1
|
Rassier DE, Månsson A. Mechanisms of myosin II force generation: insights from novel experimental techniques and approaches. Physiol Rev 2025; 105:1-93. [PMID: 38451233 DOI: 10.1152/physrev.00014.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024] Open
Abstract
Myosin II is a molecular motor that converts chemical energy derived from ATP hydrolysis into mechanical work. Myosin II isoforms are responsible for muscle contraction and a range of cell functions relying on the development of force and motion. When the motor attaches to actin, ATP is hydrolyzed and inorganic phosphate (Pi) and ADP are released from its active site. These reactions are coordinated with changes in the structure of myosin, promoting the so-called "power stroke" that causes the sliding of actin filaments. The general features of the myosin-actin interactions are well accepted, but there are critical issues that remain poorly understood, mostly due to technological limitations. In recent years, there has been a significant advance in structural, biochemical, and mechanical methods that have advanced the field considerably. New modeling approaches have also allowed researchers to understand actomyosin interactions at different levels of analysis. This paper reviews recent studies looking into the interaction between myosin II and actin filaments, which leads to power stroke and force generation. It reviews studies conducted with single myosin molecules, myosins working in filaments, muscle sarcomeres, myofibrils, and fibers. It also reviews the mathematical models that have been used to understand the mechanics of myosin II in approaches focusing on single molecules to ensembles. Finally, it includes brief sections on translational aspects, how changes in the myosin motor by mutations and/or posttranslational modifications may cause detrimental effects in diseases and aging, among other conditions, and how myosin II has become an emerging drug target.
Collapse
Affiliation(s)
- Dilson E Rassier
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| | - Alf Månsson
- Physiology, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
2
|
Ragusa R, Caselli C. Focus on cardiac troponin complex: From gene expression to cardiomyopathy. Genes Dis 2024; 11:101263. [PMID: 39211905 PMCID: PMC11357864 DOI: 10.1016/j.gendis.2024.101263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/26/2024] [Accepted: 02/21/2024] [Indexed: 09/04/2024] Open
Abstract
The cardiac troponin complex (cTn) is a regulatory component of sarcomere. cTn consists of three subunits: cardiac troponin C (cTnC), which confers Ca2+ sensitivity to muscle; cTnI, which inhibits the interaction of cross-bridge of myosin with thin filament during diastole; and cTnT, which has multiple roles in sarcomere, such as promoting the link between the cTnI-cTnC complex and tropomyosin within the thin filament and influencing Ca2+ sensitivity of cTn and force development during contraction. Conditions that interfere with interactions within cTn and/or other thin filament proteins can be key factors in the regulation of cardiac contraction. These conditions include alterations in myofilament Ca2+ sensitivity, direct changes in cTn function, and triggering downstream events that lead to adverse cardiac remodeling and impairment of heart function. This review describes gene expression and post-translational modifications of cTn as well as the conditions that can adversely affect the delicate balance among the components of cTn, thereby promoting contractile dysfunction.
Collapse
Affiliation(s)
- Rosetta Ragusa
- Institute of Clinical Physiology, CNR, via Moruzzi 1, Pisa 56124, Italy
| | - Chiara Caselli
- Institute of Clinical Physiology, CNR, via Moruzzi 1, Pisa 56124, Italy
- Fondazione Toscana Gabriele Monasterio, via Moruzzi 1, Pisa 56124, Italy
| |
Collapse
|
3
|
van Kleef ESB, van de Camp SAJH, Groothuis JT, Erasmus CE, Gaytant MA, Vosse BAH, de Weerd W, Verschuuren-Bemelmans CC, Medici-Van den Herik EG, Wallgren-Pettersson C, Küsters B, Schouten M, van Engelen BGM, Ottenheijm CAC, Doorduin J, Voermans NC. A cross-sectional study in 18 patients with typical and mild forms of nemaline myopathy in the Netherlands. Neuromuscul Disord 2024; 43:29-38. [PMID: 39180840 DOI: 10.1016/j.nmd.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/15/2024] [Accepted: 08/01/2024] [Indexed: 08/27/2024]
Abstract
Nemaline myopathy (NM) is a congenital myopathy with generalised muscle weakness, most pronounced in neck flexor, bulbar and respiratory muscles. The aim of this cross-sectional study was to assess the Dutch NM patient cohort. We assessed medical history, physical examination, quality of life (QoL), fatigue severity, motor function (MFM), and respiratory muscle function. We included 18 of the 28 identified patients (13 females (11-67 years old); five males (31-74 years old)) with typical or mild NM and eight different genotypes. Nine patients (50 %) used a wheelchair, eight patients (44 %) used mechanical ventilation, and four patients (22 %) were on tube feeding. Spinal deformities were found in 14 patients (78 %). The median Medical Research Council (MRC) sum score was 38/60 [interquartile range 32-51] in typical and 48/60 [44-50] in mild NM. The experienced QoL was lower and fatigue severity was higher than reference values of the healthy population. The total MFM score was 55 % [49-94] in typical and 88 % [72-93] in mild NM. Most of the patients who performed spirometry had a restrictive lung function pattern (11/15). This identification and characterisation of the Dutch NM patient cohort is important for international collaboration and can guide the design of future clinical trials.
Collapse
Affiliation(s)
- Esmee S B van Kleef
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud university Medical Center, Geert Grooteplein Zuid 10, Nijmegen 6525 GA, the Netherlands
| | - Sanne A J H van de Camp
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud university Medical Center, Geert Grooteplein Zuid 10, Nijmegen 6525 GA, the Netherlands
| | - Jan T Groothuis
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud university Medical Center, Nijmegen, the Netherlands
| | - Corrie E Erasmus
- Department of Paediatric Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center- Amalia Children's Hospital, Nijmegen, the Netherlands
| | - Michael A Gaytant
- Center for Home Mechanical Ventilation, Department of Pulmonology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Bettine A H Vosse
- Department of Pulmonary Diseases, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Willemien de Weerd
- Department of Pediatrics, Beatrix Children's Hospital, University Medical Center Groningen, Groningen, the Netherlands
| | | | - Evita G Medici-Van den Herik
- Department of Paediatric Neurology Erasmus MC- Sophia Children's Hospital, University Medical Center Rotterdam, the Netherlands
| | - Carina Wallgren-Pettersson
- Folkhälsan Research Center, Folkhälsan Institute of Genetics, Helsinki, Finland; Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Benno Küsters
- Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Meyke Schouten
- Department of Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Baziel G M van Engelen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud university Medical Center, Geert Grooteplein Zuid 10, Nijmegen 6525 GA, the Netherlands
| | - Coen A C Ottenheijm
- Department of Physiology, Amsterdam UMC (location VUmc), Amsterdam, the Netherlands
| | - Jonne Doorduin
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud university Medical Center, Geert Grooteplein Zuid 10, Nijmegen 6525 GA, the Netherlands
| | - Nicol C Voermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud university Medical Center, Geert Grooteplein Zuid 10, Nijmegen 6525 GA, the Netherlands.
| |
Collapse
|
4
|
Silverstein S, Orbach R, Syeda S, Foley AR, Gorokhova S, Meilleur KG, Leach ME, Uapinyoying P, Chao KR, Donkervoort S, Bönnemann CG. Differential inclusion of NEB exons 143 and 144 provides insight into NEB-related myopathy variant interpretation and disease manifestation. HGG ADVANCES 2024; 6:100354. [PMID: 39318092 PMCID: PMC11525221 DOI: 10.1016/j.xhgg.2024.100354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024] Open
Abstract
Biallelic pathogenic variants in the gene encoding nebulin (NEB) are a known cause of congenital myopathy. We present two brothers with congenital myopathy and compound heterozygous variants (NC_000002.12:g.151692086G>T; NM_001271208.2: c.2079C>A; p.(Cys693Ter) and NC_000002.12:g.151533439T>C; NM_001271208.2:c.21522+3A>G) in NEB. Transcriptomic sequencing on affected individual muscles revealed that the extended splice variant c.21522+3A>G causes exon 144 skipping. Nebulin isoforms containing exon 144 are known to be mutually exclusive with isoforms containing exon 143, and these isoforms are differentially expressed during development and in adult skeletal muscles. Affected individuals' MRI patterns of muscle involvement were compared with the known pattern of relative abundance of these two isoforms in muscle. We propose that the pattern of muscle involvement in these affected individuals better fits the distribution of exon 144-containing isoforms in muscle than with previously published MRI findings in NEB-related disease due to other variants. Our report introduces disease pathogenesis and manifestation as a result of alteration of isoform distributions in muscle.
Collapse
Affiliation(s)
- Sarah Silverstein
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; Rutgers New Jersey School of Medicine, 185 S Orange Ave, Newark, NJ 07103, USA; Undiagnosed Diseases Program, National Human Genome Research Institute, National Institute of Health, Bethesda, MD 20892, USA.
| | - Rotem Orbach
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Safoora Syeda
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - A Reghan Foley
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Svetlana Gorokhova
- Aix Marseille University, INSERM, MMG, U 1251 Marseille, France; Department of Medical Genetics, Timone Children's Hospital, APHM, Marseille, France
| | - Katherine G Meilleur
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; Ionis Pharmaceuticals, Carlsbad CA, USA
| | - Meganne E Leach
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; Division of Neurology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, USA
| | - Prech Uapinyoying
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; Research Center for Genetic Medicine, Children's National Research Institute, Children's National Medical Center, Washington, DC 20010, USA
| | - Katherine R Chao
- Broad Institute of MIT and Harvard, 415 Main St., Cambridge, MA 02142, USA
| | - Sandra Donkervoort
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
5
|
Christophers B, Leahy SN, Soffar DB, von Saucken VE, Broadie K, Baylies MK. Muscle cofilin alters neuromuscular junction postsynaptic development to strengthen functional neurotransmission. Development 2024; 151:dev202558. [PMID: 38869008 PMCID: PMC11266751 DOI: 10.1242/dev.202558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
Cofilin, an actin-severing protein, plays key roles in muscle sarcomere addition and maintenance. Our previous work found that Drosophila cofilin (DmCFL) knockdown in muscle causes progressive deterioration of muscle structure and function and produces features seen in nemaline myopathy caused by cofilin mutations. We hypothesized that disruption of actin cytoskeleton dynamics by DmCFL knockdown would impact other aspects of muscle development, and, thus, conducted an RNA-sequencing analysis that unexpectedly revealed upregulated expression of numerous neuromuscular junction (NMJ) genes. We found that DmCFL is enriched in the muscle postsynaptic compartment and that DmCFL muscle knockdown causes F-actin disorganization in this subcellular domain prior to the sarcomere defects observed later in development. Despite NMJ gene expression changes, we found no significant changes in gross presynaptic Bruchpilot active zones or total postsynaptic glutamate receptor levels. However, DmCFL knockdown resulted in mislocalization of GluRIIA class glutamate receptors in more deteriorated muscles and strongly impaired NMJ transmission strength. These findings expand our understanding of the roles of cofilin in muscle to include NMJ structural development and suggest that NMJ defects may contribute to the pathophysiology of nemaline myopathy.
Collapse
Affiliation(s)
- Briana Christophers
- Weill Cornell–Rockefeller–Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10065, USA
- Biochemistry, Cell & Developmental Biology, and Molecular Biology (BCMB) program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering, Cancer Center, New York, NY 10065, USA
| | - Shannon N. Leahy
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
| | - David B. Soffar
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering, Cancer Center, New York, NY 10065, USA
| | - Victoria E. von Saucken
- Weill Cornell–Rockefeller–Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10065, USA
- Biochemistry, Cell & Developmental Biology, and Molecular Biology (BCMB) program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering, Cancer Center, New York, NY 10065, USA
| | - Kendal Broadie
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
- Kennedy Center for Research on Human Development, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
- Vanderbilt Brain Institute, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
| | - Mary K. Baylies
- Biochemistry, Cell & Developmental Biology, and Molecular Biology (BCMB) program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering, Cancer Center, New York, NY 10065, USA
| |
Collapse
|
6
|
Fabian L, Karimi E, Farman GP, Gohlke J, Ottenheijm CAC, Granzier HL, Dowling JJ. Comprehensive phenotypic characterization of an allelic series of zebrafish models of NEB-related nemaline myopathy. Hum Mol Genet 2024; 33:1036-1054. [PMID: 38493359 PMCID: PMC11153343 DOI: 10.1093/hmg/ddae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/20/2024] [Indexed: 03/18/2024] Open
Abstract
Nemaline myopathy (NM) is a rare congenital neuromuscular disorder characterized by muscle weakness and hypotonia, slow gross motor development, and decreased respiratory function. Mutations in at least twelve genes, all of each encode proteins that are either components of the muscle thin filament or regulate its length and stability, have been associated with NM. Mutations in Nebulin (NEB), a giant filamentous protein localized in the sarcomere, account for more than 50% of NM cases. At present, there remains a lack of understanding of whether NEB genotype influences nebulin function and NM-patient phenotypes. In addition, there is a lack of therapeutically tractable models that can enable drug discovery and address the current unmet treatment needs of patients. To begin to address these gaps, here we have characterized five new zebrafish models of NEB-related NM. These mutants recapitulate most aspects of NEB-based NM, showing drastically reduced survival, defective muscle structure, reduced contraction force, shorter thin filaments, presence of electron-dense structures in myofibers, and thickening of the Z-disks. This study represents the first extensive investigation of an allelic series of nebulin mutants, and thus provides an initial examination in pre-clinical models of potential genotype-phenotype correlations in human NEB patients. It also represents the first utilization of a set of comprehensive outcome measures in zebrafish, including correlation between molecular analyses, structural and biophysical investigations, and phenotypic outcomes. Therefore, it provides a rich source of data for future studies exploring the NM pathomechanisms, and an ideal springboard for therapy identification and development for NEB-related NM.
Collapse
Affiliation(s)
- Lacramioara Fabian
- Genetics and Genome Biology Program, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada
| | - Esmat Karimi
- Department of Cellular and Molecular Medicine, University of Arizona, 1007 E. Lowell Street, Tucson, AZ 85724, United States
| | - Gerrie P Farman
- Department of Cellular and Molecular Medicine, University of Arizona, 1007 E. Lowell Street, Tucson, AZ 85724, United States
| | - Jochen Gohlke
- Department of Cellular and Molecular Medicine, University of Arizona, 1007 E. Lowell Street, Tucson, AZ 85724, United States
| | - Coen A C Ottenheijm
- Department of Physiology, Amsterdam University Medical Center (location VUMC), De Boelelaan 1108, Amsterdam 1081 HZ, The Netherlands
| | - Hendrikus L Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, 1007 E. Lowell Street, Tucson, AZ 85724, United States
| | - James J Dowling
- Genetics and Genome Biology Program, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada
- Division of Neurology, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada
- Departments of Paediatrics and Molecular Genetics, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
7
|
Lee CL, Chuang CK, Chiu HC, Chang YH, Tu YR, Lo YT, Lin HY, Lin SP. Application of whole exome sequencing in the diagnosis of muscular disorders: a study of Taiwanese pediatric patients. Front Genet 2024; 15:1365729. [PMID: 38818036 PMCID: PMC11137626 DOI: 10.3389/fgene.2024.1365729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/23/2024] [Indexed: 06/01/2024] Open
Abstract
Background Muscular dystrophies and congenital myopathies encompass various inherited muscular disorders that present diagnostic challenges due to clinical complexity and genetic heterogeneity. Methods This study aimed to investigate the use of whole exome sequencing (WES) in diagnosing muscular disorders in pediatric patients in Taiwan. Out of 161 pediatric patients suspected to have genetic/inherited myopathies, 115 received a molecular diagnosis through conventional tests, single gene testing, and gene panels. The remaining 46 patients were divided into three groups: Group 1 (multiplex ligation-dependent probe amplification-negative Duchenne muscular dystrophy) with three patients (6.5%), Group 2 (various forms of muscular dystrophies) with 21 patients (45.7%), and Group 3 (congenital myopathies) with 22 patients (47.8%). Results WES analysis of these groups found pathogenic variants in 100.0% (3/3), 57.1% (12/21), and 68.2% (15/22) of patients in Groups 1 to 3, respectively. WES had a diagnostic yield of 65.2% (30 patients out of 46), detecting 30 pathogenic or potentially pathogenic variants across 28 genes. Conclusion WES enables the diagnosis of rare diseases with symptoms and characteristics similar to congenital myopathies and muscular dystrophies, such as muscle weakness. Consequently, this approach facilitates targeted therapy implementation and appropriate genetic counseling.
Collapse
Affiliation(s)
- Chung-Lin Lee
- Department of Pediatrics, MacKay Memorial Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
- Department of Rare Disease Center, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, Mackay Medical College, Taipei, Taiwan
- Mackay Junior College of Medicine, Nursing and Management, Taipei, Taiwan
| | - Chih-Kuang Chuang
- Division of Genetics and Metabolism, Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
- College of Medicine, Fu-Jen Catholic University, Taipei, Taiwan
| | - Huei-Ching Chiu
- Department of Pediatrics, MacKay Memorial Hospital, Taipei, Taiwan
| | - Ya-Hui Chang
- Department of Pediatrics, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Rare Disease Center, MacKay Memorial Hospital, Taipei, Taiwan
| | - Yuan-Rong Tu
- Division of Genetics and Metabolism, Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Yun-Ting Lo
- Department of Rare Disease Center, MacKay Memorial Hospital, Taipei, Taiwan
| | - Hsiang-Yu Lin
- Department of Pediatrics, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Rare Disease Center, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, Mackay Medical College, Taipei, Taiwan
- Mackay Junior College of Medicine, Nursing and Management, Taipei, Taiwan
- Division of Genetics and Metabolism, Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Shuan-Pei Lin
- Department of Pediatrics, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Rare Disease Center, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, Mackay Medical College, Taipei, Taiwan
- Division of Genetics and Metabolism, Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Infant and Child Care, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| |
Collapse
|
8
|
Karimi E, Gohlke J, van der Borgh M, Lindqvist J, Hourani Z, Kolb J, Cossette S, Lawlor MW, Ottenheijm C, Granzier H. Characterization of NEB pathogenic variants in patients reveals novel nemaline myopathy disease mechanisms and omecamtiv mecarbil force effects. Acta Neuropathol 2024; 147:72. [PMID: 38634969 PMCID: PMC11026289 DOI: 10.1007/s00401-024-02726-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024]
Abstract
Nebulin, a critical protein of the skeletal muscle thin filament, plays important roles in physiological processes such as regulating thin filament length (TFL), cross-bridge cycling, and myofibril alignment. Pathogenic variants in the nebulin gene (NEB) cause NEB-based nemaline myopathy (NEM2), a genetically heterogeneous disorder characterized by hypotonia and muscle weakness, currently lacking curative therapies. In this study, we examined a cohort of ten NEM2 patients, each with unique pathogenic variants, aiming to understand their impact on mRNA, protein, and functional levels. Results show that pathogenic truncation variants affect NEB mRNA stability and lead to nonsense-mediated decay of the mutated transcript. Moreover, a high incidence of cryptic splice site activation was found in patients with pathogenic splicing variants that are expected to disrupt the actin-binding sites of nebulin. Determination of protein levels revealed patients with either relatively normal or markedly reduced nebulin. We observed a positive relation between the reduction in nebulin and a reduction in TFL, or reduction in tension (both maximal and submaximal tension). Interestingly, our study revealed a pathogenic duplication variant in nebulin that resulted in a four-copy gain in the triplicate region of NEB and a much larger nebulin protein and longer TFL. Additionally, we investigated the effect of Omecamtiv mecarbil (OM), a small-molecule activator of cardiac myosin, on force production of type 1 muscle fibers of NEM2 patients. OM treatment substantially increased submaximal tension across all NEM2 patients ranging from 87 to 318%, with the largest effects in patients with the lowest level of nebulin. In summary, this study indicates that post-transcriptional or post-translational mechanisms regulate nebulin expression. Moreover, we propose that the pathomechanism of NEM2 involves not only shortened but also elongated thin filaments, along with the disruption of actin-binding sites resulting from pathogenic splicing variants. Significantly, our findings highlight the potential of OM treatment to improve skeletal muscle function in NEM2 patients, especially those with large reductions in nebulin levels.
Collapse
Affiliation(s)
- Esmat Karimi
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Jochen Gohlke
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Mila van der Borgh
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Johan Lindqvist
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Zaynab Hourani
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Justin Kolb
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Stacy Cossette
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Michael W Lawlor
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA
- Diverge Translational Science Laboratory, Milwaukee, WI, USA
| | - Coen Ottenheijm
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
- Department of Physiology, Amsterdam UMC (Location VUMC), Amsterdam, Netherlands
| | - Henk Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
9
|
Galli RA, Borsboom TC, Gineste C, Brocca L, Rossi M, Hwee DT, Malik FI, Bottinelli R, Gondin J, Pellegrino MA, de Winter JM, Ottenheijm CA. Tirasemtiv enhances submaximal muscle tension in an Acta1:p.Asp286Gly mouse model of nemaline myopathy. J Gen Physiol 2024; 156:e202313471. [PMID: 38376469 PMCID: PMC10876480 DOI: 10.1085/jgp.202313471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/01/2023] [Accepted: 01/30/2024] [Indexed: 02/21/2024] Open
Abstract
Nemaline myopathies are the most common form of congenital myopathies. Variants in ACTA1 (NEM3) comprise 15-25% of all nemaline myopathy cases. Patients harboring variants in ACTA1 present with a heterogeneous disease course characterized by stable or progressive muscle weakness and, in severe cases, respiratory failure and death. To date, no specific treatments are available. Since NEM3 is an actin-based thin filament disease, we tested the ability of tirasemtiv, a fast skeletal muscle troponin activator, to improve skeletal muscle function in a mouse model of NEM3, harboring the patient-based p.Asp286Gly variant in Acta1. Acute and long-term tirasemtiv treatment significantly increased muscle contractile capacity at submaximal stimulation frequencies in both fast-twitch extensor digitorum longus and gastrocnemius muscle, and intermediate-twitch diaphragm muscle in vitro and in vivo. Additionally, long-term tirasemtiv treatment in NEM3 mice resulted in a decreased respiratory rate with preserved minute volume, suggesting more efficient respiration. Altogether, our data support the therapeutic potential of fast skeletal muscle troponin activators in alleviating skeletal muscle weakness in a mouse model of NEM3 caused by the Acta1:p.Asp286Gly variant.
Collapse
Affiliation(s)
- Ricardo A. Galli
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Physiology, Amsterdam, The Netherlands
- Amsterdam Movement Sciences, Musculoskeletal Health and Tissue Function and Regeneration, Amsterdam, The Netherlands
| | - Tamara C. Borsboom
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Physiology, Amsterdam, The Netherlands
| | | | - Lorenza Brocca
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Maira Rossi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Darren T. Hwee
- Research and Early Development, Cytokinetics Inc., South San Francisco, CA, USA
| | - Fady I. Malik
- Research and Early Development, Cytokinetics Inc., South San Francisco, CA, USA
| | - Roberto Bottinelli
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- IRCCS Mondino Foundation, Pavia, Italy
| | - Julien Gondin
- Aix-Marseille University, CNRS, CRMBM, Marseille, France
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U1315, Université Lyon, Lyon, France
| | | | - Josine M. de Winter
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Physiology, Amsterdam, The Netherlands
- Amsterdam Movement Sciences, Musculoskeletal Health and Tissue Function and Regeneration, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, The Netherlands
| | - Coen A.C. Ottenheijm
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Physiology, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Atherosclerosis, Amsterdam, The Netherlands
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
10
|
Silverstein S, Orbach R, Syeda S, Foley AR, Gorokhova S, Meilleur KG, Leach ME, Uapinyoying P, Chao KR, Donkervoort S, Bönnemann CG. Differential inclusion of NEB exons 143 and 144 provides insight into NEB-related myopathy variant interpretation and disease manifestation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.25.24304535. [PMID: 38585796 PMCID: PMC10996755 DOI: 10.1101/2024.03.25.24304535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Biallelic pathogenic variants in the gene encoding nebulin (NEB) are a known cause of congenital myopathy. We present two individuals with congenital myopathy and compound heterozygous variants (NM_001271208.2: c.2079C>A; p.(Cys693Ter) and c.21522+3A>G ) in NEB. Transcriptomic sequencing on patient muscle revealed that the extended splice variant c.21522+3A>G causes exon 144 skipping. Nebulin isoforms containing exon 144 are known to be mutually exclusive with isoforms containing exon 143, and these isoforms are differentially expressed during development and in adult skeletal muscles. Patients MRIs were compared to the known pattern of relative abundance of these two isoforms in muscle. We propose that the pattern of muscle involvement in these patients better fits the distribution of exon 144-containing isoforms in muscle than with previously published MRI findings in NEB-related disease due to other variants. To our knowledge this is the first report hypothesizing disease pathogenesis through the alteration of isoform distributions in muscle.
Collapse
Affiliation(s)
- Sarah Silverstein
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
- Rutgers New Jersey School of Medicine, 185 S Orange Ave Newark NJ 07103 USA
- Undiagnosed Diseases Program, National Human Genome Research Institute, National Institute of Health, Bethesda, Maryland 20892, USA
| | - Rotem Orbach
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Safoora Syeda
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - A Reghan Foley
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Svetlana Gorokhova
- Aix Marseille Univ, INSERM, MMG, U 1251, Marseille, France
- Department of Medical Genetics, Timone Children’s Hospital, APHM, Marseille, France
| | - Katherine G. Meilleur
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
- Biogen, Boston MA
| | - Meganne E. Leach
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
- Division of Neurology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, Portland, OR
| | - Prech Uapinyoying
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
- Research Center for Genetic Medicine, Children’s National Research Institute, Children’s National Medical Center, Washington DC 20010
| | - Katherine R Chao
- Broad Institute of MIT and Harvard, 415 Main St. Cambridge MA 02142
| | - Sandra Donkervoort
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Carsten G. Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
11
|
Houweling PJ, Crossman V, Tiong CF, Coles CA, Taylor RL, Clayton JS, Graham A, Vlahos K, Howden SE, North KN. Generation of a human ACTA1-tdTomato reporter iPSC line using CRISPR/Cas9 editing. Stem Cell Res 2024; 75:103313. [PMID: 38277710 DOI: 10.1016/j.scr.2024.103313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/17/2023] [Accepted: 01/11/2024] [Indexed: 01/28/2024] Open
Abstract
We used gene editing to introduce DNA sequences encoding the tdTomato fluorescent protein into the α -skeletal actin 1 (ACTA1) locus to develop an ACTA1-tdTomato induced pluripotent stem cell reporter line for monitoring differentiation of skeletal muscle. This cell line will be used to better understand skeletal muscle maturation and development in vitro as well as provide a useful tool for drug screening and the evaluation of novel therapeutics for the treatment of skeletal muscle disease.
Collapse
Affiliation(s)
- Peter J Houweling
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Pediatrics, The University of Melbourne, Victoria, Australia.
| | - Vanessa Crossman
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Chrystal F Tiong
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Chantal A Coles
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Pediatrics, The University of Melbourne, Victoria, Australia
| | - Rhonda L Taylor
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia; Centre for Medical Research, University of Western Australia, QEII Medical Centre, Nedlands, WA, Australia
| | - Joshua S Clayton
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia; Centre for Medical Research, University of Western Australia, QEII Medical Centre, Nedlands, WA, Australia
| | - Alison Graham
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Katerina Vlahos
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Sara E Howden
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Kathryn N North
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Pediatrics, The University of Melbourne, Victoria, Australia
| |
Collapse
|
12
|
Haidong L, Yin L, Ping C, Xianzhao Z, Qi Q, Xiaoli M, Zheng L, Wenhao C, Yaguang Z, Qianqian Q. Clinico-pathological and gene features of 15 nemaline myopathy patients from a single Chinese neuromuscular center. Acta Neurol Belg 2024; 124:91-99. [PMID: 37525074 PMCID: PMC10874337 DOI: 10.1007/s13760-023-02333-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/12/2023] [Indexed: 08/02/2023]
Abstract
BACKGROUND Nemaline myopathy, the most common of the congenital myopathies, is caused by various genetic mutations. In this study, we attempted to investigate the clinical features, muscle pathology and genetic features of 15 patients with nemaline myopathy. RESULTS Among the 15 patients, there were 9 (60.00%) males and 6 (40.00%) females, and 9 (60.00%) of them came from three families respectively. The age of seeing a doctor ranged from 9 to 52 years old, the age of onset was from 5 to 23 years old, and the duration of disease ranged from 3 to 35 years. Ten out of the 15 patients had high arched palate and elongated face. Only one patient had mild respiratory muscle involvement and none had dysphagia. Muscle biopsies were performed in 9 out of the 15 patients. Pathologically, muscle fibers of different sizes, atrophic muscle fibers and compensatory hypertrophic fibers could be found, and occasionally degenerated and necrotic muscle fibers were observed. Different degrees of nemaline bodies aggregation could be seen in all 9 patients. The distribution of type I and type II muscle fibers were significantly abnormal in patients with nemaline myopathy caused by NEB gene, however, it was basically normal in patients with nemaline myopathy caused by TPM3 gene and ACTA1 gene. Electron microscopic analysis of 6 patients showed that nemaline bodies aggregated between myofibrils were found in 5(83.33%) cases, and most of them were located near the Z band, but no intranuclear rods were found. The gene analysis of 15 NM patients showed that three NM-related genes were harbored, including 11 (73.33%) patients with NEB, 3 (20.00%) patients with TPM3, and 1 (6.67%) patient with ACTA1, respectively. A total of 12 mutation sites were identified and included 10 (83.33%) mutations in exon and 2(16.67%) mutations in intron. CONCLUSIONS The clinical phenotype of nemaline myopathy is highly heterogeneous. Muscle pathology shows that nemaline bodies aggregation is an important feature for the diagnosis of NM. NEB is the most frequent causative gene in this cohort. The splicing mutation, c.21522 + 3A > G may be the hotspot mutation of the NEB gene in Chinese NM patients.
Collapse
Affiliation(s)
- Lv Haidong
- Department of Neurology, Jiaozuo People's Hospital of Henan Province, Henan, 454002, Henan Province, People's Republic of China
| | - Liu Yin
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China
| | - Chen Ping
- Department of Neurology, Jiaozuo People's Hospital of Henan Province, Henan, 454002, Henan Province, People's Republic of China
| | - Zheng Xianzhao
- Department of Neurology, Jiaozuo People's Hospital of Henan Province, Henan, 454002, Henan Province, People's Republic of China
| | - Qian Qi
- Department of Neurology, Jiaozuo People's Hospital of Henan Province, Henan, 454002, Henan Province, People's Republic of China
| | - Ma Xiaoli
- Department of Neurology, Jiaozuo People's Hospital of Henan Province, Henan, 454002, Henan Province, People's Republic of China
| | - Lv Zheng
- Department of Neurology, Jiaozuo People's Hospital of Henan Province, Henan, 454002, Henan Province, People's Republic of China
| | - Cui Wenhao
- Department of Neurology, Jiaozuo People's Hospital of Henan Province, Henan, 454002, Henan Province, People's Republic of China
| | - Zhou Yaguang
- Department of Neurology, Jiaozuo People's Hospital of Henan Province, Henan, 454002, Henan Province, People's Republic of China
| | - Qu Qianqian
- Department of Neurology, Jiaozuo People's Hospital of Henan Province, Henan, 454002, Henan Province, People's Republic of China.
| |
Collapse
|
13
|
Wallgren-Pettersson C, Jokela M, Lehtokari VL, Tyynismaa H, Sainio MT, Ylikallio E, Tynninen O, Pelin K, Auranen M. Variants in tropomyosins TPM2 and TPM3 causing muscle hypertonia. Neuromuscul Disord 2024; 35:29-32. [PMID: 38219297 DOI: 10.1016/j.nmd.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/28/2023] [Accepted: 12/11/2023] [Indexed: 01/16/2024]
Abstract
Patients with myopathies caused by pathogenic variants in tropomyosin genes TPM2 and TPM3 usually have muscle hypotonia and weakness, their muscle biopsies often showing fibre size disproportion and nemaline bodies. Here, we describe a series of patients with hypercontractile molecular phenotypes, high muscle tone, and mostly non-specific myopathic biopsy findings without nemaline bodies. Three of the patients had trismus, whilst in one patient, the distal joints of her fingers flexed on extension of the wrists. In one biopsy from a patient with a rare TPM3 pathogenic variant, cores and minicores were observed, an unusual finding in TPM3-caused myopathy. The variants alter conserved contact sites between tropomyosin and actin.
Collapse
Affiliation(s)
- Carina Wallgren-Pettersson
- The Folkhälsan Institute of Genetics, the Folkhälsan Research Center, Helsinki, Finland, and the Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland.
| | - Manu Jokela
- Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland
| | - Vilma-Lotta Lehtokari
- The Folkhälsan Institute of Genetics, the Folkhälsan Research Center, Helsinki, Finland, and the Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Henna Tyynismaa
- Stem Cells and Metabolism Research Programme, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Markus T Sainio
- Clinical Neurosciences, Neurology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Emil Ylikallio
- Clinical Neurosciences, Neurology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Olli Tynninen
- Olli Tynninen, Department of Pathology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Katarina Pelin
- The Folkhälsan Institute of Genetics, the Folkhälsan Research Center, Helsinki, Finland, and the Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland; Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Mari Auranen
- Clinical Neurosciences, Neurology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
14
|
Farkas D, Szikora S, Jijumon AS, Polgár TF, Patai R, Tóth MÁ, Bugyi B, Gajdos T, Bíró P, Novák T, Erdélyi M, Mihály J. Peripheral thickening of the sarcomeres and pointed end elongation of the thin filaments are both promoted by SALS and its formin interaction partners. PLoS Genet 2024; 20:e1011117. [PMID: 38198522 PMCID: PMC10805286 DOI: 10.1371/journal.pgen.1011117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 01/23/2024] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
During striated muscle development the first periodically repeated units appear in the premyofibrils, consisting of immature sarcomeres that must undergo a substantial growth both in length and width, to reach their final size. Here we report that, beyond its well established role in sarcomere elongation, the Sarcomere length short (SALS) protein is involved in Z-disc formation and peripheral growth of the sarcomeres. Our protein localization data and loss-of-function studies in the Drosophila indirect flight muscle strongly suggest that radial growth of the sarcomeres is initiated at the Z-disc. As to thin filament elongation, we used a powerful nanoscopy approach to reveal that SALS is subject to a major conformational change during sarcomere development, which might be critical to stop pointed end elongation in the adult muscles. In addition, we demonstrate that the roles of SALS in sarcomere elongation and radial growth are both dependent on formin type of actin assembly factors. Unexpectedly, when SALS is present in excess amounts, it promotes the formation of actin aggregates highly resembling the ones described in nemaline myopathy patients. Collectively, these findings helped to shed light on the complex mechanisms of SALS during the coordinated elongation and thickening of the sarcomeres, and resulted in the discovery of a potential nemaline myopathy model, suitable for the identification of genetic and small molecule inhibitors.
Collapse
Affiliation(s)
- Dávid Farkas
- Institute of Genetics, Biological Research Centre, Szeged, Hungary
| | - Szilárd Szikora
- Institute of Genetics, Biological Research Centre, Szeged, Hungary
| | - A. S. Jijumon
- Institute of Genetics, Biological Research Centre, Szeged, Hungary
| | - Tamás F. Polgár
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
- Doctoral School of Theoretical Medicine, University of Szeged, Szeged, Hungary
| | - Roland Patai
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Mónika Ágnes Tóth
- University of Pécs, Medical School, Department of Biophysics, Pécs, Hungary
| | - Beáta Bugyi
- University of Pécs, Medical School, Department of Biophysics, Pécs, Hungary
| | - Tamás Gajdos
- Department of Optics and Quantum Electronics, University of Szeged, Szeged, Hungary
| | - Péter Bíró
- Department of Optics and Quantum Electronics, University of Szeged, Szeged, Hungary
| | - Tibor Novák
- Department of Optics and Quantum Electronics, University of Szeged, Szeged, Hungary
| | - Miklós Erdélyi
- Department of Optics and Quantum Electronics, University of Szeged, Szeged, Hungary
| | - József Mihály
- Institute of Genetics, Biological Research Centre, Szeged, Hungary
- University of Szeged, Department of Genetics, Szeged, Hungary
| |
Collapse
|
15
|
García Estévez DA, Juanatey-García A, San Millán Tejado B, Barros Angueira F. Late-onset sporadic nemaline myopathy presenting as hypercapnic respiratory failure. Neurologia 2024; 39:99-101. [PMID: 38056594 DOI: 10.1016/j.nrleng.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 01/01/2023] [Indexed: 12/08/2023] Open
Affiliation(s)
- D A García Estévez
- Servicio de Neurología, Complejo Hospitalario Universitario de Ourense, Ourense, Spain; Grupo de investigación Neurociencias Clínicas, Instituto de Investigaciones Sanitarias Galicia-Sur, SERGAS-UVIGO, Vigo, Spain.
| | - A Juanatey-García
- Servicio de Neurología, Complejo Hospitalario Universitario de Ourense, Ourense, Spain; Grupo de investigación Neurociencias Clínicas, Instituto de Investigaciones Sanitarias Galicia-Sur, SERGAS-UVIGO, Vigo, Spain
| | - B San Millán Tejado
- Servicio de Anatomía Patológica - Neuropatología, Hospital Álvaro Cunqueiro de Vigo, Vigo, Spain
| | - F Barros Angueira
- Fundación Pública Galega de Medicina Xenómica, Santiago de Compostela, A Coruña, Spain
| |
Collapse
|
16
|
Alghanmi BM, Alghanmi MM, Alhayli MR, Taffour RM, Alghubayshi SM. A Case of a Newborn With Nemaline Myopathy From Al-Qunfudhah City, Saudi Arabia. Cureus 2024; 16:e52523. [PMID: 38239845 PMCID: PMC10796190 DOI: 10.7759/cureus.52523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2024] [Indexed: 01/22/2024] Open
Abstract
Nemaline myopathy is a primary skeletal muscle disorder and one of the congenital myopathies. It can be caused by mutations in at least 12 genes, with the nebulin (NEB) gene being the most common. Here, we present the first case of a neonate with nemaline myopathy from Al-Qunfudhah, Saudi Arabia. A full-term baby boy was delivered via cesarean section due to decreased fetal movement. The baby was covered with a thick meconium stain. He was born with severe distress and underwent an endotracheal tube placement. The baby presented generalized muscle weakness, hypotonia, and areflexia. Examination revealed arthrogryposis, bilateral small chin, undescended testicle, joint deformity, hip dislocation, and clubfoot. Chest examination revealed conducting sound and bilateral equal air entry. Moreover, he experienced bilateral chest wheeze and conducting sound. All laboratory tests were normal, and whole-exome sequencing revealed pathogenic homozygous splice acceptor variant NEB gene c.8889+1G˃A. The patient was first suspected to have spinal muscular atrophy as there was no previous nemaline myopathy case reported from Al-Qunfudhah. However, the typical symptoms and genetic sequencing confirmed his condition. As the society in Al-Qunfudhah is known for consanguinity, as in our case, clinicians should identify other types of myopathy as it is expected to occur in further cases.
Collapse
Affiliation(s)
- Bushra M Alghanmi
- General Practice, South Al-Qunfudah General Hospital, Al-Qunfudah, SAU
| | - Manal M Alghanmi
- General Practice, South Al-Qunfudah General Hospital, Al-Qunfudah, SAU
| | - Mohammed R Alhayli
- Pediatrics and Neonatal Intensive Care Unit, South Al-Qunfudah General Hospital, Al-Qunfudah, SAU
| | - Randa M Taffour
- Pediatric Intensive Care Unit, South Al-Qunfudah General Hospital, Al-Qunfudah, SAU
| | | |
Collapse
|
17
|
Lammers J, Smith B. Therapeutic Play Gym: Feasibility of a Caregiver-Mediated Exercise System for NICU Graduates with Neuromuscular Weakness-A Case Series. Pediatr Phys Ther 2024; 36:105-112. [PMID: 38227756 DOI: 10.1097/pep.0000000000001071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
PURPOSE To describe the feasibility and effect of caregiver-mediated exercise training using a novel Therapeutic Play Gym in 3 neonatal intensive care unit (NICU) graduates with rare neuromuscular diseases. SUMMARY OF KEY POINTS Caregivers of 3 medically complex, technology-dependent NICU graduates could not access community-based rehabilitation services after discharging from lengthy initial hospitalizations. These children, diagnosed with spinal muscular atrophy type 0, untreated X-linked myotubular myopathy, and untreated nemaline myopathy 3 (NEM3), completed monthly consultations with a pediatric clinical specialist and 3 assessment appointments. The caregivers agreed to administer a progressive Therapeutic Play Gym home exercise program at a minimum frequency of 3×/wk for 6 months. CONCLUSION A monthly consultative approach was both feasible and effective to safely progress caregiver-mediated home exercise training using a novel Therapeutic Play Gym. Positive training effects emerged in fitness, function, and caregiver-reported quality of life domains. RECOMMENDATIONS FOR CLINICAL PRACTICE A strong therapist-caregiver alliance can empower families to perform guided training when community resources are limited. More research is needed to see whether this training model is feasible for children with other conditions; for use in hospital, outpatient, or educational settings; and as an adjuvant exercise treatment for children receiving disease-modifying interventions.
Collapse
Affiliation(s)
- Jenna Lammers
- Department of Pediatrics (Ms Lammers), Powell Center for Rare Disease Research and Therapy, University of Florida, Gainesville, Florida; Department of Physical Therapy (Dr Smith), University of Florida, Gainesville, Florida
| | | |
Collapse
|
18
|
Yu QX, Zhen L, Lin XM, Wen YJ, Li DZ. Clinical and molecular analysis of nine fetal cases with clinically significant variants causing nemaline myopathy. Eur J Obstet Gynecol Reprod Biol 2024; 292:263-266. [PMID: 38071834 DOI: 10.1016/j.ejogrb.2023.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/17/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
OBJECTIVE To present the prenatal features and postnatal outcomes of pregnancies with fetal nemaline myopathy (NM). STUDY DESIGN This was a retrospective study of nine cases with NM diagnosed by prenatal or postnatal clinical features and confirmed by genetic testing. Clinical and laboratory data were collected and reviewed for these cases, including maternal demographics, prenatal sonographic findings, exome sequencing (ES) results, and pregnancy outcomes. RESULTS All of the nine cases were detected to have NM-causing variants, involving NEB gene in 2 cases, ACTA1 in 3 cases, KLHL40 in 3 cases, and TPM2 in 1 case. Almost all (8/9) had normal first-trimester ultrasound scans except one who had an increased nuchal translucency. Seven (7/9) cases had second-trimester abnormal ultrasounds with fetal akinesia and/or extremity anomalies. Two (2/9) had only third-trimester abnormal ultrasounds with fetal akinesia and polyhydramnios, with one combined with fetal growth restriction. Four pregnancies with a positive prenatal ES were terminated, while five having not receiving prenatal ES continued to term. Only one infant survived 1 year old, and four passed away within 12 months. CONCLUSION Prenatal ultrasound can detect clues that lead to the diagnosis of NM, such as reduced or absent fetal movements, polyhydramnios and extremity anomalies.
Collapse
Affiliation(s)
- Qiu-Xia Yu
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center affiliated to Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Li Zhen
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center affiliated to Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiao-Mei Lin
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center affiliated to Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yun-Jing Wen
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center affiliated to Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Dong-Zhi Li
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center affiliated to Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
19
|
Pascoe JE, Zygmunt A, Ehsan Z, Gurbani N. Sleep in pediatric neuromuscular disorders. Semin Pediatr Neurol 2023; 48:101092. [PMID: 38065635 DOI: 10.1016/j.spen.2023.101092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 12/18/2023]
Abstract
Sleep disordered breathing (SDB) is prevalent among children with neuromuscular disorders (NMD). The combination of respiratory muscle weakness, altered drive, and chest wall distortion due to scoliosis make sleep a stressful state in this population. Symptomatology can range from absent to snoring, nocturnal awakenings, morning headaches, and excessive daytime sleepiness. Sequelae of untreated SDB includes cardiovascular effects, metabolic derangements, and neurocognitive concerns which can be compounded by those innate to the NMD. The clinician should have a low threshold for obtaining polysomnography and recognize the nuances of individual disorders due to disproportionately impacted muscle groups such as hypoventilation in ambulating patients from diaphragm weakness. Non-invasive or invasive ventilation are the mainstay of treatment. In this review we explore the diagnosis and treatment of SDB in children with various NMD.
Collapse
Affiliation(s)
- John E Pascoe
- Division of Pulmonary and Sleep Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
| | - Alexander Zygmunt
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States; Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Zarmina Ehsan
- Division of Pulmonary and Sleep Medicine, Children's Mercy-Kansas City, Kansas City, MO, United States; Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO, United States
| | - Neepa Gurbani
- Division of Pulmonary and Sleep Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
20
|
Isley L, Callum P, Luque J, Park J, Baldwin K. Management considerations for clinically relevant findings on expanded carrier screening in a sperm donor applicant population. F S Rep 2023; 4:384-389. [PMID: 38204949 PMCID: PMC10774867 DOI: 10.1016/j.xfre.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/09/2023] [Accepted: 10/27/2023] [Indexed: 01/12/2024] Open
Abstract
Objective To describe the clinical experience of managing expanded carrier screening (ECS) results in sperm donor applicants at a sperm bank in the United States, including considerations around suitability determination and appropriate education of prospective donors and recipients. Design A retrospective review of donor genetic screening records from July 2017 to December 2021. Setting A U.S.-based sperm bank. Patients Donor applicants at a sperm bank. Intervention Not applicable. Main Outcome Measures To examine the rate of potentially significant health risks on the basis of ECS results to inform donor management and donor/recipient counseling considerations. Results Nearly 2% of donor applicants were identified as having potentially significant health risks on the basis of their ECS results, and most individuals had no clinical manifestations related to these findings. Conclusion There are unique challenges related to ECS in third-party reproduction for gamete providers, recipients, and their healthcare providers. A collaborative, multidisciplinary approach is necessary to help mitigate risks to donor offspring and maximize patient experience. Informed consent and access to a trained genetics professional are paramount when facilitating ECS on donor applicants and disseminating results to recipients.
Collapse
|
21
|
Christophers B, Leahy SN, Soffar DB, von Saucken VE, Broadie K, Baylies MK. Muscle cofilin alters neuromuscular junction postsynaptic development to strengthen functional neurotransmission. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.21.568166. [PMID: 38045306 PMCID: PMC10690168 DOI: 10.1101/2023.11.21.568166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Cofilin, an actin severing protein, plays critical roles in muscle sarcomere addition and maintenance. Our previous work has shown Drosophila cofilin (DmCFL) knockdown causes progressive deterioration of muscle structure and function and produces features seen in nemaline myopathy (NM) caused by cofilin mutations. We hypothesized that disruption of actin cytoskeleton dynamics by DmCFL knockdown would impact other aspects of muscle development, and, thus, conducted an RNA sequencing analysis which unexpectedly revealed upregulated expression of numerous neuromuscular junction (NMJ) genes. We found that DmCFL is enriched in the muscle postsynaptic compartment and that DmCFL deficiency causes F-actin disorganization in this subcellular domain prior to the sarcomere defects observed later in development. Despite NMJ gene expression changes, we found no significant changes in gross presynaptic Bruchpilot active zones or total postsynaptic glutamate receptor levels. However, DmCFL knockdown results in mislocalization of glutamate receptors containing the GluRIIA subunit in more deteriorated muscles and neurotransmission strength is strongly impaired. These findings expand our understanding of cofilin's roles in muscle to include NMJ structural development and suggest that NMJ defects may contribute to NM pathophysiology.
Collapse
Affiliation(s)
- Briana Christophers
- Weill Cornell–Rockefeller–Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, 10065, USA
- Biochemistry, Cell & Developmental Biology, and Molecular Biology (BCMB) program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering, Cancer Center, New York, NY 10065, USA
| | - Shannon N. Leahy
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
| | - David B. Soffar
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering, Cancer Center, New York, NY 10065, USA
| | - Victoria E. von Saucken
- Weill Cornell–Rockefeller–Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, 10065, USA
- Biochemistry, Cell & Developmental Biology, and Molecular Biology (BCMB) program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering, Cancer Center, New York, NY 10065, USA
| | - Kendal Broadie
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
- Kennedy Center for Research on Human Development, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
- Vanderbilt Brain Institute, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
| | - Mary K. Baylies
- Biochemistry, Cell & Developmental Biology, and Molecular Biology (BCMB) program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering, Cancer Center, New York, NY 10065, USA
| |
Collapse
|
22
|
Piñero-Pérez R, López-Cabrera A, Álvarez-Córdoba M, Cilleros-Holgado P, Talaverón-Rey M, Suárez-Carrillo A, Munuera-Cabeza M, Gómez-Fernández D, Reche-López D, Romero-González A, Romero-Domínguez JM, de Pablos RM, Sánchez-Alcázar JA. Actin Polymerization Defects Induce Mitochondrial Dysfunction in Cellular Models of Nemaline Myopathies. Antioxidants (Basel) 2023; 12:2023. [PMID: 38136143 PMCID: PMC10740811 DOI: 10.3390/antiox12122023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/18/2023] [Accepted: 11/19/2023] [Indexed: 12/24/2023] Open
Abstract
Nemaline myopathy (NM) is one of the most common forms of congenital myopathy and it is identified by the presence of "nemaline bodies" (rods) in muscle fibers by histopathological examination. The most common forms of NM are caused by mutations in the Actin Alpha 1 (ACTA1) and Nebulin (NEB) genes. Clinical features include hypotonia and muscle weakness. Unfortunately, there is no curative treatment and the pathogenetic mechanisms remain unclear. In this manuscript, we examined the pathophysiological alterations in NM using dermal fibroblasts derived from patients with mutations in ACTA1 and NEB genes. Patients' fibroblasts were stained with rhodamine-phalloidin to analyze the polymerization of actin filaments by fluorescence microscopy. We found that patients' fibroblasts showed incorrect actin filament polymerization compared to control fibroblasts. Actin filament polymerization defects were associated with mitochondrial dysfunction. Furthermore, we identified two mitochondrial-boosting compounds, linoleic acid (LA) and L-carnitine (LCAR), that improved the formation of actin filaments in mutant fibroblasts and corrected mitochondrial bioenergetics. Our results indicate that cellular models can be useful to study the pathophysiological mechanisms involved in NM and to find new potential therapies. Furthermore, targeting mitochondrial dysfunction with LA and LCAR can revert the pathological alterations in NM cellular models.
Collapse
Affiliation(s)
- Rocío Piñero-Pérez
- Departamento de Fisiología, Anatomía y Biología Celular, Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (R.P.-P.); (A.L.-C.); (M.Á.-C.); (P.C.-H.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.G.-F.); (D.R.-L.); (A.R.-G.); (J.M.R.-D.)
| | - Alejandra López-Cabrera
- Departamento de Fisiología, Anatomía y Biología Celular, Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (R.P.-P.); (A.L.-C.); (M.Á.-C.); (P.C.-H.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.G.-F.); (D.R.-L.); (A.R.-G.); (J.M.R.-D.)
| | - Mónica Álvarez-Córdoba
- Departamento de Fisiología, Anatomía y Biología Celular, Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (R.P.-P.); (A.L.-C.); (M.Á.-C.); (P.C.-H.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.G.-F.); (D.R.-L.); (A.R.-G.); (J.M.R.-D.)
| | - Paula Cilleros-Holgado
- Departamento de Fisiología, Anatomía y Biología Celular, Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (R.P.-P.); (A.L.-C.); (M.Á.-C.); (P.C.-H.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.G.-F.); (D.R.-L.); (A.R.-G.); (J.M.R.-D.)
| | - Marta Talaverón-Rey
- Departamento de Fisiología, Anatomía y Biología Celular, Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (R.P.-P.); (A.L.-C.); (M.Á.-C.); (P.C.-H.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.G.-F.); (D.R.-L.); (A.R.-G.); (J.M.R.-D.)
| | - Alejandra Suárez-Carrillo
- Departamento de Fisiología, Anatomía y Biología Celular, Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (R.P.-P.); (A.L.-C.); (M.Á.-C.); (P.C.-H.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.G.-F.); (D.R.-L.); (A.R.-G.); (J.M.R.-D.)
| | - Manuel Munuera-Cabeza
- Departamento de Fisiología, Anatomía y Biología Celular, Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (R.P.-P.); (A.L.-C.); (M.Á.-C.); (P.C.-H.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.G.-F.); (D.R.-L.); (A.R.-G.); (J.M.R.-D.)
| | - David Gómez-Fernández
- Departamento de Fisiología, Anatomía y Biología Celular, Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (R.P.-P.); (A.L.-C.); (M.Á.-C.); (P.C.-H.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.G.-F.); (D.R.-L.); (A.R.-G.); (J.M.R.-D.)
| | - Diana Reche-López
- Departamento de Fisiología, Anatomía y Biología Celular, Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (R.P.-P.); (A.L.-C.); (M.Á.-C.); (P.C.-H.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.G.-F.); (D.R.-L.); (A.R.-G.); (J.M.R.-D.)
| | - Ana Romero-González
- Departamento de Fisiología, Anatomía y Biología Celular, Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (R.P.-P.); (A.L.-C.); (M.Á.-C.); (P.C.-H.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.G.-F.); (D.R.-L.); (A.R.-G.); (J.M.R.-D.)
| | - José Manuel Romero-Domínguez
- Departamento de Fisiología, Anatomía y Biología Celular, Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (R.P.-P.); (A.L.-C.); (M.Á.-C.); (P.C.-H.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.G.-F.); (D.R.-L.); (A.R.-G.); (J.M.R.-D.)
| | - Rocío M. de Pablos
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain;
- Instituto of Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío (HUVR)/CSIC/Universidad de Sevilla, 41012 Sevilla, Spain
| | - José A. Sánchez-Alcázar
- Departamento de Fisiología, Anatomía y Biología Celular, Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (R.P.-P.); (A.L.-C.); (M.Á.-C.); (P.C.-H.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.G.-F.); (D.R.-L.); (A.R.-G.); (J.M.R.-D.)
| |
Collapse
|
23
|
Jung H, Kim H, Lee SW. Anesthetic management for surgery in a nemaline myopathy patient with difficult airway: A CARE-compliant case report. Medicine (Baltimore) 2023; 102:e36174. [PMID: 37986350 PMCID: PMC10659651 DOI: 10.1097/md.0000000000036174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/27/2023] [Indexed: 11/22/2023] Open
Abstract
RATIONALE Nemaline myopathy (NM) is a congenital disease characterized by nonprogressive or slowly progressing muscle weakness and may increase the risk of anesthesia in case of respiratory muscle or cardiac involvement. Care should be taken to prevent respiratory failure after surgery. PATIENT CONCERNS A 35-year-old man with NM, who had difficult airway, restrictive ventilatory pattern, and pulmonary hypertension, required general anesthesia for surgery because of limited mouth opening. DIAGNOSES The patient was diagnosed with NM (ACTA1 mutation) and coronoid hyperplasia. INTERVENTIONS Awake fiberoptic nasal intubation was performed following preparations for analgesia. General anesthesia was maintained using inhalational anesthetics and opioids without using neuromuscular blocking agents. OUTCOMES General anesthesia remained well maintained during surgery, with no movement or spontaneous breathing of the patient and he recovered from anesthesia uneventfully without complications. LESSONS This report highlights the safe performance of anesthesia induction and recovery in a case where anesthesia management is necessary for surgery in a patient of NM at a high risk of anesthesia-related complications.
Collapse
Affiliation(s)
- Hoon Jung
- Department of Anesthesiology and Pain Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Hyunjee Kim
- Department of Anesthesiology and Pain Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - See Woo Lee
- Department of Anesthesiology and Pain Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
24
|
Nicolau S, Milone M. Sporadic Late-Onset Nemaline Myopathy: Current Landscape. Curr Neurol Neurosci Rep 2023; 23:777-784. [PMID: 37856049 DOI: 10.1007/s11910-023-01311-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2023] [Indexed: 10/20/2023]
Abstract
PURPOSE OF REVIEW Sporadic late-onset nemaline myopathy (SLONM) is a rare adult-onset, acquired, muscle disease that can be associated with monoclonal gammopathy or HIV infection. The pathological hallmark of SLONM is the accumulation of nemaline rods in muscle fibers. We review here current knowledge about its presentation, pathophysiology, and management. RECENT FINDINGS SLONM usually manifests with subacutely progressive proximal and axial weakness, but it can also present with chronic progressive weakness mimicking muscular dystrophy. The pathophysiology of the disease remains poorly understood, with evidence pointing to both autoimmune mechanisms and hematological neoplasia. Recent studies have identified histological, proteomic, and transcriptomic alterations that shed light on disease mechanisms and distinguish SLONM from inherited nemaline myopathies. A majority of SLONM patients respond to intravenous immunoglobulins, chemotherapy, or hematopoietic stem cell transplant. SLONM is a treatable myopathy, although its underlying etiology and pathomechanisms remain unclear. A high degree of suspicion should be maintained for this disease to reduce diagnostic delay and treatment in SLONM and facilitate its distinction from inherited nemaline myopathies.
Collapse
Affiliation(s)
- Stefan Nicolau
- Center for Gene Therapy, Nationwide Children's Hospital, Columbus, OH, USA
| | - Margherita Milone
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
25
|
Haghighi A, Alvandi Z, Nilipour Y, Haghighi A, Kornreich R, Nafissi S, Desnick RJ. Nemaline myopathy: reclassification of previously reported variants according to ACMG guidelines, and report of novel genetic variants. Eur J Hum Genet 2023; 31:1237-1250. [PMID: 37460656 PMCID: PMC10620380 DOI: 10.1038/s41431-023-01378-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 12/11/2022] [Accepted: 04/26/2023] [Indexed: 11/03/2023] Open
Abstract
Nemaline myopathy (NM) is a heterogeneous genetic neuromuscular disorder characterized by rod bodies in muscle fibers resulting in multiple complications due to muscle weakness. NM patients and their families could benefit from genetic analysis for early diagnosis, carrier and prenatal testing; however, clinical classification of variants is subject to change as further information becomes available. Reclassification can significantly alter the clinical management of patients and their families. We used the newly published data and ACMG/AMP guidelines to reassess NM-associated variants previously reported by clinical laboratories (ClinVar). Our analyses on rare variants that were not canonical loss-of-function (LOF) resulted in the downgrading of ~29% (28/97) of variants from pathogenic or likely-pathogenic (P/LP) to variants of uncertain significance (VUS). In addition, we analyzed the splicing effect of variants identified in NM patients by clinical laboratories or research, using an accurate in silico prediction tool that applies a deep-learning network. We identified 55 rare variants that may impact splicing (cryptic splicing). We also analyzed six new NM families and identified eight variants in NEB and ACTA1, including three novel variants: homozygous pathogenic c.164A > G (p.Tyr55Cys), and homozygous likely pathogenic c.980T > C (p.Met327Thr) in ACTA1, and heterozygous VUS c.18694-3T > G in NEB. This study demonstrates the importance of reclassifying variants to facilitate more definitive "calls" on causality or no causality in clinical genetic testing of patients with NM. Reclassification of ~150 variants is now available for improved clinical management, risk counseling and screening of NM patients.
Collapse
Affiliation(s)
- Alireza Haghighi
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
- Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA, 02115, USA.
- The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| | - Zahra Alvandi
- Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Yalda Nilipour
- Pediatric Pathology Research Center, Research Institute for Children's Health, and Mofid Children Hospital, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirreza Haghighi
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Ruth Kornreich
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shahriar Nafissi
- Department of Neurology, Neuromuscular Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Robert J Desnick
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
26
|
Nguyen MT, Dash R, Jeong K, Lee W. Role of Actin-Binding Proteins in Skeletal Myogenesis. Cells 2023; 12:2523. [PMID: 37947600 PMCID: PMC10650911 DOI: 10.3390/cells12212523] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023] Open
Abstract
Maintenance of skeletal muscle quantity and quality is essential to ensure various vital functions of the body. Muscle homeostasis is regulated by multiple cytoskeletal proteins and myogenic transcriptional programs responding to endogenous and exogenous signals influencing cell structure and function. Since actin is an essential component in cytoskeleton dynamics, actin-binding proteins (ABPs) have been recognized as crucial players in skeletal muscle health and diseases. Hence, dysregulation of ABPs leads to muscle atrophy characterized by loss of mass, strength, quality, and capacity for regeneration. This comprehensive review summarizes the recent studies that have unveiled the role of ABPs in actin cytoskeletal dynamics, with a particular focus on skeletal myogenesis and diseases. This provides insight into the molecular mechanisms that regulate skeletal myogenesis via ABPs as well as research avenues to identify potential therapeutic targets. Moreover, this review explores the implications of non-coding RNAs (ncRNAs) targeting ABPs in skeletal myogenesis and disorders based on recent achievements in ncRNA research. The studies presented here will enhance our understanding of the functional significance of ABPs and mechanotransduction-derived myogenic regulatory mechanisms. Furthermore, revealing how ncRNAs regulate ABPs will allow diverse therapeutic approaches for skeletal muscle disorders to be developed.
Collapse
Affiliation(s)
- Mai Thi Nguyen
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (M.T.N.); (K.J.)
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea;
- Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Republic of Korea
| | - Kyuho Jeong
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (M.T.N.); (K.J.)
| | - Wan Lee
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (M.T.N.); (K.J.)
- Channelopathy Research Center, Dongguk University College of Medicine, 32 Dongguk-ro, Ilsan Dong-gu, Goyang 10326, Republic of Korea
| |
Collapse
|
27
|
Lindqvist J, Granzier H. Pharmacological Inhibition of Myostatin in a Mouse Model of Typical Nemaline Myopathy Increases Muscle Size and Force. Int J Mol Sci 2023; 24:15124. [PMID: 37894805 PMCID: PMC10606666 DOI: 10.3390/ijms242015124] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Nemaline myopathy is one of the most common non-dystrophic congenital myopathies. Individuals affected by this condition experience muscle weakness and muscle smallness, often requiring supportive measures like wheelchairs or respiratory support. A significant proportion of patients, approximately one-third, exhibit compound heterozygous nebulin mutations, which usually give rise to the typical form of the disease. Currently, there are no approved treatments available for nemaline myopathy. Our research explored the modulation of myostatin, a negative regulator of muscle mass, in combating the muscle smallness associated with the disease. To investigate the effect of myostatin inhibition, we employed a mouse model with compound heterozygous nebulin mutations that mimic the typical form of the disease. The mice were treated with mRK35, a myostatin antibody, through weekly intraperitoneal injections of 10 mg/kg mRK35, commencing at two weeks of age and continuing until the mice reached four months of age. The treatment resulted in an increase in body weight and an approximate 20% muscle weight gain across most skeletal muscles, without affecting the heart. The minimum Feret diameter of type IIA and IIB fibers exhibited an increase in compound heterozygous mice, while only type IIB fibers demonstrated an increase in wild-type mice. In vitro mechanical experiments conducted on intact extensor digitorum longus muscle revealed that mRK35 augmented the physiological cross-sectional area of muscle fibers and enhanced absolute tetanic force in both wild-type and compound heterozygous mice. Furthermore, mRK35 administration improved grip strength in treated mice. Collectively, these findings indicate that inhibiting myostatin can mitigate the muscle deficits in nebulin-based typical nemaline myopathy, potentially serving as a much-needed therapeutic option.
Collapse
Affiliation(s)
| | - Henk Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA;
| |
Collapse
|
28
|
Vandenabeele F, Stevens S, Snijders T, Stessel B, Dubois J, van Loon LJC, Lambrichts I, Agten A. Observations of nemaline bodies in muscle biopsies of critically ill patients infected with SARS-CoV-2. Microscopy (Oxf) 2023; 72:388-394. [PMID: 36574223 DOI: 10.1093/jmicro/dfac072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/16/2022] [Accepted: 12/26/2022] [Indexed: 10/10/2023] Open
Abstract
Patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) who have been admitted to the intensive care unit (ICU) often face months of physical disability after discharge. To optimize recovery, it is important to understand the role of musculoskeletal alterations in critically ill patients infected with SARS-CoV-2. The main aim of the present study was to describe the presence and morphology of nemaline bodies found in the skeletal muscle tissue from critically ill patients infected with SARS-CoV-2. In n = 7 patients infected with SARS-CoV-2, ultrastructural characteristics of vastus lateralis muscle obtained on days 1-3 and days 5-8 following ICU admission were investigated in more detail with electron microscopy. Those muscle biopsies consistently showed variable degrees of myofiber necrosis and myofibrillar disorganization. In 4/7 (57%) patients on days 5-8, the Z-line material accumulated into nemaline bodies with a typical lattice-like appearance at higher magnification, similar to that found in nemaline myopathy. This study is the first to describe the disintegration of myofibrils and the accumulation of Z-line material into nemaline bodies in the skeletal muscle tissue obtained from critically ill coronavirus disease-19 patients following ICU admission, which should be interpreted primarily as a non-specific pathological response of extreme myofibrillar disintegration associated with myofiber necrosis.
Collapse
Affiliation(s)
- Frank Vandenabeele
- Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Agoralaan, Building A, Diepenbeek 3590, Belgium
| | - Sjoerd Stevens
- Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Agoralaan, Building A, Diepenbeek 3590, Belgium
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, Stadsomvaart 11, Hasselt 3500, The Netherlands
| | - Tim Snijders
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, Stadsomvaart 11, Hasselt 3500, The Netherlands
| | - Björn Stessel
- Department of Anaesthesiology, Jessa Hospital, Universiteitssingel 50, Maastricht 6229 ER, Belgium
- Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Agoralaan, Building C, Diepenbeek 3590, Belgium
| | - Jasperina Dubois
- Department of Anaesthesiology, Jessa Hospital, Universiteitssingel 50, Maastricht 6229 ER, Belgium
| | - Luc J C van Loon
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, Stadsomvaart 11, Hasselt 3500, The Netherlands
| | - Ivo Lambrichts
- Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Agoralaan, Building C, Diepenbeek 3590, Belgium
| | - Anouk Agten
- Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Agoralaan, Building A, Diepenbeek 3590, Belgium
- U-RISE-UHasselt Research Group on Innovative and Society-Engaged Education, School for Educational Studies, Hasselt University, Wetenschapspark 24, Diepenbeek 3590, Belgium
| |
Collapse
|
29
|
Chen Q, Chen Y, Shi L, Tao Y, Li X, Zhu X, Yang Y, Xu W. Uniparental disomy: expanding the clinical and molecular phenotypes of whole chromosomes. Front Genet 2023; 14:1232059. [PMID: 37860673 PMCID: PMC10582337 DOI: 10.3389/fgene.2023.1232059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/22/2023] [Indexed: 10/21/2023] Open
Abstract
Uniparental disomy (UPD) refers to as both homologous chromosomes inherited from only one parent without identical copies from the other parent. Studies on clinical phenotypes in UPDs are usually focused on the documented UPD 6, 7, 11, 14, 15, and 20, which directly lead to imprinting disorders. This study describes clinical phenotypes and genetic findings of three patients with UPD 2, 9, and 14, respectively. Chromosomal microarray (CMA), UPDtool, methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) and whole-exome sequencing (WES) analysis were performed to characterize the genetic etiology. The CMA revealed a homozygous region involving the whole chromosome 2 and 9, a partial region of homozygosity in chromosome 14. UPD-tool revealed a paternal origin of the UPD2. MS-MLPA showed hypomethylation of imprinting gene MEG3 from maternal origin in the UPD14 case. In addition, UPD14 case displayed complex symptoms including growth failure, hypotonia and acute respiratory distress syndrome (ARDS), accompanied by several gene mutations with heterozygous genotype by WES analysis. Furthermore, we reviewed the documented UPDs and summarized the clinical characteristics and prognosis. This study highlighted the importance to confirm the diagnosis and origin of UPD using genetic testing. Therefore, it is suggested that expanding of the detailed phenotypes and genotypes provide effective guidance for molecule testing and genetic counseling, and promote further biological investigation to the underlying mechanisms of imprinted disorders and accompanied copy number variations.
Collapse
Affiliation(s)
- Qi Chen
- Genetic and Prenatal Diagnosis Center, Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yunpeng Chen
- Genetic and Prenatal Diagnosis Center, Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lin Shi
- Department of Ultrasound, Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Ying Tao
- Genetic and Prenatal Diagnosis Center, Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiaoguang Li
- Genetic and Prenatal Diagnosis Center, Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiaolan Zhu
- Reproductive Medicine Center, Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yan Yang
- Genetic and Prenatal Diagnosis Center, Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | | |
Collapse
|
30
|
Tinklenberg JA, Slick RA, Sutton J, Zhang L, Meng H, Beatka MJ, Vanden Avond M, Prom MJ, Ott E, Montanaro F, Heisner J, Toro R, Hardeman EC, Geurts AM, Stowe DF, Hill RB, Lawlor MW. Different Mouse Models of Nemaline Myopathy Harboring Acta1 Mutations Display Differing Abnormalities Related to Mitochondrial Biology. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1548-1567. [PMID: 37419385 PMCID: PMC10548277 DOI: 10.1016/j.ajpath.2023.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/09/2023]
Abstract
ACTA1 encodes skeletal muscle-specific α-actin, which polymerizes to form the thin filament of the sarcomere. Mutations in ACTA1 are responsible for approximately 30% of nemaline myopathy (NM) cases. Previous studies of weakness in NM have focused on muscle structure and contractility, but genetic issues alone do not explain the phenotypic heterogeneity observed in patients with NM or NM mouse models. To identify additional biological processes related to NM phenotypic severity, proteomic analysis was performed using muscle protein isolates from wild-type mice in comparison to moderately affected knock-in (KI) Acta1H40Y and the minimally affected transgenic (Tg) ACTA1D286G NM mice. This analysis revealed abnormalities in mitochondrial function and stress-related pathways in both mouse models, supporting an in-depth assessment of mitochondrial biology. Interestingly, evaluating each model in comparison to its wild-type counterpart identified different degrees of mitochondrial abnormality that correlated well with the phenotypic severity of the mouse model. Muscle histology, mitochondrial respiration, electron transport chain function, and mitochondrial transmembrane potential were all normal or minimally affected in the TgACTA1D286G mouse model. In contrast, the more severely affected KI.Acta1H40Y mice displayed significant abnormalities in relation to muscle histology, mitochondrial respirometry, ATP, ADP, and phosphate content, and mitochondrial transmembrane potential. These findings suggest that abnormal energy metabolism is related to symptomatic severity in NM and may constitute a contributor to phenotypic variability and a novel treatment target.
Collapse
Affiliation(s)
- Jennifer A Tinklenberg
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Clinical and Translational Science Institute, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Rebecca A Slick
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Clinical and Translational Science Institute, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jessica Sutton
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Liwen Zhang
- Mass Spectrometry and Proteomics Facility, Campus Chemical Instrument Center, The Ohio State University, Columbus, Ohio
| | - Hui Meng
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Margaret J Beatka
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Mark Vanden Avond
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Mariah J Prom
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Emily Ott
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Federica Montanaro
- Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neuroscience Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom; NIHR Great Ormond Street Hospital Biomedical Research Centre, London, United Kingdom
| | - James Heisner
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Rafael Toro
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Edna C Hardeman
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Aron M Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - David F Stowe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - R Blake Hill
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Michael W Lawlor
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin.
| |
Collapse
|
31
|
Slick RA, Tinklenberg JA, Sutton J, Zhang L, Meng H, Beatka MJ, Vanden Avond M, Prom MJ, Ott E, Montanaro F, Heisner J, Toro R, Granzier H, Geurts AM, Stowe DF, Hill RB, Lawlor MW. Aberrations in Energetic Metabolism and Stress-Related Pathways Contribute to Pathophysiology in the Neb Conditional Knockout Mouse Model of Nemaline Myopathy. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1528-1547. [PMID: 37422147 PMCID: PMC10548278 DOI: 10.1016/j.ajpath.2023.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/08/2023] [Accepted: 06/08/2023] [Indexed: 07/10/2023]
Abstract
Nemaline myopathy (NM) is a genetically and clinically heterogeneous disease that is diagnosed on the basis of the presence of nemaline rods on skeletal muscle biopsy. Although NM has typically been classified by causative genes, disease severity or prognosis cannot be predicted. The common pathologic end point of nemaline rods (despite diverse genetic causes) and an unexplained range of muscle weakness suggest that shared secondary processes contribute to the pathogenesis of NM. We speculated that these processes could be identified through a proteome-wide interrogation using a mouse model of severe NM in combination with pathway validation and structural/functional analyses. A proteomic analysis was performed using skeletal muscle tissue from the Neb conditional knockout mouse model compared with its wild-type counterpart to identify pathophysiologically relevant biological processes that might impact disease severity or provide new treatment targets. A differential expression analysis and Ingenuity Pathway Core Analysis predicted perturbations in several cellular processes, including mitochondrial dysfunction and changes in energetic metabolism and stress-related pathways. Subsequent structural and functional studies demonstrated abnormal mitochondrial distribution, decreased mitochondrial respiratory function, an increase in mitochondrial transmembrane potential, and extremely low ATP content in Neb conditional knockout muscles relative to wild type. Overall, the findings of these studies support a role for severe mitochondrial dysfunction as a novel contributor to muscle weakness in NM.
Collapse
Affiliation(s)
- Rebecca A Slick
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Clinical and Translational Science Institute, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jennifer A Tinklenberg
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Clinical and Translational Science Institute, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jessica Sutton
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Liwen Zhang
- Mass Spectrometry and Proteomics Facility, Campus Chemical Instrument Center, The Ohio State University, Columbus, Ohio
| | - Hui Meng
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Margaret J Beatka
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Mark Vanden Avond
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Mariah J Prom
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Emily Ott
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Federica Montanaro
- Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neuroscience Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom the NIHR Great Ormond Street Hospital Biomedical Research Centre, London, United Kingdom; NIHR Great Ormond Street Hospital Biomedical Research Centre, London, United Kingdom
| | - James Heisner
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Rafael Toro
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Henk Granzier
- College of Medicine, University of Arizona, Tucson, Arizona
| | - Aron M Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - David F Stowe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Joint Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, Milwaukee, Wisconsin
| | - R Blake Hill
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Michael W Lawlor
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin.
| |
Collapse
|
32
|
Mohtisham F, Al Thaqafi M, Shawli A, Sallam A. Congenital Nemaline Myopathy in Two Neonates With Different Mutations: A Case Series and Literature Review. Cureus 2023; 15:e45197. [PMID: 37720117 PMCID: PMC10503874 DOI: 10.7759/cureus.45197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2023] [Indexed: 09/19/2023] Open
Abstract
Nemaline myopathy is a skeletal muscle disorder characterized by a wide range of severity and variable presentation. While most cases present in the neonatal period with symptoms, such as hypotonia, muscle weakness, and respiratory insufficiency, delayed onset in childhood or adulthood is also observed. The pathogenesis of nemaline myopathy involves at least 12 genes, and the condition can arise from de novo mutations or be inherited in a dominant or recessive manner. In this study, we present two cases of neonates admitted to a neonatal intensive care unit (NICU) exhibiting hypotonia, muscle weakness, and respiratory insufficiency. Both cases were diagnosed with congenital nemaline myopathy, with each patient displaying distinct mutations. This report highlights the clinical and genetic heterogeneity of this condition, emphasizing the importance of early recognition and genetic evaluation for accurate diagnosis and appropriate management of affected individuals.
Collapse
Affiliation(s)
- Farzeen Mohtisham
- Neonatology, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, SAU
- Neonatology, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Jeddah, SAU
| | - Maram Al Thaqafi
- Pediatrics, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Jeddah, SAU
| | - Aiman Shawli
- Pediatrics, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Jeddah, SAU
| | - Adel Sallam
- Neonatology, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Jeddah, SAU
| |
Collapse
|
33
|
Liu Y, Xu J, Lv Q, Liang Z, Li L, Pan Q. Case report: identification of one frameshift variant and two in cis non-canonical splice variants of NEB gene in prenatal arthrogryposis. Front Genet 2023; 14:1220170. [PMID: 37745844 PMCID: PMC10512086 DOI: 10.3389/fgene.2023.1220170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/14/2023] [Indexed: 09/26/2023] Open
Abstract
NEB mutation is associated with congenital nemaline myopathies. Here, we report a family with recurrent prenatal arthrogryposis. Trio whole exome sequencing (WES) disclosed three novel NEB (NM_001271208.2) variants including one paternal frameshift c.19049_19050delCA (p.Thr6350Argfs*14) and two double maternal variants in cis c. [24871G>T;24871-10C>G] (p. [Val8291Phe;?]). They are evaluated as "likely pathogenic (LP)", "variant of uncertain of significance (VUS)", and "VUS", respectively. After further prediction, the c.24871G>T, c.24871-10C>G, and c.[24871G>T;24871-10C>G] were respectively genetically engineered into the three plasmids. Compared with their wild-type counterparts, the three plasmids all produced truncated transcripts, and also a significant proportion of the full-length transcripts, which allowed us to reclassify NEB c.24871G>T and c.24871-10C>G variants as LP. As far as we know, this is the first case carrying NEB allele-specific function of partial loss. This result helped the couple make informed reproductive choices and opt for assisted reproduction for future pregnancies. This study also increased awareness to the phenotype of prenatal nemaline myopathy and expanded the variant spectrum of NEB.
Collapse
Affiliation(s)
- Yuefang Liu
- Genetic and Prenatal Diagnosis Center, Huai’an Maternity and Child Clinical College of Xuzhou Medical University, Huai’an, China
| | - Juan Xu
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Qiaoyi Lv
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Zhe Liang
- Genetic and Prenatal Diagnosis Center, Huai’an Maternity and Child Clinical College of Xuzhou Medical University, Huai’an, China
| | - Lingling Li
- Family Planning Department, Huai’an Maternity and Child Clinical College of Xuzhou Medical University, Huai’an, China
| | - Qiong Pan
- Genetic and Prenatal Diagnosis Center, Huai’an Maternity and Child Clinical College of Xuzhou Medical University, Huai’an, China
| |
Collapse
|
34
|
Gartz M, Haberman M, Sutton J, Slick RA, Luttrell SM, Mack DL, Lawlor MW. ACTA1 H40Y mutant iPSC-derived skeletal myocytes display mitochondrial defects in an in vitro model of nemaline myopathy. Exp Cell Res 2023; 424:113507. [PMID: 36796746 PMCID: PMC9993434 DOI: 10.1016/j.yexcr.2023.113507] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023]
Abstract
Nemaline myopathies (NM) are a group of congenital myopathies that lead to muscle weakness and dysfunction. While 13 genes have been identified to cause NM, over 50% of these genetic defects are due to mutations in nebulin (NEB) and skeletal muscle actin (ACTA1), which are genes required for normal assembly and function of the thin filament. NM can be distinguished on muscle biopsies due to the presence of nemaline rods, which are thought to be aggregates of the dysfunctional protein. Mutations in ACTA1 have been associated with more severe clinical disease and muscle weakness. However, the cellular pathogenesis linking ACTA1 gene mutations to muscle weakness are unclear To evaluate cellular disease phenotypes, iPSC-derived skeletal myocytes (iSkM) harboring an ACTA1 H40Y point mutation were used to model NM in skeletal muscle. These were generated by Crispr-Cas9, and include one non-affected healthy control (C) and 2 NM iPSC clone lines, therefore representing isogenic controls. Fully differentiated iSkM were characterized to confirm myogenic status and subject to assays to evaluate nemaline rod formation, mitochondrial membrane potential, mitochondrial permeability transition pore (mPTP) formation, superoxide production, ATP/ADP/phosphate levels and lactate dehydrogenase release. C- and NM-iSkM demonstrated myogenic commitment as evidenced by mRNA expression of Pax3, Pax7, MyoD, Myf5 and Myogenin; and protein expression of Pax4, Pax7, MyoD and MF20. No nemaline rods were observed with immunofluorescent staining of NM-iSkM for ACTA1 or ACTN2, and these mRNA transcript and protein levels were comparable to C-iSkM. Mitochondrial function was altered in NM, as evidenced by decreased cellular ATP levels and altered mitochondrial membrane potential. Oxidative stress induction revealed the mitochondrial phenotype, as evidenced by collapsed mitochondrial membrane potential, early formation of the mPTP and increased superoxide production. Early mPTP formation was rescued with the addition of ATP to media. Together, these findings suggest that mitochondrial dysfunction and oxidative stress are disease phenotypes in the in vitro model of ACTA1 nemaline myopathy, and that modulation of ATP levels was sufficient to protect NM-iSkM mitochondria from stress-induced injury. Importantly, the nemaline rod phenotype was absent in our in vitro model of NM. We conclude that this in vitro model has the potential to recapitulate human NM disease phenotypes, and warrants further study.
Collapse
Affiliation(s)
- Melanie Gartz
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA; Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Margaret Haberman
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA; Diverge Translational Science Laboratory, Milwaukee, WI, USA
| | - Jessica Sutton
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA; Diverge Translational Science Laboratory, Milwaukee, WI, USA
| | - Rebecca A Slick
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Shawn M Luttrell
- Curi Bio Inc., 3000 Western Avenue, Seattle, WA, 98121, USA; Institute for Stem Cell and Regenerative Medicine, UW Medicine, Seattle, WA, USA
| | - David L Mack
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, UW Medicine, Seattle, WA, USA
| | - Michael W Lawlor
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA; Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA; Diverge Translational Science Laboratory, Milwaukee, WI, USA
| |
Collapse
|
35
|
Zapater I Morales C, Carman PJ, Soffar DB, Windner SE, Dominguez R, Baylies MK. Drosophila Tropomodulin is required for multiple actin-dependent processes within developing myofibers. Development 2023; 150:dev201194. [PMID: 36806912 PMCID: PMC10112908 DOI: 10.1242/dev.201194] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 02/09/2023] [Indexed: 02/22/2023]
Abstract
Proper muscle contraction requires the assembly and maintenance of sarcomeres and myofibrils. Although the protein components of myofibrils are generally known, less is known about the mechanisms by which they individually function and together synergize for myofibril assembly and maintenance. For example, it is unclear how the disruption of actin filament (F-actin) regulatory proteins leads to the muscle weakness observed in myopathies. Here, we show that knockdown of Drosophila Tropomodulin (Tmod), results in several myopathy-related phenotypes, including reduction of muscle cell (myofiber) size, increased sarcomere length, disorganization and misorientation of myofibrils, ectopic F-actin accumulation, loss of tension-mediating proteins at the myotendinous junction, and misshaped and internalized nuclei. Our findings support and extend the tension-driven self-organizing myofibrillogenesis model. We show that, like its mammalian counterpart, Drosophila Tmod caps F-actin pointed-ends, and we propose that this activity is crucial for cellular processes in different locations within the myofiber that directly and indirectly contribute to the maintenance of muscle function. Our findings provide significant insights to the role of Tmod in muscle development, maintenance and disease.
Collapse
Affiliation(s)
- Carolina Zapater I Morales
- Biochemistry, Cell & Developmental Biology, and Molecular Biology (BCMB) program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering, Cancer Center, New York, NY 10065, USA
| | - Peter J Carman
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David B Soffar
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering, Cancer Center, New York, NY 10065, USA
| | - Stefanie E Windner
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering, Cancer Center, New York, NY 10065, USA
| | - Roberto Dominguez
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mary K Baylies
- Biochemistry, Cell & Developmental Biology, and Molecular Biology (BCMB) program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering, Cancer Center, New York, NY 10065, USA
| |
Collapse
|
36
|
A review of major causative genes in congenital myopathies. J Hum Genet 2023; 68:215-225. [PMID: 35668205 DOI: 10.1038/s10038-022-01045-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/25/2022] [Accepted: 05/11/2022] [Indexed: 02/07/2023]
Abstract
In this review, we focus on congenital myopathies, which are a genetically heterogeneous group of hereditary muscle diseases with slow or minimal progression. They are mainly defined and classified according to pathological features, with the major subtypes being core myopathy (central core disease), nemaline myopathy, myotubular/centronuclear myopathy, and congenital fiber-type disproportion myopathy. Recent advances in molecular genetics, especially next-generation sequencing technology, have rapidly increased the number of known causative genes for congenital myopathies; however, most of the diseases related to the novel causative genes are extremely rare. There remains no cure for congenital myopathies. However, there have been recent promising findings that could inform the development of therapy for several types of congenital myopathies, including myotubular myopathy, which indicates the importance of prompt and correct diagnosis. This review discusses the major causative genes (NEB, ACTA1, ADSSL1, RYR1, SELENON, MTM1, DNM2, and TPM3) for each subtype of congenital myopathies and the relevant latest findings.
Collapse
|
37
|
Fernández Martínez P, Caballeria Lamelas E, Dalmases Cleries M. Cyclic Sternocleidomastoid Contraction: An Unusual Finding in a Conventional Polysomnography. Arch Bronconeumol 2023; 59:116. [PMID: 36115738 DOI: 10.1016/j.arbres.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/08/2022] [Accepted: 08/08/2022] [Indexed: 02/07/2023]
Affiliation(s)
| | | | - Mireia Dalmases Cleries
- Sleep Unit, Department of Pulmonary Medicine, Hospital Clinic de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.
| |
Collapse
|
38
|
Gineste C, Laporte J. Therapeutic approaches in different congenital myopathies. Curr Opin Pharmacol 2023; 68:102328. [PMID: 36512981 DOI: 10.1016/j.coph.2022.102328] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/17/2022] [Accepted: 11/12/2022] [Indexed: 12/14/2022]
Abstract
Congenital myopathies are rare and severe genetic diseases affecting the skeletal muscle function in children and adults. They present a variable spectrum of phenotypes and a genetic heterogeneity. Subgroups are defined according to the clinical and histopathological features and encompass core myopathy, centronuclear myopathy, nemaline myopathy and other rare congenital myopathies. No approved treatment exists to date for any congenital myopathies. To tackle this important unmet need, an increased number of proof-of-concept studies recently assessed the therapeutic potential of various strategies, either pharmacological or genetic-based, aiming at counteracting muscle weakness or/and cure the pathology. Here, we list the implicated genes and cellular pathways, and review the therapeutic approaches preclinically tested and the ongoing/completed clinical trials for the different types of congenital myopathies.
Collapse
Affiliation(s)
- Charlotte Gineste
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Inserm U1258, Cnrs UMR7104, Strasbourg University, Illkirch 67404, France
| | - Jocelyn Laporte
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Inserm U1258, Cnrs UMR7104, Strasbourg University, Illkirch 67404, France.
| |
Collapse
|
39
|
Nicolau S, Dasgupta A, Dasari S, Charlesworth MC, Johnson KL, Pandey A, Doles JD, Milone M. Molecular signatures of inherited and acquired sporadic late onset nemaline myopathies. Acta Neuropathol Commun 2023; 11:20. [PMID: 36703211 PMCID: PMC9878979 DOI: 10.1186/s40478-023-01518-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
Acquired sporadic late onset nemaline myopathy (SLONM) and inherited nemaline myopathy (iNM) both feature accumulation of nemaline rods in muscle fibers. Unlike iNM, SLONM is amenable to therapy. The distinction between these disorders is therefore crucial when the diagnosis remains ambiguous after initial investigations. We sought to identify biomarkers facilitating this distinction and to investigate the pathophysiology of nemaline rod formation in these different disorders. Twenty-two muscle samples from patients affected by SLONM or iNM underwent quantitative histological analysis, laser capture microdissection for proteomic analysis of nemaline rod areas and rod-free areas, and transcriptomic analysis. In all iNM samples, nemaline rods were found in subsarcolemmal or central aggregates, whereas they were diffusely distributed within muscle fibers in most SLONM samples. In SLONM, muscle fibers harboring nemaline rods were smaller than those without rods. Necrotic fibers, increased endomysial connective tissue, and atrophic fibers filled with nemaline rods were more common in SLONM. Proteomic analysis detected differentially expressed proteins between nemaline rod areas and rod-free areas, as well as between SLONM and iNM. These differentially expressed proteins implicated immune, structural, metabolic, and cellular processes in disease pathophysiology. Notably, immunoglobulin overexpression with accumulation in nemaline rod areas was detected in SLONM. Transcriptomic analysis corroborated proteomic findings and further revealed substantial gene expression differences between SLONM and iNM. Overall, we identified unique pathological and molecular signatures associated with SLONM and iNM, suggesting distinct underlying pathophysiological mechanisms. These findings represent a step towards enhanced diagnostic tools and towards development of treatments for SLONM.
Collapse
Affiliation(s)
- Stefan Nicolau
- grid.66875.3a0000 0004 0459 167XDepartment of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN 55905 USA ,grid.240344.50000 0004 0392 3476Center for Gene Therapy, Nationwide Children’s Hospital, Columbus, OH 43205 USA
| | - Aneesha Dasgupta
- grid.66875.3a0000 0004 0459 167XDepartment of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905 USA ,grid.257413.60000 0001 2287 3919Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202 USA ,grid.257413.60000 0001 2287 3919Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Surendra Dasari
- grid.66875.3a0000 0004 0459 167XDepartment of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905 USA
| | - M. Cristine Charlesworth
- grid.66875.3a0000 0004 0459 167XProteomics Core, Medical Genomics Facility, Mayo Clinic, Rochester, MN 55905 USA
| | - Kenneth L. Johnson
- grid.66875.3a0000 0004 0459 167XProteomics Core, Medical Genomics Facility, Mayo Clinic, Rochester, MN 55905 USA
| | - Akhilesh Pandey
- grid.66875.3a0000 0004 0459 167XDepartment of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905 USA ,grid.411639.80000 0001 0571 5193Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104 India
| | - Jason D. Doles
- grid.66875.3a0000 0004 0459 167XDepartment of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905 USA ,grid.257413.60000 0001 2287 3919Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202 USA ,grid.257413.60000 0001 2287 3919Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Margherita Milone
- grid.66875.3a0000 0004 0459 167XDepartment of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN 55905 USA
| |
Collapse
|
40
|
Moreno CAM, Artilheiro MC, Fonseca ATQSM, Camelo CG, de Medeiros GC, Sassi FC, de Andrade CRF, Donkervoort S, Silva AMS, Dalfior-Junior L, Abath-Neto OL, Reed UC, Bönnemann C, Zanoteli E. Clinical Manifestation of Nebulin-Associated Nemaline Myopathy. Neurol Genet 2023; 9:e200056. [PMID: 36714460 PMCID: PMC9879277 DOI: 10.1212/nxg.0000000000200056] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/28/2022] [Indexed: 01/26/2023]
Abstract
Background and Objectives Nemaline myopathy (NM) is a genetically heterogeneous inherited myopathy related with at least 12 genes, whereas pathogenic variants in NEB gene are the most common genetic cause. The clinical spectrum of NM caused by NEB pathogenic variants (NM-NEB) is very broad, ranging from mild to severe presentations manifesting with generalized weakness, as well as respiratory and bulbar involvement. There is currently not enough data regarding the progression of the disease. In this study, we present a genotypic and phenotypic spectrum of 33 patients with NM caused by NEB variants (NM-NEB) classified according to age groups and the use of ventilatory support. We focused on interventional support, genotype-phenotype correlation, and association between respiratory, bulbar, and motor systems in groups of patients stratified by age and by the use of ventilatory support (VS). Methods Clinical and genetic data from patients with NM-NEB followed up in one specialized center were collected through regular consultations. Patients were evaluated regarding motor, bulbar, and respiratory functions. Results Thirty-three patients with NM-NEB were evaluated consisting of 15 females and 18 males with an average age of 18 (±12) years and a median of 17 (±11) years. 32% of patients with NM-NEB used a G tube, 35% were not able to walk without support, and 55% needed VS. Scoliosis and dysphagia were more common among patients who used VS. Described for the first time, half of the patients presented tongue atrophy in a triple furrow pattern, and the presence of the atrophy was associated with dysphagia. Comparing the patients grouped by age, we found that, proportionally, older patients had more scoliosis and respiratory dysfunction than younger groups, suggesting the progression of the disease in these domains. In addition to that, we showed that VS use was associated with scoliosis and dysphagia. Discussion NM-NEB is a very debilitating disease. There is an association between scoliosis and respiratory dysfunction while patients using VS have more often scoliosis than the no-VS group. Triple furrow tongue atrophy is a novel and frequent finding, which is directly associated with dysphagia. Grouping patients by age suggested disease stability in motor and swallow function, but a progression in respiratory dysfunction and skeletal deformities. All observations are relevant in the management care of patients with NM.
Collapse
Affiliation(s)
- Cristiane Araujo Martins Moreno
- Department of Neurology (C.A.M.M., M.C.A., A.T.Q.S.M.F., C.G.C., A.M.S.S., U.C.R., E.Z.), School of Medicine, Universidade de São Paulo (FMUSP), Brazil; Department of Physical Therapy (G.C.M., F.C.S., C.R.F.A.), Speech Language and Hearing Science Adn Occupational Therapy, School of Medicine, Universidade de São Paulo (FMUSP), Brazil; Neuromuscular and Neurogenetic Disorders of Childhood Section (S.D., C.B.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Department of Neurology, Hospital Santa Marcelina (L.D.J.), São Paulo, Brazil; and Department of Pathology (O.L.A.-N.), Division of Neuropathology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Mariana Cunha Artilheiro
- Department of Neurology (C.A.M.M., M.C.A., A.T.Q.S.M.F., C.G.C., A.M.S.S., U.C.R., E.Z.), School of Medicine, Universidade de São Paulo (FMUSP), Brazil; Department of Physical Therapy (G.C.M., F.C.S., C.R.F.A.), Speech Language and Hearing Science Adn Occupational Therapy, School of Medicine, Universidade de São Paulo (FMUSP), Brazil; Neuromuscular and Neurogenetic Disorders of Childhood Section (S.D., C.B.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Department of Neurology, Hospital Santa Marcelina (L.D.J.), São Paulo, Brazil; and Department of Pathology (O.L.A.-N.), Division of Neuropathology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Alulin Tacio Quadros Santos Monteiro Fonseca
- Department of Neurology (C.A.M.M., M.C.A., A.T.Q.S.M.F., C.G.C., A.M.S.S., U.C.R., E.Z.), School of Medicine, Universidade de São Paulo (FMUSP), Brazil; Department of Physical Therapy (G.C.M., F.C.S., C.R.F.A.), Speech Language and Hearing Science Adn Occupational Therapy, School of Medicine, Universidade de São Paulo (FMUSP), Brazil; Neuromuscular and Neurogenetic Disorders of Childhood Section (S.D., C.B.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Department of Neurology, Hospital Santa Marcelina (L.D.J.), São Paulo, Brazil; and Department of Pathology (O.L.A.-N.), Division of Neuropathology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Clara Gontijo Camelo
- Department of Neurology (C.A.M.M., M.C.A., A.T.Q.S.M.F., C.G.C., A.M.S.S., U.C.R., E.Z.), School of Medicine, Universidade de São Paulo (FMUSP), Brazil; Department of Physical Therapy (G.C.M., F.C.S., C.R.F.A.), Speech Language and Hearing Science Adn Occupational Therapy, School of Medicine, Universidade de São Paulo (FMUSP), Brazil; Neuromuscular and Neurogenetic Disorders of Childhood Section (S.D., C.B.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Department of Neurology, Hospital Santa Marcelina (L.D.J.), São Paulo, Brazil; and Department of Pathology (O.L.A.-N.), Division of Neuropathology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Gisele Chagas de Medeiros
- Department of Neurology (C.A.M.M., M.C.A., A.T.Q.S.M.F., C.G.C., A.M.S.S., U.C.R., E.Z.), School of Medicine, Universidade de São Paulo (FMUSP), Brazil; Department of Physical Therapy (G.C.M., F.C.S., C.R.F.A.), Speech Language and Hearing Science Adn Occupational Therapy, School of Medicine, Universidade de São Paulo (FMUSP), Brazil; Neuromuscular and Neurogenetic Disorders of Childhood Section (S.D., C.B.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Department of Neurology, Hospital Santa Marcelina (L.D.J.), São Paulo, Brazil; and Department of Pathology (O.L.A.-N.), Division of Neuropathology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Fernanda Chiarion Sassi
- Department of Neurology (C.A.M.M., M.C.A., A.T.Q.S.M.F., C.G.C., A.M.S.S., U.C.R., E.Z.), School of Medicine, Universidade de São Paulo (FMUSP), Brazil; Department of Physical Therapy (G.C.M., F.C.S., C.R.F.A.), Speech Language and Hearing Science Adn Occupational Therapy, School of Medicine, Universidade de São Paulo (FMUSP), Brazil; Neuromuscular and Neurogenetic Disorders of Childhood Section (S.D., C.B.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Department of Neurology, Hospital Santa Marcelina (L.D.J.), São Paulo, Brazil; and Department of Pathology (O.L.A.-N.), Division of Neuropathology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Claudia Regina Furquim de Andrade
- Department of Neurology (C.A.M.M., M.C.A., A.T.Q.S.M.F., C.G.C., A.M.S.S., U.C.R., E.Z.), School of Medicine, Universidade de São Paulo (FMUSP), Brazil; Department of Physical Therapy (G.C.M., F.C.S., C.R.F.A.), Speech Language and Hearing Science Adn Occupational Therapy, School of Medicine, Universidade de São Paulo (FMUSP), Brazil; Neuromuscular and Neurogenetic Disorders of Childhood Section (S.D., C.B.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Department of Neurology, Hospital Santa Marcelina (L.D.J.), São Paulo, Brazil; and Department of Pathology (O.L.A.-N.), Division of Neuropathology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Sandra Donkervoort
- Department of Neurology (C.A.M.M., M.C.A., A.T.Q.S.M.F., C.G.C., A.M.S.S., U.C.R., E.Z.), School of Medicine, Universidade de São Paulo (FMUSP), Brazil; Department of Physical Therapy (G.C.M., F.C.S., C.R.F.A.), Speech Language and Hearing Science Adn Occupational Therapy, School of Medicine, Universidade de São Paulo (FMUSP), Brazil; Neuromuscular and Neurogenetic Disorders of Childhood Section (S.D., C.B.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Department of Neurology, Hospital Santa Marcelina (L.D.J.), São Paulo, Brazil; and Department of Pathology (O.L.A.-N.), Division of Neuropathology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Andre Macedo Serafim Silva
- Department of Neurology (C.A.M.M., M.C.A., A.T.Q.S.M.F., C.G.C., A.M.S.S., U.C.R., E.Z.), School of Medicine, Universidade de São Paulo (FMUSP), Brazil; Department of Physical Therapy (G.C.M., F.C.S., C.R.F.A.), Speech Language and Hearing Science Adn Occupational Therapy, School of Medicine, Universidade de São Paulo (FMUSP), Brazil; Neuromuscular and Neurogenetic Disorders of Childhood Section (S.D., C.B.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Department of Neurology, Hospital Santa Marcelina (L.D.J.), São Paulo, Brazil; and Department of Pathology (O.L.A.-N.), Division of Neuropathology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Luiz Dalfior-Junior
- Department of Neurology (C.A.M.M., M.C.A., A.T.Q.S.M.F., C.G.C., A.M.S.S., U.C.R., E.Z.), School of Medicine, Universidade de São Paulo (FMUSP), Brazil; Department of Physical Therapy (G.C.M., F.C.S., C.R.F.A.), Speech Language and Hearing Science Adn Occupational Therapy, School of Medicine, Universidade de São Paulo (FMUSP), Brazil; Neuromuscular and Neurogenetic Disorders of Childhood Section (S.D., C.B.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Department of Neurology, Hospital Santa Marcelina (L.D.J.), São Paulo, Brazil; and Department of Pathology (O.L.A.-N.), Division of Neuropathology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Osorio Lopes Abath-Neto
- Department of Neurology (C.A.M.M., M.C.A., A.T.Q.S.M.F., C.G.C., A.M.S.S., U.C.R., E.Z.), School of Medicine, Universidade de São Paulo (FMUSP), Brazil; Department of Physical Therapy (G.C.M., F.C.S., C.R.F.A.), Speech Language and Hearing Science Adn Occupational Therapy, School of Medicine, Universidade de São Paulo (FMUSP), Brazil; Neuromuscular and Neurogenetic Disorders of Childhood Section (S.D., C.B.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Department of Neurology, Hospital Santa Marcelina (L.D.J.), São Paulo, Brazil; and Department of Pathology (O.L.A.-N.), Division of Neuropathology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Umbertina Conti Reed
- Department of Neurology (C.A.M.M., M.C.A., A.T.Q.S.M.F., C.G.C., A.M.S.S., U.C.R., E.Z.), School of Medicine, Universidade de São Paulo (FMUSP), Brazil; Department of Physical Therapy (G.C.M., F.C.S., C.R.F.A.), Speech Language and Hearing Science Adn Occupational Therapy, School of Medicine, Universidade de São Paulo (FMUSP), Brazil; Neuromuscular and Neurogenetic Disorders of Childhood Section (S.D., C.B.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Department of Neurology, Hospital Santa Marcelina (L.D.J.), São Paulo, Brazil; and Department of Pathology (O.L.A.-N.), Division of Neuropathology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Carsten Bönnemann
- Department of Neurology (C.A.M.M., M.C.A., A.T.Q.S.M.F., C.G.C., A.M.S.S., U.C.R., E.Z.), School of Medicine, Universidade de São Paulo (FMUSP), Brazil; Department of Physical Therapy (G.C.M., F.C.S., C.R.F.A.), Speech Language and Hearing Science Adn Occupational Therapy, School of Medicine, Universidade de São Paulo (FMUSP), Brazil; Neuromuscular and Neurogenetic Disorders of Childhood Section (S.D., C.B.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Department of Neurology, Hospital Santa Marcelina (L.D.J.), São Paulo, Brazil; and Department of Pathology (O.L.A.-N.), Division of Neuropathology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Edmar Zanoteli
- Department of Neurology (C.A.M.M., M.C.A., A.T.Q.S.M.F., C.G.C., A.M.S.S., U.C.R., E.Z.), School of Medicine, Universidade de São Paulo (FMUSP), Brazil; Department of Physical Therapy (G.C.M., F.C.S., C.R.F.A.), Speech Language and Hearing Science Adn Occupational Therapy, School of Medicine, Universidade de São Paulo (FMUSP), Brazil; Neuromuscular and Neurogenetic Disorders of Childhood Section (S.D., C.B.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Department of Neurology, Hospital Santa Marcelina (L.D.J.), São Paulo, Brazil; and Department of Pathology (O.L.A.-N.), Division of Neuropathology, University of Pittsburgh Medical Center, Pittsburgh, PA
| |
Collapse
|
41
|
van Kleef ES, Langer D, van Engelen BG, Ottenheijm CA, Voermans NC, Doorduin J. Inspiratory Muscle Training in Nemaline Myopathy. J Neuromuscul Dis 2023; 10:825-834. [PMID: 37458044 PMCID: PMC10578271 DOI: 10.3233/jnd-221665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Respiratory muscle weakness is a common feature in nemaline myopathy. Inspiratory muscle training (IMT) is an intervention that aims to improve inspiratory muscle strength. OBJECTIVE The aim of this controlled before-and-after pilot study was to investigate if IMT improves respiratory muscle strength in patients with nemaline myopathy. METHODS Nine patients (7 females; 2 males, age 36.6±20.5 years) with respiratory muscle weakness and different clinical phenotypes and genotypes were included. Patients performed eight weeks of sham IMT followed by eight weeks of active threshold IMT. The patients trained twice a day five days a week for 15 minutes at home. The intensity was constant during the training after a gradual increase to 30% of maximal inspiratory pressure (MIP). RESULTS Active IMT significantly improved MIP from 43±15.9 to 47±16.6 cmH2O (p = 0.019). The effect size was 1.22. There was no significant effect of sham IMT. Sniff nasal inspiratory pressure, maximal expiratory pressure, spirometry, and diaphragm thickness and thickening showed no significant improvements. CONCLUSIONS This pilot study shows that threshold IMT is feasible in patients with nemaline myopathy and improves inspiratory muscle strength. Our findings provide valuable preliminary data for the design of a larger, more comprehensive trial.
Collapse
Affiliation(s)
- Esmee S.B. van Kleef
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Daniel Langer
- Faculty of Movement and Rehabilitation Sciences, Department of Rehabilitation Sciences, Research Group for Cardiovascular and Respiratory Rehabilitation, KU Leuven - University of Leuven, Leuven, Belgium
- Respiratory Rehabilitation and Respiratory Division, University Hospitals Leuven, Leuven, Belgium
| | - Baziel G.M. van Engelen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Coen A.C. Ottenheijm
- Department of Physiology, Amsterdam UMC (location VUmc), Amsterdam, The Netherlands
| | - Nicol C. Voermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jonne Doorduin
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
42
|
Skrypnyk C, Husain AA, Hassan HY, Ahmed J, Darwish A, Almusalam L, Ben Khalaf N, Al Qashar F. Case report: Homozygous variants of NEB and KLHL40 in two Arab patients with nemaline myopathy. Front Genet 2023; 14:1098102. [PMID: 37025449 PMCID: PMC10070974 DOI: 10.3389/fgene.2023.1098102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/27/2023] [Indexed: 04/08/2023] Open
Abstract
Objective: Nemaline myopathies are a heterogeneous group of congenital myopathies caused by mutations in different genes associated with the structural and functional proteins of thin muscular filaments. Most patients have congenital onset characterized by hypotonia, respiratory issues, and abnormal deep tendon reflexes, which is a phenotype encountered in a wide spectrum of neuromuscular disorders. Whole-exome sequencing (WES) contributes to a faster diagnosis and facilitates genetic counseling. Methods: Here, we report on two Arab patients from consanguineous families diagnosed with nemaline myopathy of different phenotype spectrum severities. Results: Clinical assessment and particular prenatal history raised suspicion of neuromuscular disease. WES identified homozygous variants in NEB and KLHL40. Muscle biopsy and muscle magnetic resonance imaging studies linked the genetic testing results to the clinical phenotype. The novel variant in the NEB gene resulted in a classical type 2 nemaline myopathy, while the KLHL40 gene variant led to a severe phenotype of nemaline myopathy, type 8. Both patients were identified as having other gene variants with uncertain roles in their complex phenotypes. Conclusions: This study enriches the phenotypic spectrum of nemaline myopathy caused by NEB and KLHL40 variants and highlights the importance of detailed prenatal, neonatal, and infancy assessments of muscular weakness associated with complex systemic features. Variants of uncertain significance in genes associated with nemaline myopathy may be correlated with the phenotype. Early, multidisciplinary intervention can improve the outcome in patients with mild forms of nemaline myopathies. WES is essential for clarifying complex clinical phenotypes encountered in patients from consanguineous families. Targeted carrier screening of extended family members would enable accurate genetic counseling and potential genetic prevention.
Collapse
Affiliation(s)
- Cristina Skrypnyk
- Department of Molecular Medicine, Al‐Jawhara Centre for Molecular Medicine, Arabian Gulf University, Manama, Bahrain
- Department of Medical Genetics, University Medical Center, King Abdulla Medical City, Manama, Bahrain
- *Correspondence: Cristina Skrypnyk,
| | - Aseel Ahmed Husain
- Department of Pediatrics, Bahrain Defence Force Hospital, Royal Medical Services, Riffa, Bahrain
| | - Hisham Y. Hassan
- Banoon ART and Cytogenetics Centre, Bahrain Defence Force Hospital, Royal Medical Services, Riffa, Bahrain
| | - Jameel Ahmed
- Radiology Department, University Medical Center, King Abdulla Medical City, Manama, Bahrain
| | - Abdulla Darwish
- Department of Pathology, Bahrain Defence Force Hospital, Royal Medical Services, Riffa, Bahrain
| | - Latifa Almusalam
- Department of Pathology, Bahrain Defence Force Hospital, Royal Medical Services, Riffa, Bahrain
| | - Noureddine Ben Khalaf
- Life Sciences Department, Health Biotechnology Program, College of Graduate Studies, Arabian Gulf University, Manama, Bahrain
| | - Fahad Al Qashar
- Department of Pediatrics, Bahrain Defence Force Hospital, Royal Medical Services, Riffa, Bahrain
| |
Collapse
|
43
|
Glyakina AV, Galzitskaya OV. Structural and functional analysis of actin point mutations leading to nemaline myopathy to elucidate their role in actin function. Biophys Rev 2022; 14:1527-1538. [PMID: 36659996 PMCID: PMC9842827 DOI: 10.1007/s12551-022-01027-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2022] [Indexed: 12/15/2022] Open
Abstract
In this work, we analyzed 78 mutations in the actin protein that cause the disease nemaline myopathy. We analyzed how these mutations are distributed in important regions of the actin molecule (folding nucleus, core of the filament, amyloidogenic regions, disordered regions, regions involved in interaction with other proteins). It was found that 54 mutations (43 residues) fall into the folding nucleus (Ф ≥ 0.5), 11 mutations (10 residues) into the filament core, 14 mutations into the amyloidogenic regions (11 residues), 14 mutations (9 residues) in the unstructured regions, and 24 mutations (22 residues) in regions involved in interaction with other proteins. It was also found that the occurrence of single mutations G44V, V45F, T68I, P72R, K338I and S350L leads to the appearance of new amyloidogenic regions that are not present in native actin. The largest number of mutations (54 out of 78) occurs in the folding nucleus; these mutations are important for folding and therefore can affect the protein folding rate. We have shown that almost all of the considered mutations are associated with the structural characteristics of the actin molecule, and some of the residues we have considered have several important characteristics.
Collapse
Affiliation(s)
- Anna V. Glyakina
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia ,Institute of Mathematical Problems of Biology RAS, Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Pushchino, Russia
| | - Oxana V. Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia ,Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
44
|
Loss-of-rescue of Ryr1 I4895T-related pathology by the genetic inhibition of the ER stress response mediator CHOP. Sci Rep 2022; 12:20632. [PMID: 36450915 PMCID: PMC9712496 DOI: 10.1038/s41598-022-25198-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 11/25/2022] [Indexed: 12/07/2022] Open
Abstract
RYR1 is the gene encoding the ryanodine receptor 1, a calcium release channel of the endo/sarcoplasmic reticulum. I4898T in RYR1 is one of the most common mutations that give rise to central core disease (CCD), with a variable phenotype ranging from mild to severe myopathy to lethal early-onset core-rod myopathy. Mice with the corresponding I4895T mutation in Ryr1 present mild myopathy when the mutation is heterozygous while I4895T homozygous is perinatal-lethal. Here we show that skeletal muscles of I4895T homozygous mice at birth present signs of stress of the endoplasmic reticulum (ER stress) and of the related unfolded protein response (UPR) with increased levels of the maladaptive mediators CHOP and ERO1. To gain information on the role of CHOP in the pathogenesis of RYR1I4895T-related myopathy, we generated compound Ryr1I4895T, Chop knock-out (-/-) mice. However, the genetic deletion of Chop, although it attenuates ER stress in the skeletal muscle of the newborns, does not rescue any phenotypic or functional features of Ryr1I4895T in mice: neither the perinatal-lethal phenotype nor the inability of Ryr1I4895T to respond to its agonist caffeine, but protects from ER stress-induced apoptosis. These findings suggest that genetic deletion of the ER stress response mediator CHOP is not sufficient to counteract the pathological Ryr1I4895T phenotype.
Collapse
|
45
|
Ronderos-Botero DM, Dileep A, Yapor L, Singhal R. Disruption of cardio-pulmonary coupling in myopathies: Pathophysiological and mechanistic characterization with special emphasis on nemaline myopathy. Front Cardiovasc Med 2022; 9:996567. [DOI: 10.3389/fcvm.2022.996567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/30/2022] [Indexed: 11/09/2022] Open
Abstract
The heart and lung are in continuous reciprocal interaction that creates a functional and anatomical reserve referred to as cardiopulmonary coupling (CPC). Disruption of CPC can occur due to various cardiac or pulmonary pathologies but also can occur in patients with myopathies. Nemaline myopathy (NM) is a skeletal muscle heterogeneous disorder due to contractile proteins' gene mutations that impact lung and cardiac mechanics and thus is expected to adversely affect CPC in a complex manner. We present a case of NM and we review the literature on cardiac and pulmonary effects of myopathy-related disruption of CPC.
Collapse
|
46
|
Martin AA, Thompson BR, Davis JP, Vang H, Hahn D, Metzger JM. Sarcomere dynamics revealed by a myofilament integrated FRET-based biosensor in live skeletal muscle fibers. Sci Rep 2022; 12:18116. [PMID: 36302792 PMCID: PMC9613882 DOI: 10.1038/s41598-022-21425-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/27/2022] [Indexed: 12/30/2022] Open
Abstract
The sarcomere is the functional unit of skeletal muscle, essential for proper contraction. Numerous acquired and inherited myopathies impact sarcomere function causing clinically significant disease. Mechanistic investigations of sarcomere activation have been challenging to undertake in the context of intact, live skeletal muscle fibers during real time physiological twitch contractions. Here, a skeletal muscle specific, intramolecular FRET-based biosensor was designed and engineered into fast skeletal muscle troponin C (TnC) to investigate the dynamics of sarcomere activation. In transgenic animals, the TnC biosensor incorporated into the skeletal muscle fiber sarcomeres by stoichiometric replacement of endogenous TnC and did not alter normal skeletal muscle contractile form or function. In intact single adult skeletal muscle fibers, real time twitch contractile data showed the TnC biosensor transient preceding the peak amplitude of contraction. Importantly, under physiological temperatures, inactivation of the TnC biosensor transient decayed significantly more slowly than the Ca2+ transient and contraction. The uncoupling of the TnC biosensor transient from the Ca2+ transient indicates the biosensor is not functioning as a Ca2+ transient reporter, but rather reports dynamic sarcomere activation/ inactivation that, in turn, is due to the ensemble effects of multiple activating ligands within the myofilaments. Together, these findings provide the foundation for implementing this new biosensor in future physiological studies investigating the mechanism of activation of the skeletal muscle sarcomere in health and disease.
Collapse
Affiliation(s)
- Ashley A Martin
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | - Brian R Thompson
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | - Jonathan P Davis
- Department of Physiology and Cell Biology, Ohio State University, Columbus, OH, USA
| | - Hluechy Vang
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | - Dongwoo Hahn
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | - Joseph M Metzger
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
47
|
Fisher G, Mackels L, Markati T, Sarkozy A, Ochala J, Jungbluth H, Ramdas S, Servais L. Early clinical and pre-clinical therapy development in Nemaline myopathy. Expert Opin Ther Targets 2022; 26:853-867. [PMID: 36524401 DOI: 10.1080/14728222.2022.2157258] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Nemaline myopathies (NM) represent a group of clinically and genetically heterogeneous congenital muscle disorders with the common denominator of nemaline rods on muscle biopsy. NEB and ACTA1 are the most common causative genes. Currently, available treatments are supportive. AREAS COVERED We explored experimental treatments for NM, identifying at least eleven mainly pre-clinical approaches utilizing murine and/or human muscle cells. These approaches target either i) the causative gene or associated genes implicated in the same pathway; ii) pathophysiologically relevant biochemical mechanisms such as calcium/myosin regulation of muscle contraction; iii) myogenesis; iv) other therapies that improve or optimize muscle function more generally; v) and/or combinations of the above. The scope and efficiency of these attempts is diverse, ranging from gene-specific effects to those widely applicable to all NM-associated genes. EXPERT OPINION The wide range of experimental therapies currently under consideration for NM is promising. Potential translation into clinical use requires consideration of additional factors such as the potential muscle type specificity as well as the possibility of gene expression remodeling. Challenges in clinical translation include the rarity and heterogeneity of genotypes, phenotypes, and disease trajectories, as well as the lack of longitudinal natural history data and validated outcomes and biomarkers.
Collapse
Affiliation(s)
- Gemma Fisher
- MDUK Neuromuscular Centre, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Laurane Mackels
- MDUK Neuromuscular Centre, Department of Paediatrics, University of Oxford, Oxford, UK.,Neuromuscular Reference Center, University and University Hospital of Liège, Liège, Belgium
| | - Theodora Markati
- MDUK Neuromuscular Centre, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Anna Sarkozy
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Hospital, Institute of Child Health, London, UK
| | - Julien Ochala
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Heinz Jungbluth
- Department of Paediatric Neurology - Neuromuscular Service, Evelina Children's Hospital, Guy's & St Thomas' NHS Foundation Trust, London, UK.,Randall Centre for Cell and Molecular Biophysics, Muscle Signalling Section, Faculty of Life Sciences and Medicine (FoLSM), King's College London, London, UK
| | - Sithara Ramdas
- MDUK Neuromuscular Centre, Department of Paediatrics, University of Oxford, Oxford, UK.,Department of Paediatric Neurology, John Radcliffe Hospital, Oxford, UK
| | - Laurent Servais
- MDUK Neuromuscular Centre, Department of Paediatrics, University of Oxford, Oxford, UK.,Neuromuscular Reference Center, University and University Hospital of Liège, Liège, Belgium
| |
Collapse
|
48
|
Murofushi Y, Hayakawa I, Abe Y, Nakao H, Ono H, Kubota M. The most severe form of LMNA-associated congenital muscular dystrophy. Brain Dev 2022; 44:650-654. [PMID: 35729056 DOI: 10.1016/j.braindev.2022.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 10/18/2022]
Abstract
Alterations in the LMNA gene cause a wide spectrum of diseases collectively called laminopathies. LMNA-associated congenital muscular dystrophy is a form of laminopathy, which usually causes infantile onset of muscle weakness, predominantly in the cervical-axial muscles, and motor developmental retardation. Cardiac symptoms during the first decade of life are rare. We report a case of LMNA-associated congenital muscular dystrophy in which the patient did not achieve head control and experienced facial muscle weakness. Cardiac dysrhythmias were observed at 5 years with development of dilated cardiomyopathy and ischemic strokes at 7 years. Despite intensive medical intervention, he died suddenly at 9 years. This report broadens the spectrum of phenotypes of this disorder with the most severe symptoms during the first decade of life. Our case underscores the need for early genetic testing for LMNA in patients with congenital muscular dystrophy to screen for cardiac manifestations and intervene as necessary.
Collapse
Affiliation(s)
- Yuka Murofushi
- Division of Neurology, National Center for Child Health and Development (NCCHD), 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan.
| | - Itaru Hayakawa
- Division of Neurology, National Center for Child Health and Development (NCCHD), 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Yuichi Abe
- Division of Neurology, National Center for Child Health and Development (NCCHD), 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Hiro Nakao
- Department of General Pediatrics and Interdisciplinary Medicine, NCCHD, Tokyo, Japan
| | | | - Masaya Kubota
- Division of Neurology, National Center for Child Health and Development (NCCHD), 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan; Department of Pediatrics, Shimada Ryoiku Medical Center for Challenged Children, 1-31-1 Nakazawa, Tama City, Tokyo 206-0036, Japan
| |
Collapse
|
49
|
Bachmann C, Franchini M, Van den Bersselaar LR, Kruijt N, Voermans NC, Bouman K, Kamsteeg EJ, Knop KC, Ruggiero L, Santoro L, Nevo Y, Wilmshurst J, Vissing J, Sinnreich M, Zorzato D, Muntoni F, Jungbluth H, Zorzato F, Treves S. Targeted transcript analysis in muscles from patients with genetically diverse congenital myopathies. Brain Commun 2022; 4:fcac224. [PMID: 36196089 PMCID: PMC9525005 DOI: 10.1093/braincomms/fcac224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 06/29/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Congenital myopathies are a group of early onset muscle diseases of variable severity often with characteristic muscle biopsy findings and involvement of specific muscle types. The clinical diagnosis of patients typically relies on histopathological findings and is confirmed by genetic analysis. The most commonly mutated genes encode proteins involved in skeletal muscle excitation–contraction coupling, calcium regulation, sarcomeric proteins and thin–thick filament interaction. However, mutations in genes encoding proteins involved in other physiological functions (for example mutations in SELENON and MTM1, which encode for ubiquitously expressed proteins of low tissue specificity) have also been identified. This intriguing observation indicates that the presence of a genetic mutation impacts the expression of other genes whose product is important for skeletal muscle function. The aim of the present investigation was to verify if there are common changes in transcript and microRNA expression in muscles from patients with genetically heterogeneous congenital myopathies, focusing on genes encoding proteins involved in excitation–contraction coupling and calcium homeostasis, sarcomeric proteins, transcription factors and epigenetic enzymes. Our results identify RYR1, ATPB2B and miRNA-22 as common transcripts whose expression is decreased in muscles from congenital myopathy patients. The resulting protein deficiency may contribute to the muscle weakness observed in these patients. This study also provides information regarding potential biomarkers for monitoring disease progression and response to pharmacological treatments in patients with congenital myopathies.
Collapse
Affiliation(s)
- Christoph Bachmann
- Department of Biomedicine, Basel University Hospital , Hebelstrasse 20, Basel 4031 , Switzerland
- Department of Neurology, Basel University Hospital , Hebelstrasse 20, Basel 4031 , Switzerland
| | - Martina Franchini
- Department of Biomedicine, Basel University Hospital , Hebelstrasse 20, Basel 4031 , Switzerland
- Department of Neurology, Basel University Hospital , Hebelstrasse 20, Basel 4031 , Switzerland
| | - Luuk R Van den Bersselaar
- Department of Anesthesiology, Malignant Hyperthermia Investigation Unit, Canisius Wilhelmina Hospital , Nijmegen , The Netherlands
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center , Nijmegen , The Netherlands
| | - Nick Kruijt
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center , Nijmegen , The Netherlands
| | - Nicol C Voermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center , Nijmegen , The Netherlands
| | - Karlijn Bouman
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center , Nijmegen , The Netherlands
- Department of Pediatric Neurology, Donders Institute for Brain, Cognition and Behaviour, Amalia Children’s Hospital, Radboud University Medical Center , Nijmegen , The Netherlands
| | - Erik-Jan Kamsteeg
- Department of Clinical Genetics, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen Medical Centre , Nijmegen , The Netherlands
| | - Karl Christian Knop
- Muskelhistologisches Labor, Neurologische Abteilung, Asklepios Klinik St. Georg , Lohmuehlenstraße 5, Hamburg 20099 , Germany
| | - Lucia Ruggiero
- Dipartimento di Neuroscienze, Scienze Riproduttive ed Odontostomatologiche, Università degli Studi di Napoli Federico II , Via Pansini 5, Napoli 80131 , Italy
| | - Lucio Santoro
- Dipartimento di Neuroscienze, Scienze Riproduttive ed Odontostomatologiche, Università degli Studi di Napoli Federico II , Via Pansini 5, Napoli 80131 , Italy
| | - Yoram Nevo
- Institute of Neurology, Schneider Children’s Medical Center of Israel , Petah Tiqva , Israel
| | - Jo Wilmshurst
- Paediatric Neurology, Red Cross War Memorial Children’s Hospital, Neuroscience Institute, University of Cape Town , Cape Town , South Africa
| | - John Vissing
- Department of Neurology, section 8077, Rigshospitalet, University of Copenhagen , Blegdamsvej 9, Copenhagen DK-2100 , Denmark
| | - Michael Sinnreich
- Department of Biomedicine, Basel University Hospital , Hebelstrasse 20, Basel 4031 , Switzerland
- Department of Neurology, Basel University Hospital , Hebelstrasse 20, Basel 4031 , Switzerland
| | - Daniele Zorzato
- GKT School of Medical Education, King’s College London , Hodgkin Building, Newcomen Street, London SE1 1UL , UK
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre and MRC Centre for Neuromuscular Diseases, UCL, Institute of Child Health , London , UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre , London , UK
| | - Heinz Jungbluth
- Department of Paediatric Neurology, Neuromuscular Service, Evelina Children’s Hospital, St. Thomas’ Hospital , London , UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London , London , UK
- Randall Center for Cell and Molecular Biophysics, Muscle Signalling Section, Faculty of Life Sciences and Medicine, King’s College , London , UK
| | - Francesco Zorzato
- Department of Biomedicine, Basel University Hospital , Hebelstrasse 20, Basel 4031 , Switzerland
- Department of Neurology, Basel University Hospital , Hebelstrasse 20, Basel 4031 , Switzerland
- Department of Life Science and Biotechnology, University of Ferrara , Via Borsari 46, Ferrara 44100 , Italy
| | - Susan Treves
- Department of Biomedicine, Basel University Hospital , Hebelstrasse 20, Basel 4031 , Switzerland
- Department of Neurology, Basel University Hospital , Hebelstrasse 20, Basel 4031 , Switzerland
- Department of Life Science and Biotechnology, University of Ferrara , Via Borsari 46, Ferrara 44100 , Italy
| |
Collapse
|
50
|
Yoo YJ, Shin BK, Yoon MJ, Lim SH, Kim JS, Hong BY. Clinical Course of Dysphagia in Patients with Nemaline Myopathy. CHILDREN 2022; 9:children9081204. [PMID: 36010094 PMCID: PMC9406701 DOI: 10.3390/children9081204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022]
Abstract
Nemaline myopathy (NM) is a rare congenital myopathy, a group of disorders that are clinically and genetically heterogeneous. Infants and children with NM often suffer from recurrent pulmonary infections and swallowing difficulty, leading to malnutrition. However, knowledge about the clinical course and prognosis of dysphagia is limited. In this study, we reported the clinical course of two NM patients suffering from dysphagia. Although tube feeding was required for several months after birth, it was eventually possible to obtain sufficient nutrition with an oral diet. Therefore, dysphagia rehabilitation therapy through a series of evaluations should be considered even in children with severe oral motor dysfunction. Through these cases, physicians should be convinced that the symptoms of dysphagia in children with NM can be improved and be able to encourage their parents by explaining this progress. They have the potential to show improvements in swallowing function and will finally be able to take food slowly but fully orally.
Collapse
|