1
|
Lewinski M, Brüggemann M, Köster T, Reichel M, Bergelt T, Meyer K, König J, Zarnack K, Staiger D. Mapping protein-RNA binding in plants with individual-nucleotide-resolution UV cross-linking and immunoprecipitation (plant iCLIP2). Nat Protoc 2024; 19:1183-1234. [PMID: 38278964 DOI: 10.1038/s41596-023-00935-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/20/2023] [Indexed: 01/28/2024]
Abstract
Despite crucial roles of RNA-binding proteins (RBPs) in plant physiology and development, methods for determining their transcriptome-wide binding landscape are less developed than those used in other model organisms. Cross-linking and immunoprecipitation (CLIP) methods (based on UV-mediated generation of covalent bonds between RNAs and cognate RBPs in vivo, purification of the cross-linked complexes and identification of the co-purified RNAs by high-throughput sequencing) have been applied mainly in mammalian cells growing in monolayers or in translucent tissue. We have developed plant iCLIP2, an efficient protocol for performing individual-nucleotide-resolution CLIP (iCLIP) in plants, tailored to overcome the experimental hurdles posed by plant tissue. We optimized the UV dosage to efficiently cross-link RNA and proteins in plants and expressed epitope-tagged RBPs under the control of their native promoters in loss-of-function mutants. We select epitopes for which nanobodies are available, allowing stringent conditions for immunopurification of the RNA-protein complexes to be established. To overcome the inherently high RNase content of plant cells, RNase inhibitors are added and the limited RNA fragmentation step is modified. We combine the optimized isolation of RBP-bound RNAs with iCLIP2, a streamlined protocol that greatly enhances the efficiency of library preparation for high-throughput sequencing. Plant researchers with experience in molecular biology and handling of RNA can complete this iCLIP2 protocol in ~5 d. Finally, we describe a bioinformatics workflow to determine targets of Arabidopsis RBPs from iCLIP data, covering all steps from downloading sequencing reads to identifying cross-linking events ( https://github.com/malewins/Plant-iCLIPseq ), and present the R/Bioconductor package BindingSiteFinder to extract reproducible binding sites ( https://bioconductor.org/packages/release/bioc/html/BindingSiteFinder.html ).
Collapse
Affiliation(s)
- Martin Lewinski
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Mirko Brüggemann
- Buchmann Institute for Molecular Life Sciences (BMLS) & Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Tino Köster
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Marlene Reichel
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Thorsten Bergelt
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Katja Meyer
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Julian König
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Kathi Zarnack
- Buchmann Institute for Molecular Life Sciences (BMLS) & Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Dorothee Staiger
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
2
|
Li J, Zhao R, Liu J, Yao J, Ma S, Yin K, Zhang Y, Liu Z, Yan C, Zhao N, Zhou X, Chen S. Populus euphratica GRP2 Interacts with Target mRNAs to Negatively Regulate Salt Tolerance by Interfering with Photosynthesis, Na +, and ROS Homeostasis. Int J Mol Sci 2024; 25:2046. [PMID: 38396725 PMCID: PMC10888501 DOI: 10.3390/ijms25042046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/17/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The transcription of glycine-rich RNA-binding protein 2 (PeGRP2) transiently increased in the roots and shoots of Populus euphratica (a salt-resistant poplar) upon initial salt exposure and tended to decrease after long-term NaCl stress (100 mM, 12 days). PeGRP2 overexpression in the hybrid Populus tremula × P. alba '717-1B4' (P. × canescens) increased its salt sensitivity, which was reflected in the plant's growth and photosynthesis. PeGRP2 contains a conserved RNA recognition motif domain at the N-terminus, and RNA affinity purification (RAP) sequencing was developed to enrich the target mRNAs that physically interacted with PeGRP2 in P. × canescens. RAP sequencing combined with RT-qPCR revealed that NaCl decreased the transcripts of PeGRP2-interacting mRNAs encoding photosynthetic proteins, antioxidative enzymes, ATPases, and Na+/H+ antiporters in this transgenic poplar. Specifically, PeGRP2 negatively affected the stability of the target mRNAs encoding the photosynthetic proteins PETC and RBCMT; antioxidant enzymes SOD[Mn], CDSP32, and CYB1-2; ATPases AHA11, ACA8, and ACA9; and the Na+/H+ antiporter NHA1. This resulted in (i) a greater reduction in Fv/Fm, YII, ETR, and Pn; (ii) less pronounced activation of antioxidative enzymes; and (iii) a reduced ability to maintain Na+ homeostasis in the transgenic poplars during long-term salt stress, leading to their lowered ability to tolerate salinity stress.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China; (J.L.); (R.Z.); (J.L.); (S.M.); (K.Y.); (Y.Z.); (Z.L.); (C.Y.); (N.Z.); (X.Z.)
| | - Rui Zhao
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China; (J.L.); (R.Z.); (J.L.); (S.M.); (K.Y.); (Y.Z.); (Z.L.); (C.Y.); (N.Z.); (X.Z.)
| | - Jian Liu
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China; (J.L.); (R.Z.); (J.L.); (S.M.); (K.Y.); (Y.Z.); (Z.L.); (C.Y.); (N.Z.); (X.Z.)
| | - Jun Yao
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China;
| | - Siyuan Ma
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China; (J.L.); (R.Z.); (J.L.); (S.M.); (K.Y.); (Y.Z.); (Z.L.); (C.Y.); (N.Z.); (X.Z.)
| | - Kexin Yin
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China; (J.L.); (R.Z.); (J.L.); (S.M.); (K.Y.); (Y.Z.); (Z.L.); (C.Y.); (N.Z.); (X.Z.)
| | - Ying Zhang
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China; (J.L.); (R.Z.); (J.L.); (S.M.); (K.Y.); (Y.Z.); (Z.L.); (C.Y.); (N.Z.); (X.Z.)
| | - Zhe Liu
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China; (J.L.); (R.Z.); (J.L.); (S.M.); (K.Y.); (Y.Z.); (Z.L.); (C.Y.); (N.Z.); (X.Z.)
| | - Caixia Yan
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China; (J.L.); (R.Z.); (J.L.); (S.M.); (K.Y.); (Y.Z.); (Z.L.); (C.Y.); (N.Z.); (X.Z.)
| | - Nan Zhao
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China; (J.L.); (R.Z.); (J.L.); (S.M.); (K.Y.); (Y.Z.); (Z.L.); (C.Y.); (N.Z.); (X.Z.)
| | - Xiaoyang Zhou
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China; (J.L.); (R.Z.); (J.L.); (S.M.); (K.Y.); (Y.Z.); (Z.L.); (C.Y.); (N.Z.); (X.Z.)
| | - Shaoliang Chen
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China; (J.L.); (R.Z.); (J.L.); (S.M.); (K.Y.); (Y.Z.); (Z.L.); (C.Y.); (N.Z.); (X.Z.)
| |
Collapse
|
3
|
Ren D, Liu H, Sun X, Zhang F, Jiang L, Wang Y, Jiang N, Yan P, Cui J, Yang J, Li Z, Lu P, Luo X. Post-transcriptional regulation of grain weight and shape by the RBP-A-J-K complex in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:66-85. [PMID: 37970747 DOI: 10.1111/jipb.13583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/29/2023] [Accepted: 11/12/2023] [Indexed: 11/17/2023]
Abstract
RNA-binding proteins (RBPs) are components of the post-transcriptional regulatory system, but their regulatory effects on complex traits remain unknown. Using an integrated strategy involving map-based cloning, functional characterizations, and transcriptomic and population genomic analyses, we revealed that RBP-K (LOC_Os08g23120), RBP-A (LOC_Os11g41890), and RBP-J (LOC_Os10g33230) encode proteins that form an RBP-A-J-K complex that negatively regulates rice yield-related traits. Examinations of the RBP-A-J-K complex indicated RBP-K functions as a relatively non-specific RBP chaperone that enables RBP-A and RBP-J to function normally. Additionally, RBP-J most likely affects GA pathways, resulting in considerable increases in grain and panicle lengths, but decreases in grain width and thickness. In contrast, RBP-A negatively regulates the expression of genes most likely involved in auxin-regulated pathways controlling cell wall elongation and carbohydrate transport, with substantial effects on the rice grain filling process as well as grain length and weight. Evolutionarily, RBP-K is relatively ancient and highly conserved, whereas RBP-J and RBP-A are more diverse. Thus, the RBP-A-J-K complex may represent a typical functional model for many RBPs and protein complexes that function at transcriptional and post-transcriptional levels in plants and animals for increased functional consistency, efficiency, and versatility, as well as increased evolutionary potential. Our results clearly demonstrate the importance of RBP-mediated post-transcriptional regulation for the diversity of complex traits. Furthermore, rice grain yield and quality may be enhanced by introducing various complete or partial loss-of-function mutations to specific RBP genes using clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein 9 technology and by exploiting desirable natural tri-genic allelic combinations at the loci encoding the components of the RBP-A-J-K complex through marker-assisted selection.
Collapse
Affiliation(s)
- Ding Ren
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Hui Liu
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Xuejun Sun
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- MOE Key Laboratory of Crop Physiology, Ecology and Genetic Breeding College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Fan Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Ling Jiang
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Ying Wang
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Ning Jiang
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Peiwen Yan
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Jinhao Cui
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Jinshui Yang
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Zhikang Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Pingli Lu
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Xiaojin Luo
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- MOE Key Laboratory of Crop Physiology, Ecology and Genetic Breeding College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| |
Collapse
|
4
|
Xu W, Dou Y, Geng H, Fu J, Dan Z, Liang T, Cheng M, Zhao W, Zeng Y, Hu Z, Huang W. OsGRP3 Enhances Drought Resistance by Altering Phenylpropanoid Biosynthesis Pathway in Rice ( Oryza sativa L.). Int J Mol Sci 2022; 23:ijms23137045. [PMID: 35806050 PMCID: PMC9266740 DOI: 10.3390/ijms23137045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 02/07/2023] Open
Abstract
As a sessile organism, rice often faces various kinds of abiotic stresses, such as drought stress. Drought stress seriously harms plant growth and damages crop yield every year. Therefore, it is urgent to elucidate the mechanisms of drought resistance in rice. In this study, we identified a glycine-rich RNA-binding protein, OsGRP3, in rice. Evolutionary analysis showed that it was closely related to OsGR-RBP4, which was involved in various abiotic stresses. The expression of OsGRP3 was shown to be induced by several abiotic stress treatments and phytohormone treatments. Then, the drought tolerance tests of transgenic plants confirmed that OsGRP3 enhanced drought resistance in rice. Meanwhile, the yeast two-hybrid assay, bimolecular luminescence complementation assay and bimolecular fluorescence complementation assay demonstrated that OsGRP3 bound with itself may affect the RNA chaperone function. Subsequently, the RNA-seq analysis, physiological experiments and histochemical staining showed that OsGRP3 influenced the phenylpropanoid biosynthesis pathway and further modulated lignin accumulation. Herein, our findings suggested that OsGRP3 enhanced drought resistance in rice by altering the phenylpropanoid biosynthesis pathway and further increasing lignin accumulation.
Collapse
Affiliation(s)
- Wuwu Xu
- State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, China; (W.X.); (Y.D.); (H.G.); (J.F.); (Z.D.); (T.L.); (M.C.); (W.Z.); (Y.Z.); (Z.H.)
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yangfan Dou
- State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, China; (W.X.); (Y.D.); (H.G.); (J.F.); (Z.D.); (T.L.); (M.C.); (W.Z.); (Y.Z.); (Z.H.)
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Han Geng
- State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, China; (W.X.); (Y.D.); (H.G.); (J.F.); (Z.D.); (T.L.); (M.C.); (W.Z.); (Y.Z.); (Z.H.)
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jinmei Fu
- State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, China; (W.X.); (Y.D.); (H.G.); (J.F.); (Z.D.); (T.L.); (M.C.); (W.Z.); (Y.Z.); (Z.H.)
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhiwu Dan
- State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, China; (W.X.); (Y.D.); (H.G.); (J.F.); (Z.D.); (T.L.); (M.C.); (W.Z.); (Y.Z.); (Z.H.)
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ting Liang
- State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, China; (W.X.); (Y.D.); (H.G.); (J.F.); (Z.D.); (T.L.); (M.C.); (W.Z.); (Y.Z.); (Z.H.)
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Mingxing Cheng
- State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, China; (W.X.); (Y.D.); (H.G.); (J.F.); (Z.D.); (T.L.); (M.C.); (W.Z.); (Y.Z.); (Z.H.)
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Weibo Zhao
- State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, China; (W.X.); (Y.D.); (H.G.); (J.F.); (Z.D.); (T.L.); (M.C.); (W.Z.); (Y.Z.); (Z.H.)
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yafei Zeng
- State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, China; (W.X.); (Y.D.); (H.G.); (J.F.); (Z.D.); (T.L.); (M.C.); (W.Z.); (Y.Z.); (Z.H.)
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhongli Hu
- State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, China; (W.X.); (Y.D.); (H.G.); (J.F.); (Z.D.); (T.L.); (M.C.); (W.Z.); (Y.Z.); (Z.H.)
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Wenchao Huang
- State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, China; (W.X.); (Y.D.); (H.G.); (J.F.); (Z.D.); (T.L.); (M.C.); (W.Z.); (Y.Z.); (Z.H.)
- College of Life Sciences, Wuhan University, Wuhan 430072, China
- Correspondence:
| |
Collapse
|
5
|
Cui H, Fan C, Ding Z, Wang X, Tang L, Bi Y, Luan F, Gao P. CmPMRl and CmPMrs are responsible for resistance to powdery mildew caused by Podosphaera xanthii race 1 in Melon. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1209-1222. [PMID: 34989827 DOI: 10.1007/s00122-021-04025-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Two genes for resistance to Podosphaera xanthii race 1 in melon were identified on chromosomes 10 and 12 of the Cucumis melo cultivar MR-1. Cucumis melo L. is an economically important crop, the production of which is threatened by the prevalence of melon powdery mildew (PM) infections. We herein utilized the MR-1 (P1; resistant to PM) and M4-7 (P2; susceptible to PM) accessions to assess the heritability of PM (race 1) resistance in these melon plants. PM resistance in MR-1 leaves was linked to a dominant gene (CmPMRl), whereas stem resistance was under the control of a recessive gene (CmPMrs), with the dominant gene having an epistatic effect on the recessive gene. The CmPMRl gene was mapped to a 50 Kb interval on chromosome 12, while CmPMrs was mapped to an 89 Kb interval on chromosome 10. The CmPMRl candidate gene MELO3C002441 and the CmPMrs candidate gene MELO3C012438 were identified through sequence alignment, functional annotation, and expression pattern analyzes of all genes within these respective intervals. MELO3C002441 and MELO3C012438 were both localized to the cellular membrane and were contained conserved NPR gene-like and MLO domains, respectively, which were linked to PM resistance. In summary, we identified patterns of PM resistance in the disease-resistant MR-1 melon cultivar and identified two putative genes linked to resistance. Our results offer new genetic resources and markers to guide future marker-assisted breeding for PM resistance in melon.
Collapse
Affiliation(s)
- Haonan Cui
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, No. 600 Changjiang Street, Harbin, 150030, Heilongjiang, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, 150030, Heilongjiang, China
| | - Chao Fan
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, 150030, Heilongjiang, China
| | - Zhuo Ding
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, No. 600 Changjiang Street, Harbin, 150030, Heilongjiang, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, 150030, Heilongjiang, China
| | - Xuezheng Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, No. 600 Changjiang Street, Harbin, 150030, Heilongjiang, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, 150030, Heilongjiang, China
| | - Lili Tang
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, 150030, Heilongjiang, China
| | - Yingdong Bi
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, 150030, Heilongjiang, China
| | - Feishi Luan
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, No. 600 Changjiang Street, Harbin, 150030, Heilongjiang, China.
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, 150030, Heilongjiang, China.
| | - Peng Gao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, No. 600 Changjiang Street, Harbin, 150030, Heilongjiang, China.
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, 150030, Heilongjiang, China.
| |
Collapse
|
6
|
Yan Y, Gan J, Tao Y, Okita TW, Tian L. RNA-Binding Proteins: The Key Modulator in Stress Granule Formation and Abiotic Stress Response. FRONTIERS IN PLANT SCIENCE 2022; 13:882596. [PMID: 35783947 PMCID: PMC9240754 DOI: 10.3389/fpls.2022.882596] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/04/2022] [Indexed: 05/08/2023]
Abstract
To cope with abiotic environmental stress, plants rapidly change their gene expression transcriptionally and post-transcriptionally, the latter by translational suppression of selected proteins and the assembly of cytoplasmic stress granules (SGs) that sequester mRNA transcripts. RNA-binding proteins (RBPs) are the major players in these post-transcriptional processes, which control RNA processing in the nucleus, their export from the nucleus, and overall RNA metabolism in the cytoplasm. Because of their diverse modular domain structures, various RBP types dynamically co-assemble with their targeted RNAs and interacting proteins to form SGs, a process that finely regulates stress-responsive gene expression. This review summarizes recent findings on the involvement of RBPs in adapting plants to various abiotic stresses via modulation of specific gene expression events and SG formation. The relationship of these processes with the stress hormone abscisic acid (ABA) is discussed.
Collapse
Affiliation(s)
- Yanyan Yan
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable (Ministry of Agriculture and Rural Affairs), Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| | - Jianghuang Gan
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable (Ministry of Agriculture and Rural Affairs), Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| | - Yilin Tao
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable (Ministry of Agriculture and Rural Affairs), Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| | - Thomas W. Okita
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
- *Correspondence: Thomas W. Okita,
| | - Li Tian
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable (Ministry of Agriculture and Rural Affairs), Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
- Li Tian,
| |
Collapse
|
7
|
Li M, Zhang C, Hou L, Yang W, Liu S, Pang X, Li Y. Multiple responses contribute to the enhanced drought tolerance of the autotetraploid Ziziphus jujuba Mill. var. spinosa. Cell Biosci 2021; 11:119. [PMID: 34193297 PMCID: PMC8243571 DOI: 10.1186/s13578-021-00633-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022] Open
Abstract
Background Polyploid plants often exhibit enhanced stress tolerance. The underlying physiological and molecular bases of such mechanisms remain elusive. Here, we characterized the drought tolerance of autotetraploid sour jujube at phenotypic, physiological and molecular levels. Results The study findings showed that the autotetraploid sour jujube exhibited a superior drought tolerance and enhanced regrowth potential after dehydration in comparison with the diploid counterpart. Under drought stress, more differentially expressed genes (DEGs) were detected in autotetraploid sour jujube and the physiological responses gradually triggered important functions. Through GO enrichment analysis, many DEGs between the diploid and autotetraploid sour jujube after drought-stress exposure were annotated to the oxidation–reduction process, photosystem, DNA binding transcription factor activity and oxidoreductase activity. Six reactive oxygen species scavenging-related genes were specifically differentially expressed and the larger positive fold-changes of the DEGs involved in glutathione metabolism were detected in autotetraploid. Consistently, the lower O2− level and malonaldehyde (MDA) content and higher antioxidant enzymes activity were detected in the autotetraploid under drought-stress conditions. In addition, DEGs in the autotetraploid after stress exposure were significantly enriched in anthocyanin biosynthesis, DNA replication, photosynthesis and plant hormone, including auxin, abscisic acid and gibberellin signal-transduction pathways. Under osmotic stress conditions, genes associated with the synthesis and transport of osmotic regulators including anthocyanin biosynthesis genes were differentially expressed, and the soluble sugar, soluble protein and proline contents were significantly higher in the autotetraploid. The higher chlorophyll content and DEGs enriched in photosynthesis suggest that the photosynthetic system in the autotetraploid was enhanced compared with diploid during drought stress. Moreover, several genes encoding transcription factors (TFs) including GRAS, Bhlh, MYB, WRKY and NAC were induced specifically or to higher levels in the autotetraploid under drought-stress conditions, and hub genes, LOC107403632, LOC107422279, LOC107434947, LOC107412673 and LOC107432609, related to 18 up-regulated transcription factors in the autotetraploid compared with the diploid were identified. Conclusion Taken together, multiple responses contribute to the enhanced drought tolerance of autotetraploid sour jujube. This study could provide an important basis for elucidating the mechanism of tolerance variation after the polyploidization of trees. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-021-00633-1.
Collapse
Affiliation(s)
- Meng Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.,National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China.,College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Chenxing Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.,National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China.,College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Lu Hou
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.,National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China.,College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Weicong Yang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.,National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China.,College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Songshan Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.,National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China.,College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Xiaoming Pang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.,National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China.,College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yingyue Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China. .,National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China. .,College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
8
|
Shim JS, Park SH, Lee DK, Kim YS, Park SC, Redillas MCFR, Seo JS, Kim JK. The Rice GLYCINE-RICH PROTEIN 3 Confers Drought Tolerance by Regulating mRNA Stability of ROS Scavenging-Related Genes. RICE (NEW YORK, N.Y.) 2021; 14:31. [PMID: 33742286 PMCID: PMC7979854 DOI: 10.1186/s12284-021-00473-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/10/2021] [Indexed: 05/08/2023]
Abstract
BACKGROUND Plant glycine-rich proteins are categorized into several classes based on their protein structures. The glycine-rich RNA binding proteins (GRPs) are members of class IV subfamily possessing N-terminus RNA-recognition motifs (RRMs) and proposed to be involved in post-transcriptional regulation of its target transcripts. GRPs are involved in developmental process and cellular stress responses, but the molecular mechanisms underlying these regulations are still elusive. RESULTS Here, we report the functional characterization of rice GLYCINE-RICH PROTEIN 3 (OsGRP3) and its physiological roles in drought stress response. Both drought stress and ABA induce the expression of OsGRP3. Transgenic plants overexpressing OsGRP3 (OsGRP3OE) exhibited tolerance while knock-down plants (OsGRP3KD) were susceptible to drought compared to the non-transgenic control. In vivo, subcellular localization analysis revealed that OsGRP3-GFP was transported from cytoplasm/nucleus into cytoplasmic foci following exposure to ABA and mannitol treatments. Comparative transcriptomic analysis between OsGRP3OE and OsGRP3KD plants suggests that OsGRP3 is involved in the regulation of the ROS related genes. RNA-immunoprecipitation analysis revealed the associations of OsGRP3 with PATHOGENESIS RELATED GENE 5 (PR5), METALLOTHIONEIN 1d (MT1d), 4,5-DOPA-DIOXYGENASE (DOPA), and LIPOXYGENASE (LOX) transcripts. The half-life analysis showed that PR5 transcripts decayed slower in OsGRP3OE but faster in OsGRP3KD, while MT1d and LOX transcripts decayed faster in OsGRP3OE but slower in OsGRP3KD plants. H2O2 accumulation was reduced in OsGRP3OE and increased in OsGRP3KD plants compared to non-transgenic plants (NT) under drought stress. CONCLUSION OsGRP3 plays a positive regulator in rice drought tolerance and modulates the transcript level and mRNA stability of stress-responsive genes, including ROS-related genes. Moreover, OsGRP3 contributes to the reduction of ROS accumulation during drought stress. Our results suggested that OsGRP3 alleviates ROS accumulation by regulating ROS-related genes' mRNA stability under drought stress, which confers drought tolerance.
Collapse
Affiliation(s)
- Jae Sung Shim
- Crop Biotechnology Institute, GreenBio Science and Technology, Seoul National University, Pyeongchang, 25354, South Korea
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, South Korea
| | - Su-Hyun Park
- Crop Biotechnology Institute, GreenBio Science and Technology, Seoul National University, Pyeongchang, 25354, South Korea
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Dong-Keun Lee
- Crop Biotechnology Institute, GreenBio Science and Technology, Seoul National University, Pyeongchang, 25354, South Korea
- E GREEN GLOBAL, Gunpo, 15843, South Korea
| | - Youn Shic Kim
- Crop Biotechnology Institute, GreenBio Science and Technology, Seoul National University, Pyeongchang, 25354, South Korea
- Agriculture and Life Sciences Research Institute, Kangwon National University, Chuncheon, 24341, South Korea
| | - Soo-Chul Park
- Crop Biotechnology Institute, GreenBio Science and Technology, Seoul National University, Pyeongchang, 25354, South Korea
- Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration, Jeonju, 54874, South Korea
| | | | - Jun Sung Seo
- Crop Biotechnology Institute, GreenBio Science and Technology, Seoul National University, Pyeongchang, 25354, South Korea.
| | - Ju-Kon Kim
- Crop Biotechnology Institute, GreenBio Science and Technology, Seoul National University, Pyeongchang, 25354, South Korea.
| |
Collapse
|
9
|
Marondedze C. The increasing diversity and complexity of the RNA-binding protein repertoire in plants. Proc Biol Sci 2020; 287:20201397. [PMID: 32962543 PMCID: PMC7542812 DOI: 10.1098/rspb.2020.1397] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023] Open
Abstract
Post-transcriptional regulation has far-reaching implications on the fate of RNAs. It is gaining increasing momentum as a critical component in adjusting global cellular transcript levels during development and in response to environmental stresses. In this process, RNA-binding proteins (RBPs) are indispensable chaperones that naturally bind RNA via one or multiple globular RNA-binding domains (RBDs) changing the function or fate of the bound RNAs. Despite the technical challenges faced in plants in large-scale studies, several hundreds of these RBPs have been discovered and elucidated globally over the past few years. Recent discoveries have more than doubled the number of proteins implicated in RNA interaction, including identification of RBPs lacking classical RBDs. This review will discuss these new emerging classes of RBPs, focusing on the current state of the RBP repertoire in Arabidopsis thaliana, including the diverse functional roles derived from quantitative studies implicating RBPs in abiotic stress responses. Notably, this review highlights that 836 RBPs are enriched as Arabidopsis RBPs while 1865 can be classified as candidate RBPs. The review will also outline outstanding areas within this field that require addressing to advance our understanding and potential biotechnological applications of RBPs.
Collapse
Affiliation(s)
- C. Marondedze
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
- Biological and Environmental Sciences and Engineering Division, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
- Department of Biochemistry, Midlands State University, P. Bag 9055, Gweru, Zimbabwe
| |
Collapse
|
10
|
Derakhshani B, Jafary H, Maleki Zanjani B, Hasanpur K, Mishina K, Tanaka T, Kawahara Y, Oono Y. Combined QTL mapping and RNA-Seq profiling reveals candidate genes associated with cadmium tolerance in barley. PLoS One 2020; 15:e0230820. [PMID: 32298285 PMCID: PMC7182363 DOI: 10.1371/journal.pone.0230820] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/09/2020] [Indexed: 12/31/2022] Open
Abstract
The high toxicity of cadmium (Cd) and its ready uptake by plants has become a major agricultural problem. To investigate the genetic architecture and genetic regulation of Cd tolerance in barley, we conducted quantitative trait loci (QTL) analysis in the phenotypically polymorphic Oregon Wolfe Barley (OWB) mapping population, derived from a cross between Rec and Dom parental genotypes. Through evaluating the Cd tolerance of 87 available doubled haploid lines of the OWB mapping population at the seedling stage, one minor and one major QTL were detected on chromosomes 2H and 6H, respectively. For chlorosis and necrosis traits, the major QTL explained 47.24% and 38.59% of the phenotypic variance, respectively. RNA-Seq analysis of the parental seedlings under Cd treatment revealed 542 differentially expressed genes between Cd-tolerant Rec and Cd-susceptible Dom genotypes. By analyzing sequence variations in transcribed sequences of the parental genotypes, 155,654 SNPs and 1,525 InDels were identified between the two contrasting genotypes and may contribute to Cd tolerance. Finally, by integrating the data from the identified QTLs and RNA-Seq analysis, 16 Cd tolerance-related candidate genes were detected, nine of which were metal ion transporters. These results provide promising candidate genes for further gene cloning and improving Cd tolerance in barley.
Collapse
Affiliation(s)
- Behnam Derakhshani
- Department of Agronomy & Plant Breeding, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
- Breeding Material Development Unit, Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Hossein Jafary
- Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
- * E-mail: (HJ); (YO)
| | - Bahram Maleki Zanjani
- Department of Agronomy & Plant Breeding, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | - Karim Hasanpur
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Kohei Mishina
- Plant Genome Research Unit, Institute of Crop Science, NARO, Tsukuba, Ibaraki, Japan
| | - Tsuyoshi Tanaka
- Breeding Informatics Research Unit, Institute of Crop Science, NARO, Tsukuba, Ibaraki, Japan
- Bioinformatics Team, Advanced Analysis Center, NARO, Tsukuba, Ibaraki, Japan
| | - Yoshihiro Kawahara
- Breeding Informatics Research Unit, Institute of Crop Science, NARO, Tsukuba, Ibaraki, Japan
- Bioinformatics Team, Advanced Analysis Center, NARO, Tsukuba, Ibaraki, Japan
| | - Youko Oono
- Breeding Material Development Unit, Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
- * E-mail: (HJ); (YO)
| |
Collapse
|
11
|
Citric Acid Assisted Phytoremediation of Chromium through Sunflower Plants Irrigated with Tannery Wastewater. PLANTS 2020; 9:plants9030380. [PMID: 32204568 PMCID: PMC7154846 DOI: 10.3390/plants9030380] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 01/24/2023]
Abstract
Heavy metals are rapidly polluting the environment as a result of growing industrialization and urbanization. The presence of high concentrations of chromium (Cr), along with other pollutants, is widespread in tannery wastewater. In Pakistan, as a result of a severe shortage of irrigation water, farmers use tannery wastewater to grow various crops with a consequent decline in plants’ yield. This experiment was performed to assess growth revival in sunflower plants irrigated with 0%, 25%, 50%, 75%, and 100% tannery wastewater, by foliar application of 0, 2.5, and 5.0 mM citric acid (CA). The wastewater treatment curtailed biomass accumulation, the growth rate, and chlorophyll contents by exacerbating the oxidative stress in sunflowers. Foliar application of CA considerably alleviated the outcomes of Cr toxicity by curbing the Cr absorption and oxidative damage, leading to improvements in plant growth, biological yield, and chlorophyll contents. It is concluded that foliar application of CA can successfully mitigate the Cr toxicity in sunflower plants irrigated with tannery wastewater.
Collapse
|
12
|
Eggplant Germination is Promoted by Hydrogen Peroxide and Temperature in an Independent but Overlapping Manner. Molecules 2019; 24:molecules24234270. [PMID: 31771170 PMCID: PMC6930571 DOI: 10.3390/molecules24234270] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/12/2019] [Accepted: 11/21/2019] [Indexed: 12/27/2022] Open
Abstract
Hydrogen peroxide promotes seed germination, but the molecular mechanisms underlying this process are unclear. This study presents the results of eggplant (Solanum melongena) germination analyses conducted at two different temperatures and follows the effect of hydrogen peroxide treatment on seed germination and the seed proteome. Hydrogen peroxide was found to promote eggplant germination in a way not dissimilar to that of increased temperature stimuli. LC–MS profiling detected 729 protein families, 77 of which responded to a temperature increase or hydrogen peroxide treatment. These differentially abundant proteins were found to be involved in a number of processes, including protein and amino acid metabolism, carbohydrate metabolism, and the glyoxylate cycle. There was a very low overlap between hydrogen peroxide and temperature-responsive proteins, highlighting the differences behind the seemingly similar outcomes. Furthermore, the observed changes from the seed proteome indicate that hydrogen peroxide treatment diminished the seed endogenous hydrogen peroxide pool and that a part of manifested positive hydrogen peroxide effect might be related to altered sensitivity to abscisic acid.
Collapse
|
13
|
Chen MX, Sun C, Zhang KL, Song YC, Tian Y, Chen X, Liu YG, Ye NH, Zhang J, Qu S, Zhu FY. SWATH-MS-facilitated proteomic profiling of fruit skin between Fuji apple and a red skin bud sport mutant. BMC PLANT BIOLOGY 2019; 19:445. [PMID: 31651235 PMCID: PMC6813987 DOI: 10.1186/s12870-019-2018-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/05/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND Apple is one of the most popular fruit crops world-wide and its skin color is an important quality consideration essential for commercial value. However, the strategy on genetic breeding for red skin apple and the genetic basis of skin color differentiation is very limited and still largely unknown. RESULTS Here, we reported a bud sport mutant of Fuji apple with red skin color and enhanced anthocyanins accumulation. Quantitative SWATH-MS (sequential window acquisition of all theoretical spectra-mass spectrometry) proteomics investigations revealed proteome changes in the apple red skin bud mutation and a total of 451 differentially expressed proteins were identified in apple skin. The mutant showed significantly increased expression levels of photosynthesis-related proteins, stress-related proteins as well as anthocyanins biosynthesis pathway. On the other hand, substantial downregulation of mitogen-activated protein kinase 4 (MAPK4) and mevalonate kinase (MVK) were detected, indicating a promising role for the red skin color development in the mutant. Furthermore, we also hypothesize that a post-transcriptional regulation of the skin color formation occurs in the mutant through the advanced SWATH-MS analysis. CONCLUSION Our work provides important information on the application of proteomic methods for analysing proteomes changes in Fuji apple and highlights a clade of regulatory proteins potentially contributing for the molecular breeding of fruit skin color.
Collapse
Affiliation(s)
- Mo-Xian Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037 Jiangsu Province China
| | - Chao Sun
- College of Horticulture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 8210095 China
| | - Kai-Lu Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037 Jiangsu Province China
| | - Yu-Chen Song
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037 Jiangsu Province China
| | - Yuan Tian
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037 Jiangsu Province China
| | - Xi Chen
- Medical Research Institute, Wuhan University and SpecAlly Life Technology Co., Ltd, Wuhan, China
| | - Ying-Gao Liu
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong China
| | - Neng-Hui Ye
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, 410128 China
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Shenchun Qu
- College of Horticulture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 8210095 China
| | - Fu-Yuan Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037 Jiangsu Province China
| |
Collapse
|
14
|
Köster T, Reichel M, Staiger D. CLIP and RNA interactome studies to unravel genome-wide RNA-protein interactions in vivo in Arabidopsis thaliana. Methods 2019; 178:63-71. [PMID: 31494244 DOI: 10.1016/j.ymeth.2019.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/14/2019] [Accepted: 09/01/2019] [Indexed: 12/11/2022] Open
Abstract
Post-transcriptional regulation makes an important contribution to adjusting the transcriptome to environmental changes in plants. RNA-binding proteins are key players that interact specifically with mRNAs to co-ordinate their fate. While the regulatory interactions between proteins and RNA are well understood in animals, until recently little information was available on the global binding landscape of RNA-binding proteins in higher plants. This is not least due to technical challenges in plants. In turn, while numerous RNA-binding proteins have been identified through mutant analysis and homology-based searches in plants, only recently a full compendium of proteins with RNA-binding activity has been experimentally determined for the reference plant Arabidopsis thaliana. State-of-the-art techniques to determine RNA-protein interactions genome-wide in animals are based on the covalent fixation of RNA and protein in vivo by UV light. This has only recently been successfully applied to plants. Here, we present practical considerations on the application of UV irradiation based methods to comprehensively determine in vivo RNA-protein interactions in Arabidopsis thaliana, focussing on individual nucleotide resolution crosslinking immunoprecipitation (iCLIP) and mRNA interactome capture.
Collapse
Affiliation(s)
- Tino Köster
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Marlene Reichel
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Dorothee Staiger
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany.
| |
Collapse
|
15
|
Steffen A, Elgner M, Staiger D. Regulation of Flowering Time by the RNA-Binding Proteins AtGRP7 and AtGRP8. PLANT & CELL PHYSIOLOGY 2019; 60:2040-2050. [PMID: 31241165 DOI: 10.1093/pcp/pcz124] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/18/2019] [Indexed: 05/20/2023]
Abstract
The timing of floral initiation is a tightly controlled process in plants. The circadian clock regulated glycine-rich RNA-binding protein (RBP) AtGRP7, a known regulator of splicing, was previously shown to regulate flowering time mainly by affecting the MADS-box repressor FLOWERING LOCUS C (FLC). Loss of AtGRP7 leads to elevated FLC expression and late flowering in the atgrp7-1 mutant. Here, we analyze genetic interactions of AtGRP7 with key regulators of the autonomous and the thermosensory pathway of floral induction. RNA interference- mediated reduction of the level of the paralogous AtGRP8 in atgrp7-1 further delays floral transition compared of with atgrp7-1. AtGRP7 acts in parallel to FCA, FPA and FLK in the branch of the autonomous pathway (AP) comprised of RBPs. It acts in the same branch as FLOWERING LOCUS D, and AtGRP7 loss-of-function mutants show elevated levels of dimethylated lysine 4 of histone H3, a mark for active transcription. In addition to its role in the AP, AtGRP7 acts in the thermosensory pathway of flowering time control by regulating alternative splicing of the floral repressor FLOWERING LOCUS M (FLM). Overexpression of AtGRP7 selectively favors the formation of the repressive isoform FLM-β. Our results suggest that the RBPs AtGRP7 and AtGRP8 influence MADS-Box transcription factors in at least two different pathways of flowering time control. This highlights the importance of RBPs to fine-tune the integration of varying cues into flowering time control and further strengthens the view that the different pathways, although genetically separable, constitute a tightly interwoven network to ensure plant reproductive success under changing environmental conditions.
Collapse
Affiliation(s)
- Alexander Steffen
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, Universit�tsstrasse 25, D-33615 Bielefeld, Germany
| | - Mareike Elgner
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, Universit�tsstrasse 25, D-33615 Bielefeld, Germany
| | - Dorothee Staiger
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, Universit�tsstrasse 25, D-33615 Bielefeld, Germany
| |
Collapse
|
16
|
Prall W, Sharma B, Gregory BD. Transcription Is Just the Beginning of Gene Expression Regulation: The Functional Significance of RNA-Binding Proteins to Post-transcriptional Processes in Plants. PLANT & CELL PHYSIOLOGY 2019; 60:1939-1952. [PMID: 31155676 DOI: 10.1093/pcp/pcz067] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/03/2019] [Indexed: 06/09/2023]
Abstract
Plants have developed sophisticated mechanisms to compensate and respond to ever-changing environmental conditions. Research focus in this area has recently shifted towards understanding the post-transcriptional mechanisms that contribute to RNA transcript maturation, abundance and function as key regulatory steps in allowing plants to properly react and adapt to these never-ending shifts in their environments. At the center of these regulatory mechanisms are RNA-binding proteins (RBPs), the functional mediators of all post-transcriptional processes. In plants, RBPs are becoming increasingly appreciated as the critical modulators of core cellular processes during development and in response to environmental stimuli. With the majority of research on RBPs and their functions historically in prokaryotic and mammalian systems, it has more recently been unveiled that plants have expanded families of conserved and novel RBPs compared with their eukaryotic counterparts. To better understand the scope of RBPs in plants, we present past and current literature detailing specific roles of RBPs during stress response, development and other fundamental transition periods. In this review, we highlight examples of complex regulation coordinated by RBPs with a focus on the diverse mechanisms of plant RBPs and the unique processes they regulate. Additionally, we discuss the importance for additional research into understanding global interactions of RBPs on a systems and network-scale, with genome mining and annotation providing valuable insight for potential uses in improving crop plants in order to maintain high-level production in this era of global climate change.
Collapse
Affiliation(s)
- Wil Prall
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Bishwas Sharma
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Brian D Gregory
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
17
|
Sharma N, Arrigoni G, Ebinezer LB, Trentin AR, Franchin C, Giaretta S, Carletti P, Thiele-Bruhn S, Ghisi R, Masi A. A proteomic and biochemical investigation on the effects of sulfadiazine in Arabidopsis thaliana. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 178:146-158. [PMID: 31002969 DOI: 10.1016/j.ecoenv.2019.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/26/2019] [Accepted: 04/03/2019] [Indexed: 06/09/2023]
Abstract
Animal manure or bio-solids used as fertilizers are the main routes of antibiotic exposure in the agricultural land, which can have immense detrimental effects on plants. Sulfadiazine (SDZ), belonging to the class of sulfonamides, is one of the most detected antibiotics in the agricultural soil. In this study, the effect of SDZ on the growth, changes in antioxidant metabolite content and enzyme activities related to oxidative stress were analysed. Moreover, the proteome alterations in Arabidopsis thaliana roots in response to SDZ was examined by means of a combined iTRAQ-LC-MS/MS quantitative proteomics approach. A dose-dependent decrease in leaf biomass and root length was evidenced in response to SDZ. Increased malondialdehyde content at higher concentration (2 μM) of SDZ indicated increased lipid peroxidation and suggest the induction of oxidative stress. Glutathione levels were significantly higher compared to control, whereas there was no increase in ascorbate content or the enzyme activities of glutathione metabolism, even at higher concentrations. In total, 48 differentially abundant proteins related to stress/stimuli response followed by transcription and translation, metabolism, transport and other functions were identified. Several proteins related to oxidative, dehydration, salinity and heavy metal stresses were represented. Upregulation of peroxidases was validated with total peroxidase activity. Pathway analysis provided an indication of increased phenylpropanoid biosynthesis. Probable molecular mechanisms altered in response to SDZ are highlighted.
Collapse
Affiliation(s)
- Nisha Sharma
- DAFNAE, University of Padova, Viale Università 16, 30520 Legnaro, PD, Italy
| | - Giorgio Arrigoni
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, Padova, Italy; Proteomics Center, University of Padova and Azienda Ospedaliera di Padova, Italy
| | | | - Anna Rita Trentin
- DAFNAE, University of Padova, Viale Università 16, 30520 Legnaro, PD, Italy
| | - Cinzia Franchin
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, Padova, Italy; Proteomics Center, University of Padova and Azienda Ospedaliera di Padova, Italy
| | - Sabrina Giaretta
- DAFNAE, University of Padova, Viale Università 16, 30520 Legnaro, PD, Italy
| | - Paolo Carletti
- DAFNAE, University of Padova, Viale Università 16, 30520 Legnaro, PD, Italy
| | - Sören Thiele-Bruhn
- Soil Science, Trier University, Behringstraße 21, D-54286, Trier, Germany
| | - Rossella Ghisi
- DAFNAE, University of Padova, Viale Università 16, 30520 Legnaro, PD, Italy
| | - Antonio Masi
- DAFNAE, University of Padova, Viale Università 16, 30520 Legnaro, PD, Italy
| |
Collapse
|
18
|
Wang R, Liu H, Liu Z, Zou J, Meng J, Wang J. Genome-wide analysis of alternative splicing divergences between Brassica hexaploid and its parents. PLANTA 2019; 250:603-628. [PMID: 31139927 DOI: 10.1007/s00425-019-03198-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/24/2019] [Indexed: 05/23/2023]
Abstract
Compared with its parents, Brassica hexaploid underwent significant AS changes, which may provide diversified gene expression regulation patterns and could enhance its adaptability during evolution Polyploidization is considered a significant evolution force that promotes species formation. Alternative splicing (AS) plays a crucial role in multiple biological processes during plant growth and development. To explore the effects of allopolyploidization on the AS patterns of genes, a genome-wide AS analysis was performed by RNA-seq in Brassica hexaploid and its parents. In total, we found 7913 (27540 AS events), 14447 (70179 AS events), and 13205 (60804 AS events) AS genes in Brassica rapa, Brassica carinata, and Brassica hexaploid, respectively. A total of 920 new AS genes were discovered in Brassica hexaploid. There were 56 differently spliced genes between Brassica hexaploid and its parents. In addition, most of the alternative 5' splice sites were located 4 bp upstream of the dominant 5' splice sites, and most of the alternative 3' splice sites were located 3 bp downstream of the dominant 3' splice sites in Brassica hexapliod, which was similar to B. carinata. Furthermore, we cloned and sequenced all amplicons from the RT-PCR products of GRP7/8, namely, Bol045859, Bol016025 and Bol02880. The three genes were found to produce AS transcripts in a new way. The AS patterns of genes were diverse between Brassica hexaploid and its parents, including the loss and gain of AS events. Allopolyploidization changed alternative splicing sites of pre-mRNAs in Brassica hexaploid, which brought about alterations in the sequences of transcripts. Our study provided novel insights into the AS patterns of genes in allopolyploid plants, which may provide a reference for the study of polyploidy adaptability.
Collapse
Affiliation(s)
- Ruihua Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Helian Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhengyi Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jun Zou
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jinling Meng
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jianbo Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
19
|
Van Ruyskensvelde V, Van Breusegem F, Van Der Kelen K. Post-transcriptional regulation of the oxidative stress response in plants. Free Radic Biol Med 2018; 122:181-192. [PMID: 29496616 DOI: 10.1016/j.freeradbiomed.2018.02.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/22/2018] [Accepted: 02/23/2018] [Indexed: 12/30/2022]
Abstract
Due to their sessile lifestyle, plants can be exposed to several kinds of stresses that will increase the production of reactive oxygen species (ROS), such as hydrogen peroxide, singlet oxygen, and hydroxyl radicals, in the plant cells and activate several signaling pathways that cause alterations in the cellular metabolism. Nevertheless, when ROS production outreaches a certain level, oxidative damage to nucleic acids, lipids, metabolites, and proteins will occur, finally leading to cell death. Until now, the most comprehensive and detailed readout of oxidative stress responses is undoubtedly obtained at the transcriptome level. However, transcript levels often do not correlate with the corresponding protein levels. Indeed, together with transcriptional regulations, post-transcriptional, translational, and/or post-translational regulations will shape the active proteome. Here, we review the current knowledge on the post-transcriptional gene regulation during the oxidative stress responses in planta.
Collapse
Affiliation(s)
- Valerie Van Ruyskensvelde
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium.
| | - Katrien Van Der Kelen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| |
Collapse
|
20
|
Wang B, Wang G, Shen F, Zhu S. A Glycine-Rich RNA-Binding Protein, CsGR-RBP3, Is Involved in Defense Responses Against Cold Stress in Harvested Cucumber ( Cucumis sativus L.) Fruit. FRONTIERS IN PLANT SCIENCE 2018; 9:540. [PMID: 29740470 PMCID: PMC5925850 DOI: 10.3389/fpls.2018.00540] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 04/06/2018] [Indexed: 05/09/2023]
Abstract
Plant glycine-rich RNA-binding proteins (GR-RBPs) have been shown to play important roles in response to abiotic stresses in actively proliferating organs such as young plants, root tips, and flowers, but their roles in chilling responses of harvested fruit remains largely unknown. Here, we investigated the role of CsGR-RBP3 in the chilling response of cucumber fruit. Pre-storage cold acclimation at 10°C (PsCA) for 3 days significantly enhanced chilling tolerance of cucumber fruit compared with the control fruit that were stored at 5°C. In the control fruit, only one of the six cucumber CsGR-RBP genes, CsGR-RBP2, was enhanced whereas the other five, i.e., CsGR-RBP3, CsGR-RBP4, CsGR-RBP5, CsGR-RBP-blt801, and CsGR-RBP-RZ1A were not. However, in the fruit exposed to PsCA before storage at 5°C, CsGR-RBP2 transcript levels were not obviously different from those in the controls, whereas the other five were highly upregulated, with CsGR-RBP3 the most significantly induced. Treatment with endogenous ABA and NO biosynthesis inhibitors, tungstate and L-nitro-arginine methyl ester, respectively, prior to PsCA treatment, clearly downregulated CsGR-RBP3 expression and significantly aggravated chilling injury. These results suggest a strong connection between CsGR-RBP3 expression and chilling tolerance in cucumber fruit. Transient expression in tobacco suggests CsGR-RBP3 was located in the mitochondria, implying a role for CsGR-RBP3 in maintaining mitochondria-related functions under low temperature. Arabidopsis lines overexpressing CsGR-RBP3 displayed faster growth at 23°C, lower electrolyte leakage and higher Fv/Fm ratio at 0°C, and higher survival rate at -20°C, than wild-type plants. Under cold stress conditions, Arabidopsis plants overexpressing CsGR-RBP3 displayed lower reactive oxygen species levels, and higher catalase and superoxide dismutase expression and activities, compared with the wild-type plants. In addition, overexpression of CsGR-RBP3 significantly upregulated nine Arabidopsis genes involved in defense responses to various stresses, including chilling. These results strongly suggest CsGR-RBP3 plays a positive role in defense against chilling stress.
Collapse
Affiliation(s)
| | | | | | - Shijiang Zhu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
21
|
Guo R, Qiao H, Zhao J, Wang X, Tu M, Guo C, Wan R, Li Z, Wang X. The Grape VlWRKY3 Gene Promotes Abiotic and Biotic Stress Tolerance in Transgenic Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2018; 9:545. [PMID: 29922304 PMCID: PMC5996931 DOI: 10.3389/fpls.2018.00545] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/09/2018] [Indexed: 05/09/2023]
Abstract
WRKY transcription factors are known to play important roles in plant responses to various abiotic and biotic stresses. The grape WRKY gene, WRKY3 was previously reported to respond to salt and drought stress, as well as methyl jasmonate and ethylene treatments in Vitis labrusca × V. vinifera cv. 'Kyoho.' In the current study, WRKY3 from the 'Kyoho' grape cultivar was constitutively expressed in Arabidopsis thaliana under control of the cauliflower mosaic virus 35S promoter. The 35S::VlWRKY3 transgenic A. thaliana plants showed improved salt and drought stress tolerance during the germination, seedling and the mature plant stages. Various physiological traits related to abiotic stress responses were evaluated to gain further insight into the role of VlWRKY3, and it was found that abiotic stress caused less damage to the transgenic seedlings than to the wild-type (WT) plants. VlWRKY3 over-expression also resulted in altered expression levels of abiotic stress-responsive genes. Moreover, the 35S::VlWRKY3 transgenic A. thaliana lines showed improved resistance to Golovinomyces cichoracearum, but increased susceptibility to Botrytis cinerea, compared with the WT plants. Collectively, these results indicate that VlWRKY3 plays important roles in responses to both abiotic and biotic stress, and modification of its expression may represent a strategy to enhance stress tolerance in crops.
Collapse
Affiliation(s)
- Rongrong Guo
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Xianyang, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Xianyang, China
- Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Hengbo Qiao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Xianyang, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Xianyang, China
| | - Jiao Zhao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Xianyang, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Xianyang, China
| | - Xianhang Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Xianyang, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Xianyang, China
| | - Mingxing Tu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Xianyang, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Xianyang, China
| | - Chunlei Guo
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Xianyang, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Xianyang, China
| | - Ran Wan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Xianyang, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Xianyang, China
| | - Zhi Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Xianyang, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Xianyang, China
- *Correspondence: Zhi Li, Xiping Wang,
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Xianyang, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Xianyang, China
- *Correspondence: Zhi Li, Xiping Wang,
| |
Collapse
|
22
|
Czolpinska M, Rurek M. Plant Glycine-Rich Proteins in Stress Response: An Emerging, Still Prospective Story. FRONTIERS IN PLANT SCIENCE 2018; 9:302. [PMID: 29568308 PMCID: PMC5852109 DOI: 10.3389/fpls.2018.00302] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/21/2018] [Indexed: 05/21/2023]
Abstract
Seed plants are sessile organisms that have developed a plethora of strategies for sensing, avoiding, and responding to stress. Several proteins, including the glycine-rich protein (GRP) superfamily, are involved in cellular stress responses and signaling. GRPs are characterized by high glycine content and the presence of conserved segments including glycine-containing structural motifs composed of repetitive amino acid residues. The general structure of this superfamily facilitates division of GRPs into five main subclasses. Although the participation of GRPs in plant stress response has been indicated in numerous model and non-model plant species, relatively little is known about the key physiological processes and molecular mechanisms in which those proteins are engaged. Class I, II, and IV members are known to be involved in hormone signaling, stress acclimation, and floral development, and are crucial for regulation of plant cells growth. GRPs of class IV [RNA-binding proteins (RBPs)] are involved in alternative splicing or regulation of transcription and stomatal movement, seed, pollen, and stamen development; their accumulation is regulated by the circadian clock. Owing to the fact that the overexpression of GRPs can confer tolerance to stress (e.g., some are involved in cold acclimation and may improve growth at low temperatures), these proteins could play a promising role in agriculture through plant genetic engineering. Consequently, isolation, cloning, characterization, and functional validation of novel GRPs expressed in response to the diverse stress conditions are expected to be growing areas of research in the coming years. According to our knowledge, this is the first comprehensive review on participation of plant GRPs in the response to diverse stress stimuli.
Collapse
|
23
|
Systems Approaches to Map In Vivo RNA–Protein Interactions in Arabidopsis thaliana. RNA TECHNOLOGIES 2018. [PMCID: PMC7122672 DOI: 10.1007/978-3-319-92967-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Proteins that specifically interact with mRNAs orchestrate mRNA processing steps all the way from transcription to decay. Thus, these RNA-binding proteins represent an important control mechanism to double check which proportion of nascent pre-mRNAs is ultimately available for translation into distinct proteins. Here, we discuss recent progress to obtain a systems-level understanding of in vivo RNA–protein interactions in the reference plant Arabidopsis thaliana using protein-centric and RNA-centric methods as well as combined protein binding site and structure probing.
Collapse
|
24
|
Köster T, Marondedze C, Meyer K, Staiger D. RNA-Binding Proteins Revisited - The Emerging Arabidopsis mRNA Interactome. TRENDS IN PLANT SCIENCE 2017; 22:512-526. [PMID: 28412036 DOI: 10.1016/j.tplants.2017.03.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/10/2017] [Accepted: 03/09/2017] [Indexed: 06/07/2023]
Abstract
RNA-protein interaction is an important checkpoint to tune gene expression at the RNA level. Global identification of proteins binding in vivo to mRNA has been possible through interactome capture - where proteins are fixed to target RNAs by UV crosslinking and purified through affinity capture of polyadenylated RNA. In Arabidopsis over 500 RNA-binding proteins (RBPs) enriched in UV-crosslinked samples have been identified. As in mammals and yeast, the mRNA interactomes came with a few surprises. For example, a plethora of the proteins caught on RNA had not previously been linked to RNA-mediated processes, for example proteins of intermediary metabolism. Thus, the studies provide unprecedented insights into the composition of the mRNA interactome, highlighting the complexity of RNA-mediated processes.
Collapse
Affiliation(s)
- Tino Köster
- Molecular Cell Physiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Claudius Marondedze
- Cambridge Centre for Proteomics, Cambridge Systems Biology Centre, Cambridge, UK; Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Katja Meyer
- Molecular Cell Physiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Dorothee Staiger
- Molecular Cell Physiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany.
| |
Collapse
|
25
|
Identifying the Genes Regulated by AtWRKY6 Using Comparative Transcript and Proteomic Analysis under Phosphorus Deficiency. Int J Mol Sci 2017; 18:ijms18051046. [PMID: 28498313 PMCID: PMC5454958 DOI: 10.3390/ijms18051046] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/26/2017] [Accepted: 05/04/2017] [Indexed: 01/06/2023] Open
Abstract
Phosphorus (P) is an important mineral nutrient for plant growth and development. Overexpressing AtWRKY6 (35S:WRKY6-9) was more sensitive and wrky6 (wrky6-1) was more resistant under low Pi conditions. To better understand the function of AtWRKY6 under low phosphate stress conditions, we applied two-dimensional gel electrophoresis (2-DE) to analyse differentially expressed proteins in the shoots and roots between wild type, 35S:WRKY6-9 and wrky6-1 after phosphorus deficiency treatment for three days. The results showed 88 differentially abundant protein spots, which were identified between the shoots and roots of 35S:WRKY6-9 and wrky6-1 plants. In addition, 59 differentially expressed proteins were identified in the leaves and roots of 35S:WRKY6-9 plants. After analysis, 9 genes with W-box elements in their promoter sequences were identified in the leaves, while 6 genes with W-box elements in their promoter sequences were identified in the roots. A total of 8 genes were identified as potential target genes according to the quantitative PCR (QPCR) and two dimension difference gel electrophoresis, (2D-DIGE) results, including ATP synthase, gln synthetase, nitrilase, 14-3-3 protein, carbonic anhydrases 2, and tryptophan synthase. These results provide important information concerning the AtWRKY6 regulation network and reveal potential vital target genes of AtWRKY6 under low phosphorus stress. two dimension difference gel electrophoresis, 2D-DIGE.
Collapse
|
26
|
Bhasin H, Hülskamp M. ANGUSTIFOLIA, a Plant Homolog of CtBP/BARS Localizes to Stress Granules and Regulates Their Formation. FRONTIERS IN PLANT SCIENCE 2017; 8:1004. [PMID: 28659951 PMCID: PMC5469197 DOI: 10.3389/fpls.2017.01004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 05/26/2017] [Indexed: 05/12/2023]
Abstract
The ANGUSTIFOLIA (AN) gene in Arabidopsis is important for a plethora of morphological phenotypes. Recently, AN was also reported to be involved in responses to biotic and abiotic stresses. It encodes a homolog of the animal C-terminal binding proteins (CtBPs). In contrast to animal CtBPs, AN does not appear to function as a transcriptional co-repressor and instead functions outside nucleus where it might be involved in Golgi-associated membrane trafficking. In this study, we report a novel and unexplored role of AN as a component of stress granules (SGs). Interaction studies identified several RNA binding proteins that are associated with AN. AN co-localizes with several messenger ribonucleoprotein granule markers to SGs in a stress dependent manner. an mutants exhibit an altered SG formation. We provide evidence that the NAD(H) binding domain of AN is relevant in this context as proteins carrying mutations in this domain localize to a much higher degree to SGs and strongly reduce AN dimerization and its interaction with one interactor but not the others. Finally, we show that AN is a negative regulator of salt and osmotic stress responses in Arabidopsis suggesting a functional relevance in SGs.
Collapse
|
27
|
Zhang Z, Boonen K, Ferrari P, Schoofs L, Janssens E, van Noort V, Rolland F, Geuten K. UV crosslinked mRNA-binding proteins captured from leaf mesophyll protoplasts. PLANT METHODS 2016; 12:42. [PMID: 27822292 PMCID: PMC5093948 DOI: 10.1186/s13007-016-0142-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 10/11/2016] [Indexed: 05/29/2023]
Abstract
BACKGROUND The complexity of RNA regulation is one of the current frontiers in animal and plant molecular biology research. RNA-binding proteins (RBPs) are characteristically involved in post-transcriptional gene regulation through interaction with RNA. Recently, the mRNA-bound proteome of mammalian cell lines has been successfully cataloged using a new method called interactome capture. This method relies on UV crosslinking of proteins to RNA, purifying the mRNA using complementary oligo-dT beads and identifying the crosslinked proteins using mass spectrometry. We describe here an optimized system of mRNA interactome capture for Arabidopsis thaliana leaf mesophyll protoplasts, a cell type often used in functional cellular assays. RESULTS We established the conditions for optimal protein yield, namely the amount of starting tissue, the duration of UV irradiation and the effect of UV intensity. We demonstrated high efficiency mRNA-protein pull-down by oligo-d(T)25 bead capture. Proteins annotated to have RNA-binding capacity were overrepresented in the obtained medium scale mRNA-bound proteome, indicating the specificity of the method and providing in vivo UV crosslinking experimental evidence for several candidate RBPs from leaf mesophyll protoplasts. CONCLUSIONS The described method, applied to plant cells, allows identifying proteins as having the capacity to bind mRNA directly. The method can now be scaled and applied to other plant cell types and species to contribute to the comprehensive description of the RBP proteome of plants.
Collapse
Affiliation(s)
- Zhicheng Zhang
- Department of Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Louvain, Belgium
| | - Kurt Boonen
- Department of Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Louvain, Belgium
| | - Piero Ferrari
- Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200d, 3001 Louvain, Belgium
| | - Liliane Schoofs
- Department of Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Louvain, Belgium
| | - Ewald Janssens
- Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200d, 3001 Louvain, Belgium
| | - Vera van Noort
- Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 22, 3001 Louvain, Belgium
| | - Filip Rolland
- Department of Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Louvain, Belgium
| | - Koen Geuten
- Department of Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Louvain, Belgium
| |
Collapse
|
28
|
Yan B, Wang X, Wang Z, Chen N, Mu C, Mao K, Han L, Zhang W, Liu H. Identification of potential cargo proteins of transportin protein AtTRN1 in Arabidopsis thaliana. PLANT CELL REPORTS 2016; 35:629-640. [PMID: 26650834 DOI: 10.1007/s00299-015-1908-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 10/26/2015] [Accepted: 11/17/2015] [Indexed: 06/05/2023]
Abstract
We identified 23 novel proteins that can interact with At TRN1. These proteins are potential candidates of At TRN1 cargo proteins, which will facilitate our comprehending of At TRN1 functions in Arabidopsis. Tranportin 1 (TRN1) carries out the nucleo-cytoplasmic transport of many proteins, thereby ensuring that each of them is delivered to the right compartment for its proper function. These cargo proteins involved in lots of important processes, such as alternative pre-mRNA splicing, transcriptional regulation, and protein translation. Current understanding of cargo proteins transported by Arabidopsis thaliana transportin 1 (AtTRN1) is limited. Here, first we employed the yeast two-hybrid (Y2H) screening to identify proteins that can interact with AtTRN1 in Arabidopsis, and 12 novel proteins were found. Searching for PY-NLS motif in these 12 proteins suggested that no typical PY-NLS motif was present. We next investigated the specific motifs that will mediate the interactions in these sequences, and found that thirteen truncated fragments interacted with AtTRN1, containing 8 acidic and 5 basic fragments, respectively. We also searched the Arabidopsis proteome for homologs of cargo proteins of yeast Kapl04p and mammalian Kapβ2, and PY-NLS motif-containing proteins. Among these proteins, 11 were identified to interact with AtTRN1. The interactions between all the 23 proteins and AtTRN1 were confirmed by both Y2H and bimolecular fluorescence complementation (BiFC) assays. Our results show that AtTRN1 recognizes a broad spectrum of proteins having diverse functions, which will potentially be the cargoes of AtTRN1. Taken together, these results demonstrate the feasibility and potential power of these methods to identify cargo proteins of AtTRN1, and represent a primary and significant step in interpretation of AtTRN1 functionalities.
Collapse
Affiliation(s)
- Bo Yan
- Ministry Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Xiaoning Wang
- Ministry Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Zhenyu Wang
- Ministry Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Ni Chen
- Ministry Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Changjun Mu
- Ministry Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Kaili Mao
- Ministry Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Lirong Han
- Ministry Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Wei Zhang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Heng Liu
- Ministry Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
29
|
Lewinski M, Hallmann A, Staiger D. Genome-wide identification and phylogenetic analysis of plant RNA binding proteins comprising both RNA recognition motifs and contiguous glycine residues. Mol Genet Genomics 2015; 291:763-73. [DOI: 10.1007/s00438-015-1144-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 11/06/2015] [Indexed: 11/28/2022]
|
30
|
Abstract
Alternative pre-messenger RNA splicing in higher plants emerges as an important layer of regulation upon exposure to exogenous and endogenous cues. Accordingly, mutants defective in RNA-binding proteins predicted to function in the splicing process show severe phenotypic alterations. Among those are developmental defects, impaired responses to pathogen threat or abiotic stress factors, and misregulation of the circadian timing system. A suite of splicing factors has been identified in the model plant Arabidopsis thaliana. Here we summarize recent insights on how defects in these splicing factors impair plant performance.
Collapse
|
31
|
Nolte C, Staiger D. RNA around the clock - regulation at the RNA level in biological timing. FRONTIERS IN PLANT SCIENCE 2015; 6:311. [PMID: 25999975 PMCID: PMC4419606 DOI: 10.3389/fpls.2015.00311] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 04/19/2015] [Indexed: 05/21/2023]
Abstract
The circadian timing system in plants synchronizes their physiological functions with the environment. This is achieved by a global control of gene expression programs with a considerable part of the transcriptome undergoing 24-h oscillations in steady-state abundance. These circadian oscillations are driven by a set of core clock proteins that generate their own 24-h rhythm through periodic feedback on their own transcription. Additionally, post-transcriptional events are instrumental for oscillations of core clock genes and genes in clock output. Here we provide an update on molecular events at the RNA level that contribute to the 24-h rhythm of the core clock proteins and shape the circadian transcriptome. We focus on the circadian system of the model plant Arabidopsis thaliana but also discuss selected regulatory principles in other organisms.
Collapse
Affiliation(s)
| | - Dorothee Staiger
- *Correspondence: Dorothee Staiger, Molecular Cell Physiology, Faculty of Biology, Bielefeld University, Universitaetsstrasse 25, Bielefeld D-33615, Germany
| |
Collapse
|
32
|
Ciuzan O, Hancock J, Pamfil D, Wilson I, Ladomery M. The evolutionarily conserved multifunctional glycine-rich RNA-binding proteins play key roles in development and stress adaptation. PHYSIOLOGIA PLANTARUM 2015; 153:1-11. [PMID: 25243592 DOI: 10.1111/ppl.12286] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 08/11/2014] [Accepted: 08/20/2014] [Indexed: 05/24/2023]
Abstract
The class IV glycine-rich RNA-binding proteins are a distinct subgroup within the heterogenous superfamily of glycine-rich proteins (GRPs). They are distinguished by the presence of an RNA-binding domain in the N-terminus; generally in the form of an RNA-recognition motif (RRM) or a cold-shock domain (CSD). These are followed by a C-terminal glycine-rich domain. Growing evidence suggests that these proteins play key roles in the adaptation of organisms to biotic and abiotic stresses including those resulting from pathogenesis, alterations in the osmotic, saline and oxidative environment and changes in temperature. Similar vertebrate proteins are also cold-induced and involved in, e.g. hibernation, suggesting evolutionarily conserved functions. The class IV RNA-binding GRPs are likely to operate as key molecular components of hormonally regulated development and to work by regulating gene expression at multiple levels by modifying alternative splicing, mRNA export, mRNA translation and mRNA degradation.
Collapse
Affiliation(s)
- Oana Ciuzan
- University of Agricultural Science and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, 400372, Romania; Molecular Cell Physiology, Faculty of Biology, Bielefeld University, Bielefeld, D-33615, Germany
| | | | | | | | | |
Collapse
|
33
|
Köster T, Meyer K, Weinholdt C, Smith LM, Lummer M, Speth C, Grosse I, Weigel D, Staiger D. Regulation of pri-miRNA processing by the hnRNP-like protein AtGRP7 in Arabidopsis. Nucleic Acids Res 2014; 42:9925-36. [PMID: 25104024 PMCID: PMC4150807 DOI: 10.1093/nar/gku716] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The hnRNP-like glycine-rich RNA-binding protein AtGRP7 regulates pre-mRNA splicing in Arabidopsis. Here we used small RNA-seq to show that AtGRP7 also affects the miRNA inventory. AtGRP7 overexpression caused a significant reduction in the level of 30 miRNAs and an increase for 14 miRNAs with a minimum log2 fold change of ± 0.5. Overaccumulation of several pri-miRNAs including pri-miR398b, pri-miR398c, pri-miR172b, pri-miR159a and pri-miR390 at the expense of the mature miRNAs suggested that AtGRP7 affects pri-miRNA processing. Indeed, RNA immunoprecipitation revealed that AtGRP7 interacts with these pri-miRNAs in vivo. Mutation of an arginine in the RNA recognition motif abrogated in vivo binding and the effect on miRNA and pri-miRNA levels, indicating that AtGRP7 inhibits processing of these pri-miRNAs by direct binding. In contrast, pri-miRNAs of selected miRNAs that were elevated or not changed in response to high AtGRP7 levels were not bound in vivo. Reduced accumulation of miR390, an initiator of trans-acting small interfering RNA (ta-siRNA) formation, also led to lower TAS3 ta-siRNA levels and increased mRNA expression of the target AUXIN RESPONSE FACTOR4. Furthermore, AtGRP7 affected splicing of pri-miR172b and pri-miR162a. Thus, AtGRP7 is an hnRNP-like protein with a role in processing of pri-miRNAs in addition to its role in pre-mRNA splicing.
Collapse
Affiliation(s)
- Tino Köster
- Molecular Cell Physiology, Bielefeld University
| | - Katja Meyer
- Molecular Cell Physiology, Bielefeld University
| | - Claus Weinholdt
- Institute of Computer Science, Martin-Luther-University Halle-Wittenberg, Germany
| | - Lisa M Smith
- Max Planck Institute for Developmental Biology, Tuebingen, Germany Department of Animal & Plant Sciences, University of Sheffield, UK
| | | | - Corinna Speth
- Max Planck Institute for Developmental Biology, Tuebingen, Germany Center for Plant Molecular Biology, University of Tuebingen Chemical Genomics Centre of the Max Planck Society, Dortmund, Germany
| | - Ivo Grosse
- Institute of Computer Science, Martin-Luther-University Halle-Wittenberg, Germany German Centre for Integrative Biodiversity Research Halle-Jena-Leipzig, Germany
| | - Detlef Weigel
- Max Planck Institute for Developmental Biology, Tuebingen, Germany
| | - Dorothee Staiger
- Molecular Cell Physiology, Bielefeld University Institute for Genome Research & Systems Biology, CeBiTec, Bielefeld, Germany
| |
Collapse
|
34
|
M Ller GL, Triassi A, Alvarez CE, Falcone Ferreyra MAL, Andreo CS, Lara MAV, Drincovich MAF. Circadian oscillation and development-dependent expression of glycine-rich RNA binding proteins in tomato fruits. FUNCTIONAL PLANT BIOLOGY : FPB 2014; 41:411-423. [PMID: 32481001 DOI: 10.1071/fp13239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 10/22/2013] [Indexed: 06/11/2023]
Abstract
Glycine-rich RNA-binding proteins (GRPs) are involved in the modulation of the post-transcriptional processing of transcripts and participate as an output signal of the circadian clock. However, neither GRPs nor the circadian rhythmic have been studied in detail in fleshy fruits as yet. In the present work, the GRP1 gene family was analysed in Micro-Tom tomato (Solanum lycopersicum L.) fruit. Three highly homologous LeGRP1 genes (LeGRP1a-c) were identified. For each gene, three products were found, corresponding to the unspliced precursor mRNA (pre-mRNA), the mature mRNA and the alternatively spliced mRNA (preLeGRP1a-c, mLeGRP1a-c and asLeGRP1a-c, respectively). Tomato GRPs (LeGRPs) show the classic RNA recognition motif and glycine-rich region, and were found in the nucleus and in the cytosol of tomato fruit. By using different Escherichia coli mutants, it was found that LeGRP1s contained in vivo RNA-melting abilities and were able to complement the cold-sensitive phenotype of BX04 cells. Particular circadian profiles of expression, dependent on the fruits' developmental stage, were found for each LeGRP1 form. During ripening off the vine of fruits harvested at the mature green stage, the levels of all LeGRP1a-c forms drastically increased; however, incubation at 4°C prevented such increases. Analysis of the expression of all LeGRP1a-c forms suggests a positive regulation of expression in tomato fruit. Overall, the results obtained in this work reveal a complex pattern of expression of GRPs in tomato fruit, suggesting they might be involved in post-transcriptional modulation of circadian processes of this fleshy fruit.
Collapse
Affiliation(s)
- Gabriela L M Ller
- Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Suipacha 531, Rosario (2000), Argentina. Corresponding author.
| | - Agustina Triassi
- Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Suipacha 531, Rosario (2000), Argentina
| | - Clarisa E Alvarez
- Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Suipacha 531, Rosario (2000), Argentina
| | - Mar A L Falcone Ferreyra
- Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Suipacha 531, Rosario (2000), Argentina
| | - Carlos S Andreo
- Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Suipacha 531, Rosario (2000), Argentina
| | - Mar A V Lara
- Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Suipacha 531, Rosario (2000), Argentina
| | - Mar A F Drincovich
- Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Suipacha 531, Rosario (2000), Argentina
| |
Collapse
|
35
|
Hackmann C, Korneli C, Kutyniok M, Köster T, Wiedenlübbert M, Müller C, Staiger D. Salicylic acid-dependent and -independent impact of an RNA-binding protein on plant immunity. PLANT, CELL & ENVIRONMENT 2014; 37:696-706. [PMID: 23961939 DOI: 10.1111/pce.12188] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 08/09/2013] [Accepted: 08/15/2013] [Indexed: 05/08/2023]
Abstract
Plants overexpressing the RNA-binding protein AtGRP7 (AtGRP7-ox plants) constitutively express the PR-1 (PATHOGENESIS-RELATED-1), PR-2 and PR-5 transcripts associated with salicylic acid (SA)-mediated immunity and show enhanced resistance against Pseudomonas syringae pv. tomato (Pto) DC3000. Here, we investigated whether the function of AtGRP7 in plant immunity depends on SA. Endogenous SA was elevated fivefold in AtGRP7-ox plants. The elevated PR-1, PR-2 and PR-5 levels were eliminated upon expression of the salicylate hydroxylase nahG in AtGRP7-ox plants and elevated PR-1 levels were suppressed by sid (salicylic acid deficient) 2-1 that is impaired in SA biosynthesis. RNA immunoprecipitation showed that AtGRP7 does not bind the PR-1 transcript in vivo, whereas it binds PDF1.2. Constitutive or inducible AtGRP7 overexpression increases PR-1 promoter activity, indicating that AtGRP7 affects PR-1 transcription. In line with this, the effect of AtGRP7 on PR-1 is suppressed by npr (non-expressor of PR genes) 1. Whereas AtGRP7-ox plants restricted growth of Pto DC3000 compared with wild type (wt), sid2-1 AtGRP7-ox plants allowed more growth than AtGRP7-ox plants. Furthermore, we show an enhanced hypersensitive response triggered by avirulent Pto DC3000 (AvrRpt2) in AtGRP7-ox compared with wt. In sid2-1 AtGRP7-ox, an intermediate phenotype was observed. Thus, AtGRP7 has both SA-dependent and SA-independent effects on plant immunity.
Collapse
Affiliation(s)
- Christian Hackmann
- Department of Molecular Cell Physiology, Bielefeld University, Universitätsstraße 25, D-33615, Bielefeld, Germany; Institute for Genome Research and Systems Biology, CeBiTec, Bielefeld University, Universitätsstraße 25, D-33615, Bielefeld, Germany
| | | | | | | | | | | | | |
Collapse
|
36
|
Löhr B, Streitner C, Steffen A, Lange T, Staiger D. A glycine-rich RNA-binding protein affects gibberellin biosynthesis in Arabidopsis. Mol Biol Rep 2013; 41:439-45. [DOI: 10.1007/s11033-013-2878-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 11/19/2013] [Indexed: 12/29/2022]
|
37
|
Filonova A, Haemsch P, Gebauer C, Weisheit W, Wagner V. Protein disulfide isomerase 2 of Chlamydomonas reinhardtii is involved in circadian rhythm regulation. MOLECULAR PLANT 2013; 6:1503-17. [PMID: 23475997 DOI: 10.1093/mp/sst048] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Protein disulfide isomerases (PDIs) are known to play important roles in the folding of nascent proteins and in the formation of disulfide bonds. Recently, we identified a PDI from Chlamydomonas reinhardtii (CrPDI2) by a mass spectrometry approach that is specifically enriched by heparin affinity chromatography in samples taken during the night phase. Here, we show that the recombinant CrPDI2 is a redox-active protein. It is reduced by thioredoxin reductase and catalyzes itself the reduction of insulin chains and the oxidative refolding of scrambled RNase A. By immunoblots, we confirm a high-amplitude change in abundance of the heparin-bound CrPDI2 during subjective night. Interestingly, we find that CrPDI2 is present in protein complexes of different sizes at both day and night. Among three identified interaction partners, one (a 2-cys peroxiredoxin) is present only during the night phase. To study a potential function of CrPDI2 within the circadian system, we have overexpressed its gene. Two transgenic lines were used to measure the rhythm of phototaxis. In the transgenic strains, a change in the acrophase was observed. This indicates that CrPDI2 is involved in the circadian signaling pathway and, together with the night phase-specific interaction of CrPDI2 and a peroxiredoxin, these findings suggest a close coupling of redox processes and the circadian clock in C. reinhardtii.
Collapse
Affiliation(s)
- Anna Filonova
- Institute of General Botany and Plant Physiology, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany
| | | | | | | | | |
Collapse
|
38
|
Lummer M, Humpert F, Wiedenlübbert M, Sauer M, Schüttpelz M, Staiger D. A new set of reversibly photoswitchable fluorescent proteins for use in transgenic plants. MOLECULAR PLANT 2013; 6:1518-30. [PMID: 23434876 DOI: 10.1093/mp/sst040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Fluorescent reporter proteins that allow repeated switching between a fluorescent and a non-fluorescent state in response to specific wavelengths of light are novel tools for monitoring of protein trafficking and super-resolution fluorescence microscopy in living organisms. Here, we describe variants of the reversibly photoswitchable fluorescent proteins rsFastLime, bsDronpa, and Padron that have been codon-optimized for the use in transgenic Arabidopsis plants. The synthetic proteins, designated rsFastLIME-s, bsDRONPA-s, and PADRON C-s, showed photophysical properties and switching behavior comparable to those reported for the original proteins. By combining the 'positively switchable' PADRON C-s with the 'negatively switchable' rsFastLIME-s or bsDRONPA-s, two different fluorescent reporter proteins could be imaged at the same wavelength upon transient expression in Nicotiana benthamiana cells. Thus, co-localization analysis can be performed using only a single detection channel. Furthermore, the proteins were used to tag the RNA-binding protein AtGRP7 (Arabidopsis thaliana glycine-rich RNA-binding protein 7) in transgenic Arabidopsis plants. Because the new reversibly photoswitchable fluorescent proteins show an increase in signal strength during each photoactivation cycle, we were able to generate a large number of scans of the same region and reconstruct 3-D images of AtGRP7 expression in the root tip. Upon photoactivation of the AtGRP7:rsFastLIME-s fusion protein in a defined region of a transgenic Arabidopsis root, spreading of the fluorescence signal into adjacent regions was observed, indicating that movement from cell to cell can be monitored. Our results demonstrate that rsFastLIME-s, bsDRONPA-s, and PADRON C-s are versatile fluorescent markers in plants. Furthermore, the proteins also show strong fluorescence in mammalian cells including COS-7 and HeLa cells.
Collapse
Affiliation(s)
- Martina Lummer
- Molecular Cell Physiology, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| | | | | | | | | | | |
Collapse
|
39
|
Tran D, El-Maarouf-Bouteau H, Rossi M, Biligui B, Briand J, Kawano T, Mancuso S, Bouteau F. Post-transcriptional regulation of GORK channels by superoxide anion contributes to increases in outward-rectifying K⁺ currents. THE NEW PHYTOLOGIST 2013; 198:1039-1048. [PMID: 23517047 DOI: 10.1111/nph.12226] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 02/04/2013] [Indexed: 05/23/2023]
Abstract
· Ion fluxes are ubiquitous processes in the plant and animal kingdoms, controlled by fine-tuned regulations of ion channel activity. Yet the mechanism that cells employ to achieve the modification of ion homeostasis at the molecular level still remains unclear. This is especially true when it comes to the mechanisms that lead to cell death. · In this study, Arabidopsis thaliana cells were exposed to ozone (O₃). Ion flux variations were analyzed by electrophysiological measurements and their transcriptional regulation by RT-PCR. Reactive oxygen species (ROS) generation was quantified by luminescence techniques and caspase-like activities were investigated by laser confocal microscopy. · We highlighted the delayed activation of K(+) outward-rectifying currents after an O₃ -induced oxidative stress leading to programmed cell death (PCD). Caspase-like activities are detected under O₃ exposure and could be decreased by K(+) channel blocker. Molecular experiments revealed that the sustained activation of K(+) outward current could be the result of an unexpected O₂ ·⁻ post-transcriptional regulation of the guard cell outward-rectifying K(+) (GORK) channels. · This consists of a likely new mode of regulating the processing of the GORK mRNA, in a ROS-dependent manner, to allow sustained K(+) effluxes during PCD. These data provide new mechanistic insights into K(+) channel regulation during an oxidative stress response.
Collapse
Affiliation(s)
- Daniel Tran
- Univ Paris Diderot, Sorbonne Paris Cité, Institut des Energies de Demain (IED), Paris, France
- LEM, Institut de Biologie des Plantes, Bât 630, 91405, Orsay, France
| | | | - Marika Rossi
- LINV - Department of Plant Soil & Environmental Science, University of Florence, Florence, Italy
| | - Bernadette Biligui
- Univ Paris Diderot, Sorbonne Paris Cité, Institut des Energies de Demain (IED), Paris, France
- LEM, Institut de Biologie des Plantes, Bât 630, 91405, Orsay, France
| | - Joël Briand
- Univ Paris Diderot, Sorbonne Paris Cité, Institut des Energies de Demain (IED), Paris, France
- LEM, Institut de Biologie des Plantes, Bât 630, 91405, Orsay, France
| | - Tomonori Kawano
- LINV - Department of Plant Soil & Environmental Science, University of Florence, Florence, Italy
- Graduate School of Environmental Engineering, University of Kitakyushu 1-1, Hibikino, Wakamatsu-ku, Kitakyushu, 808-0135, Japan
- Univ Paris Diderot, Sorbonne Paris Cité, Paris Interdisciplinary Energy Research Institute (PIERI), Paris, France
| | - Stefano Mancuso
- LINV - Department of Plant Soil & Environmental Science, University of Florence, Florence, Italy
- Univ Paris Diderot, Sorbonne Paris Cité, Paris Interdisciplinary Energy Research Institute (PIERI), Paris, France
| | - François Bouteau
- Univ Paris Diderot, Sorbonne Paris Cité, Institut des Energies de Demain (IED), Paris, France
- LEM, Institut de Biologie des Plantes, Bât 630, 91405, Orsay, France
- LINV - Department of Plant Soil & Environmental Science, University of Florence, Florence, Italy
| |
Collapse
|
40
|
Silverman IM, Li F, Gregory BD. Genomic era analyses of RNA secondary structure and RNA-binding proteins reveal their significance to post-transcriptional regulation in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 205-206:55-62. [PMID: 23498863 PMCID: PMC4079699 DOI: 10.1016/j.plantsci.2013.01.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 01/22/2013] [Accepted: 01/23/2013] [Indexed: 05/27/2023]
Abstract
The eukaryotic transcriptome is regulated both transcriptionally and post-transcriptionally. Transcriptional control was the major focus of early research efforts, while more recently post-transcriptional mechanisms have gained recognition for their significant regulatory importance. At the heart of post-transcriptional regulatory pathways are cis- and trans-acting features and factors including RNA secondary structure as well as RNA-binding proteins and their recognition sites on target RNAs. Recent advances in genomic methodologies have significantly improved our understanding of both RNA secondary structure and RNA-binding proteins and their regulatory effects within the eukaryotic transcriptome. In this review, we focus specifically on the collection of these regulatory moieties in plant transcriptomes. We describe the approaches for studying RNA secondary structure and RNA-protein interaction sites, with an emphasis on recent methodological advances that produce transcriptome-wide datasets. We discuss how these methods that include genome-wide RNA secondary structure determination and RNA-protein interaction site mapping are significantly improving our understanding of the functions of these two elements in post-transcriptional regulation. Finally, we delineate the need for additional genome-wide studies of RNA secondary structure and RNA-protein interactions in plants.
Collapse
Affiliation(s)
- Ian M. Silverman
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
- PENN Genome Frontiers Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Fan Li
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
- PENN Genome Frontiers Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
- Genomics and Computational Biology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brian D. Gregory
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
- PENN Genome Frontiers Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
- Genomics and Computational Biology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
41
|
Schmal C, Reimann P, Staiger D. A circadian clock-regulated toggle switch explains AtGRP7 and AtGRP8 oscillations in Arabidopsis thaliana. PLoS Comput Biol 2013; 9:e1002986. [PMID: 23555221 PMCID: PMC3610657 DOI: 10.1371/journal.pcbi.1002986] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Accepted: 01/29/2013] [Indexed: 12/25/2022] Open
Abstract
The circadian clock controls many physiological processes in higher plants and causes a large fraction of the genome to be expressed with a 24h rhythm. The transcripts encoding the RNA-binding proteins AtGRP7 (Arabidopsis thaliana Glycine Rich Protein 7) and AtGRP8 oscillate with evening peaks. The circadian clock components CCA1 and LHY negatively affect AtGRP7 expression at the level of transcription. AtGRP7 and AtGRP8, in turn, negatively auto-regulate and reciprocally cross-regulate post-transcriptionally: high protein levels promote the generation of an alternative splice form that is rapidly degraded. This clock-regulated feedback loop has been proposed to act as a molecular slave oscillator in clock output. While mathematical models describing the circadian core oscillator in Arabidopsis thaliana were introduced recently, we propose here the first model of a circadian slave oscillator. We define the slave oscillator in terms of ordinary differential equations and identify the model's parameters by an optimization procedure based on experimental results. The model successfully reproduces the pertinent experimental findings such as waveforms, phases, and half-lives of the time-dependent concentrations. Furthermore, we obtain insights into possible mechanisms underlying the observed experimental dynamics: the negative auto-regulation and reciprocal cross-regulation via alternative splicing could be responsible for the sharply peaking waveforms of the AtGRP7 and AtGRP8 mRNA. Moreover, our results suggest that the AtGRP8 transcript oscillations are subordinated to those of AtGRP7 due to a higher impact of AtGRP7 protein on alternative splicing of its own and of the AtGRP8 pre-mRNA compared to the impact of AtGRP8 protein. Importantly, a bifurcation analysis provides theoretical evidence that the slave oscillator could be a toggle switch, arising from the reciprocal cross-regulation at the post-transcriptional level. In view of this, transcriptional repression of AtGRP7 and AtGRP8 by LHY and CCA1 induces oscillations of the toggle switch, leading to the observed high-amplitude oscillations of AtGRP7 mRNA. The circadian clock organizes the day in the life of a plant by causing 24h rhythms in gene expression. For example, the core clockwork of the model plant Arabidopsis thaliana causes the transcripts encoding the RNA-binding proteins AtGRP7 and AtGRP8 to undergo high amplitude oscillations with a peak at the end of the day. AtGRP7 and AtGRP8, in turn, negatively auto-regulate and reciprocally cross-regulate their own expression by causing alternative splicing of their pre-mRNAs, followed by rapid degradation of the alternatively spliced transcripts. This has led to the suggestion that they represent molecular slave oscillators downstream of the core clock. Using a mathematical model we obtain insights into possible mechanisms underlying the experimentally observed dynamics, e.g. a higher impact of AtGRP7 protein compared to the impact of AtGRP8 protein on the alternative splicing explains the experimentally observed phases of their transcript. Previously, components that reciprocally repress their own transcription (double negative loops) have been shown to potentially act as a toggle switch between two states. We provide theoretical evidence that the slave oscillator could be a bistable toggle switch as well, operating at the post-transcriptional level.
Collapse
Affiliation(s)
- Christoph Schmal
- Condensed Matter Theory, Faculty of Physics, Bielefeld University, Bielefeld, Germany.
| | | | | |
Collapse
|
42
|
Mason ME, Koch JL, Krasowski M, Loo J. Comparisons of protein profiles of beech bark disease resistant and susceptible American beech (Fagus grandifolia). Proteome Sci 2013; 11:2. [PMID: 23317283 PMCID: PMC3575302 DOI: 10.1186/1477-5956-11-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 12/23/2012] [Indexed: 11/10/2022] Open
Abstract
UNLABELLED BACKGROUND Beech bark disease is an insect-fungus complex that damages and often kills American beech trees and has major ecological and economic impacts on forests of the northeastern United States and southeastern Canadian forests. The disease begins when exotic beech scale insects feed on the bark of trees, and is followed by infection of damaged bark tissues by one of the Neonectria species of fungi. Proteomic analysis was conducted of beech bark proteins from diseased trees and healthy trees in areas heavily infested with beech bark disease. All of the diseased trees had signs of Neonectria infection such as cankers or fruiting bodies. In previous tests reported elsewhere, all of the diseased trees were demonstrated to be susceptible to the scale insect and all of the healthy trees were demonstrated to be resistant to the scale insect. Sixteen trees were sampled from eight geographically isolated stands, the sample consisting of 10 healthy (scale-resistant) and 6 diseased/infested (scale-susceptible) trees. RESULTS Proteins were extracted from each tree and analysed in triplicate by isoelectric focusing followed by denaturing gel electrophoresis. Gels were stained and protein spots identified and intensity quantified, then a statistical model was fit to identify significant differences between trees. A subset of BBD differential proteins were analysed by mass spectrometry and matched to known protein sequences for identification. Identified proteins had homology to stress, insect, and pathogen related proteins in other plant systems. Protein spots significantly different in diseased and healthy trees having no stand or disease-by-stand interaction effects were identified. CONCLUSIONS Further study of these proteins should help to understand processes critical to resistance to beech bark disease and to develop biomarkers for use in tree breeding programs and for the selection of resistant trees prior to or in early stages of BBD development in stands. Early identification of resistant trees (prior to the full disease development in an area) will allow forest management through the removal of susceptible trees and their root-sprouts prior to the onset of disease, allowing management and mitigation of costs, economic impact, and impacts on ecological systems and services.
Collapse
Affiliation(s)
- Mary E Mason
- US Forest Service, Northern Research Station, 359 Main Rd, Delaware, OH, 43015, USA.
| | | | | | | |
Collapse
|
43
|
Nawrot R, Tomaszewski Ł, Czerwoniec A, Goździcka-Józefiak A. Identification of a Coding Sequence and Structure Modeling of a Glycine-Rich RNA-Binding Protein (CmGRP1) from Chelidonium majus L. PLANT MOLECULAR BIOLOGY REPORTER 2013; 31:470-476. [PMID: 24415842 PMCID: PMC3881573 DOI: 10.1007/s11105-012-0510-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The family of glycine-rich plant proteins (GRPs) is a large and complex group of proteins that share, as a common feature, the presence of glycine-rich domains arranged in (Gly)n-X repeats that are suggested to be involved in protein-protein interactions, RNA binding, and nucleolar targeting. These proteins are implicated in several independent physiological processes. Some are components of cell walls of many higher plants, while others are involved in molecular responses to environmental stress, and mediated by post-transcriptional regulatory mechanisms. The goals of this study are to identify the coding sequence of a novel glycine-rich RNA-binding protein from Chelidonium majus and to propose its structural model. DNA fragments obtained using degenerate PCR primers showed high sequence identities with glycine-rich RNA-binding protein coding sequences from different plant species. A 439-bp nucleotide sequence is identified coding for a novel polypeptide composed of 146 amino acids, designated as CmGRP1 (C. majus glycine-rich protein 1), with a calculated MW of 14,931 Da (NCBI GenBank accession no. HM173636). Using NCBI CDD and GeneSilico MetaServer, a single conserved domain, the RNA recognition motif (RRM), was detected in CmGRP1. The C-terminal region of CmGRP1 is a glycine-rich motif (GGGGxxGxGGGxxG), and it is predicted to be disordered. Based on a 1fxl crystal structure, a 3D model of CmGRP1 is proposed. CmGRP1 can be classified as a class IVa plant GRP, implicated to play a role in plant defense.
Collapse
Affiliation(s)
- Robert Nawrot
- Department of Molecular Virology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614 Poznań, Poland
| | - Łukasz Tomaszewski
- Department of Molecular Virology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614 Poznań, Poland
| | - Anna Czerwoniec
- Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614 Poznań, Poland
| | - Anna Goździcka-Józefiak
- Department of Molecular Virology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614 Poznań, Poland
| |
Collapse
|
44
|
Comparative proteomic analysis reveals the mechanisms governing cotton fiber differentiation and initiation. J Proteomics 2012; 75:845-56. [DOI: 10.1016/j.jprot.2011.09.025] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 09/24/2011] [Accepted: 09/28/2011] [Indexed: 12/26/2022]
|
45
|
Barbosa HS, Arruda SCC, Azevedo RA, Arruda MAZ. New insights on proteomics of transgenic soybean seeds: evaluation of differential expressions of enzymes and proteins. Anal Bioanal Chem 2012; 402:299-314. [PMID: 21947011 DOI: 10.1007/s00216-011-5409-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 08/25/2011] [Accepted: 09/08/2011] [Indexed: 10/17/2022]
Abstract
This work reports the evaluation of differentially expressed enzymes and proteins from transgenic and nontransgenic soybean seeds. Analysis of malondialdehyde, ascorbate peroxidase (EC 1.11.1.11), glutathione reductase (EC 1.6.4.2), and catalase (EC 1.11.1.6) revealed higher levels (29.8, 30.6, 71.4, and 35.3%, respectively) in transgenic seeds than in nontransgenic seeds. Separation of soybean seed proteins was done by two-dimensional polyacrylamide gel electrophoresis, and 192 proteins were identified by matrix-assisted laser desorption/ionization (MALDI) quadrupole time-of-flight (QTOF) mass spectrometry (MS) and electrospray ionization (ESI) QTOF MS. Additionally, the enzyme CP4 EPSPS, involved in the genetic modification, was identified by enzymatic digestions using either trypsin or chymotrypsin and ESI-QTOF MS/MS for identification. From the proteins identified, actin fragment, cytosolic glutamine synthetase, glycinin subunit G1, and glycine-rich RNA-binding protein were shown to be differentially expressed after analysis using the two-dimensional difference gel electrophoresis technique, and applying a regulator factor of 1.5 or greater.
Collapse
Affiliation(s)
- Herbert S Barbosa
- Spectrometry, Sample Preparation and Mechanization Group-GEPAM, Institute of Chemistry, University of Campinas-UNICAMP, Campinas, SP, Brazil
| | | | | | | |
Collapse
|
46
|
Narsai R, Law SR, Carrie C, Xu L, Whelan J. In-depth temporal transcriptome profiling reveals a crucial developmental switch with roles for RNA processing and organelle metabolism that are essential for germination in Arabidopsis. PLANT PHYSIOLOGY 2011; 157:1342-62. [PMID: 21908688 PMCID: PMC3252162 DOI: 10.1104/pp.111.183129] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 09/05/2011] [Indexed: 05/20/2023]
Abstract
Germination represents a rapid transition from dormancy to a high level of metabolic activity. In-depth transcriptomic profiling at 10 time points in Arabidopsis (Arabidopsis thaliana), including fresh seed, ripened seed, during stratification, germination, and postgermination per se, revealed specific temporal expression patterns that to our knowledge have not previously been identified. Over 10,000 transcripts were differentially expressed during cold stratification, with subequal numbers up-regulated as down-regulated, revealing an active period in preparing seeds for germination, where transcription and RNA degradation both play important roles in regulating the molecular sequence of events. A previously unidentified transient expression pattern was observed for a group of genes, whereby a significant rise in expression was observed at the end of stratification and significantly lower expression was observed 6 h later. These genes were further defined as germination specific, as they were most highly expressed at this time in germination, in comparison with all developmental tissues in the AtGenExpress data set. Functional analysis of these genes using genetic inactivation revealed that they displayed a significant enrichment for embryo-defective or -arrested phenotype. This group was enriched in genes encoding mitochondrial and nuclear RNA-processing proteins, including more than 45% of all pentatricopeptide domain-containing proteins expressed during germination. The presence of mitochondrial DNA replication factors and RNA-processing functions in this germination-specific subset represents the earliest events in organelle biogenesis, preceding any changes associated with energy metabolism. Green fluorescent protein analysis also confirmed organellar localization for 65 proteins, largely showing germination-specific expression. These results suggest that mitochondrial biogenesis involves a two-step process to produce energetically active organelles: an initial phase at the end of stratification involving mitochondrial DNA synthesis and RNA processing, and a later phase for building the better-known energetic functions. This also suggests that signals with a mitochondrial origin and retrograde signals may be crucial for successful germination.
Collapse
Affiliation(s)
- Reena Narsai
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia.
| | | | | | | | | |
Collapse
|
47
|
Jeong BR, Lin Y, Joe A, Guo M, Korneli C, Yang H, Wang P, Yu M, Cerny RL, Staiger D, Alfano JR, Xu Y. Structure function analysis of an ADP-ribosyltransferase type III effector and its RNA-binding target in plant immunity. J Biol Chem 2011; 286:43272-81. [PMID: 22013065 DOI: 10.1074/jbc.m111.290122] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The Pseudomonas syringae type III effector HopU1 is a mono-ADP-ribosyltransferase that is injected into plant cells by the type III protein secretion system. Inside the plant cell it suppresses immunity by modifying RNA-binding proteins including the glycine-rich RNA-binding protein GRP7. The crystal structure of HopU1 at 2.7-Å resolution reveals two unique protruding loops, L1 and L4, not found in other mono-ADP-ribosyltransferases. Site-directed mutagenesis demonstrates that these loops are essential for substrate recognition and enzymatic activity. HopU1 ADP-ribosylates the conserved arginine 49 of GRP7, and this reduces the ability of GRP7 to bind RNA in vitro. In vivo, expression of GRP7 with Arg-49 replaced with lysine does not complement the reduced immune responses of the Arabidopsis thaliana grp7-1 mutant demonstrating the importance of this residue for GRP7 function. These data provide mechanistic details how HopU1 recognizes this novel type of substrate and highlights the role of GRP7 in plant immunity.
Collapse
Affiliation(s)
- Byeong-ryool Jeong
- Center for Plant Science Innovation and the Department of Plant Pathology, University of Nebraska, Lincoln, Nebraska 68588-0660, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Wang S, Wang R, Liang D, Ma F, Shu H. Molecular characterization and expression analysis of a glycine-rich RNA-binding protein gene from Malus hupehensis Rehd. Mol Biol Rep 2011; 39:4145-53. [PMID: 21779801 DOI: 10.1007/s11033-011-1197-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Accepted: 07/11/2011] [Indexed: 11/29/2022]
Abstract
Members of the plant glycine-rich RNA-binding protein (GR-RBP) family play diverse roles in regulating RNA metabolism for various cellular processes. To understand better their function at the molecular level in stress responses, we cloned a GR-RBP gene, MhGR-RBP1, from Malus hupehensis. Its full-length cDNA is 558 bp long, with a 495-bp open reading frame, and it encodes 164 amino acids. The deduced amino acid sequence contains an RNA-recognition motif (RRM) at the amino terminal and a glycine-rich domain at the carboxyl terminal; these are highly homologous with those from other plant species. Multiple alignment and phylogenetic analyses show that the deduced protein is a novel member of the plant GR-RBP family. To characterize this gene, we also applied a model for predicting its homology of protein structure with other species. Both organ-specific and stress-related expression were detected by quantitative real-time PCR and semi-quantitative RT-PCR, indicating that MhGR-RBP1 is expressed abundantly in young leaves but weakly in roots and shoots. Transcript levels in the leaves were increased markedly by drought, hydrogen peroxide (H(2)O(2)), and mechanical wounding, slightly by salt stress. Furthermore, the transcript is initially up- and down-regulated rapidly within 24 h of abscisic acid (ABA) treatment. After 24 h of ABA and jasmonic acid (JA) treatments with different concentrations, the transcript levels of MhGR-RBP1 were significantly repressed. These results suggest that MhGR-RBP1 may be involved in the responses to abiotic stresses, H(2)O(2), ABA, or JA.
Collapse
Affiliation(s)
- Shuncai Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | | | | | | | | |
Collapse
|
49
|
Protein profiling of the potato petiole under short day and long day photoperiods. J Proteomics 2011; 74:212-30. [DOI: 10.1016/j.jprot.2010.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 10/18/2010] [Accepted: 10/21/2010] [Indexed: 12/25/2022]
|
50
|
Staiger D, Köster T. Spotlight on post-transcriptional control in the circadian system. Cell Mol Life Sci 2011; 68:71-83. [PMID: 20803230 PMCID: PMC11114774 DOI: 10.1007/s00018-010-0513-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 08/16/2010] [Accepted: 08/16/2010] [Indexed: 10/19/2022]
Abstract
An endogenous timing mechanism, the circadian clock, causes rhythmic expression of a considerable fraction of the genome of most organisms to optimally align physiology and behavior with their environment. Circadian clocks are self-sustained oscillators primarily based on transcriptional feedback loops and post-translational modification of clock proteins. It is increasingly becoming clear that regulation at the RNA level strongly impacts the cellular circadian transcriptome and proteome as well as the oscillator mechanism itself. This review focuses on posttranscriptional events, discussing RNA-binding proteins that, by influencing the timing of pre-mRNA splicing, polyadenylation and RNA decay, shape rhythmic expression profiles. Furthermore, recent findings on the contribution of microRNAs to orchestrating circadian rhythms are summarized.
Collapse
Affiliation(s)
- Dorothee Staiger
- Molecular Cell Physiology, Bielefeld University, 33501, Bielefeld, Germany.
| | | |
Collapse
|