1
|
Zhang Y, Wei M, Wang X, Xu Y, Zong R, Lin X, Li S, Chen W, Liu Z, Chen Q. Dipeptide alanine-glutamine ameliorates retinal neurodegeneration in an STZ-induced rat model. Front Pharmacol 2024; 15:1490443. [PMID: 39629074 PMCID: PMC11611560 DOI: 10.3389/fphar.2024.1490443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/06/2024] [Indexed: 12/06/2024] Open
Abstract
Introduction Diabetic retinopathy (DR) is a common complication of diabetes. Retinal neuronal degeneration is an early event in DR, indicated by the declined electroretinogram (ERG). Dipeptide alanine-glutamine (Ala-Gln) is widely used as a nutritional supplement in the clinic and has anti-inflammatory effects on the gastrointestinal system. Studies also reported that glutamine has beneficial effects on diabetes. This study aimed to investigate the possible therapeutic effects of Ala-Gln in diabetic retinal neurodegeneration and to delineate its mechanism of action. Methods The Streptozotocin (STZ)-induced rat model was used as a DR model. ERG was used to measure the neuronal function of the retina. Western blot analysis was performed to test the expression of proteins. Immunofluorescence staining was used for the detection and localization of proteins. Results In diabetic rats, the amplitudes of ERG were declined, while Ala-Gln restored the declined ERG. Retinal levels of inflammatory factors were significantly decreased in Ala-Gln-treated diabetic rats. Ala-Gln mitigated the declined levels of glutamine synthetase and ameliorated the upregulated levels of glial fibrillary acidic protein (GFAP) in diabetic retinas. Moreover, Ala-Gln upregulated the glycolytic enzymes pyruvate kinase isozymes 2 (PKM2), lactate dehydrogenase A (LDHA) and LDHB and stimulated the mTOR signaling pathway in diabetic retinas. The mitochondrial function was improved after the treatment of Ala-Gln in diabetic retinas. Discussion Ala-Gln ameliorates retinal neurodegeneration by reducing inflammation and enhancing glucose metabolism and mitochondrial function in DR. Therefore, manipulation of metabolism by Ala-Gln may be a novel therapeutic avenue for retinal neurodegeneration in DR.
Collapse
Affiliation(s)
- Yuhan Zhang
- Xiamen University Affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Mingyan Wei
- Xiamen University Affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xin Wang
- Xiamen University Affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yuan Xu
- Xiamen University Affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Rongrong Zong
- Xiamen University Affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xiang Lin
- Department of Ophthalmology, Xiang’an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Shiying Li
- Department of Ophthalmology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Wensheng Chen
- Xiamen University Affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Department of Ophthalmology, Xiang’an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Zuguo Liu
- Xiamen University Affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Department of Ophthalmology, Xiang’an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Qian Chen
- Xiamen University Affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Department of Ophthalmology, Xiang’an Hospital of Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
2
|
Yang K, Wu L, Zeng L, Xiang W, Chen J, Yan Y, Hao M, Song T, Zhai E, Zhang G, Liu H. Exploring the effect of Gouqi Nuzhen Liuhe decoction on the PI3K/mTOR signaling pathway for premature ovarian insufficiency based on system pharmacology. Heliyon 2024; 10:e33105. [PMID: 38994091 PMCID: PMC11238132 DOI: 10.1016/j.heliyon.2024.e33105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 07/13/2024] Open
Abstract
Objective To explore the effect of Gouqi Nuzhen Liuhe Decoction (GNLHD) on the PI3K/mTOR Signaling Pathway for Premature Ovarian Insufficiency (POI) based on system pharmacology. Methods First, the system pharmacology approach was used to predict the mechanism of GNLHD. Then, mice were randomly divided into model group, positive group, GNLHD high-dose group, GNLHD medium-dose group, and GNLHD low-dose group. Hematoxylin-eosin (HE) staining was used to observe the pathological changes of ovarian tissue under light microscope. The expression levels of estradiol (E2), follicle-stimulating hormone (FSH) and luteinizing hormone (LH) were detected by enzyme-linked immunosorbent assay. The expressions of PI3K, AKT1 and mTOR proteins in ovarian tissue were detected by immunohistochemistry. Results The results of system pharmacology showed that GNLHD may regulate biological processes and signaling pathways such as: reproductive structure development, reproductive system development, Oocyte meiosis and so on. Compared with the model group, the levels of E2 in the GNLHD group were increased, and the levels of FSH and LH were decreased (P < 0.05). Compared with the model group, the number of mature follicles in the GNLHD group was significantly increased, the number of atretic follicles was relatively decreased, and the expressions of PI3K, AKT1, and MTOR proteins in the GNLHD group were significantly increased (P < 0.05). Conclusion GNLHD may improve the ovarian function of POI mice by affecting the expression of PI3K, AKT1 and mTOR proteins, promote the growth and development of follicles, increase the E2 level, reduce FSH and LH level, and maintain the stability of the ovarian internal environment.
Collapse
Affiliation(s)
- Kailin Yang
- Hunan Provincial Key Laboratory of Translational Medicine for Traditional Chinese Medicine Prescription Research, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
- Psychosomatic Laboratory, Department of Psychiatry, Daqing Hospital of Traditional Chinese Medicine, China
| | - Lingyu Wu
- Hunan Provincial Key Laboratory of Translational Medicine for Traditional Chinese Medicine Prescription Research, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Liuting Zeng
- Hunan Provincial Key Laboratory of Translational Medicine for Traditional Chinese Medicine Prescription Research, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Wang Xiang
- Department of Rheumatology, The First People's Hospital Changde City, Changde City, China
| | - Junpeng Chen
- Psychosomatic Laboratory, Department of Psychiatry, Daqing Hospital of Traditional Chinese Medicine, China
- Department of Physiology, School of Medicine, University of Louisville, Kentucky, USA
- Tong Jiecheng Studio, Hunan University of Science and Technology, Xiangtan, China
| | - Yexing Yan
- Psychosomatic Laboratory, Department of Psychiatry, Daqing Hospital of Traditional Chinese Medicine, China
| | - Moujia Hao
- Psychosomatic Laboratory, Department of Psychiatry, Daqing Hospital of Traditional Chinese Medicine, China
| | - Tian Song
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Enjian Zhai
- School of Information and Control Engineering, Qingdao University of Technology, Qingdao, China
| | - Guomin Zhang
- Hunan Provincial Key Laboratory of Translational Medicine for Traditional Chinese Medicine Prescription Research, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Huiping Liu
- Hunan Provincial Key Laboratory of Translational Medicine for Traditional Chinese Medicine Prescription Research, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| |
Collapse
|
3
|
Tanase DM, Valasciuc E, Costea CF, Scripcariu DV, Ouatu A, Hurjui LL, Tarniceriu CC, Floria DE, Ciocoiu M, Baroi LG, Floria M. Duality of Branched-Chain Amino Acids in Chronic Cardiovascular Disease: Potential Biomarkers versus Active Pathophysiological Promoters. Nutrients 2024; 16:1972. [PMID: 38931325 PMCID: PMC11206939 DOI: 10.3390/nu16121972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Branched-chain amino acids (BCAAs), comprising leucine (Leu), isoleucine (Ile), and valine (Val), are essential nutrients vital for protein synthesis and metabolic regulation via specialized signaling networks. Their association with cardiovascular diseases (CVDs) has become a focal point of scientific debate, with emerging evidence suggesting both beneficial and detrimental roles. This review aims to dissect the multifaceted relationship between BCAAs and cardiovascular health, exploring the molecular mechanisms and clinical implications. Elevated BCAA levels have also been linked to insulin resistance (IR), type 2 diabetes mellitus (T2DM), inflammation, and dyslipidemia, which are well-established risk factors for CVD. Central to these processes are key pathways such as mammalian target of rapamycin (mTOR) signaling, nuclear factor kappa-light-chain-enhancer of activate B cells (NF-κB)-mediated inflammation, and oxidative stress. Additionally, the interplay between BCAA metabolism and gut microbiota, particularly the production of metabolites like trimethylamine-N-oxide (TMAO), adds another layer of complexity. Contrarily, some studies propose that BCAAs may have cardioprotective effects under certain conditions, contributing to muscle maintenance and metabolic health. This review critically evaluates the evidence, addressing the biological basis and signal transduction mechanism, and also discusses the potential for BCAAs to act as biomarkers versus active mediators of cardiovascular pathology. By presenting a balanced analysis, this review seeks to clarify the contentious roles of BCAAs in CVD, providing a foundation for future research and therapeutic strategies required because of the rising prevalence, incidence, and total burden of CVDs.
Collapse
Affiliation(s)
- Daniela Maria Tanase
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (A.O.); (D.E.F.); (M.F.)
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, Iasi 700111, Romania
| | - Emilia Valasciuc
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (A.O.); (D.E.F.); (M.F.)
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, Iasi 700111, Romania
| | - Claudia Florida Costea
- Department of Ophthalmology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- 2nd Ophthalmology Clinic, “Prof. Dr. Nicolae Oblu” Emergency Clinical Hospital, 700309 Iași, Romania
| | - Dragos Viorel Scripcariu
- Department of General Surgery, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Regional Institute of Oncology, 700483 Iasi, Romania
| | - Anca Ouatu
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (A.O.); (D.E.F.); (M.F.)
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, Iasi 700111, Romania
| | - Loredana Liliana Hurjui
- Department of Morpho-Functional Sciences II, Physiology Discipline, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Hematology Laboratory, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Claudia Cristina Tarniceriu
- Department of Morpho-Functional Sciences I, Discipline of Anatomy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Hematology Clinic, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Diana Elena Floria
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (A.O.); (D.E.F.); (M.F.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Manuela Ciocoiu
- Department of Pathophysiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Livia Genoveva Baroi
- Department of Surgery, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Department of Vascular Surgery, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Mariana Floria
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (A.O.); (D.E.F.); (M.F.)
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, Iasi 700111, Romania
| |
Collapse
|
4
|
Tufail M, Wan WD, Jiang C, Li N. Targeting PI3K/AKT/mTOR signaling to overcome drug resistance in cancer. Chem Biol Interact 2024; 396:111055. [PMID: 38763348 DOI: 10.1016/j.cbi.2024.111055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 05/21/2024]
Abstract
This review comprehensively explores the challenge of drug resistance in cancer by focusing on the pivotal PI3K/AKT/mTOR pathway, elucidating its role in oncogenesis and resistance mechanisms across various cancer types. It meticulously examines the diverse mechanisms underlying resistance, including genetic mutations, feedback loops, and microenvironmental factors, while also discussing the associated resistance patterns. Evaluating current therapeutic strategies targeting this pathway, the article highlights the hurdles encountered in drug development and clinical trials. Innovative approaches to overcome resistance, such as combination therapies and precision medicine, are critically analyzed, alongside discussions on emerging therapies like immunotherapy and molecularly targeted agents. Overall, this comprehensive review not only sheds light on the complexities of resistance in cancer but also provides a roadmap for advancing cancer treatment.
Collapse
Affiliation(s)
- Muhammad Tufail
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Wen-Dong Wan
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Canhua Jiang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China; Institute of Oral Precancerous Lesions, Central South University, Changsha, China; Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ning Li
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China; Institute of Oral Precancerous Lesions, Central South University, Changsha, China; Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
5
|
Peng ML, Zhang LJ, Luo Y, Xu SY, Long XM, Ao JL, Liao SG, Zhu QF, He X, Xu GB. Phomopsterone B Alleviates Liver Fibrosis through mTOR-Mediated Autophagy and Apoptosis Pathway. Molecules 2024; 29:417. [PMID: 38257331 PMCID: PMC10820960 DOI: 10.3390/molecules29020417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Liver fibrosis is the initial pathological process of many chronic liver diseases. Targeting hepatic stellate cell (HSC) activation is an available strategy for the therapy of liver fibrosis. We aimed to explore the anti-liver fibrosis activity and potential mechanism of phomopsterone B (PB) in human HSCs. The results showed that PB effectively attenuated the proliferation of TGF-β1-stimulated LX-2 cells in a concentration-dependent manner at doses of 1, 2, and 4 μM. Quantitative real-time PCR and Western blot assays displayed that PB significantly reduced the expression levels of α-SMA and collagen I/III. AO/EB and Hoechst33342 staining and flow cytometry assays exhibited that PB promoted the cells' apoptosis. Meanwhile, PB diminished the number of autophagic vesicles and vacuolated structures, and the LC3B fluorescent spots indicated that PB could effectively inhibit the accretion of autophagosomes in LX-2 cells. Moreover, rapamycin and MHY1485 were utilized to further investigate the effect of mTOR in autophagy and apoptosis. The results demonstrated that PB regulated autophagy and apoptosis via the mTOR-dependent pathway in LX-2 cells. In summary, this is the first evidence that PB effectively alleviates liver fibrosis in TGF-β1-stimulated LX-2 cells, and PB may be a promising candidate for the prevention of liver fibrosis.
Collapse
Affiliation(s)
- Mei-Lin Peng
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New District, Guiyang 550004, China; (M.-L.P.); (L.-J.Z.); (Y.L.); (S.-Y.X.); (X.-M.L.); (J.-L.A.); (S.-G.L.); (Q.-F.Z.)
- University Engineering Research Center for the Prevention and Treatment of Chronic Diseases by Authentic Medicinal Materials in Guizhou Province, Guian New District, Guiyang 550025, China
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang 550004, China
| | - Li-Jie Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New District, Guiyang 550004, China; (M.-L.P.); (L.-J.Z.); (Y.L.); (S.-Y.X.); (X.-M.L.); (J.-L.A.); (S.-G.L.); (Q.-F.Z.)
| | - Yan Luo
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New District, Guiyang 550004, China; (M.-L.P.); (L.-J.Z.); (Y.L.); (S.-Y.X.); (X.-M.L.); (J.-L.A.); (S.-G.L.); (Q.-F.Z.)
| | - Shi-Ying Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New District, Guiyang 550004, China; (M.-L.P.); (L.-J.Z.); (Y.L.); (S.-Y.X.); (X.-M.L.); (J.-L.A.); (S.-G.L.); (Q.-F.Z.)
| | - Xing-Mei Long
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New District, Guiyang 550004, China; (M.-L.P.); (L.-J.Z.); (Y.L.); (S.-Y.X.); (X.-M.L.); (J.-L.A.); (S.-G.L.); (Q.-F.Z.)
| | - Jun-Li Ao
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New District, Guiyang 550004, China; (M.-L.P.); (L.-J.Z.); (Y.L.); (S.-Y.X.); (X.-M.L.); (J.-L.A.); (S.-G.L.); (Q.-F.Z.)
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang 550004, China
| | - Shang-Gao Liao
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New District, Guiyang 550004, China; (M.-L.P.); (L.-J.Z.); (Y.L.); (S.-Y.X.); (X.-M.L.); (J.-L.A.); (S.-G.L.); (Q.-F.Z.)
- University Engineering Research Center for the Prevention and Treatment of Chronic Diseases by Authentic Medicinal Materials in Guizhou Province, Guian New District, Guiyang 550025, China
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang 550004, China
| | - Qin-Feng Zhu
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New District, Guiyang 550004, China; (M.-L.P.); (L.-J.Z.); (Y.L.); (S.-Y.X.); (X.-M.L.); (J.-L.A.); (S.-G.L.); (Q.-F.Z.)
- University Engineering Research Center for the Prevention and Treatment of Chronic Diseases by Authentic Medicinal Materials in Guizhou Province, Guian New District, Guiyang 550025, China
| | - Xun He
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New District, Guiyang 550004, China; (M.-L.P.); (L.-J.Z.); (Y.L.); (S.-Y.X.); (X.-M.L.); (J.-L.A.); (S.-G.L.); (Q.-F.Z.)
- University Engineering Research Center for the Prevention and Treatment of Chronic Diseases by Authentic Medicinal Materials in Guizhou Province, Guian New District, Guiyang 550025, China
| | - Guo-Bo Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New District, Guiyang 550004, China; (M.-L.P.); (L.-J.Z.); (Y.L.); (S.-Y.X.); (X.-M.L.); (J.-L.A.); (S.-G.L.); (Q.-F.Z.)
- University Engineering Research Center for the Prevention and Treatment of Chronic Diseases by Authentic Medicinal Materials in Guizhou Province, Guian New District, Guiyang 550025, China
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang 550004, China
| |
Collapse
|
6
|
Chen X, Zhang T, Ren X, Wei Y, Zhang X, Zang X, Ju X, Qin C, Xu D. CHKB-AS1 enhances proliferation and resistance to NVP-BEZ235 of renal cancer cells via regulating the phosphorylation of MAP4 and PI3K/AKT/mTOR signaling. Eur J Med Res 2023; 28:588. [PMID: 38093375 PMCID: PMC10720114 DOI: 10.1186/s40001-023-01558-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023] Open
Abstract
Targeted therapy is pivotal in renal carcinoma treatment, and the dual-inhibitor NVP-BEZ235 has emerged as a promising candidate in preliminary studies. Its effectiveness against renal carcinoma and the mechanisms underlying potential resistance, however, warrant further exploration. This study aims to elucidate these aspects, enhancing our understanding of NVP-BEZ235's future clinical utility. To investigate resistance mechanisms, renal cancer cell lines were exposed to progressively increasing concentrations of NVP-BEZ235, leading to the development of stable resistance. These resistant cells underwent extensive RNA-sequencing analysis. We implemented gene interference techniques using plasmid vectors and lentivirus and conducted regular IC50 assessments. To pinpoint the role of LncRNAs, we utilized FISH and immunofluorescence staining assays, supplemented by RNA pull-down and RIP assays to delineate interactions between LncRNA and its RNA-binding protein (RBP). Further, Western blotting and qRT-PCR were employed to examine alterations in signaling pathways, with an animal model providing additional validation. Our results show a marked increase in the IC50 of NVP-BEZ235 in resistant cell lines compared to their parental counterparts. A significant revelation was the role of LncRNA-CHKB-AS1 in mediating drug resistance. We observed dysregulated expression of CHKB-AS1 in both clinical samples of clear cell renal cell carcinoma (ccRCC) and cell lines. In vivo experiments further substantiated our findings, showing that CHKB-AS1 overexpression significantly enhanced tumor growth and resistance to NVP-BEZ235 in a subcutaneous tumorigenesis model, as evidenced by increased tumor volume and weight, whereas CHKB-AS1 knockdown led to a marked reduction in these parameters. Critically, CHKB-AS1 was identified to interact with MAP4, a key regulator in the phosphorylation of the PI3k/Akt/mTOR pathway. This interaction contributes to a diminished antitumor effect of NVP-BEZ235, highlighting the intricate mechanism through which CHKB-AS1 modulates drug resistance pathways, potentially impacting therapeutic strategies against renal carcinoma.
Collapse
Affiliation(s)
- Xinglin Chen
- Urology Centre, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong New District, Shanghai, 201203, China
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, 210029, Jiangsu Province, China
| | - Tongtong Zhang
- Urology Centre, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong New District, Shanghai, 201203, China
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, 210029, Jiangsu Province, China
| | - Xiaohan Ren
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, 210029, Jiangsu Province, China
| | - Yuang Wei
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, 210029, Jiangsu Province, China
| | - Xu Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, 210029, Jiangsu Province, China
| | - Xinyue Zang
- Urology Centre, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong New District, Shanghai, 201203, China
| | - Xiran Ju
- Urology Centre, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong New District, Shanghai, 201203, China.
| | - Chao Qin
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, 210029, Jiangsu Province, China.
| | - Dongliang Xu
- Urology Centre, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong New District, Shanghai, 201203, China.
| |
Collapse
|
7
|
Adhikary A, Mukherjee A, Banerjee R, Nagotu S. DRP1: At the Crossroads of Dysregulated Mitochondrial Dynamics and Altered Cell Signaling in Cancer Cells. ACS OMEGA 2023; 8:45208-45223. [PMID: 38075775 PMCID: PMC10701729 DOI: 10.1021/acsomega.3c06547] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/20/2023] [Accepted: 10/30/2023] [Indexed: 10/08/2024]
Abstract
In the past decade, compelling evidence has accumulated that highlights the role of various subcellular structures in human disease conditions. Dysregulation of these structures greatly impacts cellular function and, thereby, disease conditions. One such organelle extensively studied for its role in several human diseases, especially cancer, is the mitochondrion. DRP1 is a GTPase that is considered the master regulator of mitochondrial fission and thereby also affects the proper functioning of the organelle. Altered signaling pathways are a distinguished characteristic of cancer cells. In this review, we aim to summarize our current understanding of the interesting crosstalk between the mitochondrial structure-function maintained by DRP1 and the signaling pathways that are affected in cancer cells. We highlight the structural aspects of DRP1, its regulation by various modifications, and the association of the protein with various cellular pathways altered in cancer. A better understanding of this association may help in identifying potential pharmacological targets for novel therapies in cancer.
Collapse
Affiliation(s)
- Ankita Adhikary
- Organelle Biology and Cellular
Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | | | - Riddhi Banerjee
- Organelle Biology and Cellular
Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Shirisha Nagotu
- Organelle Biology and Cellular
Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
8
|
Tang X, Zhan Y, Yang B, Du B, Huang J. Exploring the mechanism of Semen Strychni in treating amyotrophic lateral sclerosis based on network pharmacology. Medicine (Baltimore) 2023; 102:e35101. [PMID: 37682161 PMCID: PMC10489316 DOI: 10.1097/md.0000000000035101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 08/16/2023] [Indexed: 09/09/2023] Open
Abstract
Semen Strychni (SS), known as an agonist of central nervous system, is a traditional herb widely used in treating amyotrophic lateral sclerosis (ALS) in small doses to relieve muscle weakness and improve muscle strength. However, the potential mechanisms and the main components of SS in treating ALS remain unclear. To explore the underlying mechanism of SS in treating ALS based on network pharmacology and molecular docking. The active components of SS were obtained using TCMSP, Herb, ETCM, and BATMAN-TCM. The targets of SS were gained from PharmMapper. The targets of ALS were searched on Genecards, Drugbank, DisGeNET, OMIM, TTD and GEO database. After obtaining the coincidence targets, we submitted them to the STRING database to build a protein-protein interaction network. Gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis were performed subsequently. The active components and targets were further investigated using molecular docking technology. 395 targets of SS and 1925 targets of ALS were obtained with 125 common targets. The protein-protein interaction analysis indicated that SRC, AKT1, MAPK1, EGFR, and HSP90AA1 received the higher degree value and were considered the central genes. The Ras, PI3K-Akt, and MAPK signaling pathway could be involved in the treatment of ALS. Brucine-N-oxide obtained the lowest binding energy in molecular docking. This study explored the mechanism of SS in the treatment of ALS and provides a new perspective for future study. However, further experimental studies are needed to validate the therapeutic effect.
Collapse
Affiliation(s)
- Xiaohui Tang
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yingshi Zhan
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Biying Yang
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Baoxin Du
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Jingyan Huang
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
9
|
Du Y, Cai X. Therapeutic potential of natural compounds from herbs and nutraceuticals in spinal cord injury: Regulation of the mTOR signaling pathway. Biomed Pharmacother 2023; 163:114905. [PMID: 37207430 DOI: 10.1016/j.biopha.2023.114905] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023] Open
Abstract
Spinal cord injury (SCI) is a disease in which the spinal cord is subjected to various external forces that cause it to burst, shift, or, in severe cases, injure the spinal tissue, resulting in nerve injury. SCI includes not only acute primary injury but also delayed and persistent spinal tissue injury (i.e., secondary injury). The pathological changes post-SCI are complex, and effective clinical treatment strategies are lacking. The mammalian target of rapamycin (mTOR) coordinates the growth and metabolism of eukaryotic cells in response to various nutrients and growth factors. The mTOR signaling pathway has multiple roles in the pathogenesis of SCI. There is evidence for the beneficial effects of natural compounds and nutraceuticals that regulate the mTOR signaling pathways in a variety of diseases. Therefore, the effects of natural compounds on the pathogenesis of SCI were evaluated by a comprehensive review using electronic databases, such as PubMed, Web of Science, Scopus, and Medline, combined with our expertise in neuropathology. In particular, we reviewed the pathogenesis of SCI, including the importance of secondary nerve injury after the primary mechanical injury, the roles of the mTOR signaling pathways, and the beneficial effects and mechanisms of natural compounds that regulate the mTOR signaling pathway on pathological changes post-SCI, including effects on inflammation, neuronal apoptosis, autophagy, nerve regeneration, and other pathways. This recent research highlights the value of natural compounds in regulating the mTOR pathway, providing a basis for developing novel therapeutic strategies for SCI.
Collapse
Affiliation(s)
- Yan Du
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Xue Cai
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
10
|
Zhang Z, Zhao Z, Wang J, Cui R, Feng F. Endometrial clear cell carcinoma with non-gestational choriocarcinoma differentiation: use of rapamycin maintenance. Int J Gynecol Cancer 2023; 33:988-994. [PMID: 37277138 DOI: 10.1136/ijgc-2023-004320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023] Open
Affiliation(s)
- Zhibo Zhang
- Department of Obstetrics and Gynaecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, People's Republic of China
| | - Zichen Zhao
- Department of Obstetrics and Gynaecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, People's Republic of China
| | - Jing Wang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Ruixue Cui
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Fengzhi Feng
- Department of Obstetrics and Gynaecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, People's Republic of China
| |
Collapse
|
11
|
Zhang L, Xue K, Fan P, Chen C, Hu J, Huang J, Lu W, Xu J, Xu S, Ran J, Zhu S, Gan S. Geranylgeranylacetone-induced heat shock protein70 expression reduces retinal ischemia-reperfusion injury through PI3K/AKT/mTOR signaling. Exp Eye Res 2023; 229:109416. [PMID: 36801237 DOI: 10.1016/j.exer.2023.109416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/07/2022] [Accepted: 02/11/2023] [Indexed: 02/17/2023]
Abstract
Retinal ischemia-reperfusion (I/R) injury is a common pathophysiological stress state connected to various diseases, including acute glaucoma, retinal vascular obstruction, and diabetic retinopathy. Recent studies have suggested that geranylgeranylacetone (GGA) could increase heat shock protein70 (HSP70) level and reduce retinal ganglion cells (RGCs) apoptosis in a rat retinal I/R model. However, the underlying mechanism remains unclear. Moreover, the injury caused by retinal I/R includes not only apoptosis but also autophagy and gliosis, and the effects of GGA on autophagy and gliosis have not been reported. Our study established a retinal I/R model by anterior chamber perfusion pressuring to 110 mmHg for 60 min, followed by 4 h of reperfusion. The levels of HSP70, apoptosis-related proteins, GFAP, LC3-II, and PI3K/AKT/mTOR signaling proteins were determined by western blotting and qPCR after treatment with GGA, HSP70 inhibitor quercetin (Q), PI3K inhibitor LY294002, and mTOR inhibitor rapamycin. Apoptosis was evaluated by TUNEL staining, meanwhile, HSP70 and LC3 were detected by immunofluorescence. Our results demonstrated that GGA-induced HSP70 expression significantly reduced gliosis, autophagosome accumulation, and apoptosis in retinal I/R injury, indicating that GGA exerted protective effects on retinal I/R injury. Moreover, the protective effects of GGA mechanistically relied on the activation of PI3K/AKT/mTOR signaling. In conclusion, GGA-induced HSP70 overexpression has protective effects on retinal I/R injury by activating PI3K/AKT/mTOR signaling.
Collapse
Affiliation(s)
- Lirong Zhang
- Institute of Neurosciences, Basic Medicine College of Chongqing Medical University, Chongqing, China
| | - Kaige Xue
- Institute of Neurosciences, Basic Medicine College of Chongqing Medical University, Chongqing, China
| | - Ping Fan
- Department of Gynecology and Obstetrics of the Fifth People's Hospital of Chongqing, Chongqing, China
| | - Chunyan Chen
- Institute of Neurosciences, Basic Medicine College of Chongqing Medical University, Chongqing, China
| | - Jiaheng Hu
- Institute of Neurosciences, Basic Medicine College of Chongqing Medical University, Chongqing, China
| | - Juan Huang
- Institute of Neurosciences, Basic Medicine College of Chongqing Medical University, Chongqing, China
| | - Weitian Lu
- Institute of Neurosciences, Basic Medicine College of Chongqing Medical University, Chongqing, China
| | - Jin Xu
- Institute of Neurosciences, Basic Medicine College of Chongqing Medical University, Chongqing, China
| | - Shiye Xu
- Institute of Neurosciences, Basic Medicine College of Chongqing Medical University, Chongqing, China
| | - Jianhua Ran
- Institute of Neurosciences, Basic Medicine College of Chongqing Medical University, Chongqing, China
| | - Shujuan Zhu
- Institute of Neurosciences, Basic Medicine College of Chongqing Medical University, Chongqing, China
| | - Shengwei Gan
- Institute of Neurosciences, Basic Medicine College of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
12
|
Tetrahydroquinoline: an efficient scaffold as mTOR inhibitor for the treatment of lung cancer. Future Med Chem 2022; 14:1789-1809. [PMID: 36538021 DOI: 10.4155/fmc-2022-0204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Efforts have been made to find an efficient scaffold (and its substitution) that can be used for the treatment of lung cancer via mTOR inhibition. A detailed literature search was carried out for previously reported mTOR inhibitors. The present review is focused on lung cancer; therefore, descriptions of some mTOR inhibitors that are currently in clinical trials for the treatment of lung cancer are provided. Based on previous research findings, tetrahydroquinoline was found to be the most efficient scaffold to be explored for the treatment of lung cancer. A possible efficient substitution of the tetrahydroquinoline scaffold could also be beneficial for the treatment of lung cancer.
Collapse
|
13
|
The role of PI3K/Akt signalling pathway in spinal cord injury. Biomed Pharmacother 2022; 156:113881. [DOI: 10.1016/j.biopha.2022.113881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 10/13/2022] [Accepted: 10/13/2022] [Indexed: 11/18/2022] Open
|
14
|
Development of rapamycin-encapsulated exosome-mimetic nanoparticles-in-PLGA microspheres for treatment of hemangiomas. Biomed Pharmacother 2022; 148:112737. [PMID: 35276517 DOI: 10.1016/j.biopha.2022.112737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/11/2022] [Accepted: 02/17/2022] [Indexed: 11/20/2022] Open
Abstract
We have previously developed several kinds of rapamycin-encapsulated nanoparticles to achieve sustained release of rapamycin to treat hemangioma. However, lack of intrinsic targeting and easy clearance by the immune system are major hurdles that artificial fabricated nanoparticles must overcome. We constructed rapamycin-encapsulated macrophage-derived exosomes mimic nanoparticles-in-microspheres (RNM), to achieve the goal of continuous targeted therapy of hemangiomas. The rapamycin-encapsulated exosome mimic nanoparticles (RN) were firstly prepared by the extrusion-based method from the U937 cells (the human macrophage cell line). After then, RN was encapsulated with PLGA (poly(lactic-co-glycolic acid)) microspheres to obtain RNM. The release profile, targeting activity, and biological activity of RN and RNM were investigated on hemangioma stem cells (HemSCs). RN has a size of 100 nm in diameter, with a rapamycin encapsulation efficacy (EE) of 83%. The prepared microspheres RNM have a particle size of ~30 µm), and the drug EE of RNM is 34%. The sustained release of RNM can remarkably be achieved for 40 days. As expected, RN and RNM showed effective inhibition of cellular proliferation, significant cellular apoptosis, and remarkable repressed expression of angiogenesis factors in HemSCs. Our results showed that RNM is an effective approach for prolonged and effective delivery of rapamycin to hemangiomas.
Collapse
|
15
|
Wang KY, Wang KJ, Ma Q. The expression and significance of p4E-BP1/4E-BP1 in prostate cancer. J Clin Lab Anal 2022; 36:e24332. [PMID: 35257419 PMCID: PMC8993610 DOI: 10.1002/jcla.24332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/17/2022] [Accepted: 02/19/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Although the phosphorylation of 4E-BP1 that has been detected in high-grade prostate cancer has been reported in previous studies, overexpression of p4E-BP1 and 4EBP1 and their clinical significance in prostate cancer still remain unknown. METHODS One hundred six samples of prostate tissues were collected and analyzed by immunohistochemistry with p4E-BP1 or 4E-BP1 specific antibodies. Everolimus was used to block the phosphorylation of p4E-BP1, and then flow cytometry, clone formation, transwell, and wound healing assays were performed to detect the survival and invasive ability of the prostate cancer cells. RESULTS We found that the expression of 4E-BP1 and p4E-BP1 was higher in prostate cancer tissues than in normal tissues. Interestingly, the expression of p4E-BP1 was significantly associated with Gleason score and lymph node metastasis, but had no obvious correlation with PSA and the presence of bone or visceral metastasis. However, no evident correlation was found between the positive expression of 4E-BP1 and these clinical characteristics. In in vitro experiments, we found similar results as the clinical presentation that 4E-BP1 and p4E-BP1 were low expressed in normal prostate epithelial cells, but in prostate cancer cells, as the malignancy increasing, 4E-BP1 and p4E-BP1 expression also gradually increased. Then, we used Everolimus to inhibit the phosphorylation of 4E-BP1 and found that Everolimus effectively reduced cloning formation, inhibited cell migration, and promoted apoptosis in a dose-dependent manner in PC3 cells. CONCLUSIONS These findings suggest that p4E-BP1 is a potential biomarker and therapy target for prostate cancer, and patients with high expressions of p4E-BP1 may benefit from Everolimus treatment.
Collapse
Affiliation(s)
- Kai-Yun Wang
- School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Ke-Jie Wang
- Translational Research Laboratory for Urology, the Key Laboratory of Ningbo City, Ningbo First Hospital, The Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China.,Ningbo Clinical Research Center for Urological Disease, Ningbo, Zhejiang, China
| | - Qi Ma
- Translational Research Laboratory for Urology, the Key Laboratory of Ningbo City, Ningbo First Hospital, The Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China.,Ningbo Clinical Research Center for Urological Disease, Ningbo, Zhejiang, China.,Comprehensive Urogenital Cancer Center, Ningbo First Hospital, The Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
16
|
Cheng P, Liao HY, Zhang HH. The role of Wnt/mTOR signaling in spinal cord injury. J Clin Orthop Trauma 2022; 25:101760. [PMID: 35070684 PMCID: PMC8762069 DOI: 10.1016/j.jcot.2022.101760] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/23/2021] [Accepted: 01/01/2022] [Indexed: 01/07/2023] Open
Abstract
Spinal cord injury (SCI) is the most common disabling spinal injury, a complex pathologic process that can eventually lead to severe neurological dysfunction. The Wnt/mTOR signaling pathway is a pervasive signaling cascade that regulates a wide range of physiological processes during embryonic development, from stem cell pluripotency to cell fate. Numerous studies have reported that Wnt/mTOR signaling pathway plays an important role in neural development, synaptogenesis, neuron growth, differentiation and survival after the central nervous system (CNS) is damaged. Wnt/mTOR also plays an important role in regulating various pathophysiological processes after spinal cord injury (SCI). After SCI, Wnt/mTOR signal regulates the physiological and pathological processes of neural stem cell proliferation and differentiation, neuronal axon regeneration, neuroinflammation and pain through multiple pathways. Due to the characteristics of the Wnt signal in SCI make it a potential therapeutic target of SCI. In this paper, the characteristics of Wnt/mTOR signal, the role of Wnt/mTOR pathway on SCI and related mechanisms are reviewed, and some unsolved problems are discussed. It is hoped to provide reference value for the research field of the role of Wnt/mTOR pathway in SCI, and provide a theoretical basis for biological therapy of SCI.
Collapse
Affiliation(s)
- Peng Cheng
- Department of Spine Surgery, LanZhou University Second Hospital, 82 Cuiying Men, Lanzhou, 730000, PR China
| | - Hai-Yang Liao
- Department of Spine Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, 342800, PR China
| | - Hai-Hong Zhang
- Department of Spine Surgery, LanZhou University Second Hospital, 82 Cuiying Men, Lanzhou, 730000, PR China
| |
Collapse
|
17
|
Li B, Zhang X, Ren Q, Gao L, Tian J. NVP-BEZ235 Inhibits Renal Cell Carcinoma by Targeting TAK1 and PI3K/Akt/mTOR Pathways. Front Pharmacol 2022; 12:781623. [PMID: 35082669 PMCID: PMC8784527 DOI: 10.3389/fphar.2021.781623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/07/2021] [Indexed: 12/24/2022] Open
Abstract
In spite of the promising in vitro and preclinical results, dual PI3K/Akt/mTOR inhibitor NVP-BEZ235, and ATP-competitive mTOR inhibitor PP242 both failed to confirm their inhibitory efficacy against renal cell carcinoma (RCC) in clinical settings. Therefore, a better understanding of the molecular mechanism is essential so as to provide possibilities for their use in combination with other agents. In present study, RCC cell lines (UMRC6, 786-0 and UOK121) were treated with NVP-BEZ235, PP242 or Rapamycin, an mTOR complex 1 (mTORC1)-specific inhibitor. They all suppressed cell proliferation and invasion, induced apoptosis and cell cycle arrest, and the effects were in the order of NVP-BEZ235 > PP242 > Rapamycin. Accordingly, the marked and sustained decrease in speckle-type POZ protein (SPOP) expression and phosphorylation of Akt and mTOR kinases was observed in RCC cells treated with NVP-BEZ235 and PP242, whereas only potent inhibition of mTOR activity was induced in Rapamycin-treated cells. In considering the overactivation of c-Jun and IκB-α in human renal tumor tissue, we next investigated the role of JNK and IKK pathways in the response of RCC cells to these compounds. First of all, transforming growth factor β activated kinase 1 (TAK1)-dependent activation of JNK/ (activator protein-1) AP-1 axis in RCC cells was proved by the repression of AP-1 activity with TAK1 or JNK inhibitor. Second, the profound inhibition of TAK1/JNK/AP-1 pathway was demonstrated in RCC cells treated with NVP-BEZ235 or PP242 but not Rapamycin, which is manifested as a reduction in activity of TAK1, c-Jun and AP-1. Meanwhile, subsequent to TAK1 inactivation, the activation of IκB-α was also reduced by NVP-BEZ235 and PP242. Likewise, in vivo, treatment with NVP-BEZ235 and PP242 suppressed the growth of xenografts generated from 786-0 and A498 cells, along with decreased expression of phospho-TAK1, phospho-c-Jun, and phospho-IκB-α. In contrast, Rapamycin elicited no significant inhibitory effects on tumor growth and phosphorylation of TAK1, c-Jun and IκB-α. We conclude that besides PI3K/Akt/mTOR signaling, NVP-BEZ235, and PP242 simultaneously target TAK1-dependent pathways in RCC cells. Notably, these effects were more marked in the presence of NVP-BEZ235 than PP242, indicating the potential application of NVP-BEZ235 in combination therapy for RCC.
Collapse
Affiliation(s)
- Bihui Li
- Guangxi Health Commission Key Laboratory of Tumor Immunology and Receptor-Targeted Drug Basic Research, Guilin Medical University, Guilin, China.,Department of Oncology, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Xing Zhang
- Guangxi Health Commission Key Laboratory of Tumor Immunology and Receptor-Targeted Drug Basic Research, Guilin Medical University, Guilin, China
| | - Qianyao Ren
- Guangxi Health Commission Key Laboratory of Tumor Immunology and Receptor-Targeted Drug Basic Research, Guilin Medical University, Guilin, China
| | - Li Gao
- Department of Urinary Surgery, The First Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Jing Tian
- Guangxi Health Commission Key Laboratory of Tumor Immunology and Receptor-Targeted Drug Basic Research, Guilin Medical University, Guilin, China
| |
Collapse
|
18
|
Ding Y, Chen Q. mTOR pathway: A potential therapeutic target for spinal cord injury. Biomed Pharmacother 2021; 145:112430. [PMID: 34800780 DOI: 10.1016/j.biopha.2021.112430] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 12/12/2022] Open
Abstract
Spinal cord injury (SCI) is the most common disabling spinal injury, and the complex pathological process can eventually lead to severe neurological dysfunction. Many studies have reported that the mammalian target of rapamycin (mTOR) signaling pathway plays an important role in synaptogenesis, neuron growth, differentiation, and survival after central nervous system injury. It is also involved in various traumatic and central nervous system diseases, including traumatic brain injury, neonatal hypoxic-ischemic brain injury, Alzheimer's disease, Parkinson's disease, and cerebral apoplexy. mTOR has also been reported to play an important regulatory role in various pathophysiological processes following SCI. Activation of mTOR signals after SCI can regulate physiological and pathological processes, such as proliferation and differentiation of neural stem cells, regeneration of nerve axons, neuroinflammation, and glial scar formation, through various pathways. Inhibition of mTOR activity has been confirmed to promote repair in SCI. At present, many studies have reported that Chinese herbal medicine can inhibit the SCI-activated mTOR pathway to improve the microenvironment and promote nerve repair after SCI. Due to the role of the mTOR pathway in SCI, it may be a potential therapeutic target for SCI. This review is focused on the pathophysiological process of SCI, characteristics of the mTOR pathway, role of the mTOR pathway in SCI, role of inhibition of mTOR on SCI, and role and significance of inhibition of mTOR by related Chinese herbal medicine inhibitors in SCI. In addition, the review discusses the deficiencies and solutions to mTOR and SCI research shortcomings. This study hopes to provide reference for mTOR and SCI research and a theoretical basis for SCI biotherapy.
Collapse
Affiliation(s)
- Yi Ding
- Department of Spine Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou 342800, PR China; The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou 342800, PR China.
| | - Qin Chen
- Department of Spine Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou 342800, PR China; The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou 342800, PR China.
| |
Collapse
|
19
|
Ryan KC, Ashkavand Z, Sarasija S, Laboy JT, Samarakoon R, Norman KR. Increased mitochondrial calcium uptake and concomitant mitochondrial activity by presenilin loss promotes mTORC1 signaling to drive neurodegeneration. Aging Cell 2021; 20:e13472. [PMID: 34499406 PMCID: PMC8520713 DOI: 10.1111/acel.13472] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 06/21/2021] [Accepted: 08/05/2021] [Indexed: 12/21/2022] Open
Abstract
Metabolic dysfunction and protein aggregation are common characteristics that occur in age‐related neurodegenerative disease. However, the mechanisms underlying these abnormalities remain poorly understood. We have found that mutations in the gene encoding presenilin in Caenorhabditis elegans, sel‐12, results in elevated mitochondrial activity that drives oxidative stress and neuronal dysfunction. Mutations in the human presenilin genes are the primary cause of familial Alzheimer's disease. Here, we demonstrate that loss of SEL‐12/presenilin results in the hyperactivation of the mTORC1 pathway. This hyperactivation is caused by elevated mitochondrial calcium influx and, likely, the associated increase in mitochondrial activity. Reducing mTORC1 activity improves proteostasis defects and neurodegenerative phenotypes associated with loss of SEL‐12 function. Consistent with high mTORC1 activity, we find that SEL‐12 loss reduces autophagosome formation, and this reduction is prevented by limiting mitochondrial calcium uptake. Moreover, the improvements of proteostasis and neuronal defects in sel‐12 mutants due to mTORC1 inhibition require the induction of autophagy. These results indicate that mTORC1 hyperactivation exacerbates the defects in proteostasis and neuronal function in sel‐12 mutants and demonstrate a critical role of presenilin in promoting neuronal health.
Collapse
Affiliation(s)
- Kerry C. Ryan
- Department of Regenerative and Cancer Cell Biology Albany Medical College Albany New York USA
| | - Zahra Ashkavand
- Department of Regenerative and Cancer Cell Biology Albany Medical College Albany New York USA
| | - Shaarika Sarasija
- Department of Regenerative and Cancer Cell Biology Albany Medical College Albany New York USA
| | - Jocelyn T. Laboy
- Department of Regenerative and Cancer Cell Biology Albany Medical College Albany New York USA
| | - Rohan Samarakoon
- Department of Regenerative and Cancer Cell Biology Albany Medical College Albany New York USA
| | - Kenneth R. Norman
- Department of Regenerative and Cancer Cell Biology Albany Medical College Albany New York USA
| |
Collapse
|
20
|
Olatunde A, Nigam M, Singh RK, Panwar AS, Lasisi A, Alhumaydhi FA, Jyoti Kumar V, Mishra AP, Sharifi-Rad J. Cancer and diabetes: the interlinking metabolic pathways and repurposing actions of antidiabetic drugs. Cancer Cell Int 2021; 21:499. [PMID: 34535145 PMCID: PMC8447515 DOI: 10.1186/s12935-021-02202-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 09/06/2021] [Indexed: 12/18/2022] Open
Abstract
Cancers are regarded as one of the main causes of death and result in high health burden worldwide. The management of cancer include chemotherapy, surgery and radiotherapy. The chemotherapy, which involves the use of chemical agents with cytotoxic actions is utilised as a single treatment or combined treatment. However, these managements of cancer such as chemotherapy poses some setbacks such as cytotoxicity on normal cells and the problem of anticancer drug resistance. Therefore, the use of other therapeutic agents such as antidiabetic drugs is one of the alternative interventions used in addressing some of the limitations in the use of anticancer agents. Antidiabetic drugs such as sulfonylureas, biguanides and thiazolidinediones showed beneficial and repurposing actions in the management of cancer, thus, the activities of these drugs against cancer is attributed to some of the metabolic links between the two disorders and these includes hyperglycaemia, hyperinsulinemia, inflammation, and oxidative stress as well as obesity. Furthermore, some studies showed that the use of antidiabetic drugs could serve as risk factors for the development of cancerous cells particularly pancreatic cancer. However, the beneficial role of these chemical agents overweighs their detrimental actions in cancer management. Hence, the present review indicates the metabolic links between cancer and diabetes and the mechanistic actions of antidiabetic drugs in the management of cancers.
Collapse
Affiliation(s)
- Ahmed Olatunde
- Department of Biochemistry, Abubakar Tafawa Balewa University, Bauchi, 740272, Nigeria
| | - Manisha Nigam
- Department of Biochemistry, School of Life Sciences, Hemvati Nandan Bahuguna Garhwal University, Srinagar, Garhwal, Uttarakhand, 246174, India.
| | - Rahul Kunwar Singh
- Department of Microbiology, School of Life Sciences, Hemvati Nandan Bahuguna Garhwal University, Srinagar, Garhwal, Uttarakhand, 246174, India
| | - Abhaya Shikhar Panwar
- Department of Biochemistry, School of Life Sciences, Hemvati Nandan Bahuguna Garhwal University, Srinagar, Garhwal, Uttarakhand, 246174, India
| | - Abdulwahab Lasisi
- Maidstone and Tunbridge Wells NHS Trust, Hermitage Lane, Maidstone, Kent, ME169QQ, UK
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Vijay Jyoti Kumar
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University, Garhwal, Srinagar, Uttarakhand, 246174, India
| | - Abhay Prakash Mishra
- Department of Pharmacology, School of Clinical Medicine, Faculty of Health Science, University of Free State, 205, Nelson Mandela Drive, Park West, Bloemfontein, 9300, South Africa
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Querfurth H, Lee HK. Mammalian/mechanistic target of rapamycin (mTOR) complexes in neurodegeneration. Mol Neurodegener 2021; 16:44. [PMID: 34215308 PMCID: PMC8252260 DOI: 10.1186/s13024-021-00428-5] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Novel targets to arrest neurodegeneration in several dementing conditions involving misfolded protein accumulations may be found in the diverse signaling pathways of the Mammalian/mechanistic target of rapamycin (mTOR). As a nutrient sensor, mTOR has important homeostatic functions to regulate energy metabolism and support neuronal growth and plasticity. However, in Alzheimer's disease (AD), mTOR alternately plays important pathogenic roles by inhibiting both insulin signaling and autophagic removal of β-amyloid (Aβ) and phospho-tau (ptau) aggregates. It also plays a role in the cerebrovascular dysfunction of AD. mTOR is a serine/threonine kinase residing at the core in either of two multiprotein complexes termed mTORC1 and mTORC2. Recent data suggest that their balanced actions also have implications for Parkinson's disease (PD) and Huntington's disease (HD), Frontotemporal dementia (FTD) and Amyotrophic Lateral Sclerosis (ALS). Beyond rapamycin; an mTOR inhibitor, there are rapalogs having greater tolerability and micro delivery modes, that hold promise in arresting these age dependent conditions.
Collapse
Affiliation(s)
- Henry Querfurth
- Department of Neurology, Tufts Medical Center, Boston, Massachusetts, USA.
| | - Han-Kyu Lee
- Department of Neurology, Tufts Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
22
|
Wang B, Deng Y, Jin J, Wu Y, Shen L. Long Noncoding RNA LIT3527 Knockdown induces Apoptosis and Autophagy through inhibiting mTOR pathway in Gastric Cancer Cells. J Cancer 2021; 12:4901-4911. [PMID: 34234860 PMCID: PMC8247385 DOI: 10.7150/jca.58185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/25/2021] [Indexed: 11/05/2022] Open
Abstract
Gastric cancer is one of the most common cancers and the leading causes of cancer mortality. However, the molecular mechanisms of gastric cancer malignancy remain unclear. Long noncoding RNAs (lncRNAs) have been well documented in controlling cancer progression. Identification of critical lncRNAs in gastric cancer will provide new sights into the regulation mechanism of gastric cancer. Here, we screened differentially expressed lncRNAs in gastric cancer tissues and matched adjacent tissues and found that lncRNA LIT3527, a 486-nucleotide (nt) sense transcript, was frequently upregulated in gastric cancer tissues. Knockdown of LIT3527 dramatically suppressed proliferation and migration of gastric cancer cells through inducing severe cell death but not affecting cell cycle. Mechanistically, we uncovered that depletion of LIT35227 induced significant cell apoptosis and autophagy through inhibiting AKT/ERK/mTOR signaling pathway. Targeting LIT3527 showed a robust inhibition of lung metastasis of gastric cancer cells. Taken together, these results suggest that LIT3527 is essential for gastric cancer cell survival through maintaining mTOR activity, suggesting that it may be clinically valuable as a therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Boya Wang
- Department of pharmacy, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310020, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, China
| | - Yujie Deng
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Juan Jin
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yan Wu
- Department of pharmacy, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310020, China
| | - Lirong Shen
- Department of pharmacy, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310020, China
| |
Collapse
|
23
|
Wu X, Iroegbu CD, Peng J, Guo J, Yang J, Fan C. Cell Death and Exosomes Regulation After Myocardial Infarction and Ischemia-Reperfusion. Front Cell Dev Biol 2021; 9:673677. [PMID: 34179002 PMCID: PMC8220218 DOI: 10.3389/fcell.2021.673677] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/18/2021] [Indexed: 12/21/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death in the global population, accounting for about one-third of all deaths each year. Notably, with CVDs, myocardial damages result from myocardial infarction (MI) or cardiac arrhythmias caused by interrupted blood flow. Significantly, in the process of MI or myocardial ischemic-reperfusion (I/R) injury, both regulated and non-regulated cell death methods are involved. The critical factor for patients’ prognosis is the infarct area’s size, which determines the myocardial cells’ survival. Cell therapy for MI has been a research hotspot in recent years; however, exosomes secreted by cells have attracted much attention following shortcomings concerning immunogens. Exosomes are extracellular vesicles containing several biologically active substances such as lipids, nucleic acids, and proteins. New evidence suggests that exosomes play a crucial role in regulating cell death after MI as exosomes of various stem cells can participate in the cell damage process after MI. Hence, in the review herein, we focused on introducing various cell-derived exosomes to reduce cell death after MI by regulating the cell death pathway to understand myocardial repair mechanisms better and provide a reference for clinical treatment.
Collapse
Affiliation(s)
- Xun Wu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chukwuemeka Daniel Iroegbu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jun Peng
- Hunan Provincial Key Laboratory of Cardiovascular Research, Changsha, China
| | - Jianjun Guo
- Hunan Fangsheng Pharmaceutical Co., Ltd., Changsha, China
| | - Jinfu Yang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chengming Fan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Provincial Key Laboratory of Cardiovascular Research, Changsha, China.,Hunan Fangsheng Pharmaceutical Co., Ltd., Changsha, China
| |
Collapse
|
24
|
Che X, Qi X, Xu Y, Wang Q, Wu G. Genomic and Transcriptome Analysis to Identify the Role of the mTOR Pathway in Kidney Renal Clear Cell Carcinoma and Its Potential Therapeutic Significance. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6613151. [PMID: 34194607 PMCID: PMC8203410 DOI: 10.1155/2021/6613151] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/06/2021] [Accepted: 04/28/2021] [Indexed: 12/20/2022]
Abstract
The mTOR pathway, a major signaling pathway, regulates cell growth and protein synthesis by activating itself in response to upstream signals. Overactivation of the mTOR pathway may affect the occurrence and development of cancer, but no specific treatment has been proposed for targeting the mTOR pathway. In this study, we explored the expression of mTOR pathway genes in a variety of cancers and the potential compounds that target the mTOR pathway and focused on an abnormal type of cancer, kidney renal clear cell carcinoma (KIRC). Based on the mRNA expression of the mTOR pathway gene, we divided KIRC patient samples into three clusters. We explored possible therapeutic targets of the mTOR pathway in KIRC. We predicted the IC50 of some classical targeted drugs to analyze their correlation with the mTOR pathway. Subsequently, we investigated the correlation of the mTOR pathway with histone modification and immune infiltration, as well as the response to anti-PD-1 and anti-CTLA-4 therapy. Finally, we used a LASSO regression analysis to construct a model to predict the survival of patients with KIRC. This study shows that mTOR scores can be used as tools to study various treatments targeting the mTOR pathway and that we can predict the recovery of KIRC patients through the expression of mTOR pathway genes. These research results can provide a reference for future research on KIRC patient treatment strategies.
Collapse
Affiliation(s)
- Xiangyu Che
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, China
| | - Xiaochen Qi
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, China
| | - Yingkun Xu
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Qifei Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, China
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, China
| |
Collapse
|
25
|
Akkol EK, Dereli FTG, Sobarzo-Sánchez E, Khan H. Roles of Medicinal Plants and Constituents in Gynecological Cancer Therapy: Current Literature and Future Directions. Curr Top Med Chem 2021; 20:1772-1790. [PMID: 32297581 DOI: 10.2174/1568026620666200416084440] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/05/2020] [Accepted: 03/16/2020] [Indexed: 12/20/2022]
Abstract
Gynecologic cancers, including cervical, primary peritoneal, ovarian, uterine/endometrial, vaginal and vulvar cancers and gestational trophoblastic disease, are characterized by abnormal cell proliferation in female reproductive cells. Due to the variable pathology of these cancers and the lack of appropriate screening tests in developing countries, cancer diagnosis can be reported in advanced stages in most women and this situation adversely affects prognosis and clinical outcomes of illness. For this reason, many researchers in the field of gynecological oncology have carried out many studies. The treatment of various gynecological problems, which cause physical, biological and psychosocial conditions such as fear, shame, blame and anger, has been important throughout the history. Treatment with herbs has become popular nowadays due to the serious side effects of the synthetic drugs used in treatment and the medical and economical problems caused by them. Many scientists have identified various active drug substances through in vivo and in vitro biological activity studies on medicinal plants from the past to the present. While the intrinsic complexity of natural product-based drug discoveries requires highly integrated interdisciplinary approaches, scientific and technological advances and research trends clearly show that natural products will be among the most important new drug sources in the future. In this review, an overview of the studies conducted for the discovery of multitargeted drug molecules in the rational treatment of gynecological cancers is presented.
Collapse
Affiliation(s)
- Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Etiler 06330, Ankara, Turkey
| | | | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, 8330507 Santiago, Spain
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| |
Collapse
|
26
|
Ge Z, Song C, Ding Y, Tan BH, Desai D, Sharma A, Gowda R, Yue F, Huang S, Spiegelman V, Payne JL, Reeves ME, Iyer S, Dhanyamraju PK, Imamura Y, Bogush D, Bamme Y, Yang Y, Soliman M, Kane S, Dovat E, Schramm J, Hu T, McGrath M, Chroneos ZC, Payne KJ, Gowda C, Dovat S. Dual targeting of MTOR as a novel therapeutic approach for high-risk B-cell acute lymphoblastic leukemia. Leukemia 2021; 35:1267-1278. [PMID: 33531656 PMCID: PMC8102195 DOI: 10.1038/s41375-021-01132-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/28/2020] [Accepted: 01/07/2021] [Indexed: 01/30/2023]
Abstract
Children of Hispanic/Latino ancestry have increased incidence of high-risk B-cell acute lymphoblastic leukemia (HR B-ALL) with poor prognosis. This leukemia is characterized by a single-copy deletion of the IKZF1 (IKAROS) tumor suppressor and increased activation of the PI3K/AKT/mTOR pathway. This identifies mTOR as an attractive therapeutic target in HR B-ALL. Here, we report that IKAROS represses MTOR transcription and IKAROS' ability to repress MTOR in leukemia is impaired by oncogenic CK2 kinase. Treatment with the CK2 inhibitor, CX-4945, enhances IKAROS activity as a repressor of MTOR, resulting in reduced expression of MTOR in HR B-ALL. Thus, we designed a novel therapeutic approach that implements dual targeting of mTOR: direct inhibition of the mTOR protein (with rapamycin), in combination with IKAROS-mediated transcriptional repression of the MTOR gene (using the CK2 inhibitor, CX-4945). Combination treatment with rapamycin and CX-4945 shows synergistic therapeutic effects in vitro and in patient-derived xenografts from Hispanic/Latino children with HR B-ALL. These data suggest that such therapy has the potential to reduce the health disparity in HR B-ALL among Hispanic/Latino children. The dual targeting of oncogene transcription, combined with inhibition of the corresponding oncoprotein provides a paradigm for a novel precision medicine approach for treating hematological malignancies.
Collapse
Affiliation(s)
- Zheng Ge
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
- Zhongda Hospital, Medical School of Southeast University Nanjing, 210009, Nanjing, China
| | - Chunhua Song
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
- Ohio State University College of Medicine, Columbus, OH, 43210, USA
| | - Yali Ding
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Bi-Hua Tan
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Dhimant Desai
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Arati Sharma
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Raghavendra Gowda
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Feng Yue
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Suming Huang
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | | | - Jonathon L Payne
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
- Loma Linda University College of Medicine, Loma Linda, CA, 92350, USA
| | - Mark E Reeves
- Loma Linda University College of Medicine, Loma Linda, CA, 92350, USA
| | - Soumya Iyer
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | | | - Yuka Imamura
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Daniel Bogush
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Yevgeniya Bamme
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Yiping Yang
- Ohio State University College of Medicine, Columbus, OH, 43210, USA
| | - Mario Soliman
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Shriya Kane
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Elanora Dovat
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Joseph Schramm
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Tommy Hu
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Mary McGrath
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Zissis C Chroneos
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Kimberly J Payne
- Loma Linda University College of Medicine, Loma Linda, CA, 92350, USA
| | - Chandrika Gowda
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
| | - Sinisa Dovat
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
| |
Collapse
|
27
|
Xu T, Zhang J, Yang C, Pluta R, Wang G, Ye T, Ouyang L. Identification and optimization of 3-bromo-N'-(4-hydroxybenzylidene)-4-methylbenzohydrazide derivatives as mTOR inhibitors that induce autophagic cell death and apoptosis in triple-negative breast cancer. Eur J Med Chem 2021; 219:113424. [PMID: 33862514 DOI: 10.1016/j.ejmech.2021.113424] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/17/2021] [Accepted: 03/28/2021] [Indexed: 02/05/2023]
Abstract
Triple negative breast cancer (TNBC) has a worse prognosis than other types of breast cancer due to its special biological behavior and clinicopathological characteristics. TNBC cell proliferation and progression to metastasis can be suppressed by inducing cytostatic autophagy. mTOR is closely related to autophagy and is involved in protein synthesis, nutrient metabolism and activating mTOR promotes tumor growth and metastasis. In this paper, we adopted the strategy of structure simplification, aimed to look for novel small-molecule inhibitors of mTOR by pharmacophore-based virtual screening and biological activity determination. We found a lead compound with 3-bromo-N'-(4-hydroxybenzylidene)-4-methylbenzohydrazide for rational drug design and structural modification, then studied its structure-activity relationship. After that, compound 7c with the best TNBC cells inhibitory activities and superior mTOR enzyme inhibitory activity was obtained. In addition, we found that compound 7c could induce autophagic cell death and apoptosis in MDA-MB-231 and MDA-MB-468 cell lines. In conclusion, these findings provide new clues for our 3-bromo-N'-(4-hydroxybenzylidene)-4-methylbenzohydrazide derivatives, which are expected to become drug candidates for the treatment of TNBC in the future.
Collapse
Affiliation(s)
- Tian Xu
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jifa Zhang
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chengcan Yang
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ryszard Pluta
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Tinghong Ye
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
28
|
Du HY, Wang R, Li JL, Luo H, Xie XY, Yan R, Jian YL, Cai JY. Ligustrazine induces viability, suppresses apoptosis and autophagy of retinal ganglion cells with ischemia/reperfusion injury through the PI3K/Akt/mTOR signaling pathway. Bioengineered 2021; 12:507-515. [PMID: 33522374 PMCID: PMC8806313 DOI: 10.1080/21655979.2021.1880060] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ligustrazine, an alkaloid monomer extracted from Chuanxiong Rhizoma, has the function of protecting nerve cells. However, the effect and mechanism of ligustrazine on retinal ischemia/reperfusion (I/R) injury still need to be clarified. In our study, retinal ganglion cells (RGC-5) were used to establish a retinal I/R injury model by anaerobic cultivation. Cell viability, autophagy, and apoptosis were evaluated by cell counting kit 8 assay, transmission electron microscopy, and TUNEL staining after treatment with ligustrazine, PI3K inhibitor Ly294002, and/or mTOR inhibitor rapamycin, respectively. Besides, the levels of PI3K/Akt/mTOR pathway and autophagy-related proteins were determined by western blot. Moreover, one-way ANOVA was adopted for inter-group comparisons of measurement data. Our results demonstrated that low-concentration ligustrazine significantly enhanced cell viability and suppressed cell autophagy and apoptosis of RGC-5 cells after I/R injury, suggesting the protective effect of low-concentration ligustrazine on retinal I/R injury. Moreover, the alleviating effect of ligustrazine on RGC-5 with retinal I/R injury was mechanistically associated with the activation of the PI3K/Akt/mTOR pathway. In conclusion, low-concentration ligustrazine has a significant protective effect on RGC-5 cells with retinal I/R injury by activating the PI3K/Akt/mTOR pathway.
Collapse
Affiliation(s)
- Hong-Yan Du
- Department of Ophthalmology, The Affiliated Traditional Chinese Medicine Hospital of Guangzhou Medical University , Guangzhou, China
| | - Rong Wang
- Department of Ophthalmology, The Affiliated Traditional Chinese Medicine Hospital of Guangzhou Medical University , Guangzhou, China
| | - Jian-Liang Li
- Department of Ophthalmology, The Affiliated Traditional Chinese Medicine Hospital of Guangzhou Medical University , Guangzhou, China
| | - Huang Luo
- Department of Ophthalmology, The Affiliated Traditional Chinese Medicine Hospital of Guangzhou Medical University , Guangzhou, China
| | - Xiao-Yan Xie
- Department of Ophthalmology, The Affiliated Traditional Chinese Medicine Hospital of Guangzhou Medical University , Guangzhou, China
| | - Ran Yan
- Department of Ophthalmology, The Affiliated Traditional Chinese Medicine Hospital of Guangzhou Medical University , Guangzhou, China
| | - Yue-Ling Jian
- Department of Ophthalmology, The Affiliated Traditional Chinese Medicine Hospital of Guangzhou Medical University , Guangzhou, China
| | - Jin-Ying Cai
- Department of Ophthalmology, The Affiliated Traditional Chinese Medicine Hospital of Guangzhou Medical University , Guangzhou, China
| |
Collapse
|
29
|
Silwal P, Paik S, Kim JK, Yoshimori T, Jo EK. Regulatory Mechanisms of Autophagy-Targeted Antimicrobial Therapeutics Against Mycobacterial Infection. Front Cell Infect Microbiol 2021; 11:633360. [PMID: 33828998 PMCID: PMC8019938 DOI: 10.3389/fcimb.2021.633360] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/08/2021] [Indexed: 01/25/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is an intracellular pathogen causing human tuberculosis, an infectious disease that still remains as a global health problem. Autophagy, a lysosomal degradative process, has emerged as a critical pathway to restrict intracellular Mtb growth through enhancement of phagosomal maturation. Indeed, several autophagy-modulating agents show promise as host-directed therapeutics for Mtb infection. In this Review, we discuss recent progress in our understanding the molecular mechanisms underlying the action of autophagy-modulating agents to overcome the immune escape strategies mediated by Mtb. The factors and pathways that govern such mechanisms include adenosine 5'-monophosphate-activated protein kinase, Akt/mammalian TOR kinase, Wnt signaling, transcription factor EB, cathelicidins, inflammation, endoplasmic reticulum stress, and autophagy-related genes. A further understanding of these mechanisms will facilitate the development of host-directed therapies against tuberculosis as well as infections with other intracellular bacteria targeted by autophagic degradation.
Collapse
Affiliation(s)
- Prashanta Silwal
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Seungwha Paik
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Jin Kyung Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Tamotsu Yoshimori
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
- Department of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
- *Correspondence: Eun-Kyeong Jo,
| |
Collapse
|
30
|
Koňaříková E, Marković A, Korandová Z, Houštěk J, Mráček T. Current progress in the therapeutic options for mitochondrial disorders. Physiol Res 2020; 69:967-994. [PMID: 33129249 PMCID: PMC8549882 DOI: 10.33549/physiolres.934529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 10/02/2020] [Indexed: 12/20/2022] Open
Abstract
Mitochondrial disorders manifest enormous genetic and clinical heterogeneity - they can appear at any age, present with various phenotypes affecting any organ, and display any mode of inheritance. What mitochondrial diseases do have in common, is impairment of respiratory chain activity, which is responsible for more than 90% of energy production within cells. While diagnostics of mitochondrial disorders has been accelerated by introducing Next-Generation Sequencing techniques in recent years, the treatment options are still very limited. For many patients only a supportive or symptomatic therapy is available at the moment. However, decades of basic and preclinical research have uncovered potential target points and numerous compounds or interventions are now subjects of clinical trials. In this review, we focus on current and emerging therapeutic approaches towards the treatment of mitochondrial disorders. We focus on small compounds, metabolic interference, such as endurance training or ketogenic diet and also on genomic approaches.
Collapse
Affiliation(s)
- E Koňaříková
- Laboratory of Bioenergetics, Institute of Physiology Czech Acad. Sci., Prague, Czech Republic. ,
| | | | | | | | | |
Collapse
|
31
|
Liang Q, Huang X, Zeng C, Li D, Shi Y, Zhao G, Zhong M. BW373U86 upregulates autophagy by inhibiting the PI3K/Akt pathway and regulating the mTOR pathway to protect cardiomyocytes from hypoxia-reoxygenation injury. Can J Physiol Pharmacol 2020; 98:684-690. [PMID: 32955950 DOI: 10.1139/cjpp-2019-0684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The purpose of this study was to explore the protective effect of BW373U86 (a δ-opioid receptor (DOR) agonist) on ischemia-reperfusion (I/R) injury in rat cardiomyocytes and its underlying mechanism. Primary rat cardiomyocytes were cultured and pretreated with BW373U86 for intervention. The cardiomyocytes were cultured under the condition of 94% N2 and 5% CO2 for 24 h to perform hypoxia culture and conventionally cultured for 12 h to perform reoxygenation culture. The cell viability of cardiomyocytes was detected by an MTT assay (Sigma-Aldrich). The autophagy lysosome levels in cardiomyocytes were evaluated by acidic vesicular organelles with dansylcadaverine (MDC) staining (autophagy test kit, Kaiji Biology, kgatg001). The protein expression levels of LC3, p62, and factors in the PI3K/Akt/mTOR signaling pathway were detected by Western blot. Pretreatment with BW373U86 could improve the cell viability of cardiomyocytes with hypoxia-reoxygenation (H/R) injury (p < 0.05). Interestingly, after coculture of BW373U86 and PI3K inhibitor (3-methyladenine), the protein expression levels of p-Akt in cardiomyocytes were markedly increased in comparison with those in the BW373U86 group (p < 0.05). However, there were no significant differences in the protein expression levels of mTOR between the coculture group and the BW373U86 group (p > 0.05). BW373U86 upregulated autophagy to protect cardiomyocytes from H/R injury, which may be related to the PI3K/Akt/m TOR pathway.
Collapse
Affiliation(s)
- Qianyi Liang
- Department of Anaesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China.,Department of Anaesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Xiaoling Huang
- Department of Anaesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China.,Department of Anaesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Chaokun Zeng
- Department of Anaesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China.,Department of Anaesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Dewei Li
- Department of Anaesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China.,Department of Anaesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Yongyong Shi
- Department of Anaesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China.,Department of Anaesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Gaofeng Zhao
- Department of Anaesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China.,Department of Anaesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Min Zhong
- Department of Anaesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China.,Department of Anaesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
32
|
Xu T, Sun D, Chen Y, Ouyang L. Targeting mTOR for fighting diseases: A revisited review of mTOR inhibitors. Eur J Med Chem 2020; 199:112391. [DOI: 10.1016/j.ejmech.2020.112391] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/24/2020] [Accepted: 04/24/2020] [Indexed: 02/07/2023]
|
33
|
Valproic Acid: A Potential Therapeutic for Spinal Cord Injury. Cell Mol Neurobiol 2020; 41:1441-1452. [DOI: 10.1007/s10571-020-00929-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023]
|
34
|
Guo W, Qiu W, Ao X, Li W, He X, Ao L, Hu X, Li Z, Zhu M, Luo D, Xing W, Xu X. Low-concentration DMSO accelerates skin wound healing by Akt/mTOR-mediated cell proliferation and migration in diabetic mice. Br J Pharmacol 2020; 177:3327-3341. [PMID: 32167156 DOI: 10.1111/bph.15052] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 01/09/2020] [Accepted: 01/09/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE DMSO has been found to promote tissue repair. However, the role of DMSO in diabetic skin wound healing and the underlying molecular mechanisms are still unclear. EXPERIMENTAL APPROACH The effects of DMSO on wound healing were evaluated by HE staining, immunohistochemistry and collagen staining using a wound model of full-thickness skin resection on the backs of non-diabetic or diabetic mice. Real-time cell analysis and 5-ethynyl-2'-deoxyuridine incorporation assays were used to study the effect of DMSO on primary fibroblast proliferation. A transwell assay was used to investigate keratinocyte migration. The associated signalling pathway was identified by western blotting and inhibitor blocking. The effect of DMSO on the translation rate of downstream target genes was studied by RT-qPCR of polyribosome mRNA. KEY RESULTS We found that low-concentration DMSO significantly accelerated skin wound closure by promoting fibroblast proliferation in both nondiabetic and diabetic mice. In addition, increased migration of keratinocytes may also contribute to accelerated wound healing, which was stimulated by increased TGF-β1 secretion from fibroblasts. Furthermore, we demonstrated that this effect of DMSO depends on Akt/mTOR-mediated translational control and the promotion of the translation of a set of cell proliferation-related genes. As expected, DMSO-induced wound healing and cell proliferation were impaired by rapamycin, an inhibitor of Akt/mTOR signalling. CONCLUSION AND IMPLICATIONS DMSO can promote skin wound healing in diabetic mice by activating the Akt/mTOR pathway. Low-concentration DMSO presents an alternative medication for chronic cutaneous wounds, especially for diabetic patients.
Collapse
Affiliation(s)
- Wei Guo
- Department of Stem Cell & Regenerative Medicine.,Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, P.R., China
| | - Wei Qiu
- Department of Stem Cell & Regenerative Medicine.,Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, P.R., China
| | - Xiang Ao
- Department of Stem Cell & Regenerative Medicine.,Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, P.R., China
| | - Weiqiang Li
- Department of Stem Cell & Regenerative Medicine.,Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University, Chongqing, P.R. China
| | - Xiao He
- Department of Stem Cell & Regenerative Medicine.,Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, P.R., China
| | - Luoquan Ao
- Department of Stem Cell & Regenerative Medicine.,Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, P.R., China
| | - Xueting Hu
- Department of Stem Cell & Regenerative Medicine.,Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, P.R., China
| | - Zhan Li
- Department of Stem Cell & Regenerative Medicine.,Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, P.R., China
| | - Ming Zhu
- Department of Stem Cell & Regenerative Medicine.,Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, P.R., China
| | - Donglin Luo
- Department of General Surgery, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Wei Xing
- Department of Stem Cell & Regenerative Medicine.,Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, P.R., China
| | - Xiang Xu
- Department of Stem Cell & Regenerative Medicine.,Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, P.R., China.,Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University, Chongqing, P.R. China
| |
Collapse
|
35
|
Neuroprotective effect of crocin against rotenone-induced Parkinson's disease in rats: Interplay between PI3K/Akt/mTOR signaling pathway and enhanced expression of miRNA-7 and miRNA-221. Neuropharmacology 2020; 164:107900. [DOI: 10.1016/j.neuropharm.2019.107900] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 10/14/2019] [Accepted: 11/30/2019] [Indexed: 11/23/2022]
|
36
|
Farzaneh M, Derakhshan Z, Hallajzadeh J, Sarani NH, Nejabatdoust A, Khoshnam SE. Suppression of TGF-β and ERK Signaling Pathways as a New Strategy to Provide Rodent and Non-Rodent Pluripotent Stem Cells. Curr Stem Cell Res Ther 2020; 14:466-473. [PMID: 30868962 DOI: 10.2174/1871527318666190314110529] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 02/02/2019] [Accepted: 02/21/2019] [Indexed: 01/07/2023]
Abstract
Stem cells are unspecialized cells and excellent model in developmental biology and a promising approach to the treatment of disease and injury. In the last 30 years, pluripotent embryonic stem (ES) cells were established from murine and primate sources, and display indefinite replicative potential and the ability to differentiate to all three embryonic germ layers. Despite large efforts in many aspects of rodent and non-rodent pluripotent stem cell culture, a number of diverse challenges remain. Natural and synthetic small molecules (SMs) strategy has the potential to overcome these hurdles. Small molecules are typically fast and reversible that target specific signaling pathways, epigenetic processes and other cellular processes. Inhibition of the transforming growth factor-β (TGF-β/Smad) and fibroblast growth factor 4 (FGF4)/ERK signaling pathways by SB431542 and PD0325901 small molecules, respectively, known as R2i, enhances the efficiency of mouse, rat, and chicken pluripotent stem cells passaging from different genetic backgrounds. Therefore, the application of SM inhibitors of TGF-β and ERK1/2 with leukemia inhibitory factor (LIF) allows the cultivation of pluripotent stem cells in a chemically defined condition. In this review, we discuss recently emerging evidence that dual inhibition of TGF-β and FGF signaling pathways plays an important role in regulating pluripotency in both rodent and non-rodent pluripotent stem cells.
Collapse
Affiliation(s)
- Maryam Farzaneh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Zahra Derakhshan
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jamal Hallajzadeh
- Department of Biochemistry and Toxicology, Maraghe University of Medical Science, Maraghe, Iran
| | | | - Armin Nejabatdoust
- Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Seyed Esmaeil Khoshnam
- Physiology Research Center, Department of Physiology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
37
|
Lin S, Wang H, Yang W, Wang A, Geng C. Silencing of Long Non-Coding RNA Colon Cancer-Associated Transcript 2 Inhibits the Growth and Metastasis of Gastric Cancer Through Blocking mTOR Signaling. Onco Targets Ther 2020; 13:337-349. [PMID: 32021279 PMCID: PMC6968811 DOI: 10.2147/ott.s220302] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 12/24/2019] [Indexed: 12/23/2022] Open
Abstract
Purpose This study aimed to evaluate the specific role of colon cancer-associated transcript 2 (CCAT2) on gastric cancer (GC), and reveal the potential regulatory mechanism relating to mammalian target of rapamycin (mTOR) signaling. Methods The expression of CCAT2 was detected in GC tissues and cells by quantitative real-time PCR (qRT-PCR), and its relation with the pathologic characteristics of GC patients was analyzed. HGC-27 and SGC-7901 cells were transfected with siRNA-CCAT2 to silence CCAT2, and HGC-27 cells were then treated with an mTOR agonist Leucine (Leu) to activate mTOR signaling. The cell proliferation was evaluated by cell viability and colony formation. The cell cycle and apoptosis, and the migration and invasion abilities were detected by Flow cytometry, and Transwell assay, respectively. The expression of PCNA (proliferation marker), Snail, N-cadherin, E-cadherin (invasion markers), P53, Caspase-8, Bcl-2 (apoptosis markers), LC3-II/LC3-I, ATG3, p62 (autophagy makers), phosphorylated mTOR (p-mTOR), p-AKT, and p-p70S6K (mTOR signaling markers) were detected by Western blot. Results CCAT2 was upregulated in GC tissues and cells, and positively associated with the maximum tumor diameter, lymphatic metastasis, TNM staging, and low overall survival rate (P < 0.05). siRNA-CCAT2 transfection significantly inhibited the viability, colony formation, and migration and invasion abilities, blocked the cell cycle in G0/G1 phase, and promoted the apoptosis and autophagy of SGC-7901 and HGC-27 cells (P < 0.05). In addition, siRNA-CCAT2 transfection significantly upregulated P53, Caspase-8, LC3-II/LC3-I and ATG3, and downregulated PCNA, Bcl-2, p62, p-mTOR, p-AKT and p-p70S6K in SGC-7901 and HGC-27 cells (P < 0.05). siRNA-CCAT2 reversed the tumor-promoting effect of mTOR signaling activation on HGC-27 cells (P < 0.05). Conclusion Silencing of CCAT2 inhibited the proliferation, migration and invasion, and promoted the apoptosis and autophagy of GC cells through blocking mTOR signaling.
Collapse
Affiliation(s)
- Sen Lin
- Department of Gastroenterology, The Second Hospital of Shandong University, Jinan City, Shangdong 250033, People's Republic of China
| | - Hongbo Wang
- Department of Gastroenterology, The Second Hospital of Shandong University, Jinan City, Shangdong 250033, People's Republic of China
| | - Wenjuan Yang
- Department of Nursing, Jinan Central Hospital, Jinan City, Shangdong 250013, People's Republic of China
| | - Aiguang Wang
- Department of Oncology, Qianfoshan Hospital of Shandong Province, Jinan City, Shangdong 250014, People's Republic of China
| | - Chao Geng
- Department of Gastroenterology, Shouguang People's Hospital, Shouguang City, Shangdong 262799, People's Republic of China
| |
Collapse
|
38
|
Decreased Expression of Urinary Mammalian Target of Rapamycin mRNA Is Related to Chronic Renal Fibrosis in IgAN. DISEASE MARKERS 2019; 2019:2424751. [PMID: 31485275 PMCID: PMC6710774 DOI: 10.1155/2019/2424751] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/10/2019] [Accepted: 07/29/2019] [Indexed: 12/12/2022]
Abstract
Background Renal fibrosis is a common outcome of all pathological types of chronic kidney disease (CKD). However, the noninvasive detection of renal fibrosis remains a challenge. Methods We collected urine samples from 154 biopsy-proven IgA nephropathy (IgAN) patients and 61 healthy controls. The expression of mTOR was measured and the correlation with renal function parameter and pathological indicators. The receiver operating characteristic (ROC) curve for the diagnosis of IgAN and renal fibrosis was calculated. Results The urinary mammalian target of rapamycin (mTOR) expression was decreased in IgAN patients. The expression of mTOR was correlated with serum creatinine, blood urea nitrogen, estimated glomerular filtration rate, 24 h proteinuria, and cystatin C. Further, the urinary mTOR expression was significantly decreased in severe renal fibrosis patients compared with mild or moderate renal fibrosis patients. Urinary mTOR expression was correlated with score of tubulointerstitial fibrosis (TIF) and score of glomerular sclerosis. The ROC curve showed that mTOR can diagnose IgAN at a cut-off value of 0.930 with the sensitivity of 90.2% and specificity of 73.8% and renal fibrosis at a cut-off value of 0.301 with the sensitivity of 71.7% and specificity of 64.8%. Conclusion Urinary mTOR mRNA expression was a potential biomarker for diagnosis of IgAN and renal fibrosis in IgAN patients.
Collapse
|
39
|
Juengel E, Natsheh I, Najafi R, Rutz J, Tsaur I, Haferkamp A, Chun FKH, Blaheta RA. Mechanisms behind Temsirolimus Resistance Causing Reactivated Growth and Invasive Behavior of Bladder Cancer Cells In Vitro. Cancers (Basel) 2019; 11:cancers11060777. [PMID: 31167517 PMCID: PMC6627393 DOI: 10.3390/cancers11060777] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 12/22/2022] Open
Abstract
Background: Although mechanistic target of rapamycin (mTOR) inhibitors, such as temsirolimus, show promise in treating bladder cancer, acquired resistance often hampers efficacy. This study evaluates mechanisms leading to resistance. Methods: Cell growth, proliferation, cell cycle phases, and cell cycle regulating proteins were compared in temsirolimus resistant (res) and sensitive (parental—par) RT112 and UMUC3 bladder cancer cells. To evaluate invasive behavior, adhesion to vascular endothelium or to immobilized extracellular matrix proteins and chemotactic activity were examined. Integrin α and β subtypes were analyzed and blocking was done to evaluate physiologic integrin relevance. Results: Growth of RT112res could no longer be restrained by temsirolimus and was even enhanced in UMUC3res, accompanied by accumulation in the S- and G2/M-phase. Proteins of the cdk-cyclin and Akt-mTOR axis increased, whereas p19, p27, p53, and p73 decreased in resistant cells treated with low-dosed temsirolimus. Chemotactic activity of RT112res/UMUC3res was elevated following temsirolimus re-exposure, along with significant integrin α2, α3, and β1 alterations. Blocking revealed a functional switch of the integrins, driving the resistant cells from being adhesive to being highly motile. Conclusion: Temsirolimus resistance is associated with reactivation of bladder cancer growth and invasive behavior. The α2, α3, and β1 integrins could be attractive treatment targets to hinder temsirolimus resistance.
Collapse
Affiliation(s)
- Eva Juengel
- Department of Urology, Goethe University Hospital, 60590 Frankfurt am Main, Germany.
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany.
| | - Iyad Natsheh
- Department of Allied Medical Sciences, Zarqa University College, Al-Balqa Applied University, Salt 13110, Jordan.
| | - Ramin Najafi
- Department of Urology, Goethe University Hospital, 60590 Frankfurt am Main, Germany.
| | - Jochen Rutz
- Department of Urology, Goethe University Hospital, 60590 Frankfurt am Main, Germany.
| | - Igor Tsaur
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany.
| | - Axel Haferkamp
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany.
| | - Felix K-H Chun
- Department of Urology, Goethe University Hospital, 60590 Frankfurt am Main, Germany.
| | - Roman A Blaheta
- Department of Urology, Goethe University Hospital, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
40
|
Doria M, Nury T, Delmas D, Moreau T, Lizard G, Vejux A. Protective function of autophagy during VLCFA-induced cytotoxicity in a neurodegenerative cell model. Free Radic Biol Med 2019; 137:46-58. [PMID: 31004752 DOI: 10.1016/j.freeradbiomed.2019.04.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/12/2019] [Accepted: 04/13/2019] [Indexed: 02/08/2023]
Abstract
In recent years, a particular interest has focused on the accumulation of fatty acids with very long chains (VLCFA) in the occurrence of neurodegenerative diseases such as Alzheimer's disease, multiple sclerosis or dementia. Indeed, it seems increasingly clear that this accumulation of VLCFA in the central nervous system is accompanied by a progressive demyelination resulting in death of neuronal cells. Nevertheless, molecular mechanisms by which VLCFA result in toxicity remain unclear. This study highlights for the first time in 3 different cellular models (oligodendrocytes 158 N, primary mouse brain culture, and patient fibroblasts) the types of cell death involved where VLCFA-induced ROS production leads to autophagy. The autophagic process protects the cell from this VLCFA-induced toxicity. Thus, autophagy in addition to oxidative stress can offer new therapeutic approaches.
Collapse
Affiliation(s)
- Margaux Doria
- Université de Bourgogne Franche-Comté, Dijon, F-21000, France; Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270, Inserm, F-21000, Dijon, France
| | - Thomas Nury
- Université de Bourgogne Franche-Comté, Dijon, F-21000, France; Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270, Inserm, F-21000, Dijon, France
| | - Dominique Delmas
- Université de Bourgogne Franche-Comté, Dijon, F-21000, France; - Inserm Research Center LNC UMR U1231 - Team "Cancer and Adaptive Immune Response", Bioactive Molecules and Health Research Group, Dijon, F-21000, France
| | - Thibault Moreau
- Université de Bourgogne Franche-Comté, Dijon, F-21000, France; Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270, Inserm, F-21000, Dijon, France; - Department of Neurology, University Hospital, F-2100, Dijon, France
| | - Gérard Lizard
- Université de Bourgogne Franche-Comté, Dijon, F-21000, France; Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270, Inserm, F-21000, Dijon, France
| | - Anne Vejux
- Université de Bourgogne Franche-Comté, Dijon, F-21000, France; Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270, Inserm, F-21000, Dijon, France.
| |
Collapse
|
41
|
Wu D, Zhang K, Hu P. The Role of Autophagy in Acute Myocardial Infarction. Front Pharmacol 2019; 10:551. [PMID: 31214022 PMCID: PMC6554699 DOI: 10.3389/fphar.2019.00551] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/01/2019] [Indexed: 12/14/2022] Open
Abstract
Acute myocardial infarction refers to a sudden death of cardiomyocytes, which leads to a large mortality worldwide. To attenuate acute myocardial infarction, strategies should be made to increase cardiomyocyte survival, improve postinfarcted cardiac function, and reverse the process of cardiac remodeling. Autophagy, a pivotal cellular response, has been widely studied and is known to be involved in various kinds of diseases. In the recent few years, the role of autophagy in diseases has been drawn increasing attention to by researchers. Here in this review, we mainly focus on the discussion of the effect of autophagy on the pathogenesis and progression of acute myocardial infarction under ischemic and ischemia/reperfusion injuries. Furthermore, several popular therapeutic agents and strategies taking advantage of autophagy will be described.
Collapse
Affiliation(s)
- Du Wu
- Department of Internal Medicine, The WuYun Mountain Sanatorium of Hangzhou, Hangzhou, China
| | - Kangfeng Zhang
- Department of Internal Medicine, The WuYun Mountain Sanatorium of Hangzhou, Hangzhou, China
| | - Pengfei Hu
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
42
|
Gulluni F, De Santis MC, Margaria JP, Martini M, Hirsch E. Class II PI3K Functions in Cell Biology and Disease. Trends Cell Biol 2019; 29:339-359. [DOI: 10.1016/j.tcb.2019.01.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/21/2018] [Accepted: 01/02/2019] [Indexed: 12/12/2022]
|
43
|
She Y, Deng H, Cai H, Liu G. Regulation of the expression of key signalling molecules in mTOR pathway of skeletal muscle satellite cells in neonatal chicks: Effects of leucine and glycine–leucine peptide. J Anim Physiol Anim Nutr (Berl) 2019; 103:786-790. [DOI: 10.1111/jpn.13090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 02/16/2019] [Accepted: 02/28/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Yue She
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute Chinese Academy of Agricultural Sciences Beijing China
| | - Huiling Deng
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute Chinese Academy of Agricultural Sciences Beijing China
| | - Huiyi Cai
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute Chinese Academy of Agricultural Sciences Beijing China
| | - Guohua Liu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute Chinese Academy of Agricultural Sciences Beijing China
| |
Collapse
|
44
|
Targeting mTOR in Acute Lymphoblastic Leukemia. Cells 2019; 8:cells8020190. [PMID: 30795552 PMCID: PMC6406494 DOI: 10.3390/cells8020190] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/12/2019] [Accepted: 02/16/2019] [Indexed: 12/12/2022] Open
Abstract
Acute Lymphoblastic Leukemia (ALL) is an aggressive hematologic disorder and constitutes approximately 25% of cancer diagnoses among children and teenagers. Pediatric patients have a favourable prognosis, with 5-years overall survival rates near 90%, while adult ALL still correlates with poorer survival. However, during the past few decades, the therapeutic outcome of adult ALL was significantly ameliorated, mainly due to intensive pediatric-based protocols of chemotherapy. Mammalian (or mechanistic) target of rapamycin (mTOR) is a conserved serine/threonine kinase belonging to the phosphatidylinositol 3-kinase (PI3K)-related kinase family (PIKK) and resides in two distinct signalling complexes named mTORC1, involved in mRNA translation and protein synthesis and mTORC2 that controls cell survival and migration. Moreover, both complexes are remarkably involved in metabolism regulation. Growing evidence reports that mTOR dysregulation is related to metastatic potential, cell proliferation and angiogenesis and given that PI3K/Akt/mTOR network activation is often associated with poor prognosis and chemoresistance in ALL, there is a constant need to discover novel inhibitors for ALL treatment. Here, the current knowledge of mTOR signalling and the development of anti-mTOR compounds are documented, reporting the most relevant results from both preclinical and clinical studies in ALL that have contributed significantly into their efficacy or failure.
Collapse
|
45
|
Molecular interplay between hyperactive mammalian target of rapamycin signaling and Alzheimer's disease neuropathology in the NS-Pten knockout mouse model. Neuroreport 2019; 29:1109-1113. [PMID: 29965873 DOI: 10.1097/wnr.0000000000001081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Dysregulation of the PI3K/Akt/mTOR signaling cascade has been associated with the pathology of neurodegenerative disorders, specifically Alzheimer's disease (AD). Both in-vivo models and post-mortem brain samples of individuals with AD have commonly shown hyperactivation of the pathway. In the present study, we examine how neuron subset-specific deletion of Pten (NS-Pten) in mice, which presents with hyperactive mammalian target of rapamycin (mTOR) activity, affects the hippocampal protein levels of key neuropathological hallmarks of AD. We found NS-Pten knockout (KO) mice to have elevated levels of amyloid-β, α-synuclein, neurofilament-L, and pGSK3α in the hippocampal synaptosome compared with NS-Pten wild type mice. In contrast, there was a decreased expression of amyloid precursor protein, tau, GSK3α, and GSK3β in NS-Pten KO hippocampi. Overall, there were significant alterations in levels of proteins associated with AD pathology in NS-Pten KO mice. This study provides novel insight into how altered mTOR signaling is linked to AD pathology, without the use of an in-vivo AD model that already displays neuropathological hallmarks of the disease.
Collapse
|
46
|
Chao S, Xiaojun L, Haizhen W, Ludi F, Shaozhen L, Zhiwen S, Weiliang H, Chunhong J, Ying W, Fan W, Yunfei G. Lithocholic acid activates mTOR signaling inducing endoplasmic reticulum stress in placenta during intrahepatic cholestasis of pregnancy. Life Sci 2018; 218:300-307. [PMID: 30605648 DOI: 10.1016/j.lfs.2018.12.050] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/12/2018] [Accepted: 12/27/2018] [Indexed: 12/23/2022]
Abstract
AIMS Intrahepatic cholestasis of pregnancy (ICP) is a pregnancy-specific disorder, which increases risks of adverse fetal outcomes. However, the pathophysiology is not fully understood. Here, we explored the roles of mTOR signaling and ER stress in placenta during ICP. MATERIALS AND METHODS Placental tissues were collected from normal and ICP pregnancies. mTOR signaling and endoplasmic reticulum stress were detected by immunohistochemistry in the placenta. The human placenta trophoblast cell line HTR-8/SVneo was used in vitro experiment. KEY FINDINGS ICP placenta displayed histological abnormalities with fewer trophoblasts. Moreover, the expression of Bip and the phosphorylation of pS6(S235/236) or pAkt(S473) were higher comparing with normal placenta. In in vitro studies, the bile acids specifically to lithocholic acid rather than taurocholic acid or ursodeoxycholic acid, drastically increased the phosphorylation of pS6K1(T389), pS6(S235/236), or pAkt(S473), whereas the mTOR inhibitor can prohibit the upregulation. Similarly, the expressions of IRE1α and BiP increased sharply under lithocholic acid (20 μM) administration, while the same inhibitor can also decrease the expression. Additionally, transmission electron microscopy showed enlarged endoplasmic reticulum lumen under the lithocholic acid treatment. Furthermore, the cell viability reduced sharply under treatment with different dose of lithocholic acid. The mTOR inhibitor can reverse the decrease of cell viability to some extent. SIGNIFICANCE Bile acid can activate mTOR signaling which resulted in endoplasmic reticulum stress, leading to trophocyte viability decrease. mTOR pathway activation may be associated with the pathophysiology of ICP.
Collapse
Affiliation(s)
- Sheng Chao
- Division of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Lin Xiaojun
- Division of Pediatrics, The Third Affiliated Hospital of Guangzhou medical University, Guangzhou 510150, China
| | - Wang Haizhen
- Division of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Fu Ludi
- Laboratory Animal Center, Guangzhou university of Chinese Medicine, Guangzhou 510006, China
| | - Liang Shaozhen
- Division of Pediatrics, The Third Affiliated Hospital of Guangzhou medical University, Guangzhou 510150, China
| | - Su Zhiwen
- Division of Pediatrics, The Third Affiliated Hospital of Guangzhou medical University, Guangzhou 510150, China
| | - Huang Weiliang
- Division of Pediatrics, The Third Affiliated Hospital of Guangzhou medical University, Guangzhou 510150, China
| | - Jia Chunhong
- Division of Pediatrics, The Third Affiliated Hospital of Guangzhou medical University, Guangzhou 510150, China
| | - Wang Ying
- Department of Pharmacy, The Third Affiliated Hospital of Guangzhou medical University, Guangzhou 510150, China
| | - Wu Fan
- Division of Pediatrics, The Third Affiliated Hospital of Guangzhou medical University, Guangzhou 510150, China.
| | - Gao Yunfei
- Division of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
47
|
Cheng H, Wu LY. Influence of Phosphatidylinositol-3-Kinase/Protein Kinase B-Mammalian Target of Rapamycin Signaling Pathway on the Neuropathic Pain Complicated by Nucleoside Reverse Transcriptase Inhibitors for the Treatment of HIV Infection. Chin Med J (Engl) 2018; 131:1849-1856. [PMID: 30058583 PMCID: PMC6071467 DOI: 10.4103/0366-6999.237398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background: Nucleoside reverse transcriptase inhibitors (NRTIs) are the earliest and most commonly used anti-human immunodeficiency virus drugs and play an important role in high active antiretroviral therapy. However, NRTI drug therapy can cause peripheral neuropathic pain. In this study, we aimed to investigate the mechanisms of rapamycin on the pain sensitization of model mice by in vivo experiments to explore the effect of mammalian target of rapamycin (mTOR) in the pathogenesis of neuropathic pain caused by NRTIs. Methods: Male Kun Ming (KM) mice weighing 20–22 g were divided into control, 2 mg/kg rapamycin, 12 mg/kg stavudine, and CMC-Na groups. Drugs were orally administered to mice for 42 consecutive days. The von Frey filament detection and thermal pain tests were conducted on day 7, 14, 21, 28, 35, and 42 after drug administration. After the last behavioral tests, immunohistochemistry and western blotting assay were used for the measurement of mTOR and other biomarkers. Multivariate analysis of variance was used. Results: The beneficial effects of rapamycin on neuropathic pain were attributed to a reduction in mammalian target of rapamycin sensitive complex 1 (mTORC1)-positive cells (70.80 ± 2.41 vs. 112.30 ± 5.66, F = 34.36, P < 0.01) and mTORC1 activity in the mouse spinal cord. Mechanistic studies revealed that Protein Kinase B (Akt)/mTORsignaling pathway blockade with rapamycin prevented the phosphorylation of mTORC1 in stavudine-intoxicated mice (0.72 ± 0.04 vs. 0.86 ± 0.03, F = 4.24, P = 0.045), as well as decreased the expression of phospho-p70S6K (0.47 ± 0.01 vs. 0.68 ± 0.03, F = 6.01, P = 0.022) and phospho-4EBP1 (0.90 ± 0.04 vs. 0.94 ± 0.06, F = 0.28, P = 0.646). Conclusions: Taken together, these results suggest that stavudine elevates the expression and activity of mTORC1 in the spinal cord through activating the Akt/mTOR signaling pathway. The data also provide evidence that rapamycin might be useful for the treatment of peripheral neuropathic pain.
Collapse
Affiliation(s)
- Hao Cheng
- Department of Anesthesiology, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Liang-Yu Wu
- Department of Anesthesiology, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| |
Collapse
|
48
|
Fangjing decoction relieves febrile seizures-induced hippocampal neuron apoptosis in rats via regulating the Akt/mTOR pathway. Biosci Rep 2018; 38:BSR20181206. [PMID: 30287501 PMCID: PMC6209604 DOI: 10.1042/bsr20181206] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/30/2018] [Accepted: 09/13/2018] [Indexed: 12/28/2022] Open
Abstract
Background: Fangjing decoction is a Traditional Chinese Medicine that exhibits anticonvulsive effects in treating febrile seizures (FS). Its action mechanism and the regulation on Akt/mammalian target of rapamycin (mTOR) pathway were revealed in the present study. Methods: FS model was established in Sprague–Dawley rats with or without Fangjing decoction treatment. On day 5, following initiation of drug treatment, seizures were monitored. Hippocampal neuron apoptosis was assessed using terminal dUTP nick end-labeling method. The levels of Bax, protein kinase B (Akt), phospho-Akt (p-Akt), mTOR, and p-mTOR proteins were analyzed using Western blotting. The content of hippocampal γ-aminobutyric acid (GABA) was measured by using ELISA assay. Results: Compared with the control group (n=8), Fangjing decoction effectively shortened escape latency and duration of FS and decreased the frequency of FS in rats (n=8). Concomitantly, the apoptosis of hippocampal neurons, as well as Bax protein levels were also decreased in FS rats which were treated with Fangjing decoction. In addition, the Akt/mTOR signaling was found to be activated in rat hippocampus following FS, as evidenced by increased p-Akt and p-mTOR, while Fangjing decoction could inhibit the activation of Akt/mTOR signaling. Furthermore, the low GABA content in rat hippocampus following FS was significantly elevated by Fangjing decoction treatment. More importantly, SC79, a specific activator for Akt, apparently attenuated the protective effects of Fangjing decoction on FS rats. Conclusion: These results suggest that Fangjing decoction protects the hippocampal neurons from apoptosis by inactivating Akt/mTOR pathway, which may contribute to mitigating FS-induced brain injury.
Collapse
|
49
|
Liang ZG, Lin GX, Yu BB, Su F, Li L, Qu S, Zhu XD. The role of autophagy in the radiosensitivity of the radioresistant human nasopharyngeal carcinoma cell line CNE-2R. Cancer Manag Res 2018; 10:4125-4134. [PMID: 30323668 PMCID: PMC6174314 DOI: 10.2147/cmar.s176536] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Purpose The present study aimed to study the role of autophagy in the radiosensitivity of the radioresistant human nasopharyngeal carcinoma cell line CNE-2R. Methods Before being irradiated, CNE-2R cells were treated with the autophagy inhibitor chloroquine diphosphate (CDP) or the autophagy inducer rapamycin (RAPA). Microtubule-associated protein light chain 3 (LC3-II) and p62 were assessed using Western blotting analysis 48 hours after CNE-2R cells were irradiated. The percentage of apoptotic cells was assessed via flow cytometry. CNE-2R cell viability was evaluated using the Cell Counting Kit-8 (CCK8). The radiosensitivity of cells was assessed via clone formation analysis. Results The level of autophagy in CNE-2R cells improved as the radiation dose increased, reaching the maximum at a dose of 10 Gy. Autophagy was most significantly inhibited by 60 µmol/L CDP in CNE-2R cells, but was obviously enhanced by 100 nmol/L RAPA. Compared with the irradiation (IR) alone group, in the IR + CDP group, autophagy was significantly inhibited, viability was low, the rate of radiation-induced apoptosis was increased, and radiosensitivity was upregulated. In contrast, cells of the IR + RAPA group exhibited greater autophagy, higher viability, a lower rate of radiation-induced apoptosis, and downregulated radiosensitivity. Conclusion The autophagy level is negatively correlated with radiosensitivity for the radio-resistant human nasopharyngeal carcinoma cell line CNE-2R.
Collapse
Affiliation(s)
- Zhong-Guo Liang
- Department of Radiation Oncology, The Affiliated Tumor Hospital of Guangxi Medical University, Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, People's Republic of China,
| | - Guo-Xiang Lin
- Department of Radiation Oncology, The Affiliated Tumor Hospital of Guangxi Medical University, Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, People's Republic of China,
| | - Bin-Bin Yu
- Department of Radiation Oncology, The Affiliated Tumor Hospital of Guangxi Medical University, Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, People's Republic of China,
| | - Fang Su
- Department of Radiation Oncology, The Affiliated Tumor Hospital of Guangxi Medical University, Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, People's Republic of China,
| | - Ling Li
- Department of Radiation Oncology, The Affiliated Tumor Hospital of Guangxi Medical University, Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, People's Republic of China,
| | - Song Qu
- Department of Radiation Oncology, The Affiliated Tumor Hospital of Guangxi Medical University, Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, People's Republic of China,
| | - Xiao-Dong Zhu
- Department of Radiation Oncology, The Affiliated Tumor Hospital of Guangxi Medical University, Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, People's Republic of China,
| |
Collapse
|
50
|
Qiao X, Li Y, Mai J, Ji X, Li Q. Effect of Dibutyltin Dilaurate on Triglyceride Metabolism through the Inhibition of the mTOR Pathway in Human HL7702 Liver Cells. Molecules 2018; 23:E1654. [PMID: 29986449 PMCID: PMC6099942 DOI: 10.3390/molecules23071654] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 06/26/2018] [Accepted: 06/26/2018] [Indexed: 12/12/2022] Open
Abstract
Dibutyltin dilaurate (DBTD) has multiple applications in daily life. However, DBTD is easily deposited in the liver and affects liver functions. This study was designed to explore the effects of DBTD on triglyceride metabolism in human normal hepatocyte HL7702 cells. Our results showed that the intracellular fat contents were dose-dependently decreased by DBTD. The expression of lipolysis genes and proteins were elevated while the lipogenesis genes and proteins were diminished by DBTD. The phosphorylation levels of ribosomal S6 kinase 1 were reduced by both rapamycin and DBTD, indicating that the mTOR pathway was suppressed possibly. The decreased sterol regulatory element-binding protein 1C (SREBP1C) transcription levels, as well as the increased peroxisome proliferator-activated receptor alpha (PPARα) transcription levels, caused by rapamycin and DBTD corresponded to the inactive mTOR pathway. In conclusion, it was possible that DBTD reduced the intracellular triglyceride through depressing the mTOR pathway and affecting its downstream transcription factors.
Collapse
Affiliation(s)
- Xiaozhi Qiao
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan 030001, China.
| | - Yunlan Li
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan 030001, China.
- Department of Traditional Chinese Medicine, Shanxi University of Traditional Chinese Medicine, Jinzhong 030619, China.
| | - Jiaqi Mai
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan 030001, China.
| | - Xiaoqing Ji
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan 030001, China.
| | - Qingshan Li
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan 030001, China.
- Department of Traditional Chinese Medicine, Shanxi University of Traditional Chinese Medicine, Jinzhong 030619, China.
| |
Collapse
|