1
|
Zhong Y, Li J, Zhu X, Huang N, Liu R, Sun R. A comprehensive review of bupleuri radix and its bioactive components: with a major focus on treating chronic liver diseases. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118244. [PMID: 38663781 DOI: 10.1016/j.jep.2024.118244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 04/30/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bupleuri Radix (BR) has been recognized as an essential herbal medicine for relieving liver depression for thousands of years. Contemporary research has provided compelling evidence of its pharmacological effects, including anti-inflammatory, immunomodulatory, metabolic regulation, and anticancer properties, positioning it as a promising treatment option for various liver diseases. Hepatitis, steatohepatitis, cirrhosis, and liver cancer are among the prevalent and impactful liver diseases worldwide. However, there remains a lack of comprehensive systematic reviews that explore the prescription, bio-active components, and underlying mechanisms of BR in treating liver diseases. AIM OF THE REVIEW To summarize the BR classical Chinese medical prescription and ingredients in treating liver diseases and their mechanisms to inform reference for further development and research. MATERIALS AND METHODS Literature in the last three decades of BR and its classical Chinese medical prescription and ingredients were collated and summarized by searching PubMed, Wiley, Springer, Google Scholar, Web of Science, CNKI, etc. RESULTS: BR and its classical prescriptions, such as Xiao Chai Hu decoction, Da Chai Hu decoction, Si Ni San, and Chai Hu Shu Gan San, have been utilized for centuries as effective therapies for liver diseases, including hepatitis, steatohepatitis, cirrhosis, and liver cancer. BR is a rich source of active ingredients, such as saikosaponins, polysaccharides, flavonoids, sterols, organic acids, and so on. These bioactive compounds exhibit a wide range of beneficial effects, including anti-inflammatory, antioxidant, immunomodulatory, and lipid metabolism regulation. However, it is important to acknowledge that BR and its constituents can also possess hepatotoxicity, which is associated with cytochrome P450 (CYP450) enzymes and oxidative stress. Therefore, caution should be exercised when using BR in therapeutic applications to ensure the safe and appropriate utilization of its potential benefits while minimizing any potential risks. CONCLUSIONS To sum up, BR, its compounds, and its based traditional Chinese medicine are effective in liver diseases through multiple targets, multiple pathways, and multiple effects. Advances in pharmacological and toxicological investigations of BR and its bio-active components in the future will provide further contributions to the discovery of novel therapeutics for liver diseases.
Collapse
Affiliation(s)
- Ying Zhong
- The Second Hospital of Shandong University, 247 Beiyuan Ave, Jinan, Shandong, 250033, China.
| | - Jianchao Li
- Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan, Shandong, 250355, China.
| | - Xiaomin Zhu
- The Second Hospital of Shandong University, 247 Beiyuan Ave, Jinan, Shandong, 250033, China.
| | - Nana Huang
- The Second Hospital of Shandong University, 247 Beiyuan Ave, Jinan, Shandong, 250033, China; Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan, Shandong, 250355, China.
| | - Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Rong Sun
- The Second Hospital of Shandong University, 247 Beiyuan Ave, Jinan, Shandong, 250033, China; Advanced Medical Research Institute, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong, 250012, China.
| |
Collapse
|
2
|
Chen X, Wu H, Li P, Peng W, Wang Y, Zhang X, Zhang A, Li J, Meng F, Wang W, Su W. Unraveling the Mechanism of Xiaochaihu Granules in Alleviating Yeast-Induced Fever Based on Network Analysis and Experimental Validation. Pharmaceuticals (Basel) 2024; 17:475. [PMID: 38675434 PMCID: PMC11053540 DOI: 10.3390/ph17040475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/30/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
Xiaochaihu granules (XCHG) are extensively used to treat fever. Nevertheless, the underlying mechanism remains elusive. This study aimed to explore the potential of XCHG in mitigating yeast-induced fever and the underlying metabolic pathways. The chemical composition of XCHG was ascertained using ultra-fast liquid chromatography/quadrupole-time-of-flight tandem mass spectrometry (UFLC-Q-TOF-MS/MS), followed by integrated network analysis to predict potential targets. We then conducted experimental validation using pharmacological assays and metabolomics analysis in a yeast-induced mouse fever model. The study identified 133 compounds in XCHG, resulting in the development of a comprehensive network of herb-compound-biological functional modules. Subsequently, molecular dynamic (MD) simulations confirmed the stability of the complexes, including γ-aminobutyric acid B receptor 2 (GABBR2)-saikosaponin C, prostaglandin endoperoxide synthases (PTGS2)-lobetyolin, and NF-κB inhibitor IκBα (NFKBIA)-glycyrrhizic acid. Animal experiments demonstrated that XCHG reduced yeast-induced elevation in NFKBIA's downstream regulators [interleukin (IL)-1β and IL-8], inhibited PTGS2 activity, and consequently decreased prostaglandin E2 (PGE2) levels. XCHG also downregulated the levels of 5-hydroxytryptamine (5-HT), γ-aminobutyric acid (GABA), corticotropin releasing hormone (CRH), and adrenocorticotrophin (ACTH). These corroborated the network analysis results indicating XCHG's effectiveness against fever in targeting NFKBIA, PTGS2, and GABBR2. The hypothalamus metabolomics analysis identified 14 distinct metabolites as potential antipyretic biomarkers of XCHG. In conclusion, our findings suggest that XCHG alleviates yeast-induced fever by regulating inflammation/immune responses, neuromodulation, and metabolism modules, providing a scientific basis for the anti-inflammatory and antipyretic properties of XCHG.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Weiwei Su
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
3
|
He MT, Park G, Park DH, Choi M, Ku S, Go SH, Lee YG, Song SJ, Ahn CW, Jang YP, Kang KS. So Shiho Tang Reduces Inflammation in Lipopolysaccharide-Induced RAW 264.7 Macrophages and Dextran Sodium Sulfate-Induced Colitis Mice. Biomolecules 2024; 14:451. [PMID: 38672468 PMCID: PMC11047977 DOI: 10.3390/biom14040451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
So Shiho Tang (SSHT) is a traditional herbal medicine commonly used in Asian countries. This study evaluated the anti-inflammatory effect of SSHT and the associated mechanism using lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages and murine dextran sodium sulfate (DSS)-induced ulcerative colitis models. Pre-treatment of RAW 264.7 macrophages with SSHT significantly reduced LPS-induced inflammation by decreasing nitrite production and regulating the mitogen-activated protein kinase pathway. Meanwhile, in mice, DSS-induced colitis symptoms, including colon shortening and body weight loss, were attenuated by SSHT. Moreover, representative compounds of SSHT, including glycyrrhizic acid, ginsenoside Rb1, baicalin, saikosaponin A, and saikosaponin B2, were quantified, and their effects on nitrite production were measured. A potential anti-inflammatory effect was detected in LPS-induced RAW 264.7 cells. Our findings suggest that SSHT is a promising anti-inflammatory agent. Its representative components, including saikosaponin B2, ginsenoside Rb1, and baicalin, may represent the key active compounds responsible for eliciting the anti-inflammatory effects and can, therefore, serve as quality control markers in SSHT preparations.
Collapse
Affiliation(s)
- Mei Tong He
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea; (M.T.H.); (D.H.P.)
| | - Geonha Park
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Do Hwi Park
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea; (M.T.H.); (D.H.P.)
| | - Minsik Choi
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (M.C.); (S.K.); (S.H.G.); (Y.G.L.); (S.J.S.)
| | - Sejin Ku
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (M.C.); (S.K.); (S.H.G.); (Y.G.L.); (S.J.S.)
| | - Seung Hyeon Go
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (M.C.); (S.K.); (S.H.G.); (Y.G.L.); (S.J.S.)
| | - Yun Gyo Lee
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (M.C.); (S.K.); (S.H.G.); (Y.G.L.); (S.J.S.)
| | - Seok Jun Song
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (M.C.); (S.K.); (S.H.G.); (Y.G.L.); (S.J.S.)
| | - Chang-Wook Ahn
- Dr. Ahn’s Surgery Clinic, Osan 18144, Republic of Korea;
| | - Young Pyo Jang
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea;
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (M.C.); (S.K.); (S.H.G.); (Y.G.L.); (S.J.S.)
- Department of Integrated Drug Development and Natural Products, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea; (M.T.H.); (D.H.P.)
| |
Collapse
|
4
|
Wu X, Zhang Y, Ji M, Yang W, Deng T, Hou G, Shi L, Xun W. AhR Activation Ameliorates Intestinal Barrier Damage in Immunostressed Piglets by Regulating Intestinal Flora and Its Metabolism. Animals (Basel) 2024; 14:794. [PMID: 38473179 DOI: 10.3390/ani14050794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
The primary factor leading to elevated rates of diarrhea and decreased performance in piglets is immunological stress. The regulation of immune stress through the intestinal flora is a crucial mechanism to consider. In total, 30 weaned piglets were randomly allocated to five groups: the basal diet group (Control), basal diet + lipopolysaccharides group (LPS), basal diet + 250 μg/kg 6-Formylindolo [3,2-b] carbazole + LPS group (FICZ), basal diet + 3mg/kg Cardamonin + LPS group (LCDN), and basal diet + 6mg/kg Cardamonin + LPS group (HCDN/CDN). The results showed that compared with those of the LPS group, the expression of tight junction proteins (occludin; claudin-1) in the FICZ group was significantly increased, and the mRNA levels of IL-1β and TNF-α were significantly reduced (p < 0.05). HCDN treatment had a better effect on LPS-induced intestinal barrier damage in this group than it did in the LCDN group. HCDN treatment leads to a higher villus height (VH), a higher ratio of villi height to crypt depth (V/C), higher tight junction proteins (ZO-1; occludin), and higher short-chain fatty acids (SCFAs). In addition, correlation analyses showed that Succinivibrio was positively correlated with several SCFAs and negatively correlated with prostaglandin-related derivatives in the FICZ group and CDN group (p < 0.05). In summary, Cardamonin alleviates intestinal mucosal barrier damage and inflammatory responses by regulating the intestinal microbiota and its metabolism.
Collapse
Affiliation(s)
- Xiaomei Wu
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Yalei Zhang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Mengyao Ji
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Wen Yang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Tanjie Deng
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Guanyu Hou
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571100, China
| | - Liguang Shi
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571100, China
| | - Wenjuan Xun
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| |
Collapse
|
5
|
Liu B, Jiao XQ, Dong XF, Guo P, Wang SB, Qin ZH. Saikosaponin B2, Punicalin, and Punicalagin in Vitro Block Cellular Entry of Feline Herpesvirus-1. Viruses 2024; 16:231. [PMID: 38400007 PMCID: PMC10892935 DOI: 10.3390/v16020231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
In the realm of clinical practice, nucleoside analogs are the prevailing antiviral drugs employed to combat feline herpesvirus-1 (FHV-1) infections. However, these drugs, initially formulated for herpes simplex virus (HSV) infections, operate through a singular mechanism and are susceptible to the emergence of drug resistance. These challenges underscore the imperative to innovate and develop alternative antiviral medications featuring unique mechanisms of action, such as viral entry inhibitors. This research endeavors to address this pressing need. Utilizing Bio-layer interferometry (BLI), we meticulously screened drugs to identify natural compounds exhibiting high binding affinity for the herpesvirus functional protein envelope glycoprotein B (gB). The selected drugs underwent a rigorous assessment to gauge their antiviral activity against feline herpesvirus-1 (FHV-1) and to elucidate their mode of action. Our findings unequivocally demonstrated that Saikosaponin B2, Punicalin, and Punicalagin displayed robust antiviral efficacy against FHV-1 at concentrations devoid of cytotoxicity. Specifically, these compounds, Saikosaponin B2, Punicalin, and Punicalagin, are effective in exerting their antiviral effects in the early stages of viral infection without compromising the integrity of the viral particle. Considering the potency and efficacy exhibited by Saikosaponin B2, Punicalin, and Punicalagin in impeding the early entry of FHV-1, it is foreseeable that their chemical structures will be further explored and developed as promising antiviral agents against FHV-1 infection.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhi-Hua Qin
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China; (B.L.); (X.-Q.J.); (X.-F.D.); (P.G.); (S.-B.W.)
| |
Collapse
|
6
|
Lei S, Wu S. Zang Siwei Qingfei Mixture Alleviates Inflammatory Response to Attenuate Acute Lung Injury by the ACE2/NF-κB Signaling Pathway in Mice. Comb Chem High Throughput Screen 2024; 27:2871-2884. [PMID: 37957855 DOI: 10.2174/0113862073259884231024111447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/21/2023] [Accepted: 09/14/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Acute lung injury (ALI) is a serious lung disease characterized by acute and severe inflammation. Upregulation of ACE2 and inhibition of the NF-κB signaling pathway attenuate LPS-induced ALI. OBJECTIVE To explore whether Zang Siwei Qingfei Mixture inhibits the development of ALI through the ACE2/NF-κB signaling pathway. METHODS Alveolar type II epithelial cells (AEC II) were identified by immunofluorescence staining and flow cytometry. C57BL/6J mice were treated with LPS to establish an ALI model. Cell viability was assessed using CCK8 assays. The levels of ACE, ACE2, p-p38/p38, p- ERK1/2/ERK1/2, p-JNK/JNK, p-IκBα/IκB-α, p-NF-κBp65 were analyzed by Western blotting. ELISA was applied to detect the levels of TNF-a, IL-6, AGT, and Ang1-7. HE staining was used to observe lung injury. The mRNA expression of ACE, ACE2, and Mas was measured by RT-qPCR. RESULTS AEC II cells were successfully isolated. Treatment with the Zang Siwei Qingfei Mixture resulted in a decrease in ACE, p-p38/p38, p-ERK1/2/ERK1/2, p-JNK/JNK, p-IκBα/IκB-α, p-NF-κBp65 levels, while increasing ACE2 levels. Zang Siwei Qingfei mixture also led to a reduction in TNF-α, IL6, and AGT levels, while increasing Ang1-7 level. Histological analysis showed that Zang Siwei Qingfei Mixture treatment improved the alveolar structure of ALI mice and reduced inflammatory infiltration. The pretreatment with MLN-4760, an ACE2 inhibitor, resulted in opposite effects compared to Zang Siwei Qingfei Mixture treatment. CONCLUSION Zang Siwei Qingfei mixture attenuates ALI by regulating the ACE2/NF-κB signaling pathway in mice. This study provides a theoretical foundation for the development of improved ALI treatments.
Collapse
Affiliation(s)
- Si Lei
- Department of General Medicine, The Second Xiangya Hospital of Central South University, Hunan, Changsha, China
| | - Shangjie Wu
- Department of Respiratory Medicine, The Second Xiangya Hospital of Central South University, Hunan, Changsha, China
| |
Collapse
|
7
|
Wang L, Wang J, Yang Z, Wang Y, Zhao T, Luo W, Liang T, Yang Z. Traditional herbs: mechanisms to combat cellular senescence. Aging (Albany NY) 2023; 15:14473-14505. [PMID: 38054830 PMCID: PMC10756111 DOI: 10.18632/aging.205269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/15/2023] [Indexed: 12/07/2023]
Abstract
Cellular senescence plays a very important role in the ageing of organisms and age-related diseases that increase with age, a process that involves physiological, structural, biochemical and molecular changes in cells. In recent years, it has been found that the active ingredients of herbs and their natural products can prevent and control cellular senescence by affecting telomerase activity, oxidative stress response, autophagy, mitochondrial disorders, DNA damage, inflammatory response, metabolism, intestinal flora, and other factors. In this paper, we review the research information on the prevention and control of cellular senescence in Chinese herbal medicine through computer searches of PubMed, Web of Science, Science Direct and CNKI databases.
Collapse
Affiliation(s)
- Lei Wang
- Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi 530222, China
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi 530222, China
| | - Jiahui Wang
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi 530222, China
| | - Zhihui Yang
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi 530222, China
| | - Yue Wang
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi 530222, China
| | - Tiejian Zhao
- Department of Physiology, College of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi 530222, China
| | - Weisheng Luo
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi 530000, China
| | - Tianjian Liang
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi 530222, China
| | - Zheng Yang
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi 530222, China
| |
Collapse
|
8
|
Feng S, Cai K, Lin S, Chen X, Luo Y, Wang J, Lian G, Lin Z, Xie L. Exploring potential therapeutic agents for lipopolysaccharide-induced septic cardiomyopathy based on transcriptomics using bioinformatics. Sci Rep 2023; 13:20589. [PMID: 37996554 PMCID: PMC10667505 DOI: 10.1038/s41598-023-47699-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023] Open
Abstract
Septic cardiomyopathy (SCM) is a common and severe complication of sepsis, characterized by left ventricular dilation and reduced ejection fraction leading to heart failure. The pathogenesis of SCM remains unclear. Understanding the SCM pathogenesis is essential in the search for effective therapeutic agents for SCM. This study was to investigate the pathophysiology of SCM and explore new therapeutic drugs by bioinformatics. An SCM rat model was established by injection of 10 mg/kg lipopolysaccharide (LPS) for 24 h, and the myocardial tissues were collected for RNA sequencing. The differentially expressed genes (DEGs) between LPS rats and control (Ctrl) with the thresholds of |log2fold change|≥ 1 and P < 0.05. A protein-protein interaction (PPI) network was constructed based on the DEGs. The hub genes were identified using five algorithms of Cytoscape in the PPI networks and validated in the GSE185754 dataset and by RT-qPCR. The hub genes were analyzed by Gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG), as well as Gene set enrichment analyses (GSEA). In addition, the miRNAs of hub genes were predicted through miRWalk, and the candidate therapeutic drugs were identified using the Connectivity Map (CMAP) database. This study revealed the identified hub genes (Itgb1, Il1b, Rac2, Vegfa) and key miRNAs (rno-miR-541-5p, rno-miR-487b-3p, rno-miR-1224, rno-miR-378a-5p, rno-miR-6334, and rno-miR-466b-5p), which were potential biological targets and biomarkers of SCM. Anomalies in cytokine-cytokine receptor interactions, complement and coagulation cascades, chemokine signaling pathways, and MAPK signaling pathways also played vital roles in SCM pathogenesis. Two high-confidence candidate compounds (KU-0063794 and dasatinib) were identified from the CMAP database as new therapeutic drugs for SCM. In summary, these four identified hub genes and enrichment pathways may hold promise for diagnosing and treating SCM.
Collapse
Affiliation(s)
- Shaodan Feng
- Department of Emergency, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou, 350005, China
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou, 350005, China
| | - Kexin Cai
- Department of Emergency, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou, 350005, China
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou, 350005, China
| | - Siming Lin
- Department of Emergency, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou, 350005, China
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou, 350005, China
| | - Xiaojun Chen
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou, 350005, China
- Clinical Research Center for Geriatric Hypertension Disease of Fujian Province, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou, 350005, China
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou, 350005, China
- Branch of National Clinical Research Center for Aging and Medicine, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou, 350005, China
- Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fujian, Fuzhou, 350212, China
| | - Yuqing Luo
- Department of Emergency, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou, 350005, China
| | - Jing Wang
- Department of Emergency, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou, 350005, China
| | - Guili Lian
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou, 350005, China.
- Clinical Research Center for Geriatric Hypertension Disease of Fujian Province, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou, 350005, China.
| | - Zhihong Lin
- Department of Emergency, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou, 350005, China.
| | - Liangdi Xie
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou, 350005, China.
- Clinical Research Center for Geriatric Hypertension Disease of Fujian Province, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou, 350005, China.
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou, 350005, China.
- Branch of National Clinical Research Center for Aging and Medicine, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou, 350005, China.
- Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fujian, Fuzhou, 350212, China.
| |
Collapse
|
9
|
Xie Z, Xie H, Peng X, Hu J, Chen L, Li X, Qi H, Zeng J, Zeng N. The antidepressant-like effects of Danzhi Xiaoyao San and its active ingredients. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:155015. [PMID: 37597362 DOI: 10.1016/j.phymed.2023.155015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/08/2023] [Accepted: 08/06/2023] [Indexed: 08/21/2023]
Abstract
BACKGROUND Depression is a severe mental illness that endangers human health. Depressed individuals are prone to sleep less and to the loss of appetite for food; their thinking and cognition processes, as well as mood, may even be affected. Danzhi Xiaoyao San (DXS), documented in the Internal Medicine Summary, has been used for hundreds of years in China and is widely applied traditionally to treat liver qi stagnation, liver and spleen blood deficiency, menstrual disorders, and spontaneous and night sweating. DXS can also clear heat and drain the liver. Presently, it is used frequently in the treatment of depression based on its ability to clear the liver and alleviate depression. PURPOSE To summarize clinical and preclinical studies on the antidepressant-like effects of DXS, understand the material basis and mechanisms of these effects, and offer new suggestions and methods for the clinical treatment of depression. METHODS "Danzhi Xiaoyao", "Danzhixiaoyao", "Xiaoyao", "depression" and active ingredients were entered as keywords in PubMed, Google Scholar, CNKI and WANFANG DATA databases in the search for material on DXS and its active ingredients. The PRISMA guidelines were followed in this review process. RESULTS Per clinical reports, DXS has a therapeutic effect on patients with depression but few side effects. DXS and its active ingredients allegedly produce their neuroprotective antidepressant-like effects by modulating monoamine neurotransmitter levels, inhibiting the hypothalamic-pituitary-adrenal (HPA) axis hyperfunction, reducing neuroinflammation and increasing neurotrophic factors. CONCLUSION Overall, DXS influences multiple potential mechanisms to exert its antidepressant-like effects thanks to its multicomponent character. Because depression is not caused by a single mechanism, probing the antidepressant-like effects of DXS could further help understand the pathogenesis of depression and discover new antidepressant drugs.
Collapse
Affiliation(s)
- Zhiqiang Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Hongxiao Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Xi Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Jingwen Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Li Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; Department of Pharmacy, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
| | - Xiangyu Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Hu Qi
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Jiuseng Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China.
| | - Nan Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China.
| |
Collapse
|
10
|
Zhu Y, Lai Y. Pharmacological properties and derivatives of saikosaponins-a review of recent studies. J Pharm Pharmacol 2023:7194607. [PMID: 37307427 DOI: 10.1093/jpp/rgad052] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/16/2023] [Indexed: 06/14/2023]
Abstract
OBJECTIVES Saikosaponins (SSs) constitute a class of medicinal monomers characterised by a triterpene tricyclic structure. Despite their potential therapeutic effects for various pathological conditions, the underlying mechanisms of their actions have not been systematically analysed. Here, we mainly review the important anti-inflammatory, anticancer, and antiviral mechanisms underlying SS actions. METHODS Information from multiple scientific databases, such as PubMed, the Web of Science, and Google Scholar, was collected between 2018 and 2023. The search term used was saikosaponin. KEY FINDINGS Numerous studies have shown that Saikosaponin A exerts anti-inflammatory effects by modulating cytokine and reactive oxygen species (ROS) production and lipid metabolism. Moreover, saikosaponin D exerts antitumor effects by inhibiting cell proliferation and inducing apoptosis and autophagy, and the antiviral mechanisms of SSs, especially against SARS-CoV-2, have been partially revealed. Interestingly, an increasing body of experimental evidence suggests that SSs show the potential for use as anti-addiction, anxiolytic, and antidepressant treatments, and therefore, the related molecular mechanisms warrant further study. CONCLUSIONS An increasing amount of data have indicated diverse SS pharmacological properties, indicating crucial clues for future studies and the production of novel saikosaponin-based anti-inflammatory, efficacious anticancer, and anti-novel-coronavirus agents with improved efficacy and reduced toxicity.
Collapse
Affiliation(s)
- Yingchao Zhu
- Clinical Medical College of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Lai
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
11
|
Wang X, Li S, Yu J, Wang W, Du Z, Gao S, Ma Y, Tang R, Liu T, Ma S, Fu Q, Deng X. Saikosaponin B2 ameliorates depression-induced microglia activation by inhibiting ferroptosis-mediated neuroinflammation and ER stress. JOURNAL OF ETHNOPHARMACOLOGY 2023:116729. [PMID: 37277081 DOI: 10.1016/j.jep.2023.116729] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/21/2023] [Accepted: 06/02/2023] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Saikosaponins B2 (SSB2) is one of the main active components isolated from Radix Bupleuri (Bupleurum chinense DC.), a herb widely used of traditional Chinese medicine. It has been used for the treatment of depression for more than two thousand years. However, the molecular mechanisms remain to be determined. AIM OF THE STUDY In this study, we evaluated the anti-inflammatory effect and elucidated underlying molecular mechanisms of SSB2 in LPS-induced primary microglia and CUMS-induced mice model of depression. METHOD The effects of SSB2 treatment were investigated both in vitro and in vivo. The chronic unpredictable mild stimulation (CUMS) procedure was applied to establish the animal model of depression. Behavioural tests were used to evaluate the depressive-like behaviors in CUMS-exposed mice, including sucrose preference test, open field test, tail suspension test, and forced swimming test. The GPX4 gene of microglia was silenced using shRNA, and inflammatory cytokines were determined by Western Blot and immunofluorescence analysis. Endoplasmic reticulum stress and ferroptosis-related markers were detected by qPCR, flow cytometry and confocal microscopy. RESULT SSB2 reversed depressive-like behaviours in CUMS-exposed mice and relieved central neuroinflammation and ameliorated hippocampal neural damage. SSB2 alleviated LPS-induced activation of microglia through the TLR4/NF-κB pathway. LPS-induced ferroptosis, with increased levels of ROS, intracellular Fe2+, mitochondrial membrane potential, lipid peroxidation, GSH, SLC7A11, FTH, GPX4 and Nrf2, and decreased transcription levels of ACSL4 and TFR1, was attenuated with SSB2 treatment in primary microglia cells. GPX4 knockdown activated ferroptosis, induced endoplasmic reticulum (ER) stress, and abrogated the protective effects of SSB2. Further, SSB2 attenuated ER stress, balanced calcium homeostasis, reduced lipid peroxidation and intracellular Fe2+ content by regulating the level of intracellular Ca2+. CONCLUSIONS Our study suggested that SSB2 treatment can inhibit ferroptosis, maintain calcium homeostasis, relieve endoplasmic reticulum stress and attenuate central neuroinflammation. SSB2 exhibited anti-ferroptosis and anti-neuroinflammatory effects through the TLR4/NF-κB pathway in a GPX4-dependent manner.
Collapse
Affiliation(s)
- Xinmei Wang
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, 210009, China.
| | - Shanshan Li
- School of Pharmacy, Bengbu Medical College, Bengbu, 233030, China; Anhui Province Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, 233030, China.
| | - Jiayu Yu
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, 210009, China.
| | - Wenlin Wang
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, 210009, China.
| | - Zhuoqi Du
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, 210009, China.
| | - Shuchun Gao
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, 210009, China.
| | - Yin Ma
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, 210009, China.
| | - Ruixin Tang
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, 210009, China.
| | - Ting Liu
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, 210009, China.
| | - Shiping Ma
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, 210009, China.
| | - Qiang Fu
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, 210009, China.
| | - Xueyang Deng
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
12
|
Teng L, Guo X, Ma Y, Xu L, Wei J, Xiao P. A comprehensive review on traditional and modern research of the genus Bupleurum (Bupleurum L., Apiaceae) in recent 10 years. JOURNAL OF ETHNOPHARMACOLOGY 2023; 306:116129. [PMID: 36638855 DOI: 10.1016/j.jep.2022.116129] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/10/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The genus Bupleurum (family Apiaceae), comprising approximately 248 accepted species, is widely distributed and used in China, Japan, India, Central Asia, North Africa and some European countries as traditional herbal medicines. Certain species have been reported to have significant therapeutic effects in fever, inflammatory disorders, cancer, gastric ulcer, virus infection and other diseases. AIM OF THE REVIEW we performed a comprehensive review of the ten-year research progress in phytochemistry, pharmacology, toxicity, along with bibliometrics research of the genus Bupleurum, aiming to identify knowledge gaps for future research. MATERIALS AND METHODS All the literatures are retrieved from library and electronic sources including Web of Science, PubMed, Elsevier, Google Scholar, CNKI and Baidu Scholar. These papers cover studies of the traditional use, phytochemistry, pharmacology, and toxicology of the genus Bupleurum. RESULTS There is a long history of using the genus Bupleurum in traditional herbal medicine that dated back to over 2000 years ago. Twenty-five species and 8 varieties with 3 variants within this genus have been reported to be effective to treat fever, pain, liver disease, inflammation, thoracolumbar pain, irregular menstruation and rectal prolapse. The main phytochemicals found in these plants are triterpene saponins, volatile oil, flavonoid, lignans, and polysaccharides. Many of these compounds have also been shown to have anti-inflammatory, anti-tumor, antimicrobial, immunoregulation, neuroregulation, hepatoprotective and antidiabetic activities. Meanwhile, improper usage of Bupleurum may induce cytotoxic effects, and polyacetylenes may be the main poisonous compounds. CONCLUSIONS This article summarized recent findings about Bupleurum research from many different aspects. While a small number of Bupleurum species have been investigated through modern pharmacology methods, there are still major knowledge gaps due to inadequate studies and ambiguous findings. Future research could focus on more specific phytochemistry studies combined with mechanistic analysis to provide better guidance to utilize Bupleurum as medicinal resources.
Collapse
Affiliation(s)
- Lili Teng
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, PR China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, PR China.
| | - Xinwei Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, PR China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, PR China.
| | - Yuzhi Ma
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, PR China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, PR China.
| | - Lijia Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, PR China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, PR China.
| | - Jianhe Wei
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, PR China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, PR China.
| | - Peigen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, PR China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, PR China.
| |
Collapse
|
13
|
Peng D, Chen Y, Sun Y, Zhang Z, Cui N, Zhang W, Qi Y, Zeng Y, Hu B, Yang B, Wang Q, Kuang H. Saikosaponin A and Its Epimers Alleviate LPS-Induced Acute Lung Injury in Mice. Molecules 2023; 28:molecules28030967. [PMID: 36770631 PMCID: PMC9919285 DOI: 10.3390/molecules28030967] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/05/2023] [Accepted: 01/13/2023] [Indexed: 01/21/2023] Open
Abstract
The purpose of this work was to illustrate the effect of processing with vinegar on saikosaponins of Bupleurum chinense DC. (BC) and the protective effects of saikosaponin A (SSA), saikosaponin b1 (SSb1), saikosaponin b2 (SSb2), and saikosaponin D (SSD) in lipopolysaccharide (LPS)-induced acute lung injury (ALI) mice. We comprehensively evaluated the anti-inflammatory effects and potential mechanisms of SSA, SSb1, SSb2, and SSD through an LPS-induced ALI model using intratracheal injection. The results showed that SSA, SSb1, SSb2, and SSD significantly decreased pulmonary edema; reduced the levels of IL-6, TNF-α, and IL-1β in serum and lung tissues; alleviated pulmonary pathological damage; and decreased the levels of the IL-6, TNF-α, and IL-1β genes and the expression of NF-κB/TLR4-related proteins. Interestingly, they were similar in structure, but SSb2 had a better anti-inflammatory effect at the same dose, according to a principal component analysis. These findings indicated that it may not have been comprehensive to only use SSA and SSD as indicators to evaluate the quality of BC, especially as the contents of SSb1 and SSb2 in vinegar-processed BC were significantly increased.
Collapse
Affiliation(s)
- Donghui Peng
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Harbin 150040, China
| | - Yuchan Chen
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Harbin 150040, China
| | - Yanping Sun
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Harbin 150040, China
| | - Zhihong Zhang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Harbin 150040, China
| | - Na Cui
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Harbin 150040, China
| | - Wensen Zhang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Harbin 150040, China
| | - Ying Qi
- Guangdong Engineering Technology Research Center for Standardized Processing of Chinese Materia Medica, Science and Technology Department of Guangdong Province, Guangdong Pharmaceutical University, No. 280, Waihuan East Road, Guangzhou 510006, China
| | - Yuanning Zeng
- Guangdong Engineering Technology Research Center for Standardized Processing of Chinese Materia Medica, Science and Technology Department of Guangdong Province, Guangdong Pharmaceutical University, No. 280, Waihuan East Road, Guangzhou 510006, China
| | - Bin Hu
- National Engineering Research Center for Modernization of Traditional Chinese Medicine-Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, No. 1, Medical College Road, Ganzhou 341004, China
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Harbin 150040, China
| | - Qiuhong Wang
- Guangdong Engineering Technology Research Center for Standardized Processing of Chinese Materia Medica, Science and Technology Department of Guangdong Province, Guangdong Pharmaceutical University, No. 280, Waihuan East Road, Guangzhou 510006, China
- Correspondence: (Q.W.); (H.K.)
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Harbin 150040, China
- Correspondence: (Q.W.); (H.K.)
| |
Collapse
|
14
|
Si MD, Wu M, Cheng XZ, Ma ZH, Zheng YG, Li J, Li S, Song YX, Ma D. Swertia mussotii prevents high-fat diet-induced non-alcoholic fatty liver disease in rats by inhibiting expression the TLR4/MyD88 and the phosphorylation of NF-κB. PHARMACEUTICAL BIOLOGY 2022; 60:1960-1968. [PMID: 36205548 PMCID: PMC9559049 DOI: 10.1080/13880209.2022.2127153] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/27/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
CONTEXT Swertia mussotii Franch. (Gentianaceae) is a source of the traditional Tibetan medicine, ZangYinChen, and is used to treat chronic hepatitis and many types of jaundice. OBJECTIVE This study explored the therapeutic effects and mechanism of S. mussotii on non-alcoholic fatty liver disease in diet-induced hypercholesterolaemia. MATERIALS AND METHODS After a week of adaptive feeding, 32 Sprague-Dawley rats were divided into four groups: (1) Control, (2) Control-S, (3) Model, and (4) Model-S. During the 12 experimental weeks, we established the Model using a high-fat diet. Control-S and Model-S were given 1.0 g/kg S. mussotii water extract via gavage starting in the fifth week until the end of experiment. RESULTS When compared with Model rats, the S. mussotii water extract led to a reduction in high-density lipoproteins (43.9%) and albumin (13.9%) and a decrease in total cholesterol (54.0%), triglyceride (45.6%), low-density lipoproteins (8.6%), aspartate aminotransferase (11.0%), alanine aminotransferase (15.5%), alkaline phosphatase (19.1%), total protein (6.4%), and glucose (20.8%) in serum. A reduction in three cytokines (IL-1β, IL-6, and TNFα) was detected. Histopathological examination showed that liver steatosis was significantly relieved in S. mussotii-treated high-fat diet rats. S. mussotii also caused a downregulation in the expression of TLR4 (43.2%), MyD88 (33.3%), and a decrease in phosphorylation of NF-κB. DISCUSSION AND CONCLUSIONS Our findings indicate that S. mussotii may act as a potential anti-inflammation drug via inhibition of the TLR4/MyD88/NF-κB pathway. Further in vivo and in vitro studies are needed to validate its potential in clinical medicine.
Collapse
Affiliation(s)
- Ming Dong Si
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Meng Wu
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xi Zhen Cheng
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Zhi Hong Ma
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yu Guang Zheng
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, China
| | - Jing Li
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
- Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation, Shijiazhuang, China
| | - Si Li
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yong Xing Song
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
- Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation, Shijiazhuang, China
| | - Donglai Ma
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
- Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation, Shijiazhuang, China
| |
Collapse
|
15
|
Galli C, Sala R, Colangelo MT, Guizzardi S. Tamquam alter idem: formal similarities in a subset of reports on anti-inflammatory compounds in the years 2008–2019. Scientometrics 2022. [DOI: 10.1007/s11192-022-04434-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AbstractA literature search on the in vitro testing of anti-inflammatory compounds of natural origin revealed a considerable number of studies adopting a similar template for data reporting in the years up to 2019. Sixty-five such reports appear to have been published between the years 2008 and 2019. Interestingly, this format template was clearly recognizable by a few hallmarks, such as a precise way of plotting cell viability data, extremely consistent endpoints, and the way these were graphically represented. In some instances the similarities extended to some textual features, such as in the case of figure legends. The similarity was so high that chance can be excluded and these studies can be safely assumed to have intentionally followed a template. By 2020, however, no new reports following this format have been published. Although a consistent and reproducible formatting for data reporting may improve report readability, this phenomenon should also be closely scrutinized to assess the rationale why it occurred, the validity of the endpoints that were chosen and why it was then abandoned. The present report reviewed the mean features of this format, traced its origin and its evolution over time, while discussing the limitations of this model.
Collapse
|
16
|
Arita R, Ono R, Saito N, Suzuki S, Kikuchi A, Ohsawa M, Tadano Y, Akaishi T, Kanno T, Abe M, Onodera K, Takayama S, Ishii T. Refractory Chest Pain in Mild to Moderate Coronavirus Disease 2019 Successfully Treated with Saikanto, a Japanese Traditional Medicine. TOHOKU J EXP MED 2022; 257:241-249. [DOI: 10.1620/tjem.2022.j040] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Ryutaro Arita
- Department of Education and Support for Regional Medicine, Tohoku University Hospital
| | - Rie Ono
- Department of Education and Support for Regional Medicine, Tohoku University Hospital
| | - Natsumi Saito
- Department of Education and Support for Regional Medicine, Tohoku University Hospital
| | - Satoko Suzuki
- Department of Education and Support for Regional Medicine, Tohoku University Hospital
| | - Akiko Kikuchi
- Department of Education and Support for Regional Medicine, Tohoku University Hospital
| | - Minoru Ohsawa
- Department of Education and Support for Regional Medicine, Tohoku University Hospital
| | - Yasunori Tadano
- Department of Education and Support for Regional Medicine, Tohoku University Hospital
| | - Tetsuya Akaishi
- Department of Education and Support for Regional Medicine, Tohoku University Hospital
| | - Takeshi Kanno
- Department of Education and Support for Regional Medicine, Tohoku University Hospital
| | - Michiaki Abe
- Department of Education and Support for Regional Medicine, Tohoku University Hospital
| | - Ko Onodera
- Department of Education and Support for Regional Medicine, Tohoku University Hospital
| | - Shin Takayama
- Department of Kampo and Integrative Medicine, Tohoku University Graduate School of Medicine
| | - Tadashi Ishii
- Department of Education and Support for Regional Medicine, Tohoku University Hospital
| |
Collapse
|
17
|
Sunagawa M, Takayama Y, Kato M, Tanaka M, Fukuoka S, Okumo T, Tsukada M, Yamaguchi K. Kampo Formulae for the Treatment of Neuropathic Pain ∼ Especially the Mechanism of Action of Yokukansan ∼. Front Mol Neurosci 2021; 14:705023. [PMID: 34970116 PMCID: PMC8712661 DOI: 10.3389/fnmol.2021.705023] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
Kampo medicine has been practiced as traditional medicine (TM) in Japan. Kampo medicine uses Kampo formulae that are composed of multiple crude drugs to make Kampo formulae. In Japan, Kampo formulae are commonly used instead of or combined with Western medicines. If drug therapy that follows the guidelines for neuropathic pain does not work or cannot be taken due to side effects, various Kampo formulae are considered as the next line of treatment. Since Kampo formulae are composed of two or more kinds of natural crude drugs, and their extracts contain many ingredients with pharmacological effects, one Kampo formula usually has multiple effects. Therefore, when selecting a formula, we consider symptoms other than pain. This review outlines the Kampo formulae that are frequently used for pain treatment and their crude drugs and the basic usage of each component. In recent years, Yokukansan (YKS) has become one of the most used Kampo formulae for pain treatment with an increasing body of baseline research available. We outline the known and possible mechanisms by which YKS exerts its pharmacologic benefits as an example of Kampo formulae's potency and holistic healing properties.
Collapse
Affiliation(s)
- Masataka Sunagawa
- Department of Physiology, School of Medicine, Showa University, Tokyo, Japan
| | - Yasunori Takayama
- Department of Physiology, School of Medicine, Showa University, Tokyo, Japan
| | - Mami Kato
- Department of Physiology, School of Medicine, Showa University, Tokyo, Japan
| | - Midori Tanaka
- Department of Physiology, School of Medicine, Showa University, Tokyo, Japan
- Department of Rehabilitation Medicine, School of Medicine, Showa University, Tokyo, Japan
| | - Seiya Fukuoka
- Department of Physiology, School of Medicine, Showa University, Tokyo, Japan
- Department of Ophthalmology, School of Medicine, Showa University, Tokyo, Japan
| | - Takayuki Okumo
- Department of Physiology, School of Medicine, Showa University, Tokyo, Japan
| | - Mana Tsukada
- Department of Physiology, School of Medicine, Showa University, Tokyo, Japan
| | - Kojiro Yamaguchi
- Department of Physiology, School of Medicine, Showa University, Tokyo, Japan
| |
Collapse
|
18
|
Si M, Wu M, Huo Y, Li A, Guan S, Ma D, Ma Z. Gentianella acuta mitigates cardiovascular damage and inflammation in diet-induced hypercholesterolaemic rats. Exp Ther Med 2021; 22:1259. [PMID: 34603527 PMCID: PMC8453326 DOI: 10.3892/etm.2021.10694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 06/29/2021] [Indexed: 12/12/2022] Open
Abstract
Gentianella acuta (G. acuta) has been widely used as a traditional medicine by Chinese Mongolian populations for the treatment of heart diseases and has also been tested in modern pharmacological experiments. However, the effects of G. acuta on cardiovascular damage and inflammation under conditions of hypercholesterolaemia remain unclear. The present study investigated the effects and mechanisms of the water extract of G. acuta on cardiovascular damage and inflammation caused by a high-cholesterol diet. Male Sprague-Dawley rats were fed a high-cholesterol diet for 4 weeks to establish the hypercholesterolaemia rat model, and they were administered physiological saline or 1.2 g/kg of G. acuta by gavage starting from the 15th day. After the last administration, the blood, heart and thoracic aorta samples were collected and examined. It was revealed that G. acuta treatment could ameliorate cardiomyocyte disorder and thoracic aortic vessel wall damage, reduce serum lipid levels and inflammatory factors and improve heart function. Compared with the Model group, the serum levels of triglycerides, total cholesterol, low-density lipoprotein and tumour necrosis factor-α were decreased, and the high-density lipoprotein and interleukin-10 levels were increased in the Model-G group. Moreover, in both the heart and thoracic aorta, G. acuta reduced the expression and phosphorylation of inhibitor of nuclear factor kappa-B kinase β (IKKβ), inhibitor of NF-κB-α (IκBα) and p-nuclear factor kappa-B (NF-κB). Therefore, G. acuta may exert an inhibitory effect on the IKK/IκB/NF-κB signalling pathway to protect the heart and thoracic aorta in hypercholesterolaemic rats.
Collapse
Affiliation(s)
- Mingdong Si
- Department of Traditional Chinese Medicine, School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China
| | - Meng Wu
- Department of Traditional Chinese Medicine, School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China
| | - Yingying Huo
- Department of Traditional Chinese Medicine, School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China.,Department of Traditional Chinese Medicine, College of Pharmaceutical Sciences, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 650000, P.R. China
| | - Aiying Li
- Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation, Shijiazhuang, Hebei 050091, P.R. China
| | - Shengjiang Guan
- Department of Immunology, School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China
| | - Donglai Ma
- Department of Traditional Chinese Medicine, School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China.,Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, Hebei 050200, P.R. China
| | - Zhihong Ma
- Department of Immunology, School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China
| |
Collapse
|
19
|
Miao Z, Lai Y, Zhao Y, Chen L, Zhou J, Li C, Wang Y. Protective Property of Scutellarin Against Liver Injury Induced by Carbon Tetrachloride in Mice. Front Pharmacol 2021; 12:710692. [PMID: 34421606 PMCID: PMC8374867 DOI: 10.3389/fphar.2021.710692] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022] Open
Abstract
Liver injury is a clinical disorder caused by toxins, drugs, and alcohol stimulation without effective therapeutic approaches thus far. Scutellarin (SCU), isolated from the edible herb Erigeron breviscapus (Vant.) Hand. -Mazz. showed potential hepatoprotective effects, but the mechanisms remain unknown. In this study, transcriptomics combined with nontargeted metabolomics and 16S rRNA amplicon sequencing were performed to elucidate the functional mechanisms of SCU in carbon tetrachloride (CCl4)–induced liver injury in mice. The results showed that SCU exerted potential hepatoprotective effects against CCl4-induced liver injury by repressing CYP2E1 and IκBα/NF-κB signaling pathways, modulating the gut microbiota (especially enriching Lactobacillus), and regulating the endogenous metabolites involved in lipid metabolism and bile acid homeostasis. SCU originates from a functional food that appears to be a promising agent to guard against liver injury.
Collapse
Affiliation(s)
- Zhimin Miao
- College of Pharmacy, Dali University, Dali, China
| | - Yong Lai
- College of Pharmacy, Dali University, Dali, China
| | | | - Lingmin Chen
- College of Pharmacy, Dali University, Dali, China
| | - Jianeng Zhou
- College of Pharmacy, Dali University, Dali, China
| | - Chunyan Li
- College of Pharmacy, Dali University, Dali, China
| | - Yan Wang
- College of Pharmacy, Dali University, Dali, China
| |
Collapse
|
20
|
da Cunha LNOL, Tizziani T, Souza GB, Moreira MA, Neto JSS, Dos Santos CVD, de Carvalho MG, Dalmarco EM, Turqueti LB, Scotti MT, Scotti L, de Assis FF, Braga A, Sandjo LP. Natural Products with tandem Anti-inflammatory, Immunomodulatory and Anti-SARS-CoV/2 effects: A Drug Discovery Perspective against SARS-CoV-2. Curr Med Chem 2021; 29:2530-2564. [PMID: 34313197 DOI: 10.2174/0929867328666210726094955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/29/2021] [Accepted: 06/03/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND COVID-19 is still causing victims with long-term health consequences, mass deaths, and collapsing healthcare systems around the world. The disease has no efficient drugs. However, previous studies revealed that SARS-CoV-2 and SARS-CoV have 96% and 86.5% similarities in cysteine proteases (3CLpro) and papain-like protease (PLpro) sequences, respectively. This resemblance could be significant in the search for drug candidates with antiviral effects against SARS-CoV-2. OBJECTIVE This paper is a compilation of natural products that inhibit SARS-CoV 3CLpro and PLpro and, concomitantly, reduce inflammation and/or modulate the immune system as a perspective strategy for COVID-19 drug discovery. It also presents in silico studies performed on these selected natural products using SARS-CoV-2 3CLpro and PLpro as targets to propose a list of hit compounds. METHOD The plant metabolites were selected in the literature based on their biological activities on SARS-CoV proteins, inflammatory mediators, and immune response. The consensus docking analysis was performed using four different packages. RESULTS Seventy-nine compounds reported in the literature with inhibitory effects on SARS-CoV proteins were reported as anti-inflammatory agents. Fourteen of them showed in previous studies immunomodulatory effects. Five and six of these compounds showed significant in silico consensus as drug candidates that can inhibit PLpro and 3CLpro, respectively. Our findings corroborated recent results reported on anti-SARS-CoV-2 in the literature. CONCLUSION This study revealed that amentoflavone, rubranoside B, savinin, psoralidin, hirsutenone, and papyriflavonol A are good drug candidate for the search of antibiotics against COVID-19.
Collapse
Affiliation(s)
- Luana N O Leal da Cunha
- Programa de Pós-Graduação em Química, CFM, Department of Chemistry, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Tiago Tizziani
- Programa de Pós-Graduação em Química, CFM, Department of Chemistry, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Gabriella B Souza
- Programa de Pós-Graduação em Química, CFM, Department of Chemistry, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Monalisa A Moreira
- Programa de Pós-Graduação em Química, CFM, Department of Chemistry, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - José S S Neto
- Programa de Pós-Graduação em Química, CFM, Department of Chemistry, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Carlos V D Dos Santos
- Programa de Pós-Graduação em Química, CFM, Department of Chemistry, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Maryelle G de Carvalho
- Programa de Pós-Graduação em Química, CFM, Department of Chemistry, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Eduardo M Dalmarco
- Programa de Pós-Graduação em Farmácia, CCS, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Leonardo B Turqueti
- Programa de Pós-Graduação em Química, CFM, Department of Chemistry, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Marcus Tullius Scotti
- Program in Natural and Synthetic Bioactive Products Federal University of Paraíba Cidade Universitária-Castelo Branco III, João Pessoa, PB, Brazil
| | - Luciana Scotti
- Program in Natural and Synthetic Bioactive Products Federal University of Paraíba Cidade Universitária-Castelo Branco III, João Pessoa, PB, Brazil
| | - Francisco F de Assis
- Programa de Pós-Graduação em Química, CFM, Department of Chemistry, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Antonio Braga
- Programa de Pós-Graduação em Química, CFM, Department of Chemistry, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Louis Pergaud Sandjo
- Programa de Pós-Graduação em Química, CFM, Department of Chemistry, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
21
|
Chen Z, Xiao J, Liu H, Yao K, Hou X, Cao Y, Liu X. Astaxanthin attenuates oxidative stress and immune impairment in D-galactose-induced aging in rats by activating the Nrf2/Keap1 pathway and suppressing the NF-κB pathway. Food Funct 2021; 11:8099-8111. [PMID: 32857080 DOI: 10.1039/d0fo01663b] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
As a potential antioxidant, astaxanthin (AST) exhibits anti-aging effects. However, its relationships to oxidative stress and immunity have yet to be sufficiently investigated. In this research, integrated analysis of oxidative stress and immunosenescence was performed to elucidate the efficacy and potential mechanisms of AST in d-galactose-induced aging in rats. The results showed that AST significantly decreased malonaldehyde (MDA) levels and increased antioxidase activity, in addition to demonstrating the ability to repair histopathological injuries to the liver, thereby attenuating oxidative stress. Nuclear factor erythroid 2-related factor 2 (Nrf2) expression was up-regulated by 117.95%, whereas Kelch-like ECH-associated protein-1 (Keap1) expression was simultaneously down-regulated by 51.22%. Moreover, AST significantly reduced interleukin-1β (IL-1β) and interleukin-6 (IL-6) levels, as well as expression of nuclear factor-kappa B (NF-κB) (p65) and i-kappa-B-alpha (IκBα) proteins. Findings of repair of immune organs, as well as elevated levels of interleukin-2 (IL-2), immunoglobulin M (IgM) and immunoglobulin G (IgG), suggest a novel mechanism by which AST could regulate cellular immunity and humoral immunity to attenuate immunosenescence. The anti-aging effects of AST were shown to be due in part to the Nrf2/Keap1 and NF-κB pathways, and AST treatment ameliorated oxidative stress and immune impairment overall.
Collapse
Affiliation(s)
- Zhiqing Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, Guangdong, China. and Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, Guangdong, China. and Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Han Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, Guangdong, China. and Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Kangfei Yao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, Guangdong, China. and Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xiaoning Hou
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, Guangdong, China. and Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, Guangdong, China. and Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xiaojuan Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, Guangdong, China. and Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
22
|
Xu X, Su Y, Wu K, Pan F, Wang A. DOCK2 contributes to endotoxemia-induced acute lung injury in mice by activating proinflammatory macrophages. Biochem Pharmacol 2021; 184:114399. [PMID: 33382969 DOI: 10.1016/j.bcp.2020.114399] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 12/12/2022]
Abstract
Dedicator of cytokinesis 2 (DOCK2), an atypical Rac activator, has important anti-inflammatory properties in blepharitis, enteric bacterial infection and colitis. However, the roles of DOCK2 in macrophage activation and acute lung injury (ALI) are still poorly elucidated. In vitro studies demonstrated that DOCK2 was essential for the nucleotide-sensing Toll-like receptor (TLR) 4-mediated inflammatory response in macrophages. We also confirmed that exposure of macrophages to LPS induced Rac activation through a TLR4-independent, DOCK2-dependent mechanism. Phosphorylation of IκB kinase (IKK) β and nuclear translocation of transcription factor nuclear factor kappa B (NF-κB) were impaired in Ad-shDOCK2-expressing macrophages, resulting in a decreased inflammatory response. Similar results were obtained when EHop-016 (a Rac inhibitor) was used to treat uninfected macrophages. In summary, these data indicate that the DOCK2-Rac signaling pathway acts in parallel with TLR4 engagement to control IKKβ activation for inflammatory cytokine release. Next, we investigated whether pharmacological inhibition of DOCK2 protects against endotoxemia-induced lung injury in mice. Treatment with 4-[3'-(2″-chlorophenyl)-2'-propen-1'-ylidene]-1-phenyl-3,5-pyrazolidinedione (CPYPP), a small-molecule inhibitor of DOCK2, reduced the severity of lung injury, as indicated by decreases in the lung injury score and myeloperoxidase (MPO) activity. Moreover, CPYPP attenuated LPS-induced proinflammatory cytokine release in mice. Our studies suggest that inhibition of DOCK2 may suppress LPS-induced macrophage activation and that DOCK2 may be a novel target for treating endotoxemia-related ALI.
Collapse
Affiliation(s)
- Xiaotao Xu
- Department of Anesthesiology, Affiliated Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Yang Su
- Department of Anesthesiology, Kaifeng People's Hospital, Kaifeng 475000, China
| | - Kaixuan Wu
- Department of Anesthesiology, Affiliated Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Fan Pan
- Department of Anesthesiology, Affiliated Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Aizhong Wang
- Department of Anesthesiology, Affiliated Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China.
| |
Collapse
|
23
|
Hwang M, Kim JN, Lee JR, Kim SC, Kim BJ. Effects of Chaihu-Shugan-San on Small Intestinal Interstitial Cells of Cajal in Mice. Biol Pharm Bull 2020; 43:707-715. [PMID: 32238713 DOI: 10.1248/bpb.b19-01058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chaihu-Shugan-San (CSS) has been widely used as an alternative treatment for gastrointestinal (GI) diseases in East Asia. Interstitial cells of Cajal (ICCs) are pacemakers in the GI tract. In the present study, we examined the action of CSS on pacemaker potentials in cultured ICCs from the mouse small intestine in vitro and on GI motility in vivo. We used the electrophysiological methods to measure the pacemaker potentials in ICCs. GI motility was investigated by measuring intestinal transit rates (ITR). CSS inhibited the pacemaker potentials in a dose-dependent manner. The capsazepine did not block the effect of CSS. However, the effects of CSS were blocked by glibenclamide. In addition, NG-nitro-L-arginine methyl ester (L-NAME) also blocked the CSS-induced effects. Pretreatment with SQ-22536 or with KT-5720 did not suppress the effects of CSS; however, pretreatment with ODQ or KT-5823 did. Furthermore, CSS significantly suppressed murine ITR enhancement by neostigmine in vivo. These results suggest that CSS exerts inhibitory effects on the pacemaker potentials of ICCs via nitric oxide (NO)/cGMP and ATP-sensitive K+ channel dependent and transient receptor potential vanilloid 1 (TRPV1) channel independent pathways. Accordingly, CSS could provide the basis for the development of new treatments for GI motility dysfunction.
Collapse
Affiliation(s)
- Minwoo Hwang
- Department of Sasang Constitutional Medicine, College of Korean Medicine, Kyung Hee University
| | - Jeong Nam Kim
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine
| | - Jong Rok Lee
- Department of Pharmaceutical Engineering, Daegu Haany University
| | - Sang Chan Kim
- College of Oriental Medicine, Daegu Haany University
| | - Byung Joo Kim
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine
| |
Collapse
|
24
|
Anti-Inflammatory and Antioxidant Effects of Carpesium cernuum L. Methanolic Extract in LPS-Stimulated RAW 264.7 Macrophages. Mediators Inflamm 2020; 2020:3164239. [PMID: 32848508 PMCID: PMC7439783 DOI: 10.1155/2020/3164239] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/20/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023] Open
Abstract
A hypernomic reaction or an abnormal inflammatory process could cause a series of diseases, such as cardiovascular disease, neurodegeneration, and cancer. Additionally, oxidative stress has been identified to induce severe tissue injury and inflammation. Carpesium cernuum L. (C. cernuum) is a Chinese folk medicine used for its anti-inflammatory, analgesic, and detoxifying properties. However, the underlying molecular mechanism of C. cernuum in inflammatory and oxidative stress conditions remains largely unknown. The aim of this study was to examine the effects of a methanolic extract of C. cernuum (CLME) on lipopolysaccharide- (LPS-) induced RAW 264.7 mouse macrophages and a sepsis mouse model. The data presented in this study indicated that CLME inhibited LPS-induced production of proinflammatory mediators such as nitric oxide (NO) and prostaglandin E2 (PGE2) in RAW 264.7 cells. CLME treatment also reduced reactive oxygen species (ROS) generation and enhanced the expression of heme oxygenase-1 (HO-1) protein in a dose-dependent manner in the LPS-stimulated RAW 264.7 cells. Moreover, CLME treatment abolished the nuclear translocation of nuclear factor-κB (NF-κB), enhanced the activation of nuclear factor-erythroid 2 p45-related factor 2 (Nrf2), and reduced the expression of extracellular signal-related kinase (ERK) and ERK kinase (MEK) phosphorylation in LPS-stimulated RAW 264.7 cells. These outcomes implied that CLME could be a potential antioxidant and anti-inflammatory agent.
Collapse
|
25
|
Wang Y, Peng M. Research Progress on Classical Traditional Chinese Medicine Jieyu Pills in the Treatment of Depression. Neuropsychiatr Dis Treat 2020; 16:3023-3033. [PMID: 33324063 PMCID: PMC7733407 DOI: 10.2147/ndt.s282384] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/23/2020] [Indexed: 12/25/2022] Open
Abstract
Depression is a common clinical psychological disease, which is called "yu zheng" in traditional Chinese medicine (TCM). TCM has a long history in the treatment of depression (yu zheng), which has unique advantages. Jieyu pill (JYP), a classical TCM formula, has been widely used for treating depression because of its clear clinical efficacy, low side effects, and high compliance. In this review, we systematically introduce recent clinical and animal experimental studies on JYP and depression, and review the pharmacological mechanism and active ingredients of JYP, as well as its clinical application in depression therapy. This systematic review provides a deep understanding of TCM prescriptions, pharmacological mechanisms, and disease-medicine interactions, and lays the foundation for developing new treatments for depression.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Psychiatry, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Miao Peng
- Department of Psychiatry, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| |
Collapse
|
26
|
Comparative Effect of Aqueous and Methanolic Bupleuri Radix Extracts on Hepatic Uptake of High-Density Lipoprotein and Identification of the Potential Target in HFD-Fed Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:9074289. [PMID: 31885672 PMCID: PMC6915136 DOI: 10.1155/2019/9074289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/20/2019] [Accepted: 11/08/2019] [Indexed: 12/02/2022]
Abstract
Our previous study found saikosaponin b2 (SSb2) increased high-density lipoprotein (HDL) uptake in HepG2 cells. SSb2 is only found in aqueous Bupleuri Radix extract, and it is one of the secondary saponins derived from saikosaponin d (SSd), which exists in the methanolic extract. This study aimed to compare the effect of aqueous extract of Bupleuri Radix on hepatic uptake of HDL with methanolic extract and to reveal the underlying mechanism of enhancing HDL uptake in mice fed with high-fat diet (HFD). Cellular HDL uptake in each group was quantified by flow cytometry. Bioactive components bound to the HepG2 cytomembrane were detected with HPLC-DAD. RNA sequencing was performed to screen the underlying target on hepatic HDL-uptake, and western blotting was conducted to verify differential protein expression. Significant increases of HDL uptake by HepG2 cells were observed in all groups of aqueous extract of Bupleuri Radix, while no effect or negative effect was observed in the methanolic extract. Saikosaponin b1 (SSb1) and SSb2 were detected in the desorption elute of the aqueous extract from the HepG2 cytomembrane, while saikosaponin a (SSa) and SSd were not found. Remarkable upregulation of FGF21 in HFD-fed mice liver was affirmed after treatment with aqueous extract. This study suggested that aqueous Bupleuri Radix extract could promote hepatic HDL uptake in vitro but methanolic extract could not, and FGF21 might be the potential target.
Collapse
|
27
|
Transcriptome profiling of poly(I:C)-induced RAW 264.7 mouse macrophages in response to panaxadiol. Biologia (Bratisl) 2019. [DOI: 10.2478/s11756-019-00288-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
28
|
Zhang S, He K, Zhou W, Cao J, Jin Z. miR‑494‑3p regulates lipopolysaccharide‑induced inflammatory responses in RAW264.7 cells by targeting PTEN. Mol Med Rep 2019; 19:4288-4296. [PMID: 30942409 PMCID: PMC6471187 DOI: 10.3892/mmr.2019.10083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 01/28/2019] [Indexed: 12/28/2022] Open
Abstract
MicroRNAs (miRNAs/miRs) serve important roles in regulating inflammatory responses at the post-transcriptional level. In the present study, the limma package was used to analyze the GSE43300 array dataset downloaded from the Gene Expression Omnibus database. It was identified that several miRNAs, including miR-494-3p, were upregulated in lipopolysaccharide (LPS)-treated RAW264.7 macrophages compared to control cells. Transfection experiments indicated that overexpressing miR-494-3p inhibited production of LPS-induced proinflammatory cytokines, including interleukin-1β and tumor necrosis factor-α. Conversely, knockdown of miR-494-3p enhanced cytokine expression. Bioinformatics prediction and luciferase assay both revealed that miR-494-3p could directly target phosphatase and tensin homolog (PTEN) and upregulate protein kinase B activity. In addition, miR-494-3p mimics suppressed p65 translocation to the nucleus. Similar effects were observed following PTEN silencing. In conclusion, the results of the present study revealed that miR-494-3p may act as an important immune regulator in LPS-stimulated macrophages, and be an effective therapeutic target for treating infections in the future.
Collapse
Affiliation(s)
- Si Zhang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Kang He
- Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Weiwei Zhou
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jun Cao
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Zuolin Jin
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|