1
|
Almulla AF, Maes M, Zhou B, Al-Hakeim HK, Vojdani A. Brain-targeted autoimmunity is strongly associated with Long COVID and its chronic fatigue syndrome as well as its affective symptoms. J Adv Res 2024:S2090-1232(24)00530-7. [PMID: 39522688 DOI: 10.1016/j.jare.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
INTRODUCTION Autoimmune responses contribute to the pathophysiology of Long COVID, affective symptoms and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). OBJECTIVES To examine whether Long COVID, and its accompanying affective symptoms and CFS are associated with immunoglobulin (Ig)A/IgM/IgG directed at neuronal proteins including myelin basic protein (MBP), myelin oligodendrocyte glycoprotein (MOG), synapsin, α + β-tubulin, neurofilament protein (NFP), cerebellar protein-2 (CP2), and the blood-brain-barrier-brain-damage (BBD) proteins claudin-5 and S100B. METHODS IgA/IgM/IgG to the above neuronal proteins, human herpes virus-6 (HHV-6) and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) were measured in 90 Long COVID patients and 90 healthy controls, while C-reactive protein (CRP), and advanced oxidation protein products (AOPP) in association with affective and CFS ratings were additionally assessed in a subgroup thereof. RESULTS Long COVID is associated with significant increases in IgG directed at tubulin (IgG-tubulin), MBP, MOG and synapsin; IgM-MBP, MOG, CP2, synapsin and BBD; and IgA-CP2 and synapsin. IgM-SARS-CoV-2 and IgM-HHV-6 antibody titers were significantly correlated with IgA/IgG/IgM-tubulin and -CP2, IgG/IgM-BBD, IgM-MOG, IgA/IgM-NFP, and IgG/IgM-synapsin. Binary logistic regression analysis shows that IgM-MBP and IgG-MBP are the best predictors of Long COVID. Multiple regression analysis shows that IgG-MOG, CRP and AOPP explain together 41.7 % of the variance in the severity of CFS. Neural network analysis shows that IgM-synapsin, IgA-MBP, IgG-MOG, IgA-synapsin, IgA-CP2, IgG-MBP and CRP are the most important predictors of affective symptoms due to Long COVID with a predictive accuracy of r = 0.801. CONCLUSION Brain-targeted autoimmunity contributes significantly to the pathogenesis of Long COVID and the severity of its physio-affective phenome.
Collapse
Affiliation(s)
- Abbas F Almulla
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu, 610072, China; Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, and King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand; Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Michael Maes
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu, 610072, China; Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, and King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand; Cognitive Impairment and Dementia Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria; Research Center, Medical University of Plovdiv, Plovdiv, Bulgaria; Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| | - Bo Zhou
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, and King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand; Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | | | - Aristo Vojdani
- Immunosciences Lab, Inc., Los Angeles, CA 90035, USA; Cyrex Laboratories, LLC, Phoenix, AZ 85034, USA
| |
Collapse
|
2
|
Vojdani A, Almulla AF, Zhou B, Al-Hakeim HK, Maes M. Reactivation of herpesvirus type 6 and IgA/IgM-mediated responses to activin-A underpin long COVID, including affective symptoms and chronic fatigue syndrome. Acta Neuropsychiatr 2024; 36:172-184. [PMID: 38571295 DOI: 10.1017/neu.2024.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
BACKGROUND Persistent infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), reactivation of dormant viruses, and immune-oxidative responses are involved in long COVID. OBJECTIVES To investigate whether long COVID and depressive, anxiety, and chronic fatigue syndrome (CFS) symptoms are associated with IgA/IgM/IgG to SARS-CoV-2, human herpesvirus type 6 (HHV-6), Epstein-Barr Virus (EBV), and immune-oxidative biomarkers. METHODS We examined 90 long COVID patients and ninety healthy controls. We measured serum IgA/IgM/IgG against HHV-6 and EBV and their deoxyuridine 5′-triphosphate nucleotidohydrolase (duTPase), SARS-CoV-2, and activin-A, C-reactive protein (CRP), advanced oxidation protein products (AOPP), and insulin resistance (HOMA2-IR). RESULTS Long COVID patients showed significant elevations in IgG/IgM-SARS-CoV-2, IgG/IgM-HHV-6, and HHV-6-duTPase, IgA/IgM-activin-A, CRP, AOPP, and HOMA2-IR. Neural network analysis yielded a highly significant predictive accuracy of 80.6% for the long COVID diagnosis (sensitivity: 78.9%, specificity: 81.8%, area under the ROC curve = 0.876); the topmost predictors were as follows: IGA-activin-A, IgG-HHV-6, IgM-HHV-6-duTPase, IgG-SARS-CoV-2, and IgM-HHV-6 (all positively) and a factor extracted from all IgA levels to all viral antigens (inversely). The top 5 predictors of affective symptoms due to long COVID were IgM-HHV-6-duTPase, IgG-HHV-6, CRP, education, IgA-activin-A (predictive accuracy of r = 0.636). The top 5 predictors of CFS due to long COVID were in descending order: CRP, IgG-HHV-6-duTPase, IgM-activin-A, IgM-SARS-CoV-2, and IgA-activin-A (predictive accuracy: r = 0.709). CONCLUSION Reactivation of HHV-6, SARS-CoV-2 persistence, and autoimmune reactions to activin-A combined with activated immune-oxidative pathways play a major role in the pathophysiology of long COVID as well as the severity of its affective symptoms and CFS.
Collapse
Affiliation(s)
- Aristo Vojdani
- Immunosciences Lab, Inc., Los Angeles, CA90035, USA
- Cyrex Laboratories, LLC, Phoenix, AZ85034, USA
| | - Abbas F Almulla
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, and King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Bo Zhou
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu610072, China
- Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu610072, China
| | | | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, and King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu610072, China
- Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu610072, China
- Cognitive Impairment and Dementia Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
- Research Center, Medical University of Plovdiv, Plovdiv, Bulgaria
- Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul02447, Korea
| |
Collapse
|
3
|
Fan KQ, Huang T, Yu JS, Li YY, Jin J. The clinical features and potential mechanisms of cognitive disorders in peripheral autoimmune and inflammatory diseases. FUNDAMENTAL RESEARCH 2024; 4:226-236. [PMID: 38933510 PMCID: PMC11197673 DOI: 10.1016/j.fmre.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 10/15/2022] [Accepted: 12/05/2022] [Indexed: 12/26/2022] Open
Abstract
According to a study from World Health Organization's Global Burden of Disease, mental and neurological disorders have accounted for 13% of global diseases in recent years and are on the rise. Neuropsychiatric conditions or neuroinflammatory disorders are linked by the presence of an exaggerated immune response both peripherally and in the central nervous system (CNS). Cognitive dysfunction (CD) encompasses a complex group of diseases and has frequently been described in the field of autoimmune diseases, especially in multiple non-CNS-related autoimmune diseases. Recent studies have provided various hypotheses regarding the occurrence of cognitive impairment in autoimmune diseases, including that abnormally activated immune cells can disrupt the integrity of the blood-brain barrier (BBB) to trigger a central neuroinflammatory response. When the BBB is intact, autoantibodies and pro-inflammatory molecules in peripheral circulation can enter the brain to activate microglia, inducing CNS inflammation and CD. However, the mechanisms explaining the association between the immune system and neural function and their contribution to diseases are uncertain. In this review, we used clinical statistics to illustrate the correlation between CD and autoimmune diseases that do not directly affect the CNS, summarized the clinical features and mechanisms by which autoimmune diseases trigger cognitive impairment, and explored existing knowledge regarding the link between CD and autoimmune diseases from the perspective of the field of neuroimmunology.
Collapse
Affiliation(s)
- Ke-qi Fan
- MOE Laboratory of Biosystem Homeostasis and Protection, and Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- Department of Gastroenterology, Sir Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou 310016, China
| | - Tao Huang
- MOE Laboratory of Biosystem Homeostasis and Protection, and Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- Department of Gastroenterology, Sir Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou 310016, China
| | - Jian-shuai Yu
- MOE Laboratory of Biosystem Homeostasis and Protection, and Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Yi-yuan Li
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Jin Jin
- MOE Laboratory of Biosystem Homeostasis and Protection, and Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- Department of Gastroenterology, Sir Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou 310016, China
| |
Collapse
|
4
|
Almulla AF, Abdul Jaleel AKK, Abo Algon AA, Tunvirachaisakul C, Hassoun HK, Al-Hakeim HK, Maes M. Mood Symptoms and Chronic Fatigue Syndrome Due to Relapsing-Remitting Multiple Sclerosis Are Associated with Immune Activation and Aberrations in the Erythron. Brain Sci 2023; 13:1073. [PMID: 37509005 PMCID: PMC10377656 DOI: 10.3390/brainsci13071073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/06/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a chronic autoimmune and neuroinflammatory disease of the central nervous system characterized by peripheral activation of immune-inflammatory pathways which culminate in neurotoxicity causing demyelination of central neurons. Nonetheless, the pathophysiology of relapsing-remitting MS (RRMS)-related chronic fatigue, depression, anxiety, cognitive impairments, and autonomic disturbances is not well understood. OBJECTIVES The current study aims to delineate whether the remitted phase of RRMS is accompanied by activated immune-inflammatory pathways and if the latter, coupled with erythron variables, explain the chronic fatigue and mood symptoms due to RRMS. MATERIAL AND METHODS We recruited 63 MS patients, 55 in the remitted phase of RRMS and 8 with secondary progressive MS, and 30 healthy controls and assessed erythron variables, and used a bio-plex assay to measure 27 serum cytokines. RESULTS A significant proportion of the MS patients (46%) displayed activation of the immune-inflammatory response (IRS) and compensatory immune response (CIRS) systems, and T helper (Th)1 and Th17 cytokine profiles. Remitted RRMS patients showed increased chronic fatigue, depression, anxiety, physiosomatic, autonomic, and insomnia scores, which could partly be explained by M1 macrophage, Th1, Th-17, growth factor, and CIRS activation, as well as aberrations in the erythron including lowered hematocrit and hemoglobin levels. CONCLUSIONS Around 50% of remitted RRMS patients show activation of immune-inflammatory pathways in association with mood and chronic-fatigue-like symptoms. IRS and CIRS activation as well as the aberrations in the erythron are new drug targets to treat chronic fatigue and affective symptoms due to MS.
Collapse
Affiliation(s)
- Abbas F Almulla
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf 54001, Iraq
| | | | | | - Chavit Tunvirachaisakul
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Cognitive Impairment and Dementia Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | | | - Hussein K Al-Hakeim
- Department of Chemistry, College of Science, University of Kufa, Kufa 54002, Iraq
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Cognitive Impairment and Dementia Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Psychiatry, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
5
|
Nunes JM, Kell DB, Pretorius E. Cardiovascular and haematological pathology in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): A role for viruses. Blood Rev 2023; 60:101075. [PMID: 36963989 PMCID: PMC10027292 DOI: 10.1016/j.blre.2023.101075] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/25/2023]
Abstract
ME/CFS is a debilitating chronic condition that often develops after viral or bacterial infection. Insight from the study of Long COVID/Post Acute Sequelae of COVID-19 (PASC), the post-viral syndrome associated with SARS-CoV-2 infection, might prove to be useful for understanding pathophysiological mechanisms of ME/CFS. Disease presentation is similar between the two conditions, and a subset of Long COVID patients meet the diagnostic criteria for ME/CFS. Since Long COVID is characterized by significant vascular pathology - including endothelial dysfunction, coagulopathy, and vascular dysregulation - the question of whether or not the same biological abnormalities are of significance in ME/CFS arises. Cardiac abnormalities have for a while now been documented in ME/CFS cohorts, with recent studies demonstrating major deficits in cerebral blood flow, and hence vascular dysregulation. A growing body of research is demonstrating that ME/CFS is accompanied by platelet hyperactivation, anomalous clotting, a procoagulant phenotype, and endothelial dysfunction. Endothelial damage and dysregulated clotting can impair substance exchange between blood and tissues, and result in hypoperfusion, which may contribute to the manifestation of certain ME/CFS symptoms. Here we review the ME/CFS literature to summarize cardiovascular and haematological findings documented in patients with the condition, and, in this context, briefly discuss the potential role of previously-implicated pathogens. Overall, cardiac and haematological abnormalities are present within ME/CFS cohorts. While atherosclerotic heart disease is not significantly associated with ME/CFS, suboptimal cardiovascular function defined by reduced cardiac output, impaired cerebral blood flow, and vascular dysregulation are, and these abnormalities do not appear to be influenced by deconditioning. Rather, these cardiac abnormalities may result from dysfunction in the (autonomic) nervous system. Plenty of recently published studies are demonstrating significant platelet hyperactivity and endothelial dysfunction in ME/CFS, as well as anomalous clotting processes. It is of particular importance to determine to what extent these cardiovascular and haematological abnormalities contribute to symptom severity, and if these two systems can be targeted for therapeutic purposes. Viral reservoirs of herpesviruses exist in ME/CFS, and most likely contribute to cardiovascular and haematological dysfunction directly or indirectly. This review highlights the potential of studying cardiac functioning, the vasculature, and coagulation system in ME/CFS.
Collapse
Affiliation(s)
- Jean M Nunes
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1, Matieland 7602, South Africa.
| | - Douglas B Kell
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1, Matieland 7602, South Africa; Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK; The Novo Nordisk Foundation Centre for Biosustainability, Building 220, Chemitorvet 200, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1, Matieland 7602, South Africa; Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK.
| |
Collapse
|
6
|
Al-Hakeim HK, Al-Rubaye HT, Al-Hadrawi DS, Almulla AF, Maes M. Long-COVID post-viral chronic fatigue and affective symptoms are associated with oxidative damage, lowered antioxidant defenses and inflammation: a proof of concept and mechanism study. Mol Psychiatry 2023; 28:564-578. [PMID: 36280755 PMCID: PMC9589528 DOI: 10.1038/s41380-022-01836-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 10/01/2022] [Accepted: 10/10/2022] [Indexed: 12/01/2022]
Abstract
The immune-inflammatory response during the acute phase of COVID-19, as assessed using peak body temperature (PBT) and peripheral oxygen saturation (SpO2), predicts the severity of chronic fatigue, depression and anxiety symptoms 3-4 months later. The present study was performed to examine the effects of SpO2 and PBT during acute infection on immune, oxidative and nitrosative stress (IO&NS) pathways and neuropsychiatric symptoms of Long COVID. This study assayed SpO2 and PBT during acute COVID-19, and C-reactive protein (CRP), malondialdehyde (MDA), protein carbonyls (PCs), myeloperoxidase (MPO), nitric oxide (NO), zinc, and glutathione peroxidase (Gpx) in 120 Long COVID individuals and 36 controls. Cluster analysis showed that 31.7% of the Long COVID patients had severe abnormalities in SpO2, body temperature, increased oxidative toxicity (OSTOX) and lowered antioxidant defenses (ANTIOX), and increased total Hamilton Depression (HAMD) and Anxiety (HAMA) and Fibromylagia-Fatigue (FF) scores. Around 60% of the variance in the neuropsychiatric symptoms of Long COVID (a factor extracted from HAMD, HAMA and FF scores) was explained by OSTOX/ANTIOX ratio, PBT and SpO2. Increased PBT predicted increased CRP and lowered ANTIOX and zinc levels, while lowered SpO2 predicted lowered Gpx and increased NO production. Lowered SpO2 strongly predicts OSTOX/ANTIOX during Long COVID. In conclusion, the impact of acute COVID-19 on the symptoms of Long COVID is partly mediated by OSTOX/ANTIOX, especially lowered Gpx and zinc, increased MPO and NO production and lipid peroxidation-associated aldehyde formation. The results suggest that post-viral somatic and mental symptoms have a neuroimmune and neuro-oxidative origin.
Collapse
Affiliation(s)
| | | | | | - Abbas F Almulla
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria.
- Deakin University, IMPACT, the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, VIC, Australia.
| |
Collapse
|
7
|
Jahanbani F, Maynard RD, Sing JC, Jahanbani S, Perrino JJ, Spacek DV, Davis RW, Snyder MP. Phenotypic characteristics of peripheral immune cells of Myalgic encephalomyelitis/chronic fatigue syndrome via transmission electron microscopy: A pilot study. PLoS One 2022; 17:e0272703. [PMID: 35943990 PMCID: PMC9362953 DOI: 10.1371/journal.pone.0272703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 07/25/2022] [Indexed: 01/06/2023] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex chronic multi-systemic disease characterized by extreme fatigue that is not improved by rest, and worsens after exertion, whether physical or mental. Previous studies have shown ME/CFS-associated alterations in the immune system and mitochondria. We used transmission electron microscopy (TEM) to investigate the morphology and ultrastructure of unstimulated and stimulated ME/CFS immune cells and their intracellular organelles, including mitochondria. PBMCs from four participants were studied: a pair of identical twins discordant for moderate ME/CFS, as well as two age- and gender- matched unrelated subjects-one with an extremely severe form of ME/CFS and the other healthy. TEM analysis of CD3/CD28-stimulated T cells suggested a significant increase in the levels of apoptotic and necrotic cell death in T cells from ME/CFS patients (over 2-fold). Stimulated Tcells of ME/CFS patients also had higher numbers of swollen mitochondria. We also found a large increase in intracellular giant lipid droplet-like organelles in the stimulated PBMCs from the extremely severe ME/CFS patient potentially indicative of a lipid storage disorder. Lastly, we observed a slight increase in platelet aggregation in stimulated cells, suggestive of a possible role of platelet activity in ME/CFS pathophysiology and disease severity. These results indicate extensive morphological alterations in the cellular and mitochondrial phenotypes of ME/CFS patients' immune cells and suggest new insights into ME/CFS biology.
Collapse
Affiliation(s)
- Fereshteh Jahanbani
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Rajan D. Maynard
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Justin Cyril Sing
- Department of Molecular Genetics, Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Shaghayegh Jahanbani
- Division of Immunology and Rheumatology, Stanford University School of Medicine, and VA Palo Alto Health Care System, Palo Alto, California, United States of America
| | - John J. Perrino
- Stanford Cell Sciences Imaging Facility (CSIF), Stanford University School of Medicine Stanford, Stanford, California, United States of America
| | - Damek V. Spacek
- Karius Incorporated, Redwood City, California, United States of America
| | - Ronald W. Davis
- ME/CFS Collaborative Research Center at Stanford, Stanford Genome Technology Center, Stanford University School of Medicine, Palo Alto, California, United States of America
| | - Michael P. Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
8
|
Leong KH, Yip HT, Kuo CF, Tsai SY. Treatments of chronic fatigue syndrome and its debilitating comorbidities: a 12-year population-based study. J Transl Med 2022; 20:268. [PMID: 35690765 PMCID: PMC9187893 DOI: 10.1186/s12967-022-03461-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/25/2022] [Indexed: 12/03/2022] Open
Abstract
Background This study aims to provide 12-year nationwide epidemiology data to investigate the epidemiology and comorbidities of and therapeutic options for chronic fatigue syndrome (CFS) by analyzing the National Health Insurance Research Database. Methods 6306 patients identified as having CFS during the 2000–2012 period and 6306 controls (with similar distributions of age and sex) were analyzed. Result The patients with CFS were predominantly female and aged 35–64 years in Taiwan and presented a higher proportion of depression, anxiety disorder, insomnia, Crohn’s disease, ulcerative colitis, renal disease, type 2 diabetes, gout, dyslipidemia, rheumatoid arthritis, Sjogren syndrome, and herpes zoster. The use of selective serotonin receptor inhibitors (SSRIs), serotonin norepinephrine reuptake inhibitors (SNRIs), Serotonin antagonist and reuptake inhibitors (SARIs), Tricyclic antidepressants (TCAs), benzodiazepine (BZD), Norepinephrine-dopamine reuptake inhibitors (NDRIs), muscle relaxants, analgesic drugs, psychotherapies, and exercise therapies was prescribed significantly more frequently in the CFS cohort than in the control group. Conclusion This large national study shared the mainstream therapies of CFS in Taiwan, we noticed these treatments reported effective to relieve symptoms in previous studies. Furthermore, our findings indicate that clinicians should have a heightened awareness of the comorbidities of CFS, especially in psychiatric problems.
Collapse
Affiliation(s)
- Kam-Hang Leong
- Department of Medicine, Mackay Medical College, New Taipei City, 252, Taiwan.,Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, 21205, USA
| | - Hei-Tung Yip
- Management Office for Health Data, China Medical University Hospital, Taichung City, 404, Taiwan
| | - Chien-Feng Kuo
- Department of Medicine, Mackay Medical College, New Taipei City, 252, Taiwan.,Institute of Infectious Disease, Mackay Memorial Hospital, Taipei City, 104, Taiwan.,Department of Nursing, Nursing and Management, MacKay Junior College of Medicine, New Taipei City, 25245, Taiwan
| | - Shin-Yi Tsai
- Department of Medicine, Mackay Medical College, New Taipei City, 252, Taiwan. .,Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, 21205, USA. .,Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, 252, Taiwan. .,Institute of Long-Term Care, Mackay Medical College, New Taipei City, 252, Taiwan. .,Department of Department of Laboratory Medicine, Mackay Memorial Hospital, Taipei, 104, Taiwan.
| |
Collapse
|
9
|
González-Cebrián A, Almenar-Pérez E, Xu J, Yu T, Huang WE, Giménez-Orenga K, Hutchinson S, Lodge T, Nathanson L, Morten KJ, Ferrer A, Oltra E. Diagnosis of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome With Partial Least Squares Discriminant Analysis: Relevance of Blood Extracellular Vesicles. Front Med (Lausanne) 2022; 9:842991. [PMID: 35433768 PMCID: PMC9011062 DOI: 10.3389/fmed.2022.842991] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/21/2022] [Indexed: 12/25/2022] Open
Abstract
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS), a chronic disease characterized by long-lasting persistent debilitating widespread fatigue and post-exertional malaise, remains diagnosed by clinical criteria. Our group and others have identified differentially expressed miRNA profiles in the blood of patients. However, their diagnostic power individually or in combinations seems limited. A Partial Least Squares-Discriminant Analysis (PLS-DA) model initially based on 817 variables: two demographic, 34 blood analytic, 136 PBMC miRNAs, 639 Extracellular Vesicle (EV) miRNAs, and six EV features, selected an optimal number of five components, and a subset of 32 regressors showing statistically significant discriminant power. The presence of four EV-features (size and z-values of EVs prepared with or without proteinase K treatment) among the 32 regressors, suggested that blood vesicles carry relevant disease information. To further explore the features of ME/CFS EVs, we subjected them to Raman micro-spectroscopic analysis, identifying carotenoid peaks as ME/CFS fingerprints, possibly due to erythrocyte deficiencies. Although PLS-DA analysis showed limited capacity of Raman fingerprints for diagnosis (AUC = 0.7067), Raman data served to refine the number of PBMC miRNAs from our previous model still ensuring a perfect classification of subjects (AUC=1). Further investigations to evaluate model performance in extended cohorts of patients, to identify the precise ME/CFS EV components detected by Raman and to reveal their functional significance in the disease are warranted.
Collapse
Affiliation(s)
- Alba González-Cebrián
- Grupo de Ingeniería Estadística Multivariante, Departamento de Estadística e Investigación Operativa Aplicadas y Calidad, Universitat Politècnica de València, Valencia, Spain
| | - Eloy Almenar-Pérez
- Department of Pathology, School of Health Sciences, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
- Nuffield Department of Women's and Reproductive Health, The Women Centre, University of Oxford, Oxford, United Kingdom
| | - Jiabao Xu
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Tong Yu
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Wei E. Huang
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Karen Giménez-Orenga
- Escuela de Doctorado, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| | - Sarah Hutchinson
- Nuffield Department of Women's and Reproductive Health, The Women Centre, University of Oxford, Oxford, United Kingdom
| | - Tiffany Lodge
- Nuffield Department of Women's and Reproductive Health, The Women Centre, University of Oxford, Oxford, United Kingdom
| | - Lubov Nathanson
- Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States
- Institute for Neuro Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Karl J. Morten
- Nuffield Department of Women's and Reproductive Health, The Women Centre, University of Oxford, Oxford, United Kingdom
| | - Alberto Ferrer
- Grupo de Ingeniería Estadística Multivariante, Departamento de Estadística e Investigación Operativa Aplicadas y Calidad, Universitat Politècnica de València, Valencia, Spain
| | - Elisa Oltra
- Department of Pathology, School of Health Sciences, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
- Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
- *Correspondence: Elisa Oltra ; orcid.org/0000-0003-0598-2907
| |
Collapse
|
10
|
Yang TY, Lin CL, Yao WC, Lio CF, Chiang WP, Lin K, Kuo CF, Tsai SY. How mycobacterium tuberculosis infection could lead to the increasing risks of chronic fatigue syndrome and the potential immunological effects: a population-based retrospective cohort study. J Transl Med 2022; 20:99. [PMID: 35189895 PMCID: PMC8862378 DOI: 10.1186/s12967-022-03301-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/08/2022] [Indexed: 12/30/2022] Open
Abstract
Background Chronic fatigue syndrome (CFS) has been shown to be associated with infections. Tuberculosis (TB) is a highly prevalent infectious disease. Patients with chronic fatigue syndrome and post-tuberculosis experience similar symptoms. Furthermore, chronic fatigue syndrome and tuberculosis share similar plasma immunosignatures. This study aimed to clarify the risk of chronic fatigue syndrome following the diagnosis of Mycobacterium tuberculosis infection (MTI), by analyzing the National Health Insurance Research Database of Taiwan. Methods 7666 patients aged 20 years or older with newly diagnosed Mycobacterium tuberculosis infection during 2000–2011 and 30,663 participants without Mycobacterium tuberculosis infection were identified. Both groups were followed up until the diagnoses of chronic fatigue syndrome were made at the end of 2011. Results The relationship between Mycobacterium tuberculosis infection and the subsequent risk of chronic fatigue syndrome was estimated through Cox proportional hazards regression analysis, with the incidence density rates being 3.04 and 3.69 per 1000 person‐years among the non‐Mycobacterium tuberculosis infection and Mycobacterium tuberculosis infection populations, respectively (adjusted hazard ratio [HR] = 1.23, with 95% confidence interval [CI] 1.03–1.47). In the stratified analysis, the Mycobacterium tuberculosis infection group were consistently associated with a higher risk of chronic fatigue syndrome in the male sex (HR = 1.27, 95% CI 1.02–1.58) and age group of ≥ 65 years old (HR = 2.50, 95% CI 1.86–3.38). Conclusions The data from this population‐based retrospective cohort study revealed that Mycobacterium tuberculosis infection is associated with an elevated risk of subsequent chronic fatigue syndrome.
Collapse
Affiliation(s)
- Tse-Yen Yang
- Molecular and Genomic Epidemiology Center, China Medical University Hospital, Taichung City, 404, Taiwan.,College of Medicine, China Medical University, Taichung City, 404, Taiwan
| | - Cheng-Li Lin
- College of Medicine, China Medical University, Taichung City, 404, Taiwan.,Management Office for Health Data, China Medical University Hospital, Taichung City, 404, Taiwan
| | - Wei-Cheng Yao
- Department of Anesthesiology and Pain Medicine, Min-Sheng General Hospital, Tao-Yuan City, 330, Taiwan
| | - Chon-Fu Lio
- Department of Laboratory Medicine, Mackay Memorial Hospital, Taipei City, 104, Taiwan
| | - Wen-Po Chiang
- Department of Medicine, Mackay Medical College, New Taipei City, 252, Taiwan
| | - Kuan Lin
- Department of Laboratory Medicine, Mackay Memorial Hospital, Taipei City, 104, Taiwan
| | - Chien-Feng Kuo
- Department of Medicine, Mackay Medical College, New Taipei City, 252, Taiwan.,Institute of Infectious Disease, Mackay Memorial Hospital, Taipei City, 104, Taiwan
| | - Shin-Yi Tsai
- Department of Laboratory Medicine, Mackay Memorial Hospital, Taipei City, 104, Taiwan. .,Department of Medicine, Mackay Medical College, New Taipei City, 252, Taiwan. .,Graduate Institute of Long-Term Care, Mackay Medical College, New Taipei City, 252, Taiwan. .,Graduate Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, 252, Taiwan. .,Department of Health Policy and Management, Johns Hopkins University Bloomberg School of Public Health, Baltimore, 21205, USA.
| |
Collapse
|
11
|
Deumer US, Varesi A, Floris V, Savioli G, Mantovani E, López-Carrasco P, Rosati GM, Prasad S, Ricevuti G. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS): An Overview. J Clin Med 2021; 10:4786. [PMID: 34682909 PMCID: PMC8538807 DOI: 10.3390/jcm10204786] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 12/20/2022] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a chronic systemic disease that manifests via various symptoms such as chronic fatigue, post-exertional malaise, and cognitive impairment described as "brain fog". These symptoms often prevent patients from keeping up their pre-disease onset lifestyle, as extended periods of physical or mental activity become almost impossible. However, the disease presents heterogeneously with varying severity across patients. Therefore, consensus criteria have been designed to provide a diagnosis based on symptoms. To date, no biomarker-based tests or diagnoses are available, since the molecular changes observed also largely differ from patient to patient. In this review, we discuss the infectious, genetic, and hormonal components that may be involved in CFS pathogenesis, we scrutinize the role of gut microbiota in disease progression, we highlight the potential of non-coding RNA (ncRNA) for the development of diagnostic tools and briefly mention the possibility of SARS-CoV-2 infection causing CFS.
Collapse
Affiliation(s)
- Undine-Sophie Deumer
- Department of Biological Sciences, Faculty of Natural Sciences and Mathematics, University of Cologne, 50674 Cologne, Germany;
| | - Angelica Varesi
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
- Almo Collegio Borromeo, 27100 Pavia, Italy
| | - Valentina Floris
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy;
| | - Gabriele Savioli
- Emergency Department, IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Elisa Mantovani
- Department of Neurosciences, Biomedicine and Movement Sciences, Neurology Section, University of Verona, 37129 Verona, Italy;
| | - Paulina López-Carrasco
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico;
| | | | - Sakshi Prasad
- National Pirogov Memorial Medical University, 21018 Vinnytsya, Ukraine;
| | - Giovanni Ricevuti
- School of Pharmacy, Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
12
|
Wang H, Liu Y, Zhao J, Guo X, Hu M, Chen Y. Possible inflammatory mechanisms and predictors of Parkinson's disease patients with fatigue (Brief Review). Clin Neurol Neurosurg 2021; 208:106844. [PMID: 34388595 DOI: 10.1016/j.clineuro.2021.106844] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 04/27/2021] [Accepted: 07/23/2021] [Indexed: 01/02/2023]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the loss of dopamine-producing neurons in the substantia nigra and the abnormal cytoplasmic accumulation of proteinaceous aggregates called Lewy bodies (LBs), mainly composed of α-synuclein (α-syn). In recent years, it has been gradually recognized that fatigue is one of the most common and disabling symptoms in PD patients, with a prevalence of approximately 50%. Although neuroinflammation, a pathological hallmark of PD, is closely associated with fatigue, present mechanisms of fatigue in PD patients have not yet been systematically summarized, with their inflammatory predictors remaining controversial. Therefore, the aim of this brief review is to fill in the gaps in our understanding on the inflammatory factors involved in the pathophysiological mechanisms of fatigue and predicting its occurrence in PD patients. The determination of fatigue is mainly assessed using the Parkinson Fatigue Scale 16 (PFS-16) and Fatigue Severity Scale 9 (FSS-9). Several studies have reported that inflammatory marker levels, such as interleukin-6 (IL-6), and other inflammatory predictors closely associated with fatigue, such as soluble IL-2 receptor (sIL-2R), tumor necrosis factor alpha (TNF-α), high-sensitivity C-reactive protein (hs-CRP), neutrophil-to-lymphocyte ratio (NLR), and red blood cell distribution width (RDW), may help detect fatigue. Moreover, the following inflammatory mechanisms may be involved. (1) Abnormal aggregation of α-syn undergoes a conformational change, which then activates toll-like receptor 4 (TLR4) to release a large number of proinflammatory cytokines, causing fatigue symptoms. (2) Chronic peripheral inflammation and immune activation responses induce elevated levels of proinflammatory cytokines in PD patients, which enter the brain mainly through the traditional endocrine route or via direct vagus nerve transmission. The rising levels of proinflammatory cytokines cause the destruction of the blood-brain barrier (BBB) by combining with BBB endothelial cells, allowing many proinflammatory cytokines to cross the destroyed BBB and enter the brain, preventing astrocytes from reuptaking glutamate and laying foundations for the occurrence of fatigue. Furthermore, studies have suggested that fatigue symptoms in PD patients often represent a poor prognosis. Nevertheless, if the aforementioned inflammatory markers can effectively predict the occurrence of fatigue and allow early intervention, the prognosis of PD patients could be significantly improved. At present, its management mainly includes medical treatment (levodopa, dopamine receptor agonists, rasagiline, and antidepressants) and non-medical treatment (acupuncture and yoga). Thus, it is of great significance to be able to practice early detection and intervention in fatigue and improve the prognosis of patients with PD.
Collapse
Affiliation(s)
- Haili Wang
- Department of Clinical Medicine, Dalian Medical University, Dalian, Liaoning Province, China; Neurology, Department of Clinical Medicine, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Yimin Liu
- Department of Clinical Medicine, Dalian Medical University, Dalian, Liaoning Province, China; Neurology, Department of Clinical Medicine, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Jingyi Zhao
- Department of Clinical Medicine, Dalian Medical University, Dalian, Liaoning Province, China; Neurology, Department of Clinical Medicine, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Xin Guo
- Department of Clinical Medicine, Dalian Medical University, Dalian, Liaoning Province, China
| | - Meng Hu
- Neurology, Department of Clinical Medicine, Yangzhou University, Yangzhou, Jiangsu Province, China; Department of Clinical Medicine, Central South University, Changsha, Hunan Province, China
| | - Yingzhu Chen
- Neurology, Department of Clinical Medicine, Yangzhou University, Yangzhou, Jiangsu Province, China.
| |
Collapse
|
13
|
Testai L, Martelli A, Flori L, Cicero AFG, Colletti A. Coenzyme Q 10: Clinical Applications beyond Cardiovascular Diseases. Nutrients 2021; 13:1697. [PMID: 34067632 PMCID: PMC8156424 DOI: 10.3390/nu13051697] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/29/2021] [Accepted: 05/14/2021] [Indexed: 02/07/2023] Open
Abstract
Coenzyme Q10 (CoQ10) is an essential cofactor in oxidative phosphorylation (OXPHOS), present in mitochondria and cell membranes in reduced and oxidized forms. Acting as an energy transfer molecule, it occurs in particularly high levels in the liver, heart, and kidneys. CoQ10 is also an anti-inflammatory and antioxidant agent able to prevent the damage induced by free radicals and the activation of inflammatory signaling pathways. In this context, several studies have shown the possible inverse correlation between the blood levels of CoQ10 and some disease conditions. Interestingly, beyond cardiovascular diseases, CoQ10 is involved also in neuronal and muscular degenerative diseases, in migraine and in cancer; therefore, the supplementation with CoQ10 could represent a viable option to prevent these and in some cases might be used as an adjuvant to conventional treatments. This review is aimed to summarize the clinical applications regarding the use of CoQ10 in migraine, neurodegenerative diseases (including Parkinson and Alzheimer diseases), cancer, or degenerative muscle disorders (such as multiple sclerosis and chronic fatigue syndrome), analyzing its effect on patients' health and quality of life.
Collapse
Affiliation(s)
- Lara Testai
- Department of Pharmacy, University of Pisa, 56120 Pisa, Italy; (A.M.); (L.F.)
- Interdepartmental Research Centre ‘‘Nutraceuticals and Food for Health (NUTRAFOOD)’’, University of Pisa, 56120 Pisa, Italy
- Interdepartmental Research Centre of Ageing, Biology and Pathology, University of Pisa, 56120 Pisa, Italy
| | - Alma Martelli
- Department of Pharmacy, University of Pisa, 56120 Pisa, Italy; (A.M.); (L.F.)
- Interdepartmental Research Centre ‘‘Nutraceuticals and Food for Health (NUTRAFOOD)’’, University of Pisa, 56120 Pisa, Italy
- Interdepartmental Research Centre of Ageing, Biology and Pathology, University of Pisa, 56120 Pisa, Italy
| | - Lorenzo Flori
- Department of Pharmacy, University of Pisa, 56120 Pisa, Italy; (A.M.); (L.F.)
| | - Arrigo F. G. Cicero
- Medical and Surgical Sciences Department, University of Bologna, 40138 Bologna, Italy;
- Italian Nutraceutical Society (SINut), 40138 Bologna, Italy;
| | - Alessandro Colletti
- Italian Nutraceutical Society (SINut), 40138 Bologna, Italy;
- Department of Science and Drug Technology, University of Turin, 10125 Turin, Italy
| |
Collapse
|
14
|
Kuo CF, Shi L, Lin CL, Yao WC, Chen HT, Lio CF, Wang YTT, Su CH, Hsu NW, Tsai SY. How peptic ulcer disease could potentially lead to the lifelong, debilitating effects of chronic fatigue syndrome: an insight. Sci Rep 2021; 11:7520. [PMID: 33824394 PMCID: PMC8024330 DOI: 10.1038/s41598-021-87018-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 03/22/2021] [Indexed: 02/08/2023] Open
Abstract
Chronic Fatigue Syndrome (CFS) has been defined as unexplained relapsing or persistent fatigue for at least 6 consecutive months. Immuno-inflammatory pathway, bacterial infection, and other causes play essential roles in CFS. Helicobacter pylori infection is one of the most common causes of foregut inflammation, leading to peptic ulcer disease (PUD). This study aimed to analyze the risk of CFS development between patients with and without PUD. Other related factors were also analyzed. We performed a retrospective, nationwide cohort study identifying patients with or without PUD respectively by analyzing the Longitudinal Health Insurance Database 2000 (LHID2000), Taiwan. The overall incidence of CFS was higher in the PUD cohort than in the non- PUD cohort (HR = 2.01, 95% CI = 1.75-2.30), with the same adjusted HR (aHR) when adjusting for age, sex, and comorbidities. The sex-specific PUD cohort to the non-PUD cohort relative risk of CFS was significant in both genders. The age-specific incidence of CFS showed incidence density increasing with age in both cohorts. There is an increased risk of developing CFS following PUD, especially in females and the aging population. Hopefully, these findings can prevent common infections from progressing to debilitating, chronic conditions such as CFS.
Collapse
Affiliation(s)
- Chien-Feng Kuo
- Department of Medicine, Graduate Institute of Long-Term Care, Graduate Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan
- Department of Cosmetic Applications and Management, MacKay Junior College of Medicine, Nursing and Management, New Taipei City, Taiwan
- Division of Infectious Diseases, Department of Internal Medicine, Mackay Memorial Hospital, Taipei, Taiwan
| | - Leiyu Shi
- Department of Health Policy and Management, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Cheng-Li Lin
- College of Medicine, China Medical University, Taichung City, Taiwan
- Management Office for Health Data, China Medical University Hospital, Taichung City, Taiwan
| | - Wei-Cheng Yao
- Department of Anesthesiology and Pain Medicine, Min-Sheng General Hospital, Tao-Yuan, 330, Taiwan
| | - Hsiang-Ting Chen
- Department of Laboratory Medicine, Mackay Memorial Hospital, Taipei, Taiwan
| | - Chon-Fu Lio
- Department of Laboratory Medicine, Mackay Memorial Hospital, Taipei, Taiwan
| | - Yu-Ting Tina Wang
- Department of Laboratory Medicine, Mackay Memorial Hospital, Taipei, Taiwan
| | - Ching-Huang Su
- Department of Laboratory Medicine, Mackay Memorial Hospital, Taipei, Taiwan
| | - Nai-Wei Hsu
- Department of Medicine, Graduate Institute of Long-Term Care, Graduate Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan
- Department of Laboratory Medicine, Mackay Memorial Hospital, Taipei, Taiwan
| | - Shin-Yi Tsai
- Department of Medicine, Graduate Institute of Long-Term Care, Graduate Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan.
- Department of Cosmetic Applications and Management, MacKay Junior College of Medicine, Nursing and Management, New Taipei City, Taiwan.
- Department of Laboratory Medicine, Mackay Memorial Hospital, Taipei, Taiwan.
| |
Collapse
|
15
|
Foster CG, Landowski LM, Sutherland BA, Howells DW. Differences in fatigue-like behavior in the lipopolysaccharide and poly I:C inflammatory animal models. Physiol Behav 2021; 232:113347. [PMID: 33529685 DOI: 10.1016/j.physbeh.2021.113347] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/18/2021] [Accepted: 01/29/2021] [Indexed: 11/30/2022]
Abstract
Central fatigue is a condition associated with impairment of the central nervous system often leading to the manifestation of a range of debilitating symptoms. Fatigue can be a consequence of systemic inflammation following an infection. Administration of lipopolysaccharide (LPS) and polyriboinosinic:polyribocytidlic (poly I:C) to animals can induce systemic inflammation by mimicking a bacterial or viral infection respectively and therefore have been used as models of fatigue. We evaluated a range of phenotypic behaviors exhibited in the LPS and poly I:C animal models to assess whether they adequately replicate fatigue symptomology in humans. In addition to standard observation- and intervention-based behavioral assessments, we used powerful in-cage monitoring technology to quantify rodent behavior without external interference. LPS and poly I:C treated Sprague Dawley rats displayed 'sickness behaviors' of elevated temperature, weight loss and reduced activity in the open field test and with in-cage monitoring within 24 h post-treatment, but only LPS-treated rats displayed these behaviors beyond these acute timepoints. Once sickness behavior diminished, LPS-treated rats exhibited an increase in reward-seeking and motivation behaviors. Overall, these results suggest that the LPS animal model produces an extensive and sustained fatigue-like phenotype, whereas the poly I:C model only produced acute effects. Our results suggest that the LPS animal model is a more suitable candidate for further studies on central fatigue-like behavior.
Collapse
Affiliation(s)
- Catherine G Foster
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Australia
| | - Lila M Landowski
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Australia
| | - Brad A Sutherland
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Australia
| | - David W Howells
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Australia.
| |
Collapse
|
16
|
Environmental, Neuro-immune, and Neuro-oxidative Stress Interactions in Chronic Fatigue Syndrome. Mol Neurobiol 2020; 57:4598-4607. [PMID: 32761353 DOI: 10.1007/s12035-020-01939-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 05/13/2020] [Indexed: 12/19/2022]
Abstract
Chronic fatigue syndrome/myalgic encephalomyelitis (CFS) is a complex, multisystem disease that is characterized by long-term fatigue, exhaustion, disabilities, pain, neurocognitive impairments, gastrointestinal symptoms, and post-exertional malaise, as well as lowered occupational, educational, and social functions. The clinical and biomarker diagnosis of this disorder is hampered by the lack of validated diagnostic criteria and laboratory tests with adequate figures of merit, although there are now many disease biomarkers indicating the pathophysiology of CFS. Here, we review multiple factors, such as immunological and environmental factors, which are associated with CFS and evaluate current concepts on the involvement of immune and environmental factors in the pathophysiology of CFS. The most frequently reported immune dysregulations in CFS are modifications in immunoglobulin contents, changes in B and T cell phenotypes and cytokine profiles, and decreased cytotoxicity of natural killer cells. Some of these immune aberrations display a moderate diagnostic performance to externally validate the clinical diagnosis of CFS, including the expression of activation markers and protein kinase R (PKR) activity. Associated with the immune aberrations are activated nitro-oxidative pathways, which may explain the key symptoms of CFS. This review shows that viral and bacterial infections, as well as nutritional deficiencies, may further aggravate the immune-oxidative pathophysiology of CFS. Targeted treatments with antioxidants and lipid replacement treatments may have some clinical efficacy in CFS. We conclude that complex interactions between immune and nitro-oxidative pathways, infectious agents, environmental factors, and nutritional deficiencies play a role in the pathophysiology of CFS.
Collapse
|
17
|
Maes M, Rodriguez LA, Morris G. Is a diagnostic blood test for chronic fatigue syndrome on the horizon? Expert Rev Mol Diagn 2019; 19:1049-1051. [DOI: 10.1080/14737159.2020.1681976] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
- IMPACT Strategic Research Center, Deakin University, Geelong, Australia
| | - Laura Andres Rodriguez
- Group of Psychological Research in Fibromyalgia & Chronic Pain (AGORA), Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Gerwyn Morris
- IMPACT Strategic Research Center, Deakin University, Geelong, Australia
| |
Collapse
|
18
|
Myalgic encephalomyelitis/chronic fatigue syndrome: From pathophysiological insights to novel therapeutic opportunities. Pharmacol Res 2019; 148:104450. [PMID: 31509764 DOI: 10.1016/j.phrs.2019.104450] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/26/2019] [Accepted: 09/06/2019] [Indexed: 12/12/2022]
Abstract
Myalgic encephalomyelitis (ME) or chronic fatigue syndrome (CFS) is a common and disabling condition with a paucity of effective and evidence-based therapies, reflecting a major unmet need. Cognitive behavioural therapy and graded exercise are of modest benefit for only some ME/CFS patients, and many sufferers report aggravation of symptoms of fatigue with exercise. The presence of a multiplicity of pathophysiological abnormalities in at least the subgroup of people with ME/CFS diagnosed with the current international consensus "Fukuda" criteria, points to numerous potential therapeutic targets. Such abnormalities include extensive data showing that at least a subgroup has a pro-inflammatory state, increased oxidative and nitrosative stress, disruption of gut mucosal barriers and mitochondrial dysfunction together with dysregulated bioenergetics. In this paper, these pathways are summarised, and data regarding promising therapeutic options that target these pathways are highlighted; they include coenzyme Q10, melatonin, curcumin, molecular hydrogen and N-acetylcysteine. These data are promising yet preliminary, suggesting hopeful avenues to address this major unmet burden of illness.
Collapse
|
19
|
Yang S, Chu S, Gao Y, Ai Q, Liu Y, Li X, Chen N. A Narrative Review of Cancer-Related Fatigue (CRF) and Its Possible Pathogenesis. Cells 2019; 8:cells8070738. [PMID: 31323874 PMCID: PMC6679212 DOI: 10.3390/cells8070738] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/10/2019] [Accepted: 07/17/2019] [Indexed: 12/16/2022] Open
Abstract
Many cancer patients suffer from severe fatigue when treated with chemotherapy or radiotherapy; however, the etiology and pathogenesis of this kind of fatigue remains unknown. Fatigue is associated with cancer itself, as well as adjuvant therapies and can persist for a long time. Cancer patients present a high degree of fatigue, which dramatically affects the quality of their everyday life. There are various clinical research studies and reviews that aimed to explore the mechanisms of cancer-related fatigue (CRF). However, there are certain limitations in these studies: For example, some studies have only blood biochemical texts without histopathological examination, and there has been insufficient systemic evaluation of the dynamic changes in relevant indexes. Thus, we present this narrative review to summarize previous studies on CRF and explore promising research directions. Plenty of evidence suggests a possible association between CRF and physiological dysfunction, including skeletal muscular and mitochondrial dysfunction, peripheral immune activation and inflammation dysfunction, as well as central nervous system (CNS) disorder. Mitochondrial DNA (mtDNA), mitochondrial structure, oxidative pressure, and some active factors such as ATP play significant roles that lead to the induction of CRF. Meanwhile, several pro-inflammatory and anti-inflammatory cytokines in the peripheral system, even in the CNS, significantly contribute to the occurrence of CRF. Moreover, CNS function disorders, such as neuropeptide, neurotransmitter, and hypothalamic-pituitary-adrenal (HPA) axis dysfunction, tend to amplify the sense of fatigue in cancer patients through various signaling pathways. There have been few accurate animal models established to further explore the molecular mechanisms of CRF due to different types of cancer, adjuvant therapy schedules, living environments, and physical status. It is imperative to develop appropriate animal models that can mimic human CRF and to explore additional mechanisms using histopathological and biochemical methods. Therefore, the main purpose of this review is to analyze the possible pathogenesis of CRF and recommend future research that will clarify CRF pathogenesis and facilitate the formulation of new treatment options.
Collapse
Affiliation(s)
- Songwei Yang
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha 410208, Hunan, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medical, Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shifeng Chu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha 410208, Hunan, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medical, Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yan Gao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medical, Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Qidi Ai
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha 410208, Hunan, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medical, Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yingjiao Liu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha 410208, Hunan, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medical, Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xun Li
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha 410208, Hunan, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medical, Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Naihong Chen
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China.
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha 410208, Hunan, China.
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medical, Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
20
|
Yang T, Yang Y, Wang D, Li C, Qu Y, Guo J, Shi T, Bo W, Sun Z, Asakawa T. The clinical value of cytokines in chronic fatigue syndrome. J Transl Med 2019; 17:213. [PMID: 31253154 PMCID: PMC6599310 DOI: 10.1186/s12967-019-1948-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/05/2019] [Indexed: 02/07/2023] Open
Abstract
Chronic fatigue syndrome (CFS) is a heterogeneous disorder with uncertain pathogenesis. Without effective therapy, CFS is characterized by disabling fatigue, depression, memory loss, and somatic discomfort. This comprehensive and impartial review aimed to assess the available evidence and examined the potential clinical value of using cytokines for the monitoring of CFS and as targets for the treatment of CFS. Inflammatory reactions and immune modulation are considered to contribute to the pathophysiology of CFS, and it is well documented that cytokines present in both blood and cerebrospinal fluid (CSF) are closely associated with the progression and severity of CFS. However, pathophysiological and methodological limitations prevent using circulating cytokines as independent diagnostic indices. Moreover, there is no evidence to support the use of CSF cytokines as independent diagnostic indices. Nevertheless, a comprehensive evaluation of changes in circulating and CSF cytokines may improve clinical understanding of the pathophysiology of patients with CFS, aiding in the establishment of an appropriate diagnosis. Importantly, the available evidence does not support the value of cytokines as therapeutic targets. We believe that an improved understanding of cytokine-related mechanisms will be helpful to explore new cytokine-related therapeutic targets.
Collapse
Affiliation(s)
- Tiansong Yang
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, 26 Heping Road, Harbin, China
| | - Yan Yang
- Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, China
| | - Delong Wang
- Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, China
| | - Chaoran Li
- Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, China
| | - Yuanyuan Qu
- Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, China
| | - Jing Guo
- Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, China
| | - Tianyu Shi
- Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, China
| | - Wang Bo
- Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, China
| | - Zhongren Sun
- Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, China.
| | - Tetsuya Asakawa
- Department of Neurosurgery, Hamamatsu University School of Medicine, Handayama, 1-20-1, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan. .,Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| |
Collapse
|
21
|
Zhang Q, Gong J, Dong H, Xu S, Wang W, Huang G. Acupuncture for chronic fatigue syndrome: a systematic review and meta-analysis. Acupunct Med 2019; 37:211-222. [PMID: 31204859 DOI: 10.1136/acupmed-2017-011582] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Objective: To evaluate evidence for the efficacy of acupuncture for chronic fatigue syndrome (CFS). Methods: Randomized controlled trials (RCTs) comparing acupuncture with sham acupuncture, other interventions that may have a therapeutic effect, or no intervention, for the treatment of CFS, were searched for in the following databases up to March 2018: Pubmed; Embase; the Cochrane Library; Web of Science; Wanfang database; China National Knowledge Infrastructure (CNKI); Chinese Biomedicine (CBM) database; and VIP database. Risk of bias was determined using the Cochrane tool. Meta-analyses were performed using RevMan V.5.3 software. The GRADE approach (Grading of Recommendations Assessment, Development and Evaluation) was adopted for levels of evidence. Results: Sixteen studies with 1346 subjects were included. Most studies had low methodological quality. Meta-analyses showed a favourable effect of acupuncture on overall response rate compared with sham acupuncture (four studies, 281 participants, RR=2.08, 95% CI 1.4 to 3.1, I2=64%, low certainty) and Chinese herbal medicine (three studies, 290 participants, RR=1.17, 95% CI 1.07 to 1.29, I2=0%, low certainty). Acupuncture also appeared to significantly reduce fatigue severity measured by Chalder’s Fatigue Scale and the Fatigue Severity Scale compared with other types of control. Conclusion: Our review indicated that acupuncture was more effective than sham acupuncture and other interventions (Chinese herbal medicine, mainly), but no firm conclusion could be reached owing to limited data, poor quality and potentially exaggerated effect size evaluation. Further large, rigorously designed and reported RCTs are required.
Collapse
Affiliation(s)
- Qing Zhang
- Institute of Interated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Gong
- Institute of Interated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haoxu Dong
- Institute of Interated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shabei Xu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guangying Huang
- Institute of Interated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
22
|
Josev EK, Malpas CB, Seal ML, Scheinberg A, Lubitz L, Rowe K, Knight SJ. Resting-state functional connectivity, cognition, and fatigue in response to cognitive exertion: a novel study in adolescents with chronic fatigue syndrome. Brain Imaging Behav 2019; 14:1815-1830. [DOI: 10.1007/s11682-019-00119-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Morris MC, Cooney KE, Sedghamiz H, Abreu M, Collado F, Balbin EG, Craddock TJA, Klimas NG, Broderick G, Fletcher MA. Leveraging Prior Knowledge of Endocrine Immune Regulation in the Therapeutically Relevant Phenotyping of Women With Chronic Fatigue Syndrome. Clin Ther 2019; 41:656-674.e4. [PMID: 30929860 PMCID: PMC6478538 DOI: 10.1016/j.clinthera.2019.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/28/2019] [Accepted: 03/08/2019] [Indexed: 12/20/2022]
Abstract
PURPOSE The complex and varied presentation of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) has made it difficult to diagnose, study, and treat. Its symptoms and likely etiology involve multiple components of endocrine and immune regulation, including the hypothalamic-pituitary-adrenal axis, the hypothalamic-pituitary-gonadal axis, and their interactive oversight of immune function. We propose that the persistence of ME/CFS may involve changes in the regulatory interactions across these physiological axes. We also propose that the robustness of this new pathogenic equilibrium may at least in part explain the limited success of conventional single-target therapies. METHODS A comprehensive model was constructed of female endocrine-immune signaling consisting of 28 markers linked by 214 documented regulatory interactions. This detailed model was then constrained to adhere to experimental measurements in a subset of 17 candidate immune markers measured in peripheral blood of patients with ME/CFS and healthy control subjects before, during, and after a maximal exercise challenge. A set of 26 competing numerical models satisfied these data to within 5% error. FINDINGS Mechanistically informed predictions of endocrine and immune markers that were either unmeasured or exhibited high subject-to-subject variability pointed to possible context-specific overexpression in ME/CFS at rest of corticotropin-releasing hormone, chemokine (C-X-C motif) ligand 8, estrogen, follicle-stimulating hormone (FSH), gonadotropin-releasing hormone 1, interleukin (IL)-23, and luteinizing hormone, and underexpression of adrenocorticotropic hormone, cortisol, interferon-γ, IL-10, IL-17, and IL-1α. Simulations of rintatolimod and rituximab treatment predicted a shift in the repertoire of available endocrine-immune regulatory regimens. Rintatolimod was predicted to make available substantial remission in a significant subset of subjects, in particular those with low levels of IL-1α, IL-17, and cortisol; intermediate levels of progesterone and FSH; and high estrogen levels. Rituximab treatment was predicted to support partial remission in a smaller subset of patients with ME/CFS, specifically those with low norepinephrine, IL-1α, chemokine (C-X-C motif) ligand 8, and cortisol levels; intermediate FSH and gonadotropin-releasing hormone 1 levels; and elevated expression of tumor necrosis factor-α, luteinizing hormone, IL-12, and B-cell activation. IMPLICATIONS Applying a rigorous filter of known signaling mechanisms to experimentally measured immune marker expression in ME/CFS has highlighted potential new context-specific markers of illness. These novel endocrine and immune markers may offer useful candidates in delineating new subtypes of ME/CFS and may inform on refinements to the inclusion criteria and instrumentation of new and ongoing trials involving rintatolimod and rituximab treatment protocols.
Collapse
Affiliation(s)
- Matthew C Morris
- Center for Clinical Systems Biology, Rochester General Hospital, Rochester, NY, USA
| | - Katherine E Cooney
- Center for Clinical Systems Biology, Rochester General Hospital, Rochester, NY, USA
| | - Hooman Sedghamiz
- Center for Clinical Systems Biology, Rochester General Hospital, Rochester, NY, USA
| | - Maria Abreu
- Institute for Neuro Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA; Miami Veterans Affairs Medical Center, Miami, FL, USA
| | - Fanny Collado
- Institute for Neuro Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA; Miami Veterans Affairs Medical Center, Miami, FL, USA
| | - Elizabeth G Balbin
- Institute for Neuro Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA; Miami Veterans Affairs Medical Center, Miami, FL, USA
| | - Travis J A Craddock
- Institute for Neuro Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA; Departments of Psychology and Neuroscience, Computer Science, and Clinical Immunology, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Nancy G Klimas
- Institute for Neuro Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA; Miami Veterans Affairs Medical Center, Miami, FL, USA
| | - Gordon Broderick
- Center for Clinical Systems Biology, Rochester General Hospital, Rochester, NY, USA; Institute for Neuro Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA; Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, USA.
| | - Mary Ann Fletcher
- Institute for Neuro Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA; Miami Veterans Affairs Medical Center, Miami, FL, USA
| |
Collapse
|
24
|
Morris G, Maes M, Berk M, Puri BK. Myalgic encephalomyelitis or chronic fatigue syndrome: how could the illness develop? Metab Brain Dis 2019; 34:385-415. [PMID: 30758706 PMCID: PMC6428797 DOI: 10.1007/s11011-019-0388-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 01/23/2019] [Indexed: 12/19/2022]
Abstract
A model of the development and progression of chronic fatigue syndrome (myalgic encephalomyelitis), the aetiology of which is currently unknown, is put forward, starting with a consideration of the post-infection role of damage-associated molecular patterns and the development of chronic inflammatory, oxidative and nitrosative stress in genetically predisposed individuals. The consequences are detailed, including the role of increased intestinal permeability and the translocation of commensal antigens into the circulation, and the development of dysautonomia, neuroinflammation, and neurocognitive and neuroimaging abnormalities. Increasing levels of such stress and the switch to immune and metabolic downregulation are detailed next in relation to the advent of hypernitrosylation, impaired mitochondrial performance, immune suppression, cellular hibernation, endotoxin tolerance and sirtuin 1 activation. The role of chronic stress and the development of endotoxin tolerance via indoleamine 2,3-dioxygenase upregulation and the characteristics of neutrophils, monocytes, macrophages and T cells, including regulatory T cells, in endotoxin tolerance are detailed next. Finally, it is shown how the immune and metabolic abnormalities of chronic fatigue syndrome can be explained by endotoxin tolerance, thus completing the model.
Collapse
Affiliation(s)
- Gerwyn Morris
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Victoria, Australia
| | - Michael Maes
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Victoria, Australia
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Victoria, Australia
- Department of Psychiatry, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
- Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, Victoria, Australia
| | - Basant K Puri
- Department of Medicine, Imperial College London, Hammersmith Hospital, London, England, W12 0HS, UK.
| |
Collapse
|
25
|
Clark JE, Ng WF, Rushton S, Watson S, Newton JL. Network structure underpinning (dys)homeostasis in chronic fatigue syndrome; Preliminary findings. PLoS One 2019; 14:e0213724. [PMID: 30908516 PMCID: PMC6433252 DOI: 10.1371/journal.pone.0213724] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/27/2019] [Indexed: 12/11/2022] Open
Abstract
Introduction A large body of evidence has established a pattern of altered functioning in the immune system, autonomic nervous system and hypothalamic pituitary adrenal axis in chronic fatigue syndrome. However, the relationship between components within and between these systems is unclear. In this paper we investigated the underlying network structure of the autonomic system in patients and controls, and a larger network comprising all three systems in patients alone. Methods In a sample of patients and controls we took several measures of autonomic nervous system output during 10 minutes of supine rest covering tests of blood pressure variability, heart rate variability and cardiac output. Awakening salivary cortisol was measured on each of two days with participants receiving 0.5mg dexamethasone during the afternoon of the first day. Basal plasma cytokine levels and the in vitro cytokine response to dexamethasone were also measured. Symptom outcome measures used were the fatigue impact scale and cognitive failures questionnaire. Mutual information criteria were used to construct networks describing the dependency amongst variables. Data from 42 patients and 9 controls were used in constructing autonomic networks, and 15 patients in constructing the combined network. Results The autonomic network in patients showed a more uneven distribution of information, with two distinct modules emerging dominated by systolic blood pressure during active stand and end diastolic volume and stroke volume respectively. The combined network revealed strong links between elements of each of the three regulatory systems, characterised by three higher modules the centres of which were systolic blood pressure during active stand, stroke volume and ejection fraction respectively. Conclusions CFS is a complex condition affecting physiological systems. It is important that novel analytical techniques are used to understand the abnormalities that lead to CFS. The underlying network structure of the autonomic system is significantly different to that of controls, with a small number of individual nodes being highly influential. The combined network suggests links across regulatory systems which shows how alterations in single nodes might spread throughout the network to produce alterations in other, even distant, nodes. Replication in a larger cohort is warranted.
Collapse
Affiliation(s)
- James E Clark
- Institute of Neuroscience, Newcastle University, Newcastle, United Kingdom
| | - Wan-Fai Ng
- Institute of Cellular Medicine, Newcastle University, Newcastle, United Kingdom
| | - Stephen Rushton
- BCES-Modelling, Newcastle University, Newcastle, United Kingdom
| | - Stuart Watson
- Institute of Neuroscience, Newcastle University, Newcastle, United Kingdom
| | - Julia L Newton
- Institute of Cellular Medicine, Newcastle University, Newcastle, United Kingdom.,Newcastle upon Tyne Hospitals, NHS Foundation Trust, Newcastle, United Kingdom
| |
Collapse
|
26
|
Richman S, Morris MC, Broderick G, Craddock TJA, Klimas NG, Fletcher MA. Pharmaceutical Interventions in Chronic Fatigue Syndrome: A Literature-based Commentary. Clin Ther 2019; 41:798-805. [PMID: 30871727 DOI: 10.1016/j.clinthera.2019.02.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 02/11/2019] [Indexed: 12/22/2022]
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating disorder characterized by prolonged periods of fatigue, chronic pain, depression, and a complex constellation of other symptoms. Currently, ME/CFS has no known cause, nor are the mechanisms of illness well understood. Therefore, with few exceptions, attempts to treat ME/CFS have been directed mainly toward symptom management. These treatments include antivirals, pain relievers, antidepressants, and oncologic agents as well as other single-intervention treatments. Results of these trials have been largely inconclusive and, in some cases, contradictory. Contributing factors include a lack of well-designed and -executed studies and the highly heterogeneous nature of ME/CFS, which has made a single etiology difficult to define. Because the majority of single-intervention treatments have shown little efficacy, it may instead be beneficial to explore broader-acting combination therapies in which a more focused precision-medicine approach is supported by a systems-level analysis of endocrine and immune co-regulation.
Collapse
Affiliation(s)
- Spencer Richman
- Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, USA; Center for Clinical Systems Biology, Rochester General Hospital, Rochester, NY, USA
| | - Matthew C Morris
- Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, USA; Center for Clinical Systems Biology, Rochester General Hospital, Rochester, NY, USA
| | - Gordon Broderick
- Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, USA; Center for Clinical Systems Biology, Rochester General Hospital, Rochester, NY, USA; Institute for Neuro Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA; Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, USA.
| | - Travis J A Craddock
- Institute for Neuro Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA; Departments of Psychology and Neuroscience, Computer Science, Nova Southeastern University, Fort Lauderdale, FL, USA; Department of Clinical Immunology, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Nancy G Klimas
- Institute for Neuro Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA; Department of Clinical Immunology, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Mary Ann Fletcher
- Institute for Neuro Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA; Department of Clinical Immunology, Nova Southeastern University, Fort Lauderdale, FL, USA
| |
Collapse
|
27
|
Bjørklund G, Dadar M, Pen JJ, Chirumbolo S, Aaseth J. Chronic fatigue syndrome (CFS): Suggestions for a nutritional treatment in the therapeutic approach. Biomed Pharmacother 2018; 109:1000-1007. [PMID: 30551349 DOI: 10.1016/j.biopha.2018.10.076] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/10/2018] [Accepted: 10/14/2018] [Indexed: 12/27/2022] Open
Abstract
Chronic fatigue syndrome (CFS) is known as a multi-systemic and complex illness, which induces fatigue and long-term disability in educational, occupational, social, or personal activities. The diagnosis of this disease is difficult, due to lacking a proper and suited diagnostic laboratory test, besides to its multifaceted symptoms. Numerous factors, including environmental and immunological issues, and a large spectrum of CFS symptoms, have recently been reported. In this review, we focus on the nutritional intervention in CFS, discussing the many immunological, environmental, and nutritional aspects currently investigated about this disease. Changes in immunoglobulin levels, cytokine profiles and B- and T- cell phenotype and declined cytotoxicity of natural killer cells, are commonly reported features of immune dysregulation in CFS. Also, some nutrient deficiencies (vitamin C, vitamin B complex, sodium, magnesium, zinc, folic acid, l-carnitine, l-tryptophan, essential fatty acids, and coenzyme Q10) appear to be important in the severity and exacerbation of CFS symptoms. This review highlights a far-driven analysis of mineral and vitamin deficiencies among CFS patients.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway.
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Joeri J Pen
- Diabetes Clinic, Department of Internal Medicine, UZ Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium; Department of Nutrition, UZ Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Salvatore Chirumbolo
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Jan Aaseth
- Research Department, Innlandet Hospital Trust, Brumunddal, Norway; Inland Norway University of Applied Sciences, Elverum, Norway
| |
Collapse
|
28
|
Groven N, Fors EA, Iversen VC, White LR, Reitan SK. Association between cytokines and psychiatric symptoms in chronic fatigue syndrome and healthy controls. Nord J Psychiatry 2018; 72:556-560. [PMID: 30063870 DOI: 10.1080/08039488.2018.1493747] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE The reports regarding the status of the immune system in patients with chronic fatigue syndrome/myalgic encephalopathy (CFS/ME) have been inconclusive. We approached this question by comparing a strictly defined group of CFS/ME outpatients to healthy control individuals, and thereafter studied cytokines in subgroups with various psychiatric symptoms. MATERIALS AND METHODS Twenty patients diagnosed with CFS/ME according to the Fukuda criteria and 20 age- and sex-matched healthy controls were enrolled in the study. Plasma was analysed by ELISA for levels of the cytokines TNF-α, IL-4, IL-6 and IL-10. Participants also answered questionnaires regarding health in general, and psychiatric symptoms in detail. RESULTS Increased plasma levels of TNF-α in CFS/ME patients almost reached significance compared to healthy controls (p = .056). When studying the CFS/ME and control groups separately, there was a significant correlation between TNF-α and The Hospital Anxiety and Depression Scale (HADS) depressive symptoms in controls only, not in the CFS/ME group. A correlation between IL-10 and psychoticism was found in both groups, whereas the correlation for somatisation was seen only in the CFS/ME group. When looking at the total population, there was a significant correlation between TNF-α and both the HADS depressive symptoms and the SCL-90-R cluster somatisation. Also, there was a significant association between IL-10 and the SCL-90-R cluster somatisation when analyzing the cohort (patients and controls together). CONCLUSIONS These findings indicate that immune activity in CFS/ME patients deviates from that of healthy controls, which implies potential pathogenic mechanisms and possible therapeutic approaches to CFS/ME. More comprehensive studies should be carried out on defined CFS/ME subgroups.
Collapse
Affiliation(s)
- Nina Groven
- a Department of Mental Health, Faculty of Medicine and Health Sciences , Norwegian University of Science and Technology (NTNU) , Trondheim , Norway
| | - Egil A Fors
- b General Practice Research Unit, Department of Public Health Sciences and Nursing, Faculty of Medicine and Health Sciences , Norwegian University of Science and Technology (NTNU) , Trondheim , Norway
| | - Valentina C Iversen
- a Department of Mental Health, Faculty of Medicine and Health Sciences , Norwegian University of Science and Technology (NTNU) , Trondheim , Norway.,c Department of Tiller DPS , St. Olav's University Hospital , Trondheim , Norway
| | - Linda R White
- d Department of Neurology , St. Olav's Hospital , Trondheim , Norway.,e Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences , Norwegian University of Science and Technology (NTNU) , Trondheim , Norway
| | - Solveig Klæbo Reitan
- a Department of Mental Health, Faculty of Medicine and Health Sciences , Norwegian University of Science and Technology (NTNU) , Trondheim , Norway.,f Department of Psychiatry , St. Olav's Hospital , Trondheim , Norway
| |
Collapse
|
29
|
Morris G, Reiche EMV, Murru A, Carvalho AF, Maes M, Berk M, Puri BK. Multiple Immune-Inflammatory and Oxidative and Nitrosative Stress Pathways Explain the Frequent Presence of Depression in Multiple Sclerosis. Mol Neurobiol 2018; 55:6282-6306. [PMID: 29294244 PMCID: PMC6061180 DOI: 10.1007/s12035-017-0843-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 12/14/2017] [Indexed: 12/21/2022]
Abstract
Patients with a diagnosis of multiple sclerosis (MS) or major depressive disorder (MDD) share a wide array of biological abnormalities which are increasingly considered to play a contributory role in the pathogenesis and pathophysiology of both illnesses. Shared abnormalities include peripheral inflammation, neuroinflammation, chronic oxidative and nitrosative stress, mitochondrial dysfunction, gut dysbiosis, increased intestinal barrier permeability with bacterial translocation into the systemic circulation, neuroendocrine abnormalities and microglial pathology. Patients with MS and MDD also display a wide range of neuroimaging abnormalities and patients with MS who display symptoms of depression present with different neuroimaging profiles compared with MS patients who are depression-free. The precise details of such pathology are markedly different however. The recruitment of activated encephalitogenic Th17 T cells and subsequent bidirectional interaction leading to classically activated microglia is now considered to lie at the core of MS-specific pathology. The presence of activated microglia is common to both illnesses although the pattern of such action throughout the brain appears to be different. Upregulation of miRNAs also appears to be involved in microglial neurotoxicity and indeed T cell pathology in MS but does not appear to play a major role in MDD. It is suggested that the antidepressant lofepramine, and in particular its active metabolite desipramine, may be beneficial not only for depressive symptomatology but also for the neurological symptoms of MS. One clinical trial has been carried out thus far with, in particular, promising MRI findings.
Collapse
Affiliation(s)
- Gerwyn Morris
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Barwon Health, Geelong, Australia
| | - Edna Maria Vissoci Reiche
- Department of Pathology, Clinical Analysis, and Toxicology, Health Sciences Center, State University of Londrina, Londrina, Paraná, Brazil
| | - Andrea Murru
- Bipolar Disorders Program, Hospital Clínic Barcelona, IDIBAPS, CIBERSAM, Barcelona, Spain
| | - André F Carvalho
- Department of Clinical Medicine and Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Barwon Health, Geelong, Australia
- Department of Psychiatry, Medical University Plovdiv, Plovdiv, Bulgaria
- Department of Psychiatry, Faculty of Medicine, State University of Londrina, Londrina, Brazil
- Revitalis, Waalre, The Netherlands
- Orygen - The National Centre of Excellence in Youth Mental Health, The Department of Psychiatry and the Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Basant K Puri
- Department of Medicine, Imperial College London, Hammersmith Hospital, London, UK.
| |
Collapse
|
30
|
Fernández Solà J. Central sensitization syndrome: towards the structuring of a multidisciplinary concept. Med Clin (Barc) 2018; 151:68-70. [PMID: 29398009 DOI: 10.1016/j.medcli.2017.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 12/05/2017] [Indexed: 11/24/2022]
Affiliation(s)
- Joaquim Fernández Solà
- Unidad de Sensibilización Central, Servicio de Medicina Interna, Hospital Clínic, Universitat de Barcelona, Barcelona, España.
| |
Collapse
|
31
|
The putative role of oxidative stress and inflammation in the pathophysiology of sleep dysfunction across neuropsychiatric disorders: Focus on chronic fatigue syndrome, bipolar disorder and multiple sclerosis. Sleep Med Rev 2018; 41:255-265. [PMID: 29759891 DOI: 10.1016/j.smrv.2018.03.007] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 02/20/2018] [Accepted: 03/27/2018] [Indexed: 12/29/2022]
Abstract
Sleep and circadian abnormalities are prevalent and burdensome manifestations of diverse neuro-immune diseases, and may aggravate the course of several neuropsychiatric disorders. The underlying pathophysiology of sleep abnormalities across neuropsychiatric disorders remains unclear, and may involve the inter-play of several clinical variables and mechanistic pathways. In this review, we propose a heuristic framework in which reciprocal interactions of immune, oxidative and nitrosative stress, and mitochondrial pathways may drive sleep abnormalities across potentially neuroprogressive disorders. Specifically, it is proposed that systemic inflammation may activate microglial cells and astrocytes in brain regions involved in sleep and circadian regulation. Activated glial cells may secrete pro-inflammatory cytokines (for example, interleukin-1 beta and tumour necrosis factor alpha), nitric oxide and gliotransmitters, which may influence the expression of key circadian regulators (e.g., the Circadian Locomotor Output Cycles Kaput (CLOCK) gene). Furthermore, sleep disruption may further aggravate oxidative and nitrosative, peripheral immune activation, and (neuro) inflammation across these disorders in a vicious pathophysiological loop. This review will focus on chronic fatigue syndrome, bipolar disorder, and multiple sclerosis as exemplars of neuro-immune disorders. We conclude that novel therapeutic targets exploring immune and oxidative & nitrosative pathways (p.e. melatonin and molecular hydrogen) hold promise in alleviating sleep and circadian dysfunction in these disorders.
Collapse
|
32
|
Castro-Marrero J, Serrano-Pertierra E, Oliveira-Rodríguez M, Zaragozá MC, Martínez-Martínez A, Blanco-López MDC, Alegre J. Circulating extracellular vesicles as potential biomarkers in chronic fatigue syndrome/myalgic encephalomyelitis: an exploratory pilot study. J Extracell Vesicles 2018; 7:1453730. [PMID: 29696075 PMCID: PMC5912186 DOI: 10.1080/20013078.2018.1453730] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 03/07/2018] [Indexed: 12/27/2022] Open
Abstract
Chronic Fatigue Syndrome (CFS), also known as Myalgic Encephalomyelitis (ME) is an acquired, complex and multisystem condition of unknown etiology, no established diagnostic lab tests and no universally FDA-approved drugs for treatment. CFS/ME is characterised by unexplicable disabling fatigue and is often also associated with numerous core symptoms. A growing body of evidence suggests that extracellular vesicles (EVs) play a role in cell-to-cell communication, and are involved in both physiological and pathological processes. To date, no data on EV biology in CFS/ME are as yet available. The aim of this study was to isolate and characterise blood-derived EVs in CFS/ME. Blood samples were collected from 10 Spanish CFS/ME patients and 5 matched healthy controls (HCs), and EVs were isolated from the serum using a polymer-based method. Their protein cargo, size distribution and concentration were measured by Western blot and nanoparticle tracking analysis. Furthermore, EVs were detected using a lateral flow immunoassay based on biomarkers CD9 and CD63. We found that the amount of EV-enriched fraction was significantly higher in CFS/ME subjects than in HCs (p = 0.007) and that EVs were significantly smaller in CFS/ME patients (p = 0.014). Circulating EVs could be an emerging tool for biomedical research in CFS/ME. These findings provide preliminary evidence that blood-derived EVs may distinguish CFS/ME patients from HCs. This will allow offer new opportunities and also may open a new door to identifying novel potential biomarkers and therapeutic approaches for the condition.
Collapse
Affiliation(s)
- Jesús Castro-Marrero
- CFS/ME Unit, Internal Medicine Service, Vall d'Hebron University Hospital Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Esther Serrano-Pertierra
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Oviedo, Spain
| | - Myriam Oliveira-Rodríguez
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Oviedo, Spain
| | - Maria Cleofé Zaragozá
- CFS/ME Unit, Internal Medicine Service, Vall d'Hebron University Hospital Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain.,Clinical Research Department, Laboratorios Viñas, Barcelona, Spain
| | - Alba Martínez-Martínez
- CFS/ME Unit, Internal Medicine Service, Vall d'Hebron University Hospital Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - José Alegre
- CFS/ME Unit, Internal Medicine Service, Vall d'Hebron University Hospital Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
33
|
Morris G, Puri BK, Frye RE. The putative role of environmental aluminium in the development of chronic neuropathology in adults and children. How strong is the evidence and what could be the mechanisms involved? Metab Brain Dis 2017; 32:1335-1355. [PMID: 28752219 PMCID: PMC5596046 DOI: 10.1007/s11011-017-0077-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 07/19/2017] [Indexed: 02/06/2023]
Abstract
The conceptualisation of autistic spectrum disorder and Alzheimer's disease has undergone something of a paradigm shift in recent years and rather than being viewed as single illnesses with a unitary pathogenesis and pathophysiology they are increasingly considered to be heterogeneous syndromes with a complex multifactorial aetiopathogenesis, involving a highly complex and diverse combination of genetic, epigenetic and environmental factors. One such environmental factor implicated as a potential cause in both syndromes is aluminium, as an element or as part of a salt, received, for example, in oral form or as an adjuvant. Such administration has the potential to induce pathology via several routes such as provoking dysfunction and/or activation of glial cells which play an indispensable role in the regulation of central nervous system homeostasis and neurodevelopment. Other routes include the generation of oxidative stress, depletion of reduced glutathione, direct and indirect reductions in mitochondrial performance and integrity, and increasing the production of proinflammatory cytokines in both the brain and peripherally. The mechanisms whereby environmental aluminium could contribute to the development of the highly specific pattern of neuropathology seen in Alzheimer's disease are described. Also detailed are several mechanisms whereby significant quantities of aluminium introduced via immunisation could produce chronic neuropathology in genetically susceptible children. Accordingly, it is recommended that the use of aluminium salts in immunisations should be discontinued and that adults should take steps to minimise their exposure to environmental aluminium.
Collapse
Affiliation(s)
- Gerwyn Morris
- Tir Na Nog, Bryn Road seaside 87, Llanelli, Wales, SA15 2LW, UK
| | - Basant K Puri
- Department of Medicine, Imperial College London, Hammersmith Hospital, London, England, W12 0HS, UK.
| | - Richard E Frye
- College of Medicine, Department of Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children's Hospital Research Institute, Little Rock, AR, 72202, USA
| |
Collapse
|
34
|
Morris G, Walder K, Carvalho AF, Tye SJ, Lucas K, Berk M, Maes M. The role of hypernitrosylation in the pathogenesis and pathophysiology of neuroprogressive diseases. Neurosci Biobehav Rev 2017; 84:453-469. [PMID: 28789902 DOI: 10.1016/j.neubiorev.2017.07.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 07/02/2017] [Accepted: 07/31/2017] [Indexed: 12/12/2022]
Abstract
There is a wealth of data indicating that de novo protein S-nitrosylation in general and protein transnitrosylation in particular mediates the bulk of nitric oxide signalling. These processes enable redox sensing and facilitate homeostatic regulation of redox dependent protein signalling, function, stability and trafficking. Increased S-nitrosylation in an environment of increasing oxidative and nitrosative stress (O&NS) is initially a protective mechanism aimed at maintaining protein structure and function. When O&NS becomes severe, mechanisms governing denitrosylation and transnitrosylation break down leading to the pathological state referred to as hypernitrosylation (HN). Such a state has been implicated in the pathogenesis and pathophysiology of several neuropsychiatric and neurodegenerative diseases and we investigate its potential role in the development and maintenance of neuroprogressive disorders. In this paper, we propose a model whereby the hypernitrosylation of a range of functional proteins and enzymes lead to changes in activity which conspire to produce at least some of the core abnormalities contributing to the development and maintenance of pathology in these illnesses.
Collapse
Affiliation(s)
- Gerwyn Morris
- Tir Na Nog, Bryn Road seaside 87, Llanelli, SA152LW, Wales, United Kingdom
| | - Ken Walder
- Deakin University, The Centre for Molecular and Medical Research, School of Medicine, P.O. Box 291, Geelong, 3220, Australia
| | - André F Carvalho
- Department of Clinical Medicine and Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceará, 60430-040, Fortaleza, CE, Brazil
| | - Susannah J Tye
- Deakin University, The Centre for Molecular and Medical Research, School of Medicine, P.O. Box 291, Geelong, 3220, Australia; Department of Clinical Medicine and Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceará, 60430-040, Fortaleza, CE, Brazil; Deakin University, IMPACT Strategic Research Centre, School of Medicine, P.O. Box 281, Geelong, 3220, Australia; Orygen Youth Health Research Centre and the Centre of Youth Mental Health, The Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, University of Melbourne, Parkville, 3052, Australia
| | - Kurt Lucas
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
| | - Michael Berk
- Deakin University, IMPACT Strategic Research Centre, School of Medicine, P.O. Box 281, Geelong, 3220, Australia; Orygen Youth Health Research Centre and the Centre of Youth Mental Health, The Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, University of Melbourne, Parkville, 3052, Australia.
| | - Michael Maes
- Deakin University, IMPACT Strategic Research Centre, School of Medicine, P.O. Box 281, Geelong, 3220, Australia; Department of Psychiatry, Chulalongkorn University, Faculty of Medicine, Bangkok, Thailand; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
35
|
A Comparison of Neuroimaging Abnormalities in Multiple Sclerosis, Major Depression and Chronic Fatigue Syndrome (Myalgic Encephalomyelitis): is There a Common Cause? Mol Neurobiol 2017; 55:3592-3609. [PMID: 28516431 PMCID: PMC5842501 DOI: 10.1007/s12035-017-0598-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/03/2017] [Indexed: 01/23/2023]
Abstract
There is copious evidence of abnormalities in resting-state functional network connectivity states, grey and white matter pathology and impaired cerebral perfusion in patients afforded a diagnosis of multiple sclerosis, major depression or chronic fatigue syndrome (CFS) (myalgic encephalomyelitis). Systemic inflammation may well be a major element explaining such findings. Inter-patient and inter-illness variations in neuroimaging findings may arise at least in part from regional genetic, epigenetic and environmental variations in the functions of microglia and astrocytes. Regional differences in neuronal resistance to oxidative and inflammatory insults and in the performance of antioxidant defences in the central nervous system may also play a role. Importantly, replicated experimental findings suggest that the use of high-resolution SPECT imaging may have the capacity to differentiate patients afforded a diagnosis of CFS from those with a diagnosis of depression. Further research involving this form of neuroimaging appears warranted in an attempt to overcome the problem of aetiologically heterogeneous cohorts which probably explain conflicting findings produced by investigative teams active in this field. However, the ionising radiation and relative lack of sensitivity involved probably preclude its use as a routine diagnostic tool.
Collapse
|
36
|
Glassford JAG. The Neuroinflammatory Etiopathology of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). Front Physiol 2017; 8:88. [PMID: 28261110 PMCID: PMC5314655 DOI: 10.3389/fphys.2017.00088] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 02/01/2017] [Indexed: 12/30/2022] Open
Abstract
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a debilitating multi-systemic chronic illness of unknown etiology, classified as a neurological disorder by the World Health Organization (WHO). The symptomatology of the condition appears to emanate from a variety of sources of chronic neurological disturbance and associated distortions, and chronicity, in noxious sensory signaling and neuroimmune activation. This article incorporates a summary review and discussion of biomedical research considered relevant to this essential conception perspective. It is intended to provide stakeholders with a concise, integrated outline disease model in order to help demystify this major public health problem. The primary etiopathological factors presented are: (A) Postural/biomechanical pain signaling, affecting adverse neuroexcitation, in the context of compression, constriction, strain, or damage of vertebral-regional bone and neuromuscular tissues; (B) Immune mediated inflammatory sequelae, in the context of prolonged immunotropic neurotrophic infection—with lymphotropic/gliotropic/glio-toxic varieties implicated in particular; (C) A combination of factors A and B. Sustained glial activation under such conditions is associated with oxidative and nitrosative stress, neuroinflammation, and neural sensitivity. These processes collectively enhance the potential for multi-systemic disarray involving endocrine pathway aberration, immune and mitochondrial dysfunction, and neurodegeneration, and tend toward still more intractable synergistic neuro-glial dysfunction (gliopathy), autoimmunity, and central neuronal sensitization.
Collapse
|
37
|
Hall DL, Lattie EG, Milrad SF, Czaja S, Fletcher MA, Klimas N, Perdomo D, Antoni MH. Telephone-administered versus live group cognitive behavioral stress management for adults with CFS. J Psychosom Res 2017; 93:41-47. [PMID: 28107891 PMCID: PMC5270375 DOI: 10.1016/j.jpsychores.2016.12.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 10/12/2016] [Accepted: 12/03/2016] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Chronic fatigue syndrome (CFS) symptoms have been shown to be exacerbated by stress and ameliorated by group-based psychosocial interventions such as cognitive behavioral stress management (CBSM). Still, patients may have difficulty attending face-to-face groups. This study compared the effects of a telephone-delivered (T-CBSM) vs a live (L-CBSM) group on perceived stress and symptomology in adults with CFS. METHODS Intervention data from 100 patients with CFS (mean age 50years; 90% female) participating in T-CBSM (N=56) or L-CBSM (N=44) in previously conducted randomized clinical trials were obtained. Perceived Stress Scale (PSS) and the Centers for Disease Control and Prevention symptom checklist scores were compared with repeated measures analyses of variance in adjusted and unadjusted analyses. RESULTS Participants across groups showed no differences in most demographic and illness variables at study entry and had similar session attendance. Both conditions showed significant reductions in PSS scores, with L-CBSM showing a large effect (partial ε2=0.16) and T-CBSM a medium effect (partial ε2=0.095). For CFS symptom frequency and severity scores, L-CBSM reported large effect size improvements (partial ε2=0.19-0.23), while T-CBSM showed no significant changes over time. CONCLUSIONS Two different formats for delivering group-based CBSM-live and telephone-showed reductions in perceived stress among patients with CFS. However, only the live format was associated with physical symptom improvements, with specific effects on post-exertional malaise, chills, fever, and restful sleep. The added value of the live group format is discussed, along with implications for future technology-facilitated group interventions in this population.
Collapse
Affiliation(s)
- Daniel L Hall
- Department of Psychology, University of Miami, Coral Gables, FL, USA; Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| | - Emily G Lattie
- Department of Psychology, University of Miami, Coral Gables, FL, USA; Center for Behavioral Intervention Technologies (CBITs), Northwestern University, Chicago, IL, USA
| | - Sara F Milrad
- Department of Psychology, University of Miami, Coral Gables, FL, USA
| | - Sara Czaja
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA
| | - Mary Ann Fletcher
- Institute for Neuro Immune Medicine, Nova Southeastern University, Davie, FL, USA
| | - Nancy Klimas
- Institute for Neuro Immune Medicine, Nova Southeastern University, Davie, FL, USA
| | - Dolores Perdomo
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA
| | - Michael H Antoni
- Department of Psychology, University of Miami, Coral Gables, FL, USA; Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA
| |
Collapse
|
38
|
Abstract
Die Effektivität von körperlicher Aktivität in der Primär- als auch Sekundär- und Tertiärprävention ist hinlänglich bekannt. Das Immunsystem spielt eine entscheidende Rolle bei einer Vielzahl von Erkrankungen, da es durch seine Botenfunktion (z. B. durch Zytokine) in einer Vielzahl der Regulationsprozesse mit involviert ist. So kommt es durch moderat-intensive körperliche Aktivität zu einer Stärkung des Immunsystems mit konsekutiv verminderter Infektanfälligkeit sowie eher anti-inflammatorischen Effekten, wohingegen langandauernde und höher intensive Belastungen zu einer Schwächung der Abwehrfunktion sowie einem pro-inflammatorischen Effekt führen. Somit stellt eine adäquat dosierte körperliche Aktivität eine erfolgversprechende Therapieoption bei Erkrankungen des infektiologischen Formenkreises sowie des Immunsystems dar.
Collapse
|
39
|
Fluge Ø, Mella O, Bruland O, Risa K, Dyrstad SE, Alme K, Rekeland IG, Sapkota D, Røsland GV, Fosså A, Ktoridou-Valen I, Lunde S, Sørland K, Lien K, Herder I, Thürmer H, Gotaas ME, Baranowska KA, Bohnen LM, Schäfer C, McCann A, Sommerfelt K, Helgeland L, Ueland PM, Dahl O, Tronstad KJ. Metabolic profiling indicates impaired pyruvate dehydrogenase function in myalgic encephalopathy/chronic fatigue syndrome. JCI Insight 2016; 1:e89376. [PMID: 28018972 DOI: 10.1172/jci.insight.89376] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Myalgic encephalopathy/chronic fatigue syndrome (ME/CFS) is a debilitating disease of unknown etiology, with hallmark symptoms including postexertional malaise and poor recovery. Metabolic dysfunction is a plausible contributing factor. We hypothesized that changes in serum amino acids may disclose specific defects in energy metabolism in ME/CFS. Analysis in 200 ME/CFS patients and 102 healthy individuals showed a specific reduction of amino acids that fuel oxidative metabolism via the TCA cycle, mainly in female ME/CFS patients. Serum 3-methylhistidine, a marker of endogenous protein catabolism, was significantly increased in male patients. The amino acid pattern suggested functional impairment of pyruvate dehydrogenase (PDH), supported by increased mRNA expression of the inhibitory PDH kinases 1, 2, and 4; sirtuin 4; and PPARδ in peripheral blood mononuclear cells from both sexes. Myoblasts grown in presence of serum from patients with severe ME/CFS showed metabolic adaptations, including increased mitochondrial respiration and excessive lactate secretion. The amino acid changes could not be explained by symptom severity, disease duration, age, BMI, or physical activity level among patients. These findings are in agreement with the clinical disease presentation of ME/CFS, with inadequate ATP generation by oxidative phosphorylation and excessive lactate generation upon exertion.
Collapse
Affiliation(s)
- Øystein Fluge
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Olav Mella
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ove Bruland
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway.,Department of Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Kristin Risa
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | | | - Kine Alme
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Ingrid G Rekeland
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Dipak Sapkota
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Gro V Røsland
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Alexander Fosså
- Department of Oncology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Irini Ktoridou-Valen
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Sigrid Lunde
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Kari Sørland
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Katarina Lien
- CFS/ME Center, Division of Medicine, Oslo University Hospital, Oslo, Norway
| | - Ingrid Herder
- CFS/ME Center, Division of Medicine, Oslo University Hospital, Oslo, Norway
| | - Hanne Thürmer
- Telemark Hospital, Department of Medicine, Notodden, Norway
| | - Merete E Gotaas
- Department of Pain and Complex Disorders, St. Olav's Hospital, Trondheim, Norway
| | | | - Louis Mlj Bohnen
- Division of Rehabilitation Services, University Hospital of Northern Norway, Tromsø, Norway
| | - Christoph Schäfer
- Division of Rehabilitation Services, University Hospital of Northern Norway, Tromsø, Norway
| | | | | | - Lars Helgeland
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Per M Ueland
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Bevital AS, Bergen, Norway
| | - Olav Dahl
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Karl J Tronstad
- Department of Biomedicine, University of Bergen, Bergen, Norway
| |
Collapse
|
40
|
Sandén E, Enríquez Pérez J, Visse E, Kool M, Carén H, Siesjö P, Darabi A. Preoperative systemic levels of VEGFA, IL-7, IL-17A, and TNF-β delineate two distinct groups of children with brain tumors. Pediatr Blood Cancer 2016; 63:2112-2122. [PMID: 27472224 DOI: 10.1002/pbc.26158] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/28/2016] [Accepted: 06/30/2016] [Indexed: 12/27/2022]
Abstract
BACKGROUND Primary brain tumors are the most common solid tumors in children. Increasing evidence demonstrates diverse intratumoral immune signatures, which are tentatively reflected in peripheral blood. PROCEDURE Twenty cytokines were analyzed in preoperative plasma samples from five healthy children and 45 children with brain tumors, using a multiplex platform (MesoScale Discovery V-PLEX® ). Tumor types included medulloblastoma (MB), ependymoma, sarcoma, high-grade glioma, pilocytic astrocytoma, and other low-grade gliomas. RESULTS A panel of four cytokines [VEGFA, interleukin (IL)-7, IL-17A, and tumor necrosis factor (TNF)-β] delineated two distinct patient groups, identified as VEGFAhigh IL-7high IL-17Alow TNF-βlow (Group A) and VEGFAlow IL-7low IL-17Ahigh TNF-βhigh (Group B). Healthy controls and the vast majority of patients with MB were found within Group A, whereas patients with other tumor types were equally distributed between the two groups. Unrelated to A/B affiliation, we detected trends toward increased IL-10 and decreased IL-12/23 and TNF-α in several tumor types. Finally, a small number of patients displayed evidence of enhanced systemic immune activation, including elevated levels of interferon-γ, granulocyte monocyte colony-stimulating factor, IL-6, IL-12/23, and TNF-α. Following tumor resection, cytokine levels in a MB patient approached the levels of healthy controls. CONCLUSIONS We identify common features and individual differences in the systemic immune profiles of children with brain tumors. Overall, patients with MB displayed a uniform cytokine profile, whereas other tumor diagnoses did not predict systemic immunological status in single patients. Future characterization and monitoring of systemic immune responses in children with brain tumors will have important implications for the development and implementation of immunotherapy.
Collapse
Affiliation(s)
- Emma Sandén
- Glioma Immunotherapy Group, Faculty of Medicine, Department of Clinical Sciences Lund, Neurosurgery, Lund University, Lund, Sweden.
| | - Julio Enríquez Pérez
- Glioma Immunotherapy Group, Faculty of Medicine, Department of Clinical Sciences Lund, Neurosurgery, Lund University, Lund, Sweden
| | - Edward Visse
- Glioma Immunotherapy Group, Faculty of Medicine, Department of Clinical Sciences Lund, Neurosurgery, Lund University, Lund, Sweden
| | - Marcel Kool
- Division of Pediatric Neurooncology, German Cancer Research Center DKFZ, Heidelberg, Germany
| | - Helena Carén
- Sahlgrenska Cancer Center, Department of Pathology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Peter Siesjö
- Glioma Immunotherapy Group, Faculty of Medicine, Department of Clinical Sciences Lund, Neurosurgery, Lund University, Lund, Sweden.,Department of Clinical Sciences Lund, Neurosurgery, Lund University, Skåne University Hospital, Lund, Sweden
| | - Anna Darabi
- Glioma Immunotherapy Group, Faculty of Medicine, Department of Clinical Sciences Lund, Neurosurgery, Lund University, Lund, Sweden
| |
Collapse
|
41
|
Feng LR, Dickinson K, Kline N, Saligan LN. Different Phenotyping Approaches Lead to Dissimilar Biologic Profiles in Men With Chronic Fatigue After Radiation Therapy. J Pain Symptom Manage 2016; 52:832-840. [PMID: 27521284 PMCID: PMC5154838 DOI: 10.1016/j.jpainsymman.2016.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/07/2016] [Accepted: 07/29/2016] [Indexed: 01/20/2023]
Abstract
CONTEXT Cancer-related fatigue (CRF) persists months after treatment completion. Although a CRF biomarker has not yet been identified, validated self-report questionnaires are used to define and phenotype CRF in the discovery of potential biomarkers. OBJECTIVES The purposes of this study are to identify CRF subjects using three well-known CRF phenotyping approaches using validated self-report questionnaires and to compare the biologic profiles that are associated with each CRF phenotype. METHODS Fatigue in men with nonmetastatic prostate cancer receiving external beam radiation therapy was measured at baseline (T1), midpoint (T2), end point (T3), and one-year post-external beam radiation therapy (T4) using the Functional Assessment of Cancer Therapy-Fatigue (FACT-F) and Patient Reported Outcomes Measurement Information System-Fatigue. Chronic fatigue (CF) and nonfatigue subjects were grouped based on three commonly used phenotyping approaches: 1) T4 FACT-F <43; 2) T1-T4 decline in FACT-F score ≥3 points; 3) T4 Patient Reported Outcomes Measurement Information System-Fatigue T-score >50. Differential gene expressions using whole-genome microarray analysis were compared in each of the phenotyping criterion. RESULTS The study enrolled 43 men, where 34%-38% had CF based on the three phenotyping approaches. Distinct gene expression patterns were observed between CF and nonfatigue subjects in each of the three CRF phenotyping approaches: 1) Approach 1 had the largest number of differentially expressed genes and 2) Approaches 2 and 3 had 40 and 21 differentially expressed genes between the fatigue groups, respectively. CONCLUSION The variation in genetic profiles for CRF suggests that phenotypic profiling for CRF should be carefully considered because it directly influences biomarker discovery investigations.
Collapse
Affiliation(s)
- Li Rebekah Feng
- National Institute of Nursing Research, National Institutes of Health, Bethesda, Maryland
| | - Kristin Dickinson
- National Institute of Nursing Research, National Institutes of Health, Bethesda, Maryland
| | | | - Leorey N. Saligan
- Correspondence to: Leorey N. Saligan, PhD, RN, CRNP, FAAN, National Institute of Nursing Research, National Institutes of Health, 9000 Rockville Pike, Building 3, Room 5E14, Bethesda, MD 20892, Phone: 301-451-1685 Fax: 301-480-0729,
| |
Collapse
|
42
|
Jeltsch-David H, Muller S. Autoimmunity, neuroinflammation, pathogen load: A decisive crosstalk in neuropsychiatric SLE. J Autoimmun 2016; 74:13-26. [DOI: 10.1016/j.jaut.2016.04.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 04/21/2016] [Accepted: 04/24/2016] [Indexed: 12/23/2022]
|
43
|
Gawthrop PJ, Crampin EJ. Modular bond-graph modelling and analysis of biomolecular systems. IET Syst Biol 2016; 10:187-201. [PMID: 27762233 PMCID: PMC8687434 DOI: 10.1049/iet-syb.2015.0083] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 01/05/2016] [Accepted: 01/18/2016] [Indexed: 12/28/2022] Open
Abstract
Bond graphs can be used to build thermodynamically-compliant hierarchical models of biomolecular systems. As bond graphs have been widely used to model, analyse and synthesise engineering systems, this study suggests that they can play the same rôle in the modelling, analysis and synthesis of biomolecular systems. The particular structure of bond graphs arising from biomolecular systems is established and used to elucidate the relation between thermodynamically closed and open systems. Block diagram representations of the dynamics implied by these bond graphs are used to reveal implicit feedback structures and are linearised to allow the application of control-theoretical methods. Two concepts of modularity are examined: computational modularity where physical correctness is retained and behavioural modularity where module behaviour (such as ultrasensitivity) is retained. As well as providing computational modularity, bond graphs provide a natural formulation of behavioural modularity and reveal the sources of retroactivity. A bond graph approach to reducing retroactivity, and thus inter-module interaction, is shown to require a power supply such as that provided by the ATP ⇌ ADP + Pi reaction. The mitogen-activated protein kinase cascade (Raf-MEK-ERK pathway) is used as an illustrative example.
Collapse
Affiliation(s)
- Peter J Gawthrop
- Centre for Systems Genomics, University of Melbourne, Victoria 3010, Australia.
| | - Edmund J Crampin
- ARC Centre of Excellence in Convergent Bio-Nano Science, Melbourne School of Engineering, University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
44
|
Mizuno K, Kawatani J, Tajima K, Sasaki AT, Yoneda T, Komi M, Hirai T, Tomoda A, Joudoi T, Watanabe Y. Low putamen activity associated with poor reward sensitivity in childhood chronic fatigue syndrome. Neuroimage Clin 2016; 12:600-606. [PMID: 27709065 PMCID: PMC5043413 DOI: 10.1016/j.nicl.2016.09.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/22/2016] [Accepted: 09/23/2016] [Indexed: 01/10/2023]
Abstract
Motivational signals influence a wide variety of cognitive processes and components of behavioral performance. Cognitive dysfunction in patients with childhood chronic fatigue syndrome (CCFS) may be closely associated with a low motivation to learn induced by impaired neural reward processing. However, the extent to which reward processing is impaired in CCFS patients is unclear. The aim of the present functional magnetic resonance imaging (fMRI) study was to determine whether brain activity in regions related to reward sensitivity is impaired in CCFS patients. fMRI data were collected from 13 CCFS patients (mean age, 13.6 ± 1.0 years) and 13 healthy children and adolescents (HCA) (mean age, 13.7 ± 1.3 years) performing a monetary reward task. Neural activity in high- and low-monetary-reward conditions was compared between CCFS and HCA groups. Severity of fatigue and the reward obtained from learning in daily life were evaluated by questionnaires. Activity of the putamen was lower in the CCFS group than in the HCA group in the low-reward condition, but not in the high-reward condition. Activity of the putamen in the low-reward condition in CCFS patients was negatively and positively correlated with severity of fatigue and the reward from learning in daily life, respectively. We previously revealed that motivation to learn was correlated with striatal activity, particularly the neural activity in the putamen. This suggests that in CCFS patients low putamen activity, associated with altered dopaminergic function, decreases reward sensitivity and lowers motivation to learn.
Collapse
Affiliation(s)
- Kei Mizuno
- Pathophysiological and Health Science Team, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- Health Evaluation Team, RIKEN Compass to Healthy Life Research Complex Program, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- Departments of Medical Science on Fatigue, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka City, Osaka 545-8585, Japan
- Osaka City University Center for Health Science Innovation, 3-1 Ofuka-cho, Kita-ku, Osaka City, Osaka 530-0011, Japan
| | - Junko Kawatani
- Departments of Child Development, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjyo, Chuo-ku, Kumamoto City, Kumamoto 860-8556, Japan
| | - Kanako Tajima
- Pathophysiological and Health Science Team, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- Health Evaluation Team, RIKEN Compass to Healthy Life Research Complex Program, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Akihiro T. Sasaki
- Pathophysiological and Health Science Team, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- Health Evaluation Team, RIKEN Compass to Healthy Life Research Complex Program, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- Departments of Physiology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka City, Osaka 545-8585, Japan
- Osaka City University Center for Health Science Innovation, 3-1 Ofuka-cho, Kita-ku, Osaka City, Osaka 530-0011, Japan
| | - Tetsuya Yoneda
- Department of Medical Physics in Advanced Biomedical Sciences, Faculty of Life Sciences, Kumamoto University, 4-24-1 Kuhonji, Chuo-ku, Kumamoto City, Kumamoto 862-0976, Japan
| | - Masanori Komi
- Department of Radiology, University of Miyazaki Hospital, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
- Department of Radiology, Kumamoto University Hospital, 1-1-1 Honjo, Chuo-ku, Kumamoto City, Kumamoto 860-8556, Japan
| | - Toshinori Hirai
- Department of Radiology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto City, Kumamoto 860-8556, Japan
| | - Akemi Tomoda
- Research Center for Child Mental Development, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-cho, Fukui 910-1193, Japan
| | - Takako Joudoi
- Departments of Pediatrics, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjyo, Chuo-ku, Kumamoto City, Kumamoto 860-8556, Japan
| | - Yasuyoshi Watanabe
- Pathophysiological and Health Science Team, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- Health Evaluation Team, RIKEN Compass to Healthy Life Research Complex Program, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- Departments of Physiology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka City, Osaka 545-8585, Japan
- Osaka City University Center for Health Science Innovation, 3-1 Ofuka-cho, Kita-ku, Osaka City, Osaka 530-0011, Japan
| |
Collapse
|
45
|
IL-6 serum levels are elevated in Parkinson's disease patients with fatigue compared to patients without fatigue. J Neurol Sci 2016; 370:153-156. [PMID: 27772747 DOI: 10.1016/j.jns.2016.09.030] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 07/15/2016] [Accepted: 09/19/2016] [Indexed: 11/20/2022]
Abstract
To investigate the influence of interleukin-6 (IL-6) and soluble tumor necrosis factor receptors (sTNFR) in fatigued Parkinson's disease (PD) patients. Forty-four PD patients were evaluated, and fatigue was assessed with the Parkinson Fatigue Scale. Logistic regression analysis was used to evaluate the contribution of disease severity scores and cytokine levels on fatigue scores. A receiver operating characteristic (ROC) curve was used to evaluate the diagnostic values of IL-6 in fatigue. Fatigued PD patients had worse cognitive function and depressive symptoms. These patients had worse PD signs and symptoms, displayed more advanced stages of PD, and had greater functional dependence. There was a significant difference in IL-6 serum levels (p=0.026), but there was no difference in sTNFR levels. Total scores on the Unified Parkinson Disease Rating Scale (β=1.108; p=0.004) and IL-6 levels (β=12.843; p=0.020) were found to be significant predictors of fatigue scores. A ROC curve revealed that IL-6 concentrations of 1.18pg/ml represented the best cut-off value for detecting fatigue (sensitivity of 0.941 and specificity of 0.704). Fatigued PD patients have poor clinical outcomes and elevated IL-6 serum levels when compared with non-fatigued patients. These results suggest that IL-6 may play a role in the pathophysiology of fatigue in PD.
Collapse
|
46
|
Morris G, Berk M, Carvalho A, Caso JR, Sanz Y, Walder K, Maes M. The Role of the Microbial Metabolites Including Tryptophan Catabolites and Short Chain Fatty Acids in the Pathophysiology of Immune-Inflammatory and Neuroimmune Disease. Mol Neurobiol 2016; 54:4432-4451. [PMID: 27349436 DOI: 10.1007/s12035-016-0004-2] [Citation(s) in RCA: 183] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/14/2016] [Indexed: 12/19/2022]
Abstract
There is a growing awareness that gut commensal metabolites play a major role in host physiology and indeed the pathophysiology of several illnesses. The composition of the microbiota largely determines the levels of tryptophan in the systemic circulation and hence, indirectly, the levels of serotonin in the brain. Some microbiota synthesize neurotransmitters directly, e.g., gamma-amino butyric acid, while modulating the synthesis of neurotransmitters, such as dopamine and norepinephrine, and brain-derived neurotropic factor (BDNF). The composition of the microbiota determines the levels and nature of tryptophan catabolites (TRYCATs) which in turn has profound effects on aryl hydrocarbon receptors, thereby influencing epithelial barrier integrity and the presence of an inflammatory or tolerogenic environment in the intestine and beyond. The composition of the microbiota also determines the levels and ratios of short chain fatty acids (SCFAs) such as butyrate and propionate. Butyrate is a key energy source for colonocytes. Dysbiosis leading to reduced levels of SCFAs, notably butyrate, therefore may have adverse effects on epithelial barrier integrity, energy homeostasis, and the T helper 17/regulatory/T cell balance. Moreover, dysbiosis leading to reduced butyrate levels may increase bacterial translocation into the systemic circulation. As examples, we describe the role of microbial metabolites in the pathophysiology of diabetes type 2 and autism.
Collapse
Affiliation(s)
- Gerwyn Morris
- Tir Na Nog, Bryn Road seaside 87, Llanelli, SA152LW, Wales, UK
| | - Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, P.O. Box 291, Geelong, VIC, 3220, Australia.,Orygen Youth Health Research Centre and the Centre of Youth Mental Health, The Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, University of Melbourne, Parkville, 3052, Australia
| | - Andre Carvalho
- Department of Clinical Medicine and Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, 60430-040, Brazil
| | - Javier R Caso
- Department of Pharmacology, School of Medicine, University Complutense of Madrid, Avda. Complutense s/n, 28040, Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Avda. Complutense s/n, 28040, Madrid, Spain.,Instituto de Investigación Hospital 12 de Octubre (Imas12), Avda. Complutense s/n, 28040, Madrid, Spain
| | - Yolanda Sanz
- Microbial Ecology, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Av. Agustin Escardino 7, 46980, Paterna, Valencia, Spain
| | - Ken Walder
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, Australia
| | - Michael Maes
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, P.O. Box 291, Geelong, VIC, 3220, Australia. .,Health Sciences Postgraduate Program, Health Sciences Center, State University of Londrina, Londrina, Parana, Brazil.
| |
Collapse
|
47
|
Morris G, Berk M, Klein H, Walder K, Galecki P, Maes M. Nitrosative Stress, Hypernitrosylation, and Autoimmune Responses to Nitrosylated Proteins: New Pathways in Neuroprogressive Disorders Including Depression and Chronic Fatigue Syndrome. Mol Neurobiol 2016; 54:4271-4291. [PMID: 27339878 DOI: 10.1007/s12035-016-9975-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/13/2016] [Indexed: 12/30/2022]
Abstract
Nitric oxide plays an indispensable role in modulating cellular signaling and redox pathways. This role is mainly effected by the readily reversible nitrosylation of selective protein cysteine thiols. The reversibility and sophistication of this signaling system is enabled and regulated by a number of enzymes which form part of the thioredoxin, glutathione, and pyridoxine antioxidant systems. Increases in nitric oxide levels initially lead to a defensive increase in the number of nitrosylated proteins in an effort to preserve their function. However, in an environment of chronic oxidative and nitrosative stress (O&NS), nitrosylation of crucial cysteine groups within key enzymes of the thioredoxin, glutathione, and pyridoxine systems leads to their inactivation thereby disabling denitrosylation and transnitrosylation and subsequently a state described as "hypernitrosylation." This state leads to the development of pathology in multiple domains such as the inhibition of enzymes of the electron transport chain, decreased mitochondrial function, and altered conformation of proteins and amino acids leading to loss of immune tolerance and development of autoimmunity. Hypernitrosylation also leads to altered function or inactivation of proteins involved in the regulation of apoptosis, autophagy, proteomic degradation, transcription factor activity, immune-inflammatory pathways, energy production, and neural function and survival. Hypernitrosylation, as a consequence of chronically elevated O&NS and activated immune-inflammatory pathways, can explain many characteristic abnormalities observed in neuroprogressive disease including major depression and chronic fatigue syndrome/myalgic encephalomyelitis. In those disorders, increased bacterial translocation may drive hypernitrosylation and autoimmune responses against nitrosylated proteins.
Collapse
Affiliation(s)
- Gerwyn Morris
- Tir Na Nog, Bryn Road seaside 87, Llanelli, SA152LW, Wales, UK
| | - Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, P.O. Box 291, Geelong, 3220, Australia
- Orygen Youth Health Research Centre and the Centre of Youth Mental Health, Poplar Road 35, Parkville, 3052, Australia
- The Florey Institute for Neuroscience and Mental Health, University of Melbourne, Kenneth Myer Building, Royal Parade 30, Parkville, 3052, Australia
- Department of Psychiatry, Royal Melbourne Hospital, University of Melbourne, Level 1 North, Main Block, Parkville, 3052, Australia
| | - Hans Klein
- Department of Psychiatry, University of Groningen, UMCG, Groningen, The Netherlands
| | - Ken Walder
- Metabolic Research Unit, School of Medicine, Deakin University, Waurn Ponds, Australia
| | - Piotr Galecki
- Department of Adult Psychiatry, Medical University of Lodz, Łódź, Poland
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
- Department of Psychiatry, Faculty of Medicine, State University of Londrina, Londrina, Brazil.
- Department of Psychiatry, Medical University Plovdiv, Plovdiv, Bulgaria.
- Revitalis, Waalre, The Netherlands.
- IMPACT Strategic Research Center, Barwon Health, Deakin University, Geelong, VIC, Australia.
| |
Collapse
|
48
|
Clark JE, Fai Ng W, Watson S, Newton JL. The aetiopathogenesis of fatigue: unpredictable, complex and persistent. Br Med Bull 2016; 117:139-48. [PMID: 26872857 PMCID: PMC4782751 DOI: 10.1093/bmb/ldv057] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/24/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND Chronic fatigue syndrome is a common condition characterized by severe fatigue with post-exertional malaise, impaired cognitive ability, poor sleep quality, muscle pain, multi-joint pain, tender lymph nodes, sore throat or headache. Its defining symptom, fatigue is common to several diseases. AREAS OF AGREEMENT Research has established a broad picture of impairment across autonomic, endocrine and inflammatory systems though progress seems to have reached an impasse. AREAS OF CONTROVERSY The absence of a clear consensus view of the pathophysiology of fatigue suggests the need to switch from a focus on abnormalities in one system to an experimental and clinical approach which integrates findings across multiple systems and their constituent parts and to consider multiple environmental factors. GROWING POINTS We discuss this with reference to three key factors, non-determinism, non-reductionism and self-organization and suggest that an approach based on these principles may afford a coherent explanatory framework for much of the observed phenomena in fatigue and offers promising avenues for future research. AREAS TIMELY FOR DEVELOPING RESEARCH By adopting this approach, the field can examine issues regarding aetiopathogenesis and treatment, with relevance for future research and clinical practice.
Collapse
Affiliation(s)
- James E Clark
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - W Fai Ng
- Faculty of Medical Sciences, Institute of Cellular Medicine, Newcastle University, Clinical Academic Office, 3rd Floor, William Leech Building, Newcastle upon Tyne NE2 4HH, UK
| | - Stuart Watson
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Julia L Newton
- Faculty of Medical Sciences, Institute of Cellular Medicine, Newcastle University, Clinical Academic Office, 3rd Floor, William Leech Building, Newcastle upon Tyne NE2 4HH, UK Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| |
Collapse
|
49
|
Changes in Gut and Plasma Microbiome following Exercise Challenge in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). PLoS One 2015; 10:e0145453. [PMID: 26683192 PMCID: PMC4684203 DOI: 10.1371/journal.pone.0145453] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 12/03/2015] [Indexed: 12/11/2022] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a disease characterized by intense and debilitating fatigue not due to physical activity that has persisted for at least 6 months, post-exertional malaise, unrefreshing sleep, and accompanied by a number of secondary symptoms, including sore throat, memory and concentration impairment, headache, and muscle/joint pain. In patients with post-exertional malaise, significant worsening of symptoms occurs following physical exertion and exercise challenge serves as a useful method for identifying biomarkers for exertion intolerance. Evidence suggests that intestinal dysbiosis and systemic responses to gut microorganisms may play a role in the symptomology of ME/CFS. As such, we hypothesized that post-exertion worsening of ME/CFS symptoms could be due to increased bacterial translocation from the intestine into the systemic circulation. To test this hypothesis, we collected symptom reports and blood and stool samples from ten clinically characterized ME/CFS patients and ten matched healthy controls before and 15 minutes, 48 hours, and 72 hours after a maximal exercise challenge. Microbiomes of blood and stool samples were examined. Stool sample microbiomes differed between ME/CFS patients and healthy controls in the abundance of several major bacterial phyla. Following maximal exercise challenge, there was an increase in relative abundance of 6 of the 9 major bacterial phyla/genera in ME/CFS patients from baseline to 72 hours post-exercise compared to only 2 of the 9 phyla/genera in controls (p = 0.005). There was also a significant difference in clearance of specific bacterial phyla from blood following exercise with high levels of bacterial sequences maintained at 72 hours post-exercise in ME/CFS patients versus clearance in the controls. These results provide evidence for a systemic effect of an altered gut microbiome in ME/CFS patients compared to controls. Upon exercise challenge, there were significant changes in the abundance of major bacterial phyla in the gut in ME/CFS patients not observed in healthy controls. In addition, compared to controls clearance of bacteria from the blood was delayed in ME/CFS patients following exercise. These findings suggest a role for an altered gut microbiome and increased bacterial translocation following exercise in ME/CFS patients that may account for the profound post-exertional malaise experienced by ME/CFS patients.
Collapse
|
50
|
Landi A, Broadhurst D, Vernon SD, Tyrrell DLJ, Houghton M. Reductions in circulating levels of IL-16, IL-7 and VEGF-A in myalgic encephalomyelitis/chronic fatigue syndrome. Cytokine 2015; 78:27-36. [PMID: 26615570 DOI: 10.1016/j.cyto.2015.11.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 11/02/2015] [Accepted: 11/15/2015] [Indexed: 01/17/2023]
Abstract
Recently, differences in the levels of various chemokines and cytokines were reported in patients with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) as compared with controls. Moreover, the analyte profile differed between chronic ME/CFS patients of long duration versus patients with disease of less than 3years. In the current study, we measured the plasma levels of 34 cytokines, chemokines and growth factors in 100 chronic ME/CFS patients of long duration and in 79 gender and age-matched controls. We observed highly significant reductions in the concentration of circulating interleukin (IL)-16, IL-7, and Vascular Endothelial Growth Factor A (VEGF-A) in ME/CFS patients. All three biomarkers were significantly correlated in a multivariate cluster analysis. In addition, we identified significant reductions in the concentrations of fractalkine (CX3CL1) and monokine-induced-by-IFN-γ (MIG; CXCL9) along with increases in the concentrations of eotaxin 2 (CCL24) in ME/CFS patients. Our data recapitulates previous data from another USA ME/CFS cohort in which circulating levels of IL-7 were reduced. Also, a reduced level of VEGF-A was reported previously in sera of patients with Gulf War Illness as well as in cerebral spinal fluid samples from a different cohort of USA ME/CFS patients. To our knowledge, we are the first to test for levels of IL-16 in ME/CFS patients. In combination with previous data, our work suggests that the clustered reduction of IL-7, IL-16 and VEGF-A may have physiological relevance to ME/CFS disease. This profile is ME/CFS-specific since measurement of the same analytes present in chronic infectious and autoimmune liver diseases, where persistent fatigue is also a major symptom, failed to demonstrate the same changes. Further studies of other ME/CFS and overlapping disease cohorts are warranted in future.
Collapse
Affiliation(s)
- Abdolamir Landi
- Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, Canada.
| | - David Broadhurst
- Department of Medicine, Katz Group Centre for Pharmacy & Health, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Suzanne D Vernon
- Bateman Horne Center, 1002 E. South Temple, Suite 408, Salt Lake City, UT 84102, USA
| | - D Lorne J Tyrrell
- Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, Canada
| | - Michael Houghton
- Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, Canada.
| |
Collapse
|