1
|
Ham CH, Kim Y, Kwon WK, Sun W, Kim JH, Kim HJ, Moon HJ. Single-cell analysis reveals fibroblast heterogeneity and myofibroblast conversion in ligamentum flavum hypertrophy. Spine J 2024:S1529-9430(24)01175-6. [PMID: 39653186 DOI: 10.1016/j.spinee.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 12/01/2024] [Accepted: 12/03/2024] [Indexed: 01/06/2025]
Abstract
BACKGROUND CONTEXT The ligamentum flavum (LF) is a crucial structure in maintaining spinal stability; however, hypertrophy of the LF is a significant contributor to lumbar spinal canal stenosis (LSCS). The mechanisms linking LF hypertrophy to the exacerbation of LSCS remain incompletely understood. PURPOSE This study aimed to investigate the cellular proportions and signaling pathways observed in the hypertrophied LF. STUDY DESIGN LF tissues were obtained from 3 patients undergoing lumbar decompressive surgery. These patients had been diagnosed with LSCS prior to surgery and had an LF thickness exceeding 3.5 mm. METHODS Single-cell RNA sequencing was performed following LF tissue dissociation, and data were processed for quality control, dimensional reduction, and clustering. Differential gene expression and gene ontology analyses revealed key molecular pathways driving LF hypertrophy. Cell-cell communication analysis was analyzed to elucidate interactions among various cell types within the LF tissues. RESULTS Fibroblasts accounted for 75% of the total cells, followed by endothelial cells, T cells, macrophages, and B cells. Among heterogeneous types of fibroblasts, we identified that a subset of fibroblasts trans-differentiated into myofibroblasts. Two types of macrophages that exhibited phenotypic plasticity akin to M1 and M2 states were observed. We also identified novel signaling pathways involved in fibroblast and immune cell interaction in the hypertrophied LF, such as GAS and GRN, as well as known signaling pathways, such as TGF-β, PDGF, CXCL, and ANGPTL. CONCLUSION Our study shows the changing cellular composition and pathogenic signaling pathways involved during the process of chronic inflammation highlighting the transdifferentiation process from fibroblasts to myofibroblasts in the hypertrophied LF. CLINICAL SIGNIFICANCE The identification of pathways such as GAS, GRN, TGF-β, ANGPTL, and CXCL, which appear to potentially contribute to LF hypertrophy, could significantly enhance our understanding of the pathogenesis of LSCS.
Collapse
Affiliation(s)
- Chang Hwa Ham
- Department of Biomedical Sciences, College of Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea; Department of Neurosurgery, Korea University Guro Hospital, Seoul 08308, Republic of Korea
| | - Yiseul Kim
- Department of Biomedical Sciences, College of Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea; Department of Anatomy, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Woo-Keun Kwon
- Department of Neurosurgery, Korea University Guro Hospital, Seoul 08308, Republic of Korea
| | - Woong Sun
- Department of Biomedical Sciences, College of Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea; Department of Anatomy, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Joo Han Kim
- Department of Neurosurgery, Korea University Guro Hospital, Seoul 08308, Republic of Korea
| | - Hyun Jung Kim
- Department of Biomedical Sciences, College of Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea; Department of Anatomy, Korea University College of Medicine, Seoul 02841, Republic of Korea.
| | - Hong Joo Moon
- Department of Neurosurgery, University of Virginia, 1300 Jefferson Park Ave, Charlottesville, VA 22903, USA
| |
Collapse
|
2
|
Badparvar F, Marjani AP, Salehi R, Ramezani F. pH/redox responsive size-switchable intelligent nanovehicle for tumor microenvironment targeted DOX release. Sci Rep 2023; 13:22475. [PMID: 38110480 PMCID: PMC10728153 DOI: 10.1038/s41598-023-49446-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/08/2023] [Indexed: 12/20/2023] Open
Abstract
Tumor microenvironment (TME) targeted strategy could control the drug release in tumor cells more accurately and creates a new opportunity for enhanced site-specific targeted delivery. In this study, (PAA-b-PCL-S-S-PCL-b-PAA) copolymeric nanoparticles (NPs) with size-switchable ability and dual pH/redox-triggered drug release behavior were designed to significantly promote cancer uptake (cell internalization of around 100% at 30 min) and site-specific targeted doxorubicin (DOX) delivery in MDA-MB-231 tumor cells. NPs surface charge was shifted from - 17.8 to - 2.4 and their size shrunk from 170.3 to 93 nm in TME. The cell cycle results showed that DOX-loaded NPs showed G2/M (68%) arrest, while free DOX showed sub-G1 arrest (22%). Apoptosis tests confirmed that the cells treated with DOX-loaded NPs showed a higher amount of apoptosis (71.6%) than the free DOX (49.8%). Western blot and RT-PCR assays revealed that the apoptotic genes and protein levels were significantly upregulated using the DOX-loaded NPs vs. the free DOX (Pvalue < 0.001). In conclusion, dual pH/redox-responsive and size-switchable DOX-loaded NPs developed here showed outstanding anti-tumoral features compared with free DOX that might present a prospective platform for tumor site-specific accumulation and drug release that suggest further in vivo research.
Collapse
Affiliation(s)
- Fahimeh Badparvar
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran
| | | | - Roya Salehi
- Drug Applied Research Center and Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Fatemeh Ramezani
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Jiang R, Li L, Li M. Biomimetic Construction of Degradable DNAzyme-Loaded Nanocapsules for Self-Sufficient Gene Therapy of Pulmonary Metastatic Breast Cancer. ACS NANO 2023; 17:22129-22144. [PMID: 37925681 DOI: 10.1021/acsnano.3c09581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Pulmonary metastasis of breast cancer is the major cause of deaths of breast cancer patients, but the effective treatment of pulmonary metastases is still lacking at present. Herein, a degradable biomimetic DNAzyme biocapsule is developed with the poly(ethylenimine) (PEI)-DNAzyme complex encapsulated in a Mn2+/Zn2+-coordinated inositol hexaphosphate (IP6) capsule modified with the cRGD targeting peptide for high-efficiency gene therapy of both primary and pulmonary metastatic breast tumors. This DNAzyme biocapsule is degradable inside acidic lysosomes, leading to the release of DNAzyme and abundant Mn2+/Zn2+ for catalytic cleavage of EGR-1 mRNA. We find that PEI promotes the lysosomal escape of the released DNAzyme. Both in vitro and in vivo experiments demonstrate the apparent downregulation of EGR-1 and Bcl-2 protein expression after treatment with the DNAzyme biocapsule, thereby inducing apoptotic death of tumor cells. We further verify that the DNAzyme biocapsule exhibits potent therapeutic efficacy against both primary and pulmonary metastatic breast tumors with significant inhibition of peri-pulmonary metastasis. This study provides a promising effective strategy for constructing degradable DNAzyme-based platforms with self-supply of abundant metal ion cofactors for high-efficiency gene therapy of metastatic breast cancer.
Collapse
Affiliation(s)
- Renting Jiang
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Linhu Li
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Ming Li
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China
| |
Collapse
|
4
|
Liu S, Guan L, Peng C, Cheng Y, Cheng H, Wang F, Ma M, Zheng R, Ji Z, Cui P, Ren Y, Li L, Shi C, Wang J, Huang X, Cai X, Qu D, Zhang H, Mao Z, Liu H, Wang P, Sha W, Yang H, Wang L, Ge B. Mycobacterium tuberculosis suppresses host DNA repair to boost its intracellular survival. Cell Host Microbe 2023; 31:1820-1836.e10. [PMID: 37848028 DOI: 10.1016/j.chom.2023.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/19/2023] [Accepted: 09/20/2023] [Indexed: 10/19/2023]
Abstract
Mycobacterium tuberculosis (Mtb) triggers distinct changes in macrophages, resulting in the formation of lipid droplets that serve as a nutrient source. We discover that Mtb promotes lipid droplets by inhibiting DNA repair responses, resulting in the activation of the type-I IFN pathway and scavenger receptor-A1 (SR-A1)-mediated lipid droplet formation. Bacterial urease C (UreC, Rv1850) inhibits host DNA repair by interacting with RuvB-like protein 2 (RUVBL2) and impeding the formation of the RUVBL1-RUVBL2-RAD51 DNA repair complex. The suppression of this repair pathway increases the abundance of micronuclei that trigger the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) pathway and subsequent interferon-β (IFN-β) production. UreC-mediated activation of the IFN-β pathway upregulates the expression of SR-A1 to form lipid droplets that facilitate Mtb replication. UreC inhibition via a urease inhibitor impaired Mtb growth within macrophages and in vivo. Thus, our findings identify mechanisms by which Mtb triggers a cascade of cellular events that establish a nutrient-rich replicative niche.
Collapse
Affiliation(s)
- Shanshan Liu
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Liru Guan
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Cheng Peng
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Yuanna Cheng
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Hongyu Cheng
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Fei Wang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Mingtong Ma
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Ruijuan Zheng
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Zhe Ji
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Pengfei Cui
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Yefei Ren
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Liru Li
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Chenyue Shi
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Jie Wang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China
| | - Xiaochen Huang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China
| | - Xia Cai
- Biosafety Level 3 Laboratory, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Di Qu
- Biosafety Level 3 Laboratory, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Haiping Zhang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, P.R. China
| | - Zhiyong Mao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, P.R. China
| | - Haipeng Liu
- Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, P.R. China
| | - Peng Wang
- Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, P.R. China
| | - Wei Sha
- Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, P.R. China
| | - Hua Yang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China.
| | - Lin Wang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China.
| | - Baoxue Ge
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China; Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, P.R. China; Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, P.R. China.
| |
Collapse
|
5
|
Liu YZ, Zhang H, Zhou DH, Liu YH, Ran XY, Xiang FF, Zhang LN, Chen YJ, Yu XQ, Li K. Migration from Lysosome to Nucleus: Monitoring Lysosomal Alkalization-Related Biological Processes with an Aminofluorene-Based Probe. Anal Chem 2023; 95:7294-7302. [PMID: 37104743 DOI: 10.1021/acs.analchem.3c00314] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Aberrant lysosomal alkalization is associated with various biological processes, such as oxidative stress, cell apoptosis, ferroptosis, etc. Herein, we developed a novel aminofluorene-based fluorescence probe named FAN to monitor the lysosomal alkalization-related biological processes by its migration from lysosome to nucleus. FAN possessed NIR emission, large Stokes shift, high pH stability, and high photostability, making it suitable for real-time and long-term bioimaging. As a lysosomotropic molecule, FAN can accumulate in lysosomes first and then migrate to the nucleus by right of its binding capability to DNA after lysosomal alkalization. In this manner, FAN was successfully used to monitor these physiological processes which triggered lysosomal alkalization in living cells, including oxidative stress, cell apoptosis, and ferroptosis. More importantly, at higher concentrations, FAN could also serve as a stable nucleus dye for the fluorescence imaging of the nucleus in living cells and tissues. This novel multifunctional fluorescence probe shows great promise for application in lysosomal alkalization-related visual research and nucleus imaging.
Collapse
Affiliation(s)
- Yan-Zhao Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P.R. China
| | - Hong Zhang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P.R. China
| | - Ding-Heng Zhou
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P.R. China
| | - Yan-Hong Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P.R. China
| | - Xiao-Yun Ran
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P.R. China
| | - Fei-Fan Xiang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P.R. China
| | - Li-Na Zhang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P.R. China
| | - Yu-Jin Chen
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P.R. China
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P.R. China
- Department of Chemistry, Xihua University, Chengdu 610039, P. R. China
| | - Kun Li
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P.R. China
| |
Collapse
|
6
|
Niu H, Liu J, O'Connor HM, Gunnlaugsson T, James TD, Zhang H. Photoinduced electron transfer (PeT) based fluorescent probes for cellular imaging and disease therapy. Chem Soc Rev 2023; 52:2322-2357. [PMID: 36811891 DOI: 10.1039/d1cs01097b] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Typical PeT-based fluorescent probes are multi-component systems where a fluorophore is connected to a recognition/activating group by an unconjugated linker. PeT-based fluorescent probes are powerful tools for cell imaging and disease diagnosis due to their low fluorescence background and significant fluorescence enhancement towards the target. This review provides research progress towards PeT-based fluorescent probes that target cell polarity, pH and biological species (reactive oxygen species, biothiols, biomacromolecules, etc.) over the last five years. In particular, we emphasise the molecular design strategies, mechanisms, and application of these probes. As such, this review aims to provide guidance and to enable researchers to develop new and improved PeT-based fluorescent probes, as well as promoting the use of PeT-based systems for sensing, imaging, and disease therapy.
Collapse
Affiliation(s)
- Huiyu Niu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China.
| | - Junwei Liu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China.
| | - Helen M O'Connor
- School of Chemistry, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| | - Thorfinnur Gunnlaugsson
- School of Chemistry, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| | - Tony D James
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China. .,Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
| | - Hua Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China.
| |
Collapse
|
7
|
Abdella S, Abid F, Youssef SH, Kim S, Afinjuomo F, Malinga C, Song Y, Garg S. pH and its applications in targeted drug delivery. Drug Discov Today 2023; 28:103414. [PMID: 36273779 DOI: 10.1016/j.drudis.2022.103414] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 08/09/2022] [Accepted: 10/17/2022] [Indexed: 02/02/2023]
Abstract
Physiologic pH is vital for the normal functioning of tissues and varies in different parts of the body. The varying pH of the body has been exploited to design pH-sensitive smart oral, transdermal and vaginal drug delivery systems (DDS). The DDS demonstrated promising results in hard-to-treat diseases such as cancer and Helicobacter pylori infection. In some cases, a change in pH of tissues or body fluids has also been employed as a useful diagnostic biomarker. This paper aims to comprehensively review the development and applications of pH-sensitive DDS as well as recent advances in the field.
Collapse
Affiliation(s)
- Sadikalmahdi Abdella
- Centre for Pharmaceutical Innovation (CPI), University of South Australia, Adelaide, SA 5000, Australia; Department of Pharmacology and Clinical Pharmacy, College of Health Sciences, Addis Ababa University, Zambia St, Addis Ababa, Ethiopia
| | - Fatima Abid
- Centre for Pharmaceutical Innovation (CPI), University of South Australia, Adelaide, SA 5000, Australia
| | - Souha H Youssef
- Centre for Pharmaceutical Innovation (CPI), University of South Australia, Adelaide, SA 5000, Australia
| | - Sangseo Kim
- Centre for Pharmaceutical Innovation (CPI), University of South Australia, Adelaide, SA 5000, Australia
| | - Franklin Afinjuomo
- Centre for Pharmaceutical Innovation (CPI), University of South Australia, Adelaide, SA 5000, Australia
| | - Constance Malinga
- Centre for Pharmaceutical Innovation (CPI), University of South Australia, Adelaide, SA 5000, Australia
| | - Yunmei Song
- Centre for Pharmaceutical Innovation (CPI), University of South Australia, Adelaide, SA 5000, Australia
| | - Sanjay Garg
- Centre for Pharmaceutical Innovation (CPI), University of South Australia, Adelaide, SA 5000, Australia.
| |
Collapse
|
8
|
Niu J, Meng F, Hao Q, Zong C, Fu J, Xue H, Tian M, Yu X. Ratiometric and Discriminative Visualization of Autophagy and Apoptosis with a Single Fluorescent Probe Based on the Aggregation/Monomer Principle. Anal Chem 2022; 94:17885-17894. [PMID: 36516436 DOI: 10.1021/acs.analchem.2c03815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Autophagy and apoptosis play a central role in maintaining homeostasis in mammals. Therefore, discriminative visualization of the two cellular processes is an important and challenging task. However, fluorescent probes enabling ratiometric visualization of both autophagy and apoptosis with different sets of fluorescence signals have not been developed yet. In this work, we constructed a versatile single fluorescent probe (NKLR) based on the aggregation/monomer principle for the ratiometric and discriminative visualization of autophagy and apoptosis. NKLR can simultaneously perform two-color imaging of RNA (deep red channel) and lysosomes (yellow channel) in aggregation and monomer states, respectively. During autophagy, NKLR migrated from cytoplasmic RNA and nuclear RNA to lysosomes, showing enhanced yellow emission and sharply decreased deep red fluorescence. Moreover, this migration process was reversible upon the recovery of autophagy. Comparatively, during apoptosis, NKLR immigrated from lysosomes to RNA, and the yellow emission decreased and even disappeared, while the fluorescence of the deep red channel slightly increased. Overall, autophagy and apoptosis could be discriminatively visualized via the fluorescence intensity ratios of the two channels. Meanwhile, the cells in three different states (healthy, autophagic, apoptotic) could be distinguished by three point-to-point fluorescence images via the localization and emission color of NKLR. Therefore, the probe NKLR can serve as a desirable molecular tool to reveal the in-depth relation between autophagy and apoptosis and facilitate the study on the two cellular processes.
Collapse
Affiliation(s)
- Jie Niu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Fangfang Meng
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Qiuhua Hao
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Chong Zong
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Jinyu Fu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Haiyan Xue
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Minggang Tian
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Xiaoqiang Yu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, P. R. China
| |
Collapse
|
9
|
Lei H, Kelly AD, Bowler BE. Alkaline State of the Domain-Swapped Dimer of Human Cytochrome c: A Conformational Switch for Apoptotic Peroxidase Activity. J Am Chem Soc 2022; 144:21184-21195. [PMID: 36346995 PMCID: PMC9743720 DOI: 10.1021/jacs.2c08325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A 2.08 Å structure of an alkaline conformer of the domain-swapped dimer of K72A human cytochrome c (Cytc) crystallized at pH 9.9 is presented. In the structure, Lys79 is ligated to the heme. All other domain-swapped dimer structures of Cytc have water bound to this coordination site. Part of Ω-loop D (residues 70-85) forms a flexible linker between the subunits in other Cytc domain-swapped dimer structures but instead converts to a helix in the alkaline conformer of the dimer combining with the C-terminal helix to form two 26-residue helices that bracket both sides of the dimer. The alkaline transition of the K72A human dimer monitored at both 625 nm (high spin heme) and 695 nm (Met80 ligation) yields midpoint pH values of 6.6 and 7.6, respectively, showing that the Met80 → Lys79 and high spin to low spin transitions are distinct. The dimer peroxidase activity increases rapidly below pH 7, suggesting that population of the high spin form of the heme is what promotes peroxidase activity. Comparison of the structures of the alkaline dimer and the neutral pH dimer shows that the neutral pH conformer has a better electrostatic surface for binding to a cardiolipin-containing membrane and provides better access for small molecules to the heme iron. Given that the pH of mitochondrial cristae ranges from 6.9 to 7.2, the alkaline transition of the Cytc dimer could provide a conformational switch to tune the peroxidase activity of Cytc that oxygenates cardiolipin in the early stages of apoptosis.
Collapse
Affiliation(s)
| | - Allison D. Kelly
- Department of Chemistry and Biochemistry and Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, Montana 59812, USA
| | - Bruce E. Bowler
- Department of Chemistry and Biochemistry and Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, Montana 59812, USA
| |
Collapse
|
10
|
Feng Y, Liu XC, Li L, Gao SQ, Wen GB, Lin YW. Naturally Occurring I81N Mutation in Human Cytochrome c Regulates Both Inherent Peroxidase Activity and Interactions with Neuroglobin. ACS OMEGA 2022; 7:11510-11518. [PMID: 35415373 PMCID: PMC8992277 DOI: 10.1021/acsomega.2c01256] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/14/2022] [Indexed: 05/24/2023]
Abstract
Human cytochrome c (hCyt c) is a crucial heme protein and plays an indispensable role in energy conversion and intrinsic apoptosis pathways. The sequence and structure of Cyt c were evolutionarily conserved and only a few naturally occurring mutants were detected in humans. Among those variable sites, position 81 was proposed to act as a peroxidase switch in the initiation stages of apoptosis. In this study, we show that Ile81 not only suppresses the intrinsic peroxidase activity but also is essential for Cyt c to interact with neuroglobin (Ngb), a potential protein partner. The kinetic assays showed that the peroxidase activity of the naturally occurring variant I81N was enhanced up to threefold under pH 5. The local stability of the Ω-loop D (residues 70-85) in the I81N variant was decreased. Moreover, the Alphafold2 program predicted that Ile81 forms stable contact with human Ngb. Meanwhile, the Ile81 to Asn81 missense mutation abolishes the interaction interface, resulting in a ∼40-fold decrease in binding affinity. These observations provide an insight into the structure-function relationship of the conserved Ile81 in vertebrate Cyt c.
Collapse
Affiliation(s)
- Yu Feng
- School
of Chemistry and Chemical Engineering, University
of South China, Hengyang 421001, China
| | - Xi-Chun Liu
- School
of Chemistry and Chemical Engineering, University
of South China, Hengyang 421001, China
| | - Lianzhi Li
- School
of Chemistry and Chemical Engineering, Liaocheng
University, Liaocheng 252059, China
| | - Shu-Qin Gao
- Key
Lab of Protein Structure and Function of Universities in Hunan Province, University of South China, Hengyang 421001, China
| | - Ge-Bo Wen
- Key
Lab of Protein Structure and Function of Universities in Hunan Province, University of South China, Hengyang 421001, China
| | - Ying-Wu Lin
- School
of Chemistry and Chemical Engineering, University
of South China, Hengyang 421001, China
- Key
Lab of Protein Structure and Function of Universities in Hunan Province, University of South China, Hengyang 421001, China
| |
Collapse
|
11
|
Mahanty S, Rathinasamy K, Suresh D. Spectral Characterization of Purpurin Dye and Its Application in pH Sensing, Cell Imaging and Apoptosis Detection. J Fluoresc 2022; 32:247-256. [PMID: 34731386 DOI: 10.1007/s10895-021-02836-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/18/2021] [Indexed: 12/20/2022]
Abstract
Purpurin (1,2,4-trihydroxy-9,10-anthraquinone) is a natural red dye obtained from the red madder plant that is widely used in food and dyeing industries. The present study investigated the characteristics of purpurin and its application as a pH-sensitive probe to detect the pH of solutions and intracellular pH of mammalian and bacterial cells. Purpurin exhibited high pH-sensitive behavior, low analytes interference, high stability with pKa of 4.6 and visible colorimetric change. 1H NMR and FTIR studies indicated protonation of phenolic hydroxyl group under acidic condition with hypsochromic shift in the absorption and fluorescence spectra relative to that of basic condition. Cell culture studies using HeLa cells revealed that purpurin is well tolerated by the cells and the fluorescent imaging result indicated excellent cell permeability with possible use of the dye to detect the pH fluctuations in living cells under various physiological conditions such as apoptosis. Microbiological studies indicated that the dye could be used for visualization of bacteria under acidic condition.
Collapse
Affiliation(s)
- Susobhan Mahanty
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| | - Krishnan Rathinasamy
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India.
| | - Devarajan Suresh
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Tamil Nadu, 613 401, Thanjavur, India
| |
Collapse
|
12
|
Biswas S, Dutta T, Silswal A, Bhowal R, Chopra D, Koner AL. Strategic engineering of alkyl spacer length for a pH-tolerant lysosome marker and dual organelle localization. Chem Sci 2021; 12:9630-9644. [PMID: 34349935 PMCID: PMC8293980 DOI: 10.1039/d1sc00542a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/13/2021] [Indexed: 11/25/2022] Open
Abstract
Long-term visualization of lysosomal properties is extremely crucial to evaluate diseases related to their dysfunction. However, many of the reported lysotrackers are less conducive to imaging lysosomes precisely because they suffer from fluorescence quenching and other inherent drawbacks such as pH-sensitivity, polarity insensitivity, water insolubility, slow diffusibility, and poor photostability. To overcome these limitations, we have utilized an alkyl chain length engineering strategy and synthesized a series of lysosome targeting fluorescent derivatives namely NIMCs by attaching a morpholine moiety at the peri position of the 1,8-naphthalimide (NI) ring through varying alkyl spacers between morpholine and 1,8-naphthalimide. The structural and optical properties of the synthesized NIMCs were explored by 1H-NMR, single-crystal X-ray diffraction, UV-Vis, and fluorescence spectroscopy. Afterward, optical spectroscopic measurements were carefully performed to identify a pH-tolerant, polarity sensitive, and highly photostable fluoroprobes for further live-cell imaging applications. NIMC6 displayed excellent pH-tolerant and polarity-sensitive properties. Consequently, all NIMCs were employed in kidney fibroblast cells (BHK-21) to investigate their applicability for lysosome targeting and probing lysosomal micropolarity. Interestingly, a switching of localization from lysosomes to the endoplasmic reticulum (ER) was also achieved by controlling the linker length and this phenomenon was subsequently applied in determining ER micropolarity. Additionally, the selected probe NIMC6 was also employed in BHK-21 cells for 3-D spheroid imaging and in Caenorhabditis elegans (C. elegans) for in vivo imaging, to evaluate its efficacy for imaging animal models.
Collapse
Affiliation(s)
- Suprakash Biswas
- Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal Madhya Pradesh India
| | - Tanoy Dutta
- Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal Madhya Pradesh India
| | - Akshay Silswal
- Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal Madhya Pradesh India
| | - Rohit Bhowal
- Crystallography and Crystal Chemistry Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal Madhya Pradesh India
| | - Deepak Chopra
- Crystallography and Crystal Chemistry Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal Madhya Pradesh India
| | - Apurba L Koner
- Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal Madhya Pradesh India
| |
Collapse
|
13
|
Singla N, Ahmad M, Dhiman S, Kumar G, Singh S, Verma S, Kaur S, Rashid M, Kaur S, Luxami V, Singh P, Kumar S. An ESIPT based versatile fluorescent probe for bioimaging live-cells and E. coli under strongly acidic conditions. NEW J CHEM 2021. [DOI: 10.1039/d1nj03933d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A BTNN probe undergoes a 146 times increase in fluorescence intensity at 530 nm on lowering the pH from 7.0 to 2.0 and has been deployed for the bioimaging of MG-63 live cells and E. coli bacteria at different pH levels.
Collapse
Affiliation(s)
- Nancy Singla
- Department of Chemistry, Center for Advanced Studies, Guru Nanak Dev University, Amritsar–143005, India
| | - Manzoor Ahmad
- Department of Chemistry, Center for Advanced Studies, Guru Nanak Dev University, Amritsar–143005, India
| | - Sukhvinder Dhiman
- Department of Chemistry, Center for Advanced Studies, Guru Nanak Dev University, Amritsar–143005, India
| | - Gulshan Kumar
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala-147004, India
| | - Siloni Singh
- Department of Botanical and Environment Science, Guru Nanak Dev University, Amritsar 143005, India
| | - Shagun Verma
- Department of Botanical and Environment Science, Guru Nanak Dev University, Amritsar 143005, India
| | - Satwinderjeet Kaur
- Department of Botanical and Environment Science, Guru Nanak Dev University, Amritsar 143005, India
| | - Muzamil Rashid
- Department of Microbiology, Guru Nanak Dev University, Amritsar 143005, India
| | - Sukhraj Kaur
- Department of Microbiology, Guru Nanak Dev University, Amritsar 143005, India
| | - Vijay Luxami
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala-147004, India
| | - Prabhpreet Singh
- Department of Chemistry, Center for Advanced Studies, Guru Nanak Dev University, Amritsar–143005, India
| | - Subodh Kumar
- Department of Chemistry, Center for Advanced Studies, Guru Nanak Dev University, Amritsar–143005, India
| |
Collapse
|
14
|
Engineering of a dual-site molecular probe for logical bioimaging of lysosomal H2S and pH. Talanta 2020; 219:121286. [DOI: 10.1016/j.talanta.2020.121286] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023]
|
15
|
Cai S, Yan J, Xiong H, Wu Q, Xing H, Liu Y, Liu S, Liu Z. Aptamer-functionalized molybdenum disulfide nanosheets for tumor cell targeting and lysosomal acidic environment/NIR laser responsive drug delivery to realize synergetic chemo-photothermal therapeutic effects. Int J Pharm 2020; 590:119948. [PMID: 33031876 DOI: 10.1016/j.ijpharm.2020.119948] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/07/2020] [Accepted: 10/01/2020] [Indexed: 12/30/2022]
Abstract
Molybdenum disulfide (MoS2), one representative 2D nanomaterial, has recently emerged as a unique platform in the biomedical field. However, its application in drug delivery systems should be further exploited. Here, we report a novel tumor cell targeting and lysosomal acidic environment/NIR laser dual responsive drug delivery system for synergetic chemo-photothermal treatment of cancer cells. The MoS2 nanosheets were loaded with chemotherapy drug doxorubicin (DOX) and coated with polydopamine (PDA) layer. Then, thiolated aptamer AS1411 and polyethylene glycol (PEG) were modified onto MoS2 nanosheets through Michael addition reaction to construct DOX@Apt-PEG-PDA-MoS2 nanosheets. The aptamer modification endowed the nanoplatform with targeting ability to breast cancer MCF-7 cells. MoS2 and PDA converted 808 nm NIR laser into heat and played the role of photothermal therapy (PTT). Tumor lysosomal acidic environment and NIR laser irradiation accelerated the release of DOX from the nanosheets. The nanocarrier Apt-PEG-PDA-MoS2 showed good biocompatibility, and DOX@Apt-PEG-PDA-MoS2 showed synergetic chemo-photothermal therapy effects with significantly enhanced anti-tumor efficacy, suggesting that this MoS2-based drug delivery platform is promising for targeted and synergetic treatment of cancer.
Collapse
Affiliation(s)
- Shundong Cai
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Jianhua Yan
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Hongjie Xiong
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Qing Wu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Hang Xing
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan Province, PR China
| | - Yanfei Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, 410083 Hunan Province, PR China
| | - Song Liu
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan Province, PR China.
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China; Molecular Imaging Research Center of Central South University, Changsha 410008, Hunan Province, PR China.
| |
Collapse
|
16
|
Lin X, Wang Q, Gu C, Li M, Chen K, Chen P, Tang Z, Liu X, Pan H, Liu Z, Tang R, Fan S. Smart Nanosacrificial Layer on the Bone Surface Prevents Osteoporosis through Acid-Base Neutralization Regulated Biocascade Effects. J Am Chem Soc 2020; 142:17543-17556. [PMID: 32960592 DOI: 10.1021/jacs.0c07309] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Osteoporosis is a global chronic disease characterized by severe bone loss and high susceptibility to fragile fracture. It is widely accepted that the origin acidified microenvironment created by excessive osteoclasts causes irreversible bone mineral dissolution and organic degradation during osteoclastic resorption. However, current clinically available approaches are mainly developed from the perspective of osteoclast biology rather than the critical acidified niche. Here, we developed a smart "nanosacrificial layer" consisting of sodium bicarbonate (NaHCO3)-containing and tetracycline-functionalized nanoliposomes (NaHCO3-TNLs) that can target bone surfaces and respond to external secreted acidification from osteoclasts, preventing osteoporosis. In vitro and in vivo results prove that this nanosacrificial layer precisely inhibits the initial acidification of osteoclasts and initiates a chemically regulated biocascade to remodel the bone microenvironment and realize bone protection: extracellular acid-base neutralization first inhibits osteoclast function and also promotes its apoptosis, in which the apoptosis-derived extracellular vesicles containing RANK (receptor activator of nuclear factor-κ B) further consume RANKL (RANK ligand) in serum, achieving comprehensive osteoclast inhibition. Our therapeutic strategy for osteoporosis is based on original and precise acid-base neutralization, aiming to reestablish bone homeostasis by using a smart nanosacrificial layer that is able to induce chemically regulated biocascade effects. This study also provides a novel understanding of osteoporosis therapy in biomedicine and clinical treatments.
Collapse
Affiliation(s)
- Xianfeng Lin
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang 310016, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Qingqing Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang 310016, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Chenhui Gu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang 310016, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Mobai Li
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang 310016, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Kai Chen
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Pengfei Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang 310016, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Zhibin Tang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang 310016, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Xin Liu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang 310016, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Haihua Pan
- Department of Chemistry and Center for Biomaterials and Biopathways, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Zhaoming Liu
- Department of Chemistry and Center for Biomaterials and Biopathways, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Ruikang Tang
- Department of Chemistry and Center for Biomaterials and Biopathways, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Shunwu Fan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang 310016, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| |
Collapse
|
17
|
Hu Y, Wang Y, Yan J, Wen N, Xiong H, Cai S, He Q, Peng D, Liu Z, Liu Y. Dynamic DNA Assemblies in Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000557. [PMID: 32714763 PMCID: PMC7375253 DOI: 10.1002/advs.202000557] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/07/2020] [Indexed: 05/13/2023]
Abstract
Deoxyribonucleic acid (DNA) has been widely used to construct homogeneous structures with increasing complexity for biological and biomedical applications due to their powerful functionalities. Especially, dynamic DNA assemblies (DDAs) have demonstrated the ability to simulate molecular motions and fluctuations in bionic systems. DDAs, including DNA robots, DNA probes, DNA nanochannels, DNA templates, etc., can perform structural transformations or predictable behaviors in response to corresponding stimuli and show potential in the fields of single molecule sensing, drug delivery, molecular assembly, etc. A wave of exploration of the principles in designing and usage of DDAs has occurred, however, knowledge on these concepts is still limited. Although some previous reviews have been reported, systematic and detailed reviews are rare. To achieve a better understanding of the mechanisms in DDAs, herein, the recent progress on the fundamental principles regarding DDAs and their applications are summarized. The relative assembly principles and computer-aided software for their designing are introduced. The advantages and disadvantages of each software are discussed. The motional mechanisms of the DDAs are classified into exogenous and endogenous stimuli-triggered responses. The special dynamic behaviors of DDAs in biomedical applications are also summarized. Moreover, the current challenges and future directions of DDAs are proposed.
Collapse
Affiliation(s)
- Yaqin Hu
- Department of Pharmaceutical EngineeringCollege of Chemistry and Chemical EngineeringCentral South UniversityChangshaHunan410083P. R. China
| | - Ying Wang
- Department of Pharmaceutical EngineeringCollege of Chemistry and Chemical EngineeringCentral South UniversityChangshaHunan410083P. R. China
| | - Jianhua Yan
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410013P. R. China
| | - Nachuan Wen
- Department of Pharmaceutical EngineeringCollege of Chemistry and Chemical EngineeringCentral South UniversityChangshaHunan410083P. R. China
| | - Hongjie Xiong
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410013P. R. China
| | - Shundong Cai
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410013P. R. China
| | - Qunye He
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410013P. R. China
| | - Dongming Peng
- Department of Medicinal ChemistrySchool of PharmacyHunan University of Chinese MedicineChangshaHunan410013P. R. China
| | - Zhenbao Liu
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410013P. R. China
- Molecular Imaging Research Center of Central South UniversityChangshaHunan410013P. R. China
| | - Yanfei Liu
- Department of Pharmaceutical EngineeringCollege of Chemistry and Chemical EngineeringCentral South UniversityChangshaHunan410083P. R. China
| |
Collapse
|
18
|
He Q, Chen J, Yan J, Cai S, Xiong H, Liu Y, Peng D, Mo M, Liu Z. Tumor microenvironment responsive drug delivery systems. Asian J Pharm Sci 2020; 15:416-448. [PMID: 32952667 PMCID: PMC7486519 DOI: 10.1016/j.ajps.2019.08.003] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/30/2019] [Accepted: 08/21/2019] [Indexed: 12/12/2022] Open
Abstract
Conventional tumor-targeted drug delivery systems (DDSs) face challenges, such as unsatisfied systemic circulation, low targeting efficiency, poor tumoral penetration, and uncontrolled drug release. Recently, tumor cellular molecules-triggered DDSs have aroused great interests in addressing such dilemmas. With the introduction of several additional functionalities, the properties of these smart DDSs including size, surface charge and ligand exposure can response to different tumor microenvironments for a more efficient tumor targeting, and eventually achieve desired drug release for an optimized therapeutic efficiency. This review highlights the recent research progresses on smart tumor environment responsive drug delivery systems for targeted drug delivery. Dynamic targeting strategies and functional moieties sensitive to a variety of tumor cellular stimuli, including pH, glutathione, adenosine-triphosphate, reactive oxygen species, enzyme and inflammatory factors are summarized. Special emphasis of this review is placed on their responsive mechanisms, drug loading models, drawbacks and merits. Several typical multi-stimuli responsive DDSs are listed. And the main challenges and potential future development are discussed.
Collapse
Affiliation(s)
- Qunye He
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Jun Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Jianhua Yan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Shundong Cai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Hongjie Xiong
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Yanfei Liu
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Dongming Peng
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Miao Mo
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhenbao Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| |
Collapse
|
19
|
Steele HBB, Elmer-Dixon MM, Rogan JT, Ross JBA, Bowler BE. The Human Cytochrome c Domain-Swapped Dimer Facilitates Tight Regulation of Intrinsic Apoptosis. Biochemistry 2020; 59:2055-2068. [PMID: 32428404 PMCID: PMC7291863 DOI: 10.1021/acs.biochem.0c00326] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Oxidation of cardiolipin (CL) by cytochrome c (cytc) has been proposed to initiate the intrinsic pathway of apoptosis. Domain-swapped dimer (DSD) conformations of cytc have been reported both by our laboratory and by others. The DSD is an alternate conformer of cytc that could oxygenate CL early in apoptosis. We demonstrate here that the cytc DSD has a set of properties that would provide tighter regulation of the intrinsic pathway. We show that the human DSD is kinetically more stable than horse and yeast DSDs. Circular dichroism data indicate that the DSD has a less asymmetric heme environment, similar to that seen when the monomeric protein binds to CL vesicles at high lipid:protein ratios. The dimer undergoes the alkaline conformational transition near pH 7.0, 2.5 pH units lower than that of the monomer. Data from fluorescence correlation spectroscopy and fluorescence anisotropy suggest that the alkaline transition of the DSD may act as a switch from a high affinity for CL nanodiscs at pH 7.4 to a much lower affinity at pH 8.0. Additionally, the peroxidase activity of the human DSD increases 7-fold compared to that of the monomer at pH 7 and 8, but by 14-fold at pH 6 when mixed Met80/H2O ligation replaces the lysine ligation of the alkaline state. We also present data that indicate that cytc binding shows a cooperative effect as the concentration of cytc is increased. The DSD appears to have evolved into a pH-inducible switch that provides a means to control activation of apoptosis near pH 7.0.
Collapse
Affiliation(s)
- Harmen B. B. Steele
- Department of Chemistry & Biochemistry, University of Montana, Missoula, Montana 59812, United States
- Center for Biomolecular Structure & Dynamics, University of Montana, Missoula, Montana 59812, United States
| | - Margaret M. Elmer-Dixon
- Department of Chemistry & Biochemistry, University of Montana, Missoula, Montana 59812, United States
- Center for Biomolecular Structure & Dynamics, University of Montana, Missoula, Montana 59812, United States
| | - James T. Rogan
- Department of Chemistry & Biochemistry, University of Montana, Missoula, Montana 59812, United States
| | - J. B. Alexander Ross
- Department of Chemistry & Biochemistry, University of Montana, Missoula, Montana 59812, United States
- Center for Biomolecular Structure & Dynamics, University of Montana, Missoula, Montana 59812, United States
| | - Bruce E. Bowler
- Department of Chemistry & Biochemistry, University of Montana, Missoula, Montana 59812, United States
- Center for Biomolecular Structure & Dynamics, University of Montana, Missoula, Montana 59812, United States
| |
Collapse
|
20
|
Zhao X, Li J, Liu D, Yang M, Wang W, Zhu S, Yang B. Self-Enhanced Carbonized Polymer Dots for Selective Visualization of Lysosomes and Real-Time Apoptosis Monitoring. iScience 2020; 23:100982. [PMID: 32234664 PMCID: PMC7113624 DOI: 10.1016/j.isci.2020.100982] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/23/2020] [Accepted: 03/07/2020] [Indexed: 11/29/2022] Open
Abstract
Protons are highly related to cell viability during physiological and pathological processes. Developing new probes to monitor the pH variation could be extremely helpful to understand the viability of cells and the cell death study. Carbonized polymer dots (CPDs) are superior biocompatible and have been widely applied in bioimaging field. Herein, a new type of extreme-pH suitable CPDs was prepared from citric acid and o-phenylenediamine (CA/oPD-CPDs). Due to the co-existence of hydrophilic and hydrophobic groups, CA/oPD-CPDs tend to aggregate in neutral condition with a dramatic decrease of fluorescence, but disperse well in both acidic and alkaline conditions with brighter emission. This specialty enables them to selectively illuminate lysosomes in cells. Moreover, CA/oPD-CPDs in the cytoplasm could serve as a sustained probe to record intracellular pH variation during apoptosis. Furthermore, CA/oPD-CPDs present a continuous fluorescence increase upon 2-h laser irradiation in living cells, underscoring this imaging system for long-term biological recording.
Collapse
Affiliation(s)
- Xiaohuan Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, P. R. China
| | - Jing Li
- The Scientific Research Center, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P. R. China
| | - Dongning Liu
- Department of Periodontology, Stomatology Hospital, Jilin University, Changchun, Jilin 130021, P. R. China
| | - Mingxi Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, P. R. China
| | - Wenjing Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, P. R. China
| | - Shoujun Zhu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, P. R. China; Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin 130061, P.R. China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, P. R. China.
| |
Collapse
|
21
|
Afghah Z, Chen X, Geiger JD. Role of endolysosomes and inter-organellar signaling in brain disease. Neurobiol Dis 2020; 134:104670. [PMID: 31707116 PMCID: PMC7184921 DOI: 10.1016/j.nbd.2019.104670] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/14/2019] [Accepted: 11/05/2019] [Indexed: 12/29/2022] Open
Abstract
Endosomes and lysosomes (endolysosomes) are membrane bounded organelles that play a key role in cell survival and cell death. These acidic intracellular organelles are the principal sites for intracellular hydrolytic activity required for the maintenance of cellular homeostasis. Endolysosomes are involved in the degradation of plasma membrane components, extracellular macromolecules as well as intracellular macromolecules and cellular fragments. Understanding the physiological significance and pathological relevance of endolysosomes is now complicated by relatively recent findings of physical and functional interactions between endolysosomes with other intracellular organelles including endoplasmic reticulum, mitochondria, plasma membranes, and peroxisomes. Indeed, evidence clearly indicates that endolysosome dysfunction and inter-organellar signaling occurs in different neurodegenerative diseases including Alzheimer's disease (AD), HIV-1 associated neurocognitive disease (HAND), Parkinson's disease (PD) as well as various forms of brain cancer such as glioblastoma multiforme (GBM). These findings open new areas of cell biology research focusing on understanding the physiological actions and pathophysiological consequences of inter-organellar communication. Here, we will review findings of others and us that endolysosome de-acidification and dysfunction coupled with impaired inter-organellar signaling is involved in the pathogenesis of AD, HAND, PD, and GBM. A more comprehensive appreciation of cell biology and inter-organellar signaling could lead to the development of new drugs to prevent or cure these diseases.
Collapse
Affiliation(s)
- Zahra Afghah
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58201, United States of America
| | - Xuesong Chen
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58201, United States of America
| | - Jonathan D Geiger
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58201, United States of America.
| |
Collapse
|
22
|
ATP13A2 deficiency disrupts lysosomal polyamine export. Nature 2020; 578:419-424. [PMID: 31996848 DOI: 10.1038/s41586-020-1968-7] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 12/02/2019] [Indexed: 02/07/2023]
Abstract
ATP13A2 (PARK9) is a late endolysosomal transporter that is genetically implicated in a spectrum of neurodegenerative disorders, including Kufor-Rakeb syndrome-a parkinsonism with dementia1-and early-onset Parkinson's disease2. ATP13A2 offers protection against genetic and environmental risk factors of Parkinson's disease, whereas loss of ATP13A2 compromises lysosomes3. However, the transport function of ATP13A2 in lysosomes remains unclear. Here we establish ATP13A2 as a lysosomal polyamine exporter that shows the highest affinity for spermine among the polyamines examined. Polyamines stimulate the activity of purified ATP13A2, whereas ATP13A2 mutants that are implicated in disease are functionally impaired to a degree that correlates with the disease phenotype. ATP13A2 promotes the cellular uptake of polyamines by endocytosis and transports them into the cytosol, highlighting a role for endolysosomes in the uptake of polyamines into cells. At high concentrations polyamines induce cell toxicity, which is exacerbated by ATP13A2 loss due to lysosomal dysfunction, lysosomal rupture and cathepsin B activation. This phenotype is recapitulated in neurons and nematodes with impaired expression of ATP13A2 or its orthologues. We present defective lysosomal polyamine export as a mechanism for lysosome-dependent cell death that may be implicated in neurodegeneration, and shed light on the molecular identity of the mammalian polyamine transport system.
Collapse
|
23
|
Yu F, Jing X, Lin W. Single-/Dual-Responsive pH Fluorescent Probes Based on the Hybridization of Unconventional Fluorescence and Fluorophore for Imaging Lysosomal pH Changes in HeLa Cells. Anal Chem 2019; 91:15213-15219. [DOI: 10.1021/acs.analchem.9b04088] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Faqi Yu
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, P.R. China
| | - Xinying Jing
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, P.R. China
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, P.R. China
| |
Collapse
|
24
|
Lei H, Bowler BE. Naturally Occurring A51V Variant of Human Cytochrome c Destabilizes the Native State and Enhances Peroxidase Activity. J Phys Chem B 2019; 123:8939-8953. [PMID: 31557440 DOI: 10.1021/acs.jpcb.9b05869] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The A51V variant of human cytochrome c is linked to thrombocytopenia 4 (THC4), a condition that causes decreased blood platelet counts. A 1.82 Å structure of the A51V variant shows only minor changes in tertiary structure relative to the wild-type (WT) protein. Guanidine hydrochloride denaturation demonstrates that the global stability of the A51V variant is 1.3 kcal/mol less than that of the WT protein. The midpoint pH, pH1/2, of the alkaline transition of the A51V variant is 1 unit less than that of the WT protein. Stopped-flow pH jump experiments show that the A51V substitution affects the triggering ionization for one of two kinetically distinguishable alkaline conformers and enhances the accessibility of a high-spin heme transient. The pH1/2 for acid unfolding of the A51V variant is 0.7 units higher than for that of the WT protein. Consistent with the greater accessibility of non-native conformers for the A51V variant, the kcat values for its peroxidase activity increase by 6- to 15-fold in the pH range of 5-8 versus those of the WT protein. These data along with previously reported data for the other THC4-linked variants, G41S and Y48H, underscore the role of Ω-loop C (residues 40-57) in modulating the peroxidase activity of cytochrome c early in apoptosis.
Collapse
Affiliation(s)
- Haotian Lei
- Department of Chemistry and Biochemistry, Center for Bimolecular Structure and Dynamics , University of Montana , Missoula , Montana 59812 , United States
| | - Bruce E Bowler
- Department of Chemistry and Biochemistry, Center for Bimolecular Structure and Dynamics , University of Montana , Missoula , Montana 59812 , United States
| |
Collapse
|
25
|
A photostable Si-rhodamine-based near-infrared fluorescent probe for monitoring lysosomal pH during heat stroke. Anal Chim Acta 2019; 1092:117-125. [PMID: 31708024 DOI: 10.1016/j.aca.2019.09.053] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 09/18/2019] [Indexed: 12/23/2022]
Abstract
Heat stroke is a symptom of hyperthermia with a temperature of more than 40 °C, which usually leads to all kinds of physical discomfort and even death. It is necessary to study the mechanism of action of heat stroke on cells or organelles (such as cytotoxicity of heat) and the processes of cells or organelles during heat stroke. Recent studies have shown that there is a certain correlation between heat stroke and lysosome acidity. In order to clarify their relationship, Lyso-NIR-pH, a photostable Si-rhodamine-based near-infrared fluorescent probe, was developed for sensing pH changes in lysosomes during heat stroke in this paper. For Lyso-NIR-pH, a morpholine group is employed as the lysosome-targeting unit and a H+-triggered openable deoxylactam is employed as the response unit to pH. Lyso-NIR-pH can detect pH with a high selectivity and a sensitivity, and its pKa is 4.63. Lyso-NIR-pH also has outstanding imaging performances, such as excellent lysosome-targeting ability, low autofluorescence and photostable fluorescence signal, which are in favor of long-term imaging of pH with accurate fluorescence signals. Moreover, we successfully applied Lyso-NIR-pH to monitor lysosomal pH increases induced by chloroquine and apoptosis in live cells. Finally, we successfully applied Lyso-NIR-pH for monitoring changes of lysosomal pH during heat stroke. These results confirmed that Lyso-NIR-pH is a powerful tool to monitor pH change in lysosomes and study its possible effects.
Collapse
|
26
|
Lei H, Nold SM, Motta LJ, Bowler BE. Effect of V83G and I81A Substitutions to Human Cytochrome c on Acid Unfolding and Peroxidase Activity below a Neutral pH. Biochemistry 2019; 58:2921-2933. [DOI: 10.1021/acs.biochem.9b00295] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Haotian Lei
- Department of Chemistry and Biochemistry, University of Montana, Missoula, Montana 59812, United States
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, Montana 59812, United States
| | - Shiloh M. Nold
- Department of Chemistry and Biochemistry, University of Montana, Missoula, Montana 59812, United States
| | - Luis Jung Motta
- Department of Chemistry and Biochemistry, University of Montana, Missoula, Montana 59812, United States
| | - Bruce E. Bowler
- Department of Chemistry and Biochemistry, University of Montana, Missoula, Montana 59812, United States
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, Montana 59812, United States
| |
Collapse
|
27
|
Stegmayr J, Zetterberg F, Carlsson MC, Huang X, Sharma G, Kahl-Knutson B, Schambye H, Nilsson UJ, Oredsson S, Leffler H. Extracellular and intracellular small-molecule galectin-3 inhibitors. Sci Rep 2019; 9:2186. [PMID: 30778105 PMCID: PMC6379368 DOI: 10.1038/s41598-019-38497-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 12/27/2018] [Indexed: 01/04/2023] Open
Abstract
Galectin-3 is a carbohydrate binding protein which has important roles in cancer and immunity. Potent galectin-3 inhibitors have been synthesized, for experimental purposes and potential clinical use. As galectin-3 is implicated in both intra- and extracellular activities, permeability of galectin-3 inhibitors is an important parameter determining biological effects. We compared the cellular uptake of galectin-3 inhibitors and their potency in the intracellular or extracellular space. The inhibitors differed in their polar surface area (PSA), but had similar affinities for galectin-3. Using a well-established permeability assay, we confirmed that the uptake was significantly higher for the inhibitor with the lowest PSA, as expected. To analyze intracellular activity of the inhibitors, we developed a novel assay based on galectin-3 accumulation around damaged intracellular vesicles. The results show striking differences between the inhibitors intracellular potency, correlating with their PSAs. To test extracellular activity of the inhibitors, we analyzed their potency to block binding of galectin-3 to cell surfaces. All inhibitors were equally able to block galectin-3 binding to cells and this was proportional to their affinity for galectin-3. These inhibitors may serve as useful tools in exploring biological roles of galectin-3 and may further our understanding of intracellular versus extracellular roles of galectin-3.
Collapse
Affiliation(s)
- John Stegmayr
- Department of Laboratory Medicine, Lund University, 22100, Lund, Sweden.
| | | | - Michael C Carlsson
- Department of Cellular and Molecular Medicine, University of Copenhagen, 2200, Copenhagen N, Denmark.,Agilent Technologies Denmark ApS, 2600, Glostrup, Denmark
| | - Xiaoli Huang
- Department of Biology, Lund University, 22100, Lund, Sweden.,Xintela AB, 22381, Lund, Sweden
| | - Gunjan Sharma
- Department of Laboratory Medicine, Lund University, 22100, Lund, Sweden
| | | | | | - Ulf J Nilsson
- Department of Chemistry, Lund University, 22100, Lund, Sweden
| | - Stina Oredsson
- Department of Biology, Lund University, 22100, Lund, Sweden
| | - Hakon Leffler
- Department of Laboratory Medicine, Lund University, 22100, Lund, Sweden.
| |
Collapse
|
28
|
Di Paolo M, Roberti MJ, Bordoni AV, Aramendía PF, Wolosiuk A, Bossi ML. Nanoporous silica nanoparticles functionalized with a fluorescent turn-on spirorhodamineamide as pH indicators. Photochem Photobiol Sci 2019; 18:155-165. [DOI: 10.1039/c8pp00133b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
pH sensing by silica nanoparticles carrying a fluorescent turn-on spirorhodamineamide. Left/Right: Confocal imaging pH 7.4/2.0. Inset: SEM.
Collapse
Affiliation(s)
- M. Di Paolo
- INQUIMAE
- Facultad de Ciencias Exactas y Naturales
- Universidad de Buenos Aires
- Argentina
- Departamento de Química Inorgánica
| | - M. J. Roberti
- INQUIMAE
- Facultad de Ciencias Exactas y Naturales
- Universidad de Buenos Aires
- Argentina
| | - A. V. Bordoni
- Gerencia Química – Centro Atómico Constituyentes
- Comisión Nacional de Energía Atómica
- Buenos Aires
- Argentina
| | - P. F. Aramendía
- Departamento de Química Inorgánica
- Analítica y Química Física. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires
- 1428 Ciudad de Buenos Aires
- Argentina
- Centro de Investigaciones en Bionanociencias “Elizabeth Jares-Erijman” CIBION-CONICET
| | - A. Wolosiuk
- Departamento de Química Inorgánica
- Analítica y Química Física. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires
- 1428 Ciudad de Buenos Aires
- Argentina
- Gerencia Química – Centro Atómico Constituyentes
| | - M. L. Bossi
- INQUIMAE
- Facultad de Ciencias Exactas y Naturales
- Universidad de Buenos Aires
- Argentina
- Departamento de Química Inorgánica
| |
Collapse
|
29
|
Hossen S, Hossain MK, Basher M, Mia M, Rahman M, Uddin MJ. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review. J Adv Res 2019; 15:1-18. [PMID: 30581608 PMCID: PMC6300464 DOI: 10.1016/j.jare.2018.06.005] [Citation(s) in RCA: 544] [Impact Index Per Article: 90.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 06/21/2018] [Accepted: 06/23/2018] [Indexed: 02/06/2023] Open
Abstract
Nonspecific distribution and uncontrollable release of drugs in conventional drug delivery systems (CDDSs) have led to the development of smart nanocarrier-based drug delivery systems, which are also known as Smart Drug Delivery Systems (SDDSs). SDDSs can deliver drugs to the target sites with reduced dosage frequency and in a spatially controlled manner to mitigate the side effects experienced in CDDSs. Chemotherapy is widely used to treat cancer, which is the second leading cause of death worldwide. Site-specific drug delivery led to a keen interest in the SDDSs as an alternative to chemotherapy. Smart nanocarriers, nanoparticles used to carry drugs, are at the focus of SDDSs. A smart drug delivery system consists of smart nanocarriers, targeting mechanisms, and stimulus techniques. This review highlights the recent development of SDDSs for a number of smart nanocarriers, including liposomes, micelles, dendrimers, meso-porous silica nanoparticles, gold nanoparticles, super paramagnetic iron-oxide nanoparticles, carbon nanotubes, and quantum dots. The nanocarriers are described in terms of their structures, classification, synthesis and degree of smartness. Even though SDDSs feature a number of advantages over chemotherapy, there are major concerns about the toxicity of smart nanocarriers; therefore, a substantial study on the toxicity and biocompatibility of the nanocarriers has been reported. Finally, the challenges and future research scope in the field of SDDSs are also presented. It is expected that this review will be widely useful for those who have been seeking new research directions in this field and for those who are about to start their studies in smart nanocarrier-based drug delivery.
Collapse
Affiliation(s)
- Sarwar Hossen
- Department of Physics, Khulna Govt. Mahila College, National University, Gazipur 1704, Bangladesh
| | - M. Khalid Hossain
- Institute of Electronics, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Dhaka 1349, Bangladesh
| | - M.K. Basher
- Institute of Electronics, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Dhaka 1349, Bangladesh
| | - M.N.H. Mia
- Institute of Electronics, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Dhaka 1349, Bangladesh
| | - M.T. Rahman
- Department of Materials Science and Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - M. Jalal Uddin
- Department of Radio Sciences and Engineering, KwangWoon University, Seoul 01897, Republic of Korea
| |
Collapse
|
30
|
Clark AM, Ponniah K, Warden MS, Raitt EM, Yawn AC, Pascal SM. pH-Induced Folding of the Caspase-Cleaved Par-4 Tumor Suppressor: Evidence of Structure Outside of the Coiled Coil Domain. Biomolecules 2018; 8:biom8040162. [PMID: 30518159 PMCID: PMC6316887 DOI: 10.3390/biom8040162] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/20/2018] [Accepted: 11/22/2018] [Indexed: 12/13/2022] Open
Abstract
Prostate apoptosis response-4 (Par-4) is a 38 kDa largely intrinsically disordered tumor suppressor protein that functions in cancer cell apoptosis. Par-4 down-regulation is often observed in cancer while up-regulation is characteristic of neurodegenerative conditions such as Alzheimer’s disease. Cleavage of Par-4 by caspase-3 activates tumor suppression via formation of an approximately 25 kDa fragment (cl-Par-4) that enters the nucleus and inhibits Bcl-2 and NF-ƙB, which function in pro-survival pathways. Here, we have investigated the structure of cl-Par-4 using biophysical techniques including circular dichroism (CD) spectroscopy, dynamic light scattering (DLS), and intrinsic tyrosine fluorescence. The results demonstrate pH-dependent folding of cl-Par-4, with high disorder and aggregation at neutral pH, but a largely folded, non-aggregated conformation at acidic pH.
Collapse
Affiliation(s)
- Andrea M Clark
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA.
| | - Komala Ponniah
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA.
| | - Meghan S Warden
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA.
| | - Emily M Raitt
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA.
| | - Andrea C Yawn
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA.
| | - Steven M Pascal
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA.
| |
Collapse
|
31
|
Saranya G, Joseph MM, Karunakaran V, Nair JB, Saritha VN, Veena VS, Sujathan K, Ajayaghosh A, Maiti KK. Enzyme-Driven Switchable Fluorescence-SERS Diagnostic Nanococktail for the Multiplex Detection of Lung Cancer Biomarkers. ACS APPLIED MATERIALS & INTERFACES 2018; 10:38807-38818. [PMID: 30353718 DOI: 10.1021/acsami.8b15583] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Comprehensive profiling of multiple protein targets plays a critical role in deeper understanding of specific disease conditions associated with high heterogeneity and complexity. Herein, we present the design and fabrication of smart programmable nanoarchitectures, which could integrate clinically relevant diagnostic modalities for the multiplexed detection of most prevalent panel of disease biomarkers present in lung cancer. The multiplex nanoprobes were prepared by attaching dual-functional Raman-active fluorogens onto spherical gold nanoparticles through a peptide linker, Phe-Lys-Cys (FKC), which is engineered with a cathepsin B (cathB) enzyme cleavage site. The presence of cathB induces the scission of FKC upon homing into the cancer cells, resulting in the release of the initially latent fluorophores with a concomitant quenching of the surface-enhanced Raman signal intensity, thereby realizing an on-off switching between the fluorescence and Raman modalities. The enzyme-triggered switchable nanoprobes were utilized for the simultaneous detection of pathologically relevant lung cancer targets by tethering with specific antibody units. The multiplex-targeted multicolor coded detection capability of the antitags was successfully developed as a valid protein screening methodology, which can address the unmet challenges in the conventional clinical scenario for the precise and early diagnosis of lung cancer.
Collapse
Affiliation(s)
| | | | | | | | - Valliamma N Saritha
- Division of Cancer Research , Regional Cancer Centre (RCC) , Thiruvananthapuram 695011 , India
| | - Vamadevan S Veena
- Division of Cancer Research , Regional Cancer Centre (RCC) , Thiruvananthapuram 695011 , India
| | - Kunjuraman Sujathan
- Division of Cancer Research , Regional Cancer Centre (RCC) , Thiruvananthapuram 695011 , India
| | | | | |
Collapse
|
32
|
Zhu WJ, Niu JY, Sun R, Xu YJ, Ge JF. The improvement of lysosome targetability with oligoethyleneoxy chains linked benzo[a]phenoxazine. Bioorg Med Chem Lett 2018; 28:2953-2956. [PMID: 30006063 DOI: 10.1016/j.bmcl.2018.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/23/2018] [Accepted: 07/03/2018] [Indexed: 11/25/2022]
Abstract
In order to improve lysosome targetability of probes, fluorescent probes based on benzo[a]phenoxazine attaching different length oligoethyleneoxy chains were designed and prepared. Probes 2a-c containing N-pyridineium-3-yl exhibited almost ON-OFF near-infrared emission responses at 697-701 nm from pH 2.8 to 7.2, and the calculated pKa values of 2a-c were 4.90, 4.92 and 5.03 respectively. More importantly, fluorescent imaging experiments indicated that probes 2a-c were all lysosome biomarkers for Ges-1 and HeLa cells, which was because the introduction of oligoethyleneoxy groups improved the biocompatibility of probes, so that the probes 2a-c were better transported to lysosomes via the endocytosis pathway of the cells. Moreover, the probe 2a was selected as a representative, which not only showed good reversibility and selectivity, but used to successfully image lysosomal pH increases induced by chloroquine.
Collapse
Affiliation(s)
- Wei-Jin Zhu
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou 215123, PR China
| | - Jin-Yun Niu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, PR China
| | - Ru Sun
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou 215123, PR China
| | - Yu-Jie Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, PR China.
| | - Jian-Feng Ge
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou 215123, PR China; Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, PR China.
| |
Collapse
|
33
|
Schwarzenböck C, Nelson PJ, Huss R, Rieger B. Synthesis of next generation dual-responsive cross-linked nanoparticles and their application to anti-cancer drug delivery. NANOSCALE 2018; 10:16062-16068. [PMID: 30109346 DOI: 10.1039/c8nr04760j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Rare earth metal-mediated group transfer polymerisation enables the synthesis of previously inaccessible block copolymers of 2-vinylpyridine, diethyl vinylphosphonate and the new diallyl vinylphosphonate monomer. This precision polymerisation and the selective cross-linking of allyl side groups via thiol-ene click chemistry leads to the formation of well-defined dual-responsive nanoparticles. We demonstrate that these next generation nanocarriers are pH- and temperature-responsive and are capable of efficiently delivering doxorubicin into the nucleus of cancer cells. High anti-cancer activity could be demonstrated via cytotoxicity tests on breast cancer (MCF-7) and cervical cancer (HeLa) cells. These results validate this modular synthesis route as an ideal platform for the development of sophisticated nanocarriers for future drug delivery applications.
Collapse
Affiliation(s)
- Christina Schwarzenböck
- WACKER Lehrstuhl für Makromolekulare Chemie, Technische Universität München, Lichtenbergstraße 4, 85748 Garching bei München, Germany.
| | | | | | | |
Collapse
|
34
|
Zhang QQ, Yang T, Li RS, Zou HY, Li YF, Guo J, Liu XD, Huang CZ. A functional preservation strategy for the production of highly photoluminescent emerald carbon dots for lysosome targeting and lysosomal pH imaging. NANOSCALE 2018; 10:14705-14711. [PMID: 30039824 DOI: 10.1039/c8nr03212b] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Lysosomes, which can be easily targeted by molecules with abundant amino groups, play critical roles in endocytosis, autophagy, and phagocytosis; thus, it is important to accurately characterize lysosomes, including lysosomal pH, in living cells to understand their physiological and pathological functions. Herein, a new type of highly photoluminescent (PL) emerald carbon dots (CDs) was easily prepared through a functional preservation strategy (FPS) by simply mixing p-benzoquinone and ethanediamine at room temperature. The as-prepared CDs possessed abundant amino groups preserved from ethanediamine owing to FPS, and they exhibited excellent photostability as compared to the commercial LysoTracker probes. Consequently, they actively targeted lysosomes to sensitively respond to lysosomal pH in vitro owing to their abundant amino groups and good hydrophilicity. Thus, we could successfully monitor lysosomal pH dynamics during apoptosis in live cells.
Collapse
Affiliation(s)
- Qian Qian Zhang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
E S, Mao QX, Yuan XL, Kong XL, Chen XW, Wang JH. Targeted imaging of the lysosome and endoplasmic reticulum and their pH monitoring with surface regulated carbon dots. NANOSCALE 2018; 10:12788-12796. [PMID: 29947397 DOI: 10.1039/c8nr03453b] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Organelles play crucial roles in cellular activities and the functions of organelles are related greatly to the pH values, therefore, the bio-imaging of targeted organelles and their related pH sensing is of great importance in biological assays. Herein we report the fluorescence imaging of specific organelles, i.e., lysosomes and endoplasmic reticulum, and their pH sensing with surface regulated carbon dots (CDs). Carbon dots functionalized with amine groups (ACDs) are first prepared by hydrothermal treatment of citric acid and urea, and then laurylamine functionalized CDs (LCDs) are obtained via the conjugation of laurylamine with ACDs. The as-prepared ACDs and LCDs provide clear and bright imaging results for the lysosome and endoplasmic reticulum, respectively. The subcellular targeting features of the two CDs are attributed to their surface chemistries and cellular uptake pathways. Moreover, both the CDs are pH responsive within a certain pH range, i.e., 4.0-5.4 for ACDs and 6.2-7.2 for LCDs. The ACDs and LCDs are thus successfully applied to visualize the pH fluctuations of the lysosome and endoplasmic reticulum in MCF-7 cells.
Collapse
Affiliation(s)
- Shuang E
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China.
| | | | | | | | | | | |
Collapse
|
36
|
Multiplexed imaging detection of live cell intracellular changes in early apoptosis with aggregation-induced emission fluorogens. Sci China Chem 2018. [DOI: 10.1007/s11426-018-9287-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
37
|
Abstract
Met80, one of the heme iron ligands in cytochrome c (cyt c), is readily oxidized to Met sulfoxide (Met-SO) by several biologically relevant oxidants. The modification has been suggested to affect both the electron-transfer (ET) and apoptotic functions of this metalloprotein. The coordination of the heme iron in Met-oxidized cyt c (Met-SO cyt c) is critical for both of these functions but has remained poorly defined. We present electronic absorption, NMR, and EPR spectroscopic investigations as well as kinetic studies and mutational analyses to identify the heme iron ligands in yeast iso-1 Met-SO cyt c. Similar to the alkaline form of native cyt c, Lys73 and Lys79 ligate to the ferric heme iron in the Met80-oxidized protein, but this coordination takes place at much lower pH. The ferrous heme iron is ligated by Met-SO, implying the redox-linked ligand switch in the modified protein. Binding studies with the model peptide microperoxidase-8 provide a rationale for alterations in ligation and for the role of the polypeptide packing in native and Met-SO cyt c. Imidazole binding experiments have revealed that Lys dissociation from the ferric heme in K73A/K79G/M80K (M80K#) and Met-SO is more than 3 orders of magnitude slower than the opening of the heme pocket that limits Met80 replacement in native cyt c. The Lys-to-Met-SO ligand substitution gates ET of ferric Met-SO cyt c with Co(terpy)22+. Owing to the slow Lys dissociation step, ET reaction is slow but possible, which is not the case for nonswitchable M80A and M80K#. Acidic conditions cause Lys replacement by a water ligand in Met-SO cyt c (p Ka = 6.3 ± 0.1), increasing the intrinsic peroxidase activity of the protein. This pH-driven ligand switch may be a mechanism to boost peroxidase function of cyt c specifically in apoptotic cells.
Collapse
Affiliation(s)
- Fangfang Zhong
- Department of Chemistry, Dartmouth College, Hanover, NH 03755
| | | |
Collapse
|
38
|
Xue Z, Zhao H, Liu J, Han J, Han S. Defining Cancer Cell Bioenergetic Profiles Using a Dual Organelle-Oriented Chemosensor Responsive to pH Values and Electropotential Changes. Anal Chem 2017. [DOI: 10.1021/acs.analchem.7b01934] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Zhongwei Xue
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, State Key Laboratory for Physical Chemistry of Solid Surfaces, the Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, 361005, China
| | - Hu Zhao
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, State Key Laboratory for Physical Chemistry of Solid Surfaces, the Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, 361005, China
| | - Jian Liu
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, State Key Laboratory for Physical Chemistry of Solid Surfaces, the Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, 361005, China
| | - Jiahuai Han
- State
key Laboratory of Cellular Stress Biology, Innovation Center for Cell
Signaling Network, School of Life Sciences, Xiamen University, Xiamen, 361005, China
| | - Shoufa Han
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, State Key Laboratory for Physical Chemistry of Solid Surfaces, the Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
39
|
Hoshi Y, Uchida Y, Tachikawa M, Ohtsuki S, Terasaki T. Actin filament-associated protein 1 (AFAP-1) is a key mediator in inflammatory signaling-induced rapid attenuation of intrinsic P-gp function in human brain capillary endothelial cells. J Neurochem 2017; 141:247-262. [PMID: 28112407 DOI: 10.1111/jnc.13960] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/16/2017] [Accepted: 01/17/2017] [Indexed: 01/20/2023]
Abstract
The purpose of this study was to identify regulatory molecule(s) involved in the inflammatory signaling-induced decrease in P-glycoprotein (P-gp) efflux function at the blood-brain barrier (BBB) that may occur in brain diseases. We confirmed that in vivo P-gp efflux activity at the BBB was decreased without any change in P-gp protein expression level in a mouse model of acute inflammation induced by 3 mg/kg lipopolysaccharide. In a human BBB model cell line (human brain capillary endothelial cells; hCMEC/D3), 1-h treatment with 10 ng/mL tumor necrosis factor-α (TNF-α; an inflammatory mediator) rapidly reduced P-gp efflux activity, but had no effect on P-gp protein expression level. To clarify the non-transcriptional mechanism that causes the decrease in intrinsic efflux activity of P-gp in acute inflammation, we applied comprehensive quantitative phosphoproteomics to compare hCMEC/D3 cells treated with TNF-α and vehicle (control). Actin filament-associated protein-1 (AFAP-1), MAPK1, and transcription factor AP-1 (AP-1) were significantly phosphorylated in TNF-α-treated cells, and were selected as candidate proteins. In validation experiments, knockdown of AFAP-1 expression blocked the reduction in P-gp efflux activity by TNF-α treatment, whereas inhibition of MAPK function or knockdown of AP-1 expression did not. Quantitative targeted absolute proteomics revealed that the reduction in P-gp activity by TNF-α did not require any change in P-gp protein expression levels in the plasma membrane. Our results demonstrate that AFAP-1 is a key mediator in the inflammatory signaling-induced, translocation-independent rapid attenuation of P-gp efflux activity in human brain capillary endothelial cells.
Collapse
Affiliation(s)
- Yutaro Hoshi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yasuo Uchida
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Masanori Tachikawa
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Sumio Ohtsuki
- Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.,Japan Agency for Medical Research and Development (AMED) CREST, Tokyo, Japan
| | - Tetsuya Terasaki
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
40
|
Dong B, Song X, Kong X, Wang C, Zhang N, Lin W. A tumor-targeting and lysosome-specific two-photon fluorescent probe for imaging pH changes in living cells. J Mater Chem B 2017; 5:988-995. [PMID: 32263877 DOI: 10.1039/c6tb02957d] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Lysosomal pH is closely related to the metastasis and apoptosis of cancer cells. Detecting lysosomal pH changes in cancer cells could be helpful for analyzing tumor progressions and in-depth study of the roles of lysosomes in tumor invasion and metastasis. Herein, we describe a novel tumor-targeting and lysosome-specific two-photon fluorescent probe (BN-lys) for imaging pH changes for the first time. Biotin was employed as the tumor-targeting module, and morpholine was selected as the lysosome-specific group and the pH site to control the fluorescence by photoinduced electron transfer (PET) mechanism. With a pKa value of 5.36, BN-lys showed a fast and reversible fluorescence response to pH. Under the guidance of the biotin group, BN-lys displayed strong one-photon and two-photon fluorescence responses to lysosomal pH in cancer cells, while it displayed weak fluorescence in normal cells. Furthermore, BN-lys could be applied for the imaging of chloroquine-stimulated lysosomal pH changes in living cells. These features demonstrate that this probe could have practical applications in biological research.
Collapse
Affiliation(s)
- Baoli Dong
- Institute of Fluorescent Probes for Biological Imaging, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China.
| | | | | | | | | | | |
Collapse
|
41
|
Niu G, Zhang P, Liu W, Wang M, Zhang H, Wu J, Zhang L, Wang P. Near-Infrared Probe Based on Rhodamine Derivative for Highly Sensitive and Selective Lysosomal pH Tracking. Anal Chem 2017; 89:1922-1929. [PMID: 28208300 DOI: 10.1021/acs.analchem.6b04417] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The development of near-infrared fluorescent probes with low pKa, high selectivity, high photostability, and high sensitivity for lysosomal pH detection is of great importance. In the present work, we developed a novel near-infrared lysosomal pH probe (Lyso-hNR) based on a rhodamine derivative. Lyso-hNR showed fast, highly sensitive, and highly selective fluorescence response to acidic pH caused by the H+-induced structure changes from the nonfluorescent spirolactam form to the highly emissive open-ring form. Lyso-hNR displays a significant fluorescence enhancement at 650 nm (over 280-fold) from pH 7.0 to 4.0 with a pKa value of 5.04. Live cell imaging data revealed that Lyso-hNR can selectively monitor lysosomal pH changes with excellent photostability and low cytotoxicity. In addition, Lyso-hNR can be successfully used in tracking lysosomal pH changes induced by chloroquine and those during apoptosis. All these features render Lyso-hNR a promising candidate to investigate lysosome-associated physiological and pathological processes.
Collapse
Affiliation(s)
- Guangle Niu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences , Beijing, 100049, China
| | - Panpan Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing, 100190, China.,Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou, Jiangsu 215123, China
| | - Weimin Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences , Beijing, 100049, China
| | - Mengqi Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing, 100190, China
| | - Hongyan Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing, 100190, China
| | - Jiasheng Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing, 100190, China
| | - Liping Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences , Beijing, 100049, China
| | - Pengfei Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences , Beijing, 100049, China
| |
Collapse
|
42
|
Hyperspectral Imaging Using Intracellular Spies: Quantitative Real-Time Measurement of Intracellular Parameters In Vivo during Interaction of the Pathogenic Fungus Aspergillus fumigatus with Human Monocytes. PLoS One 2016; 11:e0163505. [PMID: 27727286 PMCID: PMC5058474 DOI: 10.1371/journal.pone.0163505] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 09/09/2016] [Indexed: 12/14/2022] Open
Abstract
Hyperspectral imaging (HSI) is a technique based on the combination of classical spectroscopy and conventional digital image processing. It is also well suited for the biological assays and quantitative real-time analysis since it provides spectral and spatial data of samples. The method grants detailed information about a sample by recording the entire spectrum in each pixel of the whole image. We applied HSI to quantify the constituent pH variation in a single infected apoptotic monocyte as a model system. Previously, we showed that the human-pathogenic fungus Aspergillus fumigatus conidia interfere with the acidification of phagolysosomes. Here, we extended this finding to monocytes and gained a more detailed analysis of this process. Our data indicate that melanised A. fumigatus conidia have the ability to interfere with apoptosis in human monocytes as they enable the apoptotic cell to recover from mitochondrial acidification and to continue with the cell cycle. We also showed that this ability of A. fumigatus is dependent on the presence of melanin, since a non-pigmented mutant did not stop the progression of apoptosis and consequently, the cell did not recover from the acidic pH. By conducting the current research based on the HSI, we could measure the intracellular pH in an apoptotic infected human monocyte and show the pattern of pH variation during 35 h of measurements. As a conclusion, we showed the importance of melanin for determining the fate of intracellular pH in a single apoptotic cell.
Collapse
|
43
|
Zhou L, Liu Y, Hu S, Wang H, Sun H, Zhang X. A new ratiometric two-photon fluorescent probe for imaging of lysosomes in living cells and tissues. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.06.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
44
|
Wang Q, Zhou L, Qiu L, Lu D, Wu Y, Zhang XB. An efficient ratiometric fluorescent probe for tracking dynamic changes in lysosomal pH. Analyst 2016; 140:5563-9. [PMID: 26107774 DOI: 10.1039/c5an00683j] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Lysosomes are acidic organelles (approximately pH 4.5-5.5) and tracking the changes in lysosomal pH is of great biological importance. To address this issue, quite a few of fluorescent probes have been developed. However, few of these probes can realize the tracking of dynamic changes in lysosomal pH. Herein, we report a new lysosome-targeted ratiometric fluorescent probe (FR-Lys) by hybridizing morpholine with a xanthane derivative and an o-hydroxy benzoxazole group. In this probe, the morpholine group serves as a targeting unit for lysosome, the xanthane derivative exhibits a pH-modulated open/close reaction of the spirocycle, while the o-hydroxy benzoxazole moiety shows a pH modulated excited-state intramolecular proton transfer (ESIPT) process. Such a design affords the probe a ratiometric fluorescence response towards pH with pH values ranging from 4.0 to 6.3. The response of the probe to pH was fast and reversible with high selectivity. Moreover, this probe possesses further advantages such as easy synthesis, high photostability and low cytotoxicity. These features are favorable for tracking dynamic pH changes in biosystems. It was then applied for dynamic imaging pH changes in lysosomes with satisfactory results.
Collapse
Affiliation(s)
- Qianqian Wang
- Molecular Sciences and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, PR China.
| | | | | | | | | | | |
Collapse
|
45
|
Gikanga B, Adeniji NS, Patapoff TW, Chih HW, Yi L. Cathepsin B Cleavage of vcMMAE-Based Antibody-Drug Conjugate Is Not Drug Location or Monoclonal Antibody Carrier Specific. Bioconjug Chem 2016; 27:1040-9. [PMID: 26914498 DOI: 10.1021/acs.bioconjchem.6b00055] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Antibody-drug conjugates (ADCs) require thorough characterization and understanding of product quality attributes. The framework of many ADCs comprises one molecule of antibody that is usually conjugated with multiple drug molecules at various locations. It is unknown whether the drug release rate from the ADC is dependent on drug location, and/or local environment, dictated by the sequence and structure of the antibody carrier. This study addresses these issues with valine-citrulline-monomethylauristatin E (vc-MMAE)-based ADC molecules conjugated at reduced disulfide bonds, by evaluating the cathepsin B catalyzed drug release rate of ADC molecules with different drug distributions or antibody carriers. MMAE drug release rates at different locations on ADC I were compared to evaluate the impact of drug location. No difference in rates was observed for drug released from the V(H), V(L), or C(H)2 domains of ADC I. Furthermore, four vc-MMAE ADC molecules were chosen as substrates for cathepsin B for evaluation of Michaelis-Menten parameters. There was no significant difference in K(M) or k(cat) values, suggesting that different sequences of the antibody carrier do not result in different drug release rates. Comparison between ADCs and small molecules containing vc-MMAE moieties as substrates for cathepsin B suggests that the presence of IgG1 antibody carrier, regardless of its bulkiness, does not impact drug release rate. Finally, a molecular dynamics simulation on ADC II revealed that the val-cit moiety at each of the eight possible conjugation sites was, on average, solvent accessible over 50% of its maximum solvent accessible surface area (SASA) during a 500 ns trajectory. Combined, these results suggest that the cathepsin cleavage sites for conjugated drugs are exposed enough for the enzyme to access and that the drug release rate is rather independent of drug location or monoclonal antibody carrier. Therefore, the distribution of drug conjugation at different sites is not a critical parameter to control in manufacturing of the vc-MMAE-based ADC conjugated at reduced disulfide bonds.
Collapse
Affiliation(s)
- Benson Gikanga
- Pharmaceutical Processing and Technology Development, ‡Late Stage Pharmaceutical Development, §Early Stage Pharmaceutical Development, Genentech Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Nia S Adeniji
- Pharmaceutical Processing and Technology Development, ‡Late Stage Pharmaceutical Development, §Early Stage Pharmaceutical Development, Genentech Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Thomas W Patapoff
- Pharmaceutical Processing and Technology Development, ‡Late Stage Pharmaceutical Development, §Early Stage Pharmaceutical Development, Genentech Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Hung-Wei Chih
- Pharmaceutical Processing and Technology Development, ‡Late Stage Pharmaceutical Development, §Early Stage Pharmaceutical Development, Genentech Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Li Yi
- Pharmaceutical Processing and Technology Development, ‡Late Stage Pharmaceutical Development, §Early Stage Pharmaceutical Development, Genentech Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
46
|
Yu M, Wu X, Lin B, Han J, Yang L, Han S. Lysosomal pH Decrease in Inflammatory Cells Used To Enable Activatable Imaging of Inflammation with a Sialic Acid Conjugated Profluorophore. Anal Chem 2015; 87:6688-95. [DOI: 10.1021/acs.analchem.5b00847] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Mingzhu Yu
- Department
of Chemical Biology, College of Chemistry and Chemical Engineering,
State Key Laboratory for Physical Chemistry of Solid Surfaces, the
Key Laboratory for Chemical Biology of Fujian Province, the MOE Key
Laboratory of Spectrochemical Analysis and Instrumentation, and Innovation
Center for Cell Signaling Network, and ‡State Key Laboratory of Cellular
Stress Biology, Innovation Center for Cell Signaling Network, School
of Life Sciences, Xiamen University, Xiamen, 361005, China
| | - Xuanjun Wu
- Department
of Chemical Biology, College of Chemistry and Chemical Engineering,
State Key Laboratory for Physical Chemistry of Solid Surfaces, the
Key Laboratory for Chemical Biology of Fujian Province, the MOE Key
Laboratory of Spectrochemical Analysis and Instrumentation, and Innovation
Center for Cell Signaling Network, and ‡State Key Laboratory of Cellular
Stress Biology, Innovation Center for Cell Signaling Network, School
of Life Sciences, Xiamen University, Xiamen, 361005, China
| | - Bijuan Lin
- Department
of Chemical Biology, College of Chemistry and Chemical Engineering,
State Key Laboratory for Physical Chemistry of Solid Surfaces, the
Key Laboratory for Chemical Biology of Fujian Province, the MOE Key
Laboratory of Spectrochemical Analysis and Instrumentation, and Innovation
Center for Cell Signaling Network, and ‡State Key Laboratory of Cellular
Stress Biology, Innovation Center for Cell Signaling Network, School
of Life Sciences, Xiamen University, Xiamen, 361005, China
| | - Jiahuai Han
- Department
of Chemical Biology, College of Chemistry and Chemical Engineering,
State Key Laboratory for Physical Chemistry of Solid Surfaces, the
Key Laboratory for Chemical Biology of Fujian Province, the MOE Key
Laboratory of Spectrochemical Analysis and Instrumentation, and Innovation
Center for Cell Signaling Network, and ‡State Key Laboratory of Cellular
Stress Biology, Innovation Center for Cell Signaling Network, School
of Life Sciences, Xiamen University, Xiamen, 361005, China
| | - Liu Yang
- Department
of Chemical Biology, College of Chemistry and Chemical Engineering,
State Key Laboratory for Physical Chemistry of Solid Surfaces, the
Key Laboratory for Chemical Biology of Fujian Province, the MOE Key
Laboratory of Spectrochemical Analysis and Instrumentation, and Innovation
Center for Cell Signaling Network, and ‡State Key Laboratory of Cellular
Stress Biology, Innovation Center for Cell Signaling Network, School
of Life Sciences, Xiamen University, Xiamen, 361005, China
| | - Shoufa Han
- Department
of Chemical Biology, College of Chemistry and Chemical Engineering,
State Key Laboratory for Physical Chemistry of Solid Surfaces, the
Key Laboratory for Chemical Biology of Fujian Province, the MOE Key
Laboratory of Spectrochemical Analysis and Instrumentation, and Innovation
Center for Cell Signaling Network, and ‡State Key Laboratory of Cellular
Stress Biology, Innovation Center for Cell Signaling Network, School
of Life Sciences, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
47
|
Bouchareb R, Côté N, Marie-Chloé-Boulanger, Le Quang K, El Husseini D, Asselin J, Hadji F, Lachance D, Shayhidin EE, Mahmut A, Pibarot P, Bossé Y, Messaddeq Y, Boudreau D, Marette A, Mathieu P. Carbonic anhydrase XII in valve interstitial cells promotes the regression of calcific aortic valve stenosis. J Mol Cell Cardiol 2015; 82:104-15. [PMID: 25771146 DOI: 10.1016/j.yjmcc.2015.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 02/20/2015] [Accepted: 03/02/2015] [Indexed: 02/05/2023]
Abstract
AIMS Calcific aortic valve stenosis (CAVS) is the most common heart valve disease. In the present work we sought to determine the reversibility of mineralization in the aortic valve. METHODS AND RESULTS By using in vitro analyses we found that valve interstitial cells (VICs) have the ability to resorb minerals. We documented that agonist of P2Y2 receptor (P2Y2R) promoted the expression of carbonic anhydrase XII (CAXII) at the cell membrane of VICs, whereby minerals are resorbed. P2Y2R-mediated mineral resorption was corroborated by using mouse VICs isolated from wild type and P2Y2R(-/-) mice. Measurements of extracellular pH (pHe) by using core-shell nanosensors revealed that P2Y2R-mediated CAXII export to the cell membrane led to an acidification of extracellular space, whereby minerals are resorbed. In vivo, we next treated LDLR(-/-)/ApoB(100/100)/IGF2 mice, which had developed CAVS under a high-fat/high-sucrose diet for 8 months, with 2-thioUTP (a P2Y2R agonist) or saline for the next 2 months. The administration of 2-thioUTP (2mg/kg/day i.p.) reduced the mineral volume in the aortic valve measured with serial microCT analyses, which improved hemodynamics and reduced left ventricular hypertrophy (LVH). Examination of leaflets at necropsy confirmed a lower level of mineralization and fibrosis along with higher levels of CAXII in mice under 2-thioUTP. In another series of experiment, the administration of acetazolamide (a CA inhibitor) prevented the acidification of leaflets and the regression of CAVS induced by 2-thioUTP in LDLR(-/-)/ApoB(100/100)/IGF2 mice. CONCLUSION P2Y2R-mediated expression of CAXII by VICs acidifies the extracellular space and promotes the regression of CAVS.
Collapse
Affiliation(s)
- Rihab Bouchareb
- Laboratoire d'Études Moléculaires des Valvulopathies (LEMV), Groupe de Recherche en Valvulopathies (GRV), Quebec Heart and Lung Institute/Research Center, Department of Surgery, Laval University, Québec, Canada
| | - Nancy Côté
- Laboratoire d'Études Moléculaires des Valvulopathies (LEMV), Groupe de Recherche en Valvulopathies (GRV), Quebec Heart and Lung Institute/Research Center, Department of Surgery, Laval University, Québec, Canada
| | - Marie-Chloé-Boulanger
- Laboratoire d'Études Moléculaires des Valvulopathies (LEMV), Groupe de Recherche en Valvulopathies (GRV), Quebec Heart and Lung Institute/Research Center, Department of Surgery, Laval University, Québec, Canada
| | - Khai Le Quang
- Department of Medicine, Laval University, Québec, Canada
| | - Diala El Husseini
- Laboratoire d'Études Moléculaires des Valvulopathies (LEMV), Groupe de Recherche en Valvulopathies (GRV), Quebec Heart and Lung Institute/Research Center, Department of Surgery, Laval University, Québec, Canada
| | - Jérémie Asselin
- The Center for Optics, Photonics and Lasers (COPL), Department of Physics, Laval University, Québec, Canada
| | - Fayez Hadji
- Laboratoire d'Études Moléculaires des Valvulopathies (LEMV), Groupe de Recherche en Valvulopathies (GRV), Quebec Heart and Lung Institute/Research Center, Department of Surgery, Laval University, Québec, Canada
| | | | - Elnur Elyar Shayhidin
- Laboratoire d'Études Moléculaires des Valvulopathies (LEMV), Groupe de Recherche en Valvulopathies (GRV), Quebec Heart and Lung Institute/Research Center, Department of Surgery, Laval University, Québec, Canada
| | - Ablajan Mahmut
- Laboratoire d'Études Moléculaires des Valvulopathies (LEMV), Groupe de Recherche en Valvulopathies (GRV), Quebec Heart and Lung Institute/Research Center, Department of Surgery, Laval University, Québec, Canada
| | | | - Yohan Bossé
- Department of Molecular Medicine, Laval University, Québec, Canada
| | - Younes Messaddeq
- The Center for Optics, Photonics and Lasers (COPL), Department of Physics, Laval University, Québec, Canada
| | - Denis Boudreau
- The Center for Optics, Photonics and Lasers (COPL), Department of Physics, Laval University, Québec, Canada
| | - André Marette
- Department of Medicine, Laval University, Québec, Canada
| | - Patrick Mathieu
- Laboratoire d'Études Moléculaires des Valvulopathies (LEMV), Groupe de Recherche en Valvulopathies (GRV), Quebec Heart and Lung Institute/Research Center, Department of Surgery, Laval University, Québec, Canada.
| |
Collapse
|
48
|
The hydrogen-peroxide-induced radical behaviour in human cytochrome c-phospholipid complexes: implications for the enhanced pro-apoptotic activity of the G41S mutant. Biochem J 2015; 456:441-52. [PMID: 24099549 DOI: 10.1042/bj20130758] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have investigated whether the pro-apoptotic properties of the G41S mutant of human cytochrome c can be explained by a higher than wild-type peroxidase activity triggered by phospholipid binding. A key complex in mitochondrial apoptosis involves cytochrome c and the phospholipid cardiolipin. In this complex cytochrome c has its native axial Met(80) ligand dissociated from the haem-iron, considerably augmenting the peroxidase capability of the haem group upon H2O2 binding. By EPR spectroscopy we reveal that the magnitude of changes in the paramagnetic haem states, as well as the yield of protein-bound free radical, is dependent on the phospholipid used and is considerably greater in the G41S mutant. A high-resolution X-ray crystal structure of human cytochrome c was determined and, in combination with the radical EPR signal analysis, two tyrosine residues, Tyr(46) and Tyr(48), have been rationalized to be putative radical sites. Subsequent single and double tyrosine-to-phenylalanine mutations revealed that the EPR signal of the radical, found to be similar in all variants, including G41S and wild-type, originates not from a single tyrosine residue, but is instead a superimposition of multiple EPR signals from different radical sites. We propose a mechanism of multiple radical formations in the cytochrome c-phospholipid complexes under H2O2 treatment, consistent with the stabilization of the radical in the G41S mutant, which elicits a greater peroxidase activity from cytochrome c and thus has implications in mitochondrial apoptosis.
Collapse
|
49
|
Shi XL, Mao GJ, Zhang XB, Liu HW, Gong YJ, Wu YX, Zhou LY, Zhang J, Tan W. Rhodamine-based fluorescent probe for direct bio-imaging of lysosomal pH changes. Talanta 2014; 130:356-62. [DOI: 10.1016/j.talanta.2014.07.030] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 07/03/2014] [Accepted: 07/10/2014] [Indexed: 11/29/2022]
|
50
|
A putative pH-dependent nuclear localization signal in the juxtamembrane region of c-Met. Exp Mol Med 2014; 46:e119. [PMID: 25341359 PMCID: PMC4221695 DOI: 10.1038/emm.2014.67] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 09/05/2014] [Accepted: 09/10/2014] [Indexed: 12/20/2022] Open
Abstract
The C-terminal fragment of the c-Met receptor tyrosine kinase is present in the nuclei of some cells irrespective of ligand stimulation, but the responsible nuclear localization signal (NLS) has not been previously reported. Here, we report that two histidine residues separated by a 10-amino-acid spacer (H1068-H1079) located in the juxtamembrane region of c-Met function as a putative novel NLS. Deletion of these sequences significantly abolished the nuclear translocation of c-Met, as did substitution of the histidines with alanines. This substitution also decreased the association of c-Met fragment with importin β. The putative NLS of c-Met is unique in that it relies on histidines, whose positive charge changes depending on pH, rather than the lysines or arginines, commonly found in classical bipartite NLSs, suggesting the possible 'pH-dependency' of this NLS. Indeed, decreasing the cytosolic pH either with nigericin, an Na(+)/H(+) exchanger or pH 6.5 KRB buffer significantly increased the level of nuclear c-Met and the interaction of the c-Met fragment with importin β, indicating that low pH itself enhanced nuclear translocation. Consistent with this, nigericin treatment also increased the nuclear level of endogenous c-Met in HeLa cells. The putative aberrant bipartite NLS of c-Met seems to be the first example of what we call a 'pH-dependent' NLS.
Collapse
|