1
|
Li S, Yang J. Pathogenesis of Alzheimer's disease and therapeutic strategies involving traditional Chinese medicine. RSC Med Chem 2024:d4md00660g. [PMID: 39430949 PMCID: PMC11484936 DOI: 10.1039/d4md00660g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024] Open
Abstract
Alzheimer's disease (AD) is a prevalent degenerative disorder affecting the central nervous system of the elderly. Patients primarily manifest cognitive decline and non-cognitive neuro-psychiatric symptoms. Currently, western medications for AD primarily include cholinesterase inhibitors and glutamate receptor inhibitors, which have limited efficacy and accompanied by significant toxic side effects. Given the intricate pathogenesis of AD, the use of single-target inhibitors is limited. In recent years, as research on AD has progressed, traditional Chinese medicine (TCM) and its active ingredients have increasingly played a crucial role in clinical treatment. Numerous studies demonstrate that TCM and its active ingredients can exert anti-Alzheimer's effects by modulating pathological protein production and deposition, inhibiting tau protein hyperphosphorylation, apoptosis, inflammation, and oxidative stress, while enhancing the central cholinergic system, protecting neurons and synapses, and optimizing energy metabolism. This article summarizes extracts from TCM and briefly elucidates their pharmacological mechanisms against AD, aiming to provide a foundation for further research into the specific mechanisms of TCM in the prevention and treatment of the disease, as well as the identification of efficacious active ingredients.
Collapse
Affiliation(s)
- Shutang Li
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine Qingdao 266041 China
| | - Jinfei Yang
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine Qingdao 266041 China
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences Qingdao 266113 China
| |
Collapse
|
2
|
Vitorakis N, Piperi C. Pivotal role of AGE-RAGE axis in brain aging with current interventions. Ageing Res Rev 2024; 100:102429. [PMID: 39032613 DOI: 10.1016/j.arr.2024.102429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Brain aging is characterized by several structural, biochemical and molecular changes which can vary among different individuals and can be influenced by genetic, environmental and lifestyle factors. Accumulation of protein aggregates, altered neurotransmitter composition, low-grade chronic inflammation and prolonged oxidative stress have been shown to contribute to brain tissue damage. Among key metabolic byproducts, advanced glycation end products (AGEs), formed endogenously through non-enzymatic reactions or acquired directly from the diet or other exogenous sources, have been detected to accumulate in brain tissue, exerting detrimental effects on cellular structure and function, contributing to neurodegeneration and cognitive decline. Upon binding to signal transduction receptor RAGE, AGEs can initiate pro-inflammatory pathways, exacerbate oxidative stress and neuroinflammation, thus impairing neuronal function and cognition. AGE-RAGE signaling induces programmed cell death, disrupts the blood-brain barrier and promotes protein aggregation, further compromising brain health. In this review, we investigate the intricate relationship between the AGE-RAGE pathway and brain aging in order to detect affected molecules and potential targets for intervention. Reduction of AGE deposition in brain tissue either through novel pharmacological therapeutics, dietary modifications, and lifestyle changes, shows a great promise in mitigating cognitive decline associated with brain aging.
Collapse
Affiliation(s)
- Nikolaos Vitorakis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street, Athens 11527, Greece
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street, Athens 11527, Greece.
| |
Collapse
|
3
|
Ma Y, Ma Z, Zhang Y, Luo C, Huang P, Tong J, Ding H, Liu H. Apigenin and baicalein ameliorate thoracic aortic structural deterioration and cognitive deficit via inhibiting AGEs/RAGE/NF-κB pathway in D-galactose-induced aging rats. Eur J Pharmacol 2024; 976:176660. [PMID: 38795756 DOI: 10.1016/j.ejphar.2024.176660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 05/04/2024] [Accepted: 05/16/2024] [Indexed: 05/28/2024]
Abstract
Apigenin and baicalein are structurally related flavonoids that have been reported to have multiple pharmacological activities. The aim of this study was to investigate the protective effects and potential mechanisms of apigenin and baicalein in D-galactose-induced aging rats. First, apigenin and baicalein showed remarkable antioxidant activity and anti-glycation activity in vitro. Secondly, the protective effects of apigenin and baicalein on aging rats were investigated. We found that apigenin and baicalein supplementation significantly ameliorated aging-related changes such as declines in the spatial learning and memory and histopathological damage of the hippocampus and thoracic aorta. In addition, our data showed that apigenin and baicalein alleviated oxidative stress as illustrated by decreasing MDA level, increasing SOD activity and GSH level. Further data showed that they significantly reduced the accumulation of advanced glycation end products (AGEs), inhibited the expression of RAGE, down-regulated phosphorylated nuclear factor (p-NF-κB (p65)). Our results suggested that the protective effects of apigenin and baicalein on aging rats were at least partially related to the inhibition of AGEs/RAGE/NF-κB pathway and the improvement of oxidative damage. Overall, apigenin and baicalein showed almost equal anti-aging efficacy. Our results provided an experimental basis for the application of apigenin and baicalein to delay the aging process.
Collapse
Affiliation(s)
- Yufang Ma
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University, Wuhan, Hubei, 430072, China
| | - Zhenming Ma
- College of Software Engineering, Chengdu University of Information Technology, Chengdu, Sichuan, 610200, China
| | - Yiyuan Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University, Wuhan, Hubei, 430072, China
| | - Chunyun Luo
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University, Wuhan, Hubei, 430072, China
| | - Puxin Huang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University, Wuhan, Hubei, 430072, China
| | - Jing Tong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University, Wuhan, Hubei, 430072, China.
| | - Hong Ding
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University, Wuhan, Hubei, 430072, China.
| | - Honghui Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University, Wuhan, Hubei, 430072, China.
| |
Collapse
|
4
|
Zhou M, Zhang Y, Shi L, Li L, Zhang D, Gong Z, Wu Q. Activation and modulation of the AGEs-RAGE axis: Implications for inflammatory pathologies and therapeutic interventions - A review. Pharmacol Res 2024; 206:107282. [PMID: 38914383 DOI: 10.1016/j.phrs.2024.107282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/26/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
Chronic inflammation is a common foundation for the development of many non-communicable diseases, particularly diabetes, atherosclerosis, and tumors. The activation of the axis involving Advanced Glycation End products (AGEs) and their receptor RAGE is a key promotive factor in the chronic inflammation process, influencing the pathological progression of these diseases. The accumulation of AGEs in the body results from an increase in glycation reactions and oxidative stress, especially pronounced in individuals with diabetes. By binding to RAGE, AGEs activate signaling pathways such as NF-κB, promoting the release of inflammatory factors, exacerbating cell damage and inflammation, and further advancing the formation of atherosclerotic plaques and tumor development. This review will delve into the molecular mechanisms by which the AGEs-RAGE axis activates chronic inflammation in the aforementioned diseases, as well as strategies to inhibit the AGEs-RAGE axis, aiming to slow or halt the progression of chronic inflammation and related diseases. This includes the development of AGEs inhibitors, RAGE antagonists, and interventions targeting upstream and downstream signaling pathways. Additionally, the early detection of AGEs levels and RAGE expression as biomarkers provides new avenues for the prevention and treatment of diabetes, atherosclerosis, and tumors.
Collapse
Affiliation(s)
- Mengzhou Zhou
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Yuyan Zhang
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Lin Shi
- Wuhan Caidian District Public Inspection and Testing Center, Wuhan, Hubei 430068, PR China
| | - Liangchao Li
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Duo Zhang
- Hubei Standardization and Quality Institute, Wuhan,Hubei 430068, PR China
| | - Zihao Gong
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Qian Wu
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China.
| |
Collapse
|
5
|
Gao S, Tan H, Gang J. Inhibition of hepatocellular carcinoma cell proliferation through regulation of the Cell Cycle, AGE-RAGE, and Leptin signaling pathways by a compound formulation comprised of andrographolide, wogonin, and oroxylin A derived from Andrographis Paniculata(Burm.f.) Nees. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118001. [PMID: 38467318 DOI: 10.1016/j.jep.2024.118001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/19/2024] [Accepted: 02/29/2024] [Indexed: 03/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In 2020, liver cancer contributed to approximately 0.9 million new cases and 0.83 million deaths, making it the third leading cause of mortality worldwide. Andrographis paniculata (Burm.f.) Nees(APN), a traditional Chinese or ethnic medicine extensively utilized in Asia, has been historically employed for treating hepatitis and liver cancer. However, the precise molecular mechanism responsible for its therapeutic efficacy remains unclear. AIM OF THE STUDY To identify and replace the active components of APN on liver cancer, which is investigate the potential of a Multi-Component Chinese Medicine derived from Andrographis paniculata (Burm.f.) Nees(APN-MCCN) for the treatment of liver cancer. MATERIALS AND METHODS Firstly, the TCMSP database and two liver cancer disease databases were utilized to optimize the chemical constituents of APN and the disease-related targets of liver cancer. The network was constructed using Cytoscape to visualize the relationships between them. Subsequently, the optimal combination of components in APN-MCCN for the treatment of liver cancer was determined using the contribution index method. HPLC analysis was performed to measure the content of each component. Pathway enrichment and gene annotation were conducted using the ClueGo plugin. In vivo efficacy was evaluated by transplanting S180 and H22 tumor-bearing mouse models. In vitro efficacy was determined through MTT assay, morphological observations, flow cytometry analysis, and scratch tests. Western blotting was used to validate the protein expression. The transfection techniques were employed to knockdown the expressions of key protein in different pathway. RESULTS We obtained 24 effective compounds, with andrographolide contributing 20.78%, wogonin contributing 41.85%, and oroxylin A contributing 30.26% to the overall composition. Based on the predicted enrichment degree and correlation with liver cancer, we identified a total of 27 pathways, among which the Leptin signaling pathway, AGE-RAGE signaling pathway, and Cell Cycle signaling pathway were selected for further investigation. The content of andrographolide, oroxylin A, and wogonin in APN was found to be 0.104%, 0.0024%, and 0.0052%, respectively. In vivo experiments demonstrated that APN-MCCM significantly reduced tumor weight in S180 tumor-bearing mice and prolonged the survival time of H22 liver cancer-bearing mice. APN-MCCM exhibited inhibitory effects on the proliferation, apoptosis, and migration of liver cancer cells while arresting them in the G2/M phase. Furthermore, APN-MCCM down-regulated the protein expression of NCOA1, PTPN1, and GSK3B in the Leptin signaling pathway, NOS2 and NOS3 in the AGE-RAGE signaling pathway, CCNA2, CDK1, CDK2, and CDK7 in the Cell Cycle signaling pathway. Additionally, it upregulated the protein phosphorylation of p-P38 and p-JUN in the AGE-RAGE signaling pathway. Knockout experiments revealed that the inhibitory effect of APN-MCCM on liver cancer cell migration was prevented when the MAPK or NCOA1 genes were knocked out. Similarly, knocking out the CDK7 gene blocked the G2/M phase arrest induced by APN-MCCM in liver cancer cells. CONCLUSIONS APN-MCCM, consisting of andrographolide, wogonin, and oroxylin A, exhibits inhibitory effects on the cell proliferation of liver cancer cells by targeting the cell cycle pathway. Additionally, it suppresses the migration of liver cancer cells through the AGE-RAGE and Leptin signaling pathways.
Collapse
Affiliation(s)
- Shiyong Gao
- Drug Engineering and Technology Research Center, Harbin University of Commerce, Harbin, 150076, Heilongjiang, China; Heilongjiang Provincial Key Laboratory of Tumor Prevention and Antitumor Drugs, Harbin, 150076, Heilongjiang, China
| | - Huixin Tan
- Department of Pharmacy, Fourth Affiliated Hospital of Harbin Medicine University, Harbin, 150001, Heilongjiang, China.
| | - Jian Gang
- Drug Engineering and Technology Research Center, Harbin University of Commerce, Harbin, 150076, Heilongjiang, China; Heilongjiang Provincial Key Laboratory of Tumor Prevention and Antitumor Drugs, Harbin, 150076, Heilongjiang, China.
| |
Collapse
|
6
|
Sun Z, Liu K, Liang C, Wen L, Wu J, Liu X, Li X. Diosmetin as a promising natural therapeutic agent: In vivo, in vitro mechanisms, and clinical studies. Phytother Res 2024; 38:3660-3694. [PMID: 38748620 DOI: 10.1002/ptr.8214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/09/2024] [Accepted: 04/13/2024] [Indexed: 07/12/2024]
Abstract
Diosmetin, a natural occurring flavonoid, is primarily found in citrus fruits, beans, and other plants. Diosmetin demonstrates a variety of pharmacological activities, including anticancer, antioxidant, anti-inflammatory, antibacterial, metabolic regulation, cardiovascular function improvement, estrogenic effects, and others. The process of literature search was done using PubMed, Web of Science and ClinicalTrials databases with search terms containing Diosmetin, content, anticancer, anti-inflammatory, antioxidant, pharmacological activity, pharmacokinetics, in vivo, and in vitro. The aim of this review is to summarize the in vivo, in vitro and clinical studies of Diosmetin over the last decade, focusing on studies related to its anticancer, anti-inflammatory, and antioxidant activities. It is found that DIO has significant therapeutic effects on skin and cardiovascular system diseases, and its research in pharmacokinetics and toxicology is summarized. It provides the latest information for researchers and points out the limitations of current research and areas that should be strengthened in future research, so as to facilitate the relevant scientific research and clinical application of DIO.
Collapse
Affiliation(s)
- Zihao Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kai Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuipeng Liang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin Wen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jijiao Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaolian Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
7
|
Canoy RJ, Sy JC, Deguit CD, Castro CB, Dimaapi LJ, Panlaqui BG, Perian W, Yu J, Velasco JM, Sevilleja JE, Gibson A. Non-coding RNAs involved in the molecular pathology of Alzheimer's disease: a systematic review. Front Neurosci 2024; 18:1421675. [PMID: 39005845 PMCID: PMC11243705 DOI: 10.3389/fnins.2024.1421675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/10/2024] [Indexed: 07/16/2024] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia globally, having a pathophysiology that is complex and multifactorial. Recent findings highlight the significant role of non-coding RNAs (ncRNAs), specifically microRNAs (miRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and piwi-interacting RNAs (piRNAs) in the molecular mechanisms underlying AD. These ncRNAs are involved in critical biological processes such as cell proliferation, apoptosis, oxidative stress, amyloid-beta aggregation, tau phosphorylation, neuroinflammation, and autophagy, which are pivotal in AD development and progression. This systematic review aims to consolidate current scientific knowledge on the role of ncRNAs in AD, making it the first to encompass the four types of ncRNAs associated with the disease. Our comprehensive search and analysis reveal that ncRNAs not only play crucial roles in the pathogenesis of AD but also hold potential as biomarkers for its early detection and as novel therapeutic targets. Specifically, the findings underscore the significance of miRNAs in regulating genes involved in key AD pathways such as activin receptor signaling pathway, actomyosin contractile ring organization, and advanced glycation endproducts-receptor advanced glycation endproducts (AGE-RAGE) signaling pathway. This review also highlights the potential of ncRNAs in unveiling novel diagnostic and therapeutic strategies, emphasizing the need for further research to validate their clinical utility. Our systematic exploration provides a foundation for future bioinformatic analyses and the development of ncRNA-based precision medicine approaches for AD, offering new insights into the disease's molecular pathology and paving the way for innovative treatment strategies. Systematic review registration PROSPERO, https://www.crd.york.ac.uk/prospero/, CRD42022355307.
Collapse
Affiliation(s)
- Reynand Jay Canoy
- SciLore LLC, Kingsbury, TX, United States
- Instiute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Jenica Clarisse Sy
- SciLore LLC, Kingsbury, TX, United States
- Center for Research and Innovation, Ateneo de Manila University School of Medicine and Public Health, Pasig City, Philippines
| | - Christian Deo Deguit
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Caitlin Bridgette Castro
- National Institute of Molecular Biology and Biotechnology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Lyoneil James Dimaapi
- National Institute of Molecular Biology and Biotechnology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Beatrice Gabrielle Panlaqui
- National Institute of Molecular Biology and Biotechnology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Wenzel Perian
- National Institute of Molecular Biology and Biotechnology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Justine Yu
- Institute for Dementia Care Asia, Quezon City, Philippines
| | - John Mark Velasco
- Institute of Molecular Biology and Biotechnology, National Institutes of Health, University of the Philippines Manila, Manila, Philippines
| | | | - Anna Gibson
- SciLore LLC, Kingsbury, TX, United States
- Center for Research and Innovation, Ateneo de Manila University School of Medicine and Public Health, Pasig City, Philippines
| |
Collapse
|
8
|
Shi A, Ji X, Li W, Dong L, Wu Y, Zhang Y, Liu X, Zhang Y, Wang S. The Interaction between Human Microbes and Advanced Glycation End Products: The Role of Klebsiella X15 on Advanced Glycation End Products' Degradation. Nutrients 2024; 16:754. [PMID: 38474882 DOI: 10.3390/nu16050754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Previous studies have shown that advanced glycation end products (AGEs) are implicated in the occurrence and progression of numerous diseases, with dietary AGEs being particularly associated with intestinal disorders. In this study, methylglyoxal-beta-lactoglobulin AGEs (MGO-β-LG AGEs) were utilized as the exclusive nitrogen source to investigate the interaction between protein-bound AGEs and human gut microbiota. The high-resolution mass spectrometry analysis of alterations in peptides containing AGEs within metabolites before and after fermentation elucidated the capacity of intestinal microorganisms to enzymatically hydrolyze long-chain AGEs into short-chain counterparts. The 16S rRNA sequencing revealed Klebsiella, Lactobacillus, Escherichia-Shigella, and other genera as dominant microbiota at different fermentation times. A total of 187 potential strains of AGE-metabolizing bacteria were isolated from the fermentation broth at various time points. Notably, one strain of Klebsiella exhibited the most robust growth capacity when AGEs served as the sole nitrogen source. Subsequently, proteomics was employed to compare the changes in protein levels of Klebsiella X15 following cultivation in unmodified proteins and proteins modified with AGEs. This analysis unveiled a remodeled amino acid and energy metabolism pathway in Klebsiella in response to AGEs, indicating that Klebsiella may possess a metabolic pathway specifically tailored to AGEs. This study found that fermenting AGEs in healthy human intestinal microbiota altered the bacterial microbiota structure, especially by increasing Klebsiella proliferation, which could be a key factor in AGEs' role in causing diseases, particularly intestinal inflammation.
Collapse
Affiliation(s)
- Aiying Shi
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Xuemeng Ji
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Wanhua Li
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Lu Dong
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Yuekun Wu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Yunhui Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Xiaoxia Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Yan Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
9
|
Hosoki S, Hansra GK, Jayasena T, Poljak A, Mather KA, Catts VS, Rust R, Sagare A, Kovacic JC, Brodtmann A, Wallin A, Zlokovic BV, Ihara M, Sachdev PS. Molecular biomarkers for vascular cognitive impairment and dementia. Nat Rev Neurol 2023; 19:737-753. [PMID: 37957261 DOI: 10.1038/s41582-023-00884-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2023] [Indexed: 11/15/2023]
Abstract
As disease-specific interventions for dementia are being developed, the ability to identify the underlying pathology and dementia subtypes is increasingly important. Vascular cognitive impairment and dementia (VCID) is the second most common cause of dementia after Alzheimer disease, but progress in identifying molecular biomarkers for accurate diagnosis of VCID has been relatively limited. In this Review, we examine the roles of large and small vessel disease in VCID, considering the underlying pathophysiological processes that lead to vascular brain injury, including atherosclerosis, arteriolosclerosis, ischaemic injury, haemorrhage, hypoperfusion, endothelial dysfunction, blood-brain barrier breakdown, inflammation, oxidative stress, hypoxia, and neuronal and glial degeneration. We consider the key molecules in these processes, including proteins and peptides, metabolites, lipids and circulating RNA, and consider their potential as molecular biomarkers alone and in combination. We also discuss the challenges in translating the promise of these biomarkers into clinical application.
Collapse
Affiliation(s)
- Satoshi Hosoki
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Gurpreet K Hansra
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Tharusha Jayasena
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Anne Poljak
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW, Australia
| | - Karen A Mather
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Vibeke S Catts
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Ruslan Rust
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Abhay Sagare
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jason C Kovacic
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York, NY, USA
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Amy Brodtmann
- Department of Neurology, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Anders Wallin
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Berislav V Zlokovic
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
10
|
Piccirillo S, Preziuso A, Cerqueni G, Serfilippi T, Terenzi V, Vinciguerra A, Amoroso S, Lariccia V, Magi S. A strategic tool to improve the study of molecular determinants of Alzheimer's disease: The role of glyceraldehyde. Biochem Pharmacol 2023; 218:115869. [PMID: 37871878 DOI: 10.1016/j.bcp.2023.115869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/14/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia and is characterized by progressive neurodegeneration leading to severe cognitive, memory, and behavioral impairments. The onset of AD involves a complex interplay among various factors, including age, genetics, chronic inflammation, and impaired energy metabolism. Despite significant efforts, there are currently no effective therapies capable of modifying the course of AD, likely owing to an excessive focus on the amyloid hypothesis and a limited consideration of other intracellular pathways. In the present review, we emphasize the emerging concept of AD as a metabolic disease, where alterations in energy metabolism play a critical role in its development and progression. Notably, glucose metabolism impairment is associated with mitochondrial dysfunction, oxidative stress, Ca2+ dyshomeostasis, and protein misfolding, forming interconnected processes that perpetuate a detrimental self-feeding loop sustaining AD progression. Advanced glycation end products (AGEs), neurotoxic compounds that accumulate in AD, are considered an important consequence of glucose metabolism disruption, and glyceraldehyde (GA), a glycolytic intermediate, is a key contributor to AGEs formation in both neurons and astrocytes. Exploring the impact of GA-induced glucose metabolism impairment opens up exciting possibilities for creating an easy-to-handle in vitro model that recapitulates the early stage of the disease. This model holds great potential for advancing the development of novel therapeutics targeting various intracellular pathways implicated in AD pathogenesis. In conclusion, looking beyond the conventional amyloid hypothesis could lead researchers to discover promising targets for intervention, offering the possibility of addressing the existing medical gaps in AD treatment.
Collapse
Affiliation(s)
- Silvia Piccirillo
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126 Ancona, Italy.
| | - Alessandra Preziuso
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126 Ancona, Italy.
| | - Giorgia Cerqueni
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126 Ancona, Italy.
| | - Tiziano Serfilippi
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126 Ancona, Italy.
| | - Valentina Terenzi
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126 Ancona, Italy.
| | - Antonio Vinciguerra
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126 Ancona, Italy.
| | - Salvatore Amoroso
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126 Ancona, Italy.
| | - Vincenzo Lariccia
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126 Ancona, Italy.
| | - Simona Magi
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126 Ancona, Italy.
| |
Collapse
|
11
|
Stanciu GD, Ababei DC, Solcan C, Bild V, Ciobica A, Beschea Chiriac SI, Ciobanu LM, Tamba BI. Preclinical Studies of Canagliflozin, a Sodium-Glucose Co-Transporter 2 Inhibitor, and Donepezil Combined Therapy in Alzheimer's Disease. Pharmaceuticals (Basel) 2023; 16:1620. [PMID: 38004485 PMCID: PMC10674192 DOI: 10.3390/ph16111620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
The incidence of neurodegenerative diseases, such as Alzheimer's disease (AD), is continuously growing worldwide, which leads to a heavy economic and societal burden. The lack of a safe and effective causal therapy in cognitive decline is an aggravating factor and requires investigations into the repurposing of commonly used drugs. Sodium-glucose co-transporter 2 inhibitors (SGLT2i) are a new and efficient class of hypoglycemic drugs and, due to their pleiotropic effects, have indications that go beyond diabetes. There is emerging data from murine studies that SGLT2i can cross the blood-brain barrier and may have neuroprotective effects, such as increasing the brain-derived neurotrophic factor (BDNF), reducing the amyloid burden, inhibiting acetylcholinesterase (AChE) and restoring the circadian rhythm in the mammalian target of rapamycin (mTOR) activation. The current study investigates the effect of an SGLT2i and donepezil, under a separate or combined 21-day treatment on AD-relevant behaviors and brain pathology in mice. The SGLT2i canagliflozin was found to significantly improve the novelty preference index and the percentage of time spent in the open arms of the maze in the novel object recognition and elevated plus maze test, respectively. In addition, canagliflozin therapy decreased AChE activity, mTOR and glial fibrillary acidic protein expression. The results also recorded the acetylcholine M1 receptor in canagliflozin-treated mice compared to the scopolamine group. In the hippocampus, the SGLT2i canagliflozin reduced the microgliosis and astrogliosis in males, but not in female mice. These findings emphasize the value of SGLT2i in clinical practice. By inhibiting AChE activity, canagliflozin represents a compound that resembles AD-registered therapies in this respect, supporting the need for further evaluation in dementia clinical trials.
Collapse
Affiliation(s)
- Gabriela Dumitrita Stanciu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (G.D.S.); (B.-I.T.)
| | - Daniela Carmen Ababei
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (G.D.S.); (B.-I.T.)
- Pharmacodynamics and Clinical Pharmacy Department, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Carmen Solcan
- Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” University of Life Sciences, 700490 Iasi, Romania
| | - Veronica Bild
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (G.D.S.); (B.-I.T.)
- Pharmacodynamics and Clinical Pharmacy Department, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Andrei Ciobica
- Physiology Department, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Sorin-Ioan Beschea Chiriac
- Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” University of Life Sciences, 700490 Iasi, Romania
| | - Loredana Maria Ciobanu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (G.D.S.); (B.-I.T.)
- Alexandru Ioan Cuza High School, 37 Ion Creanga Street, 700317 Iasi, Romania
| | - Bogdan-Ionel Tamba
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (G.D.S.); (B.-I.T.)
- Department of Pharmacology, Clinical Pharmacology and Algesiology, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| |
Collapse
|
12
|
Waugh ML, Wolf LM, Turner JP, Phillips LN, Servoss SL, Moss MA. Modulating the RAGE-Induced Inflammatory Response: Peptoids as RAGE Antagonists. Chembiochem 2023; 24:e202300503. [PMID: 37679300 PMCID: PMC10711691 DOI: 10.1002/cbic.202300503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 09/09/2023]
Abstract
While the primary pathology of Alzheimer's disease (AD) is defined by brain deposition of amyloid-β (Aβ) plaques and tau neurofibrillary tangles, chronic inflammation has emerged as an important factor in AD etiology. Upregulated cell surface expression of the receptor for advanced glycation end-products (RAGE), a key receptor of innate immune response, is reported in AD. In parallel, RAGE ligands, including Aβ aggregates, HMGB1, and S100B, are elevated in AD brain. Activation of RAGE by these ligands triggers release of inflammatory cytokines and upregulates cell surface RAGE. Despite such observation, there are currently no therapeutics that target RAGE for treatment of AD-associated neuroinflammation. Peptoids, a novel class of potential AD therapeutics, display low toxicity, facile blood-brain barrier permeability, and resistance to proteolytic degradation. In the current study, peptoids were designed to mimic Aβ, a ligand that binds the V-domain of RAGE, and curtail RAGE inflammatory activation. We reveal the nanomolar binding capability of peptoids JPT1 and JPT1a to RAGE and demonstrate their ability to attenuate lipopolysaccharide-induced pro-inflammatory cytokine production as well as upregulation of RAGE cell surface expression. These results support RAGE antagonist peptoid-based mimics as a prospective therapeutic strategy to counter neuroinflammation in AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Mihyun Lim Waugh
- Biomedical Engineering Program, University of South Carolina, 3A46 Swearingen Engineering Center, Columbia, SC 29208, USA
| | - Lauren M Wolf
- Biomedical Engineering Program, University of South Carolina, 3A46 Swearingen Engineering Center, Columbia, SC 29208, USA
| | - James P Turner
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, 3202 Bell Engineering Center, Fayetteville, AR 72701, USA
| | - Lauren N Phillips
- Biomedical Engineering Program, University of South Carolina, 3A46 Swearingen Engineering Center, Columbia, SC 29208, USA
| | - Shannon L Servoss
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, 3202 Bell Engineering Center, Fayetteville, AR 72701, USA
| | - Melissa A Moss
- Biomedical Engineering Program, University of South Carolina, 3A46 Swearingen Engineering Center, Columbia, SC 29208, USA
- Department of Chemical Engineering, University of South Carolina, 2C02 Swearingen Engineering Center, Columbia, SC 29208, USA
| |
Collapse
|
13
|
Shoukat S, Zia MA, Uzair M, Alsubki RA, Sajid K, Shoukat S, Attia KA, Fiaz S, Ali S, Kimiko I, Ali GM. Synergistic neuroprotection by phytocompounds of Bacopa monnieri in scopolamine-induced Alzheimer's disease mice model. Mol Biol Rep 2023; 50:7967-7979. [PMID: 37535247 DOI: 10.1007/s11033-023-08674-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/07/2023] [Indexed: 08/04/2023]
Abstract
BACKGROUND Millions of people around the globe are affected by Alzheimer's disease (AD). This crippling condition has no treatment despite intensive studies. Some phytocompounds have been shown to protect against Alzheimer's in recent studies. METHODS Thus, this work aimed to examine Bacopa monnieri phytocompounds' synergistic effects on neurodegeneration, antioxidant activity, and cognition in the scopolamine-induced AD mice model. The toxicity study of two phytocompounds: quercetin and bacopaside X revealed an LD50 of more than 2000 mg/kg since no deaths occurred. RESULTS The neuroprotection experiment consists of 6 groups i.e., control (saline), scopolamine (1 mg/kg), donepezil (5 mg/kg), Q (25 mg/kg), BX (20 mg/kg), and Q + BX (25 mg/kg + 20 mg/kg). Visual behavioral assessment using the Morris water maze showed that animals in the diseased model group (scopolamine) moved more slowly toward the platform and exhibited greater thigmotaxis behavior than the treatment and control groups. Likewise, the concentration of biochemical NO, GSH, and MDA improved in treatment groups concerning the diseased group. mRNA levels of different marker genes including ChAT, IL-1α, IL-1 β, TNF α, tau, and β secretase (BACE1) improved in treatment groups with respect to the disease group. CONCLUSION Both bacopaside X and quercetin synergistically have shown promising results in neuroprotection. Therefore, it is suggested that Q and BX may work synergistically due to their antioxidant and neuroprotective property.
Collapse
Affiliation(s)
- Shehla Shoukat
- Department of Plant Genomics and Biotechnology, PARC Institute of Advanced Studies in Agriculture, Affiliated with Quaid-e-Azam University, National Agriculture Research Centre, Islamabad, Pakistan.
| | - Muhammad Amir Zia
- National Institute for Genomics and Advanced Biotechnology, National Agriculture Research Centre, Islamabad, Pakistan
| | - Muhammad Uzair
- National Institute for Genomics and Advanced Biotechnology, National Agriculture Research Centre, Islamabad, Pakistan
| | - Roua A Alsubki
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Kaynat Sajid
- Department of Biotechnology, University of Gujrat, Gujrat, Pakistan
| | - Sana Shoukat
- Centre for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Kotb A Attia
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Sajid Fiaz
- Department of Plant Breeding and Genetics, University of Haripur, Haripur, Pakistan
| | - Shaukat Ali
- National Institute for Genomics and Advanced Biotechnology, National Agriculture Research Centre, Islamabad, Pakistan.
| | - Itoh Kimiko
- Department of Plant Breeding and Genetics, University of Haripur, Haripur, Pakistan
- Institute of Science and Technology, Niigata University, Ikarashi-2, Nishi-ku, Niigata, 950-2181, Japan
| | | |
Collapse
|
14
|
Monney M, Jornayvaz FR, Gariani K. GLP-1 receptor agonists effect on cognitive function in patients with and without type 2 diabetes. DIABETES & METABOLISM 2023; 49:101470. [PMID: 37657738 DOI: 10.1016/j.diabet.2023.101470] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 09/03/2023]
Abstract
Glucagon-like peptide 1 (GLP-1) is a hormone of the incretin family, secreted in response to nutrient ingestion, and plays a role in metabolic homeostasis. GLP-1 receptor agonist has a peripheral and a central action, including stimulation of glucose-dependent insulin secretion and insulin biosynthesis, inhibition of glucagon secretion and gastric emptying, and inhibition of food intake. Through their mechanism, their use in the treatment of type 2 diabetes has been extended to the management of obesity, and numerous trials are being conducted to assess their cardiovascular effect. Type 2 diabetes appears to share common pathophysiological mechanisms with the development of cognitive disorders, such as Alzheimer's and Parkinson's disease, related to insulin resistance. In this review, we aim to examine the pathological features between type 2 diabetes and dementia, GLP-1 central effects, and analyze the relevant literature about the effect of GLP-1 analogs on cognitive function of patients with type 2 diabetes but also without. Results tends to show an improvement in some brain markers (e.g. hippocampal connections, cerebral glucose metabolism, hippocampal activation on functional magnetic resonance imaging), but without being able to demonstrate a strong correlation to cognitive scores. Some epidemiological studies suggest that GLP-1 receptor agonists may offer a protective effect, by delaying progression to dementia when diabetic patients are treated with GLP-1 receptor agonists. Ongoing trials are in progress and may provide disease-modifying care for Alzheimer's disease and Parkinson's disease patients in the future.
Collapse
Affiliation(s)
- Marine Monney
- Division of General Internal Medicine, Department of Medicine, Geneva University Hospitals, Geneva 1211, Switzerland.
| | - François R Jornayvaz
- Division of Endocrinology, Diabetes, Nutrition and Therapeutic Patient Education, Department of Medical Specialties, Geneva University Hospitals, Geneva 1211, Switzerland; Diabetes Center, Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland; Department of Cell Physiology and Metabolism, Centre Medical Universitaire (CMU), Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland
| | - Karim Gariani
- Division of Endocrinology, Diabetes, Nutrition and Therapeutic Patient Education, Department of Medical Specialties, Geneva University Hospitals, Geneva 1211, Switzerland; Diabetes Center, Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland
| |
Collapse
|
15
|
Berezhnoy G, Laske C, Trautwein C. Metabolomic profiling of CSF and blood serum elucidates general and sex-specific patterns for mild cognitive impairment and Alzheimer's disease patients. Front Aging Neurosci 2023; 15:1219718. [PMID: 37693649 PMCID: PMC10483152 DOI: 10.3389/fnagi.2023.1219718] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/26/2023] [Indexed: 09/12/2023] Open
Abstract
Background Beta-amyloid (Abeta) and tau protein in cerebrospinal fluid (CSF) are established diagnostic biomarkers for Alzheimer's disease (AD). However, these biomarkers may not the only ones existing parameters that reflect Alzheimer's disease neuropathological change. The use of quantitative metabolomics approach could provide novel insights into dementia progression and identify key metabolic alterations in CSF and serum. Methods In the present study, we quantified a set of 45 metabolites in CSF (71 patients) and 27 in serum (76 patients) in patients with mild cognitive impairment (MCI), AD, and controls using nuclear magnetic resonance (NMR)-based metabolomics. Results We found significantly reduced CSF (1.32-fold, p = 0.0195) and serum (1.47-fold, p = 0.0484) levels of the ketone body acetoacetate in AD and MCI patients. Additionally, we found decreased levels (1.20-fold, p = 0.0438) of the branched-chain amino acid (BCAA) valine in the CSF of AD patients with increased valine degradation pathway metabolites (such as 3-hydroxyisobutyrate and α-ketoisovalerate). Moreover, we discovered that CSF 2-hydroxybutyrate is dramatically reduced in the MCI patient group (1.23-fold, p = 0.039). On the other hand, vitamin C (ascorbate) was significantly raised in CSF of these patients (p = 0.008). We also identified altered CSF protein content, 1,5-anhydrosorbitol and fructose as further metabolic shifts distinguishing AD from MCI. Significantly decreased serum levels of the amino acid ornithine were seen in the AD dementia group when compared to healthy controls (1.36-fold, p = 0.011). When investigating the effect of sex, we found for AD males the sign of decreased 2-hydroxybutyrate and acetoacetate in CSF while for AD females increased serum creatinine was identified. Conclusion Quantitative NMR metabolomics of CSF and serum was able to efficiently identify metabolic changes associated with dementia groups of MCI and AD patients. Further, we showed strong correlations between these changes and well-established metabolomic and clinical indicators like Abeta.
Collapse
Affiliation(s)
- Georgy Berezhnoy
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University Hospital Tübingen, Tübingen, Germany
| | - Christoph Laske
- Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Christoph Trautwein
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
16
|
Preziuso A, Piccirillo S, Cerqueni G, Serfilippi T, Terenzi V, Vinciguerra A, Orciani M, Amoroso S, Magi S, Lariccia V. Exploring the Role of NCX1 and NCX3 in an In Vitro Model of Metabolism Impairment: Potential Neuroprotective Targets for Alzheimer's Disease. BIOLOGY 2023; 12:1005. [PMID: 37508434 PMCID: PMC10376230 DOI: 10.3390/biology12071005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/10/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023]
Abstract
Alzheimer's disease (AD) is a widespread neurodegenerative disorder, affecting a large number of elderly individuals worldwide. Mitochondrial dysfunction, metabolic alterations, and oxidative stress are regarded as cooperating drivers of the progression of AD. In particular, metabolic impairment amplifies the production of reactive oxygen species (ROS), resulting in detrimental alterations to intracellular Ca2+ regulatory processes. The Na+/Ca2+ exchanger (NCX) proteins are key pathophysiological determinants of Ca2+ and Na+ homeostasis, operating at both the plasma membrane and mitochondria levels. Our study aimed to explore the role of NCX1 and NCX3 in retinoic acid (RA) differentiated SH-SY5Y cells treated with glyceraldehyde (GA), to induce impairment of the default glucose metabolism that typically precedes Aβ deposition or Tau protein phosphorylation in AD. By using an RNA interference-mediated approach to silence either NCX1 or NCX3 expression, we found that, in GA-treated cells, the knocking-down of NCX3 ameliorated cell viability, increased the intracellular ATP production, and reduced the oxidative damage. Remarkably, NCX3 silencing also prevented the enhancement of Aβ and pTau levels and normalized the GA-induced decrease in NCX reverse-mode activity. By contrast, the knocking-down of NCX1 was totally ineffective in preventing GA-induced cytotoxicity except for the increase in ATP synthesis. These findings indicate that NCX3 and NCX1 may differently influence the evolution of AD pathology fostered by glucose metabolic dysfunction, thus providing a potential target for preventing AD.
Collapse
Affiliation(s)
- Alessandra Preziuso
- Department of Biomedical Sciences and Public Health-Pharmacology, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126 Ancona, Italy
| | - Silvia Piccirillo
- Department of Biomedical Sciences and Public Health-Pharmacology, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126 Ancona, Italy
| | - Giorgia Cerqueni
- Department of Biomedical Sciences and Public Health-Pharmacology, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126 Ancona, Italy
| | - Tiziano Serfilippi
- Department of Biomedical Sciences and Public Health-Pharmacology, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126 Ancona, Italy
| | - Valentina Terenzi
- Department of Biomedical Sciences and Public Health-Pharmacology, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126 Ancona, Italy
| | - Antonio Vinciguerra
- Department of Biomedical Sciences and Public Health-Pharmacology, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126 Ancona, Italy
| | - Monia Orciani
- Department of Clinical and Molecular Sciences-Histology, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126 Ancona, Italy
| | - Salvatore Amoroso
- Department of Biomedical Sciences and Public Health-Pharmacology, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126 Ancona, Italy
| | - Simona Magi
- Department of Biomedical Sciences and Public Health-Pharmacology, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126 Ancona, Italy
| | - Vincenzo Lariccia
- Department of Biomedical Sciences and Public Health-Pharmacology, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126 Ancona, Italy
| |
Collapse
|
17
|
Zhuo Y, Fu X, Jiang Q, Lai Y, Gu Y, Fang S, Chen H, Liu C, Pan H, Wu Q, Fang J. Systems pharmacology-based mechanism exploration of Acanthopanax senticosusin for Alzheimer's disease using UPLC-Q-TOF-MS, network analysis, and experimental validation. Eur J Pharmacol 2023:175895. [PMID: 37422122 DOI: 10.1016/j.ejphar.2023.175895] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/06/2023] [Accepted: 06/28/2023] [Indexed: 07/10/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disease, characterized by progressive cognitive dysfunction and memory loss. However, the disease-modifying treatments for AD are still lacking. Traditional Chinese herbs, have shown their potentials as novel treatments for complex diseases, such as AD. PURPOSE This study was aimed at investigating the mechanism of action (MOA) of Acanthopanax senticosusin (AS) for treatment of AD. METHODS In this study, we firstly identified the chemical constituents in Acanthopanax senticosusin (AS) utilizing ultra-high performance liquid chromatography coupled with Q-TOF-mass spectrometry (UPLC-Q-TOF-MS), and next built the drug-target network of these compounds. We next performed the systems pharmacology-based analysis to preliminary explore the MOA of AS against AD. Moreover, we applied the network proximity approach to identify the potential anti-AD components in AS. Finally, experimental validations, including animal behavior test, ELISA and TUNEL staining, were conducted to verify our systems pharmacology-based analysis. RESULTS 60 chemical constituents in AS were identified via the UPLC-Q-TOF-MS approach. The systems pharmacology-based analysis indicated that AS might exert its therapeutic effects on AD via acetylcholinesterase and apoptosis signaling pathway. To explore the material basis of AS against AD, we further identified 15 potential anti-AD components in AS. Consistently, in vivo experiments demonstrated that AS could protect cholinergic nervous system damage and decrease neuronal apoptosis caused by scopolamine. CONCLUSION Overall, this study applied systems pharmacology approach, via UPLC-Q-TOF-MS, network analysis, and experimental validation to decipher the potential molecular mechanism of AS against AD.
Collapse
Affiliation(s)
- Yue Zhuo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xiaomei Fu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Qiyao Jiang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yiyi Lai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yong Gu
- Clinical Research Center, Hainan Provincial Hospital of Traditional Chinese Medicine, Hainan Medical University, Haikou, 570100, China
| | - Shuhuan Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Huiling Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Chenchen Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Huafeng Pan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Qihui Wu
- Clinical Research Center, Hainan Provincial Hospital of Traditional Chinese Medicine, Hainan Medical University, Haikou, 570100, China.
| | - Jiansong Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
18
|
Li N, Wen L, Shen Y, Li T, Wang T, Qiao M, Song L, Huang X. Differential expression of SLC30A10 and RAGE in mouse pups by early life lead exposure. J Trace Elem Med Biol 2023; 79:127233. [PMID: 37315391 DOI: 10.1016/j.jtemb.2023.127233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND SLC30A10 and RAGE are widely recognized as pivotal regulators of Aβ plaque transport and accumulation. Prior investigations have established a link between early lead exposure and cerebral harm in offspring, attributable to Aβ buildup and amyloid plaque deposition. However, the impact of lead on the protein expression of SLC30A10 and RAGE has yet to be elucidated. This study seeks to confirm the influence of maternal lead exposure during pregnancy, specifically through lead-containing drinking water, on the protein expression of SLC30A10 and RAGE in mice offspring. Furthermore, this research aims to provide further evidence of lead-induced neurotoxicity. METHODS Four cohorts of mice were subjected to lead exposure at concentrations of 0 mM, 0.25 mM, 0.5 mM, and 1 mM over a period of 42 uninterrupted days, spanning from pregnancy to the weaning phase. On postnatal day 21, the offspring mice underwent assessments. The levels of lead in the blood, hippocampus, and cerebral cortex were scrutinized, while the mice's cognitive abilities pertaining to learning and memory were probed through the utilization of the Morris water maze. Furthermore, Western blotting and immunofluorescence techniques were employed to analyze the expression levels of SLC30A10 and RAGE in the hippocampus and cerebral cortex. RESULTS The findings revealed a significant elevation in lead concentration within the brains and bloodstreams of mice, mirroring the increased lead exposure experienced by their mothers during the designated period (P < 0.05). Notably, in the Morris water maze assessment, the lead-exposed group exhibited noticeably diminished spatial memory compared to the control group (P < 0.05). Both immunofluorescence and Western blot analyses effectively demonstrated the concomitant impact of varying lead exposure levels on the hippocampal and cerebral cortex regions of the offspring. The expression levels of SLC30A10 displayed a negative correlation with lead doses (P < 0.05). Surprisingly, under identical circumstances, the expression of RAGE in the hippocampus and cortex of the offspring exhibited a positive correlation with lead doses (P < 0.05). CONCLUSION SLC30A10 potentially exerts distinct influence on exacerbated Aβ accumulation and transportation in contrast to RAGE. Disparities in brain expression of RAGE and SLC30A10 may contribute to the neurotoxic effects induced by lead.
Collapse
Affiliation(s)
- Ning Li
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Nongye Road, Zhengzhou, Henan, 450002, PR China.
| | - Liuding Wen
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Nongye Road, Zhengzhou, Henan, 450002, PR China
| | - Yue Shen
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Nongye Road, Zhengzhou, Henan, 450002, PR China
| | - Tiange Li
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Nongye Road, Zhengzhou, Henan, 450002, PR China
| | - Tianlin Wang
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Nongye Road, Zhengzhou, Henan, 450002, PR China
| | - Mingwu Qiao
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Nongye Road, Zhengzhou, Henan, 450002, PR China
| | - Lianjun Song
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Nongye Road, Zhengzhou, Henan, 450002, PR China
| | - Xianqing Huang
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Nongye Road, Zhengzhou, Henan, 450002, PR China.
| |
Collapse
|
19
|
Anwar F, Al-Abbasi FA, Naqvi S, Sheikh RA, Alhayyani S, Asseri AH, Asar TO, Kumar V. Therapeutic Potential of Nanomedicine in Management of Alzheimer's Disease and Glioma. Int J Nanomedicine 2023; 18:2737-2756. [PMID: 37250469 PMCID: PMC10211371 DOI: 10.2147/ijn.s405454] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/28/2023] [Indexed: 05/31/2023] Open
Abstract
Neoplasm (Glioblastoma) and Alzheimer's disease (AD) comprise two of the most chronic psychological ailments. Glioblastoma is one of the aggressive and prevalent malignant diseases characterized by rapid growth and invasion resulting from cell migration and degradation of extracellular matrix. While the latter is characterized by extracellular plaques of amyloid and intracellular tangles of tau proteins. Both possess a high degree of resistance to treatment owing to the restricted transport of corresponding drugs to the brain protected by the blood-brain barrier (BBB). Development of optimized therapies using advanced technologies is a great need of today. One such approach is the designing of nanoparticles (NPs) to facilitate the drug delivery at the target site. The present article elaborates the advances in nanomedicines in treatment of both AD as well as Gliomas. The intention of this review is to provide an overview of different types of NPs with their physical properties emphasizing their importance in traversing the BBB and hitting the target site. Further, we discuss the therapeutic applications of these NPs along with their specific targets. Multiple overlapping factors with a common pathway in development of AD and Glioblastoma are discussed in details that will assist the readers in developing the conceptual approach to target the NP for an aging population in the given circumstances with limitations of currently designed NPs, and the challenges to meet and the future perspectives.
Collapse
Affiliation(s)
- Firoz Anwar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Salma Naqvi
- Department of Biomedical Sciences, College of Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Ryan Adnan Sheikh
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sultan Alhayyani
- Department of Chemistry, College of Sciences & Arts, Rabigh King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amer H Asseri
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Turky Omar Asar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Vikas Kumar
- Natural Product Discovery Laboratory, Department of Pharmaceutical Sciences, Shalom Institute of Health and Allied Sciences, SHUATS, Prayagraj, India
| |
Collapse
|
20
|
Su Z, Li H, Ye Z, Zhu Y, Feng B, Tang L, Zheng G. Qidan Tiaozhi capsule attenuates metabolic syndrome via activating AMPK/PINK1-Parkin-mediated mitophagy. JOURNAL OF ETHNOPHARMACOLOGY 2023; 307:116091. [PMID: 36592823 DOI: 10.1016/j.jep.2022.116091] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/10/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qidan Tiaozhi capsule (QD), a traditional Chinese medicine, has been used to treat metabolic syndrome for over a decade. However, the mechanism of QD in the treatment of metabolic syndrome is still unknown. AIM OF THE STUDY Growing studies demonstrate that impaired mitophagy is one of the important causes of metabolic syndrome. Thus, this research aims to investigate the mechanism of mitophagy in the QD treatment of metabolic syndrome. MATERIALS AND METHODS Network pharmacology and molecular docking were used to probe the mechanism of QD treatment of metabolic syndrome. In an oleic acid-induced cell model, glucose consumption and uptake capacity, triglyceride (TG), total cholesterol (TC), malonaldehyde (MDA), superoxide dismutase (SOD) and ROS levels, and mitochondrial membrane potential (MMP) were examined. mRFP-GFP-LC3 adenovirus and GFP-LC3 lentivirus were used to examine the effect of QD on mitophagy. The IRS2-PI3K and AMPK/PINK1-Parkin signal pathways were also determined. What's more, the PINK1 gene was silenced to verify the above findings. In a high-fat diet-fed mouse model, body weight, organ indexes, OGTT, ITT, HOMA-IR, insulin sensitivity, serum MDA, SOD, TC, TG, LDL-C and HDL-C, hepatic TC, TG, LDL-C and HDL-C levels, hepatic steatosis, and IRS2-PI3K and AMPK/PINK1-Parkin signal pathways were investigated. RESULTS Results from network pharmacology and molecular docking suggested that QD might suppress oxidative stress to improve metabolic syndrome. In an oleic acid-induced cell model, compared with the model group, enhanced glucose consumption and uptake ability, inhibited intracellular lipid accumulation, TC, TG, MDA and ROS levels, and increased SOD level and MMP were found in QD groups. And mitophagy levels, IRS2-PI3K and AMPK/PINK1-Parkin signal pathways were promoted. Interestingly, PINK1 silencing reversed the therapeutic action of QD on oleic acid-induced cells. In high-fat diet-fed mice, inhibited body weight, abdominal fat indexes, liver indexes, HOMA-IR, serum and hepatic TC, TG and LDL-C, serum MDA and hepatic steatosis, and increased insulin sensitivity, serum and hepatic HDL-C, serum SOD, and activated IRS2-PI3K and AMPK/PINK1-Parkin signal pathways were found in QD groups. CONCLUSION QD activates AMPK/PINK1-Parkin-mediated mitophagy to suppress oxidative stress to treat metabolic syndrome.
Collapse
Affiliation(s)
- Zuqing Su
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongxia Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zeting Ye
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ying Zhu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bing Feng
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lipeng Tang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guangjuan Zheng
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
21
|
Oris C, Kahouadji S, Durif J, Bouvier D, Sapin V. S100B, Actor and Biomarker of Mild Traumatic Brain Injury. Int J Mol Sci 2023; 24:6602. [PMID: 37047574 PMCID: PMC10095287 DOI: 10.3390/ijms24076602] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Mild traumatic brain injury (mTBI) accounts for approximately 80% of all TBI cases and is a growing source of morbidity and mortality worldwide. To improve the management of children and adults with mTBI, a series of candidate biomarkers have been investigated in recent years. In this context, the measurement of blood biomarkers in the acute phase after a traumatic event helps reduce unnecessary CT scans and hospitalizations. In athletes, improved management of sports-related concussions is also sought to ensure athletes' safety. S100B protein has emerged as the most widely studied and used biomarker for clinical decision making in patients with mTBI. In addition to its use as a diagnostic biomarker, S100B plays an active role in the molecular pathogenic processes accompanying acute brain injury. This review describes S100B protein as a diagnostic tool as well as a potential therapeutic target in patients with mTBI.
Collapse
Affiliation(s)
- Charlotte Oris
- Biochemistry and Molecular Genetic Department, University Hospital, F-63000 Clermont-Ferrand, France
- Faculty of Medicine of Clermont-Ferrand, Université Clermont Auvergne, CNRS, Inserm, GReD, F-63000 Clermont-Ferrand, France
| | - Samy Kahouadji
- Biochemistry and Molecular Genetic Department, University Hospital, F-63000 Clermont-Ferrand, France
- Faculty of Medicine of Clermont-Ferrand, Université Clermont Auvergne, CNRS, Inserm, GReD, F-63000 Clermont-Ferrand, France
| | - Julie Durif
- Biochemistry and Molecular Genetic Department, University Hospital, F-63000 Clermont-Ferrand, France
| | - Damien Bouvier
- Biochemistry and Molecular Genetic Department, University Hospital, F-63000 Clermont-Ferrand, France
- Faculty of Medicine of Clermont-Ferrand, Université Clermont Auvergne, CNRS, Inserm, GReD, F-63000 Clermont-Ferrand, France
| | - Vincent Sapin
- Biochemistry and Molecular Genetic Department, University Hospital, F-63000 Clermont-Ferrand, France
- Faculty of Medicine of Clermont-Ferrand, Université Clermont Auvergne, CNRS, Inserm, GReD, F-63000 Clermont-Ferrand, France
| |
Collapse
|
22
|
Twarowski B, Herbet M. Inflammatory Processes in Alzheimer's Disease-Pathomechanism, Diagnosis and Treatment: A Review. Int J Mol Sci 2023; 24:6518. [PMID: 37047492 PMCID: PMC10095343 DOI: 10.3390/ijms24076518] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Alzheimer's disease is one of the most commonly diagnosed cases of senile dementia in the world. It is an incurable process, most often leading to death. This disease is multifactorial, and one factor of this is inflammation. Numerous mediators secreted by inflammatory cells can cause neuronal degeneration. Neuritis may coexist with other mechanisms of Alzheimer's disease, contributing to disease progression, and may also directly underlie AD. Although much has been established about the inflammatory processes in the pathogenesis of AD, many aspects remain unexplained. The work is devoted in particular to the pathomechanism of inflammation and its role in diagnosis and treatment. An in-depth and detailed understanding of the pathomechanism of neuroinflammation in Alzheimer's disease may help in the development of diagnostic methods for early diagnosis and may contribute to the development of new therapeutic strategies for the disease.
Collapse
Affiliation(s)
| | - Mariola Herbet
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b Street, 20-090 Lublin, Poland
| |
Collapse
|
23
|
|
24
|
Bangar NS, Gvalani A, Ahmad S, Khan MS, Tupe RS. Understanding the role of glycation in the pathology of various non-communicable diseases along with novel therapeutic strategies. Glycobiology 2022; 32:1068-1088. [PMID: 36074518 DOI: 10.1093/glycob/cwac060] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/10/2022] [Accepted: 09/02/2022] [Indexed: 01/07/2023] Open
Abstract
Glycation refers to carbonyl group condensation of the reducing sugar with the free amino group of protein, which forms Amadori products and advanced glycation end products (AGEs). These AGEs alter protein structure and function by configuring a negative charge on the positively charged arginine and lysine residues. Glycation plays a vital role in the pathogenesis of metabolic diseases, brain disorders, aging, and gut microbiome dysregulation with the aid of 3 mechanisms: (i) formation of highly reactive metabolic pathway-derived intermediates, which directly affect protein function in cells, (ii) the interaction of AGEs with its associated receptors to create oxidative stress causing the activation of transcription factor NF-κB, and (iii) production of extracellular AGEs hinders interactions between cellular and matrix molecules affecting vascular and neural genesis. Therapeutic strategies are thus required to inhibit glycation at different steps, such as blocking amino and carbonyl groups, Amadori products, AGEs-RAGE interactions, chelating transition metals, scavenging free radicals, and breaking crosslinks formed by AGEs. The present review focused on explicitly elaborating the impact of glycation-influenced molecular mechanisms in developing and treating noncommunicable diseases.
Collapse
Affiliation(s)
- Nilima S Bangar
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune 412115, Maharashtra, India
| | - Armaan Gvalani
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune 412115, Maharashtra, India
| | - Saheem Ahmad
- Department of Medical Laboratory Sciences, University of Hail, Hail City 2440, Saudi Arabia
| | - Mohd S Khan
- Department of Biochemistry, Protein Research Chair, King Saud University, Riyadh 11451, Saudi Arabia
| | - Rashmi S Tupe
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune 412115, Maharashtra, India
| |
Collapse
|
25
|
Froldi G, Djeujo FM, Bulf N, Caparelli E, Ragazzi E. Comparative Evaluation of the Antiglycation and Anti-α-Glucosidase Activities of Baicalein, Baicalin (Baicalein 7- O-Glucuronide) and the Antidiabetic Drug Metformin. Pharmaceutics 2022; 14:pharmaceutics14102141. [PMID: 36297576 PMCID: PMC9612222 DOI: 10.3390/pharmaceutics14102141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022] Open
Abstract
The discovery of new oral antidiabetic drugs remains a priority in medicine. This research aimed to evaluate the activity of the flavonoid baicalein and its natural glucuronide baicalin, compared to the antidiabetic drug metformin, as potential antiglycation, anti–radical, and anti-α–glucosidase agents, in order to assess their potential role in counteracting hyperglycemia-induced tissue damage. The study considered: (i) the BSA assay, to detect the formation of advanced glycation end products (AGEs), (ii) the GK peptide–ribose assay, which evaluates the cross–linking between the peptide and ribose, and (iii) the carbonyl content assay to detect the total carbonyl content, as a biomarker of tissue damage. In addition, to obtain a reliable picture of the antiglycation capacity of the investigated compounds, DPPH scavenging and oxygen radical absorbance capacity (ORAC) assays were performed. Furthermore, the anti–α–glucosidase activity of baicalein and baicalin was detected. Furthermore, to estimate cell permeability, preliminarily, the cytotoxicity of baicalein and baicalin was evaluated in HT–29 human colon adenocarcinoma cells using the MTT assay. Successively, the ability of the compounds to pass through the cytoplasmic membranes of HT–29 cells was detected as a permeability screen to predict in vivo absorption, showing that baicalein passes into cells even if it is quickly modified in various metabolites, being its main derivative baicalin. Otherwise, baicalin per se did not pass through cell membranes. Data show that baicalein is the most active compound in reducing glycation, α-glucosidase activity, and free radicals, while baicalin exhibited similar activities, but did not inhibit the enzyme α–glucosidase.
Collapse
|
26
|
Association between Urinary Advanced Glycation End Products and Subclinical Inflammation in Children and Adolescents: Results from the Italian I.Family Cohort. Nutrients 2022; 14:nu14194135. [PMID: 36235787 PMCID: PMC9571918 DOI: 10.3390/nu14194135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 12/02/2022] Open
Abstract
Advanced Glycation End Products (AGEs) have been positively correlated with inflammation in adults, while inconsistent evidence is available in children. We evaluated the association between urinary AGEs, measured by fluorescence spectroscopy, and biomarkers of subclinical inflammation in 676 healthy children/adolescents (age 11.8 ± 1.6 years, M ± SD) from the Italian cohort of the I.Family project. Urinary fluorescent AGEs were used as independent variable and high-sensitivity C-reactive protein (hs-CRP) was the primary outcome, while other biomarkers of inflammation were investigated as secondary outcomes. Participants with urinary AGEs above the median of the study population showed statistically significantly higher hs-CRP levels as compared to those below the median (hs-CRP 0.44 ± 1.1 vs. 0.24 ± 0.6 mg/dL, M ± SD p = 0.002). We found significant positive correlations between urinary AGEs and hs-CRP (p = 0.0001), IL-15 (p = 0.001), IP-10 (p = 0.006), and IL-1Ra (p = 0.001). At multiple regression analysis, urinary AGEs, age, and BMI Z-score were independent variables predicting hs-CRP levels. We demonstrated for the first time, in a large cohort of children and adolescents, that the measurement of fluorescent urinary AGEs may represent a simple, noninvasive, and rapid technique to evaluate the association between AGEs and biomarkers of inflammation. Our data support a role of AGEs as biomarkers of subclinical inflammation in otherwise healthy children and adolescents.
Collapse
|
27
|
Gibson GE, Feldman HH, Zhang S, Flowers SA, Luchsinger JA. Pharmacological thiamine levels as a therapeutic approach in Alzheimer's disease. Front Med (Lausanne) 2022; 9:1033272. [PMID: 36275801 PMCID: PMC9585656 DOI: 10.3389/fmed.2022.1033272] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
of the study.
Collapse
Affiliation(s)
- Gary E. Gibson
- Weill Cornell Medicine, Brain and Mind Research Institute, Burke Neurological Institute, White Plains, NY, United States
| | - Howard H. Feldman
- Alzheimer's Disease Cooperative Study and Department of Neurosciences, University of California, San Diego, San Diego, CA, United States
| | - Sheng Zhang
- Proteomics and Metabolomics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY, United States
| | - Sarah A. Flowers
- Department of Neuroscience, Georgetown University, Washington, DC, United States
| | - José A. Luchsinger
- Departments of Medicine and Epidemiology, Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
28
|
Advanced Glycation End Products in Health and Disease. Microorganisms 2022; 10:microorganisms10091848. [PMID: 36144449 PMCID: PMC9501837 DOI: 10.3390/microorganisms10091848] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/18/2022] Open
Abstract
Advanced glycation end products (AGEs), formed through the nonenzymatic reaction of reducing sugars with the side-chain amino groups of lysine or arginine of proteins, followed by further glycoxidation reactions under oxidative stress conditions, are involved in the onset and exacerbation of a variety of diseases, including diabetes, atherosclerosis, and Alzheimer’s disease (AD) as well as in the secondary stages of traumatic brain injury (TBI). AGEs, in the form of intra- and interprotein crosslinks, deactivate various enzymes, exacerbating disease progression. The interactions of AGEs with the receptors for the AGEs (RAGE) also result in further downstream inflammatory cascade events. The overexpression of RAGE and the AGE-RAGE interactions are especially involved in cases of Alzheimer’s disease and other neurodegenerative diseases, including TBI and amyotrophic lateral sclerosis (ALS). Maillard reactions are also observed in the gut bacterial species. The protein aggregates found in the bacterial species resemble those of AD and Parkinson’s disease (PD), and AGE inhibitors increase the life span of the bacteria. Dietary AGEs alter the gut microbiota composition and elevate plasma glycosylation, thereby leading to systemic proinflammatory effects and endothelial dysfunction. There is emerging interest in developing AGE inhibitor and AGE breaker compounds to treat AGE-mediated pathologies, including diabetes and neurodegenerative diseases. Gut-microbiota-derived enzymes may also function as AGE-breaker biocatalysts. Thus, AGEs have a prominent role in the pathogenesis of various diseases, and the AGE inhibitor and AGE breaker approach may lead to novel therapeutic candidates.
Collapse
|
29
|
Al-Ghraiybah NF, Wang J, Alkhalifa AE, Roberts AB, Raj R, Yang E, Kaddoumi A. Glial Cell-Mediated Neuroinflammation in Alzheimer's Disease. Int J Mol Sci 2022; 23:10572. [PMID: 36142483 PMCID: PMC9502483 DOI: 10.3390/ijms231810572] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/04/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder; it is the most common cause of dementia and has no treatment. It is characterized by two pathological hallmarks, the extracellular deposits of amyloid beta (Aβ) and the intraneuronal deposits of Neurofibrillary tangles (NFTs). Yet, those two hallmarks do not explain the full pathology seen with AD, suggesting the involvement of other mechanisms. Neuroinflammation could offer another explanation for the progression of the disease. This review provides an overview of recent advances on the role of the immune cells' microglia and astrocytes in neuroinflammation. In AD, microglia and astrocytes become reactive by several mechanisms leading to the release of proinflammatory cytokines that cause further neuronal damage. We then provide updates on neuroinflammation diagnostic markers and investigational therapeutics currently in clinical trials to target neuroinflammation.
Collapse
Affiliation(s)
- Nour F. Al-Ghraiybah
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S Donahue Dr., Auburn, AL 36849, USA
| | - Junwei Wang
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S Donahue Dr., Auburn, AL 36849, USA
| | - Amer E. Alkhalifa
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S Donahue Dr., Auburn, AL 36849, USA
| | - Andrew B. Roberts
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S Donahue Dr., Auburn, AL 36849, USA
| | - Ruchika Raj
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Euitaek Yang
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S Donahue Dr., Auburn, AL 36849, USA
| | - Amal Kaddoumi
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S Donahue Dr., Auburn, AL 36849, USA
| |
Collapse
|
30
|
Fang Y, Doyle MF, Chen J, Alosco ML, Mez J, Satizabal CL, Qiu WQ, Murabito JM, Lunetta KL. Association between inflammatory biomarkers and cognitive aging. PLoS One 2022; 17:e0274350. [PMID: 36083988 PMCID: PMC9462682 DOI: 10.1371/journal.pone.0274350] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022] Open
Abstract
Inflammatory cytokines and chemokines related to the innate and adaptive immune system have been linked to neuroinflammation in Alzheimer's Disease, dementia, and cognitive disorders. We examined the association of 11 plasma proteins (CD14, CD163, CD5L, CD56, CD40L, CXCL16, SDF1, DPP4, SGP130, sRAGE, and MPO) related to immune and inflammatory responses with measures of cognitive function, brain MRI and dementia risk. We identified Framingham Heart Study Offspring participants who underwent neuropsychological testing (n = 2358) or brain MRI (n = 2100) within five years of the seventh examination where a blood sample for quantifying the protein biomarkers was obtained; and who were followed for 10 years for incident all-cause dementia (n = 1616). We investigated the association of inflammatory biomarkers with neuropsychological test performance and brain MRI volumes using linear mixed effect models accounting for family relationships. We further used Cox proportional hazards models to examine the association with incident dementia. False discovery rate p-values were used to account for multiple testing. Participants included in the neuropsychological test and MRI samples were on average 61 years old and 54% female. Participants from the incident dementia sample (average 68 years old at baseline) included 124 participants with incident dementia. In addition to CD14, which has an established association, we found significant associations between higher levels of CD40L and myeloperoxidase (MPO) with executive dysfunction. Higher CD5L levels were significantly associated with smaller total brain volumes (TCBV), whereas higher levels of sRAGE were associated with larger TCBV. Associations persisted after adjustment for APOE ε4 carrier status and additional cardiovascular risk factors. None of the studied inflammatory biomarkers were significantly associated with risk of incident all-cause dementia. Higher circulating levels of soluble CD40L and MPO, markers of immune cell activation, were associated with poorer performance on neuropsychological tests, while higher CD5L, a key regulator of inflammation, was associated with smaller total brain volumes. Higher circulating soluble RAGE, a decoy receptor for the proinflammatory RAGE/AGE pathway, was associated with larger total brain volume. If confirmed in other studies, this data indicates the involvement of an activated immune system in abnormal brain aging.
Collapse
Affiliation(s)
- Yuan Fang
- Department of Biostatistics, School of Public Health, Boston University, Boston, Massachusetts, United States of America
| | - Margaret F. Doyle
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont, United States of America
| | - Jiachen Chen
- Department of Biostatistics, School of Public Health, Boston University, Boston, Massachusetts, United States of America
| | - Michael L. Alosco
- Boston University Alzheimer’s Disease Research Center and CTE Center, School of Medicine, Boston University, Boston, Massachusetts, United States of America
- Department of Neurology, School of Medicine, Boston University, Boston, Massachusetts, United States of America
| | - Jesse Mez
- Boston University Alzheimer’s Disease Research Center and CTE Center, School of Medicine, Boston University, Boston, Massachusetts, United States of America
- Department of Neurology, School of Medicine, Boston University, Boston, Massachusetts, United States of America
- Framingham Heart Study, National Heart, Lung, and Blood Institute and Boston University School of Medicine, Framingham, Massachusetts, United States of America
| | - Claudia L. Satizabal
- Department of Neurology, School of Medicine, Boston University, Boston, Massachusetts, United States of America
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Wei Qiao Qiu
- Boston University Alzheimer’s Disease Research Center and CTE Center, School of Medicine, Boston University, Boston, Massachusetts, United States of America
- Department of Psychiatry, School of Medicine, Boston University, Boston, Massachusetts, United States of America
- Department of Pharmacology & Experimental Therapeutics, School of Medicine, Boston University, Boston, Massachusetts, United States of America
| | - Joanne M. Murabito
- Framingham Heart Study, National Heart, Lung, and Blood Institute and Boston University School of Medicine, Framingham, Massachusetts, United States of America
- Department of Medicine, Section of General Internal Medicine, School of Medicine, Boston University, Boston, Massachusetts, United States of America
- Boston Medical Center, Boston University, Boston, Massachusetts, United States of America
| | - Kathryn L. Lunetta
- Department of Biostatistics, School of Public Health, Boston University, Boston, Massachusetts, United States of America
| |
Collapse
|
31
|
Yue Q, Song Y, Liu Z, Zhang L, Yang L, Li J. Receptor for Advanced Glycation End Products (RAGE): A Pivotal Hub in Immune Diseases. Molecules 2022; 27:molecules27154922. [PMID: 35956875 PMCID: PMC9370360 DOI: 10.3390/molecules27154922] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/21/2022] [Accepted: 07/31/2022] [Indexed: 02/07/2023] Open
Abstract
As a critical molecule in the onset and sustainment of inflammatory response, the receptor for advanced glycation end products (RAGE) has a variety of ligands, such as advanced glycation end products (AGEs), S100/calcium granule protein, and high-mobility group protein 1 (HMGB1). Recently, an increasing number studies have shown that RAGE ligand binding can initiate the intracellular signal cascade, affect intracellular signal transduction, stimulate the release of cytokines, and play a vital role in the occurrence and development of immune-related diseases, such as systemic lupus erythematosus, rheumatoid arthritis, and Alzheimer’s disease. In addition, other RAGE signaling pathways can play crucial roles in life activities, such as inflammation, apoptosis, autophagy, and endoplasmic reticulum stress. Therefore, the strategy of targeted intervention in the RAGE signaling pathway may have significant therapeutic potential, attracting increasing attention. In this paper, through the systematic induction and analysis of RAGE-related signaling pathways and their regulatory mechanisms in immune-related diseases, we provide theoretical clues for the follow-up targeted intervention of RAGE-mediated diseases.
Collapse
Affiliation(s)
- Qing Yue
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (Q.Y.); (Y.S.); (Z.L.); (L.Y.)
| | - Yu Song
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (Q.Y.); (Y.S.); (Z.L.); (L.Y.)
| | - Zi Liu
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (Q.Y.); (Y.S.); (Z.L.); (L.Y.)
| | - Lin Zhang
- Department of Internal Medicine Nursing, School of Nursing, Wannan Medical College, 22 Wenchang West Road, Higher Education Park, Wuhu 241002, China;
| | - Ling Yang
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (Q.Y.); (Y.S.); (Z.L.); (L.Y.)
| | - Jinlong Li
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (Q.Y.); (Y.S.); (Z.L.); (L.Y.)
- Correspondence: ; Tel.: +86-0315-8805572
| |
Collapse
|
32
|
Guan L, Mao Z, Yang S, Wu G, Chen Y, Yin L, Qi Y, Han L, Xu L. Dioscin alleviates Alzheimer's disease through regulating RAGE/NOX4 mediated oxidative stress and inflammation. Biomed Pharmacother 2022; 152:113248. [PMID: 35691153 DOI: 10.1016/j.biopha.2022.113248] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/26/2022] [Accepted: 06/02/2022] [Indexed: 11/02/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease with amyloid beta (Aβ) deposition and intracellular neurofibrillary tangles (NFTs) as its characteristic pathological changes. Ameliorating oxidative stress and inflammation has become a new trend in the prevention and treatment of AD. Dioscin, a natural steroidal saponin which exists in Dioscoreae nipponicae rhizomes, displays various pharmacological activities, but its role in Alzheimer's disease (AD) is still unknown. In the present work, effect of dioscin on AD was evaluated in injured SH-SY5Y cells induced by H2O2 and C57BL/6 mice with AD challenged with AlCl₃ combined with D-galactose. Results showed that dioscin obviously increased cell viability and decreased reactive oxygen species (ROS) level in injured SH-SY5Y cells. In vivo, dioscin obviously improved the spatial learning and memory abilities as well as gait and interlimb coordination disorders of mice with AD. Moreover, dioscin distinctly restored the levels of malondialdehyde (MDA), superoxide dismutase (SOD), amyloid beta 42 (Aβ42), acetylcholine (ACh) and acetylcholinesterase (AChE) of mice, and reversed the histopathological changes of brain tissue. Mechanism studies revealed that dioscin markedly down-regulated the expression levels of RAGE and NOX4. Subsequently, dioscin markedly up-regulated the expression levels of Nrf2 and HO-1 related to oxidative stress, and down-regulated the levels of p-NF-κB(p-p65)/NF-κB(p65), AP-1 and inflammatory factors involved in inflammatory pathway. RAGE siRNAs transfection further clarified that the pharmacological activity of dioscin in AD was achieved by regulating RAGE/NOX4 pathway. In conclusion, dioscin showed excellent anti-AD effect by adjusting RAGE/NOX4-mediated oxidative stress and inflammation, which provided the basis for the further research and development against AD.
Collapse
Affiliation(s)
- Linshu Guan
- College of Pharmacy, Dalian Medical University, Dalian 116044, China; The Second Hospital of Dalian Medical University, Dalian 116023, China
| | - Zhang Mao
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Sen Yang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Guanlin Wu
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Yurong Chen
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Lianhong Yin
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Yan Qi
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Lan Han
- School of pharmacy, Anhui University of Traditional Chinese Medicine, Hefei 230012, China.
| | - Lina Xu
- College of Pharmacy, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
33
|
Dodig Novaković M, Lovrić Kojundžić S, Radić M, Vučković M, Gelemanović A, Roguljić M, Kovačević K, Orešković J, Radić J. Number of Teeth and Nutritional Status Parameters Are Related to Intima-Media Thickness in Dalmatian Kidney Transplant Recipients. J Pers Med 2022; 12:jpm12060984. [PMID: 35743767 PMCID: PMC9225251 DOI: 10.3390/jpm12060984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/31/2022] [Accepted: 06/14/2022] [Indexed: 12/01/2022] Open
Abstract
Although kidney transplantation significantly improves the quality of life of patients with end-stage renal disease (ESRD), the prevalence of cardiovascular disease (CVD) in kidney transplant recipients (KTRs) remains high. Atherosclerosis, post-transplantation metabolic changes, immunosuppressive therapy, and periodontitis contribute to elevated cardiovascular risk in this population. The aim of the study was to evaluate carotid intima-media thickness (IMT) as a surrogate marker of atherosclerosis and to analyze the possible risk factors for IMT in Dalmatian KTRs. Ninety-three KTRs were included in this study. Data on clinical and laboratory parameters, body composition, anthropometry, advanced glycation end-product (AGE) measurements, blood pressure, and arterial stiffness were collected. All participants underwent ultrasound examination of IMT and evaluation of periodontal status. KTRs with carotid IMT ≥ 0.9 were significantly older, had a lower level of total cholesterol, fat mass, end-diastolic velocity (EDV), and had fewer teeth. They also had significantly higher values of pulse wave velocity (PWV) and resistive index (RI). We found positive correlations between carotid IMT and duration of dialysis, age, PWV, AGE, RI, and average total clinical attachment level (CAL). The regression model showed that IMT in KTRs is associated with higher PWV, lower fat mass, and fewer teeth. The results of our study suggest that nutritional and periodontal status are associated with carotid IMT in KTRs.
Collapse
Affiliation(s)
| | - Sanja Lovrić Kojundžić
- Department of Diagnostic and Interventional Radiology, University Hospital of Split, 21000 Split, Croatia;
- School of Medicine, University of Split, 21000 Split, Croatia
- Department of Health Studies, University of Split, 21000 Split, Croatia
| | - Mislav Radić
- Department of Internal Medicine, Division of Clinical Immunology and Rheumatology, University Hospital of Split, 21000 Split, Croatia;
- Department of Internal Medicine, School of Medicine, University of Split, 21000 Split, Croatia
| | - Marijana Vučković
- Department of Nephrology and Dialysis, University Hospital of Split, 21000 Split, Croatia;
| | - Andrea Gelemanović
- Biology of Robusteness Group, Mediterranean Institute for Life Sciences (MedILS), 21000 Split, Croatia;
| | - Marija Roguljić
- Department of Oral Medicine and Periodontology, School of Medicine, Study of Dental Medicine, University of Split, 21000 Split, Croatia;
| | | | - Josip Orešković
- Private Dental Practice Josip Orešković, 34000 Požega, Croatia;
| | - Josipa Radić
- Department of Internal Medicine, School of Medicine, University of Split, 21000 Split, Croatia
- Department of Nephrology and Dialysis, University Hospital of Split, 21000 Split, Croatia;
- Correspondence:
| |
Collapse
|
34
|
Sun Z, Zhao S, Suo X, Dou Y. Sirt1 protects against hippocampal atrophy and its induced cognitive impairment in middle-aged mice. BMC Neurosci 2022; 23:33. [PMID: 35668361 PMCID: PMC9169381 DOI: 10.1186/s12868-022-00718-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 05/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sirtuin 1 (Sirt1) is a recognized longevity gene and has been shown to be associated with aging and its related diseases. Hippocampal volume is considered to be the most sensitive brain imaging phenotype for cognition, but the effect of Sirt1 on hippocampal morphology during aging has not been reported. RESULTS Herein, we investigated the effect of conditional Sirt1 knockdown on hippocampal volume in middle-aged mice, as well as its cognitive function and the underlying molecular mechanisms. Brain structural magnetic resonance imaging (MRI) showed that adeno-associated virus (AAV) mediated hippocampal Sirt1 knockdown caused hippocampal atrophy in 8-month-old mice. Open field test (OFT) and Morris Water Maze (MWM) test revealed that hippocampal Sirt1 knockdown significantly weakened spatial learning and memory of mice without effect on anxiety and exploratory behavior. Western blotting analysis showed that P-tau levels at serine 396 epitope were significantly increased with slightly decreased T-tau levels, while PSD95 and NMDAR2B levels were obviously reduced, indicating that hippocampal Sirt1 knockdown could activate tau hyperphosphorylation and synaptic damage. CONCLUSIONS This work revealed that Sirt1 is an important protective gene against hippocampal atrophy and its induced cognitive impairment during aging, providing potential therapeutic targets for the prevention and intervention of aging-related neuropsychic diseases.
Collapse
Affiliation(s)
- Zuhao Sun
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China.,School of Medical Technology, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Shuang Zhao
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | - Xinjun Suo
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China.,School of Medical Technology, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Yan Dou
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China.
| |
Collapse
|
35
|
Lai MC, Liu WY, Liou SS, Liu IM. Diosmetin Targeted at Peroxisome Proliferator-Activated Receptor Gamma Alleviates Advanced Glycation End Products Induced Neuronal Injury. Nutrients 2022; 14:nu14112248. [PMID: 35684047 PMCID: PMC9183070 DOI: 10.3390/nu14112248] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 11/25/2022] Open
Abstract
The present study aimed to evaluate the role of diosmetin in alleviating advanced glycation end products (AGEs)-induced Alzheimer’s disease (AD)-like pathology and to clarify the action mechanisms. Before stimulation with AGEs (200 μg/mL), SH-SY5Y cells were treated with diosmetin (10 μmol/L), increasing cell viability. The induction of AGEs on the reactive oxygen species overproduction and downregulation of antioxidant enzyme activities, including superoxide dismutase, glutathione peroxidase, and catalase, were ameliorated by diosmetin. Amyloid precursor protein upregulation, accompanied by increased production of amyloid-β, caused by AGEs, was reversed by diosmetin. In the presence of diosmetin, not only β-site amyloid precursor protein cleaving enzyme1 expression was lowered, but the protein levels of insulin-degrading enzyme and neprilysin were elevated. Diosmetin protects SH-SY5Y cells from endoplasmic reticulum (ER) stress response to AGEs by suppressing ER stress-induced glucose regulated protein 78, thereby downregulating protein kinase R-like endoplasmic reticulum kinase, eukaryotic initiation factor 2 α, activating transcription factor 4, and C/EBP homologous protein. Diosmetin-pretreated cells had a lower degree of apoptotic DNA fragmentation; this effect may be associated with B-cell lymphoma (Bcl) 2 protein upregulation, Bcl-2-associated X protein downregulation, and decreased activities of caspase-12/-9/-3. The reversion of diosmetin on the AGEs-induced harmful effects was similar to that produced by pioglitazone. The peroxisome proliferator-activated receptor (PPAR)γ antagonist T0070907 (5 μmol/L) abolished the beneficial effects of diosmetin on AGEs-treated SH-SY5Y cells, indicating the involvement of PPARγ. We conclude that diosmetin protects neuroblastoma cells against AGEs-induced ER injury via multiple mechanisms and may be a potential option for AD.
Collapse
Affiliation(s)
- Mei Chou Lai
- Department of Pharmacy and Master Program, Collage of Pharmacy and Health Care, Tajen University, Pingtung 90741, Taiwan; (M.C.L.); (S.-S.L.)
| | - Wayne Young Liu
- Department of Urology, Jen-Ai Hospital, Taichung 41265, Taiwan;
- Center for Basic Medical Science, Collage of Health Science, Central Taiwan University of Science and Technology, Taichung 406053, Taiwan
| | - Shorong-Shii Liou
- Department of Pharmacy and Master Program, Collage of Pharmacy and Health Care, Tajen University, Pingtung 90741, Taiwan; (M.C.L.); (S.-S.L.)
| | - I-Min Liu
- Department of Pharmacy and Master Program, Collage of Pharmacy and Health Care, Tajen University, Pingtung 90741, Taiwan; (M.C.L.); (S.-S.L.)
- Correspondence: ; Tel.: +886-8-7624002
| |
Collapse
|
36
|
|
37
|
Li X, Zhao T, Gu J, Wang Z, Lin J, Wang R, Duan T, Li Z, Dong R, Wang W, Hong KF, Liu Z, Huang W, Gui D, Zhou H, Xu Y. Intake of flavonoids from Astragalus membranaceus ameliorated brain impairment in diabetic mice via modulating brain-gut axis. Chin Med 2022; 17:22. [PMID: 35151348 PMCID: PMC8840557 DOI: 10.1186/s13020-022-00578-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/28/2022] [Indexed: 02/07/2023] Open
Abstract
Background Brain impairment is one of a major complication of diabetes. Dietary flavonoids have been recommended to prevent brain damage. Astragalus membranaceus is a herbal medicine commonly used to relieve the complications of diabetes. Flavonoids is one of the major ingredients of Astragalus membranaceus, but its function and mechanism on diabetic encepholopathy is still unknown. Methods Type 2 diabetes mellitus (T2DM) model was induced by high fat diet and STZ in C57BL/6J mice, and BEnd.3 and HT22 cell lines were applied in the in vitro study. Quality of flavonoids was evaluated by LC–MS/MS. Differential expressed proteins in the hippocampus were evaluated by proteomics; influence of the flavonoids on composition of gut microbiota was analyzed by metagenomics. Mechanism of the flavonoids on diabetic encepholopathy was analyzed by Q-PCR, Western Blot, and multi-immunological methods et al. Results We found that flavonoids from Astragalus membranaceus (TFA) significantly ameliorated brain damage by modulating gut-microbiota-brain axis: TFA oral administration decreased fasting blood glucose and food intake, repaired blood brain barrier, protected hippocampus synaptic function; improved hippocampus mitochondrial biosynthesis and energy metabolism; and enriched the intestinal microbiome in high fat diet/STZ-induced diabetic mice. In the in vitro study, we found TFA increased viability of HT22 cells and preserved gut barrier integrity in CaCO2 monocellular layer, and PGC1α/AMPK pathway participated in this process. Conclusion Our findings demonstrated that flavonoids from Astragalus membranaceus ameliorated brain impairment, and its modulation on gut-brain axis plays a pivotal role. Our present study provided an alternative solution on preventing and treating diabetic cognition impairment.
Collapse
|
38
|
Guévremont D, Tsui H, Knight R, Fowler CJ, Masters CL, Martins RN, Abraham WC, Tate WP, Cutfield NJ, Williams JM. Plasma microRNA vary in association with the progression of Alzheimer's disease. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2022; 14:e12251. [PMID: 35141392 PMCID: PMC8817674 DOI: 10.1002/dad2.12251] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 08/09/2021] [Indexed: 12/11/2022]
Abstract
Introduction Early intervention in Alzheimer's disease (AD) requires the development of an easily administered test that is able to identify those at risk. Focusing on microRNA robustly detected in plasma and standardizing the analysis strategy, we sought to identify disease‐stage specific biomarkers. Methods Using TaqMan microfluidics arrays and a statistical consensus approach, we assessed plasma levels of 185 neurodegeneration‐related microRNA, in cohorts of cognitively normal amyloid β‐positive (CN‐Aβ+), mild cognitive impairment (MCI), and Alzheimer's disease (AD) participants, relative to their respective controls. Results Distinct disease stage microRNA biomarkers were identified, shown to predict membership of the groups (area under the curve [AUC] >0.8) and were altered dynamically with AD progression in a longitudinal study. Bioinformatics demonstrated that these microRNA target known AD‐related pathways, such as the Phosphoinositide 3‐kinase (PI3K‐Akt) signalling pathway. Furthermore, a significant correlation was found between miR‐27a‐3p, miR‐27b‐3p, and miR‐324‐5p and amyloid beta load. Discussion Our results show that microRNA signatures alter throughout the progression of AD, reflect the underlying disease pathology, and may prove to be useful diagnostic markers.
Collapse
Affiliation(s)
- Diane Guévremont
- Department of Anatomy University of Otago Dunedin New Zealand.,Brain Health Research Centre University of Otago Dunedin New Zealand.,Brain Research New Zealand, Rangahau Roro Aotearoa University of Otago Dunedin New Zealand
| | - Helen Tsui
- Brain Health Research Centre University of Otago Dunedin New Zealand.,Brain Research New Zealand, Rangahau Roro Aotearoa University of Otago Dunedin New Zealand.,Department of Psychology University of Otago Dunedin New Zealand
| | - Robert Knight
- Brain Health Research Centre University of Otago Dunedin New Zealand.,Brain Research New Zealand, Rangahau Roro Aotearoa University of Otago Dunedin New Zealand.,Department of Psychology University of Otago Dunedin New Zealand
| | - Chris J Fowler
- The Florey Institute, The University of Melbourne, Parkville, Victoria, Australia. MD The Florey Institute The University of Melbourne Parkville Victoria Australia.,Australian Imaging Biomarkers and Lifestyle (AIBL) Research Group Australia
| | - Colin L Masters
- The Florey Institute, The University of Melbourne, Parkville, Victoria, Australia. MD The Florey Institute The University of Melbourne Parkville Victoria Australia.,Australian Imaging Biomarkers and Lifestyle (AIBL) Research Group Australia
| | - Ralph N Martins
- Australian Imaging Biomarkers and Lifestyle (AIBL) Research Group Australia.,Department of Biomedical Sciences Macquarie University New South Wales Australia
| | - Wickliffe C Abraham
- Brain Health Research Centre University of Otago Dunedin New Zealand.,Brain Research New Zealand, Rangahau Roro Aotearoa University of Otago Dunedin New Zealand.,Department of Psychology University of Otago Dunedin New Zealand
| | - Warren P Tate
- Brain Health Research Centre University of Otago Dunedin New Zealand.,Brain Research New Zealand, Rangahau Roro Aotearoa University of Otago Dunedin New Zealand.,Department of Biochemistry University of Otago Dunedin New Zealand
| | - Nicholas J Cutfield
- Brain Health Research Centre University of Otago Dunedin New Zealand.,Brain Research New Zealand, Rangahau Roro Aotearoa University of Otago Dunedin New Zealand.,Department of Medicine University of Otago Dunedin New Zealand
| | - Joanna M Williams
- Department of Anatomy University of Otago Dunedin New Zealand.,Brain Health Research Centre University of Otago Dunedin New Zealand.,Brain Research New Zealand, Rangahau Roro Aotearoa University of Otago Dunedin New Zealand
| |
Collapse
|
39
|
A Study of the Protective Effect of Bushen Huoxue Prescription on Cerebral Microvascular Endothelia Based on Proteomics and Bioinformatics. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2545074. [PMID: 35035499 PMCID: PMC8758271 DOI: 10.1155/2022/2545074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 11/27/2021] [Accepted: 12/17/2021] [Indexed: 11/17/2022]
Abstract
Diabetic cognitive dysfunction is a serious complication of type 2 diabetes mellitus (T2DM), which can cause neurological and microvascular damage in the brain. At present, there is no effective treatment for this complication. Bushen Huoxue prescription (BSHX) is a newly formulated compound Chinese medicine containing 7 components. Previous research indicated that BSHX was neuroprotective against advanced glycosylation end product (AGE)-induced PC12 cell insult; however, the effect of BSHX on AGE-induced cerebral microvascular endothelia injury has not been studied. In the current research, we investigated the protective effects of BSHX on AGE-induced injury in bEnd.3 cells. Our findings revealed that BSHX could effectively protect bEnd.3 cells from apoptosis. Moreover, we analyzed the network regulation effect of BSHX on AGE-induced bEnd.3 cells injury at the proteomic level. The LC-MS/MS-based shotgun proteomics analysis showed BSHX negatively regulated multiple AGE-elicited proteins. Bioinformatics analysis revealed these differential proteins were involved in multiple processes, such as Foxo signaling pathway. Further molecular biology analysis confirmed that BSHX could downregulate the expression of FoxO1/3 protein and inhibit its nuclear transfer and inhibit the expression of downstream apoptotic protein Bim and the activation of caspase, so as to play a protective role in AGE-induced bEnd.3 injury. Taken together, these findings demonstrated the role of BSHX in the management of diabetic cerebral microangiopathy and provide some insights into the proteomics-guided pharmacological mechanism study of traditional Chinese Medicine.
Collapse
|
40
|
Nam HK, Jeong SR, Pyo MC, Ha SK, Nam MH, Lee KW. Methylglyoxal-Derived Advanced Glycation End Products (AGE4) Promote Cell Proliferation and Survival in Renal Cell Carcinoma Cells through the RAGE/Akt/ERK Signaling Pathways. Biol Pharm Bull 2021; 44:1697-1706. [PMID: 34719646 DOI: 10.1248/bpb.b21-00382] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Advanced glycation end products (AGEs) are the products formed through a non-enzymatic reaction of reducing sugars with proteins or lipids. There is a potential for toxicity in the case of AGEs produced through glycation with dicarbonyl compounds including methylglyoxal, glyoxal, and 3-deoxyglucosone. The AGEs bind the receptor for advanced glycation end products (RAGE) and stimulate the mitogen-activated protein (MAP) kinase signaling pathway that can increase the production of matrix metalloproteinases (MMPs). In addition, AGE-induced protein kinase B (Akt) signaling can promote cancer cell proliferation and contribute to many diseases such as kidney cancer. In light of the lack of extensive study of the relationship between methylglyoxal-induced AGEs (AGE4) and renal cancer, we studied the proliferous and anti-apoptotic effects of AGE4 on renal cell carcinoma (RCC) in this study. AGE4 treatment was involved in the proliferation and migration of RCC cells in vitro by upregulating proliferating cell nuclear antigen (PCNA) and MMPs while suppressing apoptotic markers such as Bax and caspase 3. Moreover, Akt and extracellular-signal-regulated kinase (ERK) were phosphorylated in RCC cells with AGE4 treatment. As a result, this study demonstrated that AGE4-RAGE axis can promote the growth ability of RCC by inducing PCNA, MMPs, and inhibiting apoptosis in RCC via the Akt and ERK signaling pathways.
Collapse
Affiliation(s)
- Han-Kyul Nam
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University
| | - So-Ra Jeong
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University
| | - Min Cheol Pyo
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University
| | - Sang-Keun Ha
- Division of Functional Food Research, Korea Food Research Institute
| | - Mi-Hyun Nam
- Sue Anschutz-Rodgers Eye Center and Department of Ophthalmology, University of Colorado
| | - Kwang-Won Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University
| |
Collapse
|
41
|
Yuan X, Nie C, Liu H, Ma Q, Peng B, Zhang M, Chen Z, Li J. Comparison of metabolic fate, target organs, and microbiota interactions of free and bound dietary advanced glycation end products. Crit Rev Food Sci Nutr 2021:1-22. [PMID: 34698575 DOI: 10.1080/10408398.2021.1991265] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Increased intake of Western diets and ultra-processed foods is accompanied by increased intake of advanced glycation end products (AGEs). AGEs can be generated exogenously in the thermal processing of food and endogenously in the human body, which associated with various chronic diseases. In food, AGEs can be divided into free and bound forms, which differ in their bioavailability, digestion, absorption, gut microbial interactions and untargeted metabolites. We summarized the measurements and contents of free and bound AGE in foods. Moreover, the ingestion, digestion, absorption, excretion, gut microbiota interactions, and metabolites and metabolic pathways between free and bound AGEs based on animal and human studies were compared. Bound AGEs were predominant in most of the selected foods, while beer and soy sauce were rich in free AGEs. Only 10%-30% of AGEs were absorbed into the systemic circulation when orally administered. The excretion of ingested free and bound AGEs was approximately 90% and 60%, respectively. Dietary free CML has a detrimental effect on gut microbiota composition, while bound AGEs have both detrimental and beneficial impacts. Free and bound dietary AGEs changed amino acid metabolism, energy metabolism and carbohydrate metabolism. And besides, bound dietary AGEs altered vitamin metabolism, and glycerolipid metabolism.
Collapse
Affiliation(s)
- Xiaojin Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Chenxi Nie
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Huicui Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Qingyu Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Bo Peng
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Min Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Zhifei Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Juxiu Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
42
|
Liu XY, Zhang N, Zhang SX, Xu P. Potential new therapeutic target for Alzheimer's disease: Glucagon-like peptide-1. Eur J Neurosci 2021; 54:7749-7769. [PMID: 34676939 DOI: 10.1111/ejn.15502] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/13/2022]
Abstract
Increasing evidence shows a close relationship between Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM). Recently, glucagon-like peptide-1 (GLP-1), a gut incretin hormone, has become a well-established treatment for T2DM and is likely to be involved in treating cognitive impairment. In this mini review, the similarities between AD and T2DM are summarised with the main focus on GLP-1-based therapeutics in AD.
Collapse
Affiliation(s)
- Xiao-Yu Liu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ni Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Sheng-Xiao Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China.,Key laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, Shanxi, China
| | - Ping Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
43
|
The Potential Role of Cytokines and Growth Factors in the Pathogenesis of Alzheimer's Disease. Cells 2021; 10:cells10102790. [PMID: 34685770 PMCID: PMC8534363 DOI: 10.3390/cells10102790] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/06/2021] [Accepted: 10/10/2021] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most prominent neurodegenerative diseases, which impairs cognitive function in afflicted individuals. AD results in gradual decay of neuronal function as a consequence of diverse degenerating events. Several neuroimmune players (such as cytokines and growth factors that are key players in maintaining CNS homeostasis) turn aberrant during crosstalk between the innate and adaptive immunities. This aberrance underlies neuroinflammation and drives neuronal cells toward apoptotic decline. Neuroinflammation involves microglial activation and has been shown to exacerbate AD. This review attempted to elucidate the role of cytokines, growth factors, and associated mechanisms implicated in the course of AD, especially with neuroinflammation. We also evaluated the propensities and specific mechanism(s) of cytokines and growth factors impacting neuron upon apoptotic decline and further shed light on the availability and accessibility of cytokines across the blood-brain barrier and choroid plexus in AD pathophysiology. The pathogenic and the protective roles of macrophage migration and inhibitory factors, neurotrophic factors, hematopoietic-related growth factors, TAU phosphorylation, advanced glycation end products, complement system, and glial cells in AD and neuropsychiatric pathology were also discussed. Taken together, the emerging roles of these factors in AD pathology emphasize the importance of building novel strategies for an effective therapeutic/neuropsychiatric management of AD in clinics.
Collapse
|
44
|
Oxidative Stress and Beta Amyloid in Alzheimer's Disease. Which Comes First: The Chicken or the Egg? Antioxidants (Basel) 2021; 10:antiox10091479. [PMID: 34573112 PMCID: PMC8468973 DOI: 10.3390/antiox10091479] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 02/07/2023] Open
Abstract
The pathogenesis of Alzheimer's disease involves β amyloid (Aβ) accumulation known to induce synaptic dysfunction and neurodegeneration. The brain's vulnerability to oxidative stress (OS) is considered a crucial detrimental factor in Alzheimer's disease. OS and Aβ are linked to each other because Aβ induces OS, and OS increases the Aβ deposition. Thus, the answer to the question "which comes first: the chicken or the egg?" remains extremely difficult. In any case, the evidence for the primary occurrence of oxidative stress in AD is attractive. Thus, evidence indicates that a long period of gradual oxidative damage accumulation precedes and results in the appearance of clinical and pathological AD symptoms, including Aβ deposition, neurofibrillary tangle formation, metabolic dysfunction, and cognitive decline. Moreover, oxidative stress plays a crucial role in the pathogenesis of many risk factors for AD. Alzheimer's disease begins many years before its symptoms, and antioxidant treatment can be an important therapeutic target for attacking the disease.
Collapse
|
45
|
Hansda AK, Goswami R. 17-β estradiol signalling affects cardiovascular and cancer pathogenesis by regulating the crosstalk between transcription factors and EC-miRNAs. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Novozhilova M, Mishchenko T, Kondakova E, Lavrova T, Gavrish M, Aferova S, Franceschi C, Vedunova M. Features of age-related response to sleep deprivation: in vivo experimental studies. Aging (Albany NY) 2021; 13:19108-19126. [PMID: 34320466 PMCID: PMC8386558 DOI: 10.18632/aging.203372] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/17/2021] [Indexed: 12/23/2022]
Abstract
Insomnia is currently considered one of the potential triggers of accelerated aging. The frequency of registered sleep-wake cycle complaints increases with age and correlates with the quality of life of elderly people. Nevertheless, whether insomnia is actually an age-associated process or whether it acts as an independent stress-factor that activates pathological processes, remains controversial. In this study, we analyzed the effects of long-term sleep deprivation modeling on the locomotor and orienting-exploratory activity, spatial learning abilities and working memory of C57BL/6 female mice of different ages. We also evaluated the modeled stress influence on morphological changes in brain tissue, the functional activity of the mitochondrial apparatus of nerve cells, and the level of DNA methylation and mRNA expression levels of the transcription factor HIF-1α (Hif1) and age-associated molecular marker PLIN2. Our findings point to the age-related adaptive capacity of female mice to the long-term sleep deprivation influence. For young (1.5 months) mice, the modeled sleep deprivation acts as a stress factor leading to weight loss against the background of increased food intake, the activation of animals' locomotor and exploratory activity, their mnestic functions, and molecular and cellular adaptive processes ensuring animal resistance both to stress and risk of accelerated aging development. Sleep deprivation in adult (7-9 months) mice is accompanied by an increase in body weight against the background of active food intake, increased locomotor and exploratory activity, gross disturbances in mnestic functions, and decreased adaptive capacity of brain cells, that potentially increasing the risk of pathological reactions and neurodegenerative processes.
Collapse
Affiliation(s)
- Maria Novozhilova
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603022, Russia
| | - Tatiana Mishchenko
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603022, Russia
| | - Elena Kondakova
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603022, Russia
| | - Tatiana Lavrova
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603022, Russia
| | - Maria Gavrish
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603022, Russia
| | - Svetlana Aferova
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603022, Russia
| | - Claudio Franceschi
- Institute of Information Technologies, Mathematics and Mechanics (ITMM), National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603022, Russia
| | - Maria Vedunova
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603022, Russia
| |
Collapse
|
47
|
Kubis-Kubiak A, Wiatrak B, Piwowar A. The Impact of High Glucose or Insulin Exposure on S100B Protein Levels, Oxidative and Nitrosative Stress and DNA Damage in Neuron-Like Cells. Int J Mol Sci 2021; 22:ijms22115526. [PMID: 34073816 PMCID: PMC8197274 DOI: 10.3390/ijms22115526] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 12/25/2022] Open
Abstract
Alzheimer’s disease (AD) is attracting considerable interest due to its increasing number of cases as a consequence of the aging of the global population. The mainstream concept of AD neuropathology based on pathological changes of amyloid β metabolism and the formation of neurofibrillary tangles is under criticism due to the failure of Aβ-targeting drug trials. Recent findings have shown that AD is a highly complex disease involving a broad range of clinical manifestations as well as cellular and biochemical disturbances. The past decade has seen a renewed importance of metabolic disturbances in disease-relevant early pathology with challenging areas in establishing the role of local micro-fluctuations in glucose concentrations and the impact of insulin on neuronal function. The role of the S100 protein family in this interplay remains unclear and is the aim of this research. Intracellularly the S100B protein has a protective effect on neurons against the toxic effects of glutamate and stimulates neurites outgrowth and neuronal survival. At high concentrations, it can induce apoptosis. The aim of our study was to extend current knowledge of the possible impact of hyper-glycemia and -insulinemia directly on neuronal S100B secretion and comparison to oxidative stress markers such as ROS, NO and DBSs levels. In this paper, we have shown that S100B secretion decreases in neurons cultured in a high-glucose or high-insulin medium, while levels in cell lysates are increased with statistical significance. Our findings demonstrate the strong toxic impact of energetic disturbances on neuronal metabolism and the potential neuroprotective role of S100B protein.
Collapse
Affiliation(s)
- Adriana Kubis-Kubiak
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
- Correspondence:
| | - Benita Wiatrak
- Department of Pharmacology, Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland;
| | - Agnieszka Piwowar
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
| |
Collapse
|
48
|
Alves SS, Silva-Junior RMPD, Servilha-Menezes G, Homolak J, Šalković-Petrišić M, Garcia-Cairasco N. Insulin Resistance as a Common Link Between Current Alzheimer's Disease Hypotheses. J Alzheimers Dis 2021; 82:71-105. [PMID: 34024838 DOI: 10.3233/jad-210234] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Almost 115 years ago, Alois Alzheimer described Alzheimer's disease (AD) for the first time. Since then, many hypotheses have been proposed. However, AD remains a severe health public problem. The current medical approaches for AD are limited to symptomatic interventions and the complexity of this disease has led to a failure rate of approximately 99.6%in AD clinical trials. In fact, no new drug has been approved for AD treatment since 2003. These failures indicate that we are failing in mimicking this disease in experimental models. Although most studies have focused on the amyloid cascade hypothesis of AD, the literature has made clear that AD is rather a multifactorial disorder. Therefore, the persistence in a single theory has resulted in lost opportunities. In this review, we aim to present the striking points of the long scientific path followed since the description of the first AD case and the main AD hypotheses discussed over the last decades. We also propose insulin resistance as a common link between many other hypotheses.
Collapse
Affiliation(s)
- Suélen Santos Alves
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Rui Milton Patrício da Silva-Junior
- Department of Internal Medicine, Ribeirão Preto Medical School -University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil.,Department of Physiology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Gabriel Servilha-Menezes
- Department of Physiology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Jan Homolak
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia.,Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Melita Šalković-Petrišić
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia.,Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Norberto Garcia-Cairasco
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil.,Department of Physiology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
49
|
Priya K, Siddesha JM, Dharini S, Shashanka KP. Interacting Models of Amyloid-β and Tau Proteins: An Approach to Identify Drug Targets in Alzheimer's Disease. J Alzheimers Dis Rep 2021; 5:405-411. [PMID: 34189412 PMCID: PMC8203288 DOI: 10.3233/adr-210018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Alzheimer's disease (AD) is the primary cause of dementia affecting millions each year across the world, though still remains incurable. This might be attributed to the lack of knowledge about the associated proteins, their cellular and molecular mechanisms, and the genesis of the disease. The discovery of drugs that earlier revolved around targeting the amyloid-β cascade has now been reformed with the upgraded knowledge of the cross-seeding ability of tau protein which opens new gateways for therapeutic targets. This article provides a comprehensive review of various direct and indirect connecting pathways between the two main proteins involved in development and progression of AD, enabling us to further expand our repertoire of information regarding the etiology of AD. The current review indicates the need for extensive research in this niche, thus considerable advances can be made in understanding AD which eventually helps to improve the current therapeutics against AD.
Collapse
Affiliation(s)
- Khadgawat Priya
- Department of Genetics, University of Delhi, New Delhi, India
| | - J M Siddesha
- Division of Biochemistry, Faculty of Life Sciences, JSS Academy of Higher Education and Research (JSSAHER), Mysuru, Karnataka, India
| | - Shashank Dharini
- Department of Burns, Plastic and Maxillofacial Surgery, VMMC and Safdarjung Hospital, New Delhi, India
| | - K Prasad Shashanka
- Department of Biotechnology and Bioinformatics, Faculty of Life Sciences, JSS Academy of Higher Education and Research (JSSAHER), Mysuru, Karnataka, India
| |
Collapse
|
50
|
Chambers A, Bury JJ, Minett T, Richardson CD, Brayne C, Ince PG, Shaw PJ, Garwood CJ, Heath PR, Simpson JE, Matthews FE, Wharton SB. Advanced Glycation End Product Formation in Human Cerebral Cortex Increases With Alzheimer-Type Neuropathologic Changes but Is Not Independently Associated With Dementia in a Population-Derived Aging Brain Cohort. J Neuropathol Exp Neurol 2021; 79:950-958. [PMID: 32766675 DOI: 10.1093/jnen/nlaa064] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/12/2020] [Accepted: 06/09/2020] [Indexed: 12/11/2022] Open
Abstract
Diabetes mellitus is a risk factor for dementia, and nonenzymatic glycosylation of macromolecules results in formation of advanced glycation end-products (AGEs). We determined the variation in AGE formation in brains from the Cognitive Function and Ageing Study population-representative neuropathology cohort. AGEs were measured on temporal neocortex by enzyme-linked immunosorbent assay (ELISA) and cell-type specific expression on neurons, astrocytes and endothelium was detected by immunohistochemistry and assessed semiquantitatively. Fifteen percent of the cohort had self-reported diabetes, which was not significantly associated with dementia status at death or neuropathology measures. AGEs were expressed on neurons, astrocytes and endothelium and overall expression showed a positively skewed distribution in the population. AGE measures were not significantly associated with dementia. AGE measured by ELISA increased with Consortium to Establish a Registry for Alzheimer's Disease (CERAD) neurofibrillary tangle score (p = 0.03) and Thal Aβ phase (p = 0.04), while AGE expression on neurons (and astrocytes), detected immunohistochemically, increased with increasing Braak tangle stage (p < 0.001), CERAD tangle score (p = 0.002), and neuritic plaques (p = 0.01). Measures of AGE did not show significant associations with cerebral amyloid angiopathy, microinfarcts or neuroinflammation. In conclusion, AGE expression increases with Alzheimer's neuropathology, particular later stages but is not independently associated with dementia. AGE formation is likely to be important for impaired brain cell function in aging and Alzheimer's.
Collapse
Affiliation(s)
- Annabelle Chambers
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Joanna J Bury
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Thais Minett
- Institute of Public Health, University of Cambridge, Cambridge, UK
| | - Connor D Richardson
- Population Health Sciences Institute, University of Newcastle, Newcastle, UK
| | - Carol Brayne
- Institute of Public Health, University of Cambridge, Cambridge, UK
| | - Paul G Ince
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Claire J Garwood
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Paul R Heath
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Julie E Simpson
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Fiona E Matthews
- Population Health Sciences Institute, University of Newcastle, Newcastle, UK
| | - Stephen B Wharton
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| |
Collapse
|