1
|
Ndinyanka Fabrice T, Buczak K, Schmidt A, Pieters J. T cell population size control by coronin 1 uncovered: from a spot identified by two-dimensional gel electrophoresis to quantitative proteomics. Expert Rev Proteomics 2025; 22:35-44. [PMID: 39849824 DOI: 10.1080/14789450.2025.2450812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/28/2024] [Accepted: 12/19/2024] [Indexed: 01/25/2025]
Abstract
INTRODUCTION Recent work identified members of the evolutionarily conserved coronin protein family as key regulators of cell population size. This work originated ~25 years ago through the identification, by two-dimensional gel electrophoresis, of coronin 1 as a host protein involved in the virulence of Mycobacterium tuberculosis. We here describe the journey from a spot on a 2D gel to the recent realization that coronin proteins represent key controllers of eukaryotic cell population sizes, using ever more sophisticated proteomic techniques. AREAS COVERED We discuss the value of 'old school' proteomics using relatively simple and cost-effective technologies that allowed to gain insights into subcellular proteomes and describe how label-free quantitative (phospho)proteomics using mass spectrometry allowed to disentangle the role for coronin 1 in eukaryotic cell population size control. Finally, we mention potential implications of coronin-mediated cell population size control for health and disease. EXPERT OPINION Proteome analysis has been revolutionized by the advent of modern-day mass spectrometers and is indispensable for a better understanding of biology. Here, we discuss how careful dissection of physio-pathological processes by a combination of proteomics, genomics, biochemistry and cell biology may allow to zoom in on the unexplored, thereby possibly tackling hitherto unasked questions and defining novel mechanisms.
Collapse
|
2
|
Boisson-Dupuis S, Bastard P, Béziat V, Bustamante J, Cobat A, Jouanguy E, Puel A, Rosain J, Zhang Q, Zhang SY, Boisson B. The monogenic landscape of human infectious diseases. J Allergy Clin Immunol 2024:S0091-6749(24)02411-4. [PMID: 39724971 DOI: 10.1016/j.jaci.2024.12.1078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
The spectrum of known monogenic inborn errors of immunity is growing, with certain disorders underlying a specific and narrow range of infectious diseases. These disorders reveal the core mechanisms by which these infections occur in various settings, including inherited and acquired immunodeficiencies, thereby delineating the essential mechanisms of protective immunity to the corresponding pathogens. These findings also have medical implications, facilitating diagnosis and improving the management of individuals at risk of disease.
Collapse
Affiliation(s)
- Stéphanie Boisson-Dupuis
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Paul Bastard
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France; Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Vivien Béziat
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Jacinta Bustamante
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France; Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Aurélie Cobat
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Emmanuelle Jouanguy
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Anne Puel
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Jérémie Rosain
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France; Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Qian Zhang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Shen-Ying Zhang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Bertrand Boisson
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France.
| |
Collapse
|
3
|
El Kettani A, Ouair H, Marnissi F, El Bakkouri J, Chevalier R, Lorenzo L, Kholaiq H, Béziat V, Jouanguy E, Casanova JL, Bousfiha AA. Case Report of Two Independent Moroccan Families with Syndromic Epidermodysplasia Verruciformis and STK4 Deficiency. Viruses 2024; 16:1415. [PMID: 39339890 PMCID: PMC11437448 DOI: 10.3390/v16091415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
Epidermodysplasia verruciformis (EV) is a rare genodermatosis caused by β-human papillomaviruses (HPV) in immunodeficient patients. EV is characterized by flat warts and pityriasis-like lesions and might be isolated or syndromic, associated with some other infectious manifestations. We report here three patients from two independent families, with syndromic EV for both of them. By whole exome sequencing, we found that the patients carry new homozygous variants in STK4, both leading to a premature stop codon. STK4 deficiency causes a combined immunodeficiency characterized by a broad infectious susceptibility to bacteria, viruses, and fungi. Auto-immune manifestations were also reported. Deep immunophenotyping revealed multiple cytopenia in the three affected patients, in particular deep CD4+ T cells deficiency. We report here the fourth and the fifth cases of the syndromic EV due to STK4 deficiency.
Collapse
Affiliation(s)
- Assiya El Kettani
- Laboratory of Clinical Immunology-Inflammation and Allergy (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca 20250, Morocco; (J.E.B.); (H.K.); (A.A.B.)
- Laboratory of Bacteriology, Virology and Hospital Hygiene, Ibn Rochd University Hospital, Casablanca 20250, Morocco
- Laboratory of Bacteriology and Virology, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca 20250, Morocco;
| | - Hind Ouair
- Laboratory of Bacteriology and Virology, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca 20250, Morocco;
| | - Farida Marnissi
- Laboratory of Pathological Anatomy, Ibn Rochd University Hospital, Hassan II University, Casablanca 20250, Morocco;
| | - Jalila El Bakkouri
- Laboratory of Clinical Immunology-Inflammation and Allergy (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca 20250, Morocco; (J.E.B.); (H.K.); (A.A.B.)
- Immunology Laboratory, Ibn Rochd University Hospital, Casablanca 20250, Morocco
| | - Rémi Chevalier
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM), 75015 Paris, France; (R.C.); (L.L.); (V.B.); (E.J.); (J.-L.C.)
- Imagine Institute, Paris Cité University, 75015 Paris, France
| | - Lazaro Lorenzo
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM), 75015 Paris, France; (R.C.); (L.L.); (V.B.); (E.J.); (J.-L.C.)
- Imagine Institute, Paris Cité University, 75015 Paris, France
| | - Halima Kholaiq
- Laboratory of Clinical Immunology-Inflammation and Allergy (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca 20250, Morocco; (J.E.B.); (H.K.); (A.A.B.)
| | - Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM), 75015 Paris, France; (R.C.); (L.L.); (V.B.); (E.J.); (J.-L.C.)
- Imagine Institute, Paris Cité University, 75015 Paris, France
- Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM), 75015 Paris, France; (R.C.); (L.L.); (V.B.); (E.J.); (J.-L.C.)
- Imagine Institute, Paris Cité University, 75015 Paris, France
- Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM), 75015 Paris, France; (R.C.); (L.L.); (V.B.); (E.J.); (J.-L.C.)
- Imagine Institute, Paris Cité University, 75015 Paris, France
- Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815-6789, USA
| | - Ahmed Aziz Bousfiha
- Laboratory of Clinical Immunology-Inflammation and Allergy (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca 20250, Morocco; (J.E.B.); (H.K.); (A.A.B.)
- Clinical Immunology and Infectious Pediatrics Department, Abderrahim Harouchi Hospital-Ibn Rochd University Hospital, Casablanca 20250, Morocco
| |
Collapse
|
4
|
Aranda CS, Gouveia-Pereira MP, da Silva CJM, Rizzo MCFV, Ishizuka E, de Oliveira EB, Condino-Neto A. Severe combined immunodeficiency diagnosis and genetic defects. Immunol Rev 2024; 322:138-147. [PMID: 38287514 DOI: 10.1111/imr.13310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2024] [Indexed: 01/31/2024]
Abstract
Severe combined immunodeficiency (SCID) is a rare and life-threatening genetic disorder that severely impairs the immune system's ability to defend the body against infections. Often referred to as the "bubble boy" disease, SCID gained widespread recognition due to the case of David Vetter, a young boy who lived in a sterile plastic bubble to protect him from germs. SCID is typically present at birth, and it results from genetic mutations that affect the development and function of immune cells, particularly T cells and B cells. These immune cells are essential for identifying and fighting off infections caused by viruses, bacteria, and fungi. In SCID patients, the immune system is virtually non-existent, leaving them highly susceptible to recurrent, severe infections. There are several forms of SCID, with varying degrees of severity, but all share common features. Newborns with SCID often exhibit symptoms such as chronic diarrhea, thrush, skin rashes, and persistent infections that do not respond to standard treatments. Without prompt diagnosis and intervention, SCID can lead to life-threatening complications and a high risk of mortality. There are over 20 possible affected genes. Treatment options for SCID primarily involve immune reconstitution, with the most well-known approach being hematopoietic stem cell transplantation (HSCT). Alternatively, gene therapy is also available for some forms of SCID. Once treated successfully, SCID patients can lead relatively normal lives, but they may still require vigilant infection control measures and lifelong medical follow-up to manage potential complications. In conclusion, severe combined immunodeficiency is a rare but life-threatening genetic disorder that severely compromises the immune system's function, rendering affected individuals highly vulnerable to infections. Early diagnosis and appropriate treatment are fundamental. With this respect, newborn screening is progressively and dramatically improving the prognosis of SCID.
Collapse
Affiliation(s)
- Carolina Sanchez Aranda
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, Federal University of São Paulo Medical School-UNIFESP, São Paulo, Brazil
| | - Mariana Pimentel Gouveia-Pereira
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, Federal University of São Paulo Medical School-UNIFESP, São Paulo, Brazil
| | - Celso Jose Mendanha da Silva
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, Federal University of São Paulo Medical School-UNIFESP, São Paulo, Brazil
| | - Maria Candida Faria Varanda Rizzo
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, Federal University of São Paulo Medical School-UNIFESP, São Paulo, Brazil
| | | | | | - Antonio Condino-Neto
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Instituto Jo Clemente, and Immunogenic Laboratories, São Paulo, Brazil
| |
Collapse
|
5
|
Khoreva A, Butov KR, Nikolaeva EI, Martyanov A, Kulakovskaya E, Pershin D, Alexenko M, Kurnikova M, Abasov R, Raykina E, Abramov D, Arnaudova K, Rodina Y, Trubina N, Skvortsova Y, Balashov D, Sveshnikova A, Maschan A, Novichkova G, Panteleev M, Shcherbina A. Novel hemizygous CORO1A variant leads to combined immunodeficiency with defective platelet calcium signaling and cell mobility. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2024; 3:100172. [PMID: 37915722 PMCID: PMC10616384 DOI: 10.1016/j.jacig.2023.100172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 05/31/2023] [Accepted: 06/16/2023] [Indexed: 11/03/2023]
Abstract
Background To date, fewer than 20 patients have been identified as having germline biallelic mutations in the coronin-1A gene (CORO1A) and its protein with clinical features of combined immunodeficiency characterized by T-cell lymphopenia ranging from the severe phenotype to the mild phenotype, recurrent infections, and lymphoproliferative disorders. However, the effects of CORO1A protein disruption on actin-dependent functions in primary cells have not been fully delineated. Objective We sought to characterize the underlying defects of actin-dependent cellular functions in a female patient with combined immunodeficiency caused by a novel missense variant in the CORO1A gene in combination with a de novo heterozygous microdeletion of chromosome 16p11.2 and also to provide evidence of the pathogenicity of this gene mutation. Methods To identify the genetic defect, next-generation sequencing followed by Sanger confirmation and array comparative genomic hybridization were performed. Western blot and quantitative PCR tests were used to assess the effects on the protein. Flow cytometry and live microscopy were performed to investigate cellular motility and immune cell counts and function. Results We demonstrated that the CORO1A hemizygous variant c.19C>T, p. A7C induces significant decreases in cellular levels of the CORO1A protein while leaving mRNA concentrations unaffected. The observed mutation resulted in impaired natural killer cell cytotoxicity and platelet calcium signaling. In addition, primary granulocytes and mesenchymal cells showed significant defects in motility. Conclusion Collectively, we added new data about the CORO1A gene as a key player in actin cytoskeleton dynamics and cell signaling. Our findings expand the clinical spectrum regarding CORO1A protein deficiency and confirm the importance of a personalized therapeutic approach for each patient.
Collapse
Affiliation(s)
- Anna Khoreva
- Dmitry Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Kirill R. Butov
- Dmitry Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, Moscow, Russia
| | - Elena I. Nikolaeva
- Center for Theoretical Problems of Physicochemical Pharmacology, Moscow, Russia
| | - Alexey Martyanov
- Dmitry Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, Moscow, Russia
| | - Elena Kulakovskaya
- Dmitry Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Dmitry Pershin
- Dmitry Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Maxim Alexenko
- Dmitry Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Maria Kurnikova
- Dmitry Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Ruslan Abasov
- Dmitry Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Elena Raykina
- Dmitry Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Dmitry Abramov
- Dmitry Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | | | - Yulia Rodina
- Dmitry Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Natalia Trubina
- Dmitry Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Yulia Skvortsova
- Dmitry Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Dmitry Balashov
- Dmitry Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Anastasia Sveshnikova
- Dmitry Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, Moscow, Russia
| | - Alexey Maschan
- Dmitry Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Galina Novichkova
- Dmitry Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Mikhail Panteleev
- Dmitry Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, Moscow, Russia
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
| | - Anna Shcherbina
- Dmitry Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| |
Collapse
|
6
|
Biglari S, Moghaddam AS, Tabatabaiefar MA, Sherkat R, Youssefian L, Saeidian AH, Vahidnezhad F, Tsoi LC, Gudjonsson JE, Hakonarson H, Casanova JL, Béziat V, Jouanguy E, Vahidnezhad H. Monogenic etiologies of persistent human papillomavirus infections: A comprehensive systematic review. Genet Med 2024; 26:101028. [PMID: 37978863 PMCID: PMC10922824 DOI: 10.1016/j.gim.2023.101028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Abstract
PURPOSE Persistent human papillomavirus infection (PHPVI) causes cutaneous, anogenital, and mucosal warts. Cutaneous warts include common warts, Treeman syndrome, and epidermodysplasia verruciformis, among others. Although more reports of monogenic predisposition to PHPVI have been published with the development of genomic technologies, genetic testing is rarely incorporated into clinical assessments. To encourage broader molecular testing, we compiled a list of the various monogenic etiologies of PHPVI. METHODS We conducted a systematic literature review to determine the genetic, immunological, and clinical characteristics of patients with PHPVI. RESULTS The inclusion criteria were met by 261 of 40,687 articles. In 842 patients, 83 PHPVI-associated genes were identified, including 42, 6, and 35 genes with strong, moderate, and weak evidence for causality, respectively. Autosomal recessive inheritance predominated (69%). PHPVI onset age was 10.8 ± 8.6 years, with an interquartile range of 5 to 14 years. GATA2,IL2RG,DOCK8, CXCR4, TMC6, TMC8, and CIB1 are the most frequently reported PHPVI-associated genes with strong causality. Most genes (74 out of 83) belong to a catalog of 485 inborn errors of immunity-related genes, and 40 genes (54%) are represented in the nonsyndromic and syndromic combined immunodeficiency categories. CONCLUSION PHPVI has at least 83 monogenic etiologies and a genetic diagnosis is essential for effective management.
Collapse
Affiliation(s)
- Sajjad Biglari
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA
| | | | - Mohammad Amin Tabatabaiefar
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roya Sherkat
- Immunodeficiency Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Leila Youssefian
- Department of Pathology and Laboratory Medicine, UCLA Clinical Genomics Center, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Amir Hossein Saeidian
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA
| | | | - Lam C Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, MI
| | | | - Hakon Hakonarson
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pediatrics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France; Imagine Institute, Paris Cité University, France; Department of Pediatrics, Necker Hospital for Sick Children, Paris, France, EU; Howard Hughes Medical Institute, Chevy Chase, MD
| | - Vivien Béziat
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France; Imagine Institute, Paris Cité University, France
| | - Emmanuelle Jouanguy
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France; Imagine Institute, Paris Cité University, France
| | - Hassan Vahidnezhad
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pediatrics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA.
| |
Collapse
|
7
|
Pan-Hammarström Q, Casanova JL. Human genetic and immunological determinants of SARS-CoV-2 and Epstein-Barr virus diseases in childhood: Insightful contrasts. J Intern Med 2023; 294:127-144. [PMID: 36906905 DOI: 10.1111/joim.13628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
Abstract
There is growing evidence to suggest that severe disease in children infected with common viruses that are typically benign in other children can result from inborn errors of immunity or their phenocopies. Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a cytolytic respiratory RNA virus, can lead to acute hypoxemic COVID-19 pneumonia in children with inborn errors of type I interferon (IFN) immunity or autoantibodies against IFNs. These patients do not appear to be prone to severe disease during infection with Epstein-Barr virus (EBV), a leukocyte-tropic DNA virus that can establish latency. By contrast, various forms of severe EBV disease, ranging from acute hemophagocytosis to chronic or long-term illnesses, such as agammaglobulinemia and lymphoma, can manifest in children with inborn errors disrupting specific molecular bridges involved in the control of EBV-infected B cells by cytotoxic T cells. The patients with these disorders do not seem to be prone to severe COVID-19 pneumonia. These experiments of nature reveal surprising levels of redundancy of two different arms of immunity, with type I IFN being essential for host defense against SARS-CoV-2 in respiratory epithelial cells, and certain surface molecules on cytotoxic T cells essential for host defense against EBV in B lymphocytes.
Collapse
Affiliation(s)
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA
- Howard Hughes Medical Institute, New York, New York, USA
- Laboratory of Human Genetics of Infectious Diseases, Inserm, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
| |
Collapse
|
8
|
Kosumi H, Natsuga K, Yanagi T, Ujiie H. Systemic Retinoids for Generalized Verrucosis Due to Congenital Immunodeficiency: Case Reports and Review of the Literature. Genes (Basel) 2023; 14:769. [PMID: 36981039 PMCID: PMC10048204 DOI: 10.3390/genes14030769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/13/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Generalized verrucosis (GV) is a group of immunodeficiency disorders accompanied by widespread human papillomavirus infection. We revisit two cases of GV due to congenital interleukin-7 deficiency successfully treated with systemic retinoids. We also present a review of the literature on the use of systemic retinoids to treat GV. Our review suggests that systemic retinoids are a safe and effective option for managing recalcitrant wart lesions in cases of GV.
Collapse
Affiliation(s)
- Hideyuki Kosumi
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Ken Natsuga
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | | | | |
Collapse
|
9
|
Shimizu A, Yamaguchi R, Kuriyama Y. Recent advances in cutaneous HPV infection. J Dermatol 2023; 50:290-298. [PMID: 36601717 DOI: 10.1111/1346-8138.16697] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023]
Abstract
More than 200 types of human papillomavirus (HPV) have been reported to date and have been associated with various dermatological diseases. Among dermatological diseases, viral verrucae are the most commonly reported to be associated with HPV. Epidermodysplasia verruciformis (EV) consists of three types: typical EV is an autosomal recessive genetic disorder with TMC6/TMC8 gene mutations, atypical EV develops due to various gene mutations that cause immunodeficiency, and acquired EV develops due to acquired immunodeficiency. Generalized verrucosis differs from EV in that it involves numerous verrucous nodules (mainly on the limbs), histopathologically no blue cells as seen in EV, and infection with cutaneous α-HPVs as well as β-HPVs. HPV-induced skin malignancies include squamous cell carcinoma (SCC) caused by β-HPV (especially HPV types 5 and 8) in EV patients, organ transplant recipients, and healthy individuals, and SCC of the vulva and nail unit caused by mucosal high-risk HPV infection. Carcinogenesis of β-HPV is associated with sunlight. Mucosal high-risk HPV-associated carcinomas may also be sexually transmitted. We focused on Bowen's disease of the nail, which has been the subject of our research for a long time and has recently come to the fore in the field of dermatology.
Collapse
Affiliation(s)
- Akira Shimizu
- Department of Dermatology, Kanazawa Medical University, Uchinada, Japan
| | - Reimon Yamaguchi
- Department of Dermatology, Kanazawa Medical University, Uchinada, Japan
| | - Yuko Kuriyama
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi City, Japan
| |
Collapse
|
10
|
Bartley B, Cho WC, Rady PL, Dai J, Curry JL, Milbourne A, Tyring SK, Torres-Cabala CA. Condyloma and coincidental epidermodysplasia verruciformis acanthoma positive for human papillomavirus-14 and -21. J Cutan Pathol 2023; 50:47-50. [PMID: 36039682 DOI: 10.1111/cup.14319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/19/2022] [Accepted: 08/28/2022] [Indexed: 01/03/2023]
Abstract
Epidermodysplasia verruciformis (EDV) is a rare genodermatosis that predisposes individuals to persistent infection with β-human papillomavirus (HPV) genotypes. The term EDV acanthoma may be applied to lesions with incidental findings of EDV-defining histopathological features without clinical signs of EDV. We report a case of HPV-14- and -21-positive EDV acanthoma arising in association with condyloma in a female patient with a history of low-grade squamous intraepithelial lesion of the cervix positive for high-risk HPV (non-16/18), chronic kidney disease, and systemic lupus erythematosus. The patient had no family or personal history of EDV, but the patient was on immunosuppressive therapy with mycophenolate mofetil and prednisone. A biopsy specimen from one of the perianal lesions revealed histopathologic changes consistent with EDV in the setting of condyloma. Molecular testing showed HPV-14 and -21, which supported the coexistence of condyloma with EDV acanthoma.
Collapse
Affiliation(s)
- Brooke Bartley
- Department of Dermatology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Woo Cheal Cho
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Peter L Rady
- Department of Dermatology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Julia Dai
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jonathan L Curry
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Andrea Milbourne
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Stephen K Tyring
- Department of Dermatology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Carlos A Torres-Cabala
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
11
|
Wang L, Fang H, Shao A, Zhang H, Ye J. Eyelid squamous cell carcinoma in the setting of epidermodysplasia verruciformis (EV) diagnosed by next-generation sequencing: A case report and literature review. ADVANCES IN OPHTHALMOLOGY PRACTICE AND RESEARCH 2022; 2:100066. [PMID: 37846292 PMCID: PMC10577866 DOI: 10.1016/j.aopr.2022.100066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 10/18/2023]
Affiliation(s)
- Linyan Wang
- Department of Ophthalmology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Ophthalmology, University of California, San Francisco, USA
| | - Hong Fang
- Department of Dermatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - An Shao
- Department of Ophthalmology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huina Zhang
- Department of Ophthalmology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Juan Ye
- Department of Ophthalmology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
12
|
Possible association of 16p11.2 copy number variation with altered lymphocyte and neutrophil counts. NPJ Genom Med 2022; 7:38. [PMID: 35715439 PMCID: PMC9205872 DOI: 10.1038/s41525-022-00308-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 05/23/2022] [Indexed: 11/09/2022] Open
Abstract
Recurrent copy-number variations (CNVs) at chromosome 16p11.2 are associated with neurodevelopmental diseases, skeletal system abnormalities, anemia, and genitourinary defects. Among the 40 protein-coding genes encompassed within the rearrangement, some have roles in leukocyte biology and immunodeficiency, like SPN and CORO1A. We therefore investigated leukocyte differential counts and disease in 16p11.2 CNV carriers. In our clinically-recruited cohort, we identified three deletion carriers from two families (out of 32 families assessed) with neutropenia and lymphopenia. They had no deleterious single-nucleotide or indel variant in known cytopenia genes, suggesting a possible causative role of the deletion. Noticeably, all three individuals had the lowest copy number of the human-specific BOLA2 duplicon (copy-number range: 3–8). Consistent with the lymphopenia and in contrast with the neutropenia associations, adult deletion carriers from UK biobank (n = 74) showed lower lymphocyte (Padj = 0.04) and increased neutrophil (Padj = 8.31e-05) counts. Mendelian randomization studies pinpointed to reduced CORO1A, KIF22, and BOLA2-SMG1P6 expressions being causative for the lower lymphocyte counts. In conclusion, our data suggest that 16p11.2 deletion, and possibly also the lowest dosage of the BOLA2 duplicon, are associated with low lymphocyte counts. There is a trend between 16p11.2 deletion with lower copy-number of the BOLA2 duplicon and higher susceptibility to moderate neutropenia. Higher numbers of cases are warranted to confirm the association with neutropenia and to resolve the involvement of the deletion coupled with deleterious variants in other genes and/or with the structure and copy number of segments in the CNV breakpoint regions.
Collapse
|
13
|
Muleviciene A, Sekine T, Zondag T, Bryceson YT, Tesi B, Rascon J. Childhood Kaposi sarcoma related to hypomorphic severe combined immunodeficiency caused by a novel CORO1A mutation. Pediatr Blood Cancer 2022; 69:e29487. [PMID: 34913575 DOI: 10.1002/pbc.29487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/06/2022]
Affiliation(s)
- Audrone Muleviciene
- Center for Pediatric Oncology and Hematology, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Takuya Sekine
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Timo Zondag
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Yenan T Bryceson
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Bianca Tesi
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| | - Jelena Rascon
- Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
14
|
Lino CNR, Ghosh S. Epstein-Barr Virus in Inborn Immunodeficiency-More Than Infection. Cancers (Basel) 2021; 13:cancers13194752. [PMID: 34638238 PMCID: PMC8507541 DOI: 10.3390/cancers13194752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/05/2021] [Accepted: 09/06/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Epstein–Barr Virus (EBV) is a common virus that is readily controlled by a healthy immune system and rarely causes serious problems in infected people. However, patients with certain genetic defects of their immune system might have difficulties controlling EBV and often develop severe and life-threatening conditions, such as severe inflammation and malignancies. In this review, we provide a summary of inherited immune diseases that lead to a high susceptibility to EBV infection and discuss how this infection is associated with cancer development. Abstract Epstein–Barr Virus (EBV) is a ubiquitous virus affecting more than 90% of the world’s population. Upon infection, it establishes latency in B cells. It is a rather benign virus for immune-competent individuals, in whom infections usually go unnoticed. Nevertheless, EBV has been extensively associated with tumorigenesis. Patients suffering from certain inborn errors of immunity are at high risk of developing malignancies, while infection in the majority of immune-competent individuals does not seem to lead to immune dysregulation. Herein, we discuss how inborn mutations in TNFRSF9, CD27, CD70, CORO1A, CTPS1, ITK, MAGT1, RASGRP1, STK4, CARMIL2, SH2D1A, and XIAP affect the development, differentiation, and function of key factors involved in the immunity against EBV, leading to increased susceptibility to lymphoproliferative disease and lymphoma.
Collapse
Affiliation(s)
| | - Sujal Ghosh
- Correspondence: ; Tel.: +49-211-811-6224; Fax: +49-211-811-6191
| |
Collapse
|
15
|
Béziat V, Casanova JL, Jouanguy E. Human genetic and immunological dissection of papillomavirus-driven diseases: new insights into their pathogenesis. Curr Opin Virol 2021; 51:9-15. [PMID: 34555675 DOI: 10.1016/j.coviro.2021.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/26/2021] [Accepted: 09/03/2021] [Indexed: 12/23/2022]
Abstract
Human papillomaviruses (HPVs) are responsible for cutaneous and mucosal lesions. Persistent HPV infection remains a leading cause of uterine cancer in women, but also of cutaneous squamous cell carcinoma in patients with epidermodysplasia verruciformis (EV), and of rare and devastating benign tumors, such as 'tree-man' syndrome. HPV infections are usually asymptomatic or benign in the general population. Severe manifestations in otherwise healthy subjects can attest to inherited immunodeficiencies. The human genetic dissection of these cases has identified critical components of the immune response to HPVs, including the non-redundant roles of keratinocyte-intrinsic immunity in controlling β-HPVs, and of T cell-dependent adaptive immunity for controlling all HPV types. A key role of the CD28 T-cell costimulation pathway in controlling common warts due to HPVs was recently discovered. This review summarizes the state of the art in the human genetics of HPV infection, focusing on two key affected cell types: keratinocytes and T cells.
Collapse
Affiliation(s)
- Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-1163, Necker Hospital for Sick Children, Paris, France; University of Paris, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, USA.
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-1163, Necker Hospital for Sick Children, Paris, France; University of Paris, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, USA; Howard Hughes Medical Institute, New York, USA
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-1163, Necker Hospital for Sick Children, Paris, France; University of Paris, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, USA
| |
Collapse
|
16
|
Acquired Human Papilloma Virus Type 6-Associated Epidermodysplasia Verruciformis in a Patient With Systemic Lupus Erythematosus. Am J Dermatopathol 2021; 42:e156-e158. [PMID: 32675468 DOI: 10.1097/dad.0000000000001738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Although historically known as a genetic disorder, epidermodysplasia verruciformis (EV) might be acquired in patients with a noninherited defective cell-mediated immunity. This article reports a case of EV in a patient with systemic lupus erythematosus and a history of 3 years immunosuppressive methylprednisolone treatment. The microscopic features of the skin biopsy showed morphologic changes of the keratinocytes characteristic of human papilloma virus (HPV) infections and immunoreactivity to p16. HPV genotyping demonstrated the presence of HPV 6 which belongs to a low-risk mucosal HPV group and has not been reported in EV previously. The clinical recognition of EV in immunocompromised patients and subsequent HPV typing is important because some patients will develop squamous cell carcinoma.
Collapse
|
17
|
Wang R, Liu J, Yang X, Habulieti X, Yu X, Sun L, Zhang H, Sun Y, Ma D, Zhang X. Identification and Splicing Characterization of Novel TMC6 and TMC8 Variants Associated With Epidermodysplasia Verruciformis in Three Chinese Families. Front Genet 2021; 12:712275. [PMID: 34386043 PMCID: PMC8353250 DOI: 10.3389/fgene.2021.712275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/05/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Epidermodysplasia verruciformis (EV) is a rare genodermatosis characterized by abnormal susceptibility to human beta papillomavirus infections and a particular propensity to develop non-melanoma skin cancers (NMSCs). The majority of EV cases are caused by biallelic null variants in TMC6, TMC8, and CIB1. This study aimed to identify disease-causing variants in three Chinese families with EV and to elucidate their molecular pathogenesis. Methods: Genomic DNA from the probands of three EV families was analyzed by whole-exome sequencing (WES). cDNA sequencing was performed to investigate abnormal splicing of the variants. Quantitative RT-PCR (qRT-PCR) was conducted to quantify the mRNA expression of mutant TMC6 and TMC8. Results: Whole-exome sequencing identified two novel homozygous variants (c.2278-2A > G in TMC6 and c.559G > A in TMC8) in families 1 and 2, respectively. In family 3, WES revealed a recurrent and a novel compound heterozygous variant, c.559G > A and c.1389G > A, in TMC8. The c.2278-2A > G TMC6 variant led to the skipping of exon 19 and resulted in premature termination at codon 776. Subsequent qRT-PCR revealed that the aberrantly spliced transcript was partly degraded. Notably, the TMC8 c.559G > A variant created a novel acceptor splice site at c.561 and yielded three different aberrant transcripts. qRT-PCR revealed that most of the mutant transcripts were degraded via nonsense-mediated mRNA decay (NMD). Conclusion: We identified three novel disease-causing variants in TMC6 or TMC8 in three Chinese families with EV. The EV phenotypes of the three patients were due to a reduction in TMC6 or TMC8. Our findings expand the genetic causes of EV in the Chinese population.
Collapse
Affiliation(s)
- Rongrong Wang
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Jiawei Liu
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Xueting Yang
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Xiaerbati Habulieti
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Xue Yu
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Liwei Sun
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Han Zhang
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Yang Sun
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Donglai Ma
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Xue Zhang
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| |
Collapse
|
18
|
Tur-Gracia S, Martinez-Quiles N. Emerging functions of cytoskeletal proteins in immune diseases. J Cell Sci 2021; 134:134/3/jcs253534. [PMID: 33558442 DOI: 10.1242/jcs.253534] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Immune cells are especially dependent on the proper functioning of the actin cytoskeleton, and both innate and adaptive responses rely on it. Leukocytes need to adhere not only to substrates but also to cells in order to form synapses that pass on instructions or kill infected cells. Neutrophils literally squeeze their cell body during blood extravasation and efficiently migrate to the inflammatory focus. Moreover, the development of immune cells requires the remodeling of their cytoskeleton as it depends on, among other processes, adhesive contacts and migration. In recent years, the number of reports describing cytoskeletal defects that compromise the immune system has increased immensely. Furthermore, a new emerging paradigm points toward a role for the cellular actin content as an essential component of the so-called homeostasis-altering molecular processes that induce the activation of innate immune signaling pathways. Here, we review the role of critical actin-cytoskeleton-remodeling proteins, including the Arp2/3 complex, cofilin, coronin and WD40-repeat containing protein 1 (WDR1), in immune pathophysiology, with a special focus on autoimmune and autoinflammatory traits.
Collapse
Affiliation(s)
- Sara Tur-Gracia
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, 28040 Madrid, Spain
| | - Narcisa Martinez-Quiles
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, 28040 Madrid, Spain .,Gregorio Marañón Health Research Institute, 28007 Madrid, Spain
| |
Collapse
|
19
|
Papa R, Penco F, Volpi S, Gattorno M. Actin Remodeling Defects Leading to Autoinflammation and Immune Dysregulation. Front Immunol 2021. [PMID: 33488606 DOI: 10.3389/fimmu.2020.604206)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
A growing number of monogenic immune-mediated diseases have been related to genes involved in pathways of actin cytoskeleton remodeling. Increasing evidences associate cytoskeleton defects to autoinflammatory diseases and primary immunodeficiencies. We reviewed the pathways of actin cytoskeleton remodeling in order to identify inflammatory and immunological manifestations associated to pathological variants. We list more than twenty monogenic diseases, ranging from pure autoinflammatory conditions as familial Mediterranean fever, mevalonate kinase deficiency and PAPA syndrome, to classic and novel primary immunodeficiencies as Wiskott-Aldrich syndrome and DOCK8 deficiency, characterized by the presence of concomitant inflammatory and autoimmune manifestations, such as vasculitis and cytopenia, to severe and recurrent infections. We classify these disorders according to the role of the mutant gene in actin cytoskeleton remodeling, and in particular as disorders of transcription, elongation, branching and activation of actin. This expanding field of rare immune disorders offers a new perspective to all immunologists to better understand the physiological and pathological role of actin cytoskeleton in cells of innate and adaptive immunity.
Collapse
Affiliation(s)
- Riccardo Papa
- Center for Autoinflammatory Diseases and Immunodeficiencies, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Federica Penco
- Center for Autoinflammatory Diseases and Immunodeficiencies, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Stefano Volpi
- Center for Autoinflammatory Diseases and Immunodeficiencies, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marco Gattorno
- Center for Autoinflammatory Diseases and Immunodeficiencies, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
20
|
Papa R, Penco F, Volpi S, Gattorno M. Actin Remodeling Defects Leading to Autoinflammation and Immune Dysregulation. Front Immunol 2021; 11:604206. [PMID: 33488606 PMCID: PMC7817698 DOI: 10.3389/fimmu.2020.604206] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022] Open
Abstract
A growing number of monogenic immune-mediated diseases have been related to genes involved in pathways of actin cytoskeleton remodeling. Increasing evidences associate cytoskeleton defects to autoinflammatory diseases and primary immunodeficiencies. We reviewed the pathways of actin cytoskeleton remodeling in order to identify inflammatory and immunological manifestations associated to pathological variants. We list more than twenty monogenic diseases, ranging from pure autoinflammatory conditions as familial Mediterranean fever, mevalonate kinase deficiency and PAPA syndrome, to classic and novel primary immunodeficiencies as Wiskott-Aldrich syndrome and DOCK8 deficiency, characterized by the presence of concomitant inflammatory and autoimmune manifestations, such as vasculitis and cytopenia, to severe and recurrent infections. We classify these disorders according to the role of the mutant gene in actin cytoskeleton remodeling, and in particular as disorders of transcription, elongation, branching and activation of actin. This expanding field of rare immune disorders offers a new perspective to all immunologists to better understand the physiological and pathological role of actin cytoskeleton in cells of innate and adaptive immunity.
Collapse
Affiliation(s)
- Riccardo Papa
- Center for Autoinflammatory Diseases and Immunodeficiencies, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Federica Penco
- Center for Autoinflammatory Diseases and Immunodeficiencies, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Stefano Volpi
- Center for Autoinflammatory Diseases and Immunodeficiencies, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marco Gattorno
- Center for Autoinflammatory Diseases and Immunodeficiencies, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
21
|
Mastio J, Saeed MB, Wurzer H, Krecke M, Westerberg LS, Thomas C. Higher Incidence of B Cell Malignancies in Primary Immunodeficiencies: A Combination of Intrinsic Genomic Instability and Exocytosis Defects at the Immunological Synapse. Front Immunol 2020; 11:581119. [PMID: 33240268 PMCID: PMC7680899 DOI: 10.3389/fimmu.2020.581119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/09/2020] [Indexed: 12/11/2022] Open
Abstract
Congenital defects of the immune system called primary immunodeficiency disorders (PID) describe a group of diseases characterized by a decrease, an absence, or a malfunction of at least one part of the immune system. As a result, PID patients are more prone to develop life-threatening complications, including cancer. PID currently include over 400 different disorders, however, the variety of PID-related cancers is narrow. We discuss here reasons for this clinical phenotype. Namely, PID can lead to cell intrinsic failure to control cell transformation, failure to activate tumor surveillance by cytotoxic cells or both. As the most frequent tumors seen among PID patients stem from faulty lymphocyte development leading to leukemia and lymphoma, we focus on the extensive genomic alterations needed to create the vast diversity of B and T lymphocytes with potential to recognize any pathogen and why defects in these processes lead to malignancies in the immunodeficient environment of PID patients. In the second part of the review, we discuss PID affecting tumor surveillance and especially membrane trafficking defects caused by altered exocytosis and regulation of the actin cytoskeleton. As an impairment of these membrane trafficking pathways often results in dysfunctional effector immune cells, tumor cell immune evasion is elevated in PID. By considering new anti-cancer treatment concepts, such as transfer of genetically engineered immune cells, restoration of anti-tumor immunity in PID patients could be an approach to complement standard therapies.
Collapse
Affiliation(s)
- Jérôme Mastio
- Department of Oncology, Cytoskeleton and Cancer Progression, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Mezida B Saeed
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Hannah Wurzer
- Department of Oncology, Cytoskeleton and Cancer Progression, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Max Krecke
- Department of Oncology, Cytoskeleton and Cancer Progression, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Lisa S Westerberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Clément Thomas
- Department of Oncology, Cytoskeleton and Cancer Progression, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| |
Collapse
|
22
|
Induction of Allograft Tolerance While Maintaining Immunity Against Microbial Pathogens: Does Coronin 1 Hold a Key? Transplantation 2020; 104:1350-1357. [PMID: 31895336 DOI: 10.1097/tp.0000000000003101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Selective suppression of graft rejection while maintaining anti-pathogen responses has been elusive. Thus far, the most successful strategies to induce suppression of graft rejection relies on inhibition of T-cell activation. However, the very same mechanisms that induce allograft-specific T-cell suppression are also important for immunity against microbial pathogens as well as oncogenically transformed cells, resulting in significant immunosuppression-associated comorbidities. Therefore, defining the pathways that differentially regulate anti-graft versus antimicrobial T-cell responses may allow the development of regimen to induce allograft-specific tolerance. Recent work has defined a molecular pathway driven by the immunoregulatory protein coronin 1 that regulates the phosphodiesterase/cyclic adenosine monophosphate pathway and modulates T cell responses. Interestingly, disruption of coronin 1 promotes allograft tolerance while immunity towards a range of pathogenic microbes is maintained. Here, we briefly review the work leading up to these findings as well as their possible implications for transplantation medicine.
Collapse
|
23
|
Next-generation sequencing of newborn screening genes: the accuracy of short-read mapping. NPJ Genom Med 2020; 5:36. [PMID: 32944285 PMCID: PMC7474066 DOI: 10.1038/s41525-020-00142-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/23/2020] [Indexed: 01/23/2023] Open
Abstract
Newborn screening programs are an integral part of public health systems aiming to save lives and improve the quality of life for infants with treatable disorders. Technological advancements have driven the expansion of newborn screening programs in the last two decades and the development of fast, accurate next-generation sequencing technology has opened the door to a range of possibilities in the field. However, technological challenges with short-read next-generation sequencing technologies remain significant in highly homologous genomic regions such as pseudogenes or paralogous genes and need to be considered when implemented in screening programs. Here, we simulate 50 genomes from populations around the world to test the extent to which high homology regions affect short-read mapping of genes related to newborn screening disorders and the impact of differential read lengths and ethnic backgrounds. We examine a 158 gene screening panel directly relevant to newborn screening and identify gene regions where read mapping is affected by homologous genomic regions at different read lengths. We also determine that the patient’s ethnic background does not have a widespread impact on mapping accuracy or coverage. Additionally, we identify newborn screening genes where alternative forms of sequencing or variant calling pipelines should be considered and demonstrate that alterations to standard variant calling can retrieve some formerly uncalled variants.
Collapse
|
24
|
Sprenkeler EGG, Webbers SDS, Kuijpers TW. When Actin is Not Actin' Like It Should: A New Category of Distinct Primary Immunodeficiency Disorders. J Innate Immun 2020; 13:3-25. [PMID: 32846417 DOI: 10.1159/000509717] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022] Open
Abstract
An increasing number of primary immunodeficiencies (PIDs) have been identified over the last decade, which are caused by deleterious mutations in genes encoding for proteins involved in actin cytoskeleton regulation. These mutations primarily affect hematopoietic cells and lead to defective function of immune cells, such as impaired motility, signaling, proliferative capacity, and defective antimicrobial host defense. Here, we review several of these immunological "actinopathies" and cover both clinical aspects, as well as cellular mechanisms of these PIDs. We focus in particular on the effect of these mutations on human neutrophil function.
Collapse
Affiliation(s)
- Evelien G G Sprenkeler
- Department of Blood Cell Research, Sanquin Research, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, The Netherlands, .,Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, AUMC, University of Amsterdam, Amsterdam, The Netherlands,
| | - Steven D S Webbers
- Department of Blood Cell Research, Sanquin Research, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, The Netherlands.,Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, AUMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Taco W Kuijpers
- Department of Blood Cell Research, Sanquin Research, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, The Netherlands.,Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, AUMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
25
|
Human genetic dissection of papillomavirus-driven diseases: new insight into their pathogenesis. Hum Genet 2020; 139:919-939. [PMID: 32435828 DOI: 10.1007/s00439-020-02183-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/11/2020] [Indexed: 02/07/2023]
Abstract
Human papillomaviruses (HPVs) infect mucosal or cutaneous stratified epithelia. There are 5 genera and more than 200 types of HPV, each with a specific tropism and virulence. HPV infections are typically asymptomatic or result in benign tumors, which may be disseminated or persistent in rare cases, but a few oncogenic HPVs can cause cancers. This review deals with the human genetic and immunological basis of interindividual clinical variability in the course of HPV infections of the skin and mucosae. Typical epidermodysplasia verruciformis (EV) is characterized by β-HPV-driven flat wart-like and pityriasis-like cutaneous lesions and non-melanoma skin cancers in patients with inborn errors of EVER1-EVER2-CIB1-dependent skin-intrinsic immunity. Atypical EV is associated with other infectious diseases in patients with inborn errors of T cells. Severe cutaneous or anogenital warts, including anogenital cancers, are also driven by certain α-, γ-, μ or ν-HPVs in patients with inborn errors of T lymphocytes and antigen-presenting cells. The genetic basis of HPV diseases at other mucosal sites, such as oral multifocal epithelial hyperplasia or juvenile recurrent respiratory papillomatosis (JRRP), remains poorly understood. The human genetic dissection of HPV-driven lesions will clarify the molecular and cellular basis of protective immunity to HPVs, and should lead to novel diagnostic, preventive, and curative approaches in patients.
Collapse
|
26
|
Tangye SG. Genetic susceptibility to EBV infection: insights from inborn errors of immunity. Hum Genet 2020; 139:885-901. [PMID: 32152698 DOI: 10.1007/s00439-020-02145-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/27/2020] [Indexed: 02/07/2023]
Abstract
Epstein-Barr virus (EBV) is a ubiquitous human pathogen, infecting > 90% of the adult population. In the vast majority of healthy individuals, infection with EBV runs a relatively benign course. However, EBV is by no means a benign pathogen. Indeed, apart from being associated with at least seven different types of malignancies, EBV infection can cause severe and often fatal diseases-hemophagocytic lymphohistiocytosis, lymphoproliferative disease, B-cell lymphoma-in rare individuals with specific monogenic inborn errors of immunity. The discovery and detailed investigation of inborn errors of immunity characterized by heightened susceptibility to, or increased frequency of, EBV-induced disease have elegantly revealed cell types and signaling pathways that play critical and non-redundant roles in host-defense against EBV. These analyses have revealed not only mechanisms underlying EBV-induced disease in rare genetic conditions, but also identified molecules and pathways that could be targeted to treat severe EBV infection and pathological consequences in immunodeficient hosts, or even potentially enhance the efficacy of an EBV-specific vaccine.
Collapse
Affiliation(s)
- Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, 2010, Australia. .,St. Vincent's Clinical School, University of NSW Sydney, Darlinghurst, NSW, 2010, Australia. .,Clincial Immunogenomics Research Consortium Australasia (CIRCA), Darlinghurst, NSW, Australia.
| |
Collapse
|
27
|
Janssen E, Geha RS. Primary immunodeficiencies caused by mutations in actin regulatory proteins. Immunol Rev 2019; 287:121-134. [PMID: 30565251 DOI: 10.1111/imr.12716] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 08/31/2018] [Indexed: 12/31/2022]
Abstract
The identification of patients with monogenic gene defects have illuminated the function of different proteins in the immune system, including proteins that regulate the actin cytoskeleton. Many of these actin regulatory proteins are exclusively expressed in leukocytes and regulate the formation and branching of actin filaments. Their absence or abnormal function leads to defects in immune cell shape, cellular projections, migration, and signaling. Through the study of patients' mutations and generation of mouse models that recapitulate the patients' phenotypes, our laboratory and others have gained a better understanding of the role these proteins play in cell biology and the underlying pathogenesis of immunodeficiencies and immune dysregulatory syndromes.
Collapse
Affiliation(s)
- Erin Janssen
- Division of Immunology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Raif S Geha
- Division of Immunology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
28
|
Fernandes RA, Perez-Andres M, Blanco E, Jara-Acevedo M, Criado I, Almeida J, Botafogo V, Coutinho I, Paiva A, van Dongen JJM, Orfao A, Faria E. Complete Multilineage CD4 Expression Defect Associated With Warts Due to an Inherited Homozygous CD4 Gene Mutation. Front Immunol 2019; 10:2502. [PMID: 31781092 PMCID: PMC6856949 DOI: 10.3389/fimmu.2019.02502] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/07/2019] [Indexed: 12/12/2022] Open
Abstract
Idiopathic T-CD4 lymphocytopenia (ICL) is a rare and heterogeneous syndrome characterized by opportunistic infections due to reduced CD4 T-lymphocytes (<300 cells/μl or <20% T-cells) in the absence of HIV infection and other primary causes of lymphopenia. Molecular testing of ICL has revealed defects in genes not specific to CD4 T-cells, with pleiotropic effects on other cell types. Here we report for the first time an absolute CD4 lymphocytopenia (<0.01 CD4+ T-cells/μl) due to an autosomal recessive CD4 gene mutation that completely abrogates CD4 protein expression on the surface membrane of T-cells, monocytes, and dendritic cells. A 45-year-old female born to consanguineous parents consulted because of exuberant, relapsing, and treatment-refractory warts on her hands and feet since the age of 10 years, in the absence of other recurrent infections or symptoms. Serological studies were negative for severe infections, including HIV 1/2, HTLV-1, and syphilis, but positive for CMV and EBV. Blood analysis showed the absence of CD4+ T-cells (<0.01%) with repeatedly increased counts of B-cells, naïve CD8+ T-lymphocytes, and particularly, CD4/CD8 double-negative (DN) TCRαβ+ TCRγδ- T-cells (30% of T-cells; 400 cells/μl). Flow cytometric staining of CD4 using monoclonal antibodies directed against five different epitopes, located in two different domains of the protein, confirmed no cell surface membrane or intracytoplasmic expression of CD4 on T-cells, monocytes, and dendritic cells but normal soluble CD4 plasma levels. DN T-cells showed a phenotypic and functional profile similar to normal CD4+ T-cells as regards expression of maturation markers, T-helper and T-regulatory chemokine receptors, TCRvβ repertoire, and in vitro cytokine production against polyclonal and antigen-specific stimuli. Sequencing of the CD4 gene revealed a homozygous (splicing) mutation affecting the last bp on intron 7-8, leading to deletion of the juxtamembrane and intracellular domains of the protein and complete abrogation of CD4 expression on the cell membrane. These findings support previous studies in CD4 KO mice suggesting that surrogate DN helper and regulatory T-cells capable of supporting antigen-specific immune responses are produced in the absence of CD4 signaling and point out the need for better understanding the role of CD4 on thymic selection and the immune response.
Collapse
Affiliation(s)
- Rosa Anita Fernandes
- Allergy and Clinical Immunology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Martin Perez-Andres
- Department of Medicine, Cancer Research Centre (IBMCC, USAL-CSIC), Cytometry Service (NUCLEUS), University of Salamanca (USAL), Salamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Biomedical Research Networking Centre on Cancer-CIBER-CIBERONC (CB16/12/00400), Institute of Health Carlos III, Madrid, Spain
| | - Elena Blanco
- Department of Medicine, Cancer Research Centre (IBMCC, USAL-CSIC), Cytometry Service (NUCLEUS), University of Salamanca (USAL), Salamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Biomedical Research Networking Centre on Cancer-CIBER-CIBERONC (CB16/12/00400), Institute of Health Carlos III, Madrid, Spain
| | - Maria Jara-Acevedo
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Biomedical Research Networking Centre on Cancer-CIBER-CIBERONC (CB16/12/00400), Institute of Health Carlos III, Madrid, Spain.,Sequencing DNA Service, NUCLEUS, University of Salamanca, Salamanca, Spain
| | - Ignacio Criado
- Department of Medicine, Cancer Research Centre (IBMCC, USAL-CSIC), Cytometry Service (NUCLEUS), University of Salamanca (USAL), Salamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Biomedical Research Networking Centre on Cancer-CIBER-CIBERONC (CB16/12/00400), Institute of Health Carlos III, Madrid, Spain
| | - Julia Almeida
- Department of Medicine, Cancer Research Centre (IBMCC, USAL-CSIC), Cytometry Service (NUCLEUS), University of Salamanca (USAL), Salamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Biomedical Research Networking Centre on Cancer-CIBER-CIBERONC (CB16/12/00400), Institute of Health Carlos III, Madrid, Spain
| | - Vitor Botafogo
- Department of Medicine, Cancer Research Centre (IBMCC, USAL-CSIC), Cytometry Service (NUCLEUS), University of Salamanca (USAL), Salamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Biomedical Research Networking Centre on Cancer-CIBER-CIBERONC (CB16/12/00400), Institute of Health Carlos III, Madrid, Spain
| | - Ines Coutinho
- Dermatology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Artur Paiva
- Flow Cytometry Unit-Clinical Pathology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,Ciências Biomédicas Laboratoriais, ESTESC-Coimbra Health School, Instituto Politécnico de Coimbra, Coimbra, Portugal.,Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
| | - Jacques J M van Dongen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Alberto Orfao
- Department of Medicine, Cancer Research Centre (IBMCC, USAL-CSIC), Cytometry Service (NUCLEUS), University of Salamanca (USAL), Salamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Biomedical Research Networking Centre on Cancer-CIBER-CIBERONC (CB16/12/00400), Institute of Health Carlos III, Madrid, Spain
| | - Emilia Faria
- Allergy and Clinical Immunology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| |
Collapse
|
29
|
Tangye SG, Bucciol G, Casas‐Martin J, Pillay B, Ma CS, Moens L, Meyts I. Human inborn errors of the actin cytoskeleton affecting immunity: way beyond WAS and WIP. Immunol Cell Biol 2019; 97:389-402. [DOI: 10.1111/imcb.12243] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 02/09/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Stuart G Tangye
- Immunology Division Garvan Institute of Medical Research Sydney NSW Australia
- Faculty of Medicine St Vincent's Clinical School UNSW Sydney Sydney NSW Australia
| | - Giorgia Bucciol
- Laboratory for Inborn Errors of Immunity Department of Microbiology and Immunology KU Leuven Leuven Belgium
- Department of Pediatrics University Hospitals Leuven Leuven Belgium
| | - Jose Casas‐Martin
- Laboratory for Inborn Errors of Immunity Department of Microbiology and Immunology KU Leuven Leuven Belgium
| | - Bethany Pillay
- Immunology Division Garvan Institute of Medical Research Sydney NSW Australia
- Faculty of Medicine St Vincent's Clinical School UNSW Sydney Sydney NSW Australia
| | - Cindy S Ma
- Immunology Division Garvan Institute of Medical Research Sydney NSW Australia
- Faculty of Medicine St Vincent's Clinical School UNSW Sydney Sydney NSW Australia
| | - Leen Moens
- Laboratory for Inborn Errors of Immunity Department of Microbiology and Immunology KU Leuven Leuven Belgium
| | - Isabelle Meyts
- Laboratory for Inborn Errors of Immunity Department of Microbiology and Immunology KU Leuven Leuven Belgium
- Department of Pediatrics University Hospitals Leuven Leuven Belgium
| |
Collapse
|
30
|
Jayachandran R, Gumienny A, Bolinger B, Ruehl S, Lang MJ, Fucile G, Mazumder S, Tchang V, Woischnig AK, Stiess M, Kunz G, Claudi B, Schmaler M, Siegmund K, Li J, Dertschnig S, Holländer G, Medina E, Karrer U, Moshous D, Bumann D, Khanna N, Rossi SW, Pieters J. Disruption of Coronin 1 Signaling in T Cells Promotes Allograft Tolerance while Maintaining Anti-Pathogen Immunity. Immunity 2019; 50:152-165.e8. [PMID: 30611611 DOI: 10.1016/j.immuni.2018.12.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/18/2018] [Accepted: 12/10/2018] [Indexed: 11/18/2022]
Abstract
The ability of the immune system to discriminate self from non-self is essential for eradicating microbial pathogens but is also responsible for allograft rejection. Whether it is possible to selectively suppress alloresponses while maintaining anti-pathogen immunity remains unknown. We found that mice deficient in coronin 1, a regulator of naive T cell homeostasis, fully retained allografts while maintaining T cell-specific responses against microbial pathogens. Mechanistically, coronin 1-deficiency increased cyclic adenosine monophosphate (cAMP) concentrations to suppress allo-specific T cell responses. Costimulation induced on microbe-infected antigen presenting cells was able to overcome cAMP-mediated immunosuppression to maintain anti-pathogen immunity. In vivo pharmacological modulation of this pathway or a prior transfer of coronin 1-deficient T cells actively suppressed allograft rejection. These results define a coronin 1-dependent regulatory axis in T cells important for allograft rejection and suggest that modulation of this pathway may be a promising approach to achieve long-term acceptance of mismatched allografts.
Collapse
Affiliation(s)
| | | | | | | | | | - Geoffrey Fucile
- Swiss Institute of Bioinformatics, sciCORE Computing Center, University of Basel, Basel, Switzerland
| | | | | | - Anne-Kathrin Woischnig
- Department of Biomedicine, University and University Hospital of Basel, Basel, Switzerland
| | | | | | | | - Mathias Schmaler
- Department of Biomedicine, University and University Hospital of Basel, Basel, Switzerland
| | | | | | - Simone Dertschnig
- Department of Biomedicine, University and University Hospital of Basel, Basel, Switzerland
| | - George Holländer
- Department of Biomedicine, University and University Hospital of Basel, Basel, Switzerland; Department of Paediatrics, University of Oxford, Oxford, UK
| | - Eva Medina
- Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Urs Karrer
- Division of Infectious Diseases and Department of Medicine, Cantonal Hospital of Winterthur, Winterthur, Switzerland
| | - Despina Moshous
- Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Paris, France and APHP Hôpital Universitaire Necker-Enfants Malades, Unité d'Immunologie-Hématologie et Rhumatologie Pédiatrique, Paris, France
| | - Dirk Bumann
- Biozentrum, University of Basel, Basel, Switzerland
| | - Nina Khanna
- Department of Biomedicine, University and University Hospital of Basel, Basel, Switzerland; Division of Infectious Diseases, University and University Hospital of Basel, Switzerland
| | - Simona W Rossi
- Department of Biomedicine, University and University Hospital of Basel, Basel, Switzerland
| | - Jean Pieters
- Biozentrum, University of Basel, Basel, Switzerland.
| |
Collapse
|
31
|
Mace EM, Orange JS. Emerging insights into human health and NK cell biology from the study of NK cell deficiencies. Immunol Rev 2019; 287:202-225. [PMID: 30565241 PMCID: PMC6310041 DOI: 10.1111/imr.12725] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 09/28/2018] [Indexed: 12/24/2022]
Abstract
Human NK cells are innate immune effectors that play a critical roles in the control of viral infection and malignancy. The importance of their homeostasis and function can be demonstrated by the study of patients with primary immunodeficiencies (PIDs), which are part of the family of diseases known as inborn defects of immunity. While NK cells are affected in many PIDs in ways that may contribute to a patient's clinical phenotype, a small number of PIDs have an NK cell abnormality as their major immunological defect. These PIDs can be collectively referred to as NK cell deficiency (NKD) disorders and include effects upon NK cell numbers, subsets, and/or functions. The clinical impact of NKD can be severe including fatal viral infection, with particular susceptibility to herpesviral infections, such as cytomegalovirus, varicella zoster virus, and Epstein-Barr virus. While NKD is rare, studies of these diseases are important for defining specific requirements for human NK cell development and homeostasis. New themes in NK cell biology are emerging through the study of both known and novel NKD, particularly those affecting cell cycle and DNA damage repair, as well as broader PIDs having substantive impact upon NK cells. In addition, the discovery of NKD that affects other innate lymphoid cell (ILC) subsets opens new doors for better understanding the relationship between conventional NK cells and other ILC subsets. Here, we describe the biology underlying human NKD, particularly in the context of new insights into innate immune cell function, including a discussion of recently described NKD with accompanying effects on ILC subsets. Given the impact of these disorders upon human immunity with a common focus upon NK cells, the unifying message of a critical role for NK cells in human host defense singularly emerges.
Collapse
Affiliation(s)
- Emily M Mace
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| | - Jordan S Orange
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
32
|
Sud A, Thomsen H, Orlando G, Försti A, Law PJ, Broderick P, Cooke R, Hariri F, Pastinen T, Easton DF, Pharoah PDP, Dunning AM, Peto J, Canzian F, Eeles R, Kote-Jarai ZS, Muir K, Pashayan N, Campa D, Hoffmann P, Nöthen MM, Jöckel KH, von Strandmann EP, Swerdlow AJ, Engert A, Orr N, Hemminki K, Houlston RS. Genome-wide association study implicates immune dysfunction in the development of Hodgkin lymphoma. Blood 2018; 132:2040-2052. [PMID: 30194254 PMCID: PMC6236462 DOI: 10.1182/blood-2018-06-855296] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/19/2018] [Indexed: 02/08/2023] Open
Abstract
To further our understanding of inherited susceptibility to Hodgkin lymphoma (HL), we performed a meta-analysis of 7 genome-wide association studies totaling 5325 HL cases and 22 423 control patients. We identify 5 new HL risk loci at 6p21.31 (rs649775; P = 2.11 × 10-10), 6q23.3 (rs1002658; P = 2.97 × 10-8), 11q23.1 (rs7111520; P = 1.44 × 10-11), 16p11.2 (rs6565176; P = 4.00 × 10-8), and 20q13.12 (rs2425752; P = 2.01 × 10-8). Integration of gene expression, histone modification, and in situ promoter capture Hi-C data at the 5 new and 13 known risk loci implicates dysfunction of the germinal center reaction, disrupted T-cell differentiation and function, and constitutive NF-κB activation as mechanisms of predisposition. These data provide further insights into the genetic susceptibility and biology of HL.
Collapse
Affiliation(s)
- Amit Sud
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
| | - Hauke Thomsen
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Giulia Orlando
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
| | - Asta Försti
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany
- Center for Primary Health Care Research, Lund University, Malmö, Sweden
| | - Philip J Law
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
| | - Peter Broderick
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
| | - Rosie Cooke
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
| | - Fadi Hariri
- Department of Human Genetics, McGill University and Genome Quebec Innovation Centre, McGill University, Montreal, QC, Canada
| | - Tomi Pastinen
- Department of Human Genetics, McGill University and Genome Quebec Innovation Centre, McGill University, Montreal, QC, Canada
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Oncology, and
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, and
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, and
| | - Julian Peto
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center, Heidelberg, Germany
| | - Rosalind Eeles
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
- Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - ZSofia Kote-Jarai
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
| | - Kenneth Muir
- Institute of Population Health, University of Manchester, Manchester, United Kingdom
- Division of Health Sciences, Warwick Medical School, Warwick University, Coventry, United Kingdom
| | - Nora Pashayan
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- Department of Applied Health Research, University College London, London, United Kingdom
| | - Daniele Campa
- Department of Biology, University of Pisa, Pisa, Italy
| | - Per Hoffmann
- Human Genomic Research Group, Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Human Genetics and
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Markus M Nöthen
- Institute of Human Genetics and
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | | | - Elke Pogge von Strandmann
- Experimental Tumor Research, Center for Tumor Biology and Immunology, Clinic for Hematology, Oncology and Immunology, Philipps University, Marburg, Germany
| | - Anthony J Swerdlow
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
- Division of Breast Cancer Research, The Institute of Cancer Research, London, United Kingdom; and
| | - Andreas Engert
- Department of Internal Medicine, University Hospital of Cologne, Cologne, Germany
| | - Nick Orr
- Division of Breast Cancer Research, The Institute of Cancer Research, London, United Kingdom; and
| | - Kari Hemminki
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany
- Center for Primary Health Care Research, Lund University, Malmö, Sweden
| | - Richard S Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
33
|
de Jong SJ, Créquer A, Matos I, Hum D, Gunasekharan V, Lorenzo L, Jabot-Hanin F, Imahorn E, Arias AA, Vahidnezhad H, Youssefian L, Markle JG, Patin E, D'Amico A, Wang CQF, Full F, Ensser A, Leisner TM, Parise LV, Bouaziz M, Maya NP, Cadena XR, Saka B, Saeidian AH, Aghazadeh N, Zeinali S, Itin P, Krueger JG, Laimins L, Abel L, Fuchs E, Uitto J, Franco JL, Burger B, Orth G, Jouanguy E, Casanova JL. The human CIB1-EVER1-EVER2 complex governs keratinocyte-intrinsic immunity to β-papillomaviruses. J Exp Med 2018; 215:2289-2310. [PMID: 30068544 PMCID: PMC6122964 DOI: 10.1084/jem.20170308] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/21/2018] [Accepted: 07/02/2018] [Indexed: 02/04/2023] Open
Abstract
Patients with epidermodysplasia verruciformis (EV) and biallelic null mutations of TMC6 (encoding EVER1) or TMC8 (EVER2) are selectively prone to disseminated skin lesions due to keratinocyte-tropic human β-papillomaviruses (β-HPVs), which lack E5 and E8. We describe EV patients homozygous for null mutations of the CIB1 gene encoding calcium- and integrin-binding protein-1 (CIB1). CIB1 is strongly expressed in the skin and cultured keratinocytes of controls but not in those of patients. CIB1 forms a complex with EVER1 and EVER2, and CIB1 proteins are not expressed in EVER1- or EVER2-deficient cells. The known functions of EVER1 and EVER2 in human keratinocytes are not dependent on CIB1, and CIB1 deficiency does not impair keratinocyte adhesion or migration. In keratinocytes, the CIB1 protein interacts with the HPV E5 and E8 proteins encoded by α-HPV16 and γ-HPV4, respectively, suggesting that this protein acts as a restriction factor against HPVs. Collectively, these findings suggest that the disruption of CIB1-EVER1-EVER2-dependent keratinocyte-intrinsic immunity underlies the selective susceptibility to β-HPVs of EV patients.
Collapse
Affiliation(s)
- Sarah Jill de Jong
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Amandine Créquer
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Irina Matos
- Robin Chemers Neustein Laboratory of Mammalian Development and Cell Biology, The Rockefeller University, New York, NY
| | - David Hum
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | | | - Lazaro Lorenzo
- Laboratory of Human Genetics of Infectious Diseases, Institut National de la Santé et de la Recherche Médicale, UMR 1163, Necker Hospital for Sick Children, Paris, France
- University Paris Descartes, Imagine Institute, Paris, France
| | - Fabienne Jabot-Hanin
- Laboratory of Human Genetics of Infectious Diseases, Institut National de la Santé et de la Recherche Médicale, UMR 1163, Necker Hospital for Sick Children, Paris, France
- University Paris Descartes, Imagine Institute, Paris, France
| | - Elias Imahorn
- Department of Biomedicine, University Hospital Basel and University of Basel, Switzerland
| | - Andres A Arias
- Primary Immunodeficiencies Group, School of Medicine, University of Antioquia, Medellin, Colombia
- School of Microbiology, University of Antioquia, Medellin, Colombia
| | - Hassan Vahidnezhad
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Leila Youssefian
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
- Department of Medical Genetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Janet G Markle
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Etienne Patin
- Human Evolutionary Genetics, Pasteur Institute, Paris, France
- National Center for Scientific Research, URA 3012, Paris, France
- Center of Bioinformatics, Biostatistics and Integrative Biology, Pasteur Institute, Paris, France
| | - Aurelia D'Amico
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Claire Q F Wang
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY
| | - Florian Full
- Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Armin Ensser
- Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Tina M Leisner
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Leslie V Parise
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Matthieu Bouaziz
- Laboratory of Human Genetics of Infectious Diseases, Institut National de la Santé et de la Recherche Médicale, UMR 1163, Necker Hospital for Sick Children, Paris, France
- University Paris Descartes, Imagine Institute, Paris, France
| | | | - Xavier Rueda Cadena
- Dermatology/Oncology - Skin Cancer Unit, National Cancer Institute, Bogota, Colombia
| | - Bayaki Saka
- Department of Dermatology, Sylvanus Olympio Hospital, University of Lomé, Togo
| | - Amir Hossein Saeidian
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Nessa Aghazadeh
- Department of Dermatology, Razi Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sirous Zeinali
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Kawsar Human Genetics Research Center, Tehran, Iran
| | - Peter Itin
- Department of Biomedicine, University Hospital Basel and University of Basel, Switzerland
- Dermatology, University Hospital Basel, Basel, Switzerland
| | - James G Krueger
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY
| | - Lou Laimins
- Department of Microbiology-Immunology, Northwestern University, Chicago, IL
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Institut National de la Santé et de la Recherche Médicale, UMR 1163, Necker Hospital for Sick Children, Paris, France
- University Paris Descartes, Imagine Institute, Paris, France
| | - Elaine Fuchs
- Robin Chemers Neustein Laboratory of Mammalian Development and Cell Biology, The Rockefeller University, New York, NY
| | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
- Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA
| | - Jose Luis Franco
- Primary Immunodeficiencies Group, School of Medicine, University of Antioquia, Medellin, Colombia
| | - Bettina Burger
- Department of Biomedicine, University Hospital Basel and University of Basel, Switzerland
| | - Gérard Orth
- Department of Virology, Pasteur Institute, Paris, France
| | - Emmanuelle Jouanguy
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Institut National de la Santé et de la Recherche Médicale, UMR 1163, Necker Hospital for Sick Children, Paris, France
- University Paris Descartes, Imagine Institute, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Institut National de la Santé et de la Recherche Médicale, UMR 1163, Necker Hospital for Sick Children, Paris, France
- University Paris Descartes, Imagine Institute, Paris, France
- Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, New York, NY
| |
Collapse
|
34
|
Hematological Malignancies Associated With Primary Immunodeficiency Disorders. Clin Immunol 2018; 194:46-59. [DOI: 10.1016/j.clim.2018.06.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/25/2018] [Accepted: 06/28/2018] [Indexed: 12/18/2022]
|
35
|
Huang S, Wu JH, Lewis DJ, Rady PL, Tyring SK. A novel approach to the classification of epidermodysplasia verruciformis. Int J Dermatol 2018; 57:1344-1350. [PMID: 30156265 DOI: 10.1111/ijd.14196] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 07/22/2018] [Accepted: 07/31/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUND Epidermodysplasia verruciformis (EV) is a rare genodermatosis that causes disseminated eruptions of hypo- or hyperpigmented macules and wart-like papules that can coalesce and scale. It is uniquely characterized by an increased susceptibility to specific human papillomavirus (HPV) genotypes. Classically, EV is associated with mutations of the EVER1/TMC6 and EVER2/TMC8 genes. The term "acquired" epidermodysplasia verruciformis was coined to describe an EV-like syndrome that can develop in patients with a compromised immune system. Recent discoveries of other genes implicated in EV, including RHOH, MST-1, and CORO1A, have complicated the classification of EV and EV-like syndromes. METHODS We review the available data on epidermodysplasia verruciformis in the literature in order to propose a new classification system to encompass current and future developments on EV and EV-like syndromes. RESULTS We propose classifying EV into: (1) classic genetic EV, (2) non-classic genetic EV, and (3) acquired EV. CONCLUSION The proposed categorization scheme provides a simple and logical way to organize the different cases of EV that have been described in the literature. This system organizes EV by its cause, allowing for a better understanding of the disease and helps differentiate EV from other causes of generalized verrucosis.
Collapse
Affiliation(s)
- Simo Huang
- School of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Julie H Wu
- School of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Daniel J Lewis
- School of Medicine, Baylor College of Medicine, Houston, TX, USA.,Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Peter L Rady
- Department of Dermatology, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Stephen K Tyring
- Department of Dermatology, University of Texas Health Science Center at Houston, Houston, TX, USA.,Center for Clinical Studies, Houston, TX, USA
| |
Collapse
|
36
|
de Jong SJ, Imahorn E, Itin P, Uitto J, Orth G, Jouanguy E, Casanova JL, Burger B. Epidermodysplasia Verruciformis: Inborn Errors of Immunity to Human Beta-Papillomaviruses. Front Microbiol 2018; 9:1222. [PMID: 29946305 PMCID: PMC6005841 DOI: 10.3389/fmicb.2018.01222] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/22/2018] [Indexed: 12/24/2022] Open
Abstract
Epidermodysplasia verruciformis (EV) is an autosomal recessive skin disorder with a phenotype conditional on human beta-papillomavirus (beta-HPV) infection. Such infections are common and asymptomatic in the general population, but in individuals with EV, they lead to the development of plane wart-like and red or brownish papules or pityriasis versicolor-like skin lesions, from childhood onwards. Most patients develop non-melanoma skin cancer (NMSC), mostly on areas of UV-exposed skin, from the twenties or thirties onwards. At least half of the cases of typical EV are caused by biallelic loss-of-function mutations of TMC6/EVER1 or TMC8/EVER2. The cellular and molecular basis of disease in TMC/EVER-deficient patients is unknown, but a defect of keratinocyte-intrinsic immunity to beta-HPV is suspected. Indeed, these patients are not susceptible to other infectious diseases and have apparently normal leukocyte development. In contrast, patients with an atypical form of EV due to inborn errors of T-cell immunity invariably develop clinical symptoms of EV in the context of other infectious diseases. The features of the typical and atypical forms of EV thus suggest that the control of beta-HPV infections requires both EVER1/EVER2-dependent keratinocyte-intrinsic immunity and T cell-dependent adaptive immunity.
Collapse
Affiliation(s)
- Sarah J de Jong
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York NY, United States
| | - Elias Imahorn
- Department of Biomedicine, University Hospital of Basel, University of Basel, Basel, Switzerland
| | - Peter Itin
- Department of Biomedicine, University Hospital of Basel, University of Basel, Basel, Switzerland.,Department of Dermatology, University Hospital of Basel, Basel, Switzerland
| | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States.,Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia PA, United States
| | | | - Emmanuelle Jouanguy
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York NY, United States.,INSERM UMR 1163, Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Hospital for Sick Children, Paris, France.,Imagine Institute, Paris Descartes University, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York NY, United States.,INSERM UMR 1163, Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Hospital for Sick Children, Paris, France.,Imagine Institute, Paris Descartes University, Paris, France.,Pediatric Hematology and Immunology Unit, Necker Hospital for Sick Children, Paris, France.,Howard Hughes Medical Institute, New York NY, United States
| | - Bettina Burger
- Department of Biomedicine, University Hospital of Basel, University of Basel, Basel, Switzerland
| |
Collapse
|
37
|
Latour S, Winter S. Inherited Immunodeficiencies With High Predisposition to Epstein-Barr Virus-Driven Lymphoproliferative Diseases. Front Immunol 2018; 9:1103. [PMID: 29942301 PMCID: PMC6004768 DOI: 10.3389/fimmu.2018.01103] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/02/2018] [Indexed: 01/16/2023] Open
Abstract
Epstein–Barr Virus (EBV) is a gamma-herpes virus that infects 90% of humans without any symptoms in most cases, but has an oncogenic potential, especially in immunocompromised individuals. In the past 30 years, several primary immunodeficiencies (PIDs) associated with a high risk to develop EBV-associated lymphoproliferative disorders (LPDs), essentially consisting of virus-associated hemophagocytic syndrome, non-malignant and malignant B-cell LPDs including non-Hodgkin and Hodgkin’s types of B lymphomas have been characterized. Among them are SH2D1A (SAP), XIAP, ITK, MAGT1, CD27, CD70, CTPS1, RASGRP1, and CORO1A deficiencies. Penetrance of EBV infection ranges from 50 to 100% in those PIDs. Description of large cohorts and case reports has refined the specific phenotypes associated with these PIDs helping to the diagnosis. Specific pathways required for protective immunity to EBV have emerged from studies of these PIDs. SLAM-associated protein-dependent SLAM receptors and MAGT1-dependent NKG2D pathways are important for T and NK-cell cytotoxicity toward EBV-infected B-cells, while CD27–CD70 interactions are critical to drive the expansion of EBV-specific T-cells. CTPS1 and RASGRP1 deficiencies further strengthen that T-lymphocyte expansion is a key step in the immune response to EBV. These pathways appear to be also important for the anti-tumoral immune surveillance of abnormal B cells. Monogenic PIDs should be thus considered in case of any EBV-associated LPDs.
Collapse
Affiliation(s)
- Sylvain Latour
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, INSERM UMR 1163, Paris, France.,Imagine Institute, Paris Descartes University, Sorbonne Paris Cité, Paris, France.,Equipe de Recherche Labéllisée, Ligue National contre le Cancer, Paris, France
| | - Sarah Winter
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, INSERM UMR 1163, Paris, France.,Imagine Institute, Paris Descartes University, Sorbonne Paris Cité, Paris, France.,Equipe de Recherche Labéllisée, Ligue National contre le Cancer, Paris, France
| |
Collapse
|
38
|
Compound heterozygous TYK2 mutations underlie primary immunodeficiency with T-cell lymphopenia. Sci Rep 2018; 8:6956. [PMID: 29725107 PMCID: PMC5934390 DOI: 10.1038/s41598-018-25260-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 04/13/2018] [Indexed: 12/18/2022] Open
Abstract
Complete tyrosine kinase 2 (TYK2) deficiency has been previously described in patients with primary immunodeficiency diseases. The patients were infected with various pathogens, including mycobacteria and/or viruses, and one of the patients developed hyper-IgE syndrome. A detailed immunological investigation of these patients revealed impaired responses to type I IFN, IL-10, IL-12 and IL-23, which are associated with increased susceptibility to mycobacterial and/or viral infections. Herein, we report a recessive partial TYK2 deficiency in two siblings who presented with T-cell lymphopenia characterized by low naïve CD4+ T-cell counts and who developed Epstein-Barr virus (EBV)-associated B-cell lymphoma. Targeted exome-sequencing of the siblings' genomes demonstrated that both patients carried novel compound heterozygous mutations (c.209_212delGCTT/c.691C > T, p.Cys70Serfs*21/p.Arg231Trp) in the TYK2. The TYK2 protein levels were reduced by 35% in the T cells of the patient. Unlike the response under complete TYK2 deficiency, the patient's T cells responded normally to type I IFN, IL-6, IL-10 and IL-12, whereas the cells displayed an impaired response to IL-23. Furthermore, the level of STAT1 was low in the cells of the patient. These studies reveal a new clinical entity of a primary immunodeficiency with T-cell lymphopenia that is associated with compound heterozygous TYK2 mutations in the patients.
Collapse
|
39
|
Abstract
Proper regulation of the immune system is required for protection against pathogens and preventing autoimmune disorders. Inborn errors of the immune system due to inherited or de novo germline mutations can lead to the loss of protective immunity, aberrant immune homeostasis, and the development of autoimmune disease, or combinations of these. Forward genetic screens involving clinical material from patients with primary immunodeficiencies (PIDs) can vary in severity from life-threatening disease affecting multiple cell types and organs to relatively mild disease with susceptibility to a limited range of pathogens or mild autoimmune conditions. As central mediators of innate and adaptive immune responses, T cells are critical orchestrators and effectors of the immune response. As such, several PIDs result from loss of or altered T cell function. PID-associated functional defects range from complete absence of T cell development to uncontrolled effector cell activation. Furthermore, the gene products of known PID causal genes are involved in diverse molecular pathways ranging from T cell receptor signaling to regulators of protein glycosylation. Identification of the molecular and biochemical cause of PIDs can not only guide the course of treatment for patients, but also inform our understanding of the basic biology behind T cell function. In this chapter, we review PIDs with known genetic causes that intrinsically affect T cell function with particular focus on perturbations of biochemical pathways.
Collapse
Affiliation(s)
- William A Comrie
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States; Clinical Genomics Program, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, United States
| | - Michael J Lenardo
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States; Clinical Genomics Program, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, United States.
| |
Collapse
|
40
|
Mori M, Mode R, Pieters J. From Phagocytes to Immune Defense: Roles for Coronin Proteins in Dictyostelium and Mammalian Immunity. Front Cell Infect Microbiol 2018; 8:77. [PMID: 29623258 PMCID: PMC5874285 DOI: 10.3389/fcimb.2018.00077] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 02/27/2018] [Indexed: 12/17/2022] Open
Abstract
Microbes have interacted with eukaryotic cells for as long as they have been co-existing. While many of these interactions are beneficial for both the microbe as well as the eukaryotic cell, several microbes have evolved into pathogenic species. For some of these pathogens, host cell invasion results in irreparable damage and thus host cell destruction, whereas others use the host to avoid immune detection and elimination. One of the latter pathogens is Mycobacterium tuberculosis, arguably one of the most notorious pathogens on earth. In mammalian macrophages, M. tuberculosis manages to survive within infected macrophages by avoiding intracellular degradation in lysosomes using a number of different strategies. One of these is based on the recruitment and phagosomal retention of the host protein coronin 1, that is a member of the coronin protein family and a mammalian homolog of coronin A, a protein identified in Dictyostelium. Besides mediating mycobacterial survival in macrophages, coronin 1 is also an important regulator of naïve T cell homeostasis. How, exactly, coronin 1 mediates its activity in immune cells remains unclear. While in lower eukaryotes coronins are involved in cytoskeletal regulation, the functions of the seven coronin members in mammals are less clear. Dictyostelium coronins may have maintained multiple functions, whereas the mammalian coronins may have evolved from regulators of the cytoskeleton to modulators of signal transduction. In this minireview, we will discuss the different studies that have contributed to understand the molecular and cellular functions of coronin proteins in mammals and Dictyostelium.
Collapse
Affiliation(s)
- Mayumi Mori
- Biozentrum, University of Basel, Basel, Switzerland
| | | | - Jean Pieters
- Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
41
|
Carisey AF, Mace EM, Saeed MB, Davis DM, Orange JS. Nanoscale Dynamism of Actin Enables Secretory Function in Cytolytic Cells. Curr Biol 2018; 28:489-502.e9. [PMID: 29398219 PMCID: PMC5835143 DOI: 10.1016/j.cub.2017.12.044] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/13/2017] [Accepted: 12/20/2017] [Indexed: 11/21/2022]
Abstract
Natural killer (NK) cells are innate immune effectors that lyse virally infected and tumorigenic cells through the formation of an immunological synapse. Actin remodeling at the lytic immunological synapse is a critical requirement for multiple facets of cytotoxic function. Activating receptor and integrin signaling leads to the regulated turnover and remodeling of actin, which is required for adhesion, sustained receptor signaling, and ultimately exocytosis. NK cells undergo lytic granule exocytosis in hypodense regions of a pervasive actin network. Although these requirements have been well demonstrated, neither the dynamic regulation of synaptic actin nor its specific function, however, has been determined at a nanoscale level. Here, live-cell super-resolution microscopy demonstrates nanoscale filamentous actin dynamism in NK cell lytic granule secretion. Following cell spreading, the overall content of the branched actin network at an immune synapse is stable over time and contains branched actin fibers and discrete actin foci. Similar actin architecture is generated in cytolytic T cells, although the timescale differs from that of NK cells. Individual filament displacement leads to stochastic clearance formation and disappearance, which are independent of lytic granule positioning. Actin dynamism is dependent upon branched network formation mediated by Arp2/3 and contractility generated by myosin IIA. Importantly, the use of small-molecule inhibitors demonstrates that actin dynamism is ultimately needed for granule secretion. Thus, we describe a requirement for nanoscale actin fiber rearrangement in generating the complex actin architecture that enables lytic granule secretion.
Collapse
Affiliation(s)
- Alexandre F Carisey
- Center for Human Immunobiology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX 77030, USA; Manchester Collaborative Centre for Inflammation Research, University of Manchester, 46 Grafton Street, Manchester M13 9NT, UK
| | - Emily M Mace
- Center for Human Immunobiology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX 77030, USA
| | - Mezida B Saeed
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, 46 Grafton Street, Manchester M13 9NT, UK
| | - Daniel M Davis
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, 46 Grafton Street, Manchester M13 9NT, UK
| | - Jordan S Orange
- Center for Human Immunobiology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX 77030, USA.
| |
Collapse
|
42
|
Uitto J, Vahidnezhad H. Expanding genetics and phenotypic spectrum of epidermodysplasia verruciformis. Br J Dermatol 2017; 175:1138-1139. [PMID: 27996151 DOI: 10.1111/bjd.14826] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- J Uitto
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA, 19107, U.S.A
| | - H Vahidnezhad
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA, 19107, U.S.A
| |
Collapse
|
43
|
Coronin 1A, a novel player in integrin biology, controls neutrophil trafficking in innate immunity. Blood 2017; 130:847-858. [PMID: 28615221 DOI: 10.1182/blood-2016-11-749622] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 06/11/2017] [Indexed: 12/21/2022] Open
Abstract
Trafficking of polymorphonuclear neutrophils (PMNs) during inflammation critically depends on the β2 integrins lymphocyte function-associated antigen 1 (LFA-1) (CD11a/CD18) and macrophage-1 antigen (CD11b/CD18). Here, we identify coronin 1A (Coro1A) as a novel regulator of β2 integrins that interacts with the cytoplasmic tail of CD18 and is crucial for induction of PMN adhesion and postadhesion events, including adhesion strengthening, spreading, and migration under flow conditions. Transition of PMN rolling to firm adhesion critically depends on Coro1A by regulating the accumulation of high-affinity LFA-1 in focal zones of adherent cells. Defective integrin affinity regulation in the genetic absence of Coro1A impairs leukocyte adhesion and extravasation in inflamed cremaster muscle venules in comparison with control animals. In a Helicobacter pylori mouse infection model, PMN infiltration into the gastric mucosa is dramatically reduced in Coro1A-/- mice, resulting in an attenuated gastric inflammation. Thus, Coro1A represents an important novel player in integrin biology, with key functions in PMN trafficking during innate immunity.
Collapse
|
44
|
Re-evaluation of epidermodysplasia verruciformis: Reconciling more than 90 years of debate. J Am Acad Dermatol 2017; 76:1161-1175. [PMID: 28196644 DOI: 10.1016/j.jaad.2016.12.035] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 12/18/2016] [Accepted: 12/21/2016] [Indexed: 12/31/2022]
Abstract
Epidermodysplasia verruciformis (EV) is a rare genodermatosis characterized by abnormal susceptibility to cutaneous human beta-papillomavirus infections causing persistent flat warts or pityriasis versicolor-like lesions. This generalized verrucous skin disorder resembles generalized verrucosis, but these 2 conditions are distinguished by differences in clinical manifestation and the human papillomavirus types involved. A breakthrough in our understanding of EV was the discovery that homozygous inactivating mutations in TMC6 (EVER1) and TMC8 (EVER2) determine susceptibility to this disorder; however, they have not solved all EV cases fully. These deficiencies account for 75% of affected individuals, leaving a substantial number of patients without an underlying genetic cause. Recently, it has been revealed that mutations in additional genes (RHOH, MST-1, CORO1A, and IL-7) result in extensive human beta-papillomavirus replication and therefore manifest with an EV-like phenotype. The term "acquired EV" is used to describe an EV-like phenotype that develops in immunocompromised hosts, and the introduction of this entity further aggravates the confusion. Reevaluation of these entities is warranted. Here, we review the available data on this issue, provide up to date information on the major characteristics that differentiate between these seemingly clinically similar disorders, and highlight the different mechanisms involved in each disorder.
Collapse
|
45
|
Stray-Pedersen A, Sorte HS, Samarakoon P, Gambin T, Chinn IK, Coban Akdemir ZH, Erichsen HC, Forbes LR, Gu S, Yuan B, Jhangiani SN, Muzny DM, Rødningen OK, Sheng Y, Nicholas SK, Noroski LM, Seeborg FO, Davis CM, Canter DL, Mace EM, Vece TJ, Allen CE, Abhyankar HA, Boone PM, Beck CR, Wiszniewski W, Fevang B, Aukrust P, Tjønnfjord GE, Gedde-Dahl T, Hjorth-Hansen H, Dybedal I, Nordøy I, Jørgensen SF, Abrahamsen TG, Øverland T, Bechensteen AG, Skogen V, Osnes LTN, Kulseth MA, Prescott TE, Rustad CF, Heimdal KR, Belmont JW, Rider NL, Chinen J, Cao TN, Smith EA, Caldirola MS, Bezrodnik L, Lugo Reyes SO, Espinosa Rosales FJ, Guerrero-Cursaru ND, Pedroza LA, Poli CM, Franco JL, Trujillo Vargas CM, Aldave Becerra JC, Wright N, Issekutz TB, Issekutz AC, Abbott J, Caldwell JW, Bayer DK, Chan AY, Aiuti A, Cancrini C, Holmberg E, West C, Burstedt M, Karaca E, Yesil G, Artac H, Bayram Y, Atik MM, Eldomery MK, Ehlayel MS, Jolles S, Flatø B, Bertuch AA, Hanson IC, Zhang VW, Wong LJ, Hu J, Walkiewicz M, Yang Y, Eng CM, Boerwinkle E, Gibbs RA, Shearer WT, Lyle R, Orange JS, Lupski JR. Primary immunodeficiency diseases: Genomic approaches delineate heterogeneous Mendelian disorders. J Allergy Clin Immunol 2017; 139:232-245. [PMID: 27577878 PMCID: PMC5222743 DOI: 10.1016/j.jaci.2016.05.042] [Citation(s) in RCA: 208] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/10/2016] [Accepted: 05/13/2016] [Indexed: 11/15/2022]
Abstract
BACKGROUND Primary immunodeficiency diseases (PIDDs) are clinically and genetically heterogeneous disorders thus far associated with mutations in more than 300 genes. The clinical phenotypes derived from distinct genotypes can overlap. Genetic etiology can be a prognostic indicator of disease severity and can influence treatment decisions. OBJECTIVE We sought to investigate the ability of whole-exome screening methods to detect disease-causing variants in patients with PIDDs. METHODS Patients with PIDDs from 278 families from 22 countries were investigated by using whole-exome sequencing. Computational copy number variant (CNV) prediction pipelines and an exome-tiling chromosomal microarray were also applied to identify intragenic CNVs. Analytic approaches initially focused on 475 known or candidate PIDD genes but were nonexclusive and further tailored based on clinical data, family history, and immunophenotyping. RESULTS A likely molecular diagnosis was achieved in 110 (40%) unrelated probands. Clinical diagnosis was revised in about half (60/110) and management was directly altered in nearly a quarter (26/110) of families based on molecular findings. Twelve PIDD-causing CNVs were detected, including 7 smaller than 30 Kb that would not have been detected with conventional diagnostic CNV arrays. CONCLUSION This high-throughput genomic approach enabled detection of disease-related variants in unexpected genes; permitted detection of low-grade constitutional, somatic, and revertant mosaicism; and provided evidence of a mutational burden in mixed PIDD immunophenotypes.
Collapse
Affiliation(s)
- Asbjørg Stray-Pedersen
- Baylor-Hopkins Center for Mendelian Genomics of the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex; Center for Human Immunobiology of Texas Children's Hospital/Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Department of Pediatrics, Division of Immunology, Allergy, and Rheumatology, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex; Norwegian National Unit for Newborn Screening, Oslo University Hospital, Oslo, Norway; Department of Pediatrics, Oslo University Hospital, Oslo, Norway.
| | - Hanne Sørmo Sorte
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Pubudu Samarakoon
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Tomasz Gambin
- Baylor-Hopkins Center for Mendelian Genomics of the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex; Institute of Computer Science, Warsaw University of Technology, Warsaw, Poland
| | - Ivan K Chinn
- Center for Human Immunobiology of Texas Children's Hospital/Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Department of Pediatrics, Division of Immunology, Allergy, and Rheumatology, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex; Department of Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex
| | - Zeynep H Coban Akdemir
- Baylor-Hopkins Center for Mendelian Genomics of the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex
| | | | - Lisa R Forbes
- Center for Human Immunobiology of Texas Children's Hospital/Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Department of Pediatrics, Division of Immunology, Allergy, and Rheumatology, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex; Department of Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex
| | - Shen Gu
- Baylor-Hopkins Center for Mendelian Genomics of the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex
| | - Bo Yuan
- Baylor-Hopkins Center for Mendelian Genomics of the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex
| | - Shalini N Jhangiani
- Baylor-Hopkins Center for Mendelian Genomics of the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex; Human Genome Sequencing Center, Baylor College of Medicine, Houston, Tex
| | - Donna M Muzny
- Baylor-Hopkins Center for Mendelian Genomics of the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex; Human Genome Sequencing Center, Baylor College of Medicine, Houston, Tex
| | | | - Ying Sheng
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Sarah K Nicholas
- Center for Human Immunobiology of Texas Children's Hospital/Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Department of Pediatrics, Division of Immunology, Allergy, and Rheumatology, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex; Department of Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex
| | - Lenora M Noroski
- Department of Pediatrics, Division of Immunology, Allergy, and Rheumatology, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex; Department of Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex
| | - Filiz O Seeborg
- Department of Pediatrics, Division of Immunology, Allergy, and Rheumatology, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex; Department of Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex
| | - Carla M Davis
- Department of Pediatrics, Division of Immunology, Allergy, and Rheumatology, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex; Department of Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex
| | - Debra L Canter
- Department of Pediatrics, Division of Immunology, Allergy, and Rheumatology, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex; Department of Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex
| | - Emily M Mace
- Center for Human Immunobiology of Texas Children's Hospital/Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Department of Pediatrics, Division of Immunology, Allergy, and Rheumatology, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex
| | - Timothy J Vece
- Department of Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex
| | - Carl E Allen
- Department of Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex; Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, Tex; Texas Children's Cancer and Hematology Center, Department of Pediatrics, Center for Cell and Gene Therapy, Texas Children's Hospital and Baylor College of Medicine, Houston, Tex
| | - Harshal A Abhyankar
- Department of Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex; Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, Tex; Texas Children's Cancer and Hematology Center, Department of Pediatrics, Center for Cell and Gene Therapy, Texas Children's Hospital and Baylor College of Medicine, Houston, Tex
| | - Philip M Boone
- Baylor-Hopkins Center for Mendelian Genomics of the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex
| | - Christine R Beck
- Baylor-Hopkins Center for Mendelian Genomics of the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex
| | - Wojciech Wiszniewski
- Baylor-Hopkins Center for Mendelian Genomics of the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex
| | - Børre Fevang
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Pål Aukrust
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Geir E Tjønnfjord
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Hematology, Oslo University Hospital, Oslo, Norway
| | | | - Henrik Hjorth-Hansen
- Department of Hematology, St Olavs Hospital, Trondheim, Norway; Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ingunn Dybedal
- Department of Hematology, Oslo University Hospital, Oslo, Norway
| | - Ingvild Nordøy
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Silje F Jørgensen
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Tore G Abrahamsen
- Department of Pediatrics, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | | | - Vegard Skogen
- Department of Infectious Diseases, Medical Clinic, University Hospital of North-Norway, Tromsø, Norway
| | - Liv T N Osnes
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, Oslo, Norway
| | - Mari Ann Kulseth
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Trine E Prescott
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Cecilie F Rustad
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Ketil R Heimdal
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - John W Belmont
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex
| | - Nicholas L Rider
- Center for Human Immunobiology of Texas Children's Hospital/Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Department of Pediatrics, Division of Immunology, Allergy, and Rheumatology, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex; Department of Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex
| | - Javier Chinen
- Department of Pediatrics, Division of Immunology, Allergy, and Rheumatology, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex; Department of Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex
| | - Tram N Cao
- Center for Human Immunobiology of Texas Children's Hospital/Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Department of Pediatrics, Division of Immunology, Allergy, and Rheumatology, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex; Department of Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex
| | - Eric A Smith
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Tex
| | - Maria Soledad Caldirola
- Immunology Service, Ricardo Gutierrez Children's Hospital, Ciudad Autonoma de Buenos Aires, Buenos Aires, Argentina
| | - Liliana Bezrodnik
- Immunology Service, Ricardo Gutierrez Children's Hospital, Ciudad Autonoma de Buenos Aires, Buenos Aires, Argentina
| | - Saul Oswaldo Lugo Reyes
- Immunodeficiencies Research Unit, National Institute of Pediatrics, Coyoacan, Mexico City, Mexico
| | | | | | | | - Cecilia M Poli
- Center for Human Immunobiology of Texas Children's Hospital/Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Hospital Roberto del Rio, Universidad de Chile, Santiago, Chile
| | - Jose L Franco
- Grupo de Inmunodeficiencias Primarias, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellin, Colombia
| | - Claudia M Trujillo Vargas
- Grupo de Inmunodeficiencias Primarias, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellin, Colombia
| | | | - Nicola Wright
- Alberta Children's Hospital, Calgary, Alberta, Canada
| | - Thomas B Issekutz
- Department of Pediatrics, Dalhousie University, Izaak Walton Killam Health Centre, Halifax, Nova Scotia, Canada
| | - Andrew C Issekutz
- Department of Pediatrics, Dalhousie University, Izaak Walton Killam Health Centre, Halifax, Nova Scotia, Canada
| | - Jordan Abbott
- Department of Pediatrics, National Jewish Health, Denver, Colo
| | - Jason W Caldwell
- Section of Pulmonary, Critical Care, Allergic and Immunological Diseases, Wake Forest Baptist Medical Center, Medical Center Boulevard, Winston-Salem, NC
| | - Diana K Bayer
- Department of Pediatrics, Division of Pediatric Allergy/Immunology and Pulmonology, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Alice Y Chan
- Department of Pediatrics, University of California, San Francisco, Calif
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), and Vita-Salute San Raffaele University, Milan, Italy
| | - Caterina Cancrini
- University Department of Pediatrics, DPUO, Bambino Gesù Children's Hospital, and Tor Vergata University, Rome, Italy
| | - Eva Holmberg
- Department of Clinical Genetics, University Hospital of Umeå, Umeå, Sweden
| | - Christina West
- Department of Clinical Sciences, Pediatrics, Umeå University, Umeå, Sweden
| | - Magnus Burstedt
- Department of Clinical Genetics, University Hospital of Umeå, Umeå, Sweden
| | - Ender Karaca
- Baylor-Hopkins Center for Mendelian Genomics of the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex
| | - Gözde Yesil
- Baylor-Hopkins Center for Mendelian Genomics of the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex; Department of Medical Genetics, Bezmi Alem Vakif University Faculty of Medicine, Istanbul, Turkey
| | - Hasibe Artac
- Department of Pediatric Immunology and Allergy, Selcuk University Medical Faculty, Alaeddin Keykubat Kampusu, Konya, Turkey
| | - Yavuz Bayram
- Baylor-Hopkins Center for Mendelian Genomics of the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex
| | - Mehmed Musa Atik
- Baylor-Hopkins Center for Mendelian Genomics of the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex
| | - Mohammad K Eldomery
- Baylor-Hopkins Center for Mendelian Genomics of the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex
| | - Mohammad S Ehlayel
- Department of Pediatrics, Section of Pediatric Allergy and Immunology, Hamad Medical Corporation, Doha, Department of Paediatrics, Weill Cornell Medical College, Ar-Rayyan, Qatar
| | - Stephen Jolles
- Immunodeficiency Centre for Wales, University Hospital of Wales, Cardiff, Wales
| | - Berit Flatø
- Department of Rheumatology, Oslo University Hospital, Oslo, Norway
| | - Alison A Bertuch
- Department of Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex; Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, Tex
| | - I Celine Hanson
- Center for Human Immunobiology of Texas Children's Hospital/Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Department of Pediatrics, Division of Immunology, Allergy, and Rheumatology, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex; Department of Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex
| | - Victor W Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex
| | - Lee-Jun Wong
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex
| | - Jianhong Hu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex; Human Genome Sequencing Center, Baylor College of Medicine, Houston, Tex
| | - Magdalena Walkiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex
| | - Yaping Yang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex
| | - Christine M Eng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex
| | - Eric Boerwinkle
- Baylor-Hopkins Center for Mendelian Genomics of the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex; Human Genome Sequencing Center, Baylor College of Medicine, Houston, Tex; Human Genetics Center, University of Texas School of Public Health, Houston, Tex
| | - Richard A Gibbs
- Baylor-Hopkins Center for Mendelian Genomics of the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex; Human Genome Sequencing Center, Baylor College of Medicine, Houston, Tex
| | - William T Shearer
- Department of Pediatrics, Division of Immunology, Allergy, and Rheumatology, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex; Department of Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex
| | - Robert Lyle
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Jordan S Orange
- Center for Human Immunobiology of Texas Children's Hospital/Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Department of Pediatrics, Division of Immunology, Allergy, and Rheumatology, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex; Department of Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex.
| | - James R Lupski
- Baylor-Hopkins Center for Mendelian Genomics of the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex; Department of Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex; Human Genome Sequencing Center, Baylor College of Medicine, Houston, Tex.
| |
Collapse
|
46
|
Shabani M, Nichols KE, Rezaei N. Primary immunodeficiencies associated with EBV-Induced lymphoproliferative disorders. Crit Rev Oncol Hematol 2016; 108:109-127. [PMID: 27931829 DOI: 10.1016/j.critrevonc.2016.10.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 09/10/2016] [Accepted: 10/27/2016] [Indexed: 12/27/2022] Open
Abstract
Primary immunodeficiency diseases (PIDs) are a subgroup of inherited immunological disorders that increase susceptibility to viral infections. Among the range of viral pathogens involved, EBV remains a major threat because of its high prevalence of infection among the adult population and its tendency to progress to life-threatening lymphoproliferative disorders (LPDs) and/or malignancy. The high mortality in immunodeficient patients with EBV-driven LPDs, despite institution of diverse and often intensive treatments, prompts the need to better study these PIDs to identify and understand the affected molecular pathways that increase susceptibility to EBV infection and progression. In this article, we have provided a detailed literature review of the reported cases of EBV-driven LPDs in patients with PID. We discuss the PIDs associated with development of EBV-LPDs. Then, we review the nature and the therapeutic outcome of common EBV- driven LPDs in the PID patients and review the mechanisms common to the major PIDs. Deep study of these common pathways and gaining a better insight into the disease nature and outcomes, may lead to earlier diagnosis of the disease, choosing the best treatment modalities available and development of novel therapeutic strategies to decrease morbidity and mortality brought about by EBV infection.
Collapse
Affiliation(s)
- Mahsima Shabani
- Research Center for Immunodeficiencies, Children's Medical School, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; International Hematology/Oncology Of Pediatrics Experts (IHOPE), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Kim E Nichols
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical School, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Boston, MA, USA.
| |
Collapse
|
47
|
Worth AJJ, Houldcroft CJ, Booth C. Severe Epstein-Barr virus infection in primary immunodeficiency and the normal host. Br J Haematol 2016; 175:559-576. [PMID: 27748521 DOI: 10.1111/bjh.14339] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Epstein-Barr virus (EBV) infection is ubiquitous in humans, but the majority of infections have an asymptomatic or self-limiting clinical course. Rarely, individuals may develop a pathological EBV infection with a variety of life threatening complications (including haemophagocytosis and malignancy) and others develop asymptomatic chronic EBV viraemia. Although an impaired ability to control EBV infection has long been recognised as a hallmark of severe T-cell immunodeficiency, the advent of next generation sequencing has identified a series of Primary Immunodeficiencies in which EBV-related pathology is the dominant feature. Chronic active EBV infection is defined as chronic EBV viraemia associated with systemic lymphoproliferative disease, in the absence of immunodeficiency. Descriptions of larger cohorts of patients with chronic active EBV in recent years have significantly advanced our understanding of this clinical syndrome. In this review we summarise the current understanding of the pathophysiology and natural history of these diseases and clinical syndromes, and discuss approaches to the investigation and treatment of severe or atypical EBV infection.
Collapse
Affiliation(s)
- Austen J J Worth
- Department of Immunology, Great Ormond Street Hospital, London, UK.,Molecular and Cellular Immunology Section, UCL Institute of Child Health, London, UK
| | - Charlotte J Houldcroft
- Infection, Inflammation and Rheumatology Section, UCL Institute of Child Health, London, UK
| | - Claire Booth
- Department of Immunology, Great Ormond Street Hospital, London, UK.,Molecular and Cellular Immunology Section, UCL Institute of Child Health, London, UK
| |
Collapse
|
48
|
Siegmund K, Klepsch V, Hermann-Kleiter N, Baier G. Proof of Principle for a T Lymphocyte Intrinsic Function of Coronin 1A. J Biol Chem 2016; 291:22086-22092. [PMID: 27566541 PMCID: PMC5063991 DOI: 10.1074/jbc.m116.748012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/19/2016] [Indexed: 11/06/2022] Open
Abstract
Coronins are evolutionarily conserved proteins that were originally identified as modulators of actin-dependent processes. Studies analyzing complete Coronin 1a knock-out mice have shown that this molecule is an important regulator of naive T cell homeostasis and it has been linked to immune deficiencies as well as autoimmune disorders. Nevertheless, because Coronin 1A is strongly expressed in all leukocyte subsets, it is not conclusive whether or not this phenotype is attributed to a T cell-intrinsic function of Coronin 1A. To address this research question, we have generated a T cell-specific Coronin 1a knock-out mouse (Coro1afl/fl × Cd4[Cre]). Deletion of Coronin 1A specifically in T cells led to a strong reduction in T cell number and a shift toward the effector/memory phenotype in peripheral lymphoid organs when compared with Cd4[Cre] mice expressing wild-type Coronin 1A. In contrast to peripheral lymphoid tissue, thymocyte number and subsets were not affected by the deletion of Coronin 1a Furthermore, T cell-specific Coronin 1a knock-out mice were largely resistant to the induction of autoimmunity when tested in the myelin oligoglycoprotein-induced EAE mouse model of multiple sclerosis. Thus, the phenotype of T cell-specific Coronin 1a deletion resembles the phenotype observed with conventional (whole body) Coronin 1a knock-out mice. In summary, our findings provide formal proof of the predominant T cell-intrinsic role of Coronin 1A.
Collapse
Affiliation(s)
- Kerstin Siegmund
- From the Department for Pharmacology and Genetics, Medical University Innsbruck, Peter Mayr Strasse 1a, AT-6020 Innsbruck, Austria
| | - Victoria Klepsch
- From the Department for Pharmacology and Genetics, Medical University Innsbruck, Peter Mayr Strasse 1a, AT-6020 Innsbruck, Austria
| | - Natascha Hermann-Kleiter
- From the Department for Pharmacology and Genetics, Medical University Innsbruck, Peter Mayr Strasse 1a, AT-6020 Innsbruck, Austria
| | - Gottfried Baier
- From the Department for Pharmacology and Genetics, Medical University Innsbruck, Peter Mayr Strasse 1a, AT-6020 Innsbruck, Austria
| |
Collapse
|
49
|
Li SL, Duo LN, Wang HJ, Dai W, Zhou EYH, Xu YN, Zhao T, Xiao YY, Xia L, Yang ZH, Zheng LT, Hu YY, Lin ZM, Wang HN, Gao TW, Ma CL, Yang Y, Li CY. Identification of LCK mutation in a family with atypical epidermodysplasia verruciformis with T-cell defects and virus-induced squamous cell carcinoma. Br J Dermatol 2016; 175:1204-1209. [PMID: 27087313 DOI: 10.1111/bjd.14679] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2016] [Indexed: 11/28/2022]
Abstract
BACKGROUND Inherited epidermodysplasia verruciformis (EV) is a rare skin disorder characterized by susceptibility to specific types of human papilloma virus (HPV) and is strongly associated with skin carcinomas. Inactivating mutations in EVER1/EVER2 account for most cases of EV. However, more phenotypes related to but distinct from EV have been reported with an immunodeficiency state but without EVER1/EVER2 mutation, and the genetic basis for these atypical EV cases is poorly understood. OBJECTIVES To identify the causative gene responsible for three siblings affected by atypical EV but without EVER1/EVER2 mutation. METHODS Whole-exome sequencing followed by Sanger sequencing was performed to identify the gene responsible for the patients with atypical EV enrolled in our study. RESULTS A homozygous splicing mutation was detected in LCK (c.188-2A>G). This mutation resulted in an exon 3 deletion T lymphocyte-specific protein tyrosine kinase isoform, which further led to frameshift mutation and subsequent mRNA decay. CONCLUSIONS We demonstrate a novel mutation in LCK in a family affected by atypical EV with T-cell defects, HPV infection and virus-induced malignancy, providing new clues in the understanding of host defences against HPV and better genetic counselling of patients with the EV phenotype.
Collapse
Affiliation(s)
- S-L Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - L-N Duo
- Department of Dermatology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - H-J Wang
- Department of Dermatology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - W Dai
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - E-Y H Zhou
- Department of Dermatology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| | - Y-N Xu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - T Zhao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Y-Y Xiao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - L Xia
- Department of Dermatology, General Hospital of Ningxia Medical University, Yinchuan, Ning Xia, China
| | - Z-H Yang
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan, Ning Xia, China
| | - L-T Zheng
- Novogene Bioinformatics Technology Co., Ltd, Beijing, China
| | - Y-Y Hu
- Novogene Bioinformatics Technology Co., Ltd, Beijing, China
| | - Z-M Lin
- Department of Dermatology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| | - H-N Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - T-W Gao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - C-L Ma
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Y Yang
- Department of Dermatology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - C-Y Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
50
|
Tahiat A, Badran YR, Chou J, Cangemi B, Lefranc G, Labgaa ZM, Oussalam S, Kaddouri-Slimani A, Belarbi A, Bendissari-Bouzid K, Gharnaout M, Geha RS, Djidjik R, Massaad MJ. Epidermodysplasia verruciformis as a manifestation of ARTEMIS deficiency in a young adult. J Allergy Clin Immunol 2016; 139:372-375.e4. [PMID: 27568080 DOI: 10.1016/j.jaci.2016.07.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 07/08/2016] [Accepted: 07/18/2016] [Indexed: 10/21/2022]
Affiliation(s)
- Azzedine Tahiat
- Algiers Faculty of Medicine, Department of Immunology, Beni Messous University Hospital, University of Algiers 1, Algiers, Algeria
| | - Yousef R Badran
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Janet Chou
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Brittney Cangemi
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Gerard Lefranc
- Institute of Human Genetics, CNRS UPR 1142, and Montpellier University, Montpellier, France
| | - Zakaria-Merouane Labgaa
- Algiers Faculty of Medicine, Department of Immunology, Beni Messous University Hospital, University of Algiers 1, Algiers, Algeria
| | - Salma Oussalam
- Department of Pathology, Beni Messous University Hospital, Algiers, Algeria
| | | | - Ayad Belarbi
- Department of Pathology, Douera Hospital, Algiers, Algeria
| | | | - Merzak Gharnaout
- Department of Pneumology, Phthisiology and Allergy, Rouiba Hospital, Algiers, Algeria
| | - Raif S Geha
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Réda Djidjik
- Algiers Faculty of Medicine, Department of Immunology, Beni Messous University Hospital, University of Algiers 1, Algiers, Algeria
| | - Michel J Massaad
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass.
| |
Collapse
|