1
|
Saini A, Ahluwalia KK, Ahluwalia AS, Thakur N, Negi P, Hashem A, Almutairi KF, Abd_Allah EF. Titanium Dioxide Nanoparticles-Induced Genotoxic Effects in Mosquito Culex quinquefaciatus. TOXICS 2024; 12:871. [PMID: 39771086 PMCID: PMC11678978 DOI: 10.3390/toxics12120871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025]
Abstract
Titanium dioxide (TiO2) nanoparticles are being extensively used in a wide range of industrial applications for producing a variety of different consumer products, including medicines and even food items. The consumption of these products is increasing at an alarming rate, and this results in the release of these nanoparticles in the environment, causing a threat to organisms thriving in aquatic as well as terrestrial ecosystems. That is why screening such materials for their genotoxic effects, if any, becomes essential. A toxicity assay was performed to determine the LD20 of these nanoparticles for the mosquito Culex quinquefaciatus by Probit analysis. Early fourth instar larvae were exposed to the selected dose of 50 µg/mL, which is
Collapse
Affiliation(s)
- Aastha Saini
- Department of Zoology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmaur 173101, Himachal Pradesh, India;
| | - Kanwaljit Kaur Ahluwalia
- Department of Zoology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmaur 173101, Himachal Pradesh, India;
| | - Amrik Singh Ahluwalia
- Department of Botany, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmaur 173101, Himachal Pradesh, India;
| | - Neelam Thakur
- Department of Zoology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmaur 173101, Himachal Pradesh, India;
| | - Puneet Negi
- Department of Physics, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmaur 173101, Himachal Pradesh, India;
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box. 2460, Riyadh 11451, Saudi Arabia;
| | - Khalid F. Almutairi
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (K.F.A.); (E.F.A.)
| | - Elsayed Fathi Abd_Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (K.F.A.); (E.F.A.)
| |
Collapse
|
2
|
Wang Y, Zhao X, Tang H, Wang Z, Ge X, Hu S, Li X, Guo S, Liu R. The size-dependent effects of nanoplastics in mouse primary hepatocytes from cells to molecules. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124239. [PMID: 38810687 DOI: 10.1016/j.envpol.2024.124239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/22/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024]
Abstract
Nanoplastics (NPs) are easily ingested by organisms and their major accumulation organ was determined to be liver. To date, the size-dependent cytotoxicity of NPs on mammalian hepatocytes remains unclear. This study utilized mouse primary hepatocytes and catalase (CAT) as specific receptors to investigate the toxicity of NPs from cells to molecules, focusing on size-dependent effects. Results showed that the larger the particle size of NP at low doses (≤50 mg/L), the most pronounced inhibitory effect on hepatocyte viability. 20 nm NPs significantly inhibit cell viability only at high doses (100 mg/L). Larger NP particles (500 nm and 1000 nm) resulted in a massive release of lactate dehydrogenase (LDH) from the cell (cell membrane damage). Reactive oxygen species (ROS), superoxide dismutase (SOD) and CAT tests suggest that NPs disturbed the cellular antioxidant system. 20 nm NPs show great strength in oxidizing lipids and disrupting mitochondrial function compared to NPs of other particle sizes. The degree of inhibition of CAT activity by different sized NPs was coherent at the cellular and molecular levels, and NP-500 had the most impact. This suggests that the structure and microenvironment of the polypeptide chain in the vicinity of the CAT active site is more susceptible to proximity and alteration by NP-500. In addition, the smaller NPs are capable of inducing relaxation of CAT backbone, disruption of H-bonding and reduction of α-helix content, whereas the larger NPs cause contraction of CAT backbone and increase in α-helix content. All NPs induce CAT fluorescence sensitization and make the chromophore microenvironment hydrophobic. This study provides new insights for NP risk assessment and applications.
Collapse
Affiliation(s)
- Yaoyue Wang
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, China
| | - Xingchen Zhao
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, China
| | - Houquan Tang
- Jinan Ecological and Environmental Monitoring Center, Jinan, 250104, China
| | - Zaifeng Wang
- Jinan Ecological and Environmental Monitoring Center, Jinan, 250104, China
| | - Xuan Ge
- Jinan Ecological and Environmental Monitoring Center, Jinan, 250104, China
| | - Shaoyang Hu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, China
| | - Xiangxiang Li
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, China
| | - Shuqi Guo
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, China.
| |
Collapse
|
3
|
Elkhenany H, Elkodous MA, Mansell JP. Ternary nanocomposite potentiates the lysophosphatidic acid effect on human osteoblast (MG63) maturation. Nanomedicine (Lond) 2023; 18:1459-1475. [PMID: 37815159 DOI: 10.2217/nnm-2023-0117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023] Open
Abstract
Aim: This study aimed to investigate the potential of ternary nanocomposite (TNC) to support MG63 osteoblast maturation to EB1089-(3S)1-fluoro-3-hydroxy-4-(oleoyloxy)butyl-1-phosphonate (FHBP) cotreatment. Materials & methods: Binary (P25/reduced graphene oxide [rGO]) nanocomposite was prepared, and silver (Ag) nanoparticles were loaded onto the surface to form TNC (P25/rGO/Ag). The influence of TNC on proliferation, alkaline phosphatase activity and osteogenic gene expression was evaluated in a model of osteoblast maturation wherein MG63 were costimulated with EB1089 and FHBP. Results: TNC had no cytotoxic effect on MG63. The addition of TNC to EB1089-FHBP cotreatment enhanced the maturation of MG63, as supported by the greater alkaline phosphatase activity and OPN and OCN gene expression. Conclusion: TNC could serve as a promising carrier for FHBP, opening up possibilities for its application in bone regeneration.
Collapse
Affiliation(s)
- Hoda Elkhenany
- Department of Surgery, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 22785, Egypt
| | - Mohamed Abd Elkodous
- Department of Electrical & Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-Cho, Toyohashi, Aichi, 441-8580, Japan
| | - Jason Peter Mansell
- Department of Applied Sciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol, BS16 1QY, UK
| |
Collapse
|
4
|
Ayna M, Spille J, Açil Y, Weitkamp JT, Wiltfang J, Esen C, Gülses A. Investigation of Topographical Alterations in Titanium-Zirconium-Alloy Implant Threads following Er:YAG Irradiation. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7889. [PMID: 36431373 PMCID: PMC9696102 DOI: 10.3390/ma15227889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
The aim of the current experimental study was to comparatively assess the surface alterations in titanium and titanium-zirconium alloy implants in terms of thread pitch topography after irradiation with an Er:YAG laser, which is recommended in the literature for its sterilizing effect in the treatment of contaminated implant surfaces. Roxolid® and SLA® (Sand-blasted, Large-grit, Acid-etched) implants from Straumann® company with the same macro topography were investigated. The surface treatment was carried out using a wavelength of 2940 nm, 60 s irradiation time, a frequency of 10 Hz, and energies between 120 mJ and 250 mJ. The alterations were quantitatively analyzed by conducting roughness analysis via white light interferometry and qualitatively using SEM images. Roxolid® could particularly maintain its surface topography at a level of 160 mJ. At an energy level of 250 mJ, the surface properties of the pitch could be significantly altered for the first time. Compared to the Standard Plus dental implants studied, no distinct removal of the material from the surface was detected. The alloy properties of Roxolid® confirm the manufacturer's statement in terms of stability and could offer advantages in peri-implantitis management if decontamination has been selected. However, as a part of a respective strategy, smoothening of a Roxolid® implant surface requires a significantly higher energy level compared to SLA-Standard® dental implants.
Collapse
Affiliation(s)
- Mustafa Ayna
- Department of Periodontology, Bonn University, 53111 Bonn, Germany
| | - Johannes Spille
- Department of Oral and Maxillofacial Surgery, Christian Albrecht University, 24105 Kiel, Germany
| | - Yahya Açil
- Department of Oral and Maxillofacial Surgery, Christian Albrecht University, 24105 Kiel, Germany
| | - Jan-Tobias Weitkamp
- Department of Oral and Maxillofacial Surgery, Christian Albrecht University, 24105 Kiel, Germany
| | - Jörg Wiltfang
- Department of Oral and Maxillofacial Surgery, Christian Albrecht University, 24105 Kiel, Germany
| | - Cemal Esen
- Laser Technology, Ruhr University, 44801 Bochum, Germany
| | - Aydin Gülses
- Department of Oral and Maxillofacial Surgery, Christian Albrecht University, 24105 Kiel, Germany
| |
Collapse
|
5
|
Involvement of Mitophagy in Primary Cultured Rat Neurons Treated with Nanoalumina. Neurotox Res 2022; 40:1191-1207. [PMID: 35943706 DOI: 10.1007/s12640-022-00549-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/18/2022] [Accepted: 03/16/2022] [Indexed: 10/15/2022]
Abstract
The aim of this study was to explore the influence of the neurotoxicity of nanoalumina on primarily cultured neurons. Normal control, particle size control, aluminum, micron-alumina, and nanoalumina at 50-nm and 13-nm particle sizes were included as subjects to evaluate the level of apoptosis, necrosis, and autophagy in primarily cultured neurons and further explore the mitophagy induced by nanoalumina. The results demonstrated that nanoalumina could induce neuronal cell apoptosis, necrosis, and autophagy, among which autophagy was the most notable. When the autophagy inhibitor was added to the nanoalumina-treated group, it significantly downregulated the protein expression levels of Beclin-1 and LC3II/LC3. Observation under a transmission electron microscope and a fluorescence microscope revealed mitophagy characteristics induced by nanoalumina. Additionally, the neurotoxicological effects induced by nanoalumina were more significant than those induced by aluminum and in a particle size-dependent manner.
Collapse
|
6
|
Cytotoxic effects of submicron- and nano-scale titanium debris released from dental implants: an integrative review. Clin Oral Investig 2021; 25:1627-1640. [PMID: 33616805 DOI: 10.1007/s00784-021-03785-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/07/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE This integrative review aimed to report the toxic effect of submicron and nano-scale commercially pure titanium (cp Ti) debris on cells of peri-implant tissues. MATERIALS AND METHODS A systematic search was carried out on the PubMed electronic platform using the following key terms: Ti "OR" titanium "AND" dental implants "AND" nanoparticles "OR" nano-scale debris "OR" nanometric debris "AND" osteoblasts "OR "cytotoxicity" OR "macrophage" OR "mutagenic" OR "peri-implantitis". The inclusion criteria involved articles published in the English language, until December 26, 2020, reporting the effect of nano-scale titanium particles as released from dental implants on the toxicity and damage of osteoblasts. RESULTS Of 258 articles identified, 14 articles were selected for this integrative review. Submicron and nano-scale cp Ti particles altered the behavior of cells in culture medium. An inflammatory response was triggered by macrophages, fibroblasts, osteoblasts, mesenchymal cells, and odontoblasts as indicated by the detection of several inflammatory mediators such as IL-6, IL-1β, TNF-α, and PGE2. The formation of a bioactive complex composed of calcium and phosphorus on titanium nanoparticles allowed their binding to proteins leading to the cell internalization phenomenon. The nanoparticles induced mutagenic and carcinogenic effects into the cells. CONCLUSIONS The cytotoxic effect of debris released from dental implants depends on the size, concentration, and chemical composition of the particles. A high concentration of particles on nanometric scale intensifies the inflammatory responses with mutagenic potential of the surrounding cells. CLINICAL RELEVANCE Titanium ions and debris have been detected in peri-implant tissues with different size, concentration, and forms. The presence of metallic debris at peri-implant tissues also stimulates the migration of immune cells and inflammatory reactions. Cp Ti and TiO2 micro- and nano-scale particles can reach the bloodstream, accumulating in lungs, liver, spleen, and bone marrow.
Collapse
|
7
|
Zhang L, Haddouti EM, Welle K, Burger C, Kabir K, Schildberg FA. Local Cellular Responses to Metallic and Ceramic Nanoparticles from Orthopedic Joint Arthroplasty Implants. Int J Nanomedicine 2020; 15:6705-6720. [PMID: 32982228 PMCID: PMC7494401 DOI: 10.2147/ijn.s248848] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 07/08/2020] [Indexed: 12/27/2022] Open
Abstract
Over the last decades, joint arthroplasty has become a successful treatment for joint disease. Nowadays, with a growing demand and increasingly younger and active patients accepting these approaches, orthopedic surgeons are seeking implants with improved mechanical behavior and longer life span. However, aseptic loosening as a result of wear debris from implants is considered to be the main cause of long-term implant failure. Previous studies have neatly illustrated the role of micrometric wear particles in the pathological mechanisms underlying aseptic loosening. Recent osteoimmunologic insights into aseptic loosening highlight the important and heretofore underrepresented contribution of nanometric orthopedic wear particles. The present review updates the characteristics of metallic and ceramic nanoparticles generated after prosthesis implantation and summarizes the current understanding of their hazardous effects on peri-prosthetic cells.
Collapse
Affiliation(s)
- Li Zhang
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Venusberg-Campus 1, Bonn 53127, Germany
| | - El-Mustapha Haddouti
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Venusberg-Campus 1, Bonn 53127, Germany
| | - Kristian Welle
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Venusberg-Campus 1, Bonn 53127, Germany
| | - Christof Burger
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Venusberg-Campus 1, Bonn 53127, Germany
| | - Koroush Kabir
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Venusberg-Campus 1, Bonn 53127, Germany
| | - Frank A Schildberg
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Venusberg-Campus 1, Bonn 53127, Germany
| |
Collapse
|
8
|
Tovani C, Ferreira CR, Simão AMS, Bolean M, Coppeta L, Rosato N, Bottini M, Ciancaglini P, Ramos AP. Characterization of the in Vitro Osteogenic Response to Submicron TiO 2 Particles of Varying Structure and Crystallinity. ACS OMEGA 2020; 5:16491-16501. [PMID: 32685813 PMCID: PMC7364638 DOI: 10.1021/acsomega.0c00900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
Titanium oxide (TiO2) nano-/microparticles have been widely used in orthopedic and dental sciences because of their excellent mechanical properties, chemical stability, and ability to promote the osseointegration of implants. However, how the structure and crystallinity of TiO2 particles may affect their osteogenic activity remains elusive. Herein, we evaluated the osteogenic response to submicron amorphous, anatase, and rutile TiO2 particles with controlled size and morphology. First, the ability of TiO2 particles to precipitate apatite was assessed in an acellular medium by using a simulated body fluid (SBF). Three days after the addition to SBF, anatase and rutile TiO2 particles induced the precipitation of aggregates of nanoparticles with a platelike morphology, typical for biomimetic apatite. Conversely, amorphous TiO2 particles induced the precipitation of particles with poor Ca/P atomic ratio only after 14 days of exposure to SBF. Next, the osteogenic response to TiO2 particles was assessed in vitro by incubating MC3T3-E1 preosteoblasts with the particles. The viability and mineralization efficiency of osteoblastic cells were maintained in the presence of all the tested TiO2 particles despite the differences in the induction of apatite precipitation in SBF by TiO2 particles with different structures. Analysis of the particles' surface charge and of the proteins adsorbed onto the particles from the culture media suggested that all the tested TiO2 particles acquired a similar biological identity in the culture media. We posited that this phenomenon attenuated potential differences in osteoblast response to amorphous, anatase, and rutile particles. Our study provides an important insight into the complex relationship between the physicochemical properties and function of TiO2 particles and sheds light on their safe use in medicine.
Collapse
Affiliation(s)
- Camila
B. Tovani
- Faculdade
de Filosofia, Ciências e Letras de Ribeirão Preto—Departamento
de Química, Universidade de SãoPaulo, Ribeirão Preto 14040-901, Brazil
| | - Claudio R. Ferreira
- Faculdade
de Filosofia, Ciências e Letras de Ribeirão Preto—Departamento
de Química, Universidade de SãoPaulo, Ribeirão Preto 14040-901, Brazil
| | - Ana Maria S. Simão
- Faculdade
de Filosofia, Ciências e Letras de Ribeirão Preto—Departamento
de Química, Universidade de SãoPaulo, Ribeirão Preto 14040-901, Brazil
| | - Maytê Bolean
- Faculdade
de Filosofia, Ciências e Letras de Ribeirão Preto—Departamento
de Química, Universidade de SãoPaulo, Ribeirão Preto 14040-901, Brazil
| | - Luca Coppeta
- Department
of Occupational Medicine, University of
Rome Tor Vergata, Rome 00133, Italy
| | - Nicola Rosato
- Department
of Experimental Medicine, University of
Rome Tor Vergata, Rome 00133, Italy
| | - Massimo Bottini
- Department
of Experimental Medicine, University of
Rome Tor Vergata, Rome 00133, Italy
- Sanford
Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Pietro Ciancaglini
- Faculdade
de Filosofia, Ciências e Letras de Ribeirão Preto—Departamento
de Química, Universidade de SãoPaulo, Ribeirão Preto 14040-901, Brazil
| | - Ana Paula Ramos
- Faculdade
de Filosofia, Ciências e Letras de Ribeirão Preto—Departamento
de Química, Universidade de SãoPaulo, Ribeirão Preto 14040-901, Brazil
| |
Collapse
|
9
|
Filippi M, Born G, Felder-Flesch D, Scherberich A. Use of nanoparticles in skeletal tissue regeneration and engineering. Histol Histopathol 2019; 35:331-350. [PMID: 31721139 DOI: 10.14670/hh-18-184] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bone and osteochondral defects represent one of the major causes of disabilities in the world. Derived from traumas and degenerative pathologies, these lesions cause severe pain, joint deformity, and loss of joint motion. The standard treatments in clinical practice present several limitations. By producing functional substitutes for damaged tissues, tissue engineering has emerged as an alternative in the treatment of defects in the skeletal system. Despite promising preliminary clinical outcomes, several limitations remain. Nanotechnologies could offer new solutions to overcome those limitations, generating materials more closely mimicking the structures present in naturally occurring systems. Nanostructures comparable in size to those appearing in natural bone and cartilage have thus become relevant in skeletal tissue engineering. In particular, nanoparticles allow for a unique combination of approaches (e.g. cell labelling, scaffold modification or drug and gene delivery) inside single integrated systems for optimized tissue regeneration. In the present review, the main types of nanoparticles and the current strategies for their application to skeletal tissue engineering are described. The collection of studies herein considered confirms that advanced nanomaterials will be determinant in the design of regenerative therapeutic protocols for skeletal lesions in the future.
Collapse
Affiliation(s)
- Miriam Filippi
- Department of Biomedical Engineering, University of Basel, Allschwil, Basel, Switzerland.,Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Gordian Born
- Department of Biomedical Engineering, University of Basel, Allschwil, Basel, Switzerland.,Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Delphine Felder-Flesch
- Institut de Physique et Chimie des Matériaux Strasbourg, UMR CNRS-Université de Strasbourg, Strasbourg, France
| | - Arnaud Scherberich
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, Allschwil, Basel, Switzerland.
| |
Collapse
|
10
|
Eco Friendly Fabrication of Gold Nanoclusters and Their Induction of Cardiomyocyte Apoptosis After Intratracheal Instillation in Rats. J CLUST SCI 2019. [DOI: 10.1007/s10876-019-01692-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Oberoi G, Müller A, Moritz A, Shokoohi-Tabrizi HA, Kurzmann C, Agis H. Titanium dioxide-based scanning powder can modulate cell activity of oral soft tissue - Insights from in vitro studies with L929 cells and periodontal fibroblasts. J Prosthodont Res 2019; 64:34-42. [PMID: 31262660 DOI: 10.1016/j.jpor.2019.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 04/30/2019] [Accepted: 05/08/2019] [Indexed: 10/26/2022]
Abstract
PURPOSE To reveal the impact of titanium dioxide-based scanning powder for intraoral digital impression on the biological activity of oral fibroblasts. METHODS Murine L929 cells and human periodontal ligament (PDLF) and gingival fibroblasts (GF) were treated with ten-fold serial dilutions of scanning powder and the corresponding conditioned medium (filtrate of overnight incubation of powder in medium) starting with 30mg/ml. Bicinchoninic acid protein assay, formazan- and resazurin-based toxicity assays, live/dead and annexin V/propidium iodide (PI) staining and immunoassays for interleukin (IL)-6 and IL-8 were performed. Powder composition was analyzed using energy dispersive X-ray spectroscopy (EDS). RESULTS Formazan and resazurin conversion was lesser in L929 cells than PDLF and GF in the presence of scanning powder. Induction of cell death was caused by 30mg/ml of powder in L929 cells but not in PDLF and GF. No pronounced impact of the conditioned medium was seen in cytotoxicity assays or live/dead-, and annexin V/PI staining. In PDLF and GF IL-6 expression was increased by the powder, while there was a decrease in IL-8. Powder particles did not deplete protein from medium. EDS showed a heterogeneous mixture consisting predominantly of titanium dioxide. CONCLUSIONS Scanning powder decreased cell activity and induced cell death in L929 cells at high concentrations. Human oral fibroblasts showed an increase in IL-6 levels but more resistance to the cytotoxicity of the powder. Within the limitations of an in vitro study our results suggest that proper cleaning after scanning is of clinical relevance to avoid potential unwanted effects of the powder.
Collapse
Affiliation(s)
- Gunpreet Oberoi
- Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria; Center for Medical Physics and Biomedical Engineering, Medical University Vienna, Vienna, Austria
| | - Anna Müller
- Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Andreas Moritz
- Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Hassan Ali Shokoohi-Tabrizi
- Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Christoph Kurzmann
- Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Hermann Agis
- Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria.
| |
Collapse
|
12
|
Du Z, Chen S, Cui G, Yang Y, Zhang E, Wang Q, Lavin MF, Yeo AJ, Bo C, Zhang Y, Li C, Liu X, Yang X, Peng C, Shao H. Silica nanoparticles induce cardiomyocyte apoptosis via the mitochondrial pathway in rats following intratracheal instillation. Int J Mol Med 2018; 43:1229-1240. [PMID: 30628656 PMCID: PMC6365031 DOI: 10.3892/ijmm.2018.4045] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 12/18/2018] [Indexed: 12/14/2022] Open
Abstract
Diseases of the cardiac system caused by silicon dioxide exposure have captured wide public attention. Upon entering the blood circulation, ultrafine particles have the potential to influence cardiomyocytes, leading to myocardial ischemia or even cardiac failure, and the molecular mechanisms remain to be completely elucidated. In this study, the toxicity of ultrafine particles on cardiomyocytes from rats exposed to silica nanoparticles was observed. Rats were randomly divided into a normal saline control group and three exposure groups (2, 5 and 10 mg/kg·body weight) that were intratracheally treated with 60-nm silica nanoparticles. Alterations in body weight, routine blood factors and myocardial enzymes, histopathological and microstructural alterations, apoptosis and the expression of apoptosis-associated proteins were assessed at the end of the exposure period. The silicon levels in the heart and serum, and myocardial enzymes in exposed rats were significantly increased in a dose-dependent manner. In addition, exposure to the silica nanoparticles caused notable histological and ultrastructural alterations in the hearts of these animals. Furthermore, a significant apoptotic effect was observed in the exposure groups. The present data suggest that silica nanoparticles may enter the circulatory system through the lungs, and are distributed to the heart causing cardiovascular injury. Silica nanoparticle-induced apoptosis via the mitochondrial pathway may serve an important role in observed cardiac damage.
Collapse
Affiliation(s)
- Zhongjun Du
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, Ji'nan, Shandong 250062, P.R. China
| | - Shangya Chen
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, Ji'nan, Shandong 250062, P.R. China
| | - Guanqun Cui
- Department of Respiratory Medicine, Qilu Children's Hospital of Shandong University, Ji'nan, Shandong 250012, P.R. China
| | - Ye Yang
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, Ji'nan, Shandong 250062, P.R. China
| | - Enguo Zhang
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, Ji'nan, Shandong 250062, P.R. China
| | - Qiang Wang
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Martin F Lavin
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, Ji'nan, Shandong 250062, P.R. China
| | - Abrey J Yeo
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, Ji'nan, Shandong 250062, P.R. China
| | - Cunxiang Bo
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, Ji'nan, Shandong 250062, P.R. China
| | - Yu Zhang
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, Ji'nan, Shandong 250062, P.R. China
| | - Chao Li
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, Ji'nan, Shandong 250062, P.R. China
| | - Xiaoshan Liu
- Department of Radiology, Shandong Tumor Hospital, Shandong Academy of Medical Sciences, Ji'nan, Shandong 250117, P.R. China
| | - Xu Yang
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, Ji'nan, Shandong 250062, P.R. China
| | - Cheng Peng
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, Ji'nan, Shandong 250062, P.R. China
| | - Hua Shao
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, Ji'nan, Shandong 250062, P.R. China
| |
Collapse
|
13
|
Application of Electron Microscopes in Nanotoxicity Assessment. Methods Mol Biol 2018. [PMID: 30547465 DOI: 10.1007/978-1-4939-8916-4_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
In this chapter, we highlight the applications of electron microscopes (EMs) in nanotoxicity assessment. EMs can provide detailed information about the size and morphology of nanomaterials (NMs), their localization in cells and tissues, the nano-bio interactions, as well as the ultrastructural changes induced by NMs exposure. Here, we share with the readers how we prepare the tissue sample, and the different types of EMs used among the nanotoxicologists. It is possible to deploy conventional EMs along or in combination with other analytical techniques, such as electron energy loss spectroscopy (EELS), energy dispersive X-ray spectroscopy (EDS or EDX), and TEM-assisted scanning transmission X-ray microscopy (STXM), toward further elemental and chemical characterization. Appropriate images are inserted to illustrate throughout this chapter.
Collapse
|
14
|
Zeman T, Loh EW, Čierný D, Šerý O. Penetration, distribution and brain toxicity of titanium nanoparticles in rodents' body: a review. IET Nanobiotechnol 2018; 12:695-700. [PMID: 30104440 PMCID: PMC8676074 DOI: 10.1049/iet-nbt.2017.0109] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 03/07/2018] [Accepted: 03/15/2018] [Indexed: 11/20/2022] Open
Abstract
Titanium dioxide (TiO2) has been vastly used commercially, especially as white pigment in paints, colorants, plastics, coatings, cosmetics. Certain industrial uses TiO2 in diameter <100 nm. There are three common exposure routes for TiO2: (i) inhalation exposure, (ii) exposure via gastrointestinal tract, (iii) dermal exposure. Inhalation and gastrointestinal exposure appear to be the most probable ways of exposure, although nanoparticle (NP) penetration is limited. However, the penetration rate may increase substantially when the tissue is impaired. When TiO2 NPs migrate into the circulatory system, they can be distributed into all tissues including brain. In brain, TiO2 lead to oxidative stress mediated by the microglia phagocytic cells which respond to TiO2 NPs by the production and release of superoxide radicals that convert to multiple reactive oxygen species (ROS). The ROS production may also cause the damage of blood-brain barrier which then becomes more permeable for NPs. Moreover, several studies have showed neuron degradation and the impairment of spatial recognition memory and learning abilities in laboratory rodent exposed to TiO2 NPs.
Collapse
Affiliation(s)
- Tomáš Zeman
- Laboratory of Neurobiology and Molecular Psychiatry, Department of Biochemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - El-Wui Loh
- Center for Evidence - based Health Care, Taipei Medical University - Shuang Ho Hospital, No. 291, Zhongzheng Road, Zhonghe District, New Taipei City 23561, Taiwan
| | - Daniel Čierný
- Department of Clinical Biochemistry, Jessenius Faculty of Medicine in Martin, Kollárova 2, 03659 Martin, Slovak Republic
| | - Omar Šerý
- Laboratory of Neurobiology and Pathological Physiology, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Veveří 97, 602 00 Brno, Czech Republic.
| |
Collapse
|
15
|
Dodo CG, Meirelles L, Aviles-Reyes A, Ruiz KGS, Abranches J, Cury AADB. Pro-inflammatory Analysis of Macrophages in Contact with Titanium Particles and Porphyromonas gingivalis. Braz Dent J 2018; 28:428-434. [PMID: 29160393 DOI: 10.1590/0103-6440201701382] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 05/22/2017] [Indexed: 11/21/2022] Open
Abstract
During insertion of titanium dental implants, particles may shear from the implant to the periimplant region causing osteolysis, and their association with bacteria can exacerbate the inflammatory reaction. However, the association of a high invasive bacterium from the oral cavity, Porphyromonas gingivalis (Pg), and titanium particles remains unknown. This study evaluated pro-inflammatory reaction of human macrophages in contact with micro and nanoparticles of titanium associated with Porphyromonas gingivalis lipopolysaccharide (PgLPS). THP-1 cell were used and treated for 12, 24 and 48 h following 6 groups: Control(C), PgLPS (L); Microparticles (M); Nanoparticles (N); PgLPS and microparticles (LM); PgLPS and nanoparticles (LN). The following assays were carried out: i) cell viability using MTS, ii) cell morphology by SEM and iii) expression of tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β) and interleukin-6 (IL-6) by qRT-PCR and ELISA. For statistics two-way ANOVA followed by Tukey's test was used (p<0.05). After treatment, cells presented similar viability and morphology demonstrating that the treatments were not able to induce cell death. Gene expression was significantly higher for TNF-α and IL1-β after 12 h, and for IL-6 after 24 h in the N and LN groups. Cytokine production over time was an ascending curve for TNF-α with the peak at 48 h and IL1-β and IL-6 had a straight line among the time points, although cells from N group presented a significant production of IL-6 at 48 h. In conclusion, these results suggest that titanium nanoparticles stimulate stronger pro-inflammatory response in macrophages, independent of their association with LPS from P.gingivalis.
Collapse
Affiliation(s)
- Cindy Goes Dodo
- Department of Prosthodontics and Periodontology, Dental School of Piracicaba, UNICAMP - Universidade Estadual de Campinas, Piracicaba, SP, Brazil
| | | | | | - Karina Gonzalez Silvério Ruiz
- Department of Prosthodontics and Periodontology, Dental School of Piracicaba, UNICAMP - Universidade Estadual de Campinas, Piracicaba, SP, Brazil
| | | | - Altair Antoninha Del Bel Cury
- Department of Prosthodontics and Periodontology, Dental School of Piracicaba, UNICAMP - Universidade Estadual de Campinas, Piracicaba, SP, Brazil
| |
Collapse
|
16
|
Yao JJ, Lewallen EA, Trousdale WH, Xu W, Thaler R, Salib CG, Reina N, Abdel MP, Lewallen DG, van Wijnen AJ. Local Cellular Responses to Titanium Dioxide from Orthopedic Implants. Biores Open Access 2017; 6:94-103. [PMID: 29034133 PMCID: PMC5627672 DOI: 10.1089/biores.2017.0017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We evaluated recently published articles relevant to the biological effects of titanium dioxide (TiO2) particles on local endogenous cells required for normal bone homeostasis, repair, and implant osseointegration. Structural characteristics, size, stability, and agglomeration of TiO2 particles alter the viability and behavior of multiple bone-related cell types. Resulting shifts in bone homeostasis may increase bone resorption and lead to clinical incidents of osteolysis, implant loosening, and joint pain. TiO2 particles that enter cells (through endocytosis or Trojan horse mechanism) may further disrupt implant retention. We propose that cellular responses to titanium-based nanoparticles contribute to pathological mechanisms underlying the aseptic loosening of titanium-based metal implants.
Collapse
Affiliation(s)
- Jie J Yao
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Eric A Lewallen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| | | | - Wei Xu
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota.,Department of Orthopedics, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Roman Thaler
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| | | | - Nicolas Reina
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Matthew P Abdel
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| | - David G Lewallen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| | | |
Collapse
|
17
|
Rasekh M, Ahmad Z, Cross R, Hernández-Gil J, Wilton-Ely JDET, Miller PW. Facile Preparation of Drug-Loaded Tristearin Encapsulated Superparamagnetic Iron Oxide Nanoparticles Using Coaxial Electrospray Processing. Mol Pharm 2017; 14:2010-2023. [DOI: 10.1021/acs.molpharmaceut.7b00109] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Manoochehr Rasekh
- Department of Chemistry, Imperial College London, South Kensington, London SW7 2AZ, U.K
| | - Zeeshan Ahmad
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, U.K
| | - Richard Cross
- Emerging Technologies Research Centre, De Montfort University, Leicester LE1 9BH, U.K
| | - Javier Hernández-Gil
- Department of Chemistry, Imperial College London, South Kensington, London SW7 2AZ, U.K
| | | | - Philip W. Miller
- Department of Chemistry, Imperial College London, South Kensington, London SW7 2AZ, U.K
| |
Collapse
|
18
|
Gou Y, Yang X, He L, Xu X, Liu Y, Liu Y, Gao Y, Huang Q, Liang K, Ding C, Li J, Zhao C, Li J. Bio-inspired peptide decorated dendrimers for a robust antibacterial coating on hydroxyapatite. Polym Chem 2017. [DOI: 10.1039/c7py00811b] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
SSP-PAMAM-NH2 inspired by the salivary statherin protein can tightly adsorb on the HA surface to achieve long-term antibacterial activity.
Collapse
|
19
|
Cytotoxicity of Titanate-Calcium Complexes to MC3T3 Osteoblast-Like Cells. BIOMED RESEARCH INTERNATIONAL 2016; 2016:7895182. [PMID: 28044136 PMCID: PMC5156824 DOI: 10.1155/2016/7895182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/06/2016] [Accepted: 11/09/2016] [Indexed: 11/17/2022]
Abstract
Monosodium titanates (MST) are a relatively novel form of particulate titanium dioxide that have been proposed for biological use as metal sorbents or delivery agents, most recently calcium (II). In these roles, the toxicity of the titanate or its metal complex is crucial to its biological utility. The aim of this study was to determine the cytotoxicity of MST and MST-calcium complexes with MC3T3 osteoblast-like cells; MST-Ca(II) complexes could be useful to promote bone formation in various hard tissue applications. MC3T3 cells were exposed to native MST or MST-Ca(II) complexes for 24–72 h. A CellTiter-Blue® assay was employed to assess the metabolic activity of the cells. The results showed that MST and MST-Ca(II) suppressed MC3T3 metabolic activity significantly in a dose-, time-, and cell-density-dependent fashion. MST-Ca(II) suppressed MC3T3 metabolism in a statistically identical manner as native MST at all concentrations. We concluded that MST and MST-Ca(II) are significantly cytotoxic to MC3T3 cells through a mechanism yet unknown; this is a potential problem to the biological utility of these complexes.
Collapse
|
20
|
Noël A, Truchon G, Cloutier Y, Charbonneau M, Maghni K, Tardif R. Mass or total surface area with aerosol size distribution as exposure metrics for inflammatory, cytotoxic and oxidative lung responses in rats exposed to titanium dioxide nanoparticles. Toxicol Ind Health 2016; 33:351-364. [DOI: 10.1177/0748233716651560] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
There is currently no consensus on the best exposure metric(s) for expressing nanoparticle (NP) dose. Although surface area has been extensively studied for inflammatory responses, it has not been as thoroughly validated for cytotoxicity or oxidative stress effects. Since inhaled NPs deposit and interact with lung cells based on agglomerate size, we hypothesize that mass concentration combined with aerosol size distribution is suitable for NP risk assessment. The objective of this study was to evaluate different exposure metrics for inhaled 5 nm titanium dioxide aerosols composed of small (SA < 100 nm) or large (LA > 100 nm) agglomerates at 2, 7, and 20 mg/m3 on rat lung inflammatory, cytotoxicity, and oxidative stress responses. We found a significant positive correlation ( r = 0.98, p < 0.01) with the inflammatory reaction, measured by the number of neutrophils and the mass concentration when considering all six (SA + LA) aerosols. This correlation was similar ( r = 0.87) for total surface area. Regarding cytotoxicity and oxidative stress responses, measured by lactate dehydrogenase and 8-isoprostane, respectively, and mass or total surface area as an exposure metric, we observed significant positive correlations only with SA aerosols for both the mass concentration and size distribution ( r > 0.91, p < 0.01), as well as for the total surface area ( r > 0.97, p < 0.01). These data show that mass or total surface area concentrations alone are insufficient to adequately predict oxidant and cytotoxic pulmonary effects. Overall, our study indicates that considering NP size distribution along with mass or total surface area concentrations contributes to a more mechanistic discrimination of pulmonary responses to NP exposure.
Collapse
Affiliation(s)
- A Noël
- Département de santé environnementale et de santé au travail, Institut de recherche en santé publique, Université de Montréal, Montréal, Canada
| | - G Truchon
- Institut de recherche Robert-Sauvé en santé et en sécurité du travail (IRSST), Montréal, Canada
| | - Y Cloutier
- Institut de recherche Robert-Sauvé en santé et en sécurité du travail (IRSST), Montréal, Canada
| | - M Charbonneau
- INRS-Institut Armand-Frappier, Université du Québec, Laval, Canada
- Deceased
| | - K Maghni
- Centre de recherche de l’Hôpital du Sacré-Cœur de Montréal, Université de Montréal, Montréal, Canada
| | - R Tardif
- Département de santé environnementale et de santé au travail, Institut de recherche en santé publique, Université de Montréal, Montréal, Canada
| |
Collapse
|
21
|
Zhang X, Zhang Z, Shen G, Zhao J. Enhanced osteogenic activity and anti-inflammatory properties of Lenti-BMP-2-loaded TiO₂ nanotube layers fabricated by lyophilization following trehalose addition. Int J Nanomedicine 2016; 11:429-39. [PMID: 26869786 PMCID: PMC4734802 DOI: 10.2147/ijn.s93177] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
To enhance biocompatibility and osseointegration between titanium implants and surrounding bone tissue, numerous efforts have been made to modify the surface topography and composition of Ti implants. In this paper, Lenti-BMP-2-loaded TiO2 nanotube coatings were fabricated by lyophilization in the presence of trehalose to functionalize the surface. We characterized TiO2 nanotube layers in terms of the following: surface morphology; Lenti-BMP-2 and trehalose release; their ability to induce osteogenesis, proliferation, and anti-inflammation in vitro; and osseointegration in vivo. The anodized TiO2 nanotube surfaces exhibited an amorphous glassy matrix perpendicular to the Ti surface. Both Lenti-BMP-2 and trehalose showed sustained release over the course of 8 days. Results from real-time quantitative polymerase chain reaction studies demonstrated that lyophilized Lenti-BMP-2/TiO2 nanotubes constructed with trehalose (Lyo-Tre-Lenti-BMP-2) significantly promoted osteogenic differentiation of bone marrow stromal cells but not their proliferation. In addition, Lyo-Tre-Lenti-BMP-2 nanotubes effectively inhibited lipopolysaccharide-induced interleukin-1β and tumor necrosis factor-α production. In vivo, the formulation also promoted osseointegration. This study presents a promising new method for surface-modifying biomedical Ti-based implants to simultaneously enhance their osteogenic potential and anti-inflammatory properties, which can better satisfy clinical needs.
Collapse
Affiliation(s)
- Xiaochen Zhang
- Department of Oral and Maxillofacial Surgery, Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Zhiyuan Zhang
- Department of Oral and Maxillofacial Surgery, Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Gang Shen
- Department of Orthodontics, College of Stomatology, Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Jun Zhao
- Department of Orthodontics, College of Stomatology, Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| |
Collapse
|
22
|
Qian C, Zhu C, Yu W, Jiang X, Zhang F. High-Fat Diet/Low-Dose Streptozotocin-Induced Type 2 Diabetes in Rats Impacts Osteogenesis and Wnt Signaling in Bone Marrow Stromal Cells. PLoS One 2015; 10:e0136390. [PMID: 26296196 PMCID: PMC4546646 DOI: 10.1371/journal.pone.0136390] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/04/2015] [Indexed: 01/11/2023] Open
Abstract
Bone regeneration disorders are a significant problem in patients with type 2 diabetes mellitus. Bone marrow stromal cells (BMSCs) are recognized as ideal seed cells for tissue engineering because they can stimulate osteogenesis during bone regeneration. Therefore, the aim of this study was to investigate the osteogenic potential of BMSCs derived from type 2 diabetic rats and the pathogenic characteristics of dysfunctional BMSCs that affect osteogenesis. BMSCs were isolated from normal and high-fat diet+streptozotocin-induced type 2 diabetic rats. Cell metabolic activity, alkaline phosphatase (ALP) activity, mineralization and osteogenic gene expression were reduced in the type 2 diabetic rat BMSCs. The expression levels of Wnt signaling genes, such as β-catenin, cyclin D1 and c-myc, were also significantly decreased in the type 2 diabetic rat BMSCs, but the expression of GSK3β remained unchanged. The derived BMSCs were cultured on calcium phosphate cement (CPC) scaffolds and placed subcutaneously into nude mice for eight weeks; they were detected at a low level in newly formed bone. The osteogenic potential of the type 2 diabetic rat BMSCs was not impaired by the culture environment, but it was impaired by inhibition of the Wnt signaling pathway, likely due to an insufficient accumulation of β-catenin rather than because of GSK3β stimulation. Using BMSCs derived from diabetic subjects could offer an alternative method of regenerating bone together with the use of supplementary growth factors to stimulate the Wnt signaling pathway.
Collapse
MESH Headings
- Alkaline Phosphatase/genetics
- Alkaline Phosphatase/metabolism
- Animals
- Bone Marrow Cells/drug effects
- Bone Marrow Cells/metabolism
- Bone Marrow Cells/pathology
- Calcium Phosphates/chemistry
- Cyclin D1/genetics
- Cyclin D1/metabolism
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Diet, High-Fat/adverse effects
- Gene Expression Regulation
- Glycogen Synthase Kinase 3/genetics
- Glycogen Synthase Kinase 3/metabolism
- Glycogen Synthase Kinase 3 beta
- Male
- Mesenchymal Stem Cell Transplantation
- Mesenchymal Stem Cells/drug effects
- Mesenchymal Stem Cells/metabolism
- Mesenchymal Stem Cells/pathology
- Mice
- Mice, Nude
- Osteogenesis/genetics
- Primary Cell Culture
- Proto-Oncogene Proteins c-myc/genetics
- Proto-Oncogene Proteins c-myc/metabolism
- Rats
- Rats, Sprague-Dawley
- Streptozocin
- Transplantation, Heterologous
- Wnt Signaling Pathway
Collapse
Affiliation(s)
- Chao Qian
- Department of Prosthodontics, School of Stomatology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology. Shanghai, 200011, People’s Republic of China
| | - Chenyuan Zhu
- Department of Prosthodontics, School of Stomatology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology. Shanghai, 200011, People’s Republic of China
| | - Weiqiang Yu
- Department of Prosthodontics, School of Stomatology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology. Shanghai, 200011, People’s Republic of China
| | - Xinquan Jiang
- Department of Prosthodontics, School of Stomatology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology. Shanghai, 200011, People’s Republic of China
- * E-mail: (FZ); (XJ)
| | - Fuqiang Zhang
- Department of Prosthodontics, School of Stomatology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology. Shanghai, 200011, People’s Republic of China
- * E-mail: (FZ); (XJ)
| |
Collapse
|
23
|
Niska K, Pyszka K, Tukaj C, Wozniak M, Radomski MW, Inkielewicz-Stepniak I. Titanium dioxide nanoparticles enhance production of superoxide anion and alter the antioxidant system in human osteoblast cells. Int J Nanomedicine 2015; 10:1095-107. [PMID: 25709434 PMCID: PMC4327568 DOI: 10.2147/ijn.s73557] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Titanium dioxide (TiO2) nanoparticles (NPs) are manufactured worldwide for a variety of engineering and bioengineering applications. TiO2NPs are frequently used as a material for orthopedic implants. However, to the best of our knowledge, the biocompatibility of TiO2NPs and their effects on osteoblast cells, which are responsible for the growth and remodeling of the human skeleton, have not been thoroughly investigated. In the research reported here, we studied the effects of exposing hFOB 1.19 human osteoblast cells to TiO2NPs (5–15 nm) for 24 and 48 hours. Cell viability, alkaline phosphatase (ALP) activity, cellular uptake of NPs, cell morphology, superoxide anion (O2•−2) generation, superoxide dismutase (SOD) activity and protein level, sirtuin 3 (SIR3) protein level, correlation between manganese (Mn) SOD and SIR, total antioxidant capacity, and malondialdehyde were measured following exposure of hFOB 1.19 cells to TiO2NPs. Exposure of hFOB 1.19 cells to TiO2NPs resulted in: (1) cellular uptake of NPs; (2) increased cytotoxicity and cell death in a time- and concentration-dependent manner; (3) ultrastructure changes; (4) decreased SOD and ALP activity; (5) decreased protein levels of SOD1, SOD2, and SIR3; (6) decreased total antioxidant capacity; (7) increased O2•− generation; and (8) enhanced lipid peroxidation (malondialdehyde level). The linear relationship between the protein level of MnSOD and SIR3 and between O2•− content and SIR3 protein level was observed. Importantly, the cytotoxic effects of TiO2NPs were attenuated by the pretreatment of hFOB 1.19 cells with SOD, indicating the significant role of O2•− in the cell damage and death observed. Thus, decreased expression of SOD leading to increased oxidizing stress may underlie the nanotoxic effects of TiO2NPs on human osteoblasts.
Collapse
Affiliation(s)
- Karolina Niska
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk, Poland
| | - Katarzyna Pyszka
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk, Poland
| | - Cecylia Tukaj
- Department of Electron Microscopy, Medical University of Gdansk, Gdansk, Poland
| | - Michal Wozniak
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk, Poland
| | - Marek Witold Radomski
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, The University of Dublin Trinity College, Dublin, Ireland ; Kardio-Med Silesia, Zabrze, Poland ; Silesian Medical University, Zabrze, Poland
| | | |
Collapse
|
24
|
Drury JL, Jang Y, Taylor-Pashow KML, Elvington M, Hobbs DT, Wataha JC. In vitro biological response of micro- and nano-sized monosodium titanates and titanate-metal compounds. J Biomed Mater Res B Appl Biomater 2014; 103:254-60. [PMID: 24819184 DOI: 10.1002/jbm.b.33194] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 03/05/2014] [Accepted: 04/21/2014] [Indexed: 12/25/2022]
Abstract
Previous studies report that microsized monosodium titanates (MSTs) deliver metal ions and species to mammalian cells and bacteria with cell-specific and metal-specific effects. In this study, we explored the use of MST and a new synthesized nanosized monosodium titanate (nMST) to deliver gold(III), cisplatin, or platinum(IV) to two human cell lines with different population doubling times, in vitro. The effect was measured using a fluorescent mitochondrial activity assay (CellTiter-Blue(®) Assay). This fluorescence assay was implemented to mitigate optical density measurement errors owing to particulate titanate interference and allowed for the studies to be extended to higher titanate concentrations than previously possible. Overall, native MST significantly (p < 0.05) decreased mitochondrial activity of both cell types by 50% at concentrations of >50 mg/L. Native nMST significantly suppressed the rapidly dividing cell line (by 50%) over untreated cultures, but had no effect on the more slowly dividing cells. For both cell types, increased titanate concentrations resulted in increased effects from delivered metals. However, there was no difference in the effect of metal delivered from micro- versus nano-sized MST.
Collapse
Affiliation(s)
- Jeanie L Drury
- Department of Restorative Dentistry, University of Washington School of Dentistry, Seattle, Washington, 98195-7456
| | | | | | | | | | | |
Collapse
|
25
|
Roszak J, Stępnik M, Nocuń M, Ferlińska M, Smok-Pieniążek A, Grobelny J, Tomaszewska E, Wąsowicz W, Cieślak M. A strategy for in vitro safety testing of nanotitania-modified textile products. JOURNAL OF HAZARDOUS MATERIALS 2013; 256-257:67-75. [PMID: 23669792 DOI: 10.1016/j.jhazmat.2013.04.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 04/12/2013] [Accepted: 04/13/2013] [Indexed: 06/02/2023]
Abstract
Titanium dioxide nanomaterials are extensively used in many applications, also for modification of textile materials. Toxicological assessment of such textile materials is currently seldom performed, mainly because of lack of appropriate guidelines. The aim of the study was to assess cytotoxic and genotoxic potential of commercially available TiO2 and TiO2/Ag NMs in pristine form as well as polypropylene fibers modified with the NMs. Both titania NMs showed a cytotoxic effect on BALB/3T3 clone A31 and V79 fibroblasts after 72-h exposure. Both NMs induced a weak genotoxic effect in comet assay, with TiO2/Ag being more active. In vitro micronucleus test on human lymphocytes revealed a weak mutagenic effect of both materials after 24h of exposure. In contrast, no significant increase in micronuclei frequency was observed in the in vitro micronucleus test on V79 fibroblasts. The 24-h extracts prepared from polypropylene fibers modified with TiO2/Ag induced a cytotoxic effect on BALB/3T3 cells which strongly depended on the mode of the fibers manufacturing. The study presents a comprehensive approach to toxicity assessment of textile fibers modified with NMs. Proposed approach may form a good "starting point" for improved future testing strategies.
Collapse
Affiliation(s)
- Joanna Roszak
- Nofer Institute of Occupational Medicine, 8 St Teresy St., 91-348 Łódź, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Chang X, Zhang Y, Tang M, Wang B. Health effects of exposure to nano-TiO2: a meta-analysis of experimental studies. NANOSCALE RESEARCH LETTERS 2013; 8:51. [PMID: 23351429 PMCID: PMC3599498 DOI: 10.1186/1556-276x-8-51] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 01/12/2013] [Indexed: 05/04/2023]
Abstract
The paper is aimed to investigate the toxicity of nano-TiO2 and its potential harmful impact on human health using meta-analysis of in vitro and short-time animal studies. Data were retrieved according to included and excluded criteria from 1994 to 2011. The combined toxic effects of nano-TiO2 were calculated by the different endpoints by cell and animal models. From analysis of the experimental studies, more than 50% showed positive statistical significance except the apoptosis group, and the cytotoxicity was in a dose-dependent but was not clear in size-dependent manner. Nano-TiO2 was detained in several important organs including the liver, spleen, kidney, and brain after entering the blood through different exposure routes, but the coefficient of the target organs was altered slightly from animal models. It is possible that nano-TiO2 can induce cell damage related to exposure size and dose. Further studies will be needed to demonstrate that nanoparticles have toxic effects on human body, especially in epidemiological studies.
Collapse
Affiliation(s)
- Xuhong Chang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing 210009, China
| | - Yu Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing 210009, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing 210009, China
| | - Bei Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing 210009, China
| |
Collapse
|
27
|
Fröhlich E. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomedicine 2012; 7:5577-91. [PMID: 23144561 PMCID: PMC3493258 DOI: 10.2147/ijn.s36111] [Citation(s) in RCA: 1616] [Impact Index Per Article: 124.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Many types of nanoparticles (NPs) are tested for use in medical products, particularly in imaging and gene and drug delivery. For these applications, cellular uptake is usually a prerequisite and is governed in addition to size by surface characteristics such as hydrophobicity and charge. Although positive charge appears to improve the efficacy of imaging, gene transfer, and drug delivery, a higher cytotoxicity of such constructs has been reported. This review summarizes findings on the role of surface charge on cytotoxicity in general, action on specific cellular targets, modes of toxic action, cellular uptake, and intracellular localization of NPs. Effects of serum and intercell type differences are addressed. Cationic NPs cause more pronounced disruption of plasma-membrane integrity, stronger mitochondrial and lysosomal damage, and a higher number of autophagosomes than anionic NPs. In general, nonphagocytic cells ingest cationic NPs to a higher extent, but charge density and hydrophobicity are equally important; phagocytic cells preferentially take up anionic NPs. Cells do not use different uptake routes for cationic and anionic NPs, but high uptake rates are usually linked to greater biological effects. The different uptake preferences of phagocytic and nonphagocytic cells for cationic and anionic NPs may influence the efficacy and selectivity of NPs for drug delivery and imaging.
Collapse
Affiliation(s)
- Eleonore Fröhlich
- Center for Medical Research, Medical University of Graz, Graz, Austria.
| |
Collapse
|
28
|
Fröhlich E, Meindl C, Höfler A, Leitinger G, Roblegg E. Combination of small size and carboxyl functionalisation causes cytotoxicity of short carbon nanotubes. Nanotoxicology 2012; 7:1211-24. [PMID: 22963691 DOI: 10.3109/17435390.2012.729274] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The use of carbon nanotubes (CNTs) could improve medical diagnosis and treatment provided they show no adverse effects in the organism. In this study, short CNTs with different diameters with and without carboxyl surface functionalisation were assessed. After physicochemical characterisation, cytotoxicity in phagocytic and non-phagocytic cells was determined. The role of oxidative stress was evaluated according to the intracellular glutathione levels and protection by N-acetyl cysteine (NAC). In addition to this, the mode of cell death was also investigated. CNTs <8 nm acted more cytotoxic than CNTs ≥20 nm and carboxylated CNTs more than pristine CNTs. Protection by NAC was maximal for large diameter pristine CNTs and minimal for small diameter carboxylated CNTs. Thin (<8 nm) CNTs acted mainly by disruption of membrane integrity and CNTs with larger diameter induced mainly apoptotic changes. It is concluded that cytotoxicity of small carboxylated CNTs occurs by necrosis and cannot be prevented by antioxidants.
Collapse
Affiliation(s)
- Eleonore Fröhlich
- Center for Medical Research, Medical University of Graz , Graz , Austria
| | | | | | | | | |
Collapse
|
29
|
Luo Y, Wang C, Qiao Y, Hossain M, Ma L, Su M. In vitro cytotoxicity of surface modified bismuth nanoparticles. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2012; 23:2563-2573. [PMID: 22802106 DOI: 10.1007/s10856-012-4716-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 06/26/2012] [Indexed: 06/01/2023]
Abstract
This paper describes in vitro cytotoxicity of bismuth nanoparticles revealed by three complementary assays (MTT, G6PD, and calcein AM/EthD-1). The results show that bismuth nanoparticles are more toxic than most previously reported bismuth compounds. Concentration dependent cytotoxicities have been observed for bismuth nanoparticles and surface modified bismuth nanoparticles. The bismuth nanoparticles are non-toxic at concentration of 0.5 nM. Nanoparticles at high concentration (50 nM) kill 45, 52, 41, 34 % HeLa cells for bare nanoparticles, amine terminated bismuth nanoparticles, silica coated bismuth nanoparticles, and polyethylene glycol (PEG) modified bismuth nanoparticles, respectively; which indicates cytotoxicity in terms of cell viability is in the descending order of amine terminated bismuth nanoparticles, bare bismuth nanoparticles, silica coated bismuth nanoparticles, and PEG modified bismuth nanoparticles. HeLa cells are more susceptible to toxicity from bismuth nanoparticles than MG-63 cells. The simultaneous use of three toxicity assays provides information on how nanoparticles interact with cells. Silica coated bismuth nanoparticles can damage cellular membrane yet keep mitochondria less influenced; while amine terminated bismuth nanoparticles can affect the metabolic functions of cells. The findings have important implications for caution of nanoparticle exposure and evaluating toxicity of bismuth nanoparticles.
Collapse
Affiliation(s)
- Yang Luo
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
| | | | | | | | | | | |
Collapse
|
30
|
Tautzenberger A, Kovtun A, Ignatius A. Nanoparticles and their potential for application in bone. Int J Nanomedicine 2012; 7:4545-57. [PMID: 22923992 PMCID: PMC3423651 DOI: 10.2147/ijn.s34127] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Biomaterials are commonly applied in regenerative therapy and tissue engineering in bone, and have been substantially refined in recent years. Thereby, research approaches focus more and more on nanoparticles, which have great potential for a variety of applications. Generally, nanoparticles interact distinctively with bone cells and tissue, depending on their composition, size, and shape. Therefore, detailed analyses of nanoparticle effects on cellular functions have been performed to select the most suitable candidates for supporting bone regeneration. This review will highlight potential nanoparticle applications in bone, focusing on cell labeling as well as drug and gene delivery. Labeling, eg, of mesenchymal stem cells, which display exceptional regenerative potential, makes monitoring and evaluation of cell therapy approaches possible. By including bioactive molecules in nanoparticles, locally and temporally controlled support of tissue regeneration is feasible, eg, to directly influence osteoblast differentiation or excessive osteoclast behavior. In addition, the delivery of genetic material with nanoparticulate carriers offers the possibility of overcoming certain disadvantages of standard protein delivery approaches, such as aggregation in the bloodstream during systemic therapy. Moreover, nanoparticles are already clinically applied in cancer treatment. Thus, corresponding efforts could lead to new therapeutic strategies to improve bone regeneration or to treat bone disorders.
Collapse
Affiliation(s)
- Andrea Tautzenberger
- Institute of Orthopedic Research and Biomechanics, Centre of Musculoskeletal Research, Ulm University, Ulm, Germany.
| | | | | |
Collapse
|
31
|
Zhang J, Song W, Guo J, Zhang J, Sun Z, Li L, Ding F, Gao M. Cytotoxicity of different sized TiO2 nanoparticles in mouse macrophages. Toxicol Ind Health 2012; 29:523-33. [PMID: 22508397 DOI: 10.1177/0748233712442708] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
With large-scale production and wide application of nano-titanium oxide (TiO2), its health hazard has attracted extensive attention worldwide. In this study, mouse macrophages (Ana-1 and MH-S cells) were used to evaluate the cytotoxicity of different sized TiO2 nanoparticles. The results showed that TiO2 nanoparticles caused low toxicity, especially in MH-S cells. There was a difference in the cytotoxicity induced by different sized TiO2 particles. The 25 nm anatase particles induced the strongest cytotoxicity and oxidative stress, followed by 5 and 100 nm anatase particles; in contrast, 100 nm rutile particles induced the lowest toxicity. Although TiO2 nanoparticles induced high levels of intracellular reactive oxygen species (ROS), the determination of ROS demonstrated that the inherent oxidative capacity of TiO2 nanoparticles was lower in the absence of photoactivation. Therefore, the generation of intracellular ROS could not completely depend on inherent oxidative capacity of TiO2 nanoparticles. Toxicity of TiO2 nanoparticles could mainly depend on the structural characteristics.
Collapse
Affiliation(s)
- Jinyang Zhang
- College of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|