1
|
Du J, Chu Y, Hu Y, Liu J, Liu H, Wang H, Yang C, Wang Z, Yu A, Ran J. A multifunctional self-reinforced injectable hydrogel for enhancing repair of infected bone defects by simultaneously targeting macrophages, bacteria, and bone marrow stromal cells. Acta Biomater 2024:S1742-7061(24)00597-X. [PMID: 39396629 DOI: 10.1016/j.actbio.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/21/2024] [Accepted: 10/09/2024] [Indexed: 10/15/2024]
Abstract
Injectable hydrogels (IHs) have demonstrated huge potential in promoting repair of infected bone defects (IBDs), but how to endow them with desired anti-bacterial, immunoregulatory, and osteo-inductive properties as well as avoid mechanical failure during their manipulation are challenging. In this regard, we developed a multifunctional AOHA-RA/Lap nanocomposite IH for IBDs repair, which was constructed mainly through two kinds of reversible cross-links: (i) the laponite (Lap) crystals mediated electrostatic interactions; (ii) the phenylboronic acid easter bonds between the 4-aminobenzeneboronic acid grafted oxidized hyaluronic acid (AOHA) and rosmarinic acid (RA). Due to the specific structural composition, the AOHA-RA/Lap IH demonstrated superior injectability, self-recoverability, spatial adaptation, and self-reinforced mechanical properties after being injected to the bone defect site. In addition, the RA molecules could be locally released from the hydrogel following a Weibull model for over 10 days. Systematic in vitro/vivo assays proved the strong anti-bacterial activity of the hydrogel against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Moreover, its capability of inducing M2 polarization of macrophages (Mφ) and osteogenic differentiation of bone marrow stromal cells (BMSCs) was verified either, and the mechanism of the former was identified to be related to the JAK1-STAT1 and PI3K-AKT signaling pathways and that of the latter was identified to be related to the calcium signaling pathway, extracellular matrix (ECM) receptor interaction and TGF-β signaling pathway. After being implanted to a S. aureus infected rat skull defect model, the AOHA-RA/Lap IH significantly accelerated repair of IBDs without causing significant systemic toxicity. STATEMENT OF SIGNIFICANCE: Rosmarinic acid and laponite were utilized to develop an injectable hydrogel, promising for accelerating repair of infected bone defects in clinic. The gelation of the hydrogel was completely driven by two kinds of reversible cross-links, which endow the hydrogel superior spatial adaption, self-recoverability, and structural stability. The as-prepared hydrogel demonstrated superior anti-bacterial/anti-biofilm activity and could induce M2 polarization of macrophages and osteogenic differentiation of BMSCs. The mechanism behind macrophages polarization was identified to be related to the JAK1-STAT1 and PI3K-AKT signaling pathways. The mechanism behind osteogenic differentiation of BMSCs was identified to be related to the ECM receptor interaction and calcium signaling/TGF-β signaling pathways.
Collapse
Affiliation(s)
- Jingyi Du
- Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang, 443002, China; College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, 443002, China
| | - Ying Chu
- Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang, 443002, China; College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, 443002, China
| | - Yan Hu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital, Wuhan University, Wuhan, 430000, China
| | - Jin Liu
- Hubei Engineering & Technology Research Center for Functional Materials from Biomass, School of Chemistry and Material Science, Hubei Engineering University, Xiaogan, Hubei 432000, China
| | - Hanghang Liu
- Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang, 443002, China; College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, 443002, China
| | - Huimin Wang
- Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang, 443002, China; College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, 443002, China
| | - Changying Yang
- Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang, 443002, China; College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, 443002, China
| | - Zheng Wang
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital, Wuhan University, Wuhan, 430000, China.
| | - Aixi Yu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital, Wuhan University, Wuhan, 430000, China.
| | - Jiabing Ran
- Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang, 443002, China; College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, 443002, China.
| |
Collapse
|
2
|
Zhang L, Lu J. Rosemary (Rosmarinus officinalis L.) polyphenols and inflammatory bowel diseases: Major phytochemicals, functional properties, and health effects. Fitoterapia 2024; 177:106074. [PMID: 38906386 DOI: 10.1016/j.fitote.2024.106074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/13/2024] [Accepted: 06/16/2024] [Indexed: 06/23/2024]
Abstract
Major polyphenols in Rosmarinus officinalis L. primarily consist of phenolic acids, phenolic diterpenes, and flavonoids, all of which have pharmacological properties including anti-inflammatory and antibacterial characteristics. Numerous in vitro and animal studies have found that rosemary polyphenols have the potential to decrease the severity of intestinal inflammation. The beneficial effects of rosemary polyphenols were associated with anti-inflammatory properties, including improved gut barrier (increased mucus secretion and tight junction), increased antioxidant enzymes, inhibiting inflammatory pathways and cytokines (downregulation of NF-κB, NLRP3 inflammasomes, STAT3 and activation of Nrf2), and modulating gut microbiota community (increased core probiotics and SCFA-producing bacteria, and decreased potential pathogens) and metabolism (changes in SCFA and bile acid metabolites). This paper provides a better understanding of the anti-inflammatory properties of rosemary polyphenols and suggests that rosemary polyphenols might be employed as strong anti-inflammatory agents to prevent intestinal inflammation and lower the risk of inflammatory bowel disease and related diseases.
Collapse
Affiliation(s)
- Lianhua Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Jie Lu
- China Animal Husbandry Group, Beijing 100070, China
| |
Collapse
|
3
|
Wang TB, He Y, Li RC, Yu YX, Liu Y, Qi ZQ. Rosmarinic acid mitigates acrylamide induced neurotoxicity via suppressing endoplasmic reticulum stress and inflammation in mouse hippocampus. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155448. [PMID: 38394736 DOI: 10.1016/j.phymed.2024.155448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/30/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND Acrylamide (ACR) is a widely used compound that is known to be neurotoxic to both experimental animals and humans, causing nerve damage. The widespread presence of ACR in the environment and food means that the toxic risk to human health can no longer be ignored. Rosmarinic acid (RA), a natural polyphenolic compound extracted from the perilla plant, exhibits anti-inflammatory, antioxidant, and other properties. It has also been demon strated to possess promising potential in neuroprotection. However, its role and potential mechanism in treating ACR induced neurotoxicity are still elusive. PURPOSE This study explores whether RA can improve ACR induced neurotoxicity and its possible mechanism. METHODS The behavioral method was used to study RA effect on ACR exposed mice's neurological function. We studied its potential mechanism through metabolomics, Nissl staining, HE staining, immunohistochemical analysis, and Western blot. RESULTS RA pretreatment reversed the increase in mouse landing foot splay and decrease in spontaneous activity caused by 3 weeks of exposure to 50 mg/kg/d ACR. Further experiments demonstrated that RA could prevent ACR induced neuronal apoptosis, significantly downregulate nuclear factor-κB and tumor necrosis factor-α expression, and inhibit NOD-like receptor protein 3 inflammasome activation, thereby reducing inflammation as confirmed by metabolomics results. Additionally, RA treatment prevented endoplasmic reticulum stress (ERS) caused by ACR exposure, as evidenced by the reversal of significant P-IRE1α,TRAF2,CHOP expression increase. CONCLUSION RA alleviates ACR induced neurotoxicity by inhibiting ERS and inflammation. These results provide a deeper understanding of the mechanism of ACR induced neurotoxicity and propose a potential new treatment method.
Collapse
Affiliation(s)
- Tian-Bao Wang
- Guangxi University Medical College, Nanning, Guangxi 530004, China
| | - Ying He
- Guangxi University Medical College, Nanning, Guangxi 530004, China
| | - Rui-Cheng Li
- Guangxi University Medical College, Nanning, Guangxi 530004, China
| | - Yu-Xi Yu
- Guangxi University Medical College, Nanning, Guangxi 530004, China
| | - Yu Liu
- Guangxi University Medical College, Nanning, Guangxi 530004, China.
| | - Zhong-Quan Qi
- Guangxi University Medical College, Nanning, Guangxi 530004, China.
| |
Collapse
|
4
|
Wagdy R, Abdel-Kader RM, El-Khatib AH, Linscheid MW, Handoussa H, Hamdi N. Origanum majorana L. protects against neuroinflammation-mediated cognitive impairment: a phyto-pharmacological study. BMC Complement Med Ther 2023; 23:165. [PMID: 37210483 DOI: 10.1186/s12906-023-03994-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 05/09/2023] [Indexed: 05/22/2023] Open
Abstract
BACKGROUND Neuroinflammation and oxidative stress are critical players in the pathogenesis of numerous neurodegenerative diseases, such as Alzheimer's disease (AD) which is responsible for most cases of dementia in the elderly. With the lack of curative treatments, natural phenolics are potential candidates to delay the onset and progression of such age-related disorders due to their potent antioxidant and anti-inflammatory effects. This study aims at assessing the phytochemical characteristics of Origanum majorana L. (OM) hydroalcohol extract and its neuroprotective activities in a murine neuroinflammatory model. METHODS OM phytochemical analysis was done by HPLC/PDA/ESI-MSn. Oxidative stress was induced in vitro by hydrogen peroxide and cell viability was measured using WST-1 assay. Swiss albino mice were injected intraperitoneally with OM extract at a dose of 100 mg/kg for 12 days and with 250 μg/kg LPS daily starting from day 6 to induce neuroinflammation. Cognitive functions were assessed by novel object recognition and Y-maze behavioral tests. Hematoxylin and eosin staining was used to assess the degree of neurodegeneration in the brain. Reactive astrogliosis and inflammation were assessed by immunohistochemistry using GFAP and COX-2 antibodies, respectively. RESULTS OM is rich in phenolics, with rosmarinic acid and its derivatives being major constituents. OM extract and rosmarinic acid significantly protected microglial cells against oxidative stress-induced cell death (p < 0.001). OM protected against the LPS-induced alteration of recognition and spatial memory in mice (p < 0.001) and (p < 0.05), respectively. Mice that received OM extract prior to the induction of neuroinflammation showed comparable histology to control brains, with no overt neurodegeneration. Furthermore, OM pre-treatment decreased the immunohistochemistry profiler score of GFAP from positive to low positive and COX-2 from low positive to negative in the brain tissue, compared to the LPS group. CONCLUSION These findings highlight the potential preventive effects of OM phenolics against neuroinflammation and pave the way toward drug discovery and development for neurodegenerative disorders.
Collapse
Affiliation(s)
- Reham Wagdy
- Department of Pharmaceutical Biology, German University in Cairo, Cairo, Egypt
| | - Reham M Abdel-Kader
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, New Cairo City, 11835, Egypt
| | - Ahmed H El-Khatib
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
- Department of Chemistry, Humboldt-Universität Zu Berlin, Berlin, Germany
| | | | - Heba Handoussa
- Department of Pharmaceutical Biology, German University in Cairo, Cairo, Egypt
| | - Nabila Hamdi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, New Cairo City, 11835, Egypt.
| |
Collapse
|
5
|
Li M, Li T, Jin J, Xie C, Zhu J. Human amniotic mesenchymal stem cell-conditioned medium inhibited LPS-induced cell injury and inflammation by modulating CD14/TLR4-mediated signaling pathway in monocytes. Mol Immunol 2023; 158:10-21. [PMID: 37087900 DOI: 10.1016/j.molimm.2023.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/04/2023] [Accepted: 04/17/2023] [Indexed: 04/25/2023]
Abstract
Human amniotic mesenchymal stem cells (hAMSCs) have attracted considerable attention as a promising regenerative therapy. Many studies reported that the conditioned medium of hAMSCs (AM-CM) exerted anti-inflammatory and immunomodulatory functions, while its underlying mechanism is poorly understood. In this study, we first confirmed that AM-CM (25%, 50%, 100%) was optimal for anti-inflammation at 24 h. Lipopolysaccharide (LPS)-induced alteration of cell morphology, the decrease of cell proliferation, and the upregulation of cell apoptosis were significantly reversed in AM-CM-treated THP-1 cells. 25% and 50% AM-CM significantly decreased LPS-induced intracellular reactive oxygen species (ROS) production and proinflammatory cytokines secretion. Mechanistically, we found that AM-CM treatment suppressed LPS-induced activation of MAPK and NF-κB pathways by inhibiting CD14/TLR4 in THP-1 cells. Meanwhile, activation of NLRP3 inflammasome was also dose-dependently attenuated by AM-CM treatment. Thus, AM-CM may exert positive influences on the inflammation microenvironment and provide a novel strategy for improving tissue regeneration.
Collapse
Affiliation(s)
- Mei Li
- The Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China; School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Tenglong Li
- The Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Jianliang Jin
- Department of Human Anatomy, Research Centre for Bone and Stem Cells, Key Laboratory for Aging & Disease, The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Chunfeng Xie
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Jianyun Zhu
- Department of Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, China.
| |
Collapse
|
6
|
Wang T, Xu H, Dong R, Wu S, Guo Y, Wang D. Effectiveness of targeting the NLRP3 inflammasome by using natural polyphenols: A systematic review of implications on health effects. Food Res Int 2023; 165:112567. [PMID: 36869555 DOI: 10.1016/j.foodres.2023.112567] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/13/2022] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Globally, inflammation and metabolic disorders pose serious public health problems and are major health concerns. It has been shown that natural polyphenols are effective in the treatment of metabolic diseases, including anti-inflammation, anti-diabetes, anti-obesity, neuron-protection, and cardio-protection. NLRP3 inflammasome, which are multiprotein complexes located within the cytosol, play an important role in the innate immune system. However, aberrant activation of the NLRP3 inflammasome were discovered as essential molecular mechanisms in triggering inflammatory processes as well as implicating it in several major metabolic diseases, such as type 2 diabetes mellitus, obesity, atherosclerosis or cardiovascular disease. Recent studies indicate that natural polyphenols can inhibit NLRP3 inflammasome activation. In this review, the progress of natural polyphenols preventing inflammation and metabolic disorders via targeting NLRP3 inflammasome is systemically summarized. From the viewpoint of interfering NLRP3 inflammasome activation, the health effects of natural polyphenols are explained. Recent advances in other beneficial effects, clinical trials, and nano-delivery systems for targeting NLRP3 inflammasome are also reviewed. NLRP3 inflammasome is targeted by natural polyphenols to exert multiple health effects, which broadens the understanding of polyphenol mechanisms and provides valuable guidance to new researchers in this field.
Collapse
Affiliation(s)
- Taotao Wang
- Department of Clinical Nutrition, Affiliated Hospital of Jiangsu University, 212000 Zhenjiang, China
| | - Hong Xu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| | - Ruixia Dong
- College of Horticulture, Jinling Institute of Technology, 211169 Nanjing, China
| | - Shanshan Wu
- College of Agriculture & Biotechnology, Zhejiang University, 310058 Hanzhou, China
| | - Yuanxin Guo
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China.
| | - Dongxu Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China.
| |
Collapse
|
7
|
Ali FE, Ibrahim IM, Ghogar OM, Abd-alhameed EK, Althagafy HS, Hassanein EH. Therapeutic interventions target the NLRP3 inflammasome in ulcerative colitis: Comprehensive study. World J Gastroenterol 2023; 29:1026-1053. [PMID: 36844140 PMCID: PMC9950862 DOI: 10.3748/wjg.v29.i6.1026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/29/2022] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
One of the significant health issues in the world is the prevalence of ulcerative colitis (UC). UC is a chronic disorder that mainly affects the colon, beginning with the rectum, and can progress from asymptomatic mild inflammation to extensive inflammation of the entire colon. Understanding the underlying molecular mechanisms of UC pathogenesis emphasizes the need for innovative therapeutic approaches based on identifying molecular targets. Interestingly, in response to cellular injury, the NLR family pyrin domain containing 3 (NLRP3) inflammasome is a crucial part of the inflammation and immunological reaction by promoting caspase-1 activation and the release of interleukin-1β. This review discusses the mechanisms of NLRP3 inflammasome activation by various signals and its regulation and impact on UC.
Collapse
Affiliation(s)
- Fares E.M Ali
- Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Islam M. Ibrahim
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Osama M Ghogar
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Esraa K. Abd-alhameed
- Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 12345, Egypt
| | - Hanan S. Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah 12345, Saudi Arabia
| | - Emad H.M. Hassanein
- Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| |
Collapse
|
8
|
Lahlou RA, Samba N, Soeiro P, Alves G, Gonçalves AC, Silva LR, Silvestre S, Rodilla J, Ismael MI. Thymus hirtus Willd. ssp. algeriensis Boiss. and Reut: A Comprehensive Review on Phytochemistry, Bioactivities, and Health-Enhancing Effects. Foods 2022; 11:3195. [PMID: 37430944 PMCID: PMC9601415 DOI: 10.3390/foods11203195] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
Members of the Lamiaceae family are considered chief sources of bioactive therapeutic agents. They are important ornamental, medicinal, and aromatic plants, many of which are used in traditional and modern medicine and in the food, cosmetic, and pharmaceutical industries. In North Africa, on the Mediterranean side, there is the following particularly interesting Lamiaceous species: Thymus hirtus Willd. sp. Algeriensis Boiss. Et Reut. The populations of this endemic plant are distributed from the subhumid to the lower arid zone and are mainly employed as ethnomedicinal remedies in the following Maghreb countries: Algeria, Libya, Morocco, and Tunisia. In fact, they have been applied as antimicrobial agents, antispasmodics, astringents, expectorants, and preservatives for several food products. The species is commonly consumed as a tea or infusion and is used against hypercholesterolemia, diabetes, respiratory ailments, heart disease, and food poisoning. These medicinal uses are related to constituents with many biological characteristics, including antimicrobial, antioxidant, anticancer, anti-ulcer, anti-diabetic, insecticidal, and anti-inflammatory activities. This review aims to present an overview of the botanical characteristics and geographical distribution of Thymus algeriensis Boiss. Et Reut and its traditional uses. This manuscript also examines the phytochemical profile and its correlation with biological activities revealed by in vitro and in vivo studies.
Collapse
Affiliation(s)
- Radhia Aitfella Lahlou
- Chemistry Department, University of Beira Interior, 6201-001 Covilhã, Portugal
- Fiber Materials and Environmental Technologies (FibEnTech), University of Beira Interior, 6201-001 Covilhã, Portugal
- Biology Department, Faculty of Sciences, University of M’Hamed Bougara, Boumerdes 35000, Algeria
- CICS-UBI—Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Nsevolo Samba
- Chemistry Department, University of Beira Interior, 6201-001 Covilhã, Portugal
- Fiber Materials and Environmental Technologies (FibEnTech), University of Beira Interior, 6201-001 Covilhã, Portugal
| | - Pedro Soeiro
- CICS-UBI—Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Gilberto Alves
- CICS-UBI—Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Ana Carolina Gonçalves
- CICS-UBI—Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Luís R. Silva
- CICS-UBI—Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- CPIRN-UDI/IPG—Centro de Potencial e Inovação em Recursos Naturais, Unidade de Investigação Para o Desenvolvimento do Interior do Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal
| | - Samuel Silvestre
- Chemistry Department, University of Beira Interior, 6201-001 Covilhã, Portugal
- CICS-UBI—Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-517 Coimbra, Portugal
| | - Jesus Rodilla
- Chemistry Department, University of Beira Interior, 6201-001 Covilhã, Portugal
- Fiber Materials and Environmental Technologies (FibEnTech), University of Beira Interior, 6201-001 Covilhã, Portugal
| | - Maria Isabel Ismael
- Chemistry Department, University of Beira Interior, 6201-001 Covilhã, Portugal
- Fiber Materials and Environmental Technologies (FibEnTech), University of Beira Interior, 6201-001 Covilhã, Portugal
| |
Collapse
|
9
|
Dahchour A. Anxiolytic and antidepressive potentials of rosmarinic acid: A review with a focus on antioxidant and anti-inflammatory effects. Pharmacol Res 2022; 184:106421. [PMID: 36096427 DOI: 10.1016/j.phrs.2022.106421] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 10/14/2022]
Abstract
Depression and anxiety are the most prevalent neuropsychiatric disorders that have emerged as global health concerns. Anxiolytic and antidepressant drugs, such as benzodiazepines, selective serotonin reuptake inhibitors, monoamine oxidase inhibitors, and tricyclics, are the first line used in treating anxiety and depression. Although these drugs lack efficacy and have a delayed response time and numerous side effects, their widespread abuse and market continue to grow. Over time, traditional practices using natural and phytochemicals as alternative therapies to chemical drugs have emerged to treat many pathological conditions, including anxiety and depression. Recent preclinical studies have demonstrated that the phenolic compound, rosmarinic acid, is effective against several neuropsychiatric disorders, including anxiety and depression. In addition, rosmarinic acid showed various pharmacological effects, such as cardioprotective, hepatoprotective, lung protective, antioxidant, anti-inflammatory, and neuroprotective effects. However, the potentialities of the use of rosmarinic acid in the treatment of nervous system-related disorders, such as anxiety and depression, are less or not yet reviewed. Therefore, the purpose of this review was to present several preclinical and clinical studies, when available, from different databases investigating the effects of rosmarinic acid on anxiety and depression. These studies showed that rosmarinic acid produces advantageous effects on anxiety and depression through its powerful antioxidant and anti-inflammatory properties. This review will examine and discuss the possibility that the anxiolytic and anti-depressive effects of rosmarinic acid could be associated with its potent antioxidant and anti-inflammatory activities.
Collapse
Affiliation(s)
- Abdelkader Dahchour
- Clinical Neurosciences Laboratory, Faculty of Medicine and Pharmacy. Department of Biology, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco.
| |
Collapse
|
10
|
Yu Y, Li Y, Qi K, Xu W, Wei Y. Rosmarinic acid relieves LPS-induced sickness and depressive-like behaviors in mice by activating the BDNF/Nrf2 signaling and autophagy pathway. Behav Brain Res 2022; 433:114006. [PMID: 35843463 DOI: 10.1016/j.bbr.2022.114006] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/06/2022] [Accepted: 07/12/2022] [Indexed: 12/20/2022]
Abstract
Neuroinflammation is one of the main causes of sickness and depressive-like behavior. Rosmarinic acid (RA) has been shown to have a significant anti-neuroinflammatory effect. However, the protective effects and the underlying mechanism of RA on sickness and depressive-like behavior under conditions of neuroinflammation are still unclear. In the present study, we investigated the effects and the underlying mechanism of RA on lipopolysaccharide (LPS)-treated mice with sickness behavior. The behavioral effects of LPS treatment and RA administration were assessed using behavioral tests including a sucrose preference test and an open field test. The neuroprotective effects of RA in conditions of neuroinflammatory injury were determined by HE staining, Nissl staining, and immunofluorescent staining. Moreover, its underlying mechanism was analyzed by using real-time PCR analysis, western blot, and immunofluorescent analysis. The results indicated that RA dramatically mitigated sickness behaviors and histologic brain damage in mice exposed to LPS. In addition, RA administration markedly promoted the expression of brain-derived neurotrophic factor (BDNF)/erythroid 2-related factor 2 (Nrf2), the key regulatory proteins for Nrf2 activation (p21 and p62), the downstream antioxidant enzymes (HO-1, NQO1, GCLC), the autophagy-related proteins (LC3II and Beclin1), and mitochondrial respiratory enzyme genes (ME1, IDH1, 6-PGDH), while reducing the expression of pro-inflammatory genes (CD44, iNOS, TNFα, IL-1β). Moreover, the double-label immunofluorescent analysis revealed that RA increased the fluorescence intensity of LC3 mostly co-localized with neurons and co-expressed with Nrf2. Taken together, our research found that RA could effectively alleviate sickness behaviors and nerve injury caused by neuroinflammation, and its protective effects were mediated by the Nrf2 signaling pathway, which reduced cellular oxidative stress, inflammation, mitochondrial respiratory function damage, and autophagy imbalance. Therefore, RA has the potential to prevent or treat sickness and depressive-like behaviors under conditions of neuroinflammation.
Collapse
Affiliation(s)
- Yi Yu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Ye Li
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Keming Qi
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Wei Xu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Yicong Wei
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| |
Collapse
|
11
|
Rosmarinic Acid Reduces Microglia Senescence: A Novel Therapeutic Approach for the Management of Neuropathic Pain Symptoms. Biomedicines 2022; 10:biomedicines10071468. [PMID: 35884774 PMCID: PMC9312967 DOI: 10.3390/biomedicines10071468] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022] Open
Abstract
The worldwide incidence of neuropathic pain is around 7–8% and is associated with significant and disabling comorbidities (sleep disturbances, depression, anxiety). It is now known that cellular ageing of microglia contributes to neurodegenerative diseases, mood disorders, and, even if with less evidence, chronic pain. The aim of this work was to investigate in vitro and in vivo the senolytic activity of rosmarinic acid (RA) to be exploited for the management of NP symptoms. BV2 cells were stimulated with LPS 500 ng/mL for 24 h. Treatment with RA 1 µM improved cell viability and reduced IL-1ß release leading to an attenuation of neuroinflammation. We then moved on to test the efficacy of RA in reducing microglial senescence. In our model, BV2 cells were stimulated with LPS 500 ng/mL every 72 h for 4 h/day, over a period of 10 days. RA 1 µM reduced the expression of the β-galactosidase enzyme, reduced the release of senescence-associated secretory phenotype (SASP) factors, increased cell viability, and reduced the presence of nuclear foci of senescence (SAHF), well-known cellular senescence markers. In the Spared Nerve Injury (SNI) model, 28 days from surgery, repeated oral administration of RA 5 mg/kg reduced hyperalgesia and NP-associated symptoms, such as anxiety and depression. A reduction of senescence markers was detected on both hippocampal and spinal samples of SNI-treated mice. This study represents a starting point for investigating the role of microglial senescence as a possible pharmacological target in controlling symptoms related to the more advanced stages of peripheral neuropathy.
Collapse
|
12
|
Cai G, Lin F, Wu D, Lin C, Chen H, Wei Y, Weng H, Chen Z, Wu M, Huang E, Ye Z, Ye Q. Rosmarinic Acid Inhibits Mitochondrial Damage by Alleviating Unfolded Protein Response. Front Pharmacol 2022; 13:859978. [PMID: 35652041 PMCID: PMC9149082 DOI: 10.3389/fphar.2022.859978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Mitochondria are essential organelles that perform important roles in cell biologies such as ATP synthesis, metabolic regulation, immunomodulatory, and apoptosis. Parkinson’s disease (PD) is connected with mitochondrial neuronal damage related to mitochondrial unfolded protein response (mtUPR). Rosmarinic acid (RA) is a naturally occurring hydroxylated polyphenolic chemical found in the Boraginaceae and the Labiatae subfamily Nepetoideae. This study looked into RA’s protective effect against mitochondrial loss in the substantia nigra (SN) caused by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), the underlying mechanism associated with the mtUPR. Pretreatment with RA reduced motor impairments and dopaminergic neuronal degeneration in the SN of a mouse model injected with MPTP. Pretreatment of SH-SY5Y cells from cell viability loss, morphological damage, and oxidative stress. Furthermore, RA pre-injection suppressed MPTP-induced mtUPR, lowered the expression of HSPA9, HSPE1, CLPP, LONP1, and SIRT 4, and protected the MPTP-mice and SH-SY5Y cells from mitochondrial failure. These findings imply that RA can prevent Parkinson’s disease by preventing mitochondrial damage in dopaminergic neurons in Parkinson’s disease via alleviating mitochondrial unfolded protein response.
Collapse
Affiliation(s)
- Guoen Cai
- Department of Neurology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology, Institute of Clinical Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Fabin Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology, Institute of Clinical Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, China
- Department of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Dihang Wu
- Department of Neurology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology, Institute of Clinical Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, China
- Department of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Chenxin Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology, Institute of Clinical Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, China
- Department of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Huiyun Chen
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Yicong Wei
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Huidan Weng
- Department of Neurology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology, Institute of Clinical Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Zhiting Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology, Institute of Clinical Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Minxia Wu
- Public Technology Service Center, Fujian Medical University, Fuzhou, China
| | - En Huang
- Fujian Key Laboratory of Brain Aging and Neurodegenerative Diseases, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Zucheng Ye
- Fujian Key Laboratory of Brain Aging and Neurodegenerative Diseases, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- *Correspondence: Zucheng Ye, ; Qinyong Ye,
| | - Qinyong Ye
- Department of Neurology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology, Institute of Clinical Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, China
- *Correspondence: Zucheng Ye, ; Qinyong Ye,
| |
Collapse
|
13
|
da Silva GB, Yamauchi MA, Zanini D, Bagatini MD. Novel possibility for cutaneous melanoma treatment by means of rosmarinic acid action on purinergic signaling. Purinergic Signal 2022; 18:61-81. [PMID: 34741236 PMCID: PMC8570242 DOI: 10.1007/s11302-021-09821-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 10/12/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer cases have increased significantly in Brazil and worldwide, with cutaneous melanoma (CM) being responsible for nearly 57,000 deaths in the world. Thus, this review article aims at exploring and proposed hypotheses with respect to the possibility that RA can be a promising and alternative compound to be used as an adjuvant in melanoma treatment, acting on purinergic signaling. The scarcity of articles evidencing the action of this compound in this signaling pathway requires further studies. Considering diverse evidence found in the literature, we hypothesize that RA can be an effective candidate for the treatment of CM acting as a modulating molecule of purinergic cellular pathway through P2X7 blocking, mitigating the Warburg effect, and as antagonic molecule of the P2Y12 receptor, reducing the formation of adhesive molecules that prevent adherence in tumor cells. In this way, our proposals for CM treatment based on targeting purinergic signaling permeate the integral practice, going from intracell to extracell. Undoubtedly, much is still to be discovered and elucidated about this promising compound, this paper being an interesting work baseline to support more research studies.
Collapse
Affiliation(s)
- Gilnei Bruno da Silva
- Graduate Program in Biomedical Sciences, Universidade Federal da Fronteira Sul, Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Milena Ayumi Yamauchi
- Graduate Program in Biomedical Sciences, Universidade Federal da Fronteira Sul, Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Daniela Zanini
- Graduate Program in Biomedical Sciences, Universidade Federal da Fronteira Sul, Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Margarete Dulce Bagatini
- Graduate Program in Biomedical Sciences, Universidade Federal da Fronteira Sul, Fronteira Sul, Chapecó, SC, 89815-899, Brazil.
| |
Collapse
|
14
|
Wang H, Zhang J, Lu Z, Dai W, Ma C, Xiang Y, Zhang Y. Identification of potential therapeutic targets and mechanisms of COVID-19 through network analysis and screening of chemicals and herbal ingredients. Brief Bioinform 2022; 23:bbab373. [PMID: 34505138 PMCID: PMC8499921 DOI: 10.1093/bib/bbab373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/06/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
After experiencing the COVID-19 pandemic, it is widely acknowledged that a rapid drug repurposing method is highly needed. A series of useful drug repurposing tools have been developed based on data-driven modeling and network pharmacology. Based on the disease module, we identified several hub proteins that play important roles in the onset and development of the COVID-19, which are potential targets for repositioning approved drugs. Moreover, different network distance metrics were applied to quantify the relationship between drug targets and COVID-19 disease targets in the protein-protein-interaction (PPI) network and predict COVID-19 therapeutic effects of bioactive herbal ingredients and chemicals. Furthermore, the tentative mechanisms of candidates were illustrated through molecular docking and gene enrichment analysis. We obtained 15 chemical and 15 herbal ingredient candidates and found that different drugs may play different roles in the process of virus invasion and the onset and development of the COVID-19 disease. Given pandemic outbreaks, our method has an undeniable immense advantage in the feasibility analysis of drug repurposing or drug screening, especially in the analysis of herbal ingredients.
Collapse
Affiliation(s)
- Hong Wang
- Chongqing Key Research Laboratory for Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
- Medical Data Science Academy, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Engineering Research Center for Clinical Big-data and Drug Evaluation, Chongqing Medical University, Chongqing, 401331, China
| | - Jingqing Zhang
- Chongqing Key Research Laboratory for Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Zhigang Lu
- Department of Neurology, The First People's Hospital of Jingmen affiliated to Hubei Minzu University, Jingmen, 448000, China
| | - Weina Dai
- Chongqing Key Research Laboratory for Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Chuanjiang Ma
- Chongqing Key Research Laboratory for Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Yun Xiang
- Gynaecology and Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou, 510623, China
| | - Yonghong Zhang
- Chongqing Key Research Laboratory for Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
- Medical Data Science Academy, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Engineering Research Center for Clinical Big-data and Drug Evaluation, Chongqing Medical University, Chongqing, 401331, China
| |
Collapse
|
15
|
Wei Y, Hu Y, Qi K, Li Y, Chen J, Wang R. Dihydromyricetin improves LPS-induced sickness and depressive-like behaviors in mice by inhibiting the TLR4/Akt/HIF1a/NLRP3 pathway. Behav Brain Res 2022; 423:113775. [DOI: 10.1016/j.bbr.2022.113775] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 01/02/2022] [Accepted: 01/27/2022] [Indexed: 02/06/2023]
|
16
|
Silva AM, Félix LM, Teixeira I, Martins-Gomes C, Schäfer J, Souto EB, Santos DJ, Bunzel M, Nunes FM. Orange thyme: Phytochemical profiling, in vitro bioactivities of extracts and potential health benefits. Food Chem X 2021; 12:100171. [PMID: 34901827 PMCID: PMC8639431 DOI: 10.1016/j.fochx.2021.100171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/18/2021] [Accepted: 11/24/2021] [Indexed: 11/30/2022] Open
Abstract
The use of orange thyme as food, condiments and infusions has health benefits. Phytochemical characterization of hydroethanolic and aqueous extracts was performed. Orange thyme extracts present neuroprotective, anti-aging and antioxidant activity. Orange thyme extracts present high anti-inflammatory activity with no cytotoxicity.
Orange thyme (Thymus fragrantissimus) is becoming widely used in food as a condiment and herbal tea, nevertheless its chemical composition and potential bioactivities are largely unknown. Thus the objective of this work is to obtain a detailed phytochemical profile of T. fragrantissimus by exhaustive ethanolic extraction and by aqueous decoction mimicking its consumption. Extracts showed high content in rosmarinic acid, luteolin-O-hexuronide and eriodictyol-O-hexuronide; these were the main phenolic compounds present in orange thyme accounting for 85% of the total phenolic compounds. Orange thyme extracts presented high scavenging activity against nitric oxide and superoxide radicals. Both extracts presented significant inhibitory effect of tyrosinase activity and moderate anti-acetylcholinesterase activity. Both extracts showed a good in vitro anti-inflammatory activity and a weak anti-proliferative/cytotoxic activity against Caco-2 and HepG2 cell lines supporting its safe use. Orange thyme is a very good source of bioactive compounds with potential use in different food and nutraceutical industries.
Collapse
Affiliation(s)
- Amélia M Silva
- Department of Biology and Environment (DeBA-ECVA), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal.,Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Luís M Félix
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Isabel Teixeira
- Department of Biology and Environment (DeBA-ECVA), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Carlos Martins-Gomes
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal.,Chemistry Research Center -Vila Real (CQ-VR), Food and Wine Chemistry Lab, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Judith Schäfer
- Department of Food Chemistry and Phytochemistry - Karlsruhe Institute of Technology (KIT), Germany
| | - Eliana B Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.,CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar 4710-057 Braga, Portugal
| | - Dario J Santos
- Department of Biology and Environment (DeBA-ECVA), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal.,Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Mirko Bunzel
- Chemistry Research Center -Vila Real (CQ-VR), Food and Wine Chemistry Lab, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Fernando M Nunes
- Department of Food Chemistry and Phytochemistry - Karlsruhe Institute of Technology (KIT), Germany.,Department of Chemistry, University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal Vila Real, Portugal
| |
Collapse
|
17
|
Wei XY, Zhang ZZ, Xie T, Xie YS, Sun Y, Yang T, Xu WW, Liu HR, Li W, Yu DH. Pharmacokinetics Study of Rabdosia Rubescens Drop Pills Based on UPLC-MS/MS. CURR PHARM ANAL 2021. [DOI: 10.2174/1573412918666211230095348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Rabdosia rubescens drop pills have the effects of clearing away heat and toxin, detumescence, relieving pain.
Objective:
A simple and sensitive method for simultaneous determination of oridonin, ponicidin, and rosmarinic acid in rat plasma was developed based on ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS).
Methods:
Chromatographic separation was performed on a Waters ACQUITY UPLC BEH C18 column (2.1 × 100 mm, 1.7 µm) with a mobile phase consisting of water containing 0.2% formic acid (mobile phase A) and methanol (mobile phase B) at a flow rate of 0.3 mL/min over a total run time of 3.8 min. All analytes were measured with optimized multiple reaction monitoring (MRM) in positive and negative ion ESI mode.
Results:
The transitions of oridonin, ponicidin, rosmarinic acid, diphenhydramine, and chloramphenicol were 365.3→347.3, 363.3→345.2, 359.0→160.9, 256.0→167.2, and 321.1→151.9, respectively. The linear ranges were 1-256 ng/mL for ponicidin and rosmarinic acid and 2-512 ng/mL for oridonin. The validated method wasstable and reliable. There was no significant difference in the half-life (t1/2) of the three analytes at three doses. The area under the curve (AUC0-t) and peak concentration (Cmax) of the three analytes decreased linearly in each dose range, and the linear correlation R2 of each analyte under the three doses was greater than 0.95.
Conclusion:
This method was successfully applied to pharmacokinetic studies of oridonin, ponicidin, and rosmarinic acid in rat plasma after intragastric administration of Rabdosia rubescens drop pills.
Collapse
Affiliation(s)
- Xi-Yu Wei
- North China University of Science and Technology, Hebei, Tangshan 063210, P.R. China
| | - Zhen-Zhen Zhang
- North China University of Science and Technology, Hebei, Tangshan 063210, P.R. China
| | - Tao Xie
- North China University of Science and Technology, Hebei, Tangshan 063210, P.R. China
| | - Yue-Sheng Xie
- North China University of Science and Technology, Hebei, Tangshan 063210, P.R. China
| | - Yue Sun
- North China University of Science and Technology, Hebei, Tangshan 063210, P.R. China
| | - Ting Yang
- North China University of Science and Technology, Hebei, Tangshan 063210, P.R. China
| | - Wen-Wu Xu
- North China University of Science and Technology, Hebei, Tangshan 063210, P.R. China
| | - Hou-Ru Liu
- North China University of Science and Technology, Hebei, Tangshan 063210, P.R. China
| | - Wei Li
- North China University of Science and Technology, Hebei, Tangshan 063210, P.R. China
| | - De-Hong Yu
- North China University of Science and Technology, Hebei, Tangshan 063210, P.R. China
| |
Collapse
|
18
|
Yong C, Zhang Z, Huang G, Yang Y, Zhu Y, Qian L, Tian F, Liu L, Wu Q, Xu Z, Chen C, Zhao J, Gao K, Zhou E. Exploring the Critical Components and Therapeutic Mechanisms of Perilla frutescens L. in the Treatment of Chronic Kidney Disease via Network Pharmacology. Front Pharmacol 2021; 12:717744. [PMID: 34899287 PMCID: PMC8662752 DOI: 10.3389/fphar.2021.717744] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 11/10/2021] [Indexed: 12/17/2022] Open
Abstract
Chronic kidney disease (CKD) is a chronic progressive disease that seriously threatens human health. Some patients will continue to progress into the CKD stage 3–5 (also called chronic renal failure), which is mainly manifested by a decline in renal function and multi-system damage. Perilla frutescens (L.) Britton. (Lamiaceae) is one of the most widely used traditional Chinese medicine (TCM) herbs in CKD, especially in CKD stage 3–5. But its active components and mechanisms are still unclear. In this study, we used network pharmacology to analyze the active components of P. frutescens and the main therapeutic targets for intervention in CKD stage 3–5. Then, the key components were selected for enrichment analysis and identified by high performance liquid chromatograph (HPLC). Finally, we verified the critical components through molecular docking, and in vitro experiments. The results show that 19 main active components of P. frutescens were screened, and 108 targets were intersected with CKD stage 3–5. The PPI network was constructed and found that the core nodes AKT1, TP53, IL6, TNF, and MAPK1 may be key therapeutic targets. Enrichment analysis shows that related targets may be involved in regulating various biological functions, and play a therapeutic role in CKD stage 3–5 by regulating apoptosis, T cell receptor, and PI3K-AKT signaling pathways. Molecular docking indicates that the key active components were well docked with its corresponding targets. Five active components were identified and quantified by HPLC. According to the results, luteolin was selected as the critical component for further verification. In vitro experiments have shown that luteolin can effectively alleviate adriamycin (ADR)-induced renal tubular apoptosis and suppress AKT and p53 phosphorylation. The effects of luteolin to reduce apoptosis may be mediated by inhibiting oxidative stress and downregulating the mitogen-activated protein kinase (MAPK) and p53 pathways. In general, we screened and analyzed the possible active components, therapeutic targets and pathways of P. frutescens for treating CKD. Our findings revealed that luteolin can reduce renal tubular epithelial cell apoptosis and may be the critical component of P. frutescens in the treatment of CKD. It provides references and direction for further research.
Collapse
Affiliation(s)
- Chen Yong
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Zhengchun Zhang
- Division of Nephrology, JiangYan Hospital affiliated to Nanjing University of Chinese Medicine, Taizhou, China
| | - Guoshun Huang
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Yang Yang
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Yiye Zhu
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Leilei Qian
- Division of Nephrology, The People's Hospital of Rugao, Rugao, China
| | - Fang Tian
- Research Center of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Li Liu
- Research Center of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Qijing Wu
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Zhongchi Xu
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Chong Chen
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Jing Zhao
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Kun Gao
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Enchao Zhou
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| |
Collapse
|
19
|
Hassanzadeh-Taheri M, Ahmadi-Zohan A, Mohammadifard M, Hosseini M. Rosmarinic acid attenuates lipopolysaccharide-induced neuroinflammation and cognitive impairment in rats. J Chem Neuroanat 2021; 117:102008. [PMID: 34314849 DOI: 10.1016/j.jchemneu.2021.102008] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 10/20/2022]
Abstract
It has been recently demonstrated that rosmarinic acid (RA) through modulation in the amyloidogenic pathway exhibit neuroprotective potential in Alzheimer's disease. However, its effects on non-amyloidogenic pathways such as neuroinflammation (NI) and oxidative stress have not been elucidated carefully. Hence, this study aimed to investigate the effect of RA on cognitive function, cortical and hippocampal oxidant-antioxidant balance, and proinflammatory cytokines production in lipopolysaccharide (LPS)-induced NI in rats. NI was induced by intracerebroventricular injection of LPS (50 μg/20 μL; 10 μL into each ventricle) in Wistar rats. RA (25 and 50 mg/kg.) was intraperitoneally administrated to the experimental groups 30 min before the LPS injection and continued once per day for seven days. Cognitive function was investigated by the Y-maze test, and the production of proinflammatory cytokines and oxidative stress markers were evaluated in their hippocampi (HIP) and prefrontal cortex (PFC). In addition, neuronal damage was evaluated in the HIP subfields histologically. The RA administration could alleviate cognitive impairments caused by NI in LPS-treated rats as evidenced by improved working memory and attenuated neuronal injury in the HIP subfields. RA treatment in a dose-dependent manner prevented the overproduction of tumor necrosis factor-alpha (TNF-α), interleukin 1 beta (IL-1β), and IL-6 in both the HIP and PFC. RA significantly alleviated the HIP and PFC levels of malondialdehyde (MDA) and nitric oxide (NOx) and enhanced the superoxide dismutase (SOD) activity. These findings demonstrated that RA could also exert its neuroprotective effects by modulating non-amyloidogenic pathways such as inflammation and oxidative stress.
Collapse
Affiliation(s)
- Mohammadmehdi Hassanzadeh-Taheri
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand 9717853577, Iran; Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand 9717853577, Iran
| | - Atiyeh Ahmadi-Zohan
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand 9717853577, Iran
| | - Mahtab Mohammadifard
- Department of Pathology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand 9717853577, Iran
| | - Mehran Hosseini
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand 9717853577, Iran; Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand 9717853577, Iran.
| |
Collapse
|
20
|
Pintha K, Chaiwangyen W, Yodkeeree S, Suttajit M, Tantipaiboonwong P. Suppressive Effects of Rosmarinic Acid Rich Fraction from Perilla on Oxidative Stress, Inflammation and Metastasis Ability in A549 Cells Exposed to PM via C-Jun, P-65-Nf-Κb and Akt Signaling Pathways. Biomolecules 2021; 11:1090. [PMID: 34439757 PMCID: PMC8392772 DOI: 10.3390/biom11081090] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/13/2022] Open
Abstract
Particulate matter from forest fires (PMFF) is an environmental pollutant causing oxidative stress, inflammation, and cancer cell metastasis due to the presence of polycyclic aromatic hydrocarbons (PAHs). Perilla seed meal contains high levels of polyphenols, including rosmarinic acid (RA). The aim of this study is to determine the anti-oxidative stress, anti-inflammation, and anti-metastasis actions of rosmarinic acid rich fraction (RA-RF) from perilla seed meal and its underlying molecular mechanisms in A549 cells exposed to PMFF. PMFF samples were collected via the air sampler at the University of Phayao, Thailand, and their PAH content were analyzed using GC-MS. Fifteen PAH compounds were detected in PMFF. The PMFF significantly induced intracellular reactive oxygen species (ROS) production, the mRNA expression of pro-inflammatory cytokines, MMP-9 activity, invasion, migration, the overexpression of c-Jun and p-65-NF-κB, and Akt phosphorylation. Additionally, the RA-RF significantly reduced ROS production, IL-6, IL-8, TNF-α, and COX-2. RA-RF could also suppress MMP-9 activity, migration, invasion, and the phosphorylation activity of c-Jun, p-65-NF-κB, and Akt. Our findings revealed that RA-RF has antioxidant, anti-inflammatory, and anti-metastasis properties via c-Jun, p-65-NF-κB, and Akt signaling pathways. RA-RF may be further developed as an inhalation agent for the prevention of lung inflammation and cancer metastasis induced by PM exposure.
Collapse
Affiliation(s)
- Komsak Pintha
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand; (K.P.); (W.C.); (M.S.)
| | - Wittaya Chaiwangyen
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand; (K.P.); (W.C.); (M.S.)
| | - Supachai Yodkeeree
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Maitree Suttajit
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand; (K.P.); (W.C.); (M.S.)
| | - Payungsak Tantipaiboonwong
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand; (K.P.); (W.C.); (M.S.)
| |
Collapse
|
21
|
Nicardipine Inhibits Priming of the NLRP3 Inflammasome via Suppressing LPS-Induced TLR4 Expression. Inflammation 2021; 43:1375-1386. [PMID: 32239395 DOI: 10.1007/s10753-020-01215-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The Nod-like receptor protein 3 (NLRP3) inflammasome is a multi-protein complex composed of NLRP3, pro-caspase-1, and apoptosis-associated speck-like protein that contains a caspase recruitment domain (ASC). After NLRP3 priming by lipopolysaccharide (LPS), the ligand of toll-like receptor 4 (TLR4), activation of the NLRP3 inflammasome triggers caspase-1 maturation, leading to pyroptosis and release of interleukin-1beta (IL-1beta). Expression of TLR4 modulates LPS-triggered inflammatory cascades as well as the NLRP3 signaling. L-type calcium channel antagonists are widely used as anti-hypertensive drugs and also exert anti-inflammatory effects through inhibiting release of cytokines including IL-1beta. However, few studies reveal effects of L-type calcium channel antagonists on the NLRP3 inflammasome. In this study, we investigated the effects of nicardipine and verapamil, both L-type calcium channel antagonists, on the NLRP3 inflammasome using differentiated THP-1 cells. Pyroptosis or levels of IL-1beta and caspase-1 were assayed by flow cytometry or enzyme-linked immunosorbent assay, respectively. ASC oligomerization was assayed by immunofluorescence microscopy. Expression of NLRP3 or TLR4 was assayed by polymerase chain reaction and immunoblotting. Nuclear factor-kappaB (NF-kappaB) pathway was also studied. Our results showed that pyroptosis and IL-1beta release were attenuated by nicardipine, but not verapamil. Nicardipine also mitigated caspase-1 activation, inhibited ASC oligomerization, and reduced NLRP3 expression. Furthermore, nicardipine downregulated phosphorylation or nuclear translocation of NF-kappaB p65, consistent with the inhibitory effect of nicardipine on LPS-induced TLR4 expression. In conclusion, nicardipine exerted anti-inflammatory effects through inhibiting NLRP3 inflammasome pathway. Nicardipine may mitigate NLRP3 priming via inhibiting NF-kappaB activation, mediated by suppressing LPS-induced TLR4 expression.
Collapse
|
22
|
Solini A, Rossi C, Santini E, Giuntini M, Raggi F, Parolini F, Biancalana E, Del Prete E, Bonuccelli U, Ceravolo R. P2X7 receptor/NLRP3 inflammasome complex and α-synuclein in peripheral blood mononuclear cells: a prospective study in neo-diagnosed, treatment-naïve Parkinson's disease. Eur J Neurol 2021; 28:2648-2656. [PMID: 33991356 DOI: 10.1111/ene.14918] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/06/2021] [Indexed: 01/20/2023]
Abstract
BACKGROUND AND PURPOSE Neuroinflammation and probably systemic inflammation, with abnormal α-synuclein deposition, participate in the development of Parkinson's disease (PD). The P2X7 receptor/NLRP3 inflammasome complex is upregulated in the brain of PD patients. By a prospective approach, the degree of systemic activation of such complex, and its regulatory mechanisms, were explored in treatment-naïve PD individuals. METHODS The expression and functional activity of the inflammasome were measured in peripheral blood mononuclear cells of 25 newly diagnosed PD patients and 25 controls at baseline and after 12 months of pharmacological treatment, exploring the intracellular signalling involved and its epigenetic regulation. RESULTS De novo PD patients were characterized by a systemic hyper-expression of the P2X7R/NLRP3 inflammasome platform, probably able to modulate lymphomonocyte α-synuclein, whose brain deposits represent the main pathogenetic factor of PD. A reduced c-Jun N-terminal kinase (JNK) phosphorylation might be the intracellular signalling mediating this effect. miR-7 and miR-30, implied in the pathogenesis of PD and in the post-transcriptional control of α-synuclein and NLRP3 expression, were also increased in PD. After 1 year of usual anti-Parkinson treatments, such inflammatory platform was significantly reduced. CONCLUSIONS Mononuclear cells of newly diagnosed PD subjects display a hyper-expression of the P2X7R/NLRP3 inflammasome platform that seems to modulate cellular α-synuclein content and is reduced after PD treatment; an impaired JNK phosphorylation might be the intracellular signalling mediating this effect, undergoing an epigenetic regulation by miR-7 and miR-30.
Collapse
Affiliation(s)
- Anna Solini
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, Pisa, Italy
| | - Chiara Rossi
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, Pisa, Italy
| | | | - Martina Giuntini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Francesco Raggi
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, Pisa, Italy
| | - Federico Parolini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Edoardo Biancalana
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Eleonora Del Prete
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Ubaldo Bonuccelli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Roberto Ceravolo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
23
|
Network Pharmacology and Molecular Docking Suggest the Mechanism for Biological Activity of Rosmarinic Acid. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5190808. [PMID: 33936238 PMCID: PMC8055417 DOI: 10.1155/2021/5190808] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 02/24/2021] [Accepted: 03/30/2021] [Indexed: 12/31/2022]
Abstract
Rosmarinic acid (RosA) is a natural phenolic acid compound, which is mainly extracted from Labiatae and Arnebia. At present, there is no systematic analysis of its mechanism. Therefore, we used the method of network pharmacology to analyze the mechanism of RosA. In our study, PubChem database was used to search for the chemical formula and the Chemical Abstracts Service (CAS) number of RosA. Then, the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) was used to evaluate the pharmacodynamics of RosA, and the Comparative Toxicogenomics Database (CTD) was used to identify the potential target genes of RosA. In addition, the Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of target genes were carried out by using the web-based gene set analysis toolkit (WebGestalt). At the same time, we uploaded the targets to the STRING database to obtain the protein interaction network. Then, we carried out a molecular docking about targets and RosA. Finally, we used Cytoscape to establish a visual protein-protein interaction network and drug-target-pathway network and analyze these networks. Our data showed that RosA has good biological activity and drug utilization. There are 55 target genes that have been identified. Then, the bioinformatics analysis and network analysis found that these target genes are closely related to inflammatory response, tumor occurrence and development, and other biological processes. These results demonstrated that RosA can act on a variety of proteins and pathways to form a systematic pharmacological network, which has good value in drug development and utilization.
Collapse
|
24
|
Zhang L, Zhang Y, Zhu M, Pei L, Deng F, Chen J, Zhang S, Cong Z, Du W, Xiao X. An Integrative Pharmacology-Based Strategy to Uncover the Mechanism of Xiong-Pi-Fang in Treating Coronary Heart Disease with Depression. Front Pharmacol 2021; 12:590602. [PMID: 33867976 PMCID: PMC8048422 DOI: 10.3389/fphar.2021.590602] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 02/11/2021] [Indexed: 12/24/2022] Open
Abstract
Objectives: This study aimed to explore the mechanism of Xiong-Pi-Fang (XPF) in the treatment of coronary heart disease (CHD) with depression by an integrative strategy combining serum pharmacochemistry, network pharmacology analysis, and experimental validation. Methods: An ultrahigh performance liquid chromatography-quadrupole-time-of-flight tandem mass spectrometry (UPLC-Q-TOF/MS) method was constructed to identify compounds in rat serum after oral administration of XPF, and a component-target network was established using Cytoscape, between the targets of XPF ingredients and CHD with depression. Furthermore, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed to deduce the mechanism of XPF in treating CHD with depression. Finally, in a chronic unpredictable mild stress (CUMS)-and isoproterenol (ISO)-induced rat model, TUNEL was used to detect the apoptosis index of the myocardium and hippocampus, ELISA and western blot were used to detect the predicted hub targets, namely AngII, 5-HT, cAMP, PKA, CREB, BDNF, Bcl-2, Bax, Cyt-c, and caspase-3. Results: We identified 51 compounds in rat serum after oral administration of XPF, which mainly included phenolic acids, saponins, and flavonoids. Network pharmacology analysis revealed that XPF may regulate targets, such as ACE2, HTR1A, HTR2A, AKT1, PKIA, CREB1, BDNF, BCL2, BAX, CASP3, cAMP signaling pathway, and cell apoptosis process in the treatment of CHD with depression. ELISA analysis showed that XPF decreased Ang-II content in the circulation and central nervous system, inhibited 5-HT levels in peripheral circulation, and increased 5-HT content in the central nervous system and cAMP content in the myocardia and hippocampus. Meanwhile, western blot analysis indicated that XPF could upregulate the expression levels of PKA, CREB, and BDNF both in the myocardia and hippocampus. TUNEL staining indicated that the apoptosis index of myocardial and hippocampal cells increased in CUMS-and ISO-induced CHD in rats under depression, and XPF could increase the expression of Bcl-2, inhibit the expression of Bax, Cyt-c, and caspase-3, and rectify the injury of the hippocampus and myocardium, which exerted antidepressant and antimyocardial ischemia effects. Conclusion: Our study proposed an integrated strategy, combining serum pharmacochemistry and network pharmacology to investigate the mechanisms of XPF in treating CHD with depression. The mechanism of XPF in treating CHD with depression may be related to the activation of the cAMP signaling pathway and the inhibition of the apoptosis.
Collapse
Affiliation(s)
- Lihong Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yu Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mingdan Zhu
- Second Affiliated Hospital, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Limin Pei
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Fangjun Deng
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - JinHong Chen
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shaoqiang Zhang
- Second Affiliated Hospital, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zidong Cong
- Second Affiliated Hospital, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wuxun Du
- Second Affiliated Hospital, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xuefeng Xiao
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
25
|
Welcome MO, Mastorakis NE. The taste of neuroinflammation: Molecular mechanisms linking taste sensing to neuroinflammatory responses. Pharmacol Res 2021; 167:105557. [PMID: 33737243 DOI: 10.1016/j.phrs.2021.105557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 02/07/2023]
Abstract
Evidence indicates a critical role of neuroinflammatory response as an underlying pathophysiological process in several central nervous system disorders, including neurodegenerative diseases. However, the molecular mechanisms that trigger neuroinflammatory processes are not fully known. The discovery of bitter taste receptors in regions other than the oral cavity substantially increased research interests on their functional roles in extra-oral tissues. It is now widely accepted that bitter taste receptors, for instance, in the respiratory, intestinal, reproductive and urinary tracts, are crucial not only for sensing poisonous substances, but also, act as immune sentinels, mobilizing defense mechanisms against pathogenic aggression. The relatively recent discovery of bitter taste receptors in the brain has intensified research investigation on the functional implication of cerebral bitter taste receptor expression. Very recent data suggest that responses of bitter taste receptors to neurotoxins and microbial molecules, under normal condition, are necessary to prevent neuroinflammatory reactions. Furthermore, emerging data have revealed that downregulation of key components of the taste receptor signaling cascade leads to increased oxidative stress and inflammasome signaling in neurons that ultimately culminate in neuroinflammation. Nevertheless, the mechanisms that link taste receptor mediated surveillance of the extracellular milieu to neuroinflammatory responses are not completely understood. This review integrates new data on the molecular mechanisms that link bitter taste receptor sensing to neuroinflammatory responses. The role of bitter taste receptor-mediated sensing of toxigenic substances in brain disorders is also discussed. The therapeutic significance of targeting these receptors for potential treatment of neurodegenerative diseases is also highlighted.
Collapse
Affiliation(s)
- Menizibeya O Welcome
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Nile University of Nigeria, Abuja, Nigeria.
| | | |
Collapse
|
26
|
Wei Y, Chen J, Cai GE, Lu W, Xu W, Wang R, Lin Y, Yang C. Rosmarinic Acid Regulates Microglial M1/M2 Polarization via the PDPK1/Akt/HIF Pathway Under Conditions of Neuroinflammation. Inflammation 2021; 44:129-147. [PMID: 32940818 DOI: 10.1007/s10753-020-01314-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Microglia are resident macrophage-like cells in the central nervous system (CNS). The induction of microglial activation dampens neuroinflammation-related diseases by promoting microglial (re)polarization to the anti-inflammatory (M2) phenotype and can serve as a potential therapeutic approach. Mitochondrial respiration and metabolic reprogramming are required for the anti-inflammatory response of M2 macrophages. However, whether these mitochondrial-dependent pathways are involved in microglial (re)polarization to the anti-inflammatory (M2) phenotype under conditions of lipopolysaccharide (LPS)-induced neuroinflammation remains unclear. Moreover, the mechanisms that coordinate mitochondrial respiration and the functional reprogramming of microglial cells have not been fully elucidated. Rosmarinic acid (RA) possesses antioxidative and anti-inflammatory activities, and we previously reported that RA markedly suppresses LPS-stimulated M1 microglial activation in mice. In this study, we found that RA suppresses M1 microglial polarization and promotes microglial polarization to the M2 phenotype under conditions of neuroinflammation. We identified an increase in mitochondrial respiration and found that metabolic reprogramming is required for the RA-mediated promotion of microglial polarization to the M2 phenotype under LPS-induced neuroinflammation conditions. Hypoxia-inducible factor (HIF) subunits are the key effector molecules responsible for the effects of RA on the restoration of mitochondrial function, metabolic reprogramming, and phenotypic polarization to M2 microglia. The phosphoinositide-dependent protein kinase 1 (PDPK1)/Akt/mTOR pathway is involved in the RA-mediated regulation of HIF expression and increase in M2 marker expression. We propose that the inhibition of PDPK1/Akt/HIFs by RA might be a potential therapeutic approach for inhibiting neuroinflammation through the regulation of microglial M1/M2 polarization. Graphical abstract Schematic of the mechanism through which RA suppresses LPS-induced neuroinflammation by promoting microglial polarization to the M2 phenotype via PDPK1/Akt/HIFs. The bold arrows indicate the direction of the effects of RA (i.e., inhibitory or promoting effects on cytokines or mediators).
Collapse
Affiliation(s)
- Yicong Wei
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Jianxiong Chen
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Guo-En Cai
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Wei Lu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Wei Xu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Ruiguo Wang
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Yu Lin
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
- Fujian University of Traditional Chinese Medicine, No. 1 Qiuyang Road, Minhou Shangjie, Fuzhou, China.
| | - Chengzi Yang
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
- Fujian University of Traditional Chinese Medicine, No. 1 Qiuyang Road, Minhou Shangjie, Fuzhou, China.
| |
Collapse
|
27
|
Marinho S, Illanes M, Ávila-Román J, Motilva V, Talero E. Anti-Inflammatory Effects of Rosmarinic Acid-Loaded Nanovesicles in Acute Colitis through Modulation of NLRP3 Inflammasome. Biomolecules 2021; 11:162. [PMID: 33530569 PMCID: PMC7912577 DOI: 10.3390/biom11020162] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/15/2021] [Accepted: 01/22/2021] [Indexed: 12/17/2022] Open
Abstract
Ulcerative colitis (UC), one of the two main types of inflammatory bowel disease, has no effective treatment. Rosmarinic acid (RA) is a polyphenol that, when administered orally, is metabolised in the small intestine, compromising its beneficial effects. We used chitosan/nutriose-coated niosomes loaded with RA to protect RA from gastric degradation and target the colon and evaluated their effect on acute colitis induced by 4% dextran sodium sulphate (DSS) for seven days in mice. RA-loaded nanovesicles (5, 10 and 20 mg/kg) or free RA (20 mg/kg) were orally administered from three days prior to colitis induction and during days 1, 3, 5 and 7 of DSS administration. RA-loaded nanovesicles improved body weight loss and disease activity index as well as increased mucus production and decreased myeloperoxidase activity and TNF-α production. Moreover, RA-loaded nanovesicles downregulated protein expression of inflammasome components such as NLR family pyrin domain-containing 3 (NLRP3), adaptor protein (ASC) and caspase-1, and the consequent reduction of IL-1β levels. Furthermore, nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) protein expression increased after the RA-loaded nanovesicles treatment However, these mechanistic changes were not detected with the RA-free treatment. Our findings suggest that the use of chitosan/nutriose-coated niosomes to increase RA local bioavailability could be a promising nutraceutical strategy for oral colon-targeted UC therapy.
Collapse
Affiliation(s)
- Sonia Marinho
- Health Sciences Center, Federal University of Recôncavo da Bahia, Santo Antônio de Jesus 44430-400, Brazil;
| | - Matilde Illanes
- Department of Normal and Pathological Cytology and Histology, Universidad de Sevilla, 41009 Seville, Spain;
| | - Javier Ávila-Román
- Department of Biochemistry and Biotechnology, Faculty of Chemistry, Universitat Rovira i Virgili, 43007 Tarragona, Spain;
| | - Virginia Motilva
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain;
| | - Elena Talero
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain;
| |
Collapse
|
28
|
Zhang T, Ma S, Liu C, Hu K, Xu M, Wang R. Rosmarinic Acid Prevents Radiation-Induced Pulmonary Fibrosis Through Attenuation of ROS/MYPT1/TGFβ1 Signaling Via miR-19b-3p. Dose Response 2020; 18:1559325820968413. [PMID: 33149731 PMCID: PMC7580151 DOI: 10.1177/1559325820968413] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 09/15/2020] [Accepted: 09/28/2020] [Indexed: 12/16/2022] Open
Abstract
The mechanism of pulmonary fibrosis caused by irradiation remains obscure. Since rosmarinic acid (RA) have anti-oxidant and anti-inflammatory properties, we aimed to evaluate the effect of RA on the X-ray-induced lung injury. Male rats received RA (30, 60, or 120 mg/kg) 7 days before 15 Gy of X-ray irradiation. Here, we showed that RA reduced X-ray-induced the expression of inflammatory related factors, and the level of reactive oxygen species. RA down-regulated the phosphorylation of nuclear factor kappa-B (NF-κB). We found that thoracic tumor patients whose lung regions received radiation showed lower level of microRNA-19b-3p (miR-19b-3p). Furthermore, we provided evidence that miR-19b-3p targets myosin phosphatase target subunit 1 (MYPT1), and RA attenuated RhoA/Rock signaling through upregulating miR-19b-3p, leading to the inhibition of fibrosis. In conclusion, RA may be an effective agent to relieve the pulmonary fibrosis caused by radiotherapy of thoracic tumor.
Collapse
Affiliation(s)
- Tingting Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shanshan Ma
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chang Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Kai Hu
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Meng Xu
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Rensheng Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
29
|
Afonso AF, Pereira OR, Cardoso SM. Health-Promoting Effects of Thymus Phenolic-Rich Extracts: Antioxidant, Anti-Inflammatory and Antitumoral Properties. Antioxidants (Basel) 2020; 9:E814. [PMID: 32882987 PMCID: PMC7555682 DOI: 10.3390/antiox9090814] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 12/17/2022] Open
Abstract
Thymus genus comprises numerous species that are particularly abundant in the West Mediterranean region. A growing body of evidence suggests that many of these species are a rich source of bioactive compounds, including phenolic compounds such as rosmarinic acid, salvianolic acids and luteolin glycosides, able to render them potential applications in a range of industrial fields. This review collects the most relevant studies focused on the antioxidant, anti-inflammatory and anti-cancer of phenolic-rich extracts from Thymus plants, highlighting correlations made by the authors with respect to the main phenolic players in such activities.
Collapse
Affiliation(s)
- Andrea F. Afonso
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
- Public Health Laboratory of Bragança, Local Health Unit, Rua Eng. Adelino Amaro da Costa, 5300-146 Bragança, Portugal
| | - Olívia R. Pereira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;
| | - Susana M. Cardoso
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| |
Collapse
|
30
|
Liu Y, Wu X, Jin W, Guo Y. Immunomodulatory Effects of a Low-Molecular Weight Polysaccharide from Enteromorpha prolifera on RAW 264.7 Macrophages and Cyclophosphamide- Induced Immunosuppression Mouse Models. Mar Drugs 2020; 18:md18070340. [PMID: 32605327 PMCID: PMC7401259 DOI: 10.3390/md18070340] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/02/2020] [Accepted: 06/12/2020] [Indexed: 01/28/2023] Open
Abstract
The water-soluble polysaccharide EP2, from Enteromorpha prolifera, belongs to the group of polysaccharides known as glucuronoxylorhamnan, which mainly contains glucuronic acid (GlcA), xylose (Xyl), and rhamnose (Rha). The aim of this study was to detect the immunomodulatory effects of EP2 on RAW 264.7 macrophages and cyclophosphamide (CYP)-induced immunosuppression mouse models. The cells were treated with EP2 for different time periods (0, 0.5, 1, 3, and 6 h). The results showed that EP2 promoted nitric oxide production and up-regulated the expression of pro-inflammatory cytokines, such as IL-1β, IL-6, and TNF-α, in a time-dependent manner. Furthermore, we found that EP2-activated iNOS, COX2, and NLRP3 inflammasomes, and the TLR4/MAPK/NF-κB signaling pathway played an important role. Moreover, EP2 significantly increased the body weight, spleen index, thymus index, inflammatory cell counts, and the levels of IL-1β, IL-6, and TNF-α in CYP-induced immunosuppression mouse models. These results indicate that EP2 might be a potential immunomodulatory drug and provide the scientific basis for the comprehensive utilization and evaluation of E. prolifera in future applications.
Collapse
Affiliation(s)
- Yingjuan Liu
- Medical College, Qingdao University, Qingdao 266071, China; (Y.L.); (X.W.)
| | - Xiaolin Wu
- Medical College, Qingdao University, Qingdao 266071, China; (Y.L.); (X.W.)
| | - Weihua Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
- Correspondence: (W.J.); (Y.G.); Tel.: +86-532-8299-1711 (Y.G.)
| | - Yunliang Guo
- Medical College, Qingdao University, Qingdao 266071, China; (Y.L.); (X.W.)
- Correspondence: (W.J.); (Y.G.); Tel.: +86-532-8299-1711 (Y.G.)
| |
Collapse
|
31
|
Ma Z, Lu Y, Yang F, Li S, He X, Gao Y, Zhang G, Ren E, Wang Y, Kang X. Rosmarinic acid exerts a neuroprotective effect on spinal cord injury by suppressing oxidative stress and inflammation via modulating the Nrf2/HO-1 and TLR4/NF-κB pathways. Toxicol Appl Pharmacol 2020; 397:115014. [PMID: 32320792 DOI: 10.1016/j.taap.2020.115014] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 02/08/2023]
Abstract
Spinal cord injury (SCI) is a severe central nervous system injury for which few efficacious drugs are available. Rosmarinic acid (RA), a water-soluble polyphenolic phytochemical, has antioxidant, anti-inflammatory, and anti-apoptotic properties. However, the effect of RA on SCI is unclear. We investigated the therapeutic effect and underlying mechanism of RA on SCI. Using a rat model of SCI, we showed that RA improved locomotor recovery after SCI and significantly mitigated neurological deficit, increased neuronal preservation, and reduced apoptosis. Also, RA inhibited activation of microglia and the release of TNF-α, IL-6, and IL-1β and MDA. Moreover, proteomics analyses identified the Nrf2 and NF-κB pathways as targets of RA. Pretreatment with RA increased levels of Nrf2 and HO-1 and reduced those of TLR4 and MyD88 as well as phosphorylation of IκB and subsequent nuclear translocation of NF-κB-p65. Using H2O2- and LPS-induced PC12 cells, we found that RA ameliorated the H2O2-induced decrease in viability and increase in apoptosis and oxidative injury by activating the Nrf2/HO-1 pathway. Also, LPS-induced cytotoxicity and increased apoptosis and inflammatory injury in PC-12 cells were mitigated by RA by inhibiting the TLR4/NF-κB pathway. The Nrf2 inhibitor ML385 weakened the effect of RA on oxidant stress, inflammation and apoptosis in SCI rats, and significantly increased the nuclear translocation of NF-κB. Therefore, the neuroprotective effect on SCI of RA may be due to its antioxidant and anti-inflammatory properties, which are mediated by modulation of the Nrf2/HO-1 and TLR4/NF-κB pathways. Moreover, RA activated Nrf2/HO-1, which amplified its inhibition of the NF-κB pathway.
Collapse
Affiliation(s)
- Zhanjun Ma
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730030, China; Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, China
| | - Yubao Lu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730030, China
| | - Fengguang Yang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730030, China
| | - Shaoping Li
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730030, China
| | - Xuegang He
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730030, China
| | - Yicheng Gao
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730030, China
| | - Guangzhi Zhang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730030, China
| | - Enhui Ren
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730030, China
| | - Yonggang Wang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730030, China; Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, China; The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Gansu 730000, China.
| | - Xuewen Kang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730030, China; Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, China; The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Gansu 730000, China.
| |
Collapse
|
32
|
Sobeh M, Rezq S, Cheurfa M, Abdelfattah MA, Rashied RM, El-Shazly AM, Yasri A, Wink M, Mahmoud MF. Thymus algeriensis and Thymus fontanesii: Chemical Composition, In Vivo Antiinflammatory, Pain Killing and Antipyretic Activities: A Comprehensive Comparison. Biomolecules 2020; 10:biom10040599. [PMID: 32294957 PMCID: PMC7226370 DOI: 10.3390/biom10040599] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/01/2020] [Accepted: 04/09/2020] [Indexed: 11/16/2022] Open
Abstract
This study aimed to investigate the chemical composition, and evaluate the antioxidant, anti-inflammatory, anti-pyretic, and the analgesic properties of methanol extracts from the leaves of Thymus algeriensis and Thymus fontanesii (Lamiaceae). Thirty-five secondary metabolites were characterized in both extracts using HPLC-PDA-ESI-MS/MS. Phenolic acids, mainly rosmarinic acid and its derivatives, dominated the T. algeriensis extract, while the phenolic diterpene carnosol and the methylated flavonoid salvigenin, prevailed in T. fontanesii extract. Molecular docking study was carried out to estimate the anti-inflammatory potential and the binding affinities of some individual secondary metabolites from both extracts to the main enzymes involved in the inflammation pathway. In vitro enzyme inhibitory assays and in vivo assays were used to investigate the antioxidant and anti-inflammatory activities of the extracts. Results revealed that both studied Thymus species exhibited antioxidant, anti-inflammatory, analgesic, and antipyretic effects. They showed to be a more potent antioxidant than ascorbic acid and more selective against cyclooxygenase (COX-2) than diclofenac and indomethacin. Relatively, the T. fontanesii extract was more potent as COX-2 inhibitor than T. algeriensis. In conclusion, Thymus algeriensis and Thymus fontanesii may be interesting candidates for the treatment of inflammation and oxidative stress-related disorders.
Collapse
Affiliation(s)
- Mansour Sobeh
- AgroBioSciences Research Division, Mohammed VI Polytechnic University, Lot 660–Hay MoulayRachid, Ben-Guerir 43150, Morocco;
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
- Correspondence: (M.S.); (M.W.); (M.F.M.)
| | - Samar Rezq
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt;
| | - Mohammed Cheurfa
- Departement of Biology, Faculty of Nature, Life and Earth Sciences, University of Djillali Bounaama, Khemis Miliana Road Teniet Elhad, Khemis Miliana 44225, Algeria;
- Laboratory of Natural Bioresources, Department of Biology, Faculty of Science, University of Hassiba Ben Bouali Chlef, Box 151, Chlef 02000, Algeria
| | | | - Rasha M.H. Rashied
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt;
| | - Assem M. El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt;
| | - Abdelaziz Yasri
- AgroBioSciences Research Division, Mohammed VI Polytechnic University, Lot 660–Hay MoulayRachid, Ben-Guerir 43150, Morocco;
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
- Correspondence: (M.S.); (M.W.); (M.F.M.)
| | - Mona F. Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt;
- Correspondence: (M.S.); (M.W.); (M.F.M.)
| |
Collapse
|
33
|
Neuroinflammation in CNS diseases: Molecular mechanisms and the therapeutic potential of plant derived bioactive molecules. PHARMANUTRITION 2020. [DOI: 10.1016/j.phanu.2020.100176] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
34
|
Luo C, Zou L, Sun H, Peng J, Gao C, Bao L, Ji R, Jin Y, Sun S. A Review of the Anti-Inflammatory Effects of Rosmarinic Acid on Inflammatory Diseases. Front Pharmacol 2020; 11:153. [PMID: 32184728 PMCID: PMC7059186 DOI: 10.3389/fphar.2020.00153] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/05/2020] [Indexed: 12/19/2022] Open
Abstract
Inflammatory diseases are caused by abnormal immune responses and are characterized by an imbalance of inflammatory mediators and cells. In recent years, the anti-inflammatory activity of natural products has attracted wide attention. Rosmarinic acid (RosA) is a water-soluble phenolic compound that is an ester of caffeic acid and 3, 4-dihydroxyphenyl lactic acid. It is discovered in many plants, like those of the Boraginaceae and Lamiaceae families. RosA has a wide range of pharmacological effects, including anti-oxidative, anti-apoptotic, anti-tumorigenic, and anti-inflammatory effects. The anti-inflammatory effects of RosA have been revealed through in vitro and in vivo studies of various inflammatory diseases like arthritis, colitis, and atopic dermatitis. This article mainly describes the preclinical research of RosA on inflammatory diseases and depicts a small amount of clinical research data. The purpose of this review is to discuss the anti-inflammatory effects of RosA in inflammatory diseases and its underlying mechanism.
Collapse
Affiliation(s)
- Chunxu Luo
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Lin Zou
- Department of Internal Cardiovascular, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Huijun Sun
- College of Pharmacy, Dalian Medical University, Dalian, China.,Key Laboratory for Basic and Applied Research on Pharmacodynamic Substances of Traditional Chinese Medicine of Liaoning Province, Dalian Medical University, Dalian, China
| | - Jinyong Peng
- College of Pharmacy, Dalian Medical University, Dalian, China.,Key Laboratory for Basic and Applied Research on Pharmacodynamic Substances of Traditional Chinese Medicine of Liaoning Province, Dalian Medical University, Dalian, China
| | - Cong Gao
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Liuchi Bao
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Renpeng Ji
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Yue Jin
- College of Pharmacy, Dalian Medical University, Dalian, China.,Key Laboratory for Basic and Applied Research on Pharmacodynamic Substances of Traditional Chinese Medicine of Liaoning Province, Dalian Medical University, Dalian, China
| | - Shuangyong Sun
- Research Center of Pharmacodynamic, Tianjin Institute of Pharmaceutical Research New Drug Evaluation Co., Ltd., Tianjin, China
| |
Collapse
|
35
|
Salvianolic Acid D Alleviates Cerebral Ischemia-Reperfusion Injury by Suppressing the Cytoplasmic Translocation and Release of HMGB1-Triggered NF- κB Activation to Inhibit Inflammatory Response. Mediators Inflamm 2020; 2020:9049614. [PMID: 32410871 PMCID: PMC7204335 DOI: 10.1155/2020/9049614] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/07/2020] [Indexed: 02/06/2023] Open
Abstract
Inflammatory response participates in the overall pathophysiological process of stroke. It is a promising strategy to develop antistroke drugs targeting inflammation. This study is aimed at investigating the therapeutic effect and anti-inflammatory mechanism of salvianolic acid D (SalD) against cerebral ischemia/reperfusion (I/R) injury. A rat middle cerebral artery occlusion/reperfusion (MCAO/R) injury model was established, and an oxygen-glucose deprivation/reoxygenation (OGD/R) injury model was established in PC12 cells. Neurological deficit score, cerebral infarction, and edema were studied in vivo. Cell viability was achieved using the MTT method in vitro. The Bax, Bcl-2, cytochrome c, HMGB1, TLR4, TRAF6, NF-κB p65, p-NF-κB p65, and cleaved caspase-3 and -9 were tested via the Western blot method. Cytokines and cytokine mRNA, including TNF-α, IL-1β, and IL-6, were studied via ELISA and PCR methods. The translocation of HMGB1 and NF-κB were studied by immunofluorescence assay. The HMGB1/NeuN, HMGB1/GFAP, and HMGB1/Iba1 double staining was carried out to observe the localization of HMGB1 in different cells. Results showed that SalD alleviated neurological impairment, decreased cerebral infarction, and reduced edema in I/R rats. SalD improved OGD/R-downregulated PC12 cell viability. SalD also promoted Bcl-2 expression and suppressed Bax, cytochrome c, and cleaved caspase-3 and -9 expression. SalD decreased the intensity of TLR4, MyD88, and TRAF6 proteins both in vivo and in vitro, and significantly inhibited the NF-κB nuclear translocation induced by I/R and OGD/R. What's more, SalD inhibited HMGB1 cytoplasmic translocation in neurons, astrocytes, and microglia in both the cortex and hippocampus regions of I/R rats. In conclusion, SalD can alleviate I/R-induced cerebral injury in rats and increase the PC12 cell viability affected by OGD/R. The anti-inflammatory mechanism of SalD might result from the decreased nuclear-to-cytoplasmic translocation of HMGB1 and the inhibition on its downstream TLR4/MyD88/NF-κB signaling.
Collapse
|
36
|
Wu H, Ma K, Na X. Rosmarinic acid alleviates di-2-ethylhexyl phthalate (DEHP) -induced thyroid dysfunction via multiple inflammasomes activation. J Toxicol Sci 2020; 45:373-390. [PMID: 32612006 DOI: 10.2131/jts.45.373] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
DEHP (di-2-ethylhexyl phthalate), an environmental endocrine disruptor, is widely used in industrial products, particularly as plasticizers and softeners which could disrupt the function of the hypothalamic-pituitary-thyroid (HPT) axis. Rosmarinic acid (RA) possesses potential antioxidant and anti-inflammatory capacities in disease models. Nevertheless, evidence on the association between DEHP-induced thyroid dysfunction and inflammation, as well as the molecular mechanism underlying the protective effects of RA-mitigated DEHP-induced thyroid injury remains inconclusive. Male Sprague Dawley (SD) rats were intragastrically administered DEHP (150 mg/kg, 300 mg/kg, 600 mg/kg) once a day for 90 consecutive days. Also, FRTL-5 cells were treated with a wide range of DEHP concentrations (10-8, 10-7, 10-6, 10-5, 10-4, 10-3, 10-2 M) for 24 hr. Subsequently, RA (50 μM) was administered for 24 hr before 10-4 M DEHP challenge. We found that DEHP induced thyroid damage and inflammatory infiltration in vivo. In addition, we showed that DEHP triggered inflammatory cell death, which is mediated by multiple inflammasomes. Moreover, RA, pyroptosis inhibitor (Ac-YVAD-cmk) and antioxidant inhibitor (NAC) treatment significantly alleviated DEHP-induced thyrocyte death, suppressing pro-inflammatory cytokine production, inhibiting multiple inflammasomes activation and attenuating thyrocyte death, respectively. Collectively, our results reveal that a critical role of inflammasomes activation in DEHP-induced thyroid injury, and suggest that RA confers protection against DEHP-induced thyroid inflammation, and facilitating control of the effects of DEHP after given pyroptosis inhibitor or antioxidant inhibitor. These results indicate that it should be possible to provide novel insights into toxicologically and pharmacologically targeting this molecule to DEHP-induced inflammation.
Collapse
Affiliation(s)
- Haoyu Wu
- Department of Environmental Hygiene, Public Health College, Harbin Medical University, China
| | - Kun Ma
- Department of Hygienic Toxicology, Public Health College, Harbin Medical University, China
| | - Xiaolin Na
- Department of Environmental Hygiene, Public Health College, Harbin Medical University, China
| |
Collapse
|
37
|
Rodríguez-Luna A, Ávila-Román J, Oliveira H, Motilva V, Talero E. Fucoxanthin and Rosmarinic Acid Combination Has Anti-Inflammatory Effects through Regulation of NLRP3 Inflammasome in UVB-Exposed HaCaT Keratinocytes. Mar Drugs 2019; 17:E451. [PMID: 31374828 PMCID: PMC6722862 DOI: 10.3390/md17080451] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 07/29/2019] [Indexed: 01/23/2023] Open
Abstract
Excessive exposure to ultraviolet (UV) radiation is the main risk factor to develop skin pathologies or cancer because it encourages oxidative condition and skin inflammation. In this sense, strategies for its prevention are currently being evaluated. Natural products such as carotenoids or polyphenols, which are abundant in the marine environment, have been used in the prevention of oxidative stress due to their demonstrated antioxidant activities. Nevertheless, the anti-inflammatory activity and its implication in photo-prevention have not been extensively studied. Thus, we aimed to evaluate the combination of fucoxanthin (FX) and rosmarinic acid (RA) on cell viability, apoptosis induction, inflammasome regulation, and anti-oxidative response activation in UVB-irradiated HaCaT keratinocytes. We demonstrated for the first time that the combination of FX and RA (5 µM RA plus 5 μM FX, designated as M2) improved antioxidant and anti-inflammatory profiles in comparison to compounds assayed individually, by reducing UVB-induced apoptosis and the consequent ROS production. Furthermore, the M2 combination modulated the inflammatory response through down-regulation of inflammasome components such as NLRP3, ASC, and Caspase-1, and the interleukin (IL)-1β production. In addition, Nrf2 and HO-1 antioxidant genes expression increased in UVB-exposed HaCaT cells pre-treated with M2. These results suggest that this combination of natural products exerts photo-protective effects by down-regulating NRLP3-inflammasome and increasing Nrf2 signalling pathway.
Collapse
Affiliation(s)
- Azahara Rodríguez-Luna
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain
| | - Javier Ávila-Román
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain.
| | - Helena Oliveira
- Department of Biology, Faculty of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Virginia Motilva
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain
| | - Elena Talero
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain
| |
Collapse
|
38
|
Hermann JK, Capadona JR. Understanding the Role of Innate Immunity in the Response to Intracortical Microelectrodes. Crit Rev Biomed Eng 2019; 46:341-367. [PMID: 30806249 DOI: 10.1615/critrevbiomedeng.2018027166] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intracortical microelectrodes exhibit enormous potential for researching the nervous system, steering assistive devices and functional electrode stimulation systems for severely paralyzed individuals, and augmenting the brain with computing power. Unfortunately, intracortical microelectrodes often fail to consistently record signals over clinically useful periods. Biological mechanisms, such as the foreign body response to intracortical microelectrodes and self-perpetuating neuroinflammatory cascades, contribute to the inconsistencies and decline in recording performance. Unfortunately, few studies have directly correlated microelectrode performance with the neuroinflammatory response to the implanted devices. However, of those select studies that have, the role of the innate immune system remains among the most likely links capable of corroborating the results of different studies, across laboratories. Therefore, the overall goal of this review is to highlight the role of innate immunity signaling in the foreign body response to intracortical microelectrodes and hypothesize as to appropriate strategies that may become the most relevant in enabling brain-dwelling electrodes of any geometry, or location, for a range of clinical applications.
Collapse
Affiliation(s)
- John K Hermann
- Department of Biomedical Engineering, Case Western Reserve University, 2071 Martin Luther King Jr. Drive, Wickenden Bldg, Cleveland, OH 44106; Advanced Platform Technology Center, Rehabilitation Research and Development, Louis Stokes Cleveland VA Medical Center, 10701 East Blvd. Mail Stop 151 AW/APT, Cleveland, OH 44106-1702
| | - Jeffrey R Capadona
- Department of Biomedical Engineering, Case Western Reserve University, 2071 Martin Luther King Jr. Drive, Wickenden Bldg, Cleveland, OH 44106; Advanced Platform Technology Center, Rehabilitation Research and Development, Louis Stokes Cleveland VA Medical Center, 10701 East Blvd. Mail Stop 151 AW/APT, Cleveland, OH 44106-1702
| |
Collapse
|
39
|
Leu WJ, Chen JC, Guh JH. Extract From Plectranthus amboinicus Inhibit Maturation and Release of Interleukin 1β Through Inhibition of NF-κB Nuclear Translocation and NLRP3 Inflammasome Activation. Front Pharmacol 2019; 10:573. [PMID: 31191313 PMCID: PMC6546882 DOI: 10.3389/fphar.2019.00573] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 05/06/2019] [Indexed: 01/10/2023] Open
Abstract
Uncontrolled inflammation may produce massive inflammatory cytokines, in which interleukin 1β (IL-1β) plays a key role, resulting in tissue damage and serious disorders. The activation of NLRP3 inflammasome is one of the major mechanisms in maturation and release of IL-1β. Plectranthus amboinicus is a perennial herb. Several pharmacological activities of natural components and crude extracts from P. amboinicus have been reported including anti-inflammation; however, the underlying mechanism is not clear. Phorbol-12-myristate 13-acetate-differentiated THP-1 monocytic leukemia cells were used as a reliable model in this study to examine the effect on inflammasome signaling pathway by PA-F4, an extract from Plectranthus amboinicus. PA-F4 inhibited ATP-induced release of caspase-1, IL-1β, and IL-18 from lipopolysaccharides (LPS)-primed cells. PA-F4 induced a concentration-dependent inhibition of both ASC dimerization and oligomerization in cells under LPS priming plus ATP stimulation. Co-immunoprecipitation of NLRP3 and ASC demonstrated that PA-F4 significantly blunted the interaction between NLRP3 and ASC. Furthermore, PA-F4 completely abolished ATP-induced K+ efflux reaction in LPS-primed cells. Taken together, PA-F4 displayed an inhibitory activity on NLRP3 inflammasome activation. Moreover, PA-F4 also inhibited LPS-induced p65 NF-κB activation, suggesting an inhibitory activity on LPS priming step. Further identification showed that rosmarinic acid, cirsimaritin, salvigenin, and carvacrol, four constituents in PA-F4, inhibited LPS-induced IL-6 release. In contrast, rosmarinic acid, cirsimaritin and carvacrol but not salvigenin inhibited ATP-induced caspase-1 release from LPS-primed cells. In conclusion, PA-F4 displayed an inhibitory activity on activation of NLRP3 inflammasome. PA-F4 inhibited LPS priming step through block of p65 NF-κB activation. It also inhibited ATP-induced signaling pathways in LPS-primed cells including the inhibition of both ASC dimerization and oligomerization, K+ efflux reaction, and the release reaction of caspase-1, IL-1β, and IL-18. Rosmarinic acid, cirsimaritin, salvigenin, and carvacrol could partly explain PA-F4-mediated inhibitory activity on blocking the activation of NLRP3 inflammasome.
Collapse
Affiliation(s)
- Wohn-Jenn Leu
- School of Pharmacy, National Taiwan University, Taipei, Taiwan
| | | | - Jih-Hwa Guh
- School of Pharmacy, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
40
|
Lv R, Du L, Liu X, Zhou F, Zhang Z, Zhang L. Rosmarinic acid attenuates inflammatory responses through inhibiting HMGB1/TLR4/NF-κB signaling pathway in a mouse model of Parkinson's disease. Life Sci 2019; 223:158-165. [PMID: 30880023 DOI: 10.1016/j.lfs.2019.03.030] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/09/2019] [Accepted: 03/13/2019] [Indexed: 11/22/2022]
Abstract
Inflammation contributes to the pathological processes in patients and animal models of PD. Rosmarinic acid (RA) has been demonstrated to protect neurons in PD models. The present study aimed to evaluate the anti-inflammatory effect of RA on PD and reveal possible pharmacological mechanisms. 1-Methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) was injected to mice to establish PD model in vivo. BV-2 cells were exposed to 1-methyl-4-phenylpyridinium (MPP+) and α-synuclein to establish PD model in vitro. Results showed that treatment with RA dose-dependently improved motor function of PD mice, increased the number of tyrosine hydroxylase-positive cells, reduced production of pro-inflammatory cytokines, and inhibited microglia activation in ventral midbrain. In cell study, RA also decreased MPP+ or α-synuclein-induced secretion of pro-inflammatory cytokines. Furthermore, RA treatment downregulated the expression levels of HMGB1, TLR4 and Myd88 and inhibited NF-κB nuclear expression both in PD animal and cell models. These findings indicated that RA could attenuate inflammatory responses through suppressing HMGB1/TLR4/NF-κB signaling pathway, which may contribute to its anti-PD activity.
Collapse
Affiliation(s)
- Runxiao Lv
- Department of Rehabilitation Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Lili Du
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang 110122, People's Republic of China
| | - Xueyong Liu
- Department of Rehabilitation Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Fenghua Zhou
- Department of Rehabilitation Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Zhiqiang Zhang
- Department of Rehabilitation Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China.
| | - Lixin Zhang
- Department of Rehabilitation Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China.
| |
Collapse
|
41
|
Chang YY, Lin TY, Kao MC, Chen TY, Cheng CF, Wong CS, Huang CJ. Magnesium sulfate inhibits binding of lipopolysaccharide to THP-1 cells by reducing expression of cluster of differentiation 14. Inflammopharmacology 2019; 27:249-260. [PMID: 30721372 DOI: 10.1007/s10787-019-00568-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/18/2019] [Indexed: 12/28/2022]
Abstract
We investigated effects of magnesium sulfate (MgSO4) on modulating lipopolysaccharide (LPS)-macrophage binding and cluster of differentiation 14 (CD14) expression. Flow cytometry data revealed that the mean levels of LPS-macrophage binding and membrane-bound CD14 expression (mCD14) in differentiated THP-1 cells (a human monocytic cell line) treated with LPS plus MgSO4 (the LPS + M group) decreased by 28.2% and 25.3% compared with those THP-1 cells treated with LPS only (the LPS group) (P < 0.001 and P = 0.037), indicating that MgSO4 significantly inhibits LPS-macrophage binding and mCD14 expression. Notably, these effects of MgSO4 were counteracted by L-type calcium channel activation. Moreover, the mean level of soluble CD14 (sCD14; proteolytic cleavage product of CD14) in the LPS + M group was 25.6% higher than in the LPS group (P < 0.001), indicating that MgSO4 significantly enhances CD14 proteolytic cleavage. Of note, serine protease inhibition mitigated effects of MgSO4 on both decreasing mCD14 and increasing sCD14. In conclusion, MgSO4 inhibits LPS-macrophage binding through reducing CD14 expression. The mechanisms may involve antagonizing L-type calcium channels and activating serine proteases.
Collapse
Affiliation(s)
- Ya-Ying Chang
- Institute of Medical Sciences, College of Medicine, Tzu Chi University, Hualien, Taiwan.,Department of Anesthesiology, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Tzu-Yu Lin
- Department of Anesthesiology, Far Eastern Memorial Hospital, New Taipei City, Taiwan.,Department of Mechanical Engineering, Yuan Ze University, Taoyüan, Taiwan
| | - Ming-Chang Kao
- Department of Anesthesiology, Taipei Tzu Chi Hospital, New Taipei City, Taiwan.,School of Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Tsung-Ying Chen
- School of Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan.,Departments of Anesthesiology, Hualien Tzu Chi Hospital, Hualien, Taiwan
| | - Ching-Feng Cheng
- Institute of Medical Sciences, College of Medicine, Tzu Chi University, Hualien, Taiwan.,Department of Pediatrics, Hualien Tzu Chi Hospital, Hualien, Taiwan
| | - Chih-Shung Wong
- Department of Anesthesiology, Cathay General Hospital, Taipei, Taiwan
| | - Chun-Jen Huang
- Department of Anesthesiology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan. .,Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|