technology College, Jilin Agricultural Science and Technology University, Jilin, 132101, People's Republic of China
| | - Han Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 132101, People's Republic of China
| | - Chun-Liu Dong
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 132101, People's Republic of China
| |
Collapse
|
12
|
Khan MZ, Khan A, Xiao J, Ma J, Ma Y, Chen T, Shao D, Cao Z. Overview of Research Development on the Role of NF-κB Signaling in Mastitis. Animals (Basel) 2020; 10:E1625. [PMID: 32927884 PMCID: PMC7552152 DOI: 10.3390/ani10091625] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 12/11/2022] Open
Abstract
Mastitis is the inflammation of the mammary gland. Escherichia coli and Staphylococcus aureus are the most common bacteria responsible for mastitis. When mammary epithelial cells are infected by microorganisms, this activates an inflammatory response. The bacterial infection is recognized by innate pattern recognition receptors (PRRs) in the mammary epithelial cells, with the help of Toll-like receptors (TLRs). Upon activation by lipopolysaccharides, a virulent agent of bacteria, the TLRs further trigger nuclear factor-κB (NF-κB) signaling to accelerate its pathogenesis. The NF-κB has an essential role in many biological processes, such as cell survival, immune response, inflammation and development. Therefore, the NF-κB signaling triggered by the TLRs then regulates the transcriptional expression of specific inflammatory mediators to initiate inflammation of the mammary epithelial cells. Thus, any aberrant regulation of NF-κB signaling may lead to many inflammatory diseases, including mastitis. Hence, the inhibiting of NF-κB signaling has potential therapeutic applications in mastitis control strategies. In this review, we highlighted the regulation and function of NF-κB signaling in mastitis. Furthermore, the role of NF-κB signaling for therapeutic purposes in mastitis control has been explored in the current review.
Collapse
Affiliation(s)
- Muhammad Zahoor Khan
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.K.); (J.X.); (J.M.); (Y.M.); (T.C.)
| | - Adnan Khan
- Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Jianxin Xiao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.K.); (J.X.); (J.M.); (Y.M.); (T.C.)
| | - Jiaying Ma
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.K.); (J.X.); (J.M.); (Y.M.); (T.C.)
| | - Yulin Ma
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.K.); (J.X.); (J.M.); (Y.M.); (T.C.)
| | - Tianyu Chen
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.K.); (J.X.); (J.M.); (Y.M.); (T.C.)
| | - Dafu Shao
- Institute of Agricultural Information of CAAS, Beijing 100081, China;
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.K.); (J.X.); (J.M.); (Y.M.); (T.C.)
| |
Collapse
|
13
|
Yan S, Hui Y, Li J, Xu X, Li Q, Wei H. Glutamine relieves oxidative stress through PI3K/Akt signaling pathway in DSS-induced ulcerative colitis mice. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:1124-1129. [PMID: 32963733 PMCID: PMC7491493 DOI: 10.22038/ijbms.2020.39815.9436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 05/13/2020] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Ulcerative colitis (UC) is a kind of complex immune disease, and a major cause of destruction of intestinal barrier and oxidative stress in this field. In this paper, glutamine (Gln) was believed to offer protection against oxidative stress injury in colitis mice. MATERIALS AND METHODS Thirty mice were randomly assigned into control, model, LY294002 (PI3K/Akt inhibitor), Gln, Gln+LY294002 and 5-Aminosalicylic acid (5-ASA) groups. The mice in the experimental group drank 4% dextran sulfate sodium salt (DSS) for 7 consecutive days. The protective effect of Gln on oxidative stress was quantified by keeping colitis mice, involving Phosphatidylinositol-3-kinase (PI3K)/Protein kinase B (Akt)/mammalian target of Rapamycin (mTOR) signaling pathway, with different medications or distilled water through intragastric administration for 10 consecutive days. RESULTS In vivo administration of Gln, LY294002 or 5-ASA was found to ameliorate the symptoms of colitis in mice, such as reduced growth, loose stools and stool bleeding; protected DSS-induced colitis mice from goblet cell loss, lymphocytosis, mucosal erosion, loss of crypts, and neutrophil infiltration; improved the activity of superoxide dismutase (SOD) and glutathione peroxidase (GSH-XP); decreased the content of malondialdehyde (MDA); and inhibited the activation of PI3K/Akt signaling pathway. CONCLUSION Administration of Gln to the DSS-induced colitis mice led to a clearly reduction in oxidative stress-induced injury. The Gln is confirmed as inhibiting the PI3K/Akt signaling pathway activity.
Collapse
Affiliation(s)
- Shuguang Yan
- College of Basic Medicine, the Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, P.R. China
| | - Yi Hui
- College of Basic Medicine, the Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, P.R. China
| | - Jingtao Li
- Department of Liver Diseases, the Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712020, P.R. China
| | - Xiaofan Xu
- Medical Experiment Center, the Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, P.R. China
| | - Qian Li
- Medical Experiment Center, the Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, P.R. China
| | - Hailiang Wei
- Departments of General Surgery, the Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang 712020, Shaanxi, P.R. China
| |
Collapse
|
14
|
Tang X, Liu C, Li T, Lin C, Hao Z, Zhang H, Zhao G, Chen Y, Guo A, Hu C. Gambogic acid alleviates inflammation and apoptosis and protects the blood-milk barrier in mastitis induced by LPS. Int Immunopharmacol 2020; 86:106697. [PMID: 32585608 DOI: 10.1016/j.intimp.2020.106697] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 11/28/2022]
Abstract
Mastitis is one of the most common diseases among dairy cows. There is still much debate worldwide as to whether antibiotic therapy should be given to dairy cows, or if natural products should be taken as a substitute for antibacterial therapy. As the antibiotic treatment leads to the bacterial resistance and drug residue in milk, introducing natural products for mastitis is becoming a trend. This study investigates the mechanisms of the protective effects of the natural product gambogic acid (GA) in lipopolysaccharide (LPS)-induced mastitis. For in vitro treatments, it was found that GA reduced IL-6, TNF-α, and IL-1β levels by inhibiting the phosphorylation of proteins in the nuclear factor κB (NF-κB) and the mitogen-activated protein kinase (MAPK) pathway. GA also maintained a stable membrane mitochondrial potential and inhibited the overproduction of reactive oxygen species, which protected the cells from apoptosis. On the other hand, in vivo treatments with GA were found to reduce pathological symptoms markedly, and protected the blood-milk barrier from damage induced by LPS. The results demonstrate that GA plays a vital role in suppressing inflammation, alleviating the apoptosis effect, and protecting the blood-milk barrier in mastitis induced by LPS. Thus, these results suggest that the natural product GA plays a potential role in mastitis treatment.
Collapse
Affiliation(s)
- Xin Tang
- Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Chang Liu
- Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Ting Li
- Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Changjie Lin
- Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Zhiyu Hao
- Department of Preventive Veterinary Medicine, Faculty of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Hui Zhang
- Department of Preventive Veterinary Medicine, Faculty of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Gang Zhao
- Department of Preventive Veterinary Medicine, Faculty of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Yingyu Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Aizhen Guo
- Department of Preventive Veterinary Medicine, Faculty of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Changmin Hu
- Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China.
| |
Collapse
|
15
|
Guan B, Chen R, Zhong M, Liu N, Chen Q. Protective effect of Oxymatrine against acute spinal cord injury in rats via modulating oxidative stress, inflammation and apoptosis. Metab Brain Dis 2020; 35:149-157. [PMID: 31840202 DOI: 10.1007/s11011-019-00528-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 12/01/2019] [Indexed: 10/25/2022]
Abstract
The present study was performed to examine the effect of oxymatrine (OMT) on motor functions and histopathologic changes after spinal cord injury and the mechanism underlying its neuroprotective effects. Results suggested that, OMT causes regain of lost motor function near to normal via attenuating oxidative stress, inflammatory response and cellular apoptosis. These observations were further supported by histological examination of spinal cord of rats. It also showed to regulate pro-inflammatory cytokines, Bcl2 family proteins and reduces the level of toll like receptor (TLR-4) and nuclear factor-kappa B (NF-ĸB) in concentration dependent manner. The mitogen-activated protein kinase (MAPK) pathway was also regulated by OMT after SCI. It has been suggested that, OMT promotes the recovery of motor function after SCI in rats via multiple mechanism, and this effect may be related to its anti-oxidant, anti-inflammatory and anti-apoptotic effects.
Collapse
Affiliation(s)
- Binggang Guan
- Department of Spine Surgery, Tianjin Hospital, Tianjin, 300211, China
| | - Rongchun Chen
- Department of Spine Surgery, Ganzhou People's Hospital, Ganzhou, 341000, Jiangxi, China
| | - Mingliang Zhong
- Department of Spine Surgery, Ganzhou People's Hospital, Ganzhou, 341000, Jiangxi, China
| | - Ning Liu
- Department of Spine Surgery, Ganzhou People's Hospital, Ganzhou, 341000, Jiangxi, China
| | - Qin Chen
- Department of Spine Surgery, Ganzhou People's Hospital, Ganzhou, 341000, Jiangxi, China.
| |
Collapse
|
16
|
Lan X, Zhao J, Zhang Y, Chen Y, Liu Y, Xu F. Oxymatrine exerts organ- and tissue-protective effects by regulating inflammation, oxidative stress, apoptosis, and fibrosis: From bench to bedside. Pharmacol Res 2020; 151:104541. [DOI: 10.1016/j.phrs.2019.104541] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/20/2019] [Accepted: 11/11/2019] [Indexed: 12/19/2022]
|
17
|
Quinolizidine alkaloids derivatives from Sophora alopecuroides Linn: Bioactivities, structure-activity relationships and preliminary molecular mechanisms. Eur J Med Chem 2019; 188:111972. [PMID: 31884408 DOI: 10.1016/j.ejmech.2019.111972] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/24/2019] [Accepted: 12/12/2019] [Indexed: 02/05/2023]
Abstract
Quinolizidine alkaloids, as essential active ingredients extracted from Sophora alopecuroides Linn, have been well concerned in the past several decades owing to the unique structural features and numerous pharmacological activities. Quinolizidine alkaloids consist of matrine, oxymatrine, sophoridine, sophocarpine and aloperine etc. Additionally, quinolizidine alkaloids exert various excellent activities, including anti-cancer, anti-inflammation, anti-fibrosis, anti-virus and anti-arrhythmia regulations. In this review, we comprehensively clarify the pharmacological activities of quinolizidine alkaloids, as well as the relationship between biological function and structure-activity of substituted quinolizidine alkaloids. We believe that biological agents based on the pharmacological functions of quinolizidine alkaloids could be well applied in clinical practice.
Collapse
|
18
|
Jiang A, Zhang Y, Zhang X, Wu D, Liu Z, Li S, Liu X, Han Z, Wang C, Wang J, Wei Z, Guo C, Yang Z. Morin alleviates LPS-induced mastitis by inhibiting the PI3K/AKT, MAPK, NF-κB and NLRP3 signaling pathway and protecting the integrity of blood-milk barrier. Int Immunopharmacol 2019; 78:105972. [PMID: 31711938 DOI: 10.1016/j.intimp.2019.105972] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/10/2019] [Accepted: 10/10/2019] [Indexed: 12/14/2022]
Abstract
Mastitis is a common veterinary clinical disease that restricts the development of dairy farming around the world. Morin, extracted from Mulberry Tree and other herbs, has been reported to possess the function of anti-bacteria, anti-oxidant, and anti-inflammatory. However, whether morin could protect lipopolysaccharide (LPS)-induced mouse mastitis in vivo has not well known. This study firstly aims to evaluate the effects of morin on LPS-induced mouse mastitis in vivo, and then try to illustrate the mechanism involved in the process. Before injected with LPS, mice were intraperitoneally pre-injected with different concentrations of morin, and mice of the control and LPS group were injected with the same amount of saline. Pathologic changes of mammary gland were determined by histopathological examination. Myeloperoxidase (MPO) activities of mammary gland were determined by the MPO kits. The mRNA expressions of inflammatory cytokines including TNF-α, IL-1β and IL-6, and those of chemokine factors CCL2 and CXCL2, and those of tight junctions occludin claudin-3 were examined by qRT-PCR analysis. The activities of IκB, p65, ERK, P38, AKT, PI3K, NLPR3, claudin-1, claudin-3 and occludin were determined by western blotting. The results showed that morin alleviated LPS-induced edema, destructed structures and infiltrated inflammatory cells of mammary gland. Morin administration significantly decreased LPS-induced TNF-α, IL-1β, IL-6, CCL2 and CXCL2 mRNA expressions. Furthermore, western blot analysis also showed that morin significantly reduced LPS-induced phosphorylation of p65, IκB, p38 and ERK, and enhanced LPS-induced phosphorylation of AKT and PI3K. It was also found that LPS-decreased claudin-3 and occludin expressions were also inhibited by morin treatment. In summary, above results suggest that morin indeed protect LPS-induced mouse mastitis in vivo, and the mechanism was through inhibiting the PI3K/AKT, MAPK, NF-κB and NLRP3 signaling pathways and protecting the integrity of blood-milk barrier by regulating the tight junction proteins expressions.
Collapse
Affiliation(s)
- Aimin Jiang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, PR China
| | - Yong Zhang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, PR China
| | - Xu Zhang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, PR China
| | - Di Wu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, PR China
| | - Ziyi Liu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, PR China
| | - Shuangqiu Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, PR China
| | - Xiao Liu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, PR China
| | - Zhen Han
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, PR China
| | - Chaoqun Wang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, PR China
| | - Jingjing Wang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, PR China
| | - Zhengkai Wei
- College of Life Sciences and Engineering, Foshan University Foshan 528225, Guangdong Province, PR China
| | - Changming Guo
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, PR China
| | - Zhengtao Yang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, PR China; College of Life Sciences and Engineering, Foshan University Foshan 528225, Guangdong Province, PR China.
| |
Collapse
|
19
|
Chen Y, Wang Y, Yang M, Guo MY. Allicin Inhibited Staphylococcus aureus -Induced Mastitis by Reducing Lipid Raft Stability via LxRα in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10863-10870. [PMID: 31507180 DOI: 10.1021/acs.jafc.9b04378] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mastitis, inflammation of the mammary gland, occurs in both humans and animals. Staphylococcus aureus is the most common infectious bacterial pathogen associated with mastitis. We investigated the effects of allicin on S. aureus-induced mastitis in mice. Pathological histology revealed that allicin inhibited S. aureus-induced pathological damage and myeloperoxidase activity in mammary tissues. Enzyme-linked immunosorbent assays demonstrated that allicin reduced the production of IL-1β and TNF-α as well as inhibited the NF-κB and mitogen-activated protein kinase pathway by reducing phosphorylation of p65, IκBα, p38, JNK, and ERK. Western blotting revealed that allicin reduced TLR2 and TLR6 expression in mammary tissues and cells but not in HEK293 cells. The lipid raft content was reduced by allicin, which inhibited signaling downstream of TLR2 and TLR6. Liver X receptor α (LXRα) luciferase reporter assays and LXRα interference experiments showed that allicin improved the LXRα activity and adenosine 5'-triphosphate-binding cassette G and A1 (ABCG and ABCA1) expression, thereby reducing the cholesterol level, lipid raft formation, and downstream TLR2 and TLR6 pathway activity. These results demonstrated that allicin exerted anti-inflammatory effects against S. aureus mastitis by improving the LXRα activity and reducing lipid raft formation.
Collapse
Affiliation(s)
- Yu Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan 430070 , People's Republic of China
| | - Ying Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan 430070 , People's Republic of China
| | - Mei Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan 430070 , People's Republic of China
| | - Meng-Yao Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan 430070 , People's Republic of China
| |
Collapse
|
20
|
Hu X, He Z, Jiang P, Wang K, Guo J, Zhao C, Cao Y, Zhang N, Fu Y. Neutralization of Interleukin-17A Attenuates Lipopolysaccharide-Induced Mastitis by Inhibiting Neutrophil Infiltration and the Inflammatory Response. J Interferon Cytokine Res 2019; 39:577-584. [PMID: 31313943 DOI: 10.1089/jir.2019.0069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mastitis has been recognized as a common and major disease of cows with a strong impact on dairy farming. Interleukin-17A (IL-17A) has been shown to mediate crucial crosstalk between the immune system and various epithelial tissues, initiating a series of defensive mechanisms against bacterial and fungal infections. This crosstalk is especially involved in neutrophil infiltration. To evaluate the role of IL-17A in immune defense in the mammary gland in mice, we tested the effects of depleting IL-17A on changes in pathology, neutrophil infiltration, and pro-inflammatory cytokine levels in the mammary gland stimulated by lipopolysaccharide (LPS). Further, the effects of IL-17A on the activation of the nuclear factor-κB (NF-κB) signaling pathway during mastitis induced by LPS were also studied. The results showed that the production of IL-17A was significantly elevated during mastitis induced by LPS. IL-17A blockade via an intraperitoneal antibody injection protected against LPS-induced mastitis, as indicated by decreased neutrophil infiltration, myeloperoxidase activity, pro-inflammatory cytokines levels, and NF-κB signaling pathway molecule phosphorylation in response to LPS. In conclusion, an elevated IL-17 level plays a crucial role during mastitis, and anti-IL-17A antibody blockade protects against LPS-induced mammary gland inflammation induced through the NF-κB signaling pathway, which provides a new potential treatment target for mastitis.
Collapse
Affiliation(s)
- Xiaoyu Hu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Zhaoqi He
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Peng Jiang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Kecheng Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Jian Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Caijun Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Yongguo Cao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Naisheng Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, People's Republic of China
| |
Collapse
|
21
|
Oxymatrine can attenuate pathological deficits of Alzheimer's disease mice through regulation of neuroinflammation. J Neuroimmunol 2019; 334:576978. [PMID: 31177033 DOI: 10.1016/j.jneuroim.2019.576978] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 05/28/2019] [Accepted: 05/30/2019] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disorder characterized by progressive learning and cognitive damage. Several hypotheses such as amyloid cascade hypothesis, hyper-phosphorylated τ hypothesis, and energy metabolism hypothesis have been proposed to elucidate the disease. However, the exact mechanism of AD remains unclear and current therapeutic strategies are miserable. Cumulative evidence showed that neuroinflammation plays a significant role in the pathogenesis of the AD. Oxymatrine (OMT), a plant-derived bioactive compound, has anti-viral, anti-fibrosis, and anti-tumor effects through the involvement of several immune-related signaling pathways. Whether OMT can attenuate the pathology of AD is largely unknown. In this manuscript, we found that treatment of OMT can significantly improve cognitive and learning abilities of AD mice during various behavioral test. Treatment of OMT can significantly reduce the densities of Aβ plaques and astrocyte clusters in the neocortex and hippocampus of AD mice. Furthermore, treatment of OMT significantly reduced the concentration of pro-inflammatory cytokines including IL-6, IL-1β, TNF-α and IL-17A in AD mice. Taken together, our data indicate that OMT may serve as a potential drug for AD.
Collapse
|
22
|
Dong P, Ji X, Han W, Han H. Oxymatrine attenuates amyloid beta 42 (Aβ1–42)-induced neurotoxicity in primary neuronal cells and memory impairment in rats. Can J Physiol Pharmacol 2019; 97:99-106. [DOI: 10.1139/cjpp-2018-0299] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Amyloid beta 42 (Aβ1–42)-induced oxidative stress causes the death of neuronal cells and is involved in the development of Alzheimer’s disease. Oxymatrine (OMT) inhibits oxidative stress. In this study, we investigated the effect of OMT on Aβ1–42-induced neurotoxicity in vivo and in vitro. In the Morris water maze test, OMT significantly decreased escape latency and increased the number of platform crossings. In vitro, OMT markedly increased cell viability and superoxide dismutase activity. Moreover, OMT decreased lactate dehydrogenase leakage, malondialdehyde content, and reactive oxygen species in a dose-dependent manner. OMT upregulated the ratio of Bcl-2/Bax and downregulated the level of caspase-3. Furthermore, OMT inhibited the activation of MAP kinase (ERK 1/2, JNK) and nuclear factor κB. In summary, OMT may potentially be used in the treatment of Alzheimer’s disease.
Collapse
Affiliation(s)
- Peiliang Dong
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Xiaomeng Ji
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Wei Han
- Key Laboratory of Chinese Materia, Ministry of Education of Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Hua Han
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| |
Collapse
|
23
|
Ye J, Zou MM, Li P, Lin XJ, Jiang QW, Yang Y, Huang JR, Yuan ML, Xing ZH, Wei MN, Li Y, Shi Z, Liu H. Oxymatrine and Cisplatin Synergistically Enhance Anti-tumor Immunity of CD8 + T Cells in Non-small Cell Lung Cancer. Front Oncol 2018; 8:631. [PMID: 30619765 PMCID: PMC6305450 DOI: 10.3389/fonc.2018.00631] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 12/04/2018] [Indexed: 12/31/2022] Open
Abstract
Oxymatrine (OMT) has shown broad antitumor activities for the treatment of several types of cancers. However, little is known about its effect on anti-tumor immunity. Combination therapy is a potentially promising strategy of cancer to enhance anticancer activity, overcome drug resistance, and lower treatment failure rate. In the present study, we demonstrated that the combination of OMT with cisplatin (DDP) synergistically inhibited non-small cell lung cancer (NSCLC) cells growth when co-cultured with peripheral blood mononuclear cells in vitro. Furthermore, the combination of OMT with DDP significantly inhibited the growth of Lewis lung cancer (LLC) mouse xenograft tumors. Flow cytometry analysis revealed that OMT and DDP synergistically increase the CD8+/ regulatory T cells ratio and enhanced more CD8+ T cells secreted cytokines of IFN-γ, TNF-α, and IL-2 in vivo. Mechanistically, upregulation of miR-155 and downregulation of suppressor of cytokine signaling-1 (SOCS1) were confirmed as a target signaling pathway to positively regulate the anti-tumor response of CD8+ T cells. Overall, OMT in combination with DDP showed outstanding synergistic anti-tumor immunity, suggesting that this beneficial combination may offer a potential immunotherapy for NSCLC patients.
Collapse
Affiliation(s)
- Jin Ye
- Department of Otolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Man-Man Zou
- Division of Pulmonary and Critical Care, Department of Internal Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Pei Li
- Department of Otolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xi-Jun Lin
- Department of Otolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qi-Wei Jiang
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yang Yang
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jia-Rong Huang
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Meng-Ling Yuan
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zi-Hao Xing
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Meng-Ning Wei
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yao Li
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zhi Shi
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Hui Liu
- Division of Pulmonary and Critical Care, Department of Internal Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
24
|
Huang Y, Zhang J, Wang G, Chen X, Zhang R, Liu H, Zhu J. Oxymatrine exhibits anti-tumor activity in gastric cancer through inhibition of IL-21R-mediated JAK2/STAT3 pathway. Int J Immunopathol Pharmacol 2018; 32:2058738418781634. [PMID: 30103640 PMCID: PMC6096673 DOI: 10.1177/2058738418781634] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Oxymatrine (OMT) as a type of alkaloids collected from Sophora flavescens Ait exerts some biological functions including anticancer properties. Here, we investigated the therapeutic effects of OMT in gastric cancer cells (HGC 27 and AGS). As a result, the exposure of gastric cancer (GC) cells to OMT contributed to the suppression of cell proliferation and invasion. Interleukin 21 receptor (IL-21R) was identified to be differentially expressed between OMT treatment group (4 mg/mL) and control group (0 mg/mL), and knockdown of IL-21R repressed cell proliferation and invasion via inactivation of the JAK2/STAT3 pathway. The rescue experiment showed that IL-21R overexpression attenuated the anti-tumor effects of OMT through activation of the JAK2/STAT3 pathway. Moreover, the expression of IL-21R was significantly upregulated in GC samples compared with the adjacent normal tissues and associated with overall survival (OS) and tumor recurrence of GC patients. Taken together, in this study, we evaluated the anti-tumor effects of OMT on GC by investigating proliferation and invasion ability changes, and our findings show that OMT exhibits effects via regulation of JAK/STAT signaling pathway. Through the mechanism study, we may enlighten the potential therapeutic target for treatment of GC.
Collapse
Affiliation(s)
- Yanxia Huang
- 1 Department of Traditional Chinese Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,2 Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jing Zhang
- 2 Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ge Wang
- 2 Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiaoyu Chen
- 2 Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Rui Zhang
- 2 Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Hui Liu
- 2 Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jinshui Zhu
- 2 Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
25
|
The Bisindole Alkaloid Caulerpin, from Seaweeds of the Genus Caulerpa, Attenuated Colon Damage in Murine Colitis Model. Mar Drugs 2018; 16:md16090318. [PMID: 30205459 PMCID: PMC6163434 DOI: 10.3390/md16090318] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 08/27/2018] [Accepted: 08/27/2018] [Indexed: 12/27/2022] Open
Abstract
Caulerpin (CLP), an alkaloid from algae of the genus Caulerpa, has shown anti-inflammatory activity. Therefore, this study aimed to analyze the effect of CLP in the murine model of peritonitis and ulcerative colitis. Firstly, the mice were submitted to peritonitis to evaluate which dose of CLP (40, 4, or 0.4 mg/kg) could decrease the inflammatory infiltration in the peritoneum. The most effective doses were 40 and 4 mg/kg. Then, C57BL/6 mice were submitted to colitis development with 3% dextran sulfate sodium (DSS) and treated with CLP at doses of 40 and 4 mg/kg. The disease development was analyzed through the disease activity index (DAI); furthermore, colonic tissue samples were submitted to histological analysis, NFκB determination, and in vitro culture for cytokines assay. Therefore, CLP at 4 mg/kg presented the best results, triggering improvement of DAI and attenuating the colon shortening and damage. This dose was able to reduce the TNF-α, IFN-γ, IL-6, IL-17, and NFκB p65 levels, and increased the levels of IL-10 in the colon tissue. Thus, CLP mice treatment at a dose of 4 mg/kg showed promising results in ameliorating the damage observed in the ulcerative colitis.
Collapse
|
26
|
Chen X, Zheng X, Zhang M, Yin H, Jiang K, Wu H, Dai A, Yang S. Nuciferine alleviates LPS-induced mastitis in mice via suppressing the TLR4-NF-κB signaling pathway. Inflamm Res 2018; 67:903-911. [PMID: 30145653 DOI: 10.1007/s00011-018-1183-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/17/2018] [Accepted: 08/22/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Nuciferine, a major bioactive component from the lotus leaf, has been reported to have notable anti-inflammatory activities such as renal inflammation and acute lung injury in previous studies. Mastitis is one of the most prevalent diseases in the dairy cattle, which causes large economic losses for the dairy industry. However, the effects of nuciferine on lipopolysaccharide (LPS)-induced mastitis have not been reported. METHODS AND RESULTS Here, we investigated the anti-inflammatory effects of nuciferine on LPS-induced mastitis in mice and illuminated its potential mechanism on the TLR4-mediated signaling pathway in mouse mammary epithelial cells (mMECs). Histopathological changes and myeloperoxidase (MPO) activity assay showed that nuciferine treatment significantly alleviated the LPS-induced injury of mammary gland flocculus, inflammatory cells infiltration. qPCR and ELISA assays indicated that nuciferine dose-dependently reduced the levels of TNF-α and IL-1β, which indicated that nuciferine might have therapeutic effects on mastitis. Furthermore, nuciferine treatment significantly decreased the expression of TLR4 in a dose-dependent manner. Besides, nuciferine was also found to suppress LPS-induced NF-κB activation. CONCLUSION These findings indicate that nuciferine potently ameliorates LPS-induced mastitis by inhibition of the TLR4-NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xingxing Chen
- College of Life Sciences of Longyan University, Longyan, 364012, Fujian, People's Republic of China.,Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan, 364012, Fujian, People's Republic of China
| | - Xintian Zheng
- College of Life Sciences of Longyan University, Longyan, 364012, Fujian, People's Republic of China.,Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan, 364012, Fujian, People's Republic of China
| | - Min Zhang
- College of Life Sciences of Longyan University, Longyan, 364012, Fujian, People's Republic of China.,Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan, 364012, Fujian, People's Republic of China
| | - Huifang Yin
- College of Life Sciences of Longyan University, Longyan, 364012, Fujian, People's Republic of China.,Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan, 364012, Fujian, People's Republic of China
| | - Kangfeng Jiang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Haichong Wu
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan, 364012, Fujian, People's Republic of China.,Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Ailing Dai
- College of Life Sciences of Longyan University, Longyan, 364012, Fujian, People's Republic of China. .,Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan, 364012, Fujian, People's Republic of China.
| | - Shoushen Yang
- College of Life Sciences of Longyan University, Longyan, 364012, Fujian, People's Republic of China. .,Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan, 364012, Fujian, People's Republic of China.
| |
Collapse
|
27
|
Rutin protects against lipopolysaccharide-induced mastitis by inhibiting the activation of the NF-κB signaling pathway and attenuating endoplasmic reticulum stress. Inflammopharmacology 2018; 27:77-88. [PMID: 30099676 DOI: 10.1007/s10787-018-0521-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/01/2018] [Indexed: 12/18/2022]
Abstract
Rutin, found widely in traditional Chinese medicine materials, is used to treat eye swelling and pain, hypertension, and hyperlipidemia. In the present study, a mouse mastitis model induced by lipopolysaccharide (LPS) was established to explore rutin's inhibitory mechanism on mastitis via nuclear factor kappa B (NF-κB) inflammatory signaling and the relationship between NF-κB signaling and endoplasmic reticulum (ER) stress. Mice were divided into six groups: Control group, LPS model group, LPS + rutin (25, 50, and 100 mg/kg) and LPS + dexamethasone (DEX) group. DEX, rutin, and PBS (control and LPS groups) were administered 1 h before and 12 h after perfusion of LPS. After LPS stimulation for 24 h, to evaluate rutin's therapeutic effect on mastitis, the mammary tissues of each group were collected to detect histopathological injury, tumor necrosis factor alpha (TNF-α), interleukin (IL)-1β, and IL-6 mRNA and protein levels; and glucose-regulated protein, 78 kDa (GRP78) protein levels. The protein and mRNA levels of TNF-α, IL-1β, and IL-6 in the LPS + rutin group were significantly lower than those in the LPS model group. Similarly, p50/p105, phosphorylated (p)-p65/p65 and p-inhibitor of nuclear factor kappa b kinase subunit beta (p-IKKβ)/IKKβ ratios in the LPS + rutin group (50 mg/kg) and LPS + rutin group (100 mg/kg) decreased significantly. GRP78 protein expression was significantly higher in LPS + rutin group (100 mg/kg). The structure of mammary tissue became gradually more intact and vacuolization of acini decreased as the rutin concentration increased. The nuclear quantity of p65 in the LPS + rutin group decreased significantly in a rutin dose-dependent manner. Rutin had an anti-inflammatory effect in the LPS-induced mouse mastitis model, manifested by inhibition of NF-κB pathway activation and attenuation of ER stress.
Collapse
|
28
|
Li Y, Gong Q, Guo W, Kan X, Xu D, Ma H, Fu S, Liu J. Farrerol Relieve Lipopolysaccharide (LPS)-Induced Mastitis by Inhibiting AKT/NF-κB p65, ERK1/2 and P38 Signaling Pathway. Int J Mol Sci 2018; 19:ijms19061770. [PMID: 29904013 PMCID: PMC6032361 DOI: 10.3390/ijms19061770] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/07/2018] [Accepted: 06/09/2018] [Indexed: 11/16/2022] Open
Abstract
Farrerol has been proved to have an anti-inflammatory effect. However, the effects of farrerol on mastitis have not been investigated. This study was aimed to investigate the effect and mechanism of farrerol in lipopolysaccharide (LPS)-induced mouse mastitis and LPS-induced inflammatory response of mouse mammary epithelial cells (mMECs). In vivo, LPS were injected to the tetrad pair of nipples for establishing mouse mastitis, and then tested the effect of farrerol on histopathological changes, inflammatory response and activation degree of protein kinase B (AKT), nuclear factor-kappa B p65 (NF-κB p65), p38, extracellular regulated protein kinase (ERK1/2). In vitro, the mMECs were incubated by farrerol for 1 h following by stimulating with LPS, and then the inflammatory response and the related signaling pathways were detected. The in vivo results found that farrerol could improve pathological injury of mammary gland, attenuate the activity of myeloperoxidase (MPO), inhibit the production of pro-inflammatory mediators and the phosphorylation of AKT, NF-κB p65, p38 and ERK1/2. The in vitro results also found farrerol inhibited inflammatory response and the related signaling pathways. Collectively, this study revealed that farrerol inhibits the further development of LPS-induced mastitis by inhibiting inflammatory response via down regulating phosphorylation of AKT, NF-κB p65, p38, and ERK1/2. These findings suggest that farrerol may be used as an anti-inflammatory drug for mastitis.
Collapse
Affiliation(s)
- Yanwei Li
- College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Qian Gong
- College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Wenjin Guo
- College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Xingchi Kan
- College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Dianwen Xu
- College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - He Ma
- College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Shoupeng Fu
- College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Juxiong Liu
- College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| |
Collapse
|
29
|
Jiang Y, Sang W, Wang C, Lu H, Zhang T, Wang Z, Liu Y, Xue B, Xue S, Cai Z, Hua Y, Zhu L, Ma J. Oxymatrine exerts protective effects on osteoarthritis via modulating chondrocyte homoeostasis and suppressing osteoclastogenesis. J Cell Mol Med 2018; 22:3941-3954. [PMID: 29799160 PMCID: PMC6050479 DOI: 10.1111/jcmm.13674] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 04/05/2018] [Indexed: 12/31/2022] Open
Abstract
Osteoarthritis (OA) is a common degenerative disease characterized by the progressive destruction both articular cartilage and the subchondral bone. The agents that can effectively suppress chondrocyte degradation and subchondral bone loss are crucial for the prevention and treatment of OA. Oxymatrine (OMT) is a natural compound with anti‐inflammatory and antitumour properties. We found that OMT exhibited a strong inhibitory effect on LPS‐induced chondrocyte inflammation and catabolism. To further support our results, fresh human cartilage explants were treated with LPS to establish an ex vivo degradation model, and the results revealed that OMT inhibited the catabolic events of LPS‐stimulated human cartilage and substantially attenuated the degradation of articular cartilage ex vivo. As subchondral bone remodelling is involved in OA progression, and osteoclasts are a unique cell type in bone resorption, we investigated the effects of OMT on osteoclastogenesis, and the results demonstrated that OMT suppresses RANKL‐induced osteoclastogenesis by suppressing the RANKL‐induced NFATc1 and c‐fos signalling pathway in vitro. Further, we found that the anti‐inflammatory and anti‐osteoclastic effects of oxymatrine are mediated via the inhibition of the NF‐κB and MAPK pathways. In animal studies, OMT suppressed the ACLT‐induced cartilage degradation, and TUNEL assays further confirmed the protective effect of OMT on chondrocyte apoptosis. MicroCT analysis revealed that OMT had an attenuating effect on ACLT‐induced subchondral bone loss in vivo. Taken together, these results show that OMT interferes with the vicious cycle associated with OA and may be a potential therapeutic agent for abnormal subchondral bone loss and cartilage degradation in osteoarthritis.
Collapse
Affiliation(s)
- Yafei Jiang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Bone Tumor Institution, Shanghai, China
| | - Weilin Sang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cong Wang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haiming Lu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Zhang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Bone Tumor Institution, Shanghai, China
| | - Zhuoying Wang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Bone Tumor Institution, Shanghai, China
| | - Yu Liu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bao Xue
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Song Xue
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengdong Cai
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Bone Tumor Institution, Shanghai, China
| | - Yingqi Hua
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Bone Tumor Institution, Shanghai, China
| | - Libo Zhu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinzhong Ma
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
30
|
Weng Z, Zeng F, Zhu Z, Qian D, Guo S, Wang H, Duan JA. Comparative analysis of sixteen flavonoids from different parts of Sophora flavescens Ait. by ultra high-performance liquid chromatography-tandem mass spectrometry. J Pharm Biomed Anal 2018; 156:214-220. [PMID: 29727783 DOI: 10.1016/j.jpba.2018.04.046] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/21/2018] [Accepted: 04/25/2018] [Indexed: 01/18/2023]
Abstract
The root of Sophora flavescens Ait. has long been used as a crude drug in China and other Asian countries for thousands of years. The quinolizidine alkaloids and flavonoids are considered as the main bioactive components in this plant. To determine the distribution and content of the flavonoids in different organs of this plant, a rapid, sensitive and reproducible method was established using ultra-high-performance liquid chromatography coupled with a triple quadrupole electrospray tandem mass spectrometry. A total of sixteen flavonoids including five different types (isoflavones, pterocarpans, flavones, flavonols and prenylflavonoids) were simultaneously determined in 10 min. The established method was fully validated in terms of linearity, sensitivity, precision, repeatability as well as recovery and successfully applied in the methanolic extracts of S. flavescens parts (root, stem, leaf, pod and seed). The analysis results indicated that the distribution and contents of different type of flavonoids showed remarkable differences among the five organs of S. flavescens. This study might be useful for the rational utilization of S. flavescens resource.
Collapse
Affiliation(s)
- Zebin Weng
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Fei Zeng
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhenhua Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Dawei Qian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Sheng Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Hanqing Wang
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
31
|
Jin B, Jin H. Oxymatrine attenuates lipopolysaccharide-induced acute lung injury by activating the epithelial sodium channel and suppressing the JNK signaling pathway. Exp Anim 2018. [PMID: 29526865 PMCID: PMC6083027 DOI: 10.1538/expanim.17-0121] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The epithelial sodium channel (ENaC) and mitogen-activated protein kinase (MAPK) pathway have been reported to be associated with the progression of acute lung injury (ALI). Oxymatrine (OMT) alone or combined with other drugs can ameliorate paraquat- or oleic acid-induced lung injury. However, the effect of OMT on lipopolysaccharide (LPS)-induced ALI remains unknown. The aim of the present study was to evaluate whether OMT can attenuate LPS-induced ALI through regulation of the ENaC and MAPK pathway using an ALI mouse model. Histological assessment of the lung and inflammatory cell counts in bronchoalveolar lavage fluid (BALF) were performed by H&E and Wright-Giemsa staining. The lung wet/dry (W/D) weight ratio and the levels of tumor necrosis factor-α (TNF-α), C-reactive protein (CRP), ENaC subunits, and the MAPK pathway members were determined. Isolated type II rat alveolar epithelial cells were incubated with OMT 30 min before LPS stimulation to investigate the activation of ENaC and the MAPK pathway. The results showed that OMT remarkably alleviated histopathologic changes in lung and pulmonary edema, reduced inflammatory cell counts in BALF, and decreased TNF-α and CRP levels in a dose-dependent manner. OMT significantly increased the three subunits of ENaC proteins in vivo and in vitro, while it decreased p-ERK/ERK, p-p38/p38, and p-JNK/JNK ratios in vivo. However, only the JNK pathway was markedly inhibited in vitro following pretreatment with OMT. Collectively, the results suggested that OMT might alleviate LPS-induced ALI by elevating ENaC proteins and inhibiting the JNK signaling pathway.
Collapse
Affiliation(s)
- Bingji Jin
- Department of Pathogen Biology, China Medical University, 77 Puhe Road, Shenyang, Liaoning 110013, P.R. China.,Department of Cardiothoracic Surgery, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Jinzhou, Liaoning 121001, P.R. China
| | - Hong Jin
- Department of Pathogen Biology, China Medical University, 77 Puhe Road, Shenyang, Liaoning 110013, P.R. China
| |
Collapse
|
32
|
Tan Y, Zheng C. Effects of Alpinetin on Intestinal Barrier Function, Inflammation and Oxidative Stress in Dextran Sulfate Sodium-Induced Ulcerative Colitis Mice. Am J Med Sci 2018; 355:377-386. [PMID: 29661352 DOI: 10.1016/j.amjms.2018.01.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/01/2018] [Accepted: 01/04/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Alpinetin is a flavonoid isolated from Alpinia katsumadai Hayata that has demonstrated anti-inflammatory, antibacterial and anti-tumor activities. However, alpinetin has not been widely studied in amelioration of inflammatory bowel disease. The study aimed to investigate the role of alpinetin on intestinal epithelial tight junctions, oxidative stress and Nrf2/HO-1 signaling pathway in dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) in mice. METHODS A total of 40 mice were divided into 5 groups (n = 8/group): control group, DSS group (received 3% DSS), and low, medium and high-dose treatment groups (3% DSS + alpinetin 25, 50 and 100mg/kg). The disease activity index (DAI), histological scores, epithelial tight junctions, oxidative stress factors, and Nrf2/HO-1 signaling pathway in the colon were determined. RESULTS Alpinetin improved DAI, colonic shortening, histological scores and myeloperoxidase activity compared with the DSS group. The expression of occludin and zonula occludens-1 were upregulated by alpinetin, whereas the expression of claudin-2 was reduced. Moreover, alpinetin inhibited the level of malondialdehyde, and increased the level of superoxide dismutase. Nrf2/HO-1 signaling pathways were also found to be activated. CONCLUSION Alpinetin is associated with decreased intestinal inflammation and oxidative stress dose-dependently, and also regulated the expression of tight junctions between cells in UC mice. The findings of our study may shed light on the use of alpinetin in the treatment of UC.
Collapse
Affiliation(s)
- Yue Tan
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Changqing Zheng
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China.
| |
Collapse
|
33
|
Lu M, Zhang Q, Chen K, Xu W, Xiang X, Xia S. The regulatory effect of oxymatrine on the TLR4/MyD88/NF-κB signaling pathway in lipopolysaccharide-induced MS1 cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 36:153-159. [PMID: 29157809 DOI: 10.1016/j.phymed.2017.10.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 07/25/2017] [Accepted: 10/02/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Oxymatrine (OM), a major quinolizidine alkaloid extracted from the roots of Sophora flavescens, has been proved to regulate a variety of signaling pathways to produce a wide range of pharmacological effects. OBJECTIVES The regulatory effects of OM on the TLR4/MyD88/NF-κB signaling pathway under the stimulation of lipopolysaccharide (LPS) in MS1 cells were explored to illuminate the potential anti-inflammatory mechanism of OM for pancreatitis treatment. METHODS The signaling molecules related to the TLR4/MyD88/NF-κB pathway in MS1 cells were detected by Western blotting under different conditions, including OM pretreatment and LPS stimulation. The mRNA expression levels of TLR4, MyD88, NF-κB p65 and IκBα were detected by real-time PCR. The NF-κB p65 nuclear translocation in MS1 cells was measured by immunofluorescence, and the pro-inflammatory cytokine of IL-1β was detected by ELISA. RESULTS Increased levels of TLR4, MyD88 and NF-κB p65, induced by LPS stimulation, were significantly inhibited by OM pretreatment in MS1 cells. The decreased protein, but not mRNA, level of IκBα induced by LPS stimulation was increased by OM pretreatment. Meanwhile, LPS induced NF-κB p65 protein translocation to the nucleus as well as LPS increased expression of IL-1β were also inhibited by OM pretreatment. CONCLUSION Inhibitory effects of OM on molecules related to the TLR4/MyD88/NF-κB signaling pathway in pancreatic microvascular endothelial cells can alleviate inflammatory responses.
Collapse
Affiliation(s)
- Meili Lu
- Department of Hepatopancreatobiliary and Splenic Medicine, Affiliated Hospital, Logistics University of People's Armed Police Force, 220 Chenglin Road, Hedong District, Tianjin, 300162, China; Postgraduate Training Base in Affiliated Hospital of Logistics University of People's Armed Police Forces, Jinzhou Medical University, Jinzhou, 121000, China
| | - Qing Zhang
- Department of Hepatopancreatobiliary and Splenic Medicine, Affiliated Hospital, Logistics University of People's Armed Police Force, 220 Chenglin Road, Hedong District, Tianjin, 300162, China
| | - Kai Chen
- Department of Hepatopancreatobiliary and Splenic Medicine, Affiliated Hospital, Logistics University of People's Armed Police Force, 220 Chenglin Road, Hedong District, Tianjin, 300162, China
| | - Wei Xu
- Department of Hepatopancreatobiliary and Splenic Medicine, Affiliated Hospital, Logistics University of People's Armed Police Force, 220 Chenglin Road, Hedong District, Tianjin, 300162, China
| | - Xiaohui Xiang
- Department of Hepatopancreatobiliary and Splenic Medicine, Affiliated Hospital, Logistics University of People's Armed Police Force, 220 Chenglin Road, Hedong District, Tianjin, 300162, China.
| | - Shihai Xia
- Department of Hepatopancreatobiliary and Splenic Medicine, Affiliated Hospital, Logistics University of People's Armed Police Force, 220 Chenglin Road, Hedong District, Tianjin, 300162, China; Postgraduate Training Base in Affiliated Hospital of Logistics University of People's Armed Police Forces, Jinzhou Medical University, Jinzhou, 121000, China.
| |
Collapse
|
34
|
Shi HJ, Song HB, Wang L, Xiao SX, Bo KP, Ma W. The synergy of diammonium glycyrrhizinate remarkably reduces the toxicity of oxymatrine in ICR mice. Biomed Pharmacother 2017; 97:19-25. [PMID: 29080454 DOI: 10.1016/j.biopha.2017.09.039] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/31/2017] [Accepted: 09/10/2017] [Indexed: 12/11/2022] Open
Abstract
Most traditional Chinese medicine prescription dosages are imprecise. This study analyzes the toxicities and adverse effects of a combination the active ingredients of licorice and Kushen medicine: oxymatrine (OMT) and diammonium glycyrrhizinate (DG). The median lethal dose (LD50) and mortality were analyzed in single-dose OMT (or DG) intraperitoneally injected mice with or without combination DG (or OMT). Body weight changes as well as levels of serum sodium and potassium, alanine transaminase (ALT), aspartate transaminase (AST), creatinine, and urea were measured in mice treated with a daily dose of OMT and/or DG for 14days. This study showed that the LD50 of OMT for males and females were 347.44 and 429.15mg/kg, respectively. The LD50 of DG were 525.10 and 997.26mg/kg for males and females, respectively. DG significantly decreased the mice LD50-induced mortality of the OMT, however OMT did not succeed in reducing the LD50-induced mortality rate of DG. The combination of OMT and DG obviously attenuated the changes of the body weight, serum sodium, and potassium induced by DG or OMT alone. These results suggested that toxicity and adverse effects of the OMT was significantly attenuated by DG. The OMT neutralized the adverse effects of the DG, but not the toxicity.
Collapse
Affiliation(s)
- Hui-Juan Shi
- Department of Dermatovenereology, The Second Affiliated Hospital of Xi'an Jiaotong University (Xibei Hospital), Xi'an, Shanxi Province, 710004, China; Department of Dermatovenereology, Ningxia Medical University General Hospital, Yinchuan, Ningxia Hui Autonomous Region 750004, China.
| | - Hong-Bin Song
- Department of Dermatology, Chinese PLA General Hospital, Beijing 100853, China.
| | - Le Wang
- Department of Dermatovenereology, Ningxia Medical University General Hospital, Yinchuan, Ningxia Hui Autonomous Region 750004, China.
| | - Sheng-Xiang Xiao
- Department of Dermatovenereology, The Second Affiliated Hospital of Xi'an Jiaotong University (Xibei Hospital), Xi'an, Shanxi Province, 710004, China.
| | - Kai-Ping Bo
- Department of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, China.
| | - Wei Ma
- Department of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, China.
| |
Collapse
|
35
|
Xiaoyu H, Si H, Li S, Wang W, Guo J, Li Y, Cao Y, Fu Y, Zhang N. Induction of heme oxygenas-1 attenuates NLRP3 inflammasome activation in lipopolysaccharide-induced mastitis in mice. Int Immunopharmacol 2017; 52:185-190. [PMID: 28938188 DOI: 10.1016/j.intimp.2017.09.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 09/06/2017] [Accepted: 09/12/2017] [Indexed: 12/31/2022]
Abstract
Mastitis is one of most prevalent production disease in dairy herds worldwide, and is responsible for enormous economic losses. Heme oxygenase-1 (HO-1) is a cytoprotective enzyme, which is involved in the response to oxidative stress and inflammatory response. The purpose of this study was to detect the protective effect of HO-1 on LPS-induced mastitis in mice. BALB/c mice were pretreated with hemin (HO-1 inducer) and zinc protoporphyrin (ZnPP; HO-1 inhibitor) at 2h before LPS stimulation. The results showed that the mammary gland damage, production of inflammatory cytokines IL-1β, and MPO activity in mammary gland tissues were significantly reduced after pretreated with hemin compared with the group of LPS stimulation only. However, ZnPP reversed the effects of hemin. Furthermore, we found that the levels of ROS and NLRP3 inflammasome were increased after LPS stimulation. The increases were inhibited by hemin and the inhibition of hemin on ROS production and NLRP3 inflammasome activation were blocked by ZnPP. In addition, the results showed that hemin reduced the expression of thioredoxin-interacting protein (TXNIP) induced by LPS, and ZnPP attenuated these changes. In conclusion, the results suggested that overproduction of HO-1 may inhibit the activation of NLRP3 inflammasome and the expression of TXNIP. Induction of HO-1 may be served as a promising method against mastitis induced by LPS.
Collapse
Affiliation(s)
- Hu Xiaoyu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Hongbin Si
- College of Animal Sciences and Technology, Guangxi University, Nanning, Guangxi Province 530005, China
| | - Shumin Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Wenqing Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Jian Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Yanyi Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Yongguo Cao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China.
| | - Naisheng Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China.
| |
Collapse
|
36
|
Wang JJ, Wei ZK, Zhang X, Wang YN, Fu YH, Yang ZT. Butyrate protects against disruption of the blood-milk barrier and moderates inflammatory responses in a model of mastitis induced by lipopolysaccharide. Br J Pharmacol 2017; 174:3811-3822. [PMID: 28800679 DOI: 10.1111/bph.13976] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Short-chain fatty acids are fermentation end products produced by gut bacteria, which have been shown to ameliorate inflammatory bowel diseases and allergic asthma. However, the mechanism involved remains largely unknown. Here, we investigate the protective effects and mechanisms of sodium butyrate (SB) on LPS-induced mastitis model. EXPERIMENTAL APPROACH Effects of increasing doses of SB on blood-milk barrier function and inflammation are studied in BALB/c mice with LPS-induced mastitis. The underlying mechanisms of anti-inflammatory effects of SB were further investigated in LPS-stimulated mouse mammary epithelial cells (mMECs). KEY RESULTS The results show that SB decreased LPS-induced disruption in mammary tissues, infiltration of inflammatory cells and the levels of TNF-α, IL-6 and IL-1β. SB up-regulated the tight junction proteins occludin and claudin-3 and reduced blood-milk barrier permeability in LPS-induced mastitis. Studies in vitro revealed that SB inhibited LPS-induced inflammatory response by inhibition of the NF-κB signalling pathway and histone deacetylases in LPS-stimulated mMECs. CONCLUSIONS AND IMPLICATIONS In our model, SB protected against LPS-induced mastitis by preserving blood-milk barrier function and depressing pro-inflammatory responses, suggesting the potential use of SB as a prophylactic agent to protect blood-milk barrier function in mastitis.
Collapse
Affiliation(s)
- Jing-Jing Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Zheng-Kai Wei
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Xu Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Ya-Nan Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Yun-He Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China.,Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, Jilin Province, China
| | - Zheng-Tao Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
37
|
Huang W, Lan X, Li X, Wang D, Sun Y, Wang Q, Gao H, Yu K. Long non-coding RNA PVT1 promote LPS-induced septic acute kidney injury by regulating TNFα and JNK/NF-κB pathways in HK-2 cells. Int Immunopharmacol 2017; 47:134-140. [PMID: 28391160 DOI: 10.1016/j.intimp.2017.03.030] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/11/2017] [Accepted: 03/29/2017] [Indexed: 12/26/2022]
Abstract
This study aimed to investigate the effect and underlying mechanism of long non-coding RNA plasmacytoma variant translocation 1 (PVT1) in lipopolysaccharide (LPS)-induced inflammation injury in HK-2 cells. We established LPS-induced septic acute kidney injury (AKI) model in HK-2 cells. LPS-induced HK-2 cells were transfected with pc-PVT1, pc-NC, si-PVT1 or si-NC. Cell viability and apoptosis rate were detected by MTT assay and Annexin V-FITC/PI Apoptosis Detection kit, respectively. The relationships of PVT1 and inflammatory factors were evaluated by RNA Immunoprecipitation (RIP) assay. The levels of inflammatory factors, apoptosis-related proteins and the expressions of proteins related to c-Jun N-terminal kinase (JNK) and nuclear factor-κB (NF-κB) signaling pathway were detected by ELISA or Western blotting. Compared with cells with pc-NC, cell viability was remarkably decreased and cell apoptosis rate was increased in LPS-induced cells with pc-PVT1 (p<0.05). The levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and IL-1β were significantly increased in LPS-induced cells with pc-PVT1 compared with cells with pc-NC (p<0.05). All these changes were reversed in LPS-induced cells with si-PVT1 and si-NC (p<0.05). RTP assay revealed that PVT1 could bind to TNF-α. Furthermore, down-regulated PVT1 remarkably reduced the expressions of p-JNK and p-c-Jun, p-IκBα and p-p65 (p<0.05); while increased expressions of these proteins and inflammatory factors induced by up-regulated PVT1 were reversed by JNK or NF-κB inhibitors. PVT1 may promote inflammatory response by binding to TNF-α and inhibiting JNK/NF-κB signaling pathway in LPS-induced septic AKI cells.
Collapse
Affiliation(s)
- Wei Huang
- Department of Intensive Care Unit, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Xiuwen Lan
- Department of Intensive Care Unit, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Xueting Li
- Department of Intensive Care Unit, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Dawei Wang
- Department of Intensive Care Unit, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Yinghao Sun
- Department of Intensive Care Unit, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Qian Wang
- Department of Intensive Care Unit, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Hong Gao
- Department of Intensive Care Unit, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Kaijiang Yu
- Department of Intensive Care Unit, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, China.
| |
Collapse
|
38
|
Wang K, Liu X, Xiao H, Wang H, Zhang Y. The correlation between inflammatory injury induced by LPS and RAS in EpH4-Ev cells. Int Immunopharmacol 2017; 46:23-30. [PMID: 28249221 DOI: 10.1016/j.intimp.2017.02.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 02/02/2017] [Accepted: 02/15/2017] [Indexed: 12/20/2022]
Abstract
Renin-angiotensin system (RAS) plays an important role of regulating inflammatory injury. However, it is not clear about the correlation between renin-angiotensin system (RAS) and inflammation induced by LPS in mammary gland cells. So immunofluorescence was performed to verify the ACE2 expression in mammary gland cells. MTT assay was performed to detect cell viability. ELISA was performed to detect cytokines in cell supernatant. Western Blot was performed to analyze RAS levels and ACE2 level change was observed by immunofluorescence. The TLR4 level and p65 phosphorylation were detected by Western Blot. The ACE2 protein intensively located on the cell membrane. According to the results of MTT assay and TNF-α level, the injury was evidently induced by high concentration LPS after 9h. The TNF-α, IL-6, IL-8, ACE, AT1R and AngII had an increasing expression with the rise of cell injury. In contrast, the MasR, Ang1-7 and ACE2 had a declining expression with the increase of cell injury degree. The TLR4 level and p65 phosphorylation in high concentration LPS group was significantly higher than that of control group. These results suggest that a valid inflammatory injury was induced after the cells were treated by high concentration of LPS for 9h. Meanwhile, the ACE/AngII/AT1R axis was activated and the ACE2/Ang1-7/MasR axis was depressed.
Collapse
Affiliation(s)
- Kun Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang No.1, Nanjing 210095, China
| | - Xiaoqian Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang No.1, Nanjing 210095, China
| | - Hang Xiao
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang No.1, Nanjing 210095, China
| | - Huanhuan Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang No.1, Nanjing 210095, China
| | - Yuanshu Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang No.1, Nanjing 210095, China.
| |
Collapse
|
39
|
Indirubin Treatment of Lipopolysaccharide-Induced Mastitis in a Mouse Model and Activity in Mouse Mammary Epithelial Cells. Mediators Inflamm 2017; 2017:3082805. [PMID: 28255203 PMCID: PMC5309412 DOI: 10.1155/2017/3082805] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/13/2016] [Accepted: 12/27/2016] [Indexed: 02/07/2023] Open
Abstract
Indirubin is a Chinese medicine extracted from indigo and known to be effective for treating chronic myelogenous leukemia, neoplasia, and inflammatory disease. This study evaluated the in vivo anti-inflammatory activity of indirubin in a lipopolysaccharide- (LPS-) induced mouse mastitis model. The indirubin mechanism and targets were evaluated in vitro in mouse mammary epithelial cells. In the mouse model, indirubin significantly attenuated the severity of inflammatory lesions, edema, inflammatory hyperemia, milk stasis and local tissue necrosis, and neutrophil infiltration. Indirubin significantly decreased myeloperoxidase activity and downregulated the production of tumor necrosis factor-α, interleukin-1β (IL-1β), and IL-6 caused by LPS. In vitro, indirubin inhibited LPS-stimulated expression of proinflammatory cytokines in a dose-dependent manner. It also downregulated LPS-induced toll-like receptor 4 (TLR4) expression and inhibited phosphorylation of LPS-induced nuclear transcription factor-kappa B (NF-κB) P65 protein and inhibitor of kappa B. In addition to its effect on the NF-κB signaling pathway, indirubin suppressed the mitogen-activated protein kinase (MAPK) signaling by inhibiting phosphorylation of extracellular signal-regulated kinase (ERK), P38, and c-jun NH2-terminal kinase (JNK). Indirubin improved LPS-induced mouse mastitis by suppressing TLR4 and downstream NF-κB and MAPK pathway inflammatory signals and might be a potential treatment of mastitis and other inflammatory diseases.
Collapse
|
40
|
Hu Y, Mao A, Yu Z, He K. Anti-endotoxin and anti-inflammatory effects of Chinese herbal medicinal alkaloid ingredients in vivo. Microb Pathog 2016; 99:51-55. [PMID: 27498361 DOI: 10.1016/j.micpath.2016.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/01/2016] [Accepted: 08/02/2016] [Indexed: 12/15/2022]
Abstract
The aim of the research was to investigate the anti-endotoxin and anti-inflammatory effects of sinomenine, fangchinoline, stachydrine, chuanxionggzine, oxymartrine, and evodiamine alkaloids commonly found in Chinese herbal medicines. In an endotoxin (LPS) control group, each mouse was challenged with 1 mg LPS/kg by intraperitoneal (IP) injection. In high-, middle- and low-dose alkaloid groups, mice were initially challenged with 1 mg LPS/kg by IP injection and, 3 h later, dosed intramuscularly (IM) with one of the six alkaloids at one of three levels (1, 5, or 10 mg/kg body weight). In the drug control group, mice were dosed IM with 10 mg/kg body weight of a given alkaloid; mice in a naïve control group were administered the same volume of normal saline. The results revealed the six alkaloids could reduce the incidence/severity of LPS- induced toxicities, e.g., body temperature elevation, weight loss, systemic inflammation, multiple organ dysfunction. Taken together, the data suggested to us that these alkaloids might effectively regulate inflammatory responses and have a potential to be used in anti-endotoxin therapies.
Collapse
Affiliation(s)
- Yiyi Hu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Aihua Mao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Zhengyu Yu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Kongwang He
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
| |
Collapse
|
41
|
Gao X, Zhang Z, Li Y, Shen P, Hu X, Cao Y, Zhang N. Selenium Deficiency Facilitates Inflammation Following S. aureus Infection by Regulating TLR2-Related Pathways in the Mouse Mammary Gland. Biol Trace Elem Res 2016; 172:449-457. [PMID: 26743867 DOI: 10.1007/s12011-015-0614-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 12/28/2015] [Indexed: 02/07/2023]
Abstract
Selenium (Se) is an essential micronutrient affecting various aspects of health. Se deficiency has been associated with inflammation and immune responses. Mastitis poses a serious problem for humans and animals in the postpartum period. Staphylococcus aureus (S. aureus) is the most common infectious bacterial pathogen associated with mastitis. The present study sought to determine the effects and underlying mechanism of dietary Se on S. aureus-induced inflammation using a model of mouse mastitis. ELISA and Western blotting were performed to detect protein levels. Quantitative PCR (qPCR) was performed to detect messenger RNA (mRNA) levels. The histopathological changes indicated that Se deficiency resulted in increased inflammatory lesions in S. aureus mastitis, whereas Se deficiency did not induce inflammatory lesions in the mammary gland. Myeloperoxidase (MPO) activity was increased in Se-deficient mice with S. aureus mastitis. Analysis of cytokine mRNA and protein showed that Se deficiency leads to increased TNF-α, IL-1β, and IL-6 production in S. aureus mastitis. In addition, Se deficiency enhanced the mRNA and protein expressions of toll-like receptor 2 (TLR2), which were originally upregulated by S. aureus in the mammary gland tissues and human embryonic kidney 293 (HEK293)-mTLR2 cells. When Se-deficient mice were infected with S. aureus, the phosphorylation of IκB, nuclear factor-κB (NF-κB), extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 was greatly increased. The results indicate that Se deficiency could intensify the inflammatory reaction in S. aureus mastitis. This work contributes to the exploration of new methods of preventing or treating of S. aureus mastitis and other infectious diseases.
Collapse
Affiliation(s)
- Xuejiao Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, People's Republic of China
| | - Zecai Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, People's Republic of China
| | - Ying Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, People's Republic of China
| | - Peng Shen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, People's Republic of China
| | - Xiaoyu Hu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, People's Republic of China
| | - Yongguo Cao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, People's Republic of China
| | - Naisheng Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, People's Republic of China.
| |
Collapse
|
42
|
Zhang YB, Zhan LQ, Li GQ, Wang F, Wang Y, Li YL, Ye WC, Wang GC. Dimeric Matrine-Type Alkaloids from the Roots of Sophora flavescens and Their Anti-Hepatitis B Virus Activities. J Org Chem 2016; 81:6273-80. [DOI: 10.1021/acs.joc.6b00804] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Yu-Bo Zhang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People’s Republic of China
| | - Li-Qin Zhan
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People’s Republic of China
| | - Guo-Qiang Li
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People’s Republic of China
| | - Feng Wang
- Institute
of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 510632, People’s Republic of China
| | - Ying Wang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People’s Republic of China
| | - Yao-Lan Li
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People’s Republic of China
| | - Wen-Cai Ye
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People’s Republic of China
| | - Guo-Cai Wang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People’s Republic of China
| |
Collapse
|
43
|
Alpinetin attenuates inflammatory responses by suppressing TLR4 and NLRP3 signaling pathways in DSS-induced acute colitis. Sci Rep 2016; 6:28370. [PMID: 27321991 PMCID: PMC4913257 DOI: 10.1038/srep28370] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 06/03/2016] [Indexed: 12/15/2022] Open
Abstract
Alpinetin, a composition of Alpinia katsumadai Hayata, has been reported to have a number of biological properties, such as antibacterial, antitumor and other important therapeutic activities. However, the effect of alpinetin on inflammatory bowel disease (IBD) has not yet been reported. The purpose of this study was to investigate the anti-inflammatory effect and mechanism of alpinetin on dextran sulfate sodium (DSS)-induced colitis in mice. In vivo, DSS-induced mice colitis model was established by giving mice drinking water containing 5% (w/v) DSS for 7 days. Alpinetin (25, 50 and 100 mg/kg) were administered once a day by intraperitoneal injection 3 days before DSS treatment. In vitro, phorbol myristate acetate (PMA)-differentiated monocytic THP-1 macrophages were treated with alpinetin and stimulated by lipopolysaccharide (LPS). The results showed that alpinetin significantly attenuated diarrhea, colonic shortening, histological injury, myeloperoxidase (MPO) activity and the expressions of tumor necrosis factor (TNF-α) and interleukin (IL-1β) production in mice. In vitro, alpinetin markedly inhibited LPS-induced TNF-α and IL-1β production, as well as Toll-like receptor 4 (TLR4) mediated nuclear transcription factor-kappaB (NF-κB) and NOD-like receptor protein 3 (NLRP3) inflammasome activation. In conclusion, this study demonstrated that alpinetin had protective effects on DSS-induced colitis and may be a promising therapeutic reagent for colitis treatment.
Collapse
|
44
|
Wang D, Xu N, Zhang Z, Yang S, Qiu C, Li C, Deng G, Guo M. Sophocarpine displays anti-inflammatory effect via inhibiting TLR4 and TLR4 downstream pathways on LPS-induced mastitis in the mammary gland of mice. Int Immunopharmacol 2016; 35:111-118. [DOI: 10.1016/j.intimp.2016.03.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 03/10/2016] [Accepted: 03/21/2016] [Indexed: 12/18/2022]
|
45
|
ZHANG MINGHAO, WANG XIUYU, BAI BIN, ZHANG RUI, LI YUNHONG, WANG YIN. Oxymatrine protects against sepsis-induced myocardial injury via inhibition of the TNF-α/p38-MAPK/caspase-3 signaling pathway. Mol Med Rep 2016; 14:551-9. [DOI: 10.3892/mmr.2016.5250] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 02/22/2016] [Indexed: 11/06/2022] Open
|
46
|
Lu ML, Xiang XH, Xia SH. Potential Signaling Pathways Involved in the Clinical Application of Oxymatrine. Phytother Res 2016; 30:1104-12. [PMID: 27165263 DOI: 10.1002/ptr.5632] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 02/29/2016] [Accepted: 04/06/2016] [Indexed: 12/11/2022]
Abstract
Oxymatrine, an alkaloid component extracted from the roots of Sophora species, has been shown to have antiinflammatory, antifibrosis, and antitumor effects and the ability to protect against myocardial damage, etc. The potential signaling pathways involved in the clinical application of oxymatrine might include the TGF-β/Smad, toll-like receptor 4/nuclear factor kappa-light-chain-enhancer of activated B cells, toll-like receptor9/TRAF6, Janus kinase/signal transduction and activator of transcription, phosphatidylinositol-3 kinase/Akt, delta-opioid receptor-arrestinl-Bcl-2, CD40, epidermal growth factor receptor, nuclear factor erythroid-2-related factor 2/heme oxygenase-1 signaling pathways, and dimethylarginine dimethylaminohydrolase/asymmetric dimethylarginine metabolism pathway. In this review, we summarize the recent investigations of the signaling pathways related to oxymatrine to provide clues and references for further studies on its clinical application. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Mei-Li Lu
- Department of Hepatopancreatobiliary and Splenic Medicine, Affiliated Hospital, Logistics University of People's Armed Police Force, Tianjin, 300162, China
| | - Xiao-Hui Xiang
- Department of Hepatopancreatobiliary and Splenic Medicine, Affiliated Hospital, Logistics University of People's Armed Police Force, Tianjin, 300162, China
| | - Shi-Hai Xia
- Department of Hepatopancreatobiliary and Splenic Medicine, Affiliated Hospital, Logistics University of People's Armed Police Force, Tianjin, 300162, China
| |
Collapse
|
47
|
Abstract
Oxymatrine is a kind of alkaloid extracted from traditional Chinese herb Sophora flavescens Ait. It has been proved to exert various biological activities such as anti-angiogenesis, proliferation-inhibiting, apoptosis-promoting, analgesic-strengthening, and anti-metastasis. The biological activities are related with inhibition of angiogenesis-associated factors, regulation of related signaling pathway and protein expression, synergistic effects with chemotherapy drug, cell cycle arrest and inhibition of voltage-activated K+ channel. In this review, we summarize the recent investigations of oxymatrine in cancer therapy so as to provide references for further study and clinical therapy.
Collapse
Affiliation(s)
- WW Lu
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, PR China
| | - R Zhang
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, PR China
| | - JS Zhu
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, PR China
| | - LQ Xia
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, PR China
| | - J Zhang
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, PR China
| |
Collapse
|
48
|
Li W, Fu K, Lv X, Wang Y, Wang J, Li H, Tian W, Cao R. Lactoferrin suppresses lipopolysaccharide-induced endometritis in mice via down-regulation of the NF-κB pathway. Int Immunopharmacol 2015; 28:695-9. [DOI: 10.1016/j.intimp.2015.07.040] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 07/28/2015] [Accepted: 07/29/2015] [Indexed: 12/14/2022]
|
49
|
Li J, Jiang K, Zhao F. Oxymatrine suppresses proliferation and facilitates apoptosis of human ovarian cancer cells through upregulating microRNA‑29b and downregulating matrix metalloproteinase‑2 expression. Mol Med Rep 2015; 12:5369-74. [PMID: 26099492 DOI: 10.3892/mmr.2015.3977] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 05/21/2015] [Indexed: 11/06/2022] Open
Abstract
Oxymatrine, an alkaloid extracted from medicinal plants of the genus Sophora, has a wide range of pharmacological effects. Previous studies have revealed that oxymatrine can inhibit proliferation and metastasis of tumor cells through reducing matrix metalloproteinase‑2 (MMP‑2) mRNA expression. However, the expression of MMP‑2 in ovarian cancer is significantly higher than that in normal ovaries. Furthermore, the expression of microRNA‑29b (miR‑29b) in ovarian carcinoma is significantly lower than that in normal ovaries. Therefore, MMP‑2 and miR‑29b are tumor suppressor factors involved in ovarian cancer. To evaluate the anti-cancer effects of oxymatrine the OVCAR‑3 ovary cancer cell line was treated with oxymatrine at the concentrations of 0, 0.5, 1 and 2 mg/ml. Assessment of the proliferation and apoptosis of OVCAR‑3 cells showed that oxymatrine had an inhibitory effect on ovarian cancer cells. Furthermore, oxymatrine decreased the protein levels of MMP‑2 and increased the expression levels of miR‑29b in OVCAR‑3 cells. Through transfection of miR‑29b precursor into OVCAR‑3 cells, it was demonstrated that miR‑29b regulated MMP‑2 expression in OVCAR‑3 cells. In addition, anti‑miR‑29b antibodies were used to verify that the apoptotic effect of oxymatrine was due to upregulating miR‑29b and downregulating MMP‑2 expression. These results showed that oxymatrine suppresses the proliferation and facilitates apoptosis of human ovarian cancer cells through upregulating miR‑29b and downregulating MMP‑2 expression.
Collapse
Affiliation(s)
- Jingwei Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Kailei Jiang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Fujie Zhao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
50
|
Park BK, Park YC, Jung IC, Kim SH, Choi JJ, Do M, Kim SY, Jin M. Gamisasangja-tang suppresses pruritus and atopic skin inflammation in the NC/Nga murine model of atopic dermatitis. JOURNAL OF ETHNOPHARMACOLOGY 2015; 165:54-60. [PMID: 25721805 DOI: 10.1016/j.jep.2015.02.040] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 01/30/2015] [Accepted: 02/13/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gamisasangja-tang (GST) is a traditional herbal formula prescribed for patients with intractable pruritus in association with various inflammatory skin diseases. To evaluate the effects of GST on pruritic skin inflammation and investigate its cellular and molecular mechanisms. MATERIALS AND METHODS We orally administered GST to NC/Nga (NC) mice, an animal model of atopic dermatitis. Scratching frequency and the dermatitis index were evaluated, and histological examination was performed using hematoxylin and eosin and toluidine blue staining. The levels of interleukin (IL)-31 and T-helper cell type 2 (TH2) cytokines were determined in both the dorsal skin and cultured splenocytes by real-time polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA), respectively. The serum levels of chemokines and immunoglobulin E (IgE) were determined by ELISA. Changes in the inflammatory cell population were analyzed by a hemocytometer. RESULTS GST significantly lowered scratching frequency and inhibited increases in dermatitis index, thickness of epidermis/dermis and infiltration of chemokine (C-C motif) receptor 3 (CCR3)(+) and cluster of differentiation (CD)117(+)/FcεRIα (Fc fragment of IgE, high affinity I, receptor for; alpha polypeptide)(+) cells in atopic skin. Both IL-31 mRNA expression and production were significantly reduced by GST, which was accomrease in the levels of IL-4, IL-5, and IL-13. Further, GST treatment suppressed the secretion of eotaxin, TARC (thymus and activation-regulated chemokine), IgE, and increases in the number of basophils and eosinophils in the blood. CONCLUSION GST may have potential as an effective treatment for pruritic skin disease such as atopic dermatitis.
Collapse
Affiliation(s)
- Bo-Kyung Park
- Laboratory of Pharmacology, College of Korean Medicine, Daejeon University, Daejeon 300-706, Republic of Korea
| | - Yang-Chun Park
- Department of Internal Medicine, Daejeon Korean Medicine Hospital of Daejeon University, Daejeon 301-724, Republic of Korea
| | - In Chul Jung
- Department of Neuropsychiatry, Dunsan Korean Medicine Hospital of Daejeon University, Daejeon 302-122, Republic of Korea
| | - Seung-Hyung Kim
- Institute of Traditional Medicine and Bioscience, Daejeon University, Daejeon 300-706, Republic of Korea
| | - Jeong June Choi
- Institute of Traditional Medicine and Bioscience, Daejeon University, Daejeon 300-706, Republic of Korea
| | - Moonho Do
- College of Pharmacy, Gachon University, Incheon 406-799, Republic of Korea
| | - Sun Yeou Kim
- College of Pharmacy, Gachon University, Incheon 406-799, Republic of Korea
| | - Mirim Jin
- Laboratory of Pharmacology, College of Korean Medicine, Daejeon University, Daejeon 300-706, Republic of Korea.
| |
Collapse
|