1
|
Ye Z, Xu Y, Zhang M, Cai C. Sympathetic nerve signals: orchestrators of mammary development and stem cell vitality. J Mol Cell Biol 2024; 16:mjae020. [PMID: 38740522 PMCID: PMC11520406 DOI: 10.1093/jmcb/mjae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/25/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024] Open
Abstract
The mammary gland is a dynamic organ that undergoes significant changes at multiple stages of postnatal development. Although the roles of systemic hormones and microenvironmental cues in mammary homeostasis have been extensively studied, the influence of neural signals, particularly those from the sympathetic nervous system, remains poorly understood. Here, using a mouse mammary gland model, we delved into the regulatory role of sympathetic nervous signaling in the context of mammary stem cells and mammary development. Our findings revealed that depletion of sympathetic nerve signals results in defective mammary development during puberty, adulthood, and pregnancy, accompanied by a reduction in mammary stem cell numbers. Through in vitro three-dimensional culture and in vivo transplantation analyses, we demonstrated that the absence of sympathetic nerve signals hinders mammary stem cell self-renewal and regeneration, while activation of sympathetic nervous signaling promotes these capacities. Mechanistically, sympathetic nerve signals orchestrate mammary stem cell activity and mammary development through the extracellular signal-regulated kinase signaling pathway. Collectively, our study unveils the crucial roles of sympathetic nerve signals in sustaining mammary development and regulating mammary stem cell activity, offering a novel perspective on the involvement of the nervous system in modulating adult stem cell function and organ development.
Collapse
Affiliation(s)
- Zi Ye
- Department of Pulmonary Oncology, Hubei Province Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Yu Xu
- Department of Pulmonary Oncology, Hubei Province Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Mengna Zhang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Cheguo Cai
- Department of Pulmonary Oncology, Hubei Province Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan 430071, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
2
|
Rodrigues-Jesus J, Canadas-Sousa A, Oliveira P, Figueira AC, Marrinhas C, Petrucci GN, Gregório H, Tinoco F, Goulart A, Felga H, Vilhena H, Dias-Pereira P. Distribution of Inflammatory Infiltrate in Feline Mammary Lesions: Relationship With Clinicopathological Features. Vet Comp Oncol 2024. [PMID: 38863270 DOI: 10.1111/vco.12987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/25/2024] [Accepted: 05/21/2024] [Indexed: 06/13/2024]
Abstract
Inflammation is a frequent finding in feline mammary neoplasms. Recent research suggests that the presence and location of tumour-associated immune cells might play a significant role in the clinical outcome of feline mammary carcinomas. The present study aimed to characterise the overall inflammatory infiltrates in healthy, hyperplastic/dysplastic, benign and malignant lesions of the feline mammary gland, and to evaluate its association with clinicopathological features. Perilesional and intralesional inflammatory foci were evaluated in 307 lesions from 185 queens, and categorised according to its distribution and intensity. The presence, location and density of tertiary lymphoid structures were also assessed. A control group included 24 queens without mammary changes. The presence of intralesional and perilesional inflammatory infiltrate was observed in a majority of the lesions (80.8% and 90.2%, respectively), but differed according to the type of mammary lesion, being more remarkable in malignant neoplasms. Only scarce individual cells were observed in 28.1% of the normal mammary glands. Data analysis revealed statistically significant associations (p < 0.05) between the presence of a more prominent intralesional and perilesional inflammatory reaction and several clinicopathological features associated with worse prognosis, including clinical stage, tumour size, mitotic count, lymphovascular invasion and lymph node metastasis. Furthermore, tertiary lymphoid structures were significantly more frequent in tumours with an infiltrative growth and lymph node metastasis. According to our results, the inflammatory reaction present in different types of feline mammary lesions is associated with the development of more aggressive tumours.
Collapse
Affiliation(s)
- Joana Rodrigues-Jesus
- Department of Pathology and Molecular Immunology, School of Medicine and Biomedical Sciences, ICBAS-UP, University of Porto, Porto, Portugal
| | - Ana Canadas-Sousa
- Department of Pathology and Molecular Immunology, School of Medicine and Biomedical Sciences, ICBAS-UP, University of Porto, Porto, Portugal
| | - Pedro Oliveira
- Department of Populations Studies, School of Medicine and Biomedical Sciences, ICBAS-UP, University of Porto, Porto, Portugal
| | - Ana Catarina Figueira
- OneVet Veterinary University Hospital of Coimbra (HVUC), Coimbra, Portugal
- Centre for Investigation Vasco da Gama (CIVG), Department of Veterinary Sciences, Vasco da Gama University School, Coimbra, Portugal
| | - Carla Marrinhas
- Centre for Investigation Vasco da Gama (CIVG), Department of Veterinary Sciences, Vasco da Gama University School, Coimbra, Portugal
- OneVet Veterinary Hospital of Baixo Vouga (HVBV), Águeda, Portugal
| | - Gonçalo N Petrucci
- Centre for Investigation Vasco da Gama (CIVG), Department of Veterinary Sciences, Vasco da Gama University School, Coimbra, Portugal
- OneVet Veterinary Hospital of Porto (HVP), Porto, Portugal
- Department of Animal and Veterinary Sciences, University Institute for Health Sciences, CESPU, CRL, Gandra, Portugal
| | - Hugo Gregório
- Department of Animal and Veterinary Sciences, University Institute for Health Sciences, CESPU, CRL, Gandra, Portugal
- AniCura Veterinary Hospital Centre (CHV), Porto, Portugal
| | - Flora Tinoco
- Dra. Flora Tinoco Veterinary Clinic, Maia, Portugal
| | | | - Helena Felga
- Clínica dos Gatos Veterinary Clinic, Porto, Portugal
| | - Hugo Vilhena
- OneVet Veterinary University Hospital of Coimbra (HVUC), Coimbra, Portugal
- Centre for Investigation Vasco da Gama (CIVG), Department of Veterinary Sciences, Vasco da Gama University School, Coimbra, Portugal
- Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
- Associate Laboratory of Animal and Veterinary Sciences AL4AnimaLS, Lisbon, Portugal
| | - Patrícia Dias-Pereira
- Department of Pathology and Molecular Immunology, School of Medicine and Biomedical Sciences, ICBAS-UP, University of Porto, Porto, Portugal
| |
Collapse
|
3
|
McGuinness C, Britt KL. Estrogen receptor regulation of the immune microenvironment in breast cancer. J Steroid Biochem Mol Biol 2024; 240:106517. [PMID: 38555985 DOI: 10.1016/j.jsbmb.2024.106517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/07/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Breast cancer (BCa) is the most common cancer in women and the estrogen receptor (ER)+ subtype is increasing in incidence. There are numerous therapy options available for patients that target the ER, however issues such as innate and acquired treatment resistance, and treatment related side effects justify research into alternative therapeutic options for these patients. Patients of many solid tumour types have benefitted from immunotherapy, however response rates have been generally low in ER+ BCa. We summarise the recent work assessing CDK4/6 inhibitors for ER+ BCa and how they have been shown to prime anti-tumour immune cells and achieve impressive results in preclinical models. A great example of how the immune system might be activated against ER+ BCa. We review the role of estrogen signalling in immune cells, and explore recent data highlighting the hormonal regulation of the immune microenvironment of normal breast, BCa and immune disorders. As recent data has indicated that macrophages are particularly susceptible to estrogen signalling, we highlight macrophage phagocytosis as a key potential target for priming the tumour immune microenvironment. We challenge the generally accepted paradigm that ER+ BCa are "immune-cold" - advocating instead for research into therapies that could be used in combination with targeted therapies and/or immune checkpoint blockade to achieve durable antitumour responses in ER+ BCa.
Collapse
Affiliation(s)
- Conor McGuinness
- Breast Cancer Risk and Prevention Lab, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| | - Kara L Britt
- Breast Cancer Risk and Prevention Lab, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
4
|
Ferreira Almeida C, Correia-da-Silva G, Teixeira N, Amaral C. Influence of tumor microenvironment on the different breast cancer subtypes and applied therapies. Biochem Pharmacol 2024; 223:116178. [PMID: 38561089 DOI: 10.1016/j.bcp.2024.116178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/15/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024]
Abstract
Despite the significant improvements made in breast cancer therapy during the last decades, this disease still has increasing incidence and mortality rates. Different targets involved in general processes, like cell proliferation and survival, have become alternative therapeutic options for this disease, with some of them already used in clinic, like the CDK4/6 inhibitors for luminal A tumors treatment. Nevertheless, there is a demand for novel therapeutic strategies focused not only on tumor cells, but also on their microenvironment. Tumor microenvironment (TME) is a very complex and dynamic system that, more than surrounding and supporting tumor cells, actively participates in tumor development and progression. During the last decades, it has become clear that the cellular and acellular components of TME differ between the various breast cancer subtypes and shape the differences regarding their severity and prognosis. The pivotal role of the TME in controlling tumor growth and influencing responses to therapy represents a potential source for novel targets and therapeutic strategies. In this review, we present a description of the multiple therapeutic options used for different breast cancer subtypes, as well as the influence that the TME may exert on the development of the disease and on the response to the distinct therapies, which in some cases may explain their failure by the occurrence of relapses and resistance. Furthermore, the ongoing studies focused on the use of TME components for developing potential cancer treatments are described.
Collapse
Affiliation(s)
- Cristina Ferreira Almeida
- UCIBIO, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| | - Georgina Correia-da-Silva
- UCIBIO, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal.
| | - Natércia Teixeira
- UCIBIO, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| | - Cristina Amaral
- UCIBIO, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal.
| |
Collapse
|
5
|
Wang X, Fei Y, Shao Y, Liao Q, Meng Q, Chen R, Deng L. Transcriptome analysis reveals immune function-related mRNA expression in donkey mammary glands during four developmental stages. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 49:101169. [PMID: 38096640 DOI: 10.1016/j.cbd.2023.101169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 02/15/2024]
Abstract
The low susceptibility to mastitis of female donkey (jenny) mammary glands and the strong immune properties of donkey milk are acknowledged, but little is known about the genes involved in mammary gland immunity in jennies. Herein, we used RNA-sequencing and bioinformatics analyses to explore jenny mammary gland transcriptomes and detect potential functional differentially expressed (DE) mRNAs related to immunity during four specific developmental stages: foetal (F), pubertal (P), adult parous nonlactation (N) and lactation (L). A total of 2497, 583 and 1820 DE mRNAs were identified in jenny mammary glands at F vs. P, P vs. N, and N vs. L, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Gene and Genomes (KEGG) analyses revealed numerous GO terms related to immune function, especially between F and P. Seven significantly enriched profiles were identified, among which 497 and 1261 DE mRNAs were upregulated in profiles 19 and 17. Eleven mRNAs were enriched in over 10 KEGG pathways. β-2-microglobulin (B2M), immunoglobulin heavy constant mu (IGHM), toll like receptor 2 (TLR2), toll like receptor 4 (TLR4) and myeloid differentiation factor 88 (MYD88) were mainly involved in phosphoinositide 3-kinase (PI3K)-Akt signalling, phagosome and nuclear factor kappa-B (NF-kappa B) signalling pathways. The findings provide insight into the molecular features underpinning the low prevalence of intramammary infections (i.e., mastitis) in donkeys.
Collapse
Affiliation(s)
- Xinyue Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Yaqi Fei
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Yang Shao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Qingchao Liao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Qingze Meng
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Ran Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Liang Deng
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
6
|
Wu Y, Teh YC, Chong SZ. Going Full TeRM: The Seminal Role of Tissue-Resident Macrophages in Organ Remodeling during Pregnancy and Lactation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:513-521. [PMID: 38315948 DOI: 10.4049/jimmunol.2300560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/23/2023] [Indexed: 02/07/2024]
Abstract
During pregnancy and lactation, the uterus and mammary glands undergo remarkable structural changes to perform their critical reproductive functions before reverting to their original dormant state upon childbirth and weaning, respectively. Underlying this incredible plasticity are complex remodeling processes that rely on coordinated decisions at both the cellular and tissue-subunit levels. With their exceptional versatility, tissue-resident macrophages play a variety of supporting roles in these organs during each stage of development, ranging from maintaining immune homeostasis to facilitating tissue remodeling, although much remains to be discovered about the identity and regulation of individual macrophage subsets. In this study, we review the increasingly appreciated contributions of these immune cells to the reproductive process and speculate on future lines of inquiry. Deepening our understanding of their interactions with the parenchymal or stromal populations in their respective niches may reveal new strategies to ameliorate complications in pregnancy and breastfeeding, thereby improving maternal health and well-being.
Collapse
Affiliation(s)
- Yixuan Wu
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Ye Chean Teh
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Shu Zhen Chong
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| |
Collapse
|
7
|
Zhou Y, Ye Z, Wei W, Zhang M, Huang F, Li J, Cai C. Macrophages maintain mammary stem cell activity and mammary homeostasis via TNF-α-PI3K-Cdk1/Cyclin B1 axis. NPJ Regen Med 2023; 8:23. [PMID: 37130846 PMCID: PMC10154328 DOI: 10.1038/s41536-023-00296-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 04/20/2023] [Indexed: 05/04/2023] Open
Abstract
Adult stem cell niche is a special environment composed of a variety stromal cells and signals, which cooperatively regulate tissue development and homeostasis. It is of great interest to study the role of immune cells in niche. Here, we show that mammary resident macrophages regulate mammary epithelium cell division and mammary development through TNF-α-Cdk1/Cyclin B1 axis. In vivo, depletion of macrophages reduces the number of mammary basal cells and mammary stem cells (MaSCs), while increases mammary luminal cells. In vitro, we establish a three-dimensional culture system in which mammary basal cells are co-cultured with macrophages, and interestingly, macrophage co-culture promotes the formation of branched functional mammary organoids. Moreover, TNF-α produced by macrophages activates the intracellular PI3K/Cdk1/Cyclin B1 signaling in mammary cells, thereby maintaining the activity of MaSCs and the formation of mammary organoids. Together, these findings reveal the functional significance of macrophageal niche and intracellular PI3K/Cdk1/Cyclin B1 axis for maintaining MaSC activity and mammary homeostasis.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zi Ye
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Wei Wei
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Mengna Zhang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Fujing Huang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jinpeng Li
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China.
| | - Cheguo Cai
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China.
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| |
Collapse
|
8
|
Archer M, Bernhardt SM, Hodson LJ, Woolford L, Van der Hoek M, Dasari P, Evdokiou A, Ingman WV. CCL2-Mediated Stromal Interactions Drive Macrophage Polarization to Increase Breast Tumorigenesis. Int J Mol Sci 2023; 24:ijms24087385. [PMID: 37108548 PMCID: PMC10138606 DOI: 10.3390/ijms24087385] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/12/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
CCL2 is an inflammatory cytokine that regulates macrophage activity and is implicated in increased mammographic density and early breast tumorigenesis. The role of CCL2 in mediating stromal interactions that contribute to breast tumorigenesis has yet to be fully elucidated. THP-1-derived macrophages and mammary fibroblasts were co-cultured for 72 h. Fibroblasts and macrophages were analysed for phenotype, expression of inflammatory and ECM-regulatory genes and collagen production. Mice overexpressing CCL2 in the mammary glands were analysed for global gene expression by RNAseq at 12 weeks of age. These mice were cross-bred with PyMT mammary tumour mice to examine the role of CCL2 in tumorigenesis. The co-culture of macrophages with fibroblasts resulted in macrophage polarization towards an M2 phenotype, and upregulated expression of CCL2 and other genes associated with inflammation and ECM remodelling. CCL2 increased the production of insoluble collagen by fibroblasts. A global gene expression analysis of CCL2 overexpressing mice revealed that CCL2 upregulates cancer-associated gene pathways and downregulates fatty acid metabolism gene pathways. In the PyMT mammary tumour model, CCL2 overexpressing mice exhibited increased macrophage infiltration and early tumorigenesis. Interactions between macrophages and fibroblasts regulated by CCL2 can promote an environment that may increase breast cancer risk, leading to enhanced early tumorigenesis.
Collapse
Affiliation(s)
- Maddison Archer
- Discipline of Surgical Specialties, Adelaide Medical School, University of Adelaide, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, SA 5006, Australia
| | - Sarah M Bernhardt
- Discipline of Surgical Specialties, Adelaide Medical School, University of Adelaide, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, SA 5006, Australia
| | - Leigh J Hodson
- Discipline of Surgical Specialties, Adelaide Medical School, University of Adelaide, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, SA 5006, Australia
| | - Lucy Woolford
- School of Animal and Veterinary Sciences, Faculty of Sciences, Roseworthy Campus, University of Adelaide, Roseworthy, SA 5371, Australia
| | - Mark Van der Hoek
- South Australian Genomics Centre, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Pallave Dasari
- Discipline of Surgical Specialties, Adelaide Medical School, University of Adelaide, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, SA 5006, Australia
| | - Andreas Evdokiou
- Discipline of Surgical Specialties, Adelaide Medical School, University of Adelaide, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia
| | - Wendy V Ingman
- Discipline of Surgical Specialties, Adelaide Medical School, University of Adelaide, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, SA 5006, Australia
| |
Collapse
|
9
|
Granulomatous mastitis (GM) in a young woman with a previous history of prolactin-secreting PitNET and actual normal prolactinemia. Radiol Case Rep 2023; 18:550-555. [DOI: 10.1016/j.radcr.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/29/2022] [Accepted: 11/02/2022] [Indexed: 11/27/2022] Open
|
10
|
Tower H, Dall G, Davey A, Stewart M, Lanteri P, Ruppert M, Lambouras M, Nasir I, Yeow S, Darcy PK, Ingman WV, Parker B, Haynes NM, Britt KL. Estrogen-induced immune changes within the normal mammary gland. Sci Rep 2022; 12:18986. [PMID: 36347875 PMCID: PMC9643548 DOI: 10.1038/s41598-022-21871-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 10/05/2022] [Indexed: 11/09/2022] Open
Abstract
Breast cancer (BCa) incidence increases following aberrant hormone exposure, which has been linked to direct effects on estrogen receptor (ER)+ mammary epithelium. While estrogen exposure during mammary involution has been shown to drive tumour growth via neutrophils, the potential for the ER + immune microenvironment to mediate part (in addition to mammary epithelial cells) of hormonally controlled BCa risk during normal development has not been assessed. We collected mammary tissue, lymph nodes and blood from tumour naïve mice treated with, oophorectomy, estrogen (17β estradiol) or Fulvestrant. Flow cytometry was used to examine the impact on the frequency of innate and adaptive immune cells. Oophorectomy and fulvestrant decreased the proportion of macrophages, particularly pro-tumour polarized M2 macrophages and neutrophils. Conversely, dendritic cells were increased by these therapies, as were eosinophils. Estrogen increased the proportion of M2 macrophages and to a lesser extent CD4-CD8- double negative and FoxP3+ regulatory T cells but decreased CD8 + T cells and B cells. Excluding eosinophils, these changes were restricted to the mammary tissue. This suggests that inhibiting estrogen action lowers the immune suppressive myeloid cells, increases in antigen presentation and eosinophil-mediated direct or indirect cytotoxic effects. In contrast, estrogen exposure, which drives BCa risk, increases the suppressive myeloid cells and reduces anti-tumour cytotoxic T cells. The impact of hormonal exposure on BCa risk, may in part be linked to its immune modulatory activity.
Collapse
Affiliation(s)
- Helen Tower
- grid.1055.10000000403978434Breast Cancer Risk and Prevention Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia
| | - Genevieve Dall
- grid.1055.10000000403978434Breast Cancer Risk and Prevention Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1042.70000 0004 0432 4889The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC Australia
| | - Ashleigh Davey
- grid.1055.10000000403978434Breast Cancer Risk and Prevention Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1042.70000 0004 0432 4889Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, 5052 Australia
| | - Melanie Stewart
- grid.1055.10000000403978434Breast Cancer Risk and Prevention Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia
| | - Patrick Lanteri
- grid.1055.10000000403978434Breast Cancer Risk and Prevention Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia
| | - Meagan Ruppert
- grid.1055.10000000403978434Breast Cancer Risk and Prevention Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia
| | - Maria Lambouras
- grid.1055.10000000403978434Breast Cancer Risk and Prevention Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1002.30000 0004 1936 7857Department of Anatomy and Developmental Biology, Monash University Clayton, Wellington Rd, Clayton, 3800 Australia
| | - Ibraheem Nasir
- grid.1055.10000000403978434Breast Cancer Risk and Prevention Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia
| | - Serene Yeow
- grid.1055.10000000403978434Breast Cancer Risk and Prevention Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia
| | - Phillip K. Darcy
- grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Melbourne, VIC Australia ,grid.1055.10000000403978434Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Wendy V. Ingman
- grid.1010.00000 0004 1936 7304Discipline of Surgical Specialties, Adelaide Medical School, The Queen Elizabeth Hospital, University of Adelaide, Adelaide, SA 5011 Australia ,grid.1010.00000 0004 1936 7304Robinson Research Institute, University of Adelaide, Adelaide, SA 5005 Australia
| | - Belinda Parker
- grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Melbourne, VIC Australia ,grid.1055.10000000403978434Cancer Evolution and Metastasis Program, Peter MacCallum Cancer Centre, Melbourne, VIC Australia
| | - Nicole M. Haynes
- grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Melbourne, VIC Australia ,grid.1055.10000000403978434Cancer Therapeutics Program, Peter MacCallum Cancer Centre, Melbourne, VIC Australia
| | - Kara L. Britt
- grid.1055.10000000403978434Breast Cancer Risk and Prevention Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1002.30000 0004 1936 7857Department of Anatomy and Developmental Biology, Monash University Clayton, Wellington Rd, Clayton, 3800 Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Melbourne, VIC Australia
| |
Collapse
|
11
|
Li W, Long X, Li F, Cao Y, Liu J, Fu S, Guo W, Hu G. Lysine stimulates the development of the murine mammary gland at puberty via PI3K/AKT/mTOR signalling axis. J Anim Physiol Anim Nutr (Berl) 2022; 106:1420-1430. [PMID: 35923149 DOI: 10.1111/jpn.13756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/21/2022] [Accepted: 07/08/2022] [Indexed: 11/29/2022]
Abstract
Lysine is one of the essential amino acids. The effect of lysine on milk protein and milk fat anabolism has been reported, but the effect on mammary glands development has not been studied in detail. The normal development of the mammary glands at puberty is crucial to lactation of mammals. In this study, to explore the effect of lysine on mammary glands development, we fed different concentrations of lysine (0.025%, 0.05%, 0.1%) to pubertal mice and found that the addition of 0.1% lysine to drinking water significantly promoted mammary glands development. Furthermore, we treated mMECs (mouse mammary epithelial cells) with different concentrations of lysine (0, 0.2, 0.4, 0.6, 0.8 and 1 mM) to explore the underlying mechanism, and found that lysine promoted the proliferation of mMECs and development of mammary glands through PI3K/AKT/mTOR signalling pathway in pubertal mice. Overall, the results of this study revealed that lysine activated the PI3K/AKT/mTOR signal axis, elevated protein concentrations of cell proliferation markers, such as PCNA, Cyclin D1 and D3, and enhanced the proliferation of mMECs, finally promoted the murine mammary glands development at puberty.
Collapse
Affiliation(s)
- Wen Li
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Xiaoyu Long
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Feng Li
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Yu Cao
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Juxiong Liu
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Shoupeng Fu
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Wenjin Guo
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Guiqiu Hu
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| |
Collapse
|
12
|
Feng J, Zhao D, Lv F, Yuan Z. Epigenetic Inheritance From Normal Origin Cells Can Determine the Aggressive Biology of Tumor-Initiating Cells and Tumor Heterogeneity. Cancer Control 2022; 29:10732748221078160. [PMID: 35213254 PMCID: PMC8891845 DOI: 10.1177/10732748221078160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The acquisition of genetic- and epigenetic-abnormalities during transformation has been recognized as the two fundamental factors that lead to tumorigenesis and determine the aggressive biology of tumor cells. However, there is a regularity that tumors derived from less-differentiated normal origin cells (NOCs) usually have a higher risk of vascular involvement, lymphatic and distant metastasis, which can be observed in both lymphohematopoietic malignancies and somatic cancers. Obviously, the hypothesis of genetic- and epigenetic-abnormalities is not sufficient to explain how the linear relationship between the cellular origin and the biological behavior of tumors is formed, because the cell origin of tumor is an independent factor related to tumor biology. In a given system, tumors can originate from multiple cell types, and tumor-initiating cells (TICs) can be mapped to different differentiation hierarchies of normal stem cells, suggesting that the heterogeneity of the origin of TICs is not completely chaotic. TIC’s epigenome includes not only genetic- and epigenetic-abnormalities, but also established epigenetic status of genes inherited from NOCs. In reviewing previous studies, we found much evidence supporting that the status of many tumor-related “epigenetic abnormalities” in TICs is consistent with that of the corresponding NOC of the same differentiation hierarchy, suggesting that they may not be true epigenetic abnormalities. So, we speculate that the established statuses of genes that control NOC’s migration, adhesion and colonization capabilities, cell-cycle quiescence, expression of drug transporters, induction of mesenchymal formation, overexpression of telomerase, and preference for glycolysis can be inherited to TICs through epigenetic memory and be manifested as their aggressive biology. TICs of different origins can maintain different degrees of innate stemness from NOC, which may explain why malignancies with stem cell phenotypes are usually more aggressive.
Collapse
Affiliation(s)
- Jiliang Feng
- Clinical-Pathology Center, Capital Medical University Affiliated Beijing Youan Hospital, Beijing, China
| | - Dawei Zhao
- Medical Imaging Department, Capital Medical University Affiliated Beijing Youan Hospital, Beijing, China
| | - Fudong Lv
- Clinical-Pathology Center, Capital Medical University Affiliated Beijing Youan Hospital, Beijing, China
| | - Zhongyu Yuan
- Clinical-Pathology Center, Capital Medical University Affiliated Beijing Youan Hospital, Beijing, China
| |
Collapse
|
13
|
Ruiz TFR, Leonel ECR, Colleta SJ, Bedolo CM, Pegorin de Campos SG, Taboga SR. Gestational and lactational xenoestrogen exposure disrupts morphology and inflammatory aspects in mammary gland of gerbil mothers during involution. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 89:103785. [PMID: 34896274 DOI: 10.1016/j.etap.2021.103785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
In the mammary gland (MG), the developmental window for gestational/lactational differentiation and growth is highly vulnerable to hormonal disruption. Here we describe that the MG involution process in female gerbil mothers is delayed by bisphenol A (BPA) exposure during gestation and lactation. The process is directly influenced by changes in expression of extracellular matrix proteases MMP-2, MMP-9, and FAP, and the incidence of collagen and elastin is reduced after 7 and 14 days of weaning. A pro-inflammatory environment in the late involution process was confirmed by higher expression of TNF-α, COX-2 and phospho-STAT3 n the MG stroma, allied to increases in the incidence of macrophages and mast cells. These aspects impacted the proliferative pattern of epithelial cells, which decreased on the 14th post-weaning day. These data confirm that the milk production window of susceptibility is vulnerable to the impact of BPA, which promotes a suggestive pro-tumoral microenvironment during mammary involution.
Collapse
Affiliation(s)
- Thalles Fernando Rocha Ruiz
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), Rua Cristóvão Colombo, 2265, Jardim Nazareth, 15054-000 São José do Rio Preto, São Paulo, Brazil.
| | - Ellen Cristina Rivas Leonel
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), Rua Cristóvão Colombo, 2265, Jardim Nazareth, 15054-000 São José do Rio Preto, São Paulo, Brazil; Department of Histology, Embryology and Cell Biology, Institute of Biological Sciences, Federal University of Goiás (UFG), Avenida Esperança, s/n, Câmpus Samambaia, 74690-900 Goiânia, Goiás, Brazil.
| | - Simone Jacovaci Colleta
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), Rua Cristóvão Colombo, 2265, Jardim Nazareth, 15054-000 São José do Rio Preto, São Paulo, Brazil
| | - Carolina Marques Bedolo
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), Rua Cristóvão Colombo, 2265, Jardim Nazareth, 15054-000 São José do Rio Preto, São Paulo, Brazil
| | - Silvana Gisele Pegorin de Campos
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), Rua Cristóvão Colombo, 2265, Jardim Nazareth, 15054-000 São José do Rio Preto, São Paulo, Brazil
| | - Sebastião Roberto Taboga
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), Rua Cristóvão Colombo, 2265, Jardim Nazareth, 15054-000 São José do Rio Preto, São Paulo, Brazil.
| |
Collapse
|
14
|
Abstract
Prolactin coordinates with the ovarian steroids to orchestrate mammary development and lactation, culminating in nourishment and an increasingly appreciated array of other benefits for neonates. Its central activities in mammary epithelial growth and differentiation suggest that it plays a role(s) in breast cancer, but it has been challenging to identify its contributions, essential for incorporation into prevention and treatment approaches. Large prospective epidemiologic studies have linked higher prolactin exposure to increased risk, particularly for ER+ breast cancer in postmenopausal women. However, it has been more difficult to determine its actions and clinical consequences in established tumors. Here we review experimental data implicating multiple mechanisms by which prolactin may increase the risk of breast cancer. We then consider the evidence for role(s) of prolactin and its downstream signaling cascades in disease progression and treatment responses, and discuss how new approaches are beginning to illuminate the biology behind the seemingly conflicting epidemiologic and experimental studies of prolactin actions across diverse breast cancers.
Collapse
|
15
|
Mellemkjær L, Eibye S, Albieri V, Kjær SK, Boice JD. Pregnancy-associated cancer and the risk of second primary cancer. Cancer Causes Control 2021; 33:63-71. [PMID: 34643832 DOI: 10.1007/s10552-021-01500-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 09/27/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Hormonal changes related to pregnancy and lactation among women treated for cancer might influence the risk of second primary cancer. We investigated whether pregnancy near the time of breast cancer, Hodgkin lymphoma or other cancer diagnoses is associated with increased risk of developing a new primary cancer. METHODS Women born after 1 April 1935 diagnosed with cancer at ages 15-44 years during 1968-2006 were identified in the Danish Cancer Registry. Information about pregnancies from various nationwide registers was used to identify women with a pregnancy-associated cancer defined as a cancer diagnosed 6 or fewer months before the pregnancy, during the pregnancy or up to 1 year after the pregnancy. Second primary cancers were ascertained through 2013, and hazard ratios (HRs) were calculated using Cox regression models adjusted for age, calendar-period and number of pregnancies with the reference defined as cancer not associated with a pregnancy. RESULTS We identified 2,974 women with pregnancy-associated cancer and 31,970 women who were not pregnant near the time of their cancer diagnosis. There was no association between pregnancy-associated cancer and a second cancer (HR 0.91; 95% CI 0.79-1.05). Among 680 women with either breast cancer or Hodgkin lymphoma associated with pregnancy, a HR of 1.16 (95% CI 0.87-1.56) for second breast cancer was observed based on 48 cases. CONCLUSION While hormonal changes might stimulate development of specific cancers, in particular breast cancer, it is reassuring that risk of breast and other second cancers was not related to pregnancy near the time of a first primary cancer diagnosis.
Collapse
Affiliation(s)
- Lene Mellemkjær
- Unit of Virus Lifestyle and Genes, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark.
| | - Simone Eibye
- Department of Oncology and Radiation Biology, Rigshospitalet University Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Vanna Albieri
- Unit of Statistics and Data Analyses, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Susanne K Kjær
- Unit of Virus Lifestyle and Genes, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark.,Department of Gynecology, Rigshospitalet University Hospital, University of Copenhagen, Copenhagen, Denmark
| | - John D Boice
- National Council on Radiation Protection and Measurements, Bethesda, MD, USA.,Division of Epidemiology, Department of Medicine, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
16
|
Rusidzé M, Adlanmérini M, Chantalat E, Raymond-Letron I, Cayre S, Arnal JF, Deugnier MA, Lenfant F. Estrogen receptor-α signaling in post-natal mammary development and breast cancers. Cell Mol Life Sci 2021; 78:5681-5705. [PMID: 34156490 PMCID: PMC8316234 DOI: 10.1007/s00018-021-03860-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/12/2021] [Accepted: 05/19/2021] [Indexed: 12/16/2022]
Abstract
17β-estradiol controls post-natal mammary gland development and exerts its effects through Estrogen Receptor ERα, a member of the nuclear receptor family. ERα is also critical for breast cancer progression and remains a central therapeutic target for hormone-dependent breast cancers. In this review, we summarize the current understanding of the complex ERα signaling pathways that involve either classical nuclear “genomic” or membrane “non-genomic” actions and regulate in concert with other hormones the different stages of mammary development. We describe the cellular and molecular features of the luminal cell lineage expressing ERα and provide an overview of the transgenic mouse models impacting ERα signaling, highlighting the pivotal role of ERα in mammary gland morphogenesis and function and its implication in the tumorigenic processes. Finally, we describe the main features of the ERα-positive luminal breast cancers and their modeling in mice.
Collapse
Affiliation(s)
- Mariam Rusidzé
- INSERM U1297, Institut Des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, CHU, Toulouse, France
| | - Marine Adlanmérini
- INSERM U1297, Institut Des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, CHU, Toulouse, France
| | - Elodie Chantalat
- INSERM U1297, Institut Des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, CHU, Toulouse, France
| | - I Raymond-Letron
- LabHPEC et Institut RESTORE, Université de Toulouse, CNRS U-5070, EFS, ENVT, Inserm U1301, Toulouse, France
| | - Surya Cayre
- Department of Cell Biology and Cancer, Institut Curie, PSL Research University, Sorbonne University, CNRS UMR144, Paris, France
| | - Jean-François Arnal
- INSERM U1297, Institut Des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, CHU, Toulouse, France
| | - Marie-Ange Deugnier
- Department of Cell Biology and Cancer, Institut Curie, PSL Research University, Sorbonne University, CNRS UMR144, Paris, France
| | - Françoise Lenfant
- INSERM U1297, Institut Des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, CHU, Toulouse, France.
| |
Collapse
|
17
|
Mogus JP, LaPlante CD, Bansal R, Matouskova K, Schneider BR, Daniele E, Silva SJ, Hagen MJ, Dunphy KA, Jerry DJ, Schneider SS, Vandenberg LN. Exposure to Propylparaben During Pregnancy and Lactation Induces Long-Term Alterations to the Mammary Gland in Mice. Endocrinology 2021; 162:bqab041. [PMID: 33724348 PMCID: PMC8121128 DOI: 10.1210/endocr/bqab041] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Indexed: 12/13/2022]
Abstract
The mammary gland is a hormone sensitive organ that is susceptible to endocrine-disrupting chemicals (EDCs) during the vulnerable periods of parous reorganization (ie, pregnancy, lactation, and involution). Pregnancy is believed to have long-term protective effects against breast cancer development; however, it is unknown if EDCs can alter this effect. We examined the long-term effects of propylparaben, a common preservative used in personal care products and foods, with estrogenic properties, on the parous mouse mammary gland. Pregnant BALB/c mice were treated with 0, 20, 100, or 10 000 µg/kg/day propylparaben throughout pregnancy and lactation. Unexposed nulliparous females were also evaluated. Five weeks post-involution, mammary glands were collected and assessed for changes in histomorphology, hormone receptor expression, immune cell number, and gene expression. For several parameters of mammary gland morphology, propylparaben reduced the effects of parity. Propylparaben also increased proliferation, but not stem cell number, and induced modest alterations to expression of ERα-mediated genes. Finally, propylparaben altered the effect of parity on the number of several immune cell types in the mammary gland. These results suggest that propylparaben, at levels relevant to human exposure, can interfere with the effects of parity on the mouse mammary gland and induce long-term alterations to mammary gland structure. Future studies should address if propylparaben exposures negate the protective effects of pregnancy on mammary cancer development.
Collapse
Affiliation(s)
- Joshua P Mogus
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Charlotte D LaPlante
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Ruby Bansal
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Klara Matouskova
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Benjamin R Schneider
- Biospecimen Resource and Molecular Analysis Facility, Baystate Medical Center, Springfield, MA 01199, USA
| | - Elizabeth Daniele
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Shannon J Silva
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Mary J Hagen
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Karen A Dunphy
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - D Joseph Jerry
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
- Pioneer Valley Life Sciences Institute, Springfield, MA 01199, USA
| | - Sallie S Schneider
- Biospecimen Resource and Molecular Analysis Facility, Baystate Medical Center, Springfield, MA 01199, USA
| | - Laura N Vandenberg
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
18
|
McDonald JA, Cherubin S, Goldberg M, Wei Y, Chung WK, Schwartz LA, Knight JA, Schooling CM, Santella RM, Bradbury AR, Buys SS, Andrulis IL, John EM, Daly MB, Terry MB. Common Childhood Viruses and Pubertal Timing: The LEGACY Girls Study. Am J Epidemiol 2021; 190:766-778. [PMID: 33128063 DOI: 10.1093/aje/kwaa240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/13/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022] Open
Abstract
Earlier pubertal development is only partially explained by childhood body mass index; the role of other factors, such as childhood infections, is less understood. Using data from the LEGACY Girls Study (North America, 2011-2016), we prospectively examined the associations between childhood viral infections (cytomegalovirus (CMV), Epstein-Barr virus (EBV), herpes simplex virus (HSV) 1, HSV2) and pubertal timing. We measured exposures based on seropositivity in premenarcheal girls (n = 490). Breast and pubic hair development were classified based on mother-reported Tanner Stage (TS) (TS2+ compared with TS1), adjusting for age, body mass index, and sociodemographic factors. The average age at first blood draw was 9.8 years (standard deviation, 1.9 years). The prevalences were 31% CMV+, 37% EBV+, 14% HSV1+, 0.4% HSV2+, and 16% for both CMV+/EBV+ coinfection. CMV+ infection without coinfection was associated with developing breasts an average of 7 months earlier (hazard ratio (HR) = 2.12, 95% confidence interval (CI): 1.32, 3.40). CMV infection without coinfection and HSV1 and/or HSV2 infection were associated with developing pubic hair 9 months later (HR = 0.41, 95% CI: 0.24, 0.71, and HR = 0.42, 95% CI: 0.22, 0.81, respectively). Infection was not associated with menarche. If replicated in larger cohorts with blood collection prior to any breast development, this study supports the hypothesis that childhood infections might play a role in altering pubertal timing.
Collapse
|
19
|
Coden ME, Walker MT, Jeong BM, Connelly AR, Nagasaka R, Berdnikovs S. Beyond Il-5: Metabolic Reprogramming and Stromal Support Are Prerequisite for Generation and Survival of Long-Lived Eosinophil. Cells 2021; 10:815. [PMID: 33917349 PMCID: PMC8067430 DOI: 10.3390/cells10040815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 12/12/2022] Open
Abstract
Eosinophils play surprisingly diverse roles in health and disease. Accordingly, we have now begun to appreciate the scope of the functional and phenotypic heterogeneity and plasticity of these cells. Along with tissue-recruited subsets during inflammation, there are tissue resident eosinophil phenotypes with potentially longer life spans and less dependency on IL-5 for survival. Current models to study murine eosinophils ex vivo rely on IL-5-sustained expansion of eosinophils from bone marrow hematopoietic progenitors. Although it does generate eosinophils (bmEos) in high purity, such systems are short-lived (14 days on average) and depend on IL-5. In this report, we present a novel method of differentiating large numbers of pure bone marrow-derived eosinophils with a long-lived phenotype (llEos) (40 days on average) that require IL-5 for initial differentiation, but not for subsequent survival. We identified two key factors in the development of llEos: metabolic adaptation and reprogramming induced by suppressed nutrient intake during active differentiation (from Day 7 of culture), and interaction with IL-5-primed stromal cells for the remainder of the protocol. This regimen results in a higher yield and viability of mature eosinophils. Phenotypically, llEos develop as Siglec-F(+)Ly6G(+) cells transitioning to Siglec-F(+) only, and exhibit typical eosinophil features with red eosin granular staining, as well as the ability to chemotax to eotaxin Ccl11 and process fibrinogen. This culture system requires less reagent input and allows us to study eosinophils long-term, which is a significant improvement over IL-5-driven differentiation protocols. Moreover, it provides important insights into factors governing eosinophil plasticity and the ability to assume long-lived IL-5-independent phenotypes.
Collapse
Affiliation(s)
| | | | | | | | | | - Sergejs Berdnikovs
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; (M.E.C.); (M.T.W.); (B.M.J.); (A.R.C.); (R.N.)
| |
Collapse
|
20
|
Dawson CA, Visvader JE. The Cellular Organization of the Mammary Gland: Insights From Microscopy. J Mammary Gland Biol Neoplasia 2021; 26:71-85. [PMID: 33835387 DOI: 10.1007/s10911-021-09483-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/25/2021] [Indexed: 12/19/2022] Open
Abstract
Despite rapid advances in our knowledge of the cellular heterogeneity and molecular regulation of the mammary gland, how these relate to 3D cellular organization remains unclear. In addition to hormonal regulation, mammary gland development and function is directed by para- and juxtacrine signaling among diverse cell-types, particularly the immune and mesenchymal populations. Precise mapping of the cellular landscape of the breast will help to decipher this complex coordination. Imaging of thin tissue sections has provided foundational information about cell positioning in the mammary gland and now technological advances in tissue clearing and subcellular-resolution 3D imaging are painting a more complete picture. In particular, confocal, light-sheet and multiphoton microscopy applied to intact tissue can fully capture cell morphology, position and interactions, and have the power to identify spatially rare events. This review will summarize our current understanding of mammary gland cellular organization as revealed by microscopy. We focus on the mouse mammary gland and cover a broad range of immune and stromal cell types at major developmental stages and give insights into important tissue niches and cellular interactions.
Collapse
Affiliation(s)
- Caleb A Dawson
- Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, 3052, Parkville, VIC, Australia.
- Department of Medical Biology, The University of Melbourne, 3010, Parkville, VIC, Australia.
| | - Jane E Visvader
- Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, 3052, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, 3010, Parkville, VIC, Australia
| |
Collapse
|
21
|
Messal HA, van Rheenen J, Scheele CLGJ. An Intravital Microscopy Toolbox to Study Mammary Gland Dynamics from Cellular Level to Organ Scale. J Mammary Gland Biol Neoplasia 2021; 26:9-27. [PMID: 33945058 PMCID: PMC8217050 DOI: 10.1007/s10911-021-09487-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 04/18/2021] [Indexed: 02/08/2023] Open
Abstract
The architecture of the mouse mammary gland is highly dynamic and constantly remodeled during pubertal development and estrous cycle-driven sprouting and regression of alveolar side branches. During each of these developmental stages, turnover is driven by distinct subsets of mammary epithelial cells. Extensive previous research has shed light on the unique morphological and cell biological characteristics of each stage. However, technological shortcomings failed to capture the dynamics and single-cell contributions to mammary remodeling. Here, we developed in vivo imaging strategies to follow the same mammary ducts over time and quantify the dynamics of mammary gland growth and remodeling from single-cell level to organ scale. Using a combination of intravital microscopy and genetic reporter systems we show how proliferative heterogeneity drives ductal morphogenesis during different developmental stages. To visualize pubertal growth at the cellular level, we performed long-term time-lapse imaging of extending terminal end buds through a mammary imaging window. We show that single-cells within the terminal end buds are extremely motile and continuously exchange position whilst the duct is elongating. To visualize short-term remodeling in the adult mammary gland at the single cell level, we performed multi-day intravital imaging in photoconvertible Kikume Green-Red mice and fluorescent ubiquitination-based cell cycle indicator mice. We demonstrate that the contribution of single-cells to estrous-driven remodeling is highly variable between cells in the same micro-environment. To assess the effects of this dynamic proliferative contribution on the long-term stability of tissue architecture, we developed a repeated skin flap method to assess mammary gland morphology by intravital microscopy over extended time spans for up to six months. Interestingly, in contrast to the short-term dynamic remodeling, the long-term morphology of the mammary gland remains remarkably stable. Together, our tool box of imaging strategies allows to identify and map transient and continuing dynamics of single cells to the architecture of the mammary gland.
Collapse
Affiliation(s)
- Hendrik A. Messal
- grid.430814.aDivision of Molecular Pathology, Netherlands Cancer Institute, Oncode Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Jacco van Rheenen
- grid.430814.aDivision of Molecular Pathology, Netherlands Cancer Institute, Oncode Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | | |
Collapse
|
22
|
Ni Y, Chen Q, Cai J, Xiao L, Zhang J. Three lactation-related hormones: Regulation of hypothalamus-pituitary axis and function on lactation. Mol Cell Endocrinol 2021; 520:111084. [PMID: 33232781 DOI: 10.1016/j.mce.2020.111084] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/08/2020] [Accepted: 11/11/2020] [Indexed: 01/10/2023]
Abstract
The endocrine system plays a central role in many aspects of lactation, including mammogenesis (mammary gland development), lactogenesis (onset of lactation), and galactopoiesis (maintenance of milk secretion). Many hormones of the endocrine system directly or indirectly regulate lactation process. The secretion of prolactin (PRL), one of the most important lactation-related hormones, is inhibited by hypothalamus-pituitary dopaminergic system and stimulated by hypothalamus-pituitary oxytocinergic system. This hormone is essential in all stages of lactation. The growth hormone (GH) regulates metabolism and the distribution of nutrients between tissues mammary glands, and stimulates the production of IGF-I from the liver which binds to IGF-IR of mammary epithelial cells (MECs) to indirectly promote lactation. The synthesis and secretion of estrogen (E) are affected by the hypothalamus-pituitary axis. The hormone regulates duct morphogenesis and MECs proliferation. It also modulates the synthesis and secretion of PRL and GH, which together regulate the lactation in female animals. In this article, we reviewed the three main lactation-related hormones (PRL, GH, and E), summarize their regulation by the hypothalamus-pituitary axis and how they influence lactation.
Collapse
Affiliation(s)
- Yifan Ni
- College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Qiangqiang Chen
- College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Jianfeng Cai
- College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Lixia Xiao
- College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Jinzhi Zhang
- College of Animal Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
23
|
Pubertal mammary gland development is a key determinant of adult mammographic density. Semin Cell Dev Biol 2020; 114:143-158. [PMID: 33309487 DOI: 10.1016/j.semcdb.2020.11.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/25/2020] [Accepted: 11/28/2020] [Indexed: 01/04/2023]
Abstract
Mammographic density refers to the radiological appearance of fibroglandular and adipose tissue on a mammogram of the breast. Women with relatively high mammographic density for their age and body mass index are at significantly higher risk for breast cancer. The association between mammographic density and breast cancer risk is well-established, however the molecular and cellular events that lead to the development of high mammographic density are yet to be elucidated. Puberty is a critical time for breast development, where endocrine and paracrine signalling drive development of the mammary gland epithelium, stroma, and adipose tissue. As the relative abundance of these cell types determines the radiological appearance of the adult breast, puberty should be considered as a key developmental stage in the establishment of mammographic density. Epidemiological studies have pointed to the significance of pubertal adipose tissue deposition, as well as timing of menarche and thelarche, on adult mammographic density and breast cancer risk. Activation of hypothalamic-pituitary axes during puberty combined with genetic and epigenetic molecular determinants, together with stromal fibroblasts, extracellular matrix, and immune signalling factors in the mammary gland, act in concert to drive breast development and the relative abundance of different cell types in the adult breast. Here, we discuss the key cellular and molecular mechanisms through which pubertal mammary gland development may affect adult mammographic density and cancer risk.
Collapse
|
24
|
Proteoglycans in the Pathogenesis of Hormone-Dependent Cancers: Mediators and Effectors. Cancers (Basel) 2020; 12:cancers12092401. [PMID: 32847060 PMCID: PMC7563227 DOI: 10.3390/cancers12092401] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/16/2020] [Accepted: 08/18/2020] [Indexed: 12/21/2022] Open
Abstract
Hormone-dependent cancers exhibit high morbidity and mortality. In spite of advances in therapy, the treatment of hormone-dependent cancers remains an unmet health need. The tumor microenvironment (TME) exhibits unique characteristics that differ among various tumor types. It is composed of cancerous, non-cancerous, stromal, and immune cells that are surrounded and supported by components of the extracellular matrix (ECM). Therefore, the interactions among cancer cells, stromal cells, and components of the ECM determine cancer progression and response to therapy. Proteoglycans (PGs), hybrid molecules consisting of a protein core to which sulfated glycosaminoglycan chains are bound, are significant components of the ECM that are implicated in all phases of tumorigenesis. These molecules, secreted by both the stroma and cancer cells, are crucial signaling mediators that modulate the vital cellular pathways implicated in gene expression, phenotypic versatility, and response to therapy in specific tumor types. A plethora of deregulated signaling pathways contributes to the growth, dissemination, and angiogenesis of hormone-dependent cancers. Specific inputs from the endocrine and immune systems are some of the characteristics of hormone-dependent cancer pathogenesis. Importantly, the mechanisms involved in various aspects of cancer progression are executed in the ECM niche of the TME, and the PG components crucially mediate these processes. Here, we comprehensively discuss the mechanisms through which PGs affect the multifaceted aspects of hormone-dependent cancer development and progression, including cancer metastasis, angiogenesis, immunobiology, autophagy, and response to therapy.
Collapse
|
25
|
Prolactin and Estradiol are Epigenetic Modulators in Bovine Mammary Epithelial Cells during Staphylococcus aureus Infection. Pathogens 2020; 9:pathogens9070520. [PMID: 32605209 PMCID: PMC7399903 DOI: 10.3390/pathogens9070520] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/24/2022] Open
Abstract
Changes in the levels of reproductive hormones compromise the bovine innate immune response (IIR). Changes in 17β-estradiol (E2) and prolactin (bPRL) levels affect the IIR of bovine mammary epithelial cells (bMECs), the target tissue of these hormones. In this work, we explored the effect of the combined hormones on bMEC IIR during Staphylococcus aureus infection, and if they can modulate epigenetic marks. By gentamicin protection assays, we determined that combined hormones (bPRL (5 ng/mL) and E2 (50 pg/mL)] decrease S. aureus internalization into bMECs (~50%), which was associated with a reduction in integrin α5β1 membrane abundance (MA) (~80%) determined by flow cytometry. Additionally, combined hormones increased Toll-like receptor 2 (TLR2) MA (~25%). By RT-qPCR, we showed that combined hormones induce the expression of pro- and anti-inflammatory cytokine genes, as well as up-regulate antimicrobial peptide gene expression. The combined hormones induced H3K9Ac at 12 h of treatment, which coincides with the reduction in histone deacetylase (HDAC, ~15%) activity. In addition, hormones increased the H3K9me2 mark at 12 h, which correlates with a reduction in the expression of KDM4A. In conclusion, bPRL and E2 modulate the IIR of bMECs, an effect that can be related to the regulation of histone H3 modifications such as H3K9Ac and H3K9me2.
Collapse
|
26
|
Gagniac L, Rusidzé M, Boudou F, Cagnet S, Adlanmerini M, Jeannot P, Gaide N, Giton F, Besson A, Weyl A, Gourdy P, Raymond-Letron I, Arnal JF, Brisken C, Lenfant F. Membrane expression of the estrogen receptor ERα is required for intercellular communications in the mammary epithelium. Development 2020; 147:dev.182303. [PMID: 32098763 PMCID: PMC7075076 DOI: 10.1242/dev.182303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 02/06/2020] [Indexed: 01/23/2023]
Abstract
17β-Estradiol induces the postnatal development of mammary gland and influences breast carcinogenesis by binding to the estrogen receptor ERα. ERα acts as a transcription factor but also elicits rapid signaling through a fraction of ERα expressed at the membrane. Here, we have used the C451A-ERα mouse model mutated for the palmitoylation site to understand how ERα membrane signaling affects mammary gland development. Although the overall structure of physiological mammary gland development is slightly affected, both epithelial fragments and basal cells isolated from C451A-ERα mammary glands failed to grow when engrafted into cleared wild-type fat pads, even in pregnant hosts. Similarly, basal cells purified from hormone-stimulated ovariectomized C451A-ERα mice did not produce normal outgrowths. Ex vivo, C451A-ERα basal cells displayed reduced matrix degradation capacities, suggesting altered migration properties. More importantly, C451A-ERα basal cells recovered in vivo repopulating ability when co-transplanted with wild-type luminal cells and specifically with ERα-positive luminal cells. Transcriptional profiling identified crucial paracrine luminal-to-basal signals. Altogether, our findings uncover an important role for membrane ERα expression in promoting intercellular communications that are essential for mammary gland development.
Collapse
Affiliation(s)
- Laurine Gagniac
- INSERM U1048, I2MC, Université de Toulouse, Toulouse 31432, France
| | - Mariam Rusidzé
- INSERM U1048, I2MC, Université de Toulouse, Toulouse 31432, France
| | - Frederic Boudou
- INSERM U1048, I2MC, Université de Toulouse, Toulouse 31432, France
| | - Stephanie Cagnet
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | | | - Pauline Jeannot
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, Toulouse 31062, France
| | - Nicolas Gaide
- LabHPEC Laboratoire d'HistoPathologie Expérimentale et Comparée STROMALab, Université de Toulouse, CNRS ERL5311, EFS, ENVT, Inserm U1031, UPS, Toulouse 31300, France
| | - Frank Giton
- APHP H.Mondor- IMRB - INSERM U955, Créteil 94010, France
| | - Arnaud Besson
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, Toulouse 31062, France
| | - Ariane Weyl
- INSERM U1048, I2MC, Université de Toulouse, Toulouse 31432, France
| | - Pierre Gourdy
- INSERM U1048, I2MC, Université de Toulouse, Toulouse 31432, France
| | - Isabelle Raymond-Letron
- LabHPEC Laboratoire d'HistoPathologie Expérimentale et Comparée STROMALab, Université de Toulouse, CNRS ERL5311, EFS, ENVT, Inserm U1031, UPS, Toulouse 31300, France
| | | | - Cathrin Brisken
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | | |
Collapse
|
27
|
Review: The pre-pubertal bovine mammary gland: unlocking the potential of the future herd. Animal 2019; 13:s4-s10. [DOI: 10.1017/s1751731119001204] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
28
|
Hughes K, Watson CJ. The Mammary Microenvironment in Mastitis in Humans, Dairy Ruminants, Rabbits and Rodents: A One Health Focus. J Mammary Gland Biol Neoplasia 2018; 23:27-41. [PMID: 29705830 PMCID: PMC5978844 DOI: 10.1007/s10911-018-9395-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 04/12/2018] [Indexed: 12/18/2022] Open
Abstract
The One Health concept promotes integrated evaluation of human, animal, and environmental health questions to expedite advances benefiting all species. A recognition of the multi-species impact of mastitis as a painful condition with welfare implications leads us to suggest that mastitis is an ideal target for a One Health approach. In this review, we will evaluate the role of the mammary microenvironment in mastitis in humans, ruminants and rabbits, where appropriate also drawing on studies utilising laboratory animal models. We will examine subclinical mastitis, clinical lactational mastitis, and involution-associated, or dry period, mastitis, highlighting important anatomical and immunological species differences. We will synthesise knowledge gained across different species, comparing and contrasting disease presentation. Subclinical mastitis (SCM) is characterised by elevated Na/K ratio, and increased milk IL-8 concentrations. SCM affecting the breastfeeding mother may result in modulation of infant mucosal immune system development, whilst in ruminants notable milk production losses may ensue. In the case of clinical lactational mastitis, we will focus on mastitis caused by Staphylococcus aureus and Escherichia coli. Understanding of the pathogenesis of involution-associated mastitis requires characterization of the structural and molecular changes occurring during involution and we will review these changes across species. We speculate that milk accumulation may act as a nidus for infection, and that the involution 'wound healing phenotype' may render the tissue susceptible to bacterial infection. We will discuss the impact of concurrent pregnancy and a 'parallel pregnancy and involution signature' during bovine mammary involution.
Collapse
Affiliation(s)
- Katherine Hughes
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK.
| | - Christine J Watson
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| |
Collapse
|
29
|
Akers RM. TRIENNIAL LACTATION SYMPOSIUM/BOLFA: Plasticity of mammary development in the prepubertal bovine mammary gland. J Anim Sci 2018; 95:5653-5663. [PMID: 29293751 DOI: 10.2527/jas2017.1792] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Although peripubertal mammary development represents only a small fraction of the total mass of mammary parenchyma present in the udder at the end of gestation and into lactation, there is increasing evidence that the tissue foundations created in early life can affect future mammary development and function. Studies on expression of estrogen and progesterone receptors seem to confirm the relevance of these steroids in prepubertal mammary development, but connections with other growth factors, hormones, and local tissue factors remain elusive. Enhanced preweaning feeding in the bovine appears to enhance the capacity of mammary tissue to response to mammogenic stimulation. This suggests the possibility that improved early nutrition might allow for creation of stem or progenitor cell populations to better support the massive ductal growth and lobulo-alveolar development during gestation. Increasing evidence that immune cells are involved in mammary development suggests there are unexpected and poorly understood connections between the immune system and mammary development. This is nearly unexplored in ruminants. Development of new tools to identify, isolate, and characterize cell populations within the developing bovine mammary gland offer the possibility of identifying and perhaps altering populations of mammary stem cells or selected progenitor cells to modulate mammary development and, possibly, mammary function.
Collapse
|
30
|
Abdala-Valencia H, Coden ME, Chiarella SE, Jacobsen EA, Bochner BS, Lee JJ, Berdnikovs S. Shaping eosinophil identity in the tissue contexts of development, homeostasis, and disease. J Leukoc Biol 2018; 104:95-108. [PMID: 29656559 DOI: 10.1002/jlb.1mr1117-442rr] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 02/16/2018] [Accepted: 02/17/2018] [Indexed: 12/20/2022] Open
Abstract
Eosinophils play homeostatic roles in different tissues and are found in several organs at a homeostatic baseline, though their tissue numbers increase significantly in development and disease. The morphological, phenotypical, and functional plasticity of recruited eosinophils are influenced by the dynamic tissue microenvironment changes between homeostatic, morphogenetic, and disease states. Activity of the epithelial-mesenchymal interface, extracellular matrix, hormonal inputs, metabolic state of the environment, as well as epithelial and mesenchymal-derived innate cytokines and growth factors all have the potential to regulate the attraction, retention, in situ hematopoiesis, phenotype, and function of eosinophils. This review examines the reciprocal relationship between eosinophils and such tissue factors, specifically addressing: (1) tissue microenvironments associated with the presence and activity of eosinophils; (2) non-immune tissue ligands regulatory for eosinophil accumulation, hematopoiesis, phenotype, and function (with an emphasis on the extracellular matrix and epithelial-mesenchymal interface); (3) the contribution of eosinophils to regulating tissue biology; (4) eosinophil phenotypic heterogeneity in different tissue microenvironments, classifying eosinophils as progenitors, steady state eosinophils, and Type 1 and 2 activated phenotypes. An appreciation of eosinophil regulation by non-immune tissue factors is necessary for completing the picture of eosinophil immune activation and understanding the functional contribution of these cells to development, homeostasis, and disease.
Collapse
Affiliation(s)
- Hiam Abdala-Valencia
- Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Mackenzie E Coden
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Sergio E Chiarella
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Elizabeth A Jacobsen
- Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Bruce S Bochner
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - James J Lee
- Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Sergejs Berdnikovs
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
31
|
Abstract
Cytokines are required for normal growth and development of the mammary gland and TGF-β prominently represents an established effector of apoptosis, e.g., during involution of the mammary gland. By the control of intracellular signaling pathways, including JAK/STAT, MAPK, PI-3K, and NF-κB, cytokines efficiently regulate cell proliferation and inflammation in the breast. Therefore, cytokines are discussed also in a context of malignant mammary growth. As a group of tissue hormones produced by somatic cells or by cells from the immune system, cytokines are defined by their immunomodulatory potential. Over the past 40 years, multiple cytokines were identified in colostrum and milk. Importantly, cytokines derived from mammary secretions after birth are required for maturation of the immune system in the developing gastrointestinal tract from the suckling. Moreover, recent studies have further assessed the particular interactions between probiotic bacterial strains and cytokines. In light of the increasing prevalence of inflammatory diseases of the gastrointestinal system, the effects of probiotic microorganisms during milk fermentation may have immunotherapeutic potential in the future.
Collapse
Affiliation(s)
- Julia Brenmoehl
- Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Daniela Ohde
- Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Elisa Wirthgen
- Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Andreas Hoeflich
- Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany.
| |
Collapse
|
32
|
Ugalde-Morales E, Li J, Humphreys K, Ludvigsson JF, Yang H, Hall P, Czene K. Common shared genetic variation behind decreased risk of breast cancer in celiac disease. Sci Rep 2017; 7:5942. [PMID: 28725034 PMCID: PMC5517429 DOI: 10.1038/s41598-017-06287-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 06/09/2017] [Indexed: 02/06/2023] Open
Abstract
There is epidemiologic evidence showing that women with celiac disease have reduced risk of later developing breast cancer, however, the etiology of this association is unclear. Here, we assess the extent of genetic overlap between the two diseases. Through analyses of summary statistics on densely genotyped immunogenic regions, we show a significant genetic correlation (r = −0.17, s.e. 0.05, P < 0.001) and overlap (Ppermuted < 0.001) between celiac disease and breast cancer. Using individual-level genotype data from a Swedish cohort, we find higher genetic susceptibility to celiac disease summarized by polygenic risk scores to be associated with lower breast cancer risk (ORper-SD, 0.94, 95% CI 0.91 to 0.98). Common single nucleotide polymorphisms between the two diseases, with low P-values (PCD < 1.00E-05, PBC ≤ 0.05), mapped onto genes enriched for immunoregulatory and apoptotic processes. Our results suggest that the link between breast cancer and celiac disease is due to a shared polygenic variation of immune related regions, uncovering pathways which might be important for their development.
Collapse
Affiliation(s)
- Emilio Ugalde-Morales
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
| | - Jingmei Li
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Human Genetics, Genome Institute of Singapore, Singapore, 138672, Singapore
| | - Keith Humphreys
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jonas F Ludvigsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Department of Pediatrics, Örebro University Hospital, Örebro, Sweden
| | - Haomin Yang
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
33
|
Pituitary Adenoma and Hyperprolactinemia Accompanied by Idiopathic Granulomatous Mastitis. Case Rep Endocrinol 2017; 2017:3974291. [PMID: 28321344 PMCID: PMC5340950 DOI: 10.1155/2017/3974291] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/25/2017] [Accepted: 01/26/2017] [Indexed: 11/23/2022] Open
Abstract
Idiopathic granulomatous mastitis (IGM) is a rare chronic inflammatory disease of the breast, and its etiology remains not fully elucidated. IGM is observed more often in patients with autoimmune disease. Hyperprolactinemia is observed during pregnancy, lactation, and a history of oral contraceptive use. A 39-year-old patient with no history of oral contraceptive use presented with complaints such as redness, pain, and swelling in her left breast. Ultrasound and magnetic resonance imaging (MRI) revealed a suspicious inflamed mass lesion. Core biopsy was performed to exclude breast cancer and to further diagnose. The breast abscess was drained and steroids were given for treatment. In order to monitor any progression during the three months of treatment, hormone levels were routinely examined. Prolactin level was above the reference range, and pituitary MRI revealed a pituitary prolactinoma. After treatment with prolactin inhibitors, IGM also improved with hyperprolactinemia. This report emphasizes attention to hyperprolactinemia in cases of IGM diagnosis and treatment.
Collapse
|
34
|
Bernhardt SM, Dasari P, Walsh D, Townsend AR, Price TJ, Ingman WV. Hormonal Modulation of Breast Cancer Gene Expression: Implications for Intrinsic Subtyping in Premenopausal Women. Front Oncol 2016; 6:241. [PMID: 27896218 PMCID: PMC5107819 DOI: 10.3389/fonc.2016.00241] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 10/27/2016] [Indexed: 12/12/2022] Open
Abstract
Clinics are increasingly adopting gene-expression profiling to diagnose breast cancer subtype, providing an intrinsic, molecular portrait of the tumor. For example, the PAM50-based Prosigna test quantifies expression of 50 key genes to classify breast cancer subtype, and this method of classification has been demonstrated to be superior over traditional immunohistochemical methods that detect proteins, to predict risk of disease recurrence. However, these tests were largely developed and validated using breast cancer samples from postmenopausal women. Thus, the accuracy of such tests has not been explored in the context of the hormonal fluctuations in estrogen and progesterone that occur during the menstrual cycle in premenopausal women. Concordance between traditional methods of subtyping and the new tests in premenopausal women is likely to depend on the stage of the menstrual cycle at which the tissue sample is taken and the relative effect of hormones on expression of genes versus proteins. The lack of knowledge around the effect of fluctuating estrogen and progesterone on gene expression in breast cancer patients raises serious concerns for intrinsic subtyping in premenopausal women, which comprise about 25% of breast cancer diagnoses. Further research on the impact of the menstrual cycle on intrinsic breast cancer profiling is required if premenopausal women are to benefit from the new technology of intrinsic subtyping.
Collapse
Affiliation(s)
- Sarah M Bernhardt
- Discipline of Surgery, School of Medicine, The Queen Elizabeth Hospital, University of Adelaide, Woodville, SA, Australia; The Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Pallave Dasari
- Discipline of Surgery, School of Medicine, The Queen Elizabeth Hospital, University of Adelaide, Woodville, SA, Australia; The Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - David Walsh
- Discipline of Surgery, School of Medicine, The Queen Elizabeth Hospital, University of Adelaide , Woodville, SA , Australia
| | - Amanda R Townsend
- Discipline of Surgery, School of Medicine, The Queen Elizabeth Hospital, University of Adelaide, Woodville, SA, Australia; Department of Medical Oncology, The Queen Elizabeth Hospital, Woodville, SA, Australia
| | - Timothy J Price
- Discipline of Surgery, School of Medicine, The Queen Elizabeth Hospital, University of Adelaide, Woodville, SA, Australia; Department of Medical Oncology, The Queen Elizabeth Hospital, Woodville, SA, Australia
| | - Wendy V Ingman
- Discipline of Surgery, School of Medicine, The Queen Elizabeth Hospital, University of Adelaide, Woodville, SA, Australia; The Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
35
|
Abstract
The decline in age of pubertal timing has serious public health implications ranging from psychosocial adjustment problems to a possible increase in reproductive cancers. One biologically plausible explanation for the decline is a decrease in exposures to infections. To systematically review studies that assess the role of infection in pubertal timing, Medline, Web of Science and EMBASE were systematically searched and retrieved studies were reviewed for eligibility. Eligible studies examined the association between infections, including microbial exposures, and physical pubertal characteristics (breast, genitalia and pubic hair development) or age at menarche. We excluded studies that were published in a language other than English, focused on precocious puberty, were case studies, and/or included youth with autoimmune diseases. We report on study design, population characteristics, measurement of infection and puberty and the main effects of infection on pubertal development. Based on our search terms we identified 1372 unique articles, of which only 15 human and five animal studies met our eligibility criteria. Not all studies examined all outcomes. Infection was associated with later breast development (4/4 human studies), with less consistent evidence for genitalia and pubic hair development. Seven studies assessed age at menarche with inconsistent findings (three supporting later, four no association). We conclude that a small but consistent literature supports that infection is associated with later breast development; the evidence for other pubertal events and age at menarche is less clear. Where fewer childhood infections coincide with the rise in incidence of hormone-related cancers.
Collapse
|
36
|
Campo Verde Arboccó F, Sasso CV, Actis EA, Carón RW, Hapon MB, Jahn GA. Hypothyroidism advances mammary involution in lactating rats through inhibition of PRL signaling and induction of LIF/STAT3 mRNAs. Mol Cell Endocrinol 2016; 419:18-28. [PMID: 26472537 DOI: 10.1016/j.mce.2015.09.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/22/2015] [Accepted: 09/23/2015] [Indexed: 02/02/2023]
Abstract
Thyroid diseases have deleterious effects on lactation, litter growth and survival, and hinder the suckling-induced hormone release, leading in the case of hyperthyroidism, to premature mammary involution. To determine the effects of hypothyroidism (HypoT) on late lactation, we analyzed the effect of chronic 6-propyl-2-thiouracil (PTU)-induced HypoT on mammary histology and the expression of members of the JAK/STAT/SOCS signaling pathway, milk proteins, prolactin (PRLR), estrogen (ER), progesterone (PR) and thyroid hormone (TR) receptors, markers of involution (such as stat3, lif, bcl2, BAX and PARP) on lactation (L) day 21. HypoT mothers showed increased histological markers of involution compared with control rats, such as adipose/epithelial ratio, inactive alveoli, picnotic nuclei and numerous detached apoptotic cells within the alveolar lumina. We also found decreased PRLR, β-casein and α-lactoalbumin mRNAs, but increased SOCS1, SOCS3, STAT3 and LIF mRNAs, suggesting a decrease in PRL signaling and induction of involution markers. Furthermore, Caspase-3 and 8 and PARP labeled cells and the expression of structural proteins such as β-Actin, α-Tubulin and Lamin B were increased, indicating the activation of apoptotic pathways and tissue remodelation. HypoT also increased PRA (mRNA and protein) and erβ and decreased erα mRNAs, and increased strongly TRα1, TRβ1, PRA and ERα protein levels. These results show that lactating HypoT rats have premature mammary involution, most probably induced by the inhibition of prolactin signaling along with the activation of the LIF-STAT3 pathway.
Collapse
Affiliation(s)
- Fiorella Campo Verde Arboccó
- Laboratorio de Reproducción y Lactancia, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET, 5500 Mendoza, Argentina.
| | - Corina V Sasso
- Laboratorio de Hormonas y Biología del Cancer, IMBECU, Argentina
| | - Esteban A Actis
- Laboratorio de Reproducción y Lactancia, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET, 5500 Mendoza, Argentina
| | - Rubén W Carón
- Laboratorio de Hormonas y Biología del Cancer, IMBECU, Argentina
| | - María Belén Hapon
- Laboratorio de Reproducción y Lactancia, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET, 5500 Mendoza, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Graciela A Jahn
- Laboratorio de Reproducción y Lactancia, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET, 5500 Mendoza, Argentina.
| |
Collapse
|
37
|
Need EF, Selth LA, Trotta AP, Leach DA, Giorgio L, O'Loughlin MA, Smith E, Gill PG, Ingman WV, Graham JD, Buchanan G. The unique transcriptional response produced by concurrent estrogen and progesterone treatment in breast cancer cells results in upregulation of growth factor pathways and switching from a Luminal A to a Basal-like subtype. BMC Cancer 2015; 15:791. [PMID: 26498662 PMCID: PMC4620010 DOI: 10.1186/s12885-015-1819-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 10/16/2015] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND In breast cancer, progesterone receptor (PR) positivity or abundance is positively associated with survival and treatment response. It was initially believed that PR was a useful diagnostic marker of estrogen receptor activity, but increasingly PR has been recognised to play an important biological role in breast homeostasis, carcinogenesis and metastasis. Although PR expression is almost exclusively observed in estrogen receptor positive tumors, few studies have investigated the cellular mechanisms of PR action in the context of ongoing estrogen signalling. METHODS In this study, we contrast PR function in estrogen pretreated ZR-75-1 breast cancer cells with vehicle treated ZR-75-1 and T-47D breast cancer cells using expression microarrays and chromatin immunoprecipitation-sequencing. RESULTS Estrogen cotreatment caused a dramatic increase in the number of genes regulated by progesterone in ZR-75-1 cells. In T-47D cells that have naturally high levels of PR, estrogen and progesterone cotreatment resulted in a reduction in the number of regulated genes in comparison to treatment with either hormone alone. At a genome level, estrogen pretreatment of ZR-75-1 cells led to a 10-fold increase in the number of PR DNA binding sites detected using ChIP-sequencing. Time course assessment of progesterone regulated genes in the context of estrogen pretreatment highlighted a series of important regulatory pathways, including those driven by epithelial growth factor receptor (EGFR). Importantly, progesterone applied to cells pretreated with estradiol resulted in switching of the PAM50-determined intrinsic breast cancer subtype from Luminal A to Basal-like, and increased the Oncotype DX® Unscaled Recurrence Score. CONCLUSION Estrogen pretreatment of breast cancer cells increases PR steady state levels, resulting in an unequivocal progesterone response that upregulates key members of growth factor pathways. The transformative changes progesterone exerts on the breast cancer subtype suggest that these subtyping tools should be used with caution in premenopausal women.
Collapse
Affiliation(s)
- Eleanor F Need
- Cancer Biology Group, The Basil Hetzel Institute for Translational Health Research, School of Medicine, The University of Adelaide, DX465701, 28 Woodville Road, Woodville South, 5011, South Australia, Australia.
| | - Luke A Selth
- Dame Roma Mitchell Cancer Research Laboratories and Adelaide Prostate Cancer Research Centre, The University of Adelaide, Adelaide, South Australia, Australia. .,Freemasons Foundation Centre for Men's Health, The University of Adelaide, Adelaide, South Australia, Australia.
| | - Andrew P Trotta
- Cancer Biology Group, The Basil Hetzel Institute for Translational Health Research, School of Medicine, The University of Adelaide, DX465701, 28 Woodville Road, Woodville South, 5011, South Australia, Australia. .,Present address: Icahn School of Medicine at Mount Sinai, Department of Oncological Sciences, Manhattan, New York, USA.
| | - Damien A Leach
- Cancer Biology Group, The Basil Hetzel Institute for Translational Health Research, School of Medicine, The University of Adelaide, DX465701, 28 Woodville Road, Woodville South, 5011, South Australia, Australia.
| | - Lauren Giorgio
- Cancer Biology Group, The Basil Hetzel Institute for Translational Health Research, School of Medicine, The University of Adelaide, DX465701, 28 Woodville Road, Woodville South, 5011, South Australia, Australia.
| | - Melissa A O'Loughlin
- Cancer Biology Group, The Basil Hetzel Institute for Translational Health Research, School of Medicine, The University of Adelaide, DX465701, 28 Woodville Road, Woodville South, 5011, South Australia, Australia.
| | - Eric Smith
- Solid Cancer Regulation Research Group, The Basil Hetzel Institute for Translational Health Research Discipline of Surgery, The University of Adelaide, South Australia, Australia.
| | - Peter G Gill
- School of Medicine, Department of Surgery, The University of Adelaide, Adelaide, South Australia, Australia.
| | - Wendy V Ingman
- School of Medicine at The Queen Elizabeth Hospital, University of Adelaide, South Australia, Australia. .,Robinson Research Institute, University of Adelaide, South Australia, Australia.
| | - J Dinny Graham
- Centre for Cancer Research, Westmead Millennium Institute, University of Sydney Medical School, Westmead, New South Wales, 2145, Australia.
| | - Grant Buchanan
- Cancer Biology Group, The Basil Hetzel Institute for Translational Health Research, School of Medicine, The University of Adelaide, DX465701, 28 Woodville Road, Woodville South, 5011, South Australia, Australia. .,Freemasons Foundation Centre for Men's Health, The University of Adelaide, Adelaide, South Australia, Australia.
| |
Collapse
|
38
|
Moral R, Escrich R, Solanas M, Vela E, Ruiz de Villa MC, Escrich E. Diets high in corn oil or extra-virgin olive oil differentially modify the gene expression profile of the mammary gland and influence experimental breast cancer susceptibility. Eur J Nutr 2015; 55:1397-409. [PMID: 26091908 PMCID: PMC4875377 DOI: 10.1007/s00394-015-0958-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 06/09/2015] [Indexed: 12/26/2022]
Abstract
PURPOSE Nutritional factors, especially dietary lipids, may have a role in the etiology of breast cancer. We aimed to analyze the effects of high-fat diets on the susceptibility of the mammary gland to experimental malignant transformation. METHODS Female Sprague-Dawley rats were fed a low-fat, high-corn-oil, or high-extra-virgin olive oil (EVOO) diet from weaning or from induction. Animals were induced with 7,12-dimethylbenz[a]anthracene at 53 days and euthanized at 36, 51, 100 and 246 days. Gene expression profiles of mammary glands were determined by microarrays. Further molecular analyses were performed by real-time PCR, TUNEL and immunohistochemistry. Carcinogenesis parameters were determined at 105 and 246 days. RESULTS High-corn-oil diet increased body weight and mass when administered from weaning. The EVOO diet did not modify these parameters and increased the hepatic expression of UCP2, suggesting a decrease in intake/expenditure balance. Both diets differentially modified the gene expression profile of the mammary gland, especially after short dietary intervention. Corn oil down-regulated the expression of genes related to immune system and apoptosis, whereas EVOO modified the expression of metabolism genes. Further analysis suggested an increase in proliferation and lower apoptosis in the mammary glands by effect of the high-corn-oil diet, which may be one of the mechanisms of its clear stimulating effect on carcinogenesis. CONCLUSIONS The high-corn-oil diet strongly stimulates mammary tumorigenesis in association with modifications in the expression profile and an increased proliferation/apoptosis balance of the mammary gland.
Collapse
Affiliation(s)
- Raquel Moral
- Physiology Unit, Department of Cell Biology, Physiology and Immunology, Faculty of Medicine, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - Raquel Escrich
- Physiology Unit, Department of Cell Biology, Physiology and Immunology, Faculty of Medicine, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - Montserrat Solanas
- Physiology Unit, Department of Cell Biology, Physiology and Immunology, Faculty of Medicine, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - Elena Vela
- Physiology Unit, Department of Cell Biology, Physiology and Immunology, Faculty of Medicine, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | | | - Eduard Escrich
- Physiology Unit, Department of Cell Biology, Physiology and Immunology, Faculty of Medicine, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain.
| |
Collapse
|
39
|
Musumeci G, Castrogiovanni P, Szychlinska MA, Aiello FC, Vecchio GM, Salvatorelli L, Magro G, Imbesi R. Mammary gland: From embryogenesis to adult life. Acta Histochem 2015; 117:379-85. [PMID: 25800977 DOI: 10.1016/j.acthis.2015.02.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 02/03/2015] [Accepted: 02/19/2015] [Indexed: 12/13/2022]
Abstract
The aim of this review is to focus on the molecular factors that ensure the optimal development and maintenance of the mammary gland thanks to their integration and coordination. The development of the mammary gland is supported, not only by endocrine signals, but also by regulatory molecules, which are able to integrate signals from the surrounding microenvironment. A major role is certainly played by homeotic genes, but their incorrect expression during the spatiotemporal regulation of proliferative, functional and differentiation cycles of the mammary gland, may result in the onset of neoplastic processes. Attention is directed also to the endocrine aspects and sexual dimorphism of mammary gland development, as well as the role played by ovarian steroids and their receptors in adult life.
Collapse
Affiliation(s)
- Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Catania, Italy
| | - Paola Castrogiovanni
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Catania, Italy.
| | - Marta Anna Szychlinska
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Catania, Italy
| | - Flavia Concetta Aiello
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Catania, Italy
| | - Giada Maria Vecchio
- Department of Medical and Surgical Sciences and Advanced Technologies, G.F. Ingrassia, Azienda Ospedaliero - Universitaria "Policlinico-Vittorio Emanuele", Anatomic Pathology Section, University of Catania, Catania, Italy
| | - Lucia Salvatorelli
- Department of Medical and Surgical Sciences and Advanced Technologies, G.F. Ingrassia, Azienda Ospedaliero - Universitaria "Policlinico-Vittorio Emanuele", Anatomic Pathology Section, University of Catania, Catania, Italy
| | - Gaetano Magro
- Department of Medical and Surgical Sciences and Advanced Technologies, G.F. Ingrassia, Azienda Ospedaliero - Universitaria "Policlinico-Vittorio Emanuele", Anatomic Pathology Section, University of Catania, Catania, Italy
| | - Rosa Imbesi
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Catania, Italy
| |
Collapse
|
40
|
Flote VG, Frydenberg H, Ursin G, Iversen A, Fagerland MW, Ellison PT, Wist EA, Egeland T, Wilsgaard T, McTiernan A, Furberg AS, Thune I. High-density lipoprotein-cholesterol, daily estradiol and progesterone, and mammographic density phenotypes in premenopausal women. Cancer Prev Res (Phila) 2015; 8:535-44. [PMID: 25804612 DOI: 10.1158/1940-6207.capr-14-0267] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 03/18/2015] [Indexed: 11/16/2022]
Abstract
High-density lipoprotein-cholesterol (HDL-C) may influence the proliferation of breast tumor cells, but it is unclear whether low HDL-C levels, alone or in combination with cyclic estrogen and progesterone, are associated with mammographic density, a strong predictor of breast cancer development. Fasting morning serum concentrations of HDL-C were assessed in 202 premenopausal women, 25 to 35 years of age, participating in the Norwegian Energy Balance and Breast Cancer Aspects (EBBA) I study. Estrogen and progesterone were measured both in serum, and daily in saliva, throughout an entire menstrual cycle. Absolute and percent mammographic density was assessed by a computer-assisted method (Madena), from digitized mammograms (days 7-12). Multivariable models were used to study the associations between HDL-C, estrogen and progesterone, and mammographic density phenotypes. We observed a positive association between HDL-C and percent mammographic density after adjustments (P = 0.030). When combining HDL-C, estradiol, and progesterone, we observed among women with low HDL-C (<1.39 mmol/L), a linear association between salivary 17β-estradiol, progesterone, and percent and absolute mammographic density. Furthermore, in women with low HDL-C, each one SD increase of salivary mid-menstrual 17β-estradiol was associated with an OR of 4.12 (95% confidence intervals; CI, 1.30-13.0) of having above-median percent (28.5%), and an OR of 2.5 (95% CI, 1.13-5.50) of having above-median absolute mammographic density (32.4 cm(2)). On the basis of plausible biologic mechanisms linking HDL-C to breast cancer development, our findings suggest a role of HDL-C, alone or in combination with estrogen, in breast cancer development. However, our small hypothesis generating study requires confirmation in larger studies.
Collapse
Affiliation(s)
- Vidar G Flote
- The Cancer Centre, Oslo University Hospital, Oslo, Norway.
| | | | - Giske Ursin
- Cancer Registry of Norway, Majorstuen, Oslo, Norway
| | - Anita Iversen
- Department of Community Medicine, Faculty of Health Sciences, UiT, The Arctic University of Norway, Tromsø, Norway
| | - Morten W Fagerland
- Unit of Biostatistics and Epidemiology, Oslo University Hospital, Oslo, Norway
| | - Peter T Ellison
- Department of Anthropology, Harvard University, Cambridge, Massachusetts
| | - Erik A Wist
- The Cancer Centre, Oslo University Hospital, Oslo, Norway
| | - Thore Egeland
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway
| | - Tom Wilsgaard
- Department of Community Medicine, Faculty of Health Sciences, UiT, The Arctic University of Norway, Tromsø, Norway
| | - Anne McTiernan
- Fred Hutchinson Cancer Research Center, Public Health Sciences Division, Seattle, Washington
| | - Anne-Sofie Furberg
- Department of Community Medicine, Faculty of Health Sciences, UiT, The Arctic University of Norway, Tromsø, Norway
| | - Inger Thune
- The Cancer Centre, Oslo University Hospital, Oslo, Norway. Department of Community Medicine, Faculty of Health Sciences, UiT, The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
41
|
Hormonal regulation of the cytokine microenvironment in the mammary gland. J Reprod Immunol 2014; 106:58-66. [PMID: 25138705 DOI: 10.1016/j.jri.2014.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 07/04/2014] [Accepted: 07/05/2014] [Indexed: 11/22/2022]
Abstract
The mammary gland is a unique organ that undergoes hormone-driven developmental changes over the course of the ovarian cycle during adult life. Macrophages play a role in regulating cellular turnover in the mammary gland and may affect cancer susceptibility. However, the immune microenvironment that regulates macrophage function has not been described. Hormonal regulation of the cytokine microenvironment across the ovarian cycle was explored using microbead multiplex assay for 15 cytokines in mammary glands from C57Bl/6 mice at different stages of the oestrous cycle, and in ovariectomised mice administered oestradiol and progesterone. The cytokines that were found to fluctuate over the course of the oestrous cycle were colony-stimulating factor (CSF)1, CSF2, interferon gamma (IFNG) and tumour necrosis factor alpha (TNFA), all of which were significantly elevated at oestrus compared with other phases. The concentration of serum progesterone during the oestrus phase negatively correlated with the abundance of cytokines CSF3, IL12p40, IFNG and leukaemia inhibitory factor (LIF). In ovariectomised mice, exogenous oestradiol administration increased mammary gland CSF1, CSF2, IFNG and LIF, compared with ovariectomised control mice. Progesterone administration together with oestradiol resulted in reduced CSF1, CSF3 and IFNG compared with oestradiol administration alone. This study suggests that the cytokine microenvironment in the mammary gland at the oestrus phase of the ovarian cycle is relatively pro-inflammatory compared with other stages of the cycle, and that the oestradiol-induced cytokine microenvironment is significantly attenuated by progesterone. A continuously fluctuating cytokine microenvironment in the mammary gland presumably regulates the phenotypes of resident leukocytes and may affect mammary gland cancer susceptibility.
Collapse
|