1
|
Benahmed A, Seghir A, Dergal F, Chiali A, Boucherit-Otmani Z, Ziani-Chérif C. Study of interaction in dual-species biofilm of Candida glabrata and Klebsiella pneumoniae co-isolated from peripheral venous catheter using Raman characterization mapping and machine learning algorithms. Microb Pathog 2025; 199:107280. [PMID: 39761771 DOI: 10.1016/j.micpath.2025.107280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 12/19/2024] [Accepted: 01/03/2025] [Indexed: 01/20/2025]
Abstract
Polymicrobial biofilm infections, especially associated with medical devices such as peripheral venous catheters, are challenging in clinical settings for treatment and management. In this study, we examined the mixed biofilm formed by Candida glabrata and Klebsiella pneumoniae, which were co-isolated from the same peripheral venous catheter. Our results revealed that C. glabrata can form mixed biofilms with K. pneumoniae in vitro on peripheral venous catheters and the bottom of microplate wells, as confirmed by scanning electron microscopy. Additionally, using Raman mapping, we showed the distribution of both species in mono- and dual-species biofilms and suggested the type of microbial interaction in this polymicrobial biofilm. Finally, with the assistance of appropriate machine learning (ML) algorithms, based on identified peaks of bacteria, yeast, catheter, and Microplate mapping spectra, we develop a dedicated Raman database to detect the presence of these elements in an unknown spectrum in the future.
Collapse
Affiliation(s)
- Abdeselem Benahmed
- Laboratory of Antibiotics Antifungals: Physico-chemistry, Synthesis and Biological Activity, Department of Biology, Tlemcen University, BP119 Imama, Tlemcen, Algeria.
| | - Abdelfettah Seghir
- Laboratory of Antibiotics Antifungals: Physico-chemistry, Synthesis and Biological Activity, Department of Biology, Tlemcen University, BP119 Imama, Tlemcen, Algeria
| | - Fayçal Dergal
- Center for Scientific and Technical Research in Physico-chemical Analysis (CRAPC), BP 384, Industrial Zone, 42004, Tipaza, Algeria; Laboratory of Catalysis and Synthesis in Organic Chemistry, University of Tlemcen, BP 119, Algeria
| | - Anisse Chiali
- Higher School of Applied Sciences of Tlemcen, ESSA, Tlemcen, 13000, Algeria; Renewable Materials and Energies Unit (URMER), University of Tlemcen, Algeria
| | - Zahia Boucherit-Otmani
- Laboratory of Antibiotics Antifungals: Physico-chemistry, Synthesis and Biological Activity, Department of Biology, Tlemcen University, BP119 Imama, Tlemcen, Algeria
| | - Chewki Ziani-Chérif
- Laboratory of Catalysis and Synthesis in Organic Chemistry, University of Tlemcen, BP 119, Algeria
| |
Collapse
|
2
|
Tahara H, Sanda M, Itsumi M, Fukamachi H, Nishi H, Iwasa F, Kuwata H, Baba K. Efficacy of Cetylpyridinium Chloride Mouthwash on Denture Plaque Reduction and Microbiome Alteration in a Randomized Crossover Trial. Cureus 2024; 16:e75357. [PMID: 39781133 PMCID: PMC11707634 DOI: 10.7759/cureus.75357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2024] [Indexed: 01/12/2025] Open
Abstract
Purpose This study aimed to evaluate the effectiveness of cetylpyridinium chloride (CPC) mouthwash in reducing denture plaque and its impact on the microbial composition of denture plaque. Materials and methods A randomized, placebo-controlled crossover trial included 29 participants with maxillary complete dentures. Participants used either CPC or a placebo mouthwash for one week each in a crossover design. The denture plaque area was quantified using image analysis, and microbiome composition was analyzed via 16S rRNA gene sequencing. Results The use of CPC mouthwash significantly reduced the denture plaque area compared to placebo (p<0.025). Microbiome analysis revealed a significant decrease in the relative abundance of the genus Actinomyces (p=0.025) and a significant increase in the genus Haemophilus (p<0.001) after CPC use. While alpha diversity showed no significant changes, beta diversity analysis indicated a significant shift in microbial composition (p=0.002). Conclusion CPC mouthwash effectively reduces denture plaque accumulation and modifies its microbial composition. These findings highlight the potential of CPC mouthwash as an effective tool in denture hygiene management, which may help lower the risk of denture-related oral and systemic infections.
Collapse
Affiliation(s)
- Hiroko Tahara
- Department of Prosthodontics, Graduate School of Dentistry, Showa University, Tokyo, JPN
| | - Minoru Sanda
- Department of Prosthodontics, Graduate School of Dentistry, Showa University, Tokyo, JPN
| | - Momoe Itsumi
- Department of Oral Microbiology and Immunology, Graduate School of Dentistry, Showa University, Tokyo, JPN
| | - Haruka Fukamachi
- Department of Oral Microbiology and Immunology, Graduate School of Dentistry, Showa University, Tokyo, JPN
| | - Hiromi Nishi
- Department of General Dentistry, Hiroshima University Hospital, Hiroshima, JPN
| | - Fuminori Iwasa
- Division of Fixed Prosthodontics, Department of Restorative and Biomaterials Sciences, Meikai University School of Dentistry, Saitama, JPN
| | - Hirotaka Kuwata
- Department of Oral Microbiology and Immunology, Graduate School of Dentistry, Showa University, Tokyo, JPN
| | - Kazuyoshi Baba
- Department of Prosthodontics, Graduate School of Dentistry, Showa University, Tokyo, JPN
| |
Collapse
|
3
|
Chen N, Li Y, Liang X, Qin K, Zhang Y, Wang J, Wu Q, Gupta TB, Ding Y. Bacterial extracellular vesicle: A non-negligible component in biofilm life cycle and challenges in biofilm treatments. Biofilm 2024; 8:100216. [PMID: 39184814 PMCID: PMC11341940 DOI: 10.1016/j.bioflm.2024.100216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/27/2024] Open
Abstract
Bacterial biofilms, especially those formed by pathogens, have been increasingly impacting human health. Bacterial extracellular vesicle (bEV), a kind of spherical membranous structure released by bacteria, has not only been reported to be a component of the biofilm matrix but also plays a non-negligible role in the biofilm life cycle. Nevertheless, a comprehensive overview of the bEVs functions in biofilms remains elusive. In this review, we summarize the biogenesis and distinctive features characterizing bEVs, and consolidate the current literature on their functions and proposed mechanisms in the biofilm life cycle. Furthermore, we emphasize the formidable challenges associated with vesicle interference in biofilm treatments. The primary objective of this review is to raise awareness regarding the functions of bEVs in the biofilm life cycle and lay the groundwork for the development of novel therapeutic strategies to control or even eliminate bacterial biofilms.
Collapse
Affiliation(s)
- Nuo Chen
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Yangfu Li
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Xinmin Liang
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Keyuan Qin
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Ying Zhang
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Qingping Wu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Tanushree B. Gupta
- Food System Integrity Team, AgResearch Ltd., Hopkirk Research Institute, Massey University, Palmerston North, 4474, New Zealand
| | - Yu Ding
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
4
|
Nguyen KN, Sao L, Kyllo K, Hernandez D, Salomon S, Shah K, Oh D, Kao KC. Antibiofilm Activity of PDMS/TiO 2 against Candida glabrata through Inhibited Hydrophobic Recovery. ACS OMEGA 2024; 9:42593-42601. [PMID: 39431067 PMCID: PMC11483912 DOI: 10.1021/acsomega.4c07869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/17/2024] [Accepted: 09/25/2024] [Indexed: 10/22/2024]
Abstract
Coatings with antibiofilm properties are desirable for biomedical applications. Titanium dioxide (TiO2) has been explored as an antimicrobial agent in materials development primarily due to it being an excellent photocatalyst. Candida glabrata (C. glabrata) is an emerging human fungal pathogen with known high resistance to oxidative stress. Here, we fabricated a polydimethylsiloxane/titanium dioxide (PDMS/TiO2) nanocomposite coating and tested its antibiofilm activities against C. glabrata. The resulting nanocomposite exhibited >50% reduction in C. glabrata biofilm formation with 2.5 wt % TiO2 loading, even in the dark. Through ROS detection and surface characterization, the antibiofilm activity was attributed to the synergistic interaction of TiO2 nanoparticles with the PDMS matrix, which resulted in the impediment of hydrophobic recovery. This work provides a design strategy to develop antibiofilm coatings against C. glabrata.
Collapse
Affiliation(s)
- Khoi-Nguyen Nguyen
- Department of Chemical and
Materials Engineering, San Jose State University, San Jose 95112-3613, California, United
States
| | - Leena Sao
- Department of Chemical and
Materials Engineering, San Jose State University, San Jose 95112-3613, California, United
States
| | - Kevin Kyllo
- Department of Chemical and
Materials Engineering, San Jose State University, San Jose 95112-3613, California, United
States
| | - Danitza Hernandez
- Department of Chemical and
Materials Engineering, San Jose State University, San Jose 95112-3613, California, United
States
| | - Samantha Salomon
- Department of Chemical and
Materials Engineering, San Jose State University, San Jose 95112-3613, California, United
States
| | - Kalp Shah
- Department of Chemical and
Materials Engineering, San Jose State University, San Jose 95112-3613, California, United
States
| | - Dahyun Oh
- Department of Chemical and
Materials Engineering, San Jose State University, San Jose 95112-3613, California, United
States
| | - Katy C. Kao
- Department of Chemical and
Materials Engineering, San Jose State University, San Jose 95112-3613, California, United
States
| |
Collapse
|
5
|
O'Hara MT, Shimozono TM, Dye KJ, Harris D, Yang Z. Surface hydrophilicity promotes bacterial twitching motility. mSphere 2024; 9:e0039024. [PMID: 39194233 PMCID: PMC11423576 DOI: 10.1128/msphere.00390-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/24/2024] [Indexed: 08/29/2024] Open
Abstract
Twitching motility is a form of bacterial surface translocation powered by the type IV pilus (T4P). It is frequently analyzed by interstitial colony expansion between agar and the polystyrene surfaces of petri dishes. In such assays, the twitching motility of Acinetobacter nosocomialis was observed with MacConkey but not Luria-Bertani (LB) agar media. One difference between these two media is the presence of bile salts as a selective agent in MacConkey but not in LB. Here, we demonstrate that the addition of bile salts to LB allowed A. nosocomialis to display twitching. Similarly, bile salts enhanced the twitching of Acinetobacter baumannii and Pseudomonas aeruginosa in LB. These observations suggest that there is a common mechanism, whereby bile salts enhance bacterial twitching and promote interstitial colony expansion. Bile salts disrupt lipid membranes and apply envelope stress as detergents. Surprisingly, their stimulatory effect on twitching appears not to be related to a bacterial physiological response to stressors. Rather, it is due to their ability to alter the physicochemical properties of a twitching surface. We observed that while other detergents promoted twitching like bile salts, stresses applied by antibiotics, including the outer membrane-targeting polymyxin B, did not enhance twitching motility. More importantly, bacteria displayed increased twitching on hydrophilic surfaces such as those of glass and tissue culture-treated polystyrene plastics, and bile salts no longer stimulated twitching on these surfaces. Together, our results show that altering the hydrophilicity of a twitching surface significantly impacts T4P functionality. IMPORTANCE The bacterial type IV pilus (T4P) is a critical virulence factor for many medically important pathogens, some of which are prioritized by the World Health Organization for their high levels of antibiotic resistance. The T4P is known to propel bacterial twitching motility, the analysis of which provides a convenient assay for T4P functionality. Here, we show that bile salts and other detergents augment the twitching of multiple bacterial pathogens. We identified the underlying mechanism as the alteration of surface hydrophilicity by detergents. Consequently, hydrophilic surfaces like those of glass or plasma-treated polystyrene promote bacterial twitching, bypassing the requirement for detergents. The implication is that surface properties, such as those of tissues and medical implants, significantly impact the functionality of bacterial T4P as a virulence determinant. This offers valuable insights for developing countermeasures against the colonization and infection by bacterial pathogens of critical importance to human health on a global scale.
Collapse
Affiliation(s)
- Megan T O'Hara
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Tori M Shimozono
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Keane J Dye
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - David Harris
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Zhaomin Yang
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
6
|
Vishwakarma A, Narayanan A, Kumar N, Chen Z, Dang F, Menefee J, Dhinojwala A, Joy A. Coacervate Dense Phase Displaces Surface-Established Pseudomonas aeruginosa Biofilms. J Am Chem Soc 2024; 146:26397-26407. [PMID: 39259884 PMCID: PMC11440510 DOI: 10.1021/jacs.4c09311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
For millions of years, barnacles and mussels have successfully adhered to wet rocks near tide-swept seashores. While the chemistry and mechanics of their underwater adhesives are being thoroughly investigated, an overlooked aspect of marine organismal adhesion is their ability to remove underlying biofilms from rocks and prepare clean surfaces before the deposition of adhesive anchors. Herein, we demonstrate that nonionic, coacervating synthetic polymers that mimic the physicochemical features of marine underwater adhesives remove ∼99% of Pseudomonas aeruginosa (P. aeruginosa) biofilm biomass from underwater surfaces. The efficiency of biofilm removal appears to align with the compositional differences between various bacterial biofilms. In addition, the surface energy influences the ability of the polymer to displace the biofilm, with biofilm removal efficiency decreasing for surfaces with lower surface energies. These synthetic polymers weaken the biofilm-surface interactions and exert shear stress to fracture the biofilms grown on surfaces with diverse surface energies. Since bacterial biofilms are 1000-fold more tolerant to common antimicrobial agents and pose immense health and economic risks, we anticipate that our unconventional approach inspired by marine underwater adhesion will open a new paradigm in creating antibiofilm agents that target the interfacial and viscoelastic properties of established bacterial biofilms.
Collapse
Affiliation(s)
- Apoorva Vishwakarma
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Amal Narayanan
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Nityanshu Kumar
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Zixi Chen
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02120, United States
| | - Francis Dang
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Joshua Menefee
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Ali Dhinojwala
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Abraham Joy
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02120, United States
| |
Collapse
|
7
|
Gilmore A, Badham M, Rudisin W, Ashton N, Williams D. A Bead Biofilm Reactor for High-Throughput Growth and Translational Applications. Microorganisms 2024; 12:1588. [PMID: 39203430 PMCID: PMC11356137 DOI: 10.3390/microorganisms12081588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/19/2024] [Accepted: 08/01/2024] [Indexed: 09/03/2024] Open
Abstract
Bacteria in natural ecosystems such as soil, dirt, or debris preferentially reside in the biofilm phenotype. When a traumatic injury, such as an open fracture, occurs, these naturally dwelling biofilms and accompanying foreign material can contaminate the injury site. Given their high tolerance of systemic levels of antibiotics that may be administered prophylactically, biofilms may contribute to difficult-to-treat infections. In most animal models, planktonic bacteria are used as initial inocula to cause infection, and this might not accurately mimic clinically relevant contamination and infection scenarios. Further, few approaches and systems utilize the same biofilm and accompanying substrate throughout the experimental continuum. In this study, we designed a unique reactor to grow bacterial biofilms on up to 50 silica beads that modeled environmental wound contaminants. The data obtained indicated that the reactor system repeatably produced mature Staphylococcus aureus and Pseudomonas aeruginosa biofilms on the silica beads, with an average of 5.53 and 6.21 log10 colony-forming units per mm2, respectively. The bead substrates are easily manipulable for in vitro or in vivo applications, thus improving translatability. Taken together, the bead biofilm reactor presented herein may be a useful system for repeatably growing established biofilms on silica beads that could be used for susceptibility testing and as initial inocula in future animal models of trauma-related injuries.
Collapse
Affiliation(s)
- Annika Gilmore
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
- Department of Orthopaedics, University of Utah, Salt Lake City, UT 84108, USA (W.R.)
| | - Marissa Badham
- Department of Orthopaedics, University of Utah, Salt Lake City, UT 84108, USA (W.R.)
| | - Winston Rudisin
- Department of Orthopaedics, University of Utah, Salt Lake City, UT 84108, USA (W.R.)
| | - Nicholas Ashton
- Department of Orthopaedics, University of Utah, Salt Lake City, UT 84108, USA (W.R.)
| | - Dustin Williams
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
- Department of Orthopaedics, University of Utah, Salt Lake City, UT 84108, USA (W.R.)
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
- Department of Physical Medicine and Rehabilitation, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|
8
|
Li C, Gao D, Li C, Cheng G, Zhang L. Fighting against biofilm: The antifouling and antimicrobial material. Biointerphases 2024; 19:040802. [PMID: 39023091 DOI: 10.1116/6.0003695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/07/2024] [Indexed: 07/20/2024] Open
Abstract
Biofilms are groups of microorganisms protected by self-secreted extracellular substances. Biofilm formation on the surface of biomaterial or engineering materials becomes a severe challenge. It has caused significant health, environmental, and societal concerns. It is believed that biofilms lead to life-threatening infection, medical implant failure, foodborne disease, and marine biofouling. To address these issues, tremendous effort has been made to inhibit biofilm formation on materials. Biofilms are extremely difficult to treat once formed, so designing material and coating bearing functional groups that are capable of resisting biofilm formation has attracted increasing attention for the last two decades. Many types of antibiofilm strategies have been designed to target different stages of biofilm formation. Development of the antibiofilm material can be classified into antifouling material, antimicrobial material, fouling release material, and integrated antifouling/antimicrobial material. This review summarizes relevant research utilizing these four approaches and comments on their antibiofilm properties. The feature of each method was compared to reveal the research trend. Antibiofilm strategies in fundamental research and industrial applications were summarized.
Collapse
Affiliation(s)
- Chao Li
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
- Department of Pharmaceutical Sciences, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Dongdong Gao
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
- Department of Pharmaceutical Sciences, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Chunmei Li
- Tsinglan School, Songshan Lake, Dongguan 523000, China
| | - Gang Cheng
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Lijun Zhang
- Liaoning Provincial Key Laboratory of Cornea and Ocular Surface Diseases, Liaoning Provincial Optometry Technology Engineering Research Center, The Third People's Hospital of Dalian, Dalian, Liaoning 116033, China
| |
Collapse
|
9
|
Jonblat S, As-sadi F, El Khoury A, Badr N, Kallassy M, Chokr A. Determining the dispersion time in Staphylococcus epidermidis biofilm using physical and molecular approaches. Heliyon 2024; 10:e32389. [PMID: 38975180 PMCID: PMC11225768 DOI: 10.1016/j.heliyon.2024.e32389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 07/09/2024] Open
Abstract
Despite being an innocuous commensal of human skin and mucous membranes, Staphylococcus epidermidis, infects surgical wounds and causes infections through biofilm formation. This study evaluates, in a time-dependent experiment, the self-dispersion of S. epidermidis CIP 444 biofilm when formed on borosilicate glass (hydrophilic) and polystyrene (hydrophobic) surfaces, using physical and molecular approaches. During a seven-day period of incubation, absorbance measurement revealed a drop in biofilm optical density on both studied surfaces on day 4 (0.043-0.035 nm/cm2, polystyrene), (0.06-0.053 nm/cm2, borosilicate glass). Absorbance results were correlated with crystal violet staining that showed a clear detachment from day 4. The blue color increases again on day 7, with an increase in biofilm optical density indicating the regeneration of the biofilm. Changes in gene expression in the S. epidermidis biofilm were assessed using a real-time reverse transcription-polymerase chain reaction. High expression of agr genes was detected on days 4 and 5, confirming our supposition of dispersion in this period, autolysin genes like atlE1 and aae were upregulated from day 3 until day 6 and the genes responsible for slime production and biofilm accumulation, were upregulated on days 4, 5, and 6 (ica ADBC) and on days 5, 6 and 7 (aap), indicating a dual process taking place. These findings suggest that S. epidermidis CIP 444 biofilms disperse at day 4 and reform at day 7. Over the course of the seven-day investigation, 2-ΔΔCt results showed that some genes in the biofilm were dramatically enhanced while others were significantly decreased as compared to planktonic ones.
Collapse
Affiliation(s)
- Suzanne Jonblat
- Research Laboratory of Microbiology (RLM), Department of Life and Earth Sciences, Faculty of Sciences I, Lebanese University, Hadat Campus, Beirut, Lebanon
- Functional Genomic and Proteomic Laboratory, Faculté des Sciences, Université Saint-Joseph de Beyrouth, Campus des Sciences et Technologies, Mar Roukos, Matn, Lebanon
- Centre d'Analyses et de Recherche (CAR), Unité de Recherche Technologies et Valorisation Agro-Alimentaire (UR-TVA), Faculté des Sciences, Université Saint-Joseph de Beyrouth, Campus des Sciences et Technologies, Mar Roukos, Matn, Lebanon
- Platform of Research and Analysis in Environmental Sciences (PRASE), Doctoral School of Sciences and Technologies, Lebanese University, Hadat Campus, Beirut, Lebanon
| | - Falah As-sadi
- Research Laboratory of Microbiology (RLM), Department of Life and Earth Sciences, Faculty of Sciences I, Lebanese University, Hadat Campus, Beirut, Lebanon
- Department of Plant Production, Faculty of Agriculture and Veterinary Medicine, Lebanese University, Beirut, 999095, Lebanon
| | - Andre El Khoury
- Centre d'Analyses et de Recherche (CAR), Unité de Recherche Technologies et Valorisation Agro-Alimentaire (UR-TVA), Faculté des Sciences, Université Saint-Joseph de Beyrouth, Campus des Sciences et Technologies, Mar Roukos, Matn, Lebanon
| | - Neressa Badr
- Research Laboratory of Microbiology (RLM), Department of Life and Earth Sciences, Faculty of Sciences I, Lebanese University, Hadat Campus, Beirut, Lebanon
| | - Mireille Kallassy
- Functional Genomic and Proteomic Laboratory, Faculté des Sciences, Université Saint-Joseph de Beyrouth, Campus des Sciences et Technologies, Mar Roukos, Matn, Lebanon
| | - Ali Chokr
- Research Laboratory of Microbiology (RLM), Department of Life and Earth Sciences, Faculty of Sciences I, Lebanese University, Hadat Campus, Beirut, Lebanon
- Platform of Research and Analysis in Environmental Sciences (PRASE), Doctoral School of Sciences and Technologies, Lebanese University, Hadat Campus, Beirut, Lebanon
| |
Collapse
|
10
|
Premkumar SV, Manimuthu MS. Exploring the Effectiveness of Hydrophobic Glass Surface on Touch-Enabled Digital Device to Reduce Microbial Adhesion and Propagation. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2024; 16:S1164-S1166. [PMID: 38882778 PMCID: PMC11174322 DOI: 10.4103/jpbs.jpbs_519_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 06/18/2024] Open
Abstract
This study investigates the effectiveness of hydrophobic glass surfaces in reducing microbial populations on touch-enabled digital devices. Hydrophobic coatings have been proposed as a potential solution to minimize microbial adhesion and growth on device surfaces. Here, we intended to investigate the effect of hydrophobic spray on microbial load. The results were quantitatively analyzed using microbiological techniques. the nonhydrophobic surface harbors gradual microbial buildup upon time, such as threefold increase from 2 to 4 h and fivefold increase to 6 h post initial sampling with 143.6 ± 33.89 cfu/ml increase up to 264.7 ± 28.53 cfu/ml, whereas the hydrophobic surface had an overall build-up from 16.6 ± 1.2 to 50.45 ± 11.12 cfu/ml with P < 0.0001 significance. This research provides valuable insights into the potential application of hydrophobic glass coatings to mitigate microbial contamination on touch-enabled digital devices, enhancing their hygienic properties and minimizing the risk of infectious disease transmission.
Collapse
Affiliation(s)
- Sowmya Vithya Premkumar
- Department of Biochemistry, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Mani Sankar Manimuthu
- Department of Biochemistry, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| |
Collapse
|
11
|
Zou J, Wong J, Lee CR, Nitin N, Wang L, Sun G. Protein-Based Rechargeable and Replaceable Antimicrobial and Antifouling Coatings on Hydrophobic Food-Contact Surfaces. ACS APPLIED BIO MATERIALS 2024; 7:1842-1851. [PMID: 38416807 PMCID: PMC10951945 DOI: 10.1021/acsabm.3c01247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/08/2024] [Accepted: 02/14/2024] [Indexed: 03/01/2024]
Abstract
The growing concerns regarding foodborne illnesses related to fresh produce accentuate the necessity for innovative material solutions, particularly on surfaces that come into close contact with foods. This study introduces a sustainable, efficient, and removable antimicrobial and antifouling coating ideally suited for hydrophobic food-contact surfaces such as low-density polyethylene (LDPE). Developed through a crosslinking reaction involving tannic acid, gelatin, and soy protein hydrolysate, these coatings exhibit proper stability in aqueous washing solutions and effectively combat bacterial contamination and prevent biofilm formation. The unique surface architecture promotes the formation of halamine structures, enhancing antimicrobial efficacy with a rapid contact killing effect and reducing microbial contamination by up to 5 log10 cfu·cm-2 against both Escherichia coli (Gram-negative) and Listeria innocua (Gram-positive). Notably, the coatings are designed for at least five recharging cycles under mild conditions (pH6, 20 ppm free active chlorine) and can be easily removed with hot water or steam to refresh the depositions. This removal process not only conveniently aligns with existing sanitation protocols in the fresh produce industry but also facilitates the complete eradication of potential developed biofilms, outperforming uncoated LDPE coupons. Overall, these coatings represent sustainable, cost-effective, and practical advancements in food safety and are promising candidates for widespread adoption in food processing environments.
Collapse
Affiliation(s)
- Jiahan Zou
- Department
of Biological and Agricultural Engineering, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Jody Wong
- Department
of Biological and Agricultural Engineering, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Chih-Rong Lee
- Department
of Biological and Agricultural Engineering, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Nitin Nitin
- Department
of Food Science and Technology, University
of California, One Shields
Avenue, Davis, California 95616, United States
| | - Luxin Wang
- Department
of Food Science and Technology, University
of California, One Shields
Avenue, Davis, California 95616, United States
| | - Gang Sun
- Department
of Biological and Agricultural Engineering, University of California, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
12
|
Serpelloni S, Williams ME, Caserta S, Sharma S, Rahimi M, Taraballi F. Electrospun Chitosan-Based Nanofibrous Coating for the Local and Sustained Release of Vancomycin. ACS OMEGA 2024; 9:11701-11717. [PMID: 38496925 PMCID: PMC10938330 DOI: 10.1021/acsomega.3c08113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 03/19/2024]
Abstract
As the population ages, the number of vascular surgery procedures performed increases. Older adults often have multiple comorbidities, such as diabetes and hypertension, that increase the risk of complications from vascular surgery including vascular graft infection (VGI). VGI is a serious complication with significant morbidity, mortality, and healthcare costs. Here, we aimed to develop a nanofibrous chitosan-based coating for vascular grafts loaded with different concentrations of the vancomycin antibiotic vancomycin (VAN). Blending chitosan with poly(vinyl alcohol) or poly(ethylene oxide) copolymers improved solubility and ease of spinning. Thermal gravimetric analysis and Fourier transform infrared spectroscopy confirmed the presence of VAN in the nanofibrous membranes. Kinetics of VAN release from the nanofibrous mats were evaluated using high-performance liquid chromatography, showing a burst followed by sustained release over 24 h. To achieve longer sustained release, a poly(lactic-co-glycolic acid) coating was applied, resulting in extended release of up to 7 days. Biocompatibility assessment using human umbilical vein endothelial cells demonstrated successful attachment and viability of the nanofiber patches. Our study provides insights into the development of a drug delivery system for vascular grafts aimed at preventing infection during implantation, highlighting the potential of electrospinning as a promising technique in the field of vascular surgery.
Collapse
Affiliation(s)
- Stefano Serpelloni
- Center
for Musculoskeletal Regeneration, Houston
Methodist Academic Institute, Houston, Texas 77030-2707, United States
- Department
of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, Milan 20133, Italy
- Department
of Orthopedics and Sport Medicine, Houston
Methodist Hospital, Houston, Texas 77030-2707, United States
| | - Michael Ellis Williams
- Center
for Musculoskeletal Regeneration, Houston
Methodist Academic Institute, Houston, Texas 77030-2707, United States
- Reproductive
Biology and Gynaecological Oncology Group, Swansea University Medical School, Singleton Park, Swansea SA2 8QA, U.K.
| | - Sergio Caserta
- Department
of Chemical Materials and Industrial Production Engineering, University of Naples Federico II, Naples 80138, Italy
| | - Shashank Sharma
- Department
of Cardiovascular Surgery, Houston Methodist
Hospital, Houston, Texas 77030-2707, United States
| | - Maham Rahimi
- Department
of Cardiovascular Surgery, Houston Methodist
Hospital, Houston, Texas 77030-2707, United States
| | - Francesca Taraballi
- Center
for Musculoskeletal Regeneration, Houston
Methodist Academic Institute, Houston, Texas 77030-2707, United States
- Department
of Orthopedics and Sport Medicine, Houston
Methodist Hospital, Houston, Texas 77030-2707, United States
| |
Collapse
|
13
|
Brás A, Braz M, Martinho I, Duarte J, Pereira C, Almeida A. Effect of Bacteriophages against Biofilms of Escherichia coli on Food Processing Surfaces. Microorganisms 2024; 12:366. [PMID: 38399770 PMCID: PMC10892694 DOI: 10.3390/microorganisms12020366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
The bacterial adhesion to food processing surfaces is a threat to human health, as these surfaces can serve as reservoirs of pathogenic bacteria. Escherichia coli is an easily biofilm-forming bacterium involved in surface contamination that can lead to the cross-contamination of food. Despite the application of disinfection protocols, contamination through food processing surfaces continues to occur. Hence, new, effective, and sustainable alternative approaches are needed. Bacteriophages (or simply phages), viruses that only infect bacteria, have proven to be effective in reducing biofilms. Here, phage phT4A was applied to prevent and reduce E. coli biofilm on plastic and stainless steel surfaces at 25 °C. The biofilm formation capacity of phage-resistant and sensitive bacteria, after treatment, was also evaluated. The inactivation effectiveness of phage phT4A was surface-dependent, showing higher inactivation on plastic surfaces. Maximum reductions in E. coli biofilm of 5.5 and 4.0 log colony-forming units (CFU)/cm2 after 6 h of incubation on plastic and stainless steel, respectively, were observed. In the prevention assays, phage prevented biofilm formation in 3.2 log CFU/cm2 after 12 h. Although the emergence of phage-resistant bacteria has been observed during phage treatment, phage-resistant bacteria had a lower biofilm formation capacity compared to phage-sensitive bacteria. Overall, the results suggest that phages may have applicability as surface disinfectants against pathogenic bacteria, but further studies are needed to validate these findings using phT4A under different environmental conditions and on different materials.
Collapse
Affiliation(s)
| | | | | | | | - Carla Pereira
- Department of Biology, CESAM, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (A.B.); (M.B.); (I.M.); (J.D.)
| | - Adelaide Almeida
- Department of Biology, CESAM, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (A.B.); (M.B.); (I.M.); (J.D.)
| |
Collapse
|
14
|
Han D, Ji Y, Yang S, Song P, Shi Y, Shao D, Chen X, Shang L, Shi J, Jiang C. Therapeutic effect of iturin A on Candida albicans oral infection and its pathogenic factors. Antimicrob Agents Chemother 2024; 68:e0094823. [PMID: 38051047 PMCID: PMC10777857 DOI: 10.1128/aac.00948-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/23/2023] [Indexed: 12/07/2023] Open
Abstract
Candida albicans is responsible for conditions ranging from superficial infections such as oral or vaginal candidiasis to potentially fatal systemic infections. It produces pathogenic factors contributing to its virulence. Iturin A, a lipopeptide derived from Bacillus sp., exhibits a significant inhibitory effect against C. albicans. However, its exact mechanism in mitigating the pathogenic factors of C. albicans remains to be elucidated. This study aimed to explore the influence of iturin A on several pathogenic attributes of C. albicans, including hypha formation, cell membrane permeability, cell adhesion, biofilm formation, and therapeutic efficacy in an oral C. albicans infection model in mice. The minimal inhibitory concentration of iturin A against C. albicans was determined to be 25 µg/mL in both YEPD and RPMI-1640 media. Iturin A effectively inhibited C. albicans hyphal formation, decreased cell viability within biofilms, enhanced cell membrane permeability, and disrupted cell adhesion in vitro. Nonetheless, iturin A did not significantly affect the phospholipase activity or hydrophobicity of C. albicans. A comparative study with nystatin demonstrated the superior therapeutic efficacy of iturin A in a mouse model of oral C. albicans infection, significantly decreasing C. albicans count and inhibiting both fungal hypha formation and tongue surface adhesion. High-dose iturin A treatment (25 µg/mL) in mice had no significant effects on blood indices, tongue condition, or body weight, indicating the potential for iturin A in managing oral infections. This study confirmed the therapeutic potential of iturin A and provided valuable insights for developing effective antifungal therapies targeting C. albicans pathogenic factors.
Collapse
Affiliation(s)
- Di Han
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi Province, China
| | - Yulan Ji
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi Province, China
| | - Saixue Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi Province, China
| | - Pei Song
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi Province, China
| | - Yihong Shi
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi Province, China
| | - Dongyan Shao
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi Province, China
| | - Xianqing Chen
- School of Medicine, Xi’an International University, Xi’an, China
| | - Li Shang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi Province, China
| | - Junling Shi
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi Province, China
| | - Chunmei Jiang
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi Province, China
| |
Collapse
|
15
|
Prabhukhot GS, Eggleton CD, Patel J. Multispecies Bacterial Biofilms and Their Evaluation Using Bioreactors. Foods 2023; 12:4495. [PMID: 38137299 PMCID: PMC10742677 DOI: 10.3390/foods12244495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Pathogenic biofilm formation within food processing industries raises a serious public health and safety concern, and places burdens on the economy. Biofilm formation on equipment surfaces is a rather complex phenomenon, wherein multiple steps are involved in bacterial biofilm formation. In this review we discuss the stages of biofilm formation, the existing literature on the impact of surface properties and shear stress on biofilms, types of bioreactors, and antimicrobial coatings. The review underscores the significance of prioritizing biofilm prevention strategies as a first line of defense, followed by control measures. Utilizing specific biofilm eradication strategies as opposed to a uniform approach is crucial because biofilms exhibit different behavioral outcomes even amongst the same species when the environmental conditions change. This review is geared towards biofilm researchers and food safety experts, and seeks to derive insights into the scope of biofilm formation, prevention, and control. The use of suitable bioreactors is paramount to understanding the mechanisms of biofilm formation. The findings provide useful information to researchers involved in bioreactor selection for biofilm investigation, and food processors in surfaces with novel antimicrobial coatings, which provide minimal bacterial attachment.
Collapse
Affiliation(s)
- Grishma S. Prabhukhot
- Department of Mechanical Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA; (G.S.P.); (C.D.E.)
| | - Charles D. Eggleton
- Department of Mechanical Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA; (G.S.P.); (C.D.E.)
| | - Jitendra Patel
- US Department of Agriculture, Agricultural Research Service, Environmental and Microbial Food Safety Laboratory, Beltsville, MD 20705, USA
| |
Collapse
|
16
|
Abadikhah M, Liu M, Persson F, Wilén BM, Farewell A, Sun J, Modin O. Effect of anode material and dispersal limitation on the performance and biofilm community in microbial electrolysis cells. Biofilm 2023; 6:100161. [PMID: 37859795 PMCID: PMC10582064 DOI: 10.1016/j.bioflm.2023.100161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/05/2023] [Accepted: 10/08/2023] [Indexed: 10/21/2023] Open
Abstract
In a microbial electrolysis cell (MEC), the oxidization of organic compounds is facilitated by an electrogenic biofilm on the anode surface. The biofilm community composition determines the function of the system. Both deterministic and stochastic factors affect the community, but the relative importance of different factors is poorly understood. Anode material is a deterministic factor as materials with different properties may select for different microorganisms. Ecological drift is a stochastic factor, which is amplified by dispersal limitation between communities. Here, we compared the effects of three anode materials (graphene, carbon cloth, and nickel) with the effect of dispersal limitation on the function and biofilm community assembly. Twelve MECs were operated for 56 days in four hydraulically connected loops and shotgun metagenomic sequencing was used to analyse the microbial community composition on the anode surfaces at the end of the experiment. The anode material was the most important factor affecting the performance of the MECs, explaining 54-80 % of the variance observed in peak current density, total electric charge generation, and start-up lag time, while dispersal limitation explained 10-16 % of the variance. Carbon cloth anodes had the highest current generation and shortest lag time. However, dispersal limitation was the most important factor affecting microbial community structure, explaining 61-98 % of the variance in community diversity, evenness, and the relative abundance of the most abundant taxa, while anode material explained 0-20 % of the variance. The biofilms contained nine Desulfobacterota metagenome-assembled genomes (MAGs), which made up 64-89 % of the communities and were likely responsible for electricity generation in the MECs. Different MAGs dominated in different MECs. Particularly two different genotypes related to Geobacter benzoatilyticus competed for dominance on the anodes and reached relative abundances up to 83 %. The winning genotype was the same in all MECs that were hydraulically connected irrespective of anode material used.
Collapse
Affiliation(s)
- Marie Abadikhah
- Water Environment Technology, Architecture and Civil Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Ming Liu
- Key Laboratory of Optoelectronics Technology, Beijing University of Technology, Beijing, 100124, China
| | - Frank Persson
- Water Environment Technology, Architecture and Civil Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Britt-Marie Wilén
- Water Environment Technology, Architecture and Civil Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Anne Farewell
- Chemistry and Molecular Biology, University of Gothenburg, Sweden
| | - Jie Sun
- College of Physics and Information Engineering, Fuzhou University, and Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350100, China
- Microtechnology and Nanoscience, Chalmers University of Technology, Gothenburg, Sweden
| | - Oskar Modin
- Water Environment Technology, Architecture and Civil Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
17
|
Maliszewska I, Gazińska M, Łojkowski M, Choińska E, Nowinski D, Czapka T, Święszkowski W. On the Effect of Non-Thermal Atmospheric Pressure Plasma Treatment on the Properties of PET Film. Polymers (Basel) 2023; 15:4289. [PMID: 37959969 PMCID: PMC10650147 DOI: 10.3390/polym15214289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
The aim of the work was to investigate the effect of non-thermal plasma treatment of an ultra-thin polyethylene terephthalate (PET) film on changes in its physicochemical properties and biodegradability. Plasma treatment using a dielectric barrier discharge plasma reactor was carried out in air at room temperature and atmospheric pressure twice for 5 and 15 min, respectively. It has been shown that pre-treatment of the PET surface with non-thermal atmospheric plasma leads to changes in the physicochemical properties of this polymer. After plasma modification, the films showed a more developed surface compared to the control samples, which may be related to the surface etching and oxidation processes. After a 5-min plasma exposure, PET films were characterized by the highest wettability, i.e., the contact angle decreased by more than twice compared to the untreated samples. The differential scanning calorimetry analysis revealed the influence of plasma pretreatment on crystallinity content and the melt crystallization behavior of PET after soil degradation. The main novelty of the work is the fact that the combined action of two factors (i.e., physical and biological) led to a reduction in the content of the crystalline phase in the tested polymeric material.
Collapse
Affiliation(s)
- Irena Maliszewska
- Department of Organic and Medicinal Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, 50-370 Wrocław, Poland;
| | - Małgorzata Gazińska
- Department of Polymer Engineering and Technology, Faculty of Chemistry, Wrocław University of Science and Technology, 50-370 Wrocław, Poland;
| | - Maciej Łojkowski
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 02-507 Warsaw, Poland; (M.Ł.); (E.C.); (W.Ś.)
- Centre for Advanced Materials and Technology CEZAMAT, Warsaw University of Technology, 02-822 Warsaw, Poland
| | - Emilia Choińska
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 02-507 Warsaw, Poland; (M.Ł.); (E.C.); (W.Ś.)
| | - Daria Nowinski
- Department of Organic and Medicinal Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, 50-370 Wrocław, Poland;
| | - Tomasz Czapka
- Department of Electrical Engineering Fundamentals, Faculty of Electrical Engeenering, Wrocław University of Science and Technology, 50-370 Wrocław, Poland;
| | - Wojciech Święszkowski
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 02-507 Warsaw, Poland; (M.Ł.); (E.C.); (W.Ś.)
| |
Collapse
|
18
|
Kromer C, Schwibbert K, Radunz S, Thiele D, Laux P, Luch A, Tschiche HR. ROS generating BODIPY loaded nanoparticles for photodynamic eradication of biofilms. Front Microbiol 2023; 14:1274715. [PMID: 37908542 PMCID: PMC10615615 DOI: 10.3389/fmicb.2023.1274715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/19/2023] [Indexed: 11/02/2023] Open
Abstract
Bacterial biofilms can pose a serious health risk to humans and are less susceptible to antibiotics and disinfection than planktonic bacteria. Here, a novel method for biofilm eradication based on antimicrobial photodynamic therapy utilizing a nanoparticle in conjunction with a BODIPY derivative as photosensitizer was developed. Reactive oxygen species are generated upon illumination with visible light and lead to a strong, controllable and persistent eradication of both planktonic bacteria and biofilms. One of the biggest challenges in biofilm eradication is the penetration of the antimicrobial agent into the biofilm and its matrix. A biocompatible hydrophilic nanoparticle was utilized as a delivery system for the hydrophobic BODIPY dye and enabled its accumulation within the biofilm. This key feature of delivering the antimicrobial agent to the site of action where it is activated resulted in effective eradication of all tested biofilms. Here, 3 bacterial species that commonly form clinically relevant pathogenic biofilms were selected: Escherichia coli, Staphylococcus aureus and Streptococcus mutans. The development of this antimicrobial photodynamic therapy tool for biofilm eradication takes a promising step towards new methods for the much needed treatment of pathogenic biofilms.
Collapse
Affiliation(s)
- Charlotte Kromer
- Department Chemicals and Product Safety, Product Materials and Nanotechnology, German Federal Institute for Risk Assessment, Berlin, Germany
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Karin Schwibbert
- Department Materials and the Environment, Biodeterioration and Reference Organisms, Federal Institute for Materials Research and Testing, Berlin, Germany
| | | | - Dorothea Thiele
- Department Materials and the Environment, Biodeterioration and Reference Organisms, Federal Institute for Materials Research and Testing, Berlin, Germany
| | - Peter Laux
- Department Chemicals and Product Safety, Product Materials and Nanotechnology, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Andreas Luch
- Department Chemicals and Product Safety, Product Materials and Nanotechnology, German Federal Institute for Risk Assessment, Berlin, Germany
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Harald R. Tschiche
- Department Chemicals and Product Safety, Product Materials and Nanotechnology, German Federal Institute for Risk Assessment, Berlin, Germany
| |
Collapse
|
19
|
Wynne KJ, Zolotarskaya O, Jarrell R, Wang C, Amin Y, Brunson K. Facile Modification of Medical-Grade Silicone for Antimicrobial Effectiveness and Biocompatibility: A Potential Therapeutic Strategy against Bacterial Biofilms. ACS APPLIED MATERIALS & INTERFACES 2023; 15:46626-46638. [PMID: 37782835 PMCID: PMC10969938 DOI: 10.1021/acsami.3c08734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
A one-step modification of biomedical silicone tubing with N,N-dimethyltetradecylamine, C14, results in a composition designated WinGard-1 (WG-1, 1.1 wt % C14). A surface-active silicon-amine phase (SAP) is proposed to account for increased wettability and increased surface charge. To understand the mechanism of antimicrobial effectiveness, several procedures were employed to detect whether C14 leaching occurred. An immersion-growth (IG) test was developed that required knowing the bacterial Minimum Inhibitory Concentrations (MICs) and Minimum Biocidal Concentrations (MBCs). The C14 MIC and MBC for Gm- uropathogenic E. coli (UPEC), commonly associated with catheter-associated urinary tract infections (CAUTI), were 10 and 20 μg/mL, respectively. After prior immersion of WG-1 silicone segments in a growth medium from 1 to 28 d, the IG test for the medium showed normal growth for UPEC over 24 h, indicating that the concentration of C14 must be less than the MIC, 10 μg/mL. GC-MS and studies of the medium inside and outside a dialysis bag containing WG-1 silicone segments supported de minimis leaching. Consequently, a 5 log UPEC reduction (99.999% kill) in 24 h using the shake flask test (ASTM E2149) cannot be due to leaching and is ascribed to contact kill. Interestingly, although the MBC was greater than 100 μg/mL for Pseudomonas aeruginosa, WG-1 silicone affected an 80% reduction via a 24 h shake flask test. For other bacteria and Candida albicans, greater than 99.9% shake flask kill may be understood by proposing increased wettability and concentration of charge illustrated in the TOC. De minimis leaching places WG-1 silicone at an advantage over conventional anti-infectives that rely on leaching of an antibiotic or heavy metals such as silver. The facile process for preparation of WG-1 silicone combined with biocidal effectiveness comprises progress toward the goals of device designation from the FDA for WG-1 and clearance.
Collapse
Affiliation(s)
- Kenneth J. Wynne
- WynnVision LLC, Virginia Bio+Tech Park, Suite 57, 800 East Leigh
Street, Richmond, VA 23219-1551
| | - Olga Zolotarskaya
- WynnVision LLC, Virginia Bio+Tech Park, Suite 57, 800 East Leigh
Street, Richmond, VA 23219-1551
| | - Rebecca Jarrell
- WynnVision LLC, Virginia Bio+Tech Park, Suite 57, 800 East Leigh
Street, Richmond, VA 23219-1551
| | - Chenyu Wang
- WynnVision LLC, Virginia Bio+Tech Park, Suite 57, 800 East Leigh
Street, Richmond, VA 23219-1551
| | - Youssef Amin
- WynnVision LLC, Virginia Bio+Tech Park, Suite 57, 800 East Leigh
Street, Richmond, VA 23219-1551
| | - Kennard Brunson
- WynnVision LLC, Virginia Bio+Tech Park, Suite 57, 800 East Leigh
Street, Richmond, VA 23219-1551
| |
Collapse
|
20
|
Pan S, Lu D, Gan H, Zhu DZ, Yao Z, Kurup PU, Zhang G, Luo J. Long-range hydrophobic force enhanced interfacial photocatalysis for the submerged surface anti-biofouling. WATER RESEARCH 2023; 243:120383. [PMID: 37506635 DOI: 10.1016/j.watres.2023.120383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 06/22/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
Developing anti-biofouling and anti-biofilm techniques is of great importance for protecting water-contact surfaces. In this study, we developed a novel double-layer system consisting of a bottom immobilized TiO2 nanoflower arrays (TNFs) unit and an upper superhydrophobic (SHB) coating along with the assistance of nanobubbles (NBs), which can significantly elevate the interfacial oxygen level by establishing the long-range hydrophobic force between NBs and SHB and effectively maximize the photocatalytic reaction brought by the bottom TNFs. The developed NBs-SHB/TNFs system demonstrated the highest bulk chemical oxygen demand (COD) reduction efficiency at approximately 80% and achieved significant E. coli and Chlorella sp. inhibition efficiencies of 5.38 and 1.99 logs. Meanwhile, the system showed a sevenfold higher resistance to biofilm formation when testing in a wastewater matrix using a wildly collected biofilm seeding solution. These findings provide insights for implementing nanobubble-integrated techniques for submerged surface protection.
Collapse
Affiliation(s)
- Shuo Pan
- School of Civil and Environmental Engineering, Ningbo University, Ningbo 315211, China; Institute of Ocean Engineering, Ningbo University, Ningbo 315211, China
| | - Dingnan Lu
- School of Civil and Environmental Engineering, Ningbo University, Ningbo 315211, China; Institute of Ocean Engineering, Ningbo University, Ningbo 315211, China; Department of Civil and Environmental Engineering, University of Massachusetts Lowell, One University Ave., Lowell, MA 01854, USA
| | - Huihui Gan
- School of Civil and Environmental Engineering, Ningbo University, Ningbo 315211, China; Institute of Ocean Engineering, Ningbo University, Ningbo 315211, China; Department of Civil and Environmental Engineering, University of Massachusetts Lowell, One University Ave., Lowell, MA 01854, USA.
| | - David Z Zhu
- School of Civil and Environmental Engineering, Ningbo University, Ningbo 315211, China; Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 2W2, Canada
| | - Zhiyuan Yao
- School of Civil and Environmental Engineering, Ningbo University, Ningbo 315211, China; Institute of Ocean Engineering, Ningbo University, Ningbo 315211, China
| | - Pradeep U Kurup
- Department of Civil and Environmental Engineering, University of Massachusetts Lowell, One University Ave., Lowell, MA 01854, USA
| | - Gaoke Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan, Hubei 430070, China.
| | - Jiayue Luo
- School of Civil and Environmental Engineering, Ningbo University, Ningbo 315211, China; Institute of Ocean Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
21
|
Cruz-Facundo IM, Adame-Gómez R, Castro-Alarcón N, Toribio-Jiménez J, Castro-Coronel Y, Santiago-Dionisio MC, Leyva-Vázquez MA, Tafolla-Venegas D, Ramírez-Peralta A. Enterotoxigenic profiles and submerged and interface biofilms in Bacillus cereus group isolates from foods. Rev Argent Microbiol 2023; 55:262-271. [PMID: 37019800 DOI: 10.1016/j.ram.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 04/05/2023] Open
Abstract
Biofilm formation by Bacillus cereus strains is now recognized as a systematic contamination mechanism in foods; the aim of this study was to evaluate the production of submerged and interface biofilms in strains of B. cereus group in different materials, the effect of dextrose, motility, the presence of genes related to biofilms and the enterotoxigenic profile of the strains. We determine biofilm production by safranin assay, motility on semi-solid medium, toxin gene profiling and genes related to biofilm production by PCR in B. cereus group isolated from food. In this study, we observe strains used a higher production of biofilms in PVC; in the BHI broth, no submerged biofilms were found compared to phenol red broth and phenol red broth supplemented with dextrose; no strains with the ces gene were found, the enterotoxin profile was the most common the profile that includes genes for the three enterotoxins. We observed a different distribution of tasA and sipW with the origin of isolation of the strain, being more frequent in the strains isolated from eggshell. The production and type of biofilms are differential according to the type of material and culture medium used.
Collapse
Affiliation(s)
- Itzel-Maralhi Cruz-Facundo
- Universidad Autónoma de Guerrero, Laboratorio de Investigación en Patometabolismo Microbiano, Facultad de Ciencias Químico Biológicas, Chilpancingo de los Bravo, Guerrero 39070, Mexico
| | - Roberto Adame-Gómez
- Universidad Autónoma de Guerrero, Laboratorio de Investigación en Patometabolismo Microbiano, Facultad de Ciencias Químico Biológicas, Chilpancingo de los Bravo, Guerrero 39070, Mexico
| | - Natividad Castro-Alarcón
- Universidad Autónoma de Guerrero, Laboratorio de Investigación en Microbiología, Facultad de Ciencias Químico Biológicas, Chilpancingo de los Bravo, Guerrero CP39070, Mexico
| | - Jeiry Toribio-Jiménez
- Universidad Autónoma de Guerrero, Laboratorio de Investigación en Microbiología Molecular y Biotecnología Ambiental, Facultad de Ciencias Químico Biológicas, Chilpancingo de los Bravo, Guerrero CP39070, Mexico
| | - Yaneth Castro-Coronel
- Universidad Autónoma de Guerrero, Laboratorio de Investigación en Citopatología e Histoquímica, Facultad de Ciencias Químico Biológicas, Chilpancingo de los Bravo, Guerrero CP39070, Mexico
| | - María-Cristina Santiago-Dionisio
- Universidad Autónoma de Guerrero, Laboratorio de Investigación en Análisis Microbiológicos, Facultad de Ciencias Químico Biológicas, Chilpancingo de los Bravo, Guerrero CP39070, Mexico
| | - Marco-Antonio Leyva-Vázquez
- Universidad Autónoma de Guerrero, Laboratorio de Investigación en Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Chilpancingo de los Bravo, Guerrero CP39070, Mexico
| | - David Tafolla-Venegas
- Universidad Michoacana de San Nicolás de Hidalgo, Facultad de Biología, Laboratorio de Parasitología, Morelia, Michoacan 58004, Mexico
| | - Arturo Ramírez-Peralta
- Universidad Autónoma de Guerrero, Laboratorio de Investigación en Patometabolismo Microbiano, Facultad de Ciencias Químico Biológicas, Chilpancingo de los Bravo, Guerrero 39070, Mexico.
| |
Collapse
|
22
|
Conti G, Veneri F, Amadori F, Garzoni A, Majorana A, Bardellini E. Evaluation of Antibacterial Activity of a Bioactive Restorative Material Versus a Glass-Ionomer Cement on Streptococcus Mutans: In-Vitro Study. Dent J (Basel) 2023; 11:149. [PMID: 37366672 DOI: 10.3390/dj11060149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/29/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Dental caries management consists of both preventive and restorative approaches. Pediatric dentists can rely on many techniques and materials to restore decayed teeth, but a high failure rate is still observed, mainly due to secondary caries. New restorative bioactive materials combine the mechanical and aesthetic characteristics of resinous materials with the capability to remineralize and the antimicrobial properties of glass ionomers, thus counteracting the occurrence of secondary caries. The aim of this study was to assess the antimicrobial activity against Streptococcus mutans of a bioactive restorative material (ACTIVA™ BioActive-Restorative™-Pulpdent©) and a glass ionomer cement with silver particles added (Ketac™ Silver-3M©), using agar diffusion assay. METHODS Each material was formed into disks of 4 mm in diameter, and four discs of each material were placed on nine agar plates. The analysis was repeated seven times. RESULTS Both materials showed statistically significant growth inhibition properties against S. mutans (p < 0.05). The difference in the effectiveness of the two materials was not statistically significant. CONCLUSION Both ACTIVA™ and Ketac™ Silver can be recommended since both are similarly effective against S. mutans. However ACTIVA™, given its bioactivity and better aesthetics and mechanical properties compared to GICs, may provide better clinical performance.
Collapse
Affiliation(s)
- Giulio Conti
- Department of Medicine and Surgery, School of Dentistry, University of Insubria, Via Ravasi 2, 21100 Varese, Italy
| | - Federica Veneri
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Transplant Surgery, Oncology and Regenerative Medicine Relevance, Unit of Dentistry & Oral-Maxillo-Facial Surgery, University of Modena and Reggio Emilia, Via del Pozzo, 41124 Modena, Italy
| | - Francesca Amadori
- Department of Medical and Surgical Sciences and Public Health, School of Pediatric Dentistry, University of Brescia, Pl. Spedali Civili 1, 25123 Brescia, Italy
| | - Alba Garzoni
- Department of Medical and Surgical Sciences and Public Health, School of Pediatric Dentistry, University of Brescia, Pl. Spedali Civili 1, 25123 Brescia, Italy
| | - Alessandra Majorana
- Department of Medical and Surgical Sciences and Public Health, School of Pediatric Dentistry, University of Brescia, Pl. Spedali Civili 1, 25123 Brescia, Italy
| | - Elena Bardellini
- Department of Medical and Surgical Sciences and Public Health, School of Pediatric Dentistry, University of Brescia, Pl. Spedali Civili 1, 25123 Brescia, Italy
| |
Collapse
|
23
|
Manville E, Kaya EC, Yucel U, Boyle D, Trinetta V. Evaluation of Listeria monocytogenes biofilms attachment and formation on different surfaces using a CDC biofilm reactor. Int J Food Microbiol 2023; 399:110251. [PMID: 37244228 DOI: 10.1016/j.ijfoodmicro.2023.110251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/29/2023]
Abstract
Listeria monocytogenes can adapt, persist, and form biofilms on food premises surfaces, representing a challenge for food safety, since they led to disease transmission, food contamination and spoilage during production. Physical interventions (scrubbing and wiping) can help controlling formation, nevertheless when biofilms are formed, they are usually very resistant to current control strategies used in the food industry. Biofilm attachment and formation is influenced by environment characteristics, substrate properties and microbial motility. The purpose of this study was to evaluate the ability of L. monocytogenes to attach and form biofilms on different surfaces (wood, nylon, and polycarbonate) representative of the materials used during produce harvesting and storage. Multi-strain L. monocytogenes biofilms were grown in a CDC Biofilm reactor at 20 ± 2 °C up to 96-h and characterized for: a) attachment strength by enumerating cells after rinsing; b) hydrophobicity and interfacial tension by contact angle measurements; c) biofilm architecture by Laser Scanning Confocal Microscopy. All experiments were done in triplicate. Material, incubation, and solvent significantly affected the hydrophobicity and wetting properties of L. monocytogenes biofilms (P < 0.05). The type of material and incubation time significantly influenced hydrophobicity and wetting properties of L. monocytogenes biofilms (P < 0.05). Highest contact angle and lowest interfacial tension were observed on polycarbonate coupons. The data presented contributes to understanding Listeria biofilms grow on different surfaces commonly used in produce harvesting and storage. The data obtained in this study can be used when evaluating intervention strategies to control this pathogen in food premises.
Collapse
Affiliation(s)
- E Manville
- Kansas State University, Food Science Institute, 216 Call Hall, Manhattan, KS 66506, USA
| | - E C Kaya
- Kansas State University, Food Science Institute, 216 Call Hall, Manhattan, KS 66506, USA
| | - U Yucel
- Kansas State University, Food Science Institute, 216 Call Hall, Manhattan, KS 66506, USA
| | - D Boyle
- Kansas State University, Division of Biology, 6 Ackert Hall, Manhattan, KS 66503, USA
| | - V Trinetta
- Kansas State University, Food Science Institute, 216 Call Hall, Manhattan, KS 66506, USA.
| |
Collapse
|
24
|
Maliszewska I, Zdubek A. On the Photo-Eradication of Methicillin-Resistant Staphylococcus aureus Biofilm Using Methylene Blue. Int J Mol Sci 2023; 24:ijms24010791. [PMID: 36614237 PMCID: PMC9821080 DOI: 10.3390/ijms24010791] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 01/04/2023] Open
Abstract
This work compared the effectiveness of several Methylene Blue (MB)-based protocols for photo-eradication of biofilms formed on the surface of the glass and stainless steel discs by S. aureus MRSA isolates using a diode laser (λ = 665 nm; output power 40 mW; energy fluence was 189 J cm-2). The results obtained showed that MB alone, up to a concentration of 62.5 mgL-1, had limited photo-bactericidal activity. It was possible to enhance the activity of MB using two types of spherical gold nanoparticles of similar sizes, 15 ± 3 nm/20 ± 3 nm, but differing in the method of their synthesis and stabilization. The enhancement of the photodestruction effect was related to the increased production of hydroxyl radicals by the MB+gold nanoparticles mixture, and this mixture showed dark cytotoxicity against the cocci studied. Effective destruction (mortality above 99.9%) of the biofilms formed by MRSA isolates was also possible without the use of gold nanoparticles, but the concentration of MB had to be at least 125 mgL-1. A highly efficient protocol of photodestruction of biofilms, consisting of triple exposure of biofilms to laser light in the presence of MB alone, combined with the removal of dead bacteria protecting deep layers of pathogens against photosensitization, was also described.
Collapse
|
25
|
Biagini F, Daddi C, Calvigioni M, De Maria C, Zhang YS, Ghelardi E, Vozzi G. Designs and methodologies to recreate in vitro human gut microbiota models. Biodes Manuf 2022. [DOI: 10.1007/s42242-022-00210-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
AbstractThe human gut microbiota is widely considered to be a metabolic organ hidden within our bodies, playing a crucial role in the host’s physiology. Several factors affect its composition, so a wide variety of microbes residing in the gut are present in the world population. Individual excessive imbalances in microbial composition are often associated with human disorders and pathologies, and new investigative strategies to gain insight into these pathologies and define pharmaceutical therapies for their treatment are needed. In vitro models of the human gut microbiota are commonly used to study microbial fermentation patterns, community composition, and host-microbe interactions. Bioreactors and microfluidic devices have been designed to culture microorganisms from the human gut microbiota in a dynamic environment in the presence or absence of eukaryotic cells to interact with. In this review, we will describe the overall elements required to create a functioning, reproducible, and accurate in vitro culture of the human gut microbiota. In addition, we will analyze some of the devices currently used to study fermentation processes and relationships between the human gut microbiota and host eukaryotic cells.
Graphic abstract
Collapse
|
26
|
Assessment of the Antibiofilm Performance of Chitosan-Based Surfaces in Marine Environments. Int J Mol Sci 2022; 23:ijms232314647. [PMID: 36498973 PMCID: PMC9741481 DOI: 10.3390/ijms232314647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
Marine biofouling is a natural process often associated with biofilm formation on submerged surfaces, creating a massive economic and ecological burden. Although several antifouling paints have been used to prevent biofouling, growing ecological concerns emphasize the need to develop new and environmentally friendly antifouling approaches such as bio-based coatings. Chitosan (CS) is a natural polymer that has been widely used due to its outstanding biological properties, including non-toxicity and antimicrobial activity. This work aims to produce and characterize poly (lactic acid) (PLA)-CS surfaces with CS of different molecular weight (Mw) at different concentrations for application in marine paints. Loligo opalescens pens, a waste from the fishery industry, were used as a CS source. The antimicrobial activity of the CS and CS-functionalized surfaces was assessed against Cobetia marina, a model proteobacterium for marine biofouling. Results demonstrate that CS targets the bacterial cell membrane, and PLA-CS surfaces were able to reduce the number of culturable cells up to 68% compared to control, with this activity dependent on CS Mw. The antifouling performance was corroborated by Optical Coherence Tomography since PLA-CS surfaces reduced the biofilm thickness by up to 36%, as well as the percentage and size of biofilm empty spaces. Overall, CS coatings showed to be a promising approach to reducing biofouling in marine environments mimicked in this work, contributing to the valorization of fishing waste and encouraging further research on this topic.
Collapse
|
27
|
Ali A, Chowdhury S, Janorkar A, Marquart M, Griggs JA, Bumgardner J, Roach MD. A novel single-step anodization approach for PANI-doping oxide surfaces to improve the photocatalytic activity of titanium implants. Biomed Mater 2022; 18:015010. [PMID: 36384042 DOI: 10.1088/1748-605x/aca37d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Crystalline titanium oxides have shown photocatalytic activity (PCA) and the formation of antibacterial reactive oxygen species (ROS) when stimulated with UV light. Polyaniline (PANI) is a conductive polymer that has shown antibacterial effects. Previously, titanium oxides have been PANI-doped using a multi-step approach. In the present study, we compared PANI-doped specimens produced with a two-step method (ACV), to PANI-doped specimens produced by a novel single-step direct anodization (AAn) method, and a control group of anodized un-doped specimens. The surface morphology, oxide crystallinity, surface elemental composition, surface roughness, surface wettability, oxide adhesion, corrosion resistance, PCA, and ROS generation of each oxide group were evaluated. All groups exhibited mixed anatase and rutile phase oxides. The AAn group revealed less anatase and rutile, but more PANI-surface coverage. The AAn group exhibited significantly increased PCA after 60 minutes of direct UVA illumination compared to the ACV group, despite containing lower amounts of anatase and rutile. The ACV and AAn groups showed significant increases in ROS production after 4 hours UVA illumination while the control group showed similar ROS production. These findings suggested that PANI doping using the novel direct anodization technique significantly improved PCA even for oxides containing less crystallinity. The S. aureus attachment response to each oxide group was also compared under UVA pre-illumination, UVA direct illumination, and no illumination (dark) lighting conditions. Although no significant differences were shown in the bacterial response, both PANI-doped groups exhibited less average bacterial attachment compared to the control group. The response of MC3T3-E1 pre-osteoblast cells to each oxide group was evaluated using MTT and live/dead assays, and no evidence of cytotoxicity was found. Since many, if not most, titanium implant devices are routinely anodized as a part of the manufacturing processes, these study findings are applicable to a wide variety of implant applications.
Collapse
Affiliation(s)
- Aya Ali
- Department of Biomedical Materials Science, D528, The University of Mississippi Medical Center, 2500 North State Street, Jackson, Mississippi, 39216-4505, UNITED STATES
| | - Sheetal Chowdhury
- Department of Biomedical Materials Science, D528, The University of Mississippi Medical Center, 2500 North State Street, Jackson, Mississippi, 39216-4505, UNITED STATES
| | - Amol Janorkar
- Department of Biomedical Materials Science, D528, The University of Mississippi Medical Center, School of Dentistry, 2500 North State Street, Jackson, Mississippi, 39216-4505, UNITED STATES
| | - Mary Marquart
- Department of Microbiology and Immunology, The University of Mississippi Medical Center, 2500 North State Street, Jackson, Mississippi, 39216-4505, UNITED STATES
| | - Jason A Griggs
- Department of Biomedical Materials Science, D528, The University of Mississippi Medical Center, School of Dentistry, 2500 North State Street, Jackson, Mississippi, 39216-4505, UNITED STATES
| | - Joel Bumgardner
- Biomedical Engineering Department, The University of Memphis Herff College of Engineering, Engineering Technology Building, 330, Memphis, Tennessee, 38152, UNITED STATES
| | - Michael D Roach
- Department of Biomedical Materials Science, D528, The University of Mississippi Medical Center, 2500 North State Street, School of Dentistry, Jackson, Mississippi, 39216, UNITED STATES
| |
Collapse
|
28
|
Nguyen D, Balasubramanian R, Richardson A. Adhesion energy, spreading coefficient and interfacial tension as an efficient tool for assessing biocide performance. J SURFACTANTS DETERG 2022. [DOI: 10.1002/jsde.12639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
29
|
Chug M, Brisbois EJ. Recent Developments in Multifunctional Antimicrobial Surfaces and Applications toward Advanced Nitric Oxide-Based Biomaterials. ACS MATERIALS AU 2022; 2:525-551. [PMID: 36124001 PMCID: PMC9479141 DOI: 10.1021/acsmaterialsau.2c00040] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 02/08/2023]
Abstract
Implant-associated infections arising from biofilm development are known to have detrimental effects with compromised quality of life for the patients, implying a progressing issue in healthcare. It has been a struggle for more than 50 years for the biomaterials field to achieve long-term success of medical implants by discouraging bacterial and protein adhesion without adversely affecting the surrounding tissue and cell functions. However, the rate of infections associated with medical devices is continuously escalating because of the intricate nature of bacterial biofilms, antibiotic resistance, and the lack of ability of monofunctional antibacterial materials to prevent the colonization of bacteria on the device surface. For this reason, many current strategies are focused on the development of novel antibacterial surfaces with dual antimicrobial functionality. These surfaces are based on the combination of two components into one system that can eradicate attached bacteria (antibiotics, peptides, nitric oxide, ammonium salts, light, etc.) and also resist or release adhesion of bacteria (hydrophilic polymers, zwitterionic, antiadhesive, topography, bioinspired surfaces, etc.). This review aims to outline the progress made in the field of biomedical engineering and biomaterials for the development of multifunctional antibacterial biomedical devices. Additionally, principles for material design and fabrication are highlighted using characteristic examples, with a special focus on combinational nitric oxide-releasing biomedical interfaces. A brief perspective on future research directions for engineering of dual-function antibacterial surfaces is also presented.
Collapse
Affiliation(s)
- Manjyot
Kaur Chug
- School of Chemical, Materials
and Biomedical Engineering, University of
Georgia, Athens, Georgia 30602, United States
| | - Elizabeth J. Brisbois
- School of Chemical, Materials
and Biomedical Engineering, University of
Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
30
|
Ranjbari K, Lee WL, Ansari A, Barrios AC, Sharif F, Islam R, Perreault F. Controlling silver release from antibacterial surface coatings on stainless steel for biofouling control. Colloids Surf B Biointerfaces 2022; 216:112562. [PMID: 35594751 DOI: 10.1016/j.colsurfb.2022.112562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/16/2022] [Accepted: 05/09/2022] [Indexed: 10/18/2022]
Abstract
This study focuses on the in-situ nucleation of silver nanoparticles (AgNPs) on stainless steel (SS) to provide a localized antibacterial action for biofouling control during space missions. Since AgNPs rapidly dissolve in water, partial passivation of AgNPs was provided to slow down silver release and extend the lifetime of the antibacterial coating. Two different passivation approaches, based on the formation of low solubility silver sulfide (Ag2S) or silver bromide (AgBr) shells, were compared to identify the optimal passivation for biofouling control. Highest bacterial inactivation (up to 75%) occurred with sulfidized AgNPs as opposed to bromidized (up to 50%) NPs. The optimal passivation treatment for biofouling control was found at 10-5 M Na2S (for Ag2S) and 10-3 M NaBr (for AgBr) concentrations. Scanning Electron Microscopy (SEM) analyses confirmed the presence of AgNPs on AgBr and Ag2S-coated samples. Further investigation revealed that compared to pristine AgNPs, Ag release from both sulfidized and bromidized NPs was significantly lower (16% vs 6% or less). Overall, both sulfidized and bromidized AgNPs were effective at controlling biofilm formation; however, sulfidized NPs exhibited the maximum antibacterial activity, making it the preferable passivation strategy for AgNPs on SS surfaces.
Collapse
Affiliation(s)
- Kiarash Ranjbari
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005, United States; Cactus Materials Inc., Tempe, AZ, United States; Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Arizona State University, Tempe, AZ, United States
| | - Wey Lyn Lee
- Cactus Materials Inc., Tempe, AZ, United States; School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, AZ 85287-3005, United States
| | - Ali Ansari
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005, United States; Cactus Materials Inc., Tempe, AZ, United States
| | - Ana C Barrios
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005, United States; Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Arizona State University, Tempe, AZ, United States
| | | | | | - François Perreault
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005, United States; Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Arizona State University, Tempe, AZ, United States.
| |
Collapse
|
31
|
Caldara M, Belgiovine C, Secchi E, Rusconi R. Environmental, Microbiological, and Immunological Features of Bacterial Biofilms Associated with Implanted Medical Devices. Clin Microbiol Rev 2022; 35:e0022120. [PMID: 35044203 PMCID: PMC8768833 DOI: 10.1128/cmr.00221-20] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The spread of biofilms on medical implants represents one of the principal triggers of persistent and chronic infections in clinical settings, and it has been the subject of many studies in the past few years, with most of them focused on prosthetic joint infections. We review here recent works on biofilm formation and microbial colonization on a large variety of indwelling devices, ranging from heart valves and pacemakers to urological and breast implants and from biliary stents and endoscopic tubes to contact lenses and neurosurgical implants. We focus on bacterial abundance and distribution across different devices and body sites and on the role of environmental features, such as the presence of fluid flow and properties of the implant surface, as well as on the interplay between bacterial colonization and the response of the human immune system.
Collapse
Affiliation(s)
- Marina Caldara
- Interdepartmental Center on Safety, Technologies, and Agri-food Innovation (SITEIA.PARMA), University of Parma, Parma, Italy
| | - Cristina Belgiovine
- IRCCS Humanitas Research Hospital, Rozzano–Milan, Italy
- Scuola di Specializzazione in Microbiologia e Virologia, Università degli Studi di Pavia, Pavia, Italy
| | - Eleonora Secchi
- Institute of Environmental Engineering, ETH Zürich, Zürich, Switzerland
| | - Roberto Rusconi
- IRCCS Humanitas Research Hospital, Rozzano–Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele–Milan, Italy
| |
Collapse
|
32
|
Personalized, 3D- printed fracture fixation plates versus commonly used orthopedic implant materials- biomaterials characteristics and bacterial biofilm formation. Injury 2022; 53:938-946. [PMID: 34949461 DOI: 10.1016/j.injury.2021.12.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 02/06/2023]
Abstract
Additive manufacturing enabled the development of personalized, ideally fitting medical devices. The topography of the surface of the 3D-printed implant may not only facilitate its integration but also cause its rejection, as the surface may become a reservoir for different bacterial strains. In this study, the innovative, raw, 3D- printed fracture fixation plates, manufactured by using selective laser melting (SLM) from Ti-6Al-4V were compared with commercially available, surface-modified plates commonly used in orthopedic surgery. The topography surface of the plates was studied by atomic force microscopy. Susceptibility to the development of biofilm was tested for Staphylococcus epidermidis, Staphylococcus aureus and Streptococcus mutans by using crystal violet staining of biomass, confocal, and scanning electron microscopy (SEM). 3D- printed plates showed higher roughness (Sa=131.0 nm) than commercial plates (CP1 and CP2), Sa= 60.67 nm and Sa=55.48 nm, respectively. All strains of bacteria colonized 3D- printed raw plates more densely than commercial plates. The microscopic visualization showed biofilm mostly in irregular cavities of printed plates while on commercial plates it was mainly located along the edges. The research has indicated that there is need for further development of this technology to optimize its effectiveness and safety.
Collapse
|
33
|
Biagini F, Calvigioni M, De Maria C, Magliaro C, Montemurro F, Mazzantini D, Celandroni F, Mattioli-Belmonte M, Ghelardi E, Vozzi G. Study of the Adhesion of the Human Gut Microbiota on Electrospun Structures. Bioengineering (Basel) 2022; 9:bioengineering9030096. [PMID: 35324785 PMCID: PMC8945341 DOI: 10.3390/bioengineering9030096] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 12/04/2022] Open
Abstract
Although the adhesion of bacteria on surfaces is a widely studied process, to date, most of the works focus on a single species of microorganisms and are aimed at evaluating the antimicrobial properties of biomaterials. Here, we describe how a complex microbial community, i.e., the human gut microbiota, adheres to a surface to form stable biofilms. Two electrospun structures made of natural, i.e., gelatin, and synthetic, i.e., polycaprolactone, polymers were used to study their ability to both promote the adhesion of the human gut microbiota and support microbial growth in vitro. Due to the different wettabilities of the two surfaces, a mucin coating was also added to the structures to decouple the effect of bulk and surface properties on microbial adhesion. The developed biofilm was quantified and monitored using live/dead imaging and scanning electron microscopy. The results indicated that the electrospun gelatin structure without the mucin coating was the optimal choice for developing a 3D in vitro model of the human gut microbiota.
Collapse
Affiliation(s)
- Francesco Biagini
- Research Center “E. Piaggio”, University of Pisa, Largo Lucio Lazzarino 1, 55122 Pisa, Italy; (F.B.); (C.D.M.); (C.M.); (F.M.)
- Department of Information Engineering, University of Pisa, Via G. Caruso 16, 56122 Pisa, Italy
| | - Marco Calvigioni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via San Zeno 37, 56127 Pisa, Italy; (M.C.); (D.M.); (F.C.); (E.G.)
| | - Carmelo De Maria
- Research Center “E. Piaggio”, University of Pisa, Largo Lucio Lazzarino 1, 55122 Pisa, Italy; (F.B.); (C.D.M.); (C.M.); (F.M.)
- Department of Information Engineering, University of Pisa, Via G. Caruso 16, 56122 Pisa, Italy
| | - Chiara Magliaro
- Research Center “E. Piaggio”, University of Pisa, Largo Lucio Lazzarino 1, 55122 Pisa, Italy; (F.B.); (C.D.M.); (C.M.); (F.M.)
- Department of Information Engineering, University of Pisa, Via G. Caruso 16, 56122 Pisa, Italy
| | - Francesca Montemurro
- Research Center “E. Piaggio”, University of Pisa, Largo Lucio Lazzarino 1, 55122 Pisa, Italy; (F.B.); (C.D.M.); (C.M.); (F.M.)
| | - Diletta Mazzantini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via San Zeno 37, 56127 Pisa, Italy; (M.C.); (D.M.); (F.C.); (E.G.)
| | - Francesco Celandroni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via San Zeno 37, 56127 Pisa, Italy; (M.C.); (D.M.); (F.C.); (E.G.)
| | - Monica Mattioli-Belmonte
- Department of Clinical and Molecular Science—DISCLIMO Università Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy;
| | - Emilia Ghelardi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via San Zeno 37, 56127 Pisa, Italy; (M.C.); (D.M.); (F.C.); (E.G.)
| | - Giovanni Vozzi
- Research Center “E. Piaggio”, University of Pisa, Largo Lucio Lazzarino 1, 55122 Pisa, Italy; (F.B.); (C.D.M.); (C.M.); (F.M.)
- Department of Information Engineering, University of Pisa, Via G. Caruso 16, 56122 Pisa, Italy
- Correspondence:
| |
Collapse
|
34
|
Extended Post-Curing Light Exposure and Sandblasting Effects on Surface Hydrophobicity of 3D-Printed Denture Base Resin. PROSTHESIS 2022. [DOI: 10.3390/prosthesis4010009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This in vitro study evaluated the surface hydrophobicity of 3D-printed denture base resin exposed to either an extended post-curing light exposure time or a sandblasting procedure. MATERIALS AND METHODS: Disk-shaped samples (diameter × height: 10 mm × 3 mm) were 3D-printed with stereolithography SLA technology using the denture-base resin. Samples were divided into three groups: control, extended UV-post-curing, and sandblasted. The surface roughness parameters for each group were calculated, and the surface hydrophobicity was evaluated by measuring the drop contact angle. Analysis was done using the T-test; significance was when p < 0.05. RESULTS: The comparison of surface roughness parameters showed significant differences between the control group and the sandblasted group (Sa: p = 0.001, Sz: p < 0.001, Str: p < 0.001, Spc: p = 0.044) as well as between the extended-cure group and the sandblasted group (Sa: p = 0.006, Sz: p < 0.001, Str: p < 0.001, Spc: p = 0.036) except for the Sdr measures. The surface hydrophobicity was also statistically lower in the sandblasted group compared to both the control and extended curing groups (p < 0.001). CONCLUSION: The sandblasting procedure created a less hydrophobic surface of the 3D-printed denture base resin, and the altered surface roughness could be a contributor to this observation.
Collapse
|
35
|
Cruz-Facundo IM, Adame-Gómez R, Vences-Velázquez A, Rodríguez-Bataz E, Muñoz-Barrios S, Pérez-Oláis JH, Ramírez-Peralta A. Bacillus Cereus in Eggshell: Enterotoxigenic Profiles and Biofilm Production. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2022. [DOI: 10.1590/1806-9061-2021-1535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
The Effect of Anode Material on the Performance of a Hydrogen Producing Microbial Electrolysis Cell, Operating with Synthetic and Real Wastewaters. ENERGIES 2021. [DOI: 10.3390/en14248375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of the study was to assess the effect of anode materials, namely a carbon nanotube (CNT)-buckypaper and a commercial carbon paper (CP) on the performance of a two-chamber microbial electrolysis cell (MEC), in terms of hydrogen production and main electrochemical characteristics. The experiments were performed using both acetate-based synthetic wastewater and real wastewater, specifically the effluent of a dark fermentative hydrogenogenic reactor (fermentation effluent), using cheese whey (CW) as substrate. The results showed that CP led to higher hydrogen production efficiency and current density compared to the CNT-buckypaper anode, which was attributed to the better colonization of the CP electrode with electroactive microorganisms, due to the negative effects of CNT-based materials on the bacteria metabolism. By using the fermentation effluent as substrate, a two-stage process is developed, where dark fermentation (DF) of CW for hydrogen production occurs in the first step, while the DF effluent is used as substrate in the MEC, in the second step, to further increase hydrogen production. By coupling DF-MEC, a dual environmental benefit is provided, combining sustainable bioenergy generation together with wastewater treatment, a fact that is also reinforced by the toxicity data of the current study.
Collapse
|
37
|
Surface Modification to Modulate Microbial Biofilms-Applications in Dental Medicine. MATERIALS 2021; 14:ma14226994. [PMID: 34832390 PMCID: PMC8625127 DOI: 10.3390/ma14226994] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/12/2021] [Accepted: 11/12/2021] [Indexed: 12/21/2022]
Abstract
Recent progress in materials science and nanotechnology has led to the development of advanced materials with multifunctional properties. Dental medicine has benefited from the design of such materials and coatings in providing patients with tailored implants and improved materials for restorative and functional use. Such materials and coatings allow for better acceptance by the host body, promote successful implantation and determine a reduced inflammatory response after contact with the materials. Since numerous dental pathologies are influenced by the presence and activity of some pathogenic microorganisms, novel materials are needed to overcome this challenge as well. This paper aimed to reveal and discuss the most recent and innovative progress made in the field of materials surface modification in terms of microbial attachment inhibition and biofilm formation, with a direct impact on dental medicine.
Collapse
|
38
|
Prado A, Brito RO, Pereira ECA, Correa JL, Neto MG, Dayyeh BKA, Negri M, Svidzinski TIE. First Study of Naturally Formed Fungal Biofilms on the Surface of Intragastric Balloons. Obes Surg 2021; 31:5348-5357. [PMID: 34570305 DOI: 10.1007/s11695-021-05730-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Intragastric balloon (IGB) is a medical device used in the endoscopic treatment of pre-obesity and obesity. The involvement of IGB with biofilms has been previously reported; however, little is still known. We determine the frequency of biofilms naturally formed on the external surface of IGB, as well as some variables related to IGB types and patients features, species of fungi involved, and biofilm evidence. METHODS A retrospective study was conducted based on endoscopies and medical records of patients with explanted IGB between 2015 and 2018, which had masses strongly adhered to the surface of the balloon, suspecting the presence of a biofilm. From 2018, the samples of those masses were investigated seeking biofilm characterization based on mycological and structural aspects. RESULTS A total of 149 endoscopies were surveyed; 27 IGBs (18.12%) showed signs suggesting biofilm formation. There was no significant difference between biofilm involvement in IGB and the anthropometric and demographic profile of the patients. On the other hand, there was a significant difference regarding the IGB type, 24.05% of the adjustable IGB were compromised by biofilm, while in non-adjustable IGB, it was 11.43% (p = 0.04; OR 2.45; 95% CI, 0.98-6.12). Candida glabrata was the most isolated fungal species from the well-organized fungal biofilm. CONCLUSIONS The frequency of fungal biofilm naturally formed on the external surface of IGB was elevated. The risk of biofilm formation was increased for the adjustable IGB, but it did not relate to the demographic data and anthropometric patient profile.
Collapse
Affiliation(s)
- Andressa Prado
- Medical Mycology Laboratory, Laboratory for Teaching and Research in Clinical Analysis, State University of Maringa, Maringa, Brazil
| | - Rubens O Brito
- Department of Diagnostic and Therapeutic Endoscopy, Mgastro Digestive Tract Medical Center, Maringa, Brazil
| | - Elton C A Pereira
- Medical Mycology Laboratory, Laboratory for Teaching and Research in Clinical Analysis, State University of Maringa, Maringa, Brazil
| | - Jakeline L Correa
- Medical Mycology Laboratory, Laboratory for Teaching and Research in Clinical Analysis, State University of Maringa, Maringa, Brazil
| | - Manoel G Neto
- Division of Gastrointestinal Endoscopy, ABC Medical School, São Paulo, Brazil
| | - Barham K A Dayyeh
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Melyssa Negri
- Medical Mycology Laboratory, Laboratory for Teaching and Research in Clinical Analysis, State University of Maringa, Maringa, Brazil
| | - Terezinha I E Svidzinski
- Medical Mycology Laboratory, Laboratory for Teaching and Research in Clinical Analysis, State University of Maringa, Maringa, Brazil.
| |
Collapse
|
39
|
Das S, Vishakha K, Banerjee S, Mondal S, Ganguli A. Antibacterial and antibiofilm effectiveness of bioactive packaging materials from edible sodium alginate and vanillin: Assessment on lettuce. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Shatabdi Das
- Department of Microbiology Techno India University Kolkata India
| | - Kumari Vishakha
- Department of Microbiology Techno India University Kolkata India
| | | | | | - Arnab Ganguli
- Department of Microbiology Techno India University Kolkata India
| |
Collapse
|
40
|
Determination of the Spatial Anisotropy of the Surface MicroStructures of Different Implant Materials: An Atomic Force Microscopy Study. MATERIALS 2021; 14:ma14174803. [PMID: 34500893 PMCID: PMC8432509 DOI: 10.3390/ma14174803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/09/2021] [Accepted: 08/18/2021] [Indexed: 02/04/2023]
Abstract
Many biomaterials' surfaces exhibit directional properties, i.e., possess spatial anisotropy on a range of spatial scales spanning from the domain of the naked eye to the sub-micrometer level. Spatial anisotropy of surface can influence the mechanical, physicochemical, and morphological characteristics of the biomaterial, thus affecting its functional behavior in relation, for example, to the host tissue response in regenerative processes, or to the efficacy of spatially organized surface patterns in avoiding bacterial attachment. Despite the importance of the availability of quantitative data, a comprehensive characterization of anisotropic topographies is generally a hard task due to the proliferation of parameters and inherent formal complications. This fact has led so far to excessive simplification that has often prevented researchers from having comparable results. In an attempt to overcome these issues, in this work a systematic and multiscale approach to spatial anisotropy is adopted, based on the determination of only two statistical parameters of surface, namely the texture aspect ratio Str and the roughness exponent H, extracted from atomic force microscopy images of the surface. The validity on this approach is tested on four commercially available implant materials, namely titanium alloy, polyethylene, polyetheretherketone and polyurethane, characterized by textured surfaces obtained after different machining. It is found that the "two parameters" approach is effective in describing the anisotropy changes on surfaces with complex morphology, providing a simple quantitative route for characterization and design of natural and artificial textured surfaces at spatial scales relevant to a wide range of bio-oriented applications.
Collapse
|
41
|
An Integrated Analysis of Intracellular Metabolites and Virulence Gene Expression during Biofilm Development of a Clinical Isolate of Candida tropicalis on Distinct Surfaces. Int J Mol Sci 2021; 22:ijms22169038. [PMID: 34445744 PMCID: PMC8396647 DOI: 10.3390/ijms22169038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 08/19/2021] [Indexed: 11/18/2022] Open
Abstract
Emergence of Candida tropicalis, which causes potential life-threatening invasive candidiasis, is often associated with colonization of medical devices as biofilm. Biofilm plays an important role in the virulence of the pathogen because of its complex structure, which provides resistance to conventional antimicrobials. In this study, the metabolic response of a clinical strain of C. tropicalis colonizing three distinct surfaces (polytetrafluoroethylene (PTFE), polystyrene, and polycarbonate) as well as the expression of virulence and stress related genes (ALS3, Hsp21, SAP1, SAP2, SAP3, and CYR1), were explored. Our results showed that lesser biofilm was developed on PTFE compared to polystyrene and polycarbonate. GS-MS metabolic analysis identified a total of 36 metabolites in the intracellular extract of cells grown on polystyrene, polycarbonate, and PTFE, essentially belonging to central carbon metabolism, amino acids, and lipids metabolism. The metabolic analysis showed that saturated and unsaturated fatty acids are preferentially produced during biofilm development on polycarbonate, whereas trehalose and vitamin B6, known as cellular protectors against a variety of stressors, were characteristic of biofilm on PTFE. The results of the transcriptomic analysis consider the different degrees of colonization of the three substrates, being CYR1, which encodes the component of signaling pathway of hyphal formation-cAMP-PKA, downregulated in PTFE biofilm compared to polycarbonate or polystyrene biofilms, while Hsp21 was upregulated in concomitance with the potential unfavorable conditions for biofilm formation on PTFE. Overall, this work provides new insights into the knowledge of C. tropicalis biofilm development on surfaces of medical relevance in the perspective of improving the management of Candida infections.
Collapse
|
42
|
Shokeen B, Zamani L, Zadmehr S, Pouraghaie S, Ozawa R, Yilmaz B, Lilak S, Sharma S, Ogawa T, Moshaverinia A, Lux R. Surface Characterization and Assessment of Biofilm Formation on Two Titanium-Based Implant Coating Materials. FRONTIERS IN DENTAL MEDICINE 2021. [DOI: 10.3389/fdmed.2021.695417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Implant-related oral diseases such as peri-implantitis and peri-mucositis are largely initiated by bacterial colonization on artificial implant surfaces. Therefore, implant and abutment material characteristics that minimize bacterial attachment and subsequent biofilm formation are important factors in reducing the risk of infection-related implant failure. This study compares the properties of two different titanium-based implant coating materials, titanium nitride (TiN) and titanium carbon nitride (TiCN). Surface hydrophilicity/ hydrophobicity and roughness were evaluated via contact angle measurements and surface profiling with white light interferometry, respectively. TiN-coated surfaces were hydrophobic according to its contact angle higher than 72.7°, whereas TiCN-coated surfaces were hydrophilic with its contact angle of 53.6°. The average roughness (Ra) was greater for TiCN than TiN with the root mean square roughness (Rq) being significantly higher. These findings are in contrast to the common understanding for titanium-based materials that surface roughness and hydrophobicity are positively correlated. A well-established saliva-based oral microbial biofilm model was employed to compare bacterial attachment and biofilm formation on TiN and TiCN. Growth conditions included relevant host components such as blood as well as the presence or absence of dietary carbohydrates. The accumulated biomass was measured by crystal violet staining and the bacterial community profiles of the attached biofilms were determined via 16S rRNA gene microbiome sequencing at different time points over a 7-day period. At all time points, TiCN showed significantly less bacterial attachment and biofilm formation compared to TiN. This implied the importance of the hydrophilic state over surface roughness as parameter for the prevention of oral microbial attachment. Although, the biofilm community composition was very similar on both materials, environmental growth conditions resulted in significantly different bacterial profiles independent of the surface. In conclusion, TiCN coating produced a unique titanium surface which is rougher but more hydrophilic. TiCN-coated surfaces exhibited reduced bacterial attachment and biofilm formation in comparison to TiN coating. This coating technique can be further explored to improve implant and abutment success.
Collapse
|
43
|
Pipattanachat S, Qin J, Rokaya D, Thanyasrisung P, Srimaneepong V. Biofilm inhibition and bactericidal activity of NiTi alloy coated with graphene oxide/silver nanoparticles via electrophoretic deposition. Sci Rep 2021; 11:14008. [PMID: 34234158 PMCID: PMC8263766 DOI: 10.1038/s41598-021-92340-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/09/2021] [Indexed: 11/15/2022] Open
Abstract
Biofilm formation on medical devices can induce complications. Graphene oxide/silver nanoparticles (GO/AgNPs) coated nickel-titanium (NiTi) alloy has been successfully produced. Therefore, the aim of this study was to determine the anti-bacterial and anti-biofilm effects of a GO/AgNPs coated NiTi alloy prepared by Electrophoretic deposition (EPD). GO/AgNPs were coated on NiTi alloy using various coating times. The surface characteristics of the coated NiTi alloy substrates were investigated and its anti-biofilm and anti-bacterial effect on Streptococcus mutans biofilm were determined by measuring the biofilm mass and the number of viable cells using a crystal violet assay and colony counting assay, respectively. The results showed that although the surface roughness increased in a coating time-dependent manner, there was no positive correlation between the surface roughness and the total biofilm mass. However, increased GO/AgNPs deposition produced by the increased coating time significantly reduced the number of viable bacteria in the biofilm (p < 0.05). Therefore, the GO/AgNPs on NiTi alloy have an antibacterial effect on the S. mutans biofilm. However, the increased surface roughness does not influence total biofilm mass formation (p = 0.993). Modifying the NiTi alloy surface using GO/AgNPs can be a promising coating to reduce the consequences of biofilm formation.
Collapse
Affiliation(s)
- Sirapat Pipattanachat
- Department of Prosthodontics, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Jiaqian Qin
- Metallurgy and Materials Science Research Institute (MMRI), Chulalongkorn University, Bangkok, Thailand
| | - Dinesh Rokaya
- International College of Dentistry, Walailak University, Bangkok, Thailand
| | - Panida Thanyasrisung
- Department of Microbiology and Research Unit on Oral Microbiology and Immunology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
| | - Viritpon Srimaneepong
- Department of Prosthodontics, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
44
|
Kreve S, Dos Reis AC. Effect of surface properties of ceramic materials on bacterial adhesion: A systematic review. J ESTHET RESTOR DENT 2021; 34:461-472. [PMID: 34213078 DOI: 10.1111/jerd.12799] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/24/2021] [Accepted: 06/20/2021] [Indexed: 12/22/2022]
Abstract
PURPOSE The objective of this systematic review was to describe studies that report on whether surface characteristics such as electrostatic charge, surface free energy, and surface topography promote influence on bacterial adhesion on ceramic surfaces. MATERIAL AND METHOD Searches in the SCOPUS, PubMed/Medline, Web of Science, EMBASE, and Google Scholar databases were performed between December 2020 and January 2021 and updated in March 2021. In addition, a manual search of reference lists from relevant retrieved articles was performed. The criteria included: studies that evaluated ceramic surfaces, which described factors such as surface free energy, electrostatic charges, roughness, zeta potential, and their relationship with bacteria. RESULTS Database search resulted in 348 papers. Of the 24 studies selected for full reading, 17 articles remained in this systematic review. Another five studies were found in references of articles included, totaling 22 studies. These had a high heterogeneity making it difficult to perform statistical analysis, so a descriptive analysis was performed. CONCLUSIONS For dental ceramics, not enough results were found to demonstrate the influence of the electrostatic condition, and its relationship with bacterial adhesion. However, studies of this review show that there is a correlation between bacterial adhesion, surface free energy, and topography. CLINICAL SIGNIFICANCE The knowledge of ceramics with repulsive physical-chemical interactions would allow an environment suggestive of non-adhesion of pathogenic biofilm.
Collapse
Affiliation(s)
- Simone Kreve
- Department of Dental Materials and Prosthodontics, Ribeirão Preto Dental School, USP-University of São Paulo, Ribeirão Preto, Brazil
| | | |
Collapse
|
45
|
Pu H, Xu Y, Lin L, Sun D. Biofilm formation of
Pectobacterium
carotovorum
subsp.
carotovorum
on polypropylene surface during multiple cycles of vacuum cooling. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.14976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Hongbin Pu
- School of Food Science and Engineering South China University of Technology Guangzhou510641China
- Academy of Contemporary Food Engineering South China University of Technology, Guangzhou Higher Education Mega Center Guangzhou510006China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products Guangzhou Higher Education Mega Centre Guangzhou510006China
| | - Yiwen Xu
- School of Food Science and Engineering South China University of Technology Guangzhou510641China
- Academy of Contemporary Food Engineering South China University of Technology, Guangzhou Higher Education Mega Center Guangzhou510006China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products Guangzhou Higher Education Mega Centre Guangzhou510006China
| | - Lian Lin
- School of Food Science and Engineering South China University of Technology Guangzhou510641China
- Academy of Contemporary Food Engineering South China University of Technology, Guangzhou Higher Education Mega Center Guangzhou510006China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products Guangzhou Higher Education Mega Centre Guangzhou510006China
| | - Da‐Wen Sun
- School of Food Science and Engineering South China University of Technology Guangzhou510641China
- Academy of Contemporary Food Engineering South China University of Technology, Guangzhou Higher Education Mega Center Guangzhou510006China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products Guangzhou Higher Education Mega Centre Guangzhou510006China
- Food Refrigeration and Computerized Food Technology (FRCFT) Agriculture and Food Science Centre University College Dublin National University of Ireland Belfield, Dublin 4 Ireland
| |
Collapse
|
46
|
Lafuente-Ibáñez de Mendoza I, Cayero-Garay A, Quindós-Andrés G, Aguirre-Urizar JM. A systematic review on the implication of Candida in peri-implantitis. Int J Implant Dent 2021; 7:73. [PMID: 34136968 PMCID: PMC8209131 DOI: 10.1186/s40729-021-00338-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/30/2021] [Indexed: 01/17/2023] Open
Abstract
Background Candida is a heterogeneous fungal genus. Subgingival sulcus is a refuge for Candida, which has already been related to the pathogenic inflammation of periodontitis. This work aims to review the presence of Candida in the sulcular fluid surrounding dental implants and discuss its potential role in peri-implantitis. Results A bibliographical research was performed in PubMed, Scopus and Web of Science databases, with the keywords candida, peri-implantitis, periimplantitis, “dental implant” and implant. Newcastle-Ottawa Scale was used to assess the methodological quality of the included studies. At the end, nine observational studies were included, which analysed 400 dental implants with PI and 337 without peri-implantitis. Presence of Candida was assessed by traditional microbiological culture in blood agar or/and CHROMagar, though identification was also detected by quantitative real-time PCR, random amplified polymorphic DNA or ATB ID 32C. Dentate individuals and implants with peri-implantitis (range, 3–76.7%) had a bigger presence of Candida. C. albicans was the most isolated species, followed by Candida parapsilosis, Candida tropicalis, and Candida dubliniensis. Conclusion Candida is part of the microbiological profile of the peri-implant sulcular fluid. More studies are needed to compare the link between Candida and other microorganisms and to discover the true role of these fungi in peri-implantitis.
Collapse
Affiliation(s)
| | - Amaia Cayero-Garay
- Department of Stomatology II, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Vizcaya, Spain
| | - Guillermo Quindós-Andrés
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country (UPV/EHU), Leioa, Vizcaya, Spain
| | - José Manuel Aguirre-Urizar
- Department of Stomatology II, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Vizcaya, Spain.
| |
Collapse
|
47
|
Ramburrun P, Pringle NA, Dube A, Adam RZ, D'Souza S, Aucamp M. Recent Advances in the Development of Antimicrobial and Antifouling Biocompatible Materials for Dental Applications. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3167. [PMID: 34207552 PMCID: PMC8229368 DOI: 10.3390/ma14123167] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/18/2022]
Abstract
The risk of secondary bacterial infections resulting from dental procedures has driven the design of antimicrobial and antifouling dental materials to curb pathogenic microbial growth, biofilm formation and subsequent oral and dental diseases. Studies have investigated approaches based primarily on contact-killing or release-killing materials. These materials are designed for addition into dental resins, adhesives and fillings or as immobilized coatings on tooth surfaces, titanium implants and dental prosthetics. This review discusses the recent developments in the different classes of biomaterials for antimicrobial and antifouling dental applications: polymeric drug-releasing materials, polymeric and metallic nanoparticles, polymeric biocides and antimicrobial peptides. With modifications to improve cytotoxicity and mechanical properties, contact-killing and anti-adhesion materials show potential for incorporation into dental materials for long-term clinical use as opposed to short-lived antimicrobial release-based coatings. However, extended durations of biocompatibility testing, and adjustment of essential biomaterial features to enhance material longevity in the oral cavity require further investigations to confirm suitability and safety of these materials in the clinical setting. The continuous exposure of dental restorative and regenerative materials to pathogenic microbes necessitates the implementation of antimicrobial and antifouling materials to either replace antibiotics or improve its rational use, especially in the day and age of the ever-increasing problem of antimicrobial resistance.
Collapse
Affiliation(s)
- Poornima Ramburrun
- School of Pharmacy, Faculty of Natural Sciences, University of the Western Cape, Cape Town 7535, South Africa
| | - Nadine A Pringle
- School of Pharmacy, Faculty of Natural Sciences, University of the Western Cape, Cape Town 7535, South Africa
| | - Admire Dube
- School of Pharmacy, Faculty of Natural Sciences, University of the Western Cape, Cape Town 7535, South Africa
| | - Razia Z Adam
- Department of Restorative Dentistry, Faculty of Dentistry, University of the Western Cape, Cape Town 7505, South Africa
| | - Sarah D'Souza
- School of Pharmacy, Faculty of Natural Sciences, University of the Western Cape, Cape Town 7535, South Africa
| | - Marique Aucamp
- School of Pharmacy, Faculty of Natural Sciences, University of the Western Cape, Cape Town 7535, South Africa
| |
Collapse
|
48
|
Unveiling the Antifouling Performance of Different Marine Surfaces and Their Effect on the Development and Structure of Cyanobacterial Biofilms. Microorganisms 2021; 9:microorganisms9051102. [PMID: 34065462 PMCID: PMC8161073 DOI: 10.3390/microorganisms9051102] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/10/2021] [Accepted: 05/17/2021] [Indexed: 01/12/2023] Open
Abstract
Since biofilm formation by microfoulers significantly contributes to the fouling process, it is important to evaluate the performance of marine surfaces to prevent biofilm formation, as well as understand their interactions with microfoulers and how these affect biofilm development and structure. In this study, the long-term performance of five surface materials—glass, perspex, polystyrene, epoxy-coated glass, and a silicone hydrogel coating—in inhibiting biofilm formation by cyanobacteria was evaluated. For this purpose, cyanobacterial biofilms were developed under controlled hydrodynamic conditions typically found in marine environments, and the biofilm cell number, wet weight, chlorophyll a content, and biofilm thickness and structure were assessed after 49 days. In order to obtain more insight into the effect of surface properties on biofilm formation, they were characterized concerning their hydrophobicity and roughness. Results demonstrated that silicone hydrogel surfaces were effective in inhibiting cyanobacterial biofilm formation. In fact, biofilms formed on these surfaces showed a lower number of biofilm cells, chlorophyll a content, biofilm thickness, and percentage and size of biofilm empty spaces compared to remaining surfaces. Additionally, our results demonstrated that the surface properties, together with the features of the fouling microorganisms, have a considerable impact on marine biofouling potential.
Collapse
|
49
|
Peng TY, Lin DJ, Mine Y, Tasi CY, Li PJ, Shih YH, Chiu KC, Wang TH, Hsia SM, Shieh TM. Biofilm Formation on the Surface of (Poly)Ether-Ether-Ketone and In Vitro Antimicrobial Efficacy of Photodynamic Therapy on Peri-Implant Mucositis. Polymers (Basel) 2021; 13:polym13060940. [PMID: 33803736 PMCID: PMC8003156 DOI: 10.3390/polym13060940] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/09/2021] [Accepted: 03/16/2021] [Indexed: 02/07/2023] Open
Abstract
Poly-ether-ether-ketone (PEEK) is an aesthetically pleasing natural material with good biocompatibility and shock absorption characteristics. The application of PEEK as a dental implant or abutment is expected to reduce the risk of failure and enhance aesthetics. Given that approximately one in 15 patients have allergic reactions to antibiotics, photodynamic therapy (PDT) has been gaining attention as an alternative treatment. Herein, the applicability of PEEK dental implants or abutments was investigated using material analyses, biofilm formation assay, and cell viability tests. The possible use of PDT for peri-implant mucositis was evaluated with the biofilm removal assay. The obtained data were analyzed based on the multivariate analysis of variance, paired t-tests, and the Pearson correlation coefficient (α = 0.05). The results revealed that PEEK was significantly less conducive to the formation of biofilms with S. mutans and A. actinomycetemcomitan (p < 0.001) but exhibited comparable MG-63 (human osteoblast-like) osteoblast cell viability (p > 0.05) to the other materials. PDT had similar antimicrobial efficacy and yielded similar biofilm removal effects to antibiotics. Altogether, these findings suggest that PEEK has attractive features and can serve as an alternative material for dental implants or abutments. In cases where peri-implant mucositis occurs, PDT can be used as an accessible therapeutic approach.
Collapse
Affiliation(s)
- Tzu-Yu Peng
- School of Dentistry, College of Dentistry, China Medical University, Taichung 40402, Taiwan; (T.-Y.P.); (D.-J.L.); (P.-J.L.)
| | - Dan-Jae Lin
- School of Dentistry, College of Dentistry, China Medical University, Taichung 40402, Taiwan; (T.-Y.P.); (D.-J.L.); (P.-J.L.)
| | - Yuichi Mine
- Department of Medical System Engineering, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima City, Hiroshima 734-8553, Japan;
| | - Chi-Yang Tasi
- Department of Dentistry, Taipei Medical University Hospital, Taipei 11031, Taiwan;
| | - Po-Jung Li
- School of Dentistry, College of Dentistry, China Medical University, Taichung 40402, Taiwan; (T.-Y.P.); (D.-J.L.); (P.-J.L.)
| | - Yin-Hwa Shih
- Department of Healthcare Administration, College of Medical and Health Science, Asia University, Taichung 41354, Taiwan;
| | - Kuo-Chou Chiu
- Division of Oral Diagnosis and Family Dentistry, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
- Correspondence: (K.-C.C.); (T.-M.S.); Tel.: +886-4-2205-3366 (ext. 2316) (T.-M.S.)
| | - Tong-Hong Wang
- Tissue Bank, Chang Gung University, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan;
| | - Shih-Min Hsia
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan;
| | - Tzong-Ming Shieh
- School of Dentistry, College of Dentistry, China Medical University, Taichung 40402, Taiwan; (T.-Y.P.); (D.-J.L.); (P.-J.L.)
- Correspondence: (K.-C.C.); (T.-M.S.); Tel.: +886-4-2205-3366 (ext. 2316) (T.-M.S.)
| |
Collapse
|
50
|
Mullen DC, Wan X, Takala TM, Saris PE, Moreira VM. Precision Design of Antimicrobial Surfaces. FRONTIERS IN MEDICAL TECHNOLOGY 2021; 3:640929. [PMID: 35047910 PMCID: PMC8757849 DOI: 10.3389/fmedt.2021.640929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 01/28/2021] [Indexed: 11/13/2022] Open
Abstract
The overall expectation from an antimicrobial surface has been high considering the need for efficiency in preventing the attachment and growth of pathogenic microbes, durability, safety to both humans and environment as well as cost-effectiveness. To date, antimicrobial surface design has been mostly conducted liberally, without rigorous consideration of establishing robust structure-activity relationships for each design strategy or of the use intended for a specific antimicrobial material. However, the variability among the domain bacteria, which is the most diverse of all, alongside the highly dynamic nature of the bacteria-surface interface have taught us that the likelihood of finding universal antimicrobial surfaces is low. In this perspective we discuss some of the current hurdles faced by research in this promising field, emphasizing the relevance and complexity of probing the bacteria-surface interface, and explain why we feel it would greatly benefit from a more streamlined ad-hoc approach.
Collapse
Affiliation(s)
- Declan C Mullen
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Xing Wan
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Timo M Takala
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Per E Saris
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - V M Moreira
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|