1
|
Wójcikowska B, Chwiałkowska K, Nowak K, Citerne S, Morończyk J, Wójcik AM, Kiwior-Wesołowska A, Francikowski J, Kwaśniewski M, Gaj MD. Transcriptomic profiling reveals histone acetylation-regulated genes involved in somatic embryogenesis in Arabidopsis thaliana. BMC Genomics 2024; 25:788. [PMID: 39148037 PMCID: PMC11325840 DOI: 10.1186/s12864-024-10623-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND Somatic embryogenesis (SE) exemplifies the unique developmental plasticity of plant cells. The regulatory processes, including epigenetic modifications controlling embryogenic reprogramming of cell transcriptome, have just started to be revealed. RESULTS To identify the genes of histone acetylation-regulated expression in SE, we analyzed global transcriptomes of Arabidopsis explants undergoing embryogenic induction in response to treatment with histone deacetylase inhibitor, trichostatin A (TSA). The TSA-induced and auxin (2,4-dichlorophenoxyacetic acid; 2,4-D)-induced transcriptomes were compared. RNA-seq results revealed the similarities of the TSA- and auxin-induced transcriptomic responses that involve extensive deregulation, mostly repression, of the majority of genes. Within the differentially expressed genes (DEGs), we identified the master regulators (transcription factors - TFs) of SE, genes involved in biosynthesis, signaling, and polar transport of auxin and NITRILASE-encoding genes of the function in indole-3-acetic acid (IAA) biosynthesis. TSA-upregulated TF genes of essential functions in auxin-induced SE, included LEC1/LEC2, FUS3, AGL15, MYB118, PHB, PHV, PLTs, and WUS/WOXs. The TSA-induced transcriptome revealed also extensive upregulation of stress-related genes, including those related to stress hormone biosynthesis. In line with transcriptomic data, TSA-induced explants accumulated salicylic acid (SA) and abscisic acid (ABA), suggesting the role of histone acetylation (Hac) in regulating stress hormone-related responses during SE induction. Since mostly the adaxial side of cotyledon explant contributes to SE induction, we also identified organ polarity-related genes responding to TSA treatment, including AIL7/PLT7, RGE1, LBD18, 40, HB32, CBF1, and ULT2. Analysis of the relevant mutants supported the role of polarity-related genes in SE induction. CONCLUSION The study results provide a step forward in deciphering the epigenetic network controlling embryogenic transition in somatic cells of plants.
Collapse
Affiliation(s)
- Barbara Wójcikowska
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland.
| | - Karolina Chwiałkowska
- Centre for Bioinformatics and Data Analysis, Medical University of Bialystok, Bialystok, Poland
| | - Katarzyna Nowak
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Sylvie Citerne
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, 78000, France
| | - Joanna Morończyk
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Anna Maria Wójcik
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Agnieszka Kiwior-Wesołowska
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Jacek Francikowski
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Mirosław Kwaśniewski
- Centre for Bioinformatics and Data Analysis, Medical University of Bialystok, Bialystok, Poland
| | - Małgorzata Danuta Gaj
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
2
|
Vongnhay V, Shukla MR, Ayyanath MM, Sriskantharajah K, Saxena PK. In Vitro Morphogenesis of Tobacco: Modulation of Endogenous Growth Regulators by Tulsi (Holy Basil). PLANTS (BASEL, SWITZERLAND) 2024; 13:2002. [PMID: 39065528 PMCID: PMC11280594 DOI: 10.3390/plants13142002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024]
Abstract
Plant growth regulators (PGRs) play a vital role in the induction of morphogenesis in vitro. Synthetic PGRs are commonly used to induce organogenesis and somatic embryogenesis from various explants, while natural substances are rarely utilized. This study aimed to enhance the regenerative response in Nicotiana tabacum leaf explants using Tulsi (Ocimum sanctum) leaf extract and to elucidate the biochemical interactions during modulation of endogenous plant growth regulators, including indole-3-acetic acid (IAA), abscisic acid (ABA), zeatin, and 6-(γ, γ-dimethylallylamino) purine (2iP). Tulsi leaf extract significantly improved shoot production through interactions between endogenous hormones and those present in the extract, which enhanced stress mitigation. The 20% Tulsi leaf extract treatment produced significantly more shoots than the control, coinciding with increased endogenous IAA and zeatin levels starting on day 10 in culture. Furthermore, ABA and zeatin concentrations increased on days 15 and 25, respectively, in the 20% Tulsi extract treatment, suggesting their role in the induction of somatic embryo-like structures. ABA likely acts as an activator of stress responses, encouraging the development of these structures. Additionally, 2iP was involved in the induction of both forms of regeneration in the 10% and 20% extract treatments, especially in combination with ABA. These results suggest that Tulsi leaf extract holds promising potential as a natural supplement for increasing plant regeneration in vitro and advancing our understanding of how natural extracts of plant origin can be harnessed to optimize plant regeneration processes in vitro.
Collapse
Affiliation(s)
| | | | | | | | - Praveen K. Saxena
- Department of Plant Agriculture, Gosling Research Institute for Plant Preservation, University of Guelph, Guelph, ON N1G 2W1, Canada; (V.V.); (M.R.S.); (M.-M.A.); (K.S.)
| |
Collapse
|
3
|
Meira FS, Ribeiro DG, de Campos SS, Falcão LL, Gomes ACMM, de Alencar Dusi DM, Marcellino LH, Mehta A, Scherwinski-Pereira JE. Differential expression of genes potentially related to the callogenesis and in situ hybridization of SERK gene in macaw palm (Acrocomia aculeata Jacq.) Lodd. ex Mart. PROTOPLASMA 2024; 261:89-101. [PMID: 37482557 DOI: 10.1007/s00709-023-01881-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 07/03/2023] [Indexed: 07/25/2023]
Abstract
For the purpose of understanding the molecular processes triggered during callus formation in macaw palm, the expression of seven genes potentially involved in this process, identified in previous studies and from the literature, was investigated by RT-qPCR. In addition, in situ hybridization of the SERK gene was performed. Leaf tissues from adult plants from two macaw palm accession were inoculated in a medium combined with Picloram at a concentration of 450 μM to induce callus. The expression analysis was performed from leaf samples from two accessions of different origins (Municipalities of Tiros, MG, and Buriti Vermelho, DF, Brazil), which are characterized as non-responsive (NR) and responsive (R), respectively. The material was collected before callus induction (0 DAI, initial day) and 120 days after callus induction (120 DAI). Genes related to development (SERK, OASA, EF1, ANN1) and stress (LEA, CAT2, and MDAR5) were evaluated. The results obtained showed that all the genes involved with the development had their expressions downregulated at 0 DAI when the accession R was compared with the accession NR. On the other hand, it was possible to observe that these genes were upregulated at 120 DAI. The LEA stress gene showed a tendency to increase expression in the NR accession, while the R accession showed decreased expression and the CAT2 and MDAR5 genes showed upregulation in both accessions. In situ hybridization showed SERK transcripts in the vascular bundles, indicating the expression of SERK in this region, in addition to its expression in calluses. The results obtained in this study support our hypothesis that the regulation of genes involved in the control of oxidative stress and development is crucial for the formation of calluses in macaw palm.
Collapse
Affiliation(s)
- Filipe Sathler Meira
- Universidade de Brasília, Instituto de Ciências Biológicas, Campus Universitário Darcy Ribeiro, Brasília, DF, 70910-900, Brazil
| | - Daiane Gonzaga Ribeiro
- Universidade de Brasília, Instituto de Ciências Biológicas, Campus Universitário Darcy Ribeiro, Brasília, DF, 70910-900, Brazil
| | - Samanta Siqueira de Campos
- Universidade Federal do Rio Grande do Sul, Departamento de Horticultura e Silvicultura, Porto Alegre, RS, 91540-000, Brazil
| | - Loeni Ludke Falcão
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, PqEB, Brasília, 70770-917, Brazil
| | | | | | - Lucilia Helena Marcellino
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, PqEB, Brasília, 70770-917, Brazil
| | - Angela Mehta
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, PqEB, Brasília, 70770-917, Brazil
| | | |
Collapse
|
4
|
Karami O, de Jong H, Somovilla VJ, Villanueva Acosta B, Sugiarta AB, Ham M, Khadem A, Wennekes T, Offringa R. Structure-activity relationship of 2,4-D correlates auxinic activity with the induction of somatic embryogenesis in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1355-1369. [PMID: 37647363 DOI: 10.1111/tpj.16430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/19/2023] [Accepted: 08/04/2023] [Indexed: 09/01/2023]
Abstract
2,4-dichlorophenoxyacetic acid (2,4-D) is a synthetic analogue of the plant hormone auxin that is commonly used in many in vitro plant regeneration systems, such as somatic embryogenesis (SE). Its effectiveness in inducing SE, compared to the natural auxin indole-3-acetic acid (IAA), has been attributed to the stress triggered by this compound rather than its auxinic activity. However, this hypothesis has never been thoroughly tested. Here we used a library of forty 2,4-D analogues to test the structure-activity relationship with respect to the capacity to induce SE and auxinic activity in Arabidopsis thaliana. Four analogues induced SE as effectively as 2,4-D and 13 analogues induced SE but were less effective. Based on root growth inhibition and auxin response reporter expression, the 2,4-D analogues were classified into different groups, ranging from very active to not active auxin analogues. A halogen at the 4-position of the aromatic ring was important for auxinic activity, whereas a halogen at the 3-position resulted in reduced activity. Moreover, a small substitution at the carboxylate chain was tolerated, as was extending the carboxylate chain with an even number of carbons. The auxinic activity of most 2,4-D analogues was consistent with their simulated TIR1-Aux/IAA coreceptor binding characteristics. A strong correlation was observed between SE induction efficiency and auxinic activity, which is in line with our observation that 2,4-D-induced SE and stress both require TIR1/AFB auxin co-receptor function. Our data indicate that the stress-related effects triggered by 2,4-D and considered important for SE induction are downstream of auxin signalling.
Collapse
Affiliation(s)
- Omid Karami
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, Netherlands
| | - Hanna de Jong
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomedical Research, Utrecht University, Universiteitsweg 99, 3584CG, Utrecht, The Netherlands
| | - Victor J Somovilla
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014, Donostia San Sebastián, Spain
| | - Beatriz Villanueva Acosta
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, Netherlands
| | - Aldo Bryan Sugiarta
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, Netherlands
| | - Marvin Ham
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, Netherlands
| | - Azadeh Khadem
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, Netherlands
| | - Tom Wennekes
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomedical Research, Utrecht University, Universiteitsweg 99, 3584CG, Utrecht, The Netherlands
| | - Remko Offringa
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, Netherlands
| |
Collapse
|
5
|
Avila-Victor CM, Arjona-Suárez EDJ, Iracheta-Donjuan L, Valdez-Carrasco JM, Gómez-Merino FC, Robledo-Paz A. Callus Type, Growth Regulators, and Phytagel on Indirect Somatic Embryogenesis of Coffee ( Coffea arabica L. var. Colombia). PLANTS (BASEL, SWITZERLAND) 2023; 12:3570. [PMID: 37896033 PMCID: PMC10610154 DOI: 10.3390/plants12203570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023]
Abstract
Coffee is a crop of global relevance. Indirect somatic embryogenesis has allowed plants of different coffee genotypes to be massively regenerated. The culture medium composition can affect the calli characteristics that are generated and their ability to form somatic embryos. This research aimed to determine the influence of the type of callus, growth regulators, and phytagel concentration on the embryogenic capacity of the Colombia variety. Leaf explants were cultured on Murashige and Skoog medium with 2,4-dichlorophenoxyacetic acid (2,4-D) (0.5-1.0 mg L-1), benzylaminopurine (BAP, 1.0 mg L-1), and phytagel (2.3-5.0 g L-1). The explants generated two types of calli: friable (beige, soft, watery, easy disintegration, polyhedral parenchyma cells) and compact (white, hard, low water content, difficult disintegration, elongated parenchyma cells). About 68% of the total callus generated was compact; this type of callus produced a greater number of embryos (71.3) than the friable one (29.2). The number of differentiated embryos was significantly affected by the concentration of phytagel; higher concentrations (5.0 g L-1) resulted in larger quantities (73.7). The highest number of embryos (127.47) was obtained by combining 1.0 mg L-1 2,4-D, 1.0 mg L-1 BAP, 5.0 g L-1 phytagel, and compact callus.
Collapse
Affiliation(s)
- Consuelo Margarita Avila-Victor
- Colegio de Postgraduados, Campus Montecillo, Carretera México-Texcoco Km. 36.5, Montecillo, Texcoco C.P. 56264, Estado de México, Mexico; (C.M.A.-V.); (E.d.J.A.-S.); (J.M.V.-C.); (F.C.G.-M.)
| | - Enrique de Jesús Arjona-Suárez
- Colegio de Postgraduados, Campus Montecillo, Carretera México-Texcoco Km. 36.5, Montecillo, Texcoco C.P. 56264, Estado de México, Mexico; (C.M.A.-V.); (E.d.J.A.-S.); (J.M.V.-C.); (F.C.G.-M.)
| | - Leobardo Iracheta-Donjuan
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Campo Experimental Rosario Izapa, Carretera Tapachula-Cacahoatán Km. 18, Tuxtla Chico C.P. 30870, Chiapas, Mexico;
| | - Jorge Manuel Valdez-Carrasco
- Colegio de Postgraduados, Campus Montecillo, Carretera México-Texcoco Km. 36.5, Montecillo, Texcoco C.P. 56264, Estado de México, Mexico; (C.M.A.-V.); (E.d.J.A.-S.); (J.M.V.-C.); (F.C.G.-M.)
| | - Fernando Carlos Gómez-Merino
- Colegio de Postgraduados, Campus Montecillo, Carretera México-Texcoco Km. 36.5, Montecillo, Texcoco C.P. 56264, Estado de México, Mexico; (C.M.A.-V.); (E.d.J.A.-S.); (J.M.V.-C.); (F.C.G.-M.)
| | - Alejandrina Robledo-Paz
- Colegio de Postgraduados, Campus Montecillo, Carretera México-Texcoco Km. 36.5, Montecillo, Texcoco C.P. 56264, Estado de México, Mexico; (C.M.A.-V.); (E.d.J.A.-S.); (J.M.V.-C.); (F.C.G.-M.)
| |
Collapse
|
6
|
Jeong GJ, Khan F, Tabassum N, Kim YM. Chitinases as key virulence factors in microbial pathogens: Understanding their role and potential as therapeutic targets. Int J Biol Macromol 2023; 249:126021. [PMID: 37506799 DOI: 10.1016/j.ijbiomac.2023.126021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Chitinases are crucial for the survival of bacterial and fungal pathogens both during host infection and outside the host in the environment. Chitinases facilitate adhesion onto host cells, act as virulence factors during infection, and provide protection from the host immune system, making them crucial factors in the survival of microbial pathogens. Understanding the mechanisms behind chitinase action is beneficial to design novel therapeutics to control microbial infections. This review explores the role of chitinases in the pathogenesis of bacterial, fungal, and viral infections. The mechanisms underlying the action of chitinases of bacterial, fungal, and viral pathogens in host cells are thoroughly reviewed. The evolutionary relationships between chitinases of various bacterial, fungal, and viral pathogens are discussed to determine their involvement in processes, such as adhesion and host immune system modulation. Gaining a better understanding of the distribution and activity of chitinases in these microbial pathogens can help elucidate their role in the invasion and infection of host cells.
Collapse
Affiliation(s)
- Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea.
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
7
|
Tonk D, Mujib A, Maqsood M, Khusrau M, Alsughayyir A, Dewir YH. Fungal Elicitation Enhances Vincristine and Vinblastine Yield in the Embryogenic Tissues of Catharanthus roseus. PLANTS (BASEL, SWITZERLAND) 2023; 12:3373. [PMID: 37836112 PMCID: PMC10574240 DOI: 10.3390/plants12193373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023]
Abstract
Fungal elicitation could improve the secondary metabolite contents of in vitro cultures. Herein, we report the effect of Fusarium oxysporum on vinblastine and vincristine alkaloid yields in Catharanthus roseus embryos. The study revealed increased yields of vinblastine and vincristine in Catharanthus tissues. Different concentrations, i.e., 0.05% (T1), 0.15% (T2), 0.25% (T3), and 0.35% (T4), of an F. oxysporum extract were applied to a solid MS medium in addition to a control (T0). Embryogenic calli were formed from the hypocotyl explants of germinating seedlings, and the tissues were exposed to Fusarium extract elicitation. The administration of the F. oxysporum extract improved the growth of the callus biomass, which later differentiated into embryos, and the maximum induction of somatic embryos was noted T2 concentration (102.69/callus mass). A biochemical analysis revealed extra accumulations of sugar, protein, and proline in the fungus-elicitated cultivating tissues. The somatic embryos germinated into plantlets on full-strength MS medium supplemented with 2.24 µM of BA. The germination rate of the embryos and the shoot and root lengths of the embryos were high at low doses of the Fusarium treatment. The yields of vinblastine and vincristine were measured in different treated tissues via high-pressure thin-layer chromatography (HPTLC). The yield of vinblastine was high in mature (45-day old) embryos (1.229 µg g-1 dry weight), which were further enriched (1.267 µg g-1 dry weight) via the F. oxysporum-elicitated treatment, especially at the T2 concentration. Compared to vinblastine, the vincristine content was low, with a maximum of 0.307 µg g-1 dry weight following the addition of the F. oxysporum treatment. The highest and increased yields of vinblastine and vincristine, 7.88 and 15.50%, were noted in F. oxysporum-amended tissues. The maturated and germinating somatic embryos had high levels of SOD activity, and upon the addition of the fungal extracts, the enzyme's activity was further elevated, indicating that the tissues experienced cellular stress which yielded increased levels of vinblastine and vincristine following the T2/T1 treatments. The improvement in the yields of these alkaloids could augment cancer healthcare treatments, making them easy, accessible, and inexpensive.
Collapse
Affiliation(s)
- Dipti Tonk
- Cellular Differentiation and Molecular Genetics Section, Department of Botany, Jamia Hamdard, New Delhi 110062, India;
| | - Abdul Mujib
- Cellular Differentiation and Molecular Genetics Section, Department of Botany, Jamia Hamdard, New Delhi 110062, India;
| | - Mehpara Maqsood
- Department of Botany, Government College for Women, M.A. Road, Srinagar 190001, India;
| | - Mir Khusrau
- Department of Botany, Government Degree College (Boys), Anantnag 231213, India;
| | - Ali Alsughayyir
- Department of Plant and Soil Sciences, Mississippi State University, 75 B.S. Hood Rd, Starkville, MS 39762, USA;
| | - Yaser Hassan Dewir
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
8
|
Sahara A, Roberdi R, Wiendi NMA, Liwang T. Transcriptome profiling of high and low somatic embryogenesis rate of oil palm ( Elaeis guineensis Jacq. var. Tenera). FRONTIERS IN PLANT SCIENCE 2023; 14:1142868. [PMID: 37251752 PMCID: PMC10213556 DOI: 10.3389/fpls.2023.1142868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/20/2023] [Indexed: 05/31/2023]
Abstract
Oil palm micropropagation through tissue culture is a technique to provide elite oil palms to meet the desired traits. This technique is commonly carried out through somatic embryogenesis. However, the oil palm's somatic embryogenesis rate is quite low. Several approaches have been made to overcome this problem, including transcriptome profiling through RNA-seq to identify key genes involved in oil palm somatic embryogenesis. RNA sequencing was applied in high- and low-embryogenic ortets of Tenera varieties based on the somatic embryoid rate at the callus, globular, scutellar, and coleoptilar embryoid stages. Cellular analysis of embryoid inductions and proliferations showed that high-embryogenic ortets resulted in higher embryoid proliferation and germinations than low-embryogenic ortets. Transcriptome profiling showed that there are a total of 1,911 differentially expressed genes (DEGs) between high- and low-embryogenic ortets. ABA signaling-related genes such as LEA, DDX28, and vicilin-like protein are upregulated in high-embryogenic ortets. Furthermore, DEGs associated with other hormone signaling, such as HD-ZIP associated with brassinosteroids and NPF associated with auxin, are upregulated in high-embryogenic ortets. This result suggests a physiological difference between high- and low-embryogenic ortets that is connected to their capacity for somatic embryogenesis. These DEGs will be used as potential biomarkers for high-embryogenic ortets and will be validated in further studies.
Collapse
Affiliation(s)
- Asri Sahara
- Biotechnology Department, Plant Production and Biotechnology Division, PT SMART Tbk, Bogor, Indonesia
| | - Roberdi Roberdi
- Biotechnology Department, Plant Production and Biotechnology Division, PT SMART Tbk, Bogor, Indonesia
| | - Ni Made Armini Wiendi
- Agronomy and Horticulture Department, Agriculture Faculty, Bogor Agricultural University, Bogor, Indonesia
| | - Tony Liwang
- Biotechnology Department, Plant Production and Biotechnology Division, PT SMART Tbk, Bogor, Indonesia
| |
Collapse
|
9
|
Avila-Victor CM, Ordaz-Chaparro VM, Arjona-Suárez EDJ, Iracheta-Donjuan L, Gómez-Merino FC, Robledo-Paz A. In Vitro Mass Propagation of Coffee Plants ( Coffea arabica L. var. Colombia) through Indirect Somatic Embryogenesis. PLANTS (BASEL, SWITZERLAND) 2023; 12:1237. [PMID: 36986925 PMCID: PMC10052142 DOI: 10.3390/plants12061237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
Coffea arabica is one of the two most consumed coffee species in the world. Micropropagation through somatic embryogenesis has allowed the large-scale propagation of different coffee varieties. However, the regeneration of plants using this technique depends on the genotype. This study aimed to develop a protocol for the regeneration of C. arabica L. var. Colombia by somatic embryogenesis for its mass propagation. Foliar explants were cultured on Murashige and Skoog (MS) supplemented with different concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D), 6-benzylaminopurine (BAP), and phytagel for inducing somatic embryogenesis. In total, 90% of the explants formed embryogenic calli with a culture medium containing 2 mg L-1 of 2,4-D, 0.2 mg L-1 BAP, and 2.3 g L-1 phytagel. The highest number of embryos per gram of callus (118.74) was obtained in a culture medium containing 0.5 mg L-1 2,4-D, 1.1 mg L-1 BAP, and 5.0 g L-1 phytagel. In total, 51% of the globular embryos reached the cotyledonary stage when they were cultured on the growth medium. This medium contained 0.25 mg L-1 BAP, 0.25 mg L-1 indoleacetic acid (IAA), and 5.0 g L-1 of phytagel. The mixture of vermiculite:perlite (3:1) allowed 21% of embryos to become plants.
Collapse
Affiliation(s)
- Consuelo Margarita Avila-Victor
- Colegio de Postgraduados, Campus Montecillo, Carretera México-Texcoco Km. 36.5, Montecillo, Texcoco C.P. 56264, Estado de México, Mexico
| | - Víctor Manuel Ordaz-Chaparro
- Colegio de Postgraduados, Campus Montecillo, Carretera México-Texcoco Km. 36.5, Montecillo, Texcoco C.P. 56264, Estado de México, Mexico
| | - Enrique de Jesús Arjona-Suárez
- Colegio de Postgraduados, Campus Montecillo, Carretera México-Texcoco Km. 36.5, Montecillo, Texcoco C.P. 56264, Estado de México, Mexico
| | - Leobardo Iracheta-Donjuan
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Campo Experimental Rosario Izapa, Carretera Tapachula-Cacahoatán Km. 18, Tuxtla Chico C.P. 30870, Chiapas, Mexico
| | - Fernando Carlos Gómez-Merino
- Colegio de Postgraduados, Campus Montecillo, Carretera México-Texcoco Km. 36.5, Montecillo, Texcoco C.P. 56264, Estado de México, Mexico
| | - Alejandrina Robledo-Paz
- Colegio de Postgraduados, Campus Montecillo, Carretera México-Texcoco Km. 36.5, Montecillo, Texcoco C.P. 56264, Estado de México, Mexico
| |
Collapse
|
10
|
Lim SL, Subramaniam S, Baset Mia MA, Rahmah ARS, Ghazali AHA. Biotization of in vitro oil palm ( Elaeis guineensis Jacq.) and its plant-microbe interactions. FRONTIERS IN PLANT SCIENCE 2023; 14:1150309. [PMID: 37143882 PMCID: PMC10151813 DOI: 10.3389/fpls.2023.1150309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023]
Abstract
Continuous discovery of novel in vitro plant culture practices is always essential to promote better plant growth in the shortest possible cultivation period. An alternative approach to conventional micropropagation practice could be achieved through biotization by inoculating selected Plant Growth Promoting Rhizobacteria (PGPR) into the plant tissue culture materials (e.g., callus, embryogenic callus, and plantlets). Such biotization process often allows the selected PGPR to form a sustaining population with various stages of in vitro plant tissues. During the biotization process, plant tissue culture material imposes developmental and metabolic changes and enhances its tolerance to abiotic and biotic stresses, thereby reducing mortality in the acclimatization and pre-nursery stages. Understanding the mechanisms is, therefore crucial for gaining insights into in vitro plant-microbe interactions. Studies of biochemical activities and compound identifications are always essential to evaluate in vitro plant-microbe interactions. Given the importance of biotization in promoting in vitro plant material growth, this review aims to provide a brief overview of the in vitro oil palm plant-microbe symbiosis system.
Collapse
Affiliation(s)
- Shey-Li Lim
- School of Biological Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | | | - Md Abdul Baset Mia
- Department of Crop Botany, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Abdul Rahman Siti Rahmah
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, Persiaran Institusi, Bandar Baru Bangi, Kajang, Selangor, Malaysia
| | - Amir Hamzah Ahmad Ghazali
- School of Biological Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia
- *Correspondence: Amir Hamzah Ahmad Ghazali,
| |
Collapse
|
11
|
Fan Y, Tang Z, Wei J, Yu X, Guo H, Li T, Guo H, Zhang L, Fan Y, Zhang C, Zeng F. Dynamic Transcriptome Analysis Reveals Complex Regulatory Pathway Underlying Induction and Dose Effect by Different Exogenous Auxin IAA and 2,4-D During in vitro Embryogenic Redifferentiation in Cotton. FRONTIERS IN PLANT SCIENCE 2022; 13:931105. [PMID: 35845676 PMCID: PMC9278894 DOI: 10.3389/fpls.2022.931105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Plant somatic cells can reprogram into differentiated embryos through somatic embryogenesis (SE) on the condition of plant growth regulators (PGRs). RNA sequencing analysis was performed to investigate transcriptional profiling on cotton redifferentiated callus that was induced by different auxin types (IAA and 2,4-D), different concentrations (0, 0.025, and 0.05 mg L-1), and different incubation times (0, 5, and 20 days). Under the 2,4-D induction effect, signal transduction pathways of plant hormones were significantly enriched in the embryogenic response stage (5 days). These results indicated that auxin signal transduction genes were necessary for the initial response of embryogenic differentiation. In the pre-embryonic initial period (20 days), the photosynthetic pathway was significantly enriched. Most differentially expressed genes (DEGs) were downregulated under the induction of 2,4-D. Upon the dose effect of IAA and 2,4-D, respectively, pathways were significantly enriched in phenylpropanoid biosynthesis, fatty acid metabolism, and carbon metabolic pathways. Therefore, primary and secondary metabolism pathways were critical in cotton SE. These results showed that complex synergistic mechanisms involving multiple cellular pathways were the causes of the induction and dose effect of auxin-induced SE. This study reveals a systematic molecular response to auxin signals and reveals the way that regulates embryogenic redifferentiation during cotton SE.
Collapse
Affiliation(s)
- Yupeng Fan
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, China
- College of Life Sciences, Huaibei Normal University, Huaibei City, China
| | - Zhengmin Tang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, China
| | - Junmei Wei
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, China
| | - Xiaoman Yu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, China
| | - Huihui Guo
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, China
| | - Tongtong Li
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, China
| | - Haixia Guo
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, China
| | - Li Zhang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, China
| | - Yijie Fan
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, China
| | - Changyu Zhang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, China
| | - Fanchang Zeng
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
12
|
Vale EM, Santana DB, Reis RS, Sousa KR, de Souza Filho GA, Oliveira JGD, Santa-Catarina C, Silveira V. Mitochondrial proteomics reveals new insights into embryogenic competence acquisition in Carica papaya L. callus. J Proteomics 2022; 252:104434. [PMID: 34818586 DOI: 10.1016/j.jprot.2021.104434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/14/2021] [Accepted: 11/15/2021] [Indexed: 11/29/2022]
Abstract
Understanding the mechanisms that endow a somatic cell with the ability to differentiate into a somatic embryo, which could result in numerous biotechnological applications, is still a challenge. The objective of this work was to identify some of the molecular and physiological mechanisms responsible for the acquisition of embryogenic competence during somatic embryogenesis in Carica papaya L. We performed a broad characterization of embryogenic (EC) and nonembryogenic calli (NEC) of using global and mitochondrial proteomic approaches, histomorphology, histochemistry, respiratory activity, and endogenous hormonal and hydrogen peroxide (H2O2) contents. EC and NEC presented remarkable differences in anatomical and histochemical characteristics, with EC showing a higher reactivity for the presence of proteins and neutral polysaccharides. Our results demonstrate that mitochondrial metabolism affects the embryogenic competence of C. papaya callus. The EC presented higher participation of alternative oxidase (AOX) enzymes, higher total cell respiration and presented a stronger accumulation of mitochondrial stress response proteins. Differential accumulation of auxin-responsive Gretchen Hagen 3 (GH3) family proteins in EC was related to a decrease in the content of free 2,4-dichlorophenoxyacetic acid (2,4-D). EC also showed higher endogenous H2O2 contents. H2O2 is a promising molecule for further investigation in differentiation protocols for C. papaya somatic embryos. SIGNIFICANCE: To further advance the understanding of somatic embryogenesis, we performed a broad characterization of embryogenic and nonembryogenic callus, through global and mitochondrial proteomic approaches, histomorphology, histochemistry, respiratory activity, and endogenous hormonal and hydrogen peroxide contents. Based on these results, we propose a working model for the competence of papaya callus. This model suggests that GH3 proteins play an important role in the regulation of auxins. In addition, embryogenic callus showed a greater abundance of stress response proteins and folding proteins. Embryogenic callus respiration occurs predominantly via AOX, and the inhibition of its activity is capable of inhibiting callus differentiation. Although the embryogenic callus presented greater total respiration and a greater abundance of oxidative phosphorylation proteins, they had less COX participation and less coupling efficiency, indicating less ATP production.
Collapse
Affiliation(s)
- Ellen Moura Vale
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Avenida Alberto Lamego 2000, Campos dos Goytacazes, Rio de Janeiro 28013-602, Brazil; Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, CBB, UENF, Brazil.
| | | | - Ricardo Souza Reis
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Avenida Alberto Lamego 2000, Campos dos Goytacazes, Rio de Janeiro 28013-602, Brazil; Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, CBB, UENF, Brazil
| | | | - Gonçalo Apolinário de Souza Filho
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Avenida Alberto Lamego 2000, Campos dos Goytacazes, Rio de Janeiro 28013-602, Brazil; Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, CBB, UENF, Brazil
| | | | | | - Vanildo Silveira
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Avenida Alberto Lamego 2000, Campos dos Goytacazes, Rio de Janeiro 28013-602, Brazil; Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, CBB, UENF, Brazil.
| |
Collapse
|
13
|
Lai C, Zhou X, Zhang S, Zhang X, Liu M, Zhang C, Xu X, Xu X, Chen X, Chen Y, Lin W, Lai Z, Lin Y. PAs Regulate Early Somatic Embryo Development by Changing the Gene Expression Level and the Hormonal Balance in Dimocarpus longan Lour. Genes (Basel) 2022; 13:genes13020317. [PMID: 35205362 PMCID: PMC8872317 DOI: 10.3390/genes13020317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 02/01/2023] Open
Abstract
Polyamines (PAs) play an important regulatory role in many basic cellular processes and physiological and biochemical processes. However, there are few studies on the identification of PA biosynthesis and metabolism family members and the role of PAs in the transition of plant embryogenic calli (EC) into globular embryos (GE), especially in perennial woody plants. We identified 20 genes involved in PA biosynthesis and metabolism from the third-generation genome of longan (Dimocarpus longan Lour.). There were no significant differences between longan and other species regarding the number of members, and they had high similarity with Citrus sinensis. Light, plant hormones and a variety of stress cis-acting elements were found in these family members. The biosynthesis and metabolism of PAs in longan were mainly completed by DlADC2, DlSAMDC2, DlSAMDC3, DlSPDS1A, DlSPMS, DlCuAOB, DlCuAO3A, DlPAO2 and DlPAO4B. In addition, 0.01 mmol∙L−1 1-aminocyclopropane-1-carboxylic acid (ACC), putrescine (Put) and spermine (Spm), could promote the transformation of EC into GE, and Spm treatment had the best effect, while 0.01 mmol∙L−1 D-arginine (D-arg) treatment inhibited the process. The period between the 9th and 11th days was key for the transformation of EC into GE in longan. There were higher levels of gibberellin (GA), salicylic acid (SA) and abscisic acid (ABA) and lower levels of indole-3-acetic acid (IAA), ethylene and hydrogen peroxide (H2O2) in this key period. The expression levels in this period of DlADC2, DlODC, DlSPDS1A, DlCuAOB and DlPAO4B were upregulated, while those of DlSAMDC2 and DlSPMS were downregulated. These results showed that the exogenous ACC, D-arg and PAs could regulate the transformation of EC into GE in longan by changing the content of endogenous hormones and the expression levels of PA biosynthesis and metabolism genes. This study provided a foundation for further determining the physicochemical properties and molecular evolution characteristics of the PA biosynthesis and metabolism gene families, and explored the mechanism of PAs and ethylene for regulating the transformation of plant EC into GE.
Collapse
Affiliation(s)
- Chunwang Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.L.); (S.Z.); (X.Z.); (M.L.); (C.Z.); (X.X.); (X.X.); (X.C.); (Y.C.); (Z.L.)
| | - Xiaojuan Zhou
- Ganzhou Agricultural and Rural Bureau, Ganzhou 341000, China;
| | - Shuting Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.L.); (S.Z.); (X.Z.); (M.L.); (C.Z.); (X.X.); (X.X.); (X.C.); (Y.C.); (Z.L.)
| | - Xueying Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.L.); (S.Z.); (X.Z.); (M.L.); (C.Z.); (X.X.); (X.X.); (X.C.); (Y.C.); (Z.L.)
| | - Mengyu Liu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.L.); (S.Z.); (X.Z.); (M.L.); (C.Z.); (X.X.); (X.X.); (X.C.); (Y.C.); (Z.L.)
| | - Chunyu Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.L.); (S.Z.); (X.Z.); (M.L.); (C.Z.); (X.X.); (X.X.); (X.C.); (Y.C.); (Z.L.)
| | - Xiaoqiong Xu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.L.); (S.Z.); (X.Z.); (M.L.); (C.Z.); (X.X.); (X.X.); (X.C.); (Y.C.); (Z.L.)
| | - Xiaoping Xu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.L.); (S.Z.); (X.Z.); (M.L.); (C.Z.); (X.X.); (X.X.); (X.C.); (Y.C.); (Z.L.)
| | - Xiaohui Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.L.); (S.Z.); (X.Z.); (M.L.); (C.Z.); (X.X.); (X.X.); (X.C.); (Y.C.); (Z.L.)
| | - Yan Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.L.); (S.Z.); (X.Z.); (M.L.); (C.Z.); (X.X.); (X.X.); (X.C.); (Y.C.); (Z.L.)
| | - Wenzhong Lin
- Quanzhou Agricultural Science Research Institute, Quanzhou 362212, China;
| | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.L.); (S.Z.); (X.Z.); (M.L.); (C.Z.); (X.X.); (X.X.); (X.C.); (Y.C.); (Z.L.)
| | - Yuling Lin
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.L.); (S.Z.); (X.Z.); (M.L.); (C.Z.); (X.X.); (X.X.); (X.C.); (Y.C.); (Z.L.)
- Correspondence:
| |
Collapse
|
14
|
Synthetic Strigolactone GR24 Improves Arabidopsis Somatic Embryogenesis through Changes in Auxin Responses. PLANTS 2021; 10:plants10122720. [PMID: 34961192 PMCID: PMC8704308 DOI: 10.3390/plants10122720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 11/16/2022]
Abstract
Somatic embryogenesis in Arabidopsis encompasses an induction phase requiring auxin as the inductive signal to promote cellular dedifferentiation and formation of the embryogenic tissue, and a developmental phase favoring the maturation of the embryos. Strigolactones (SLs) have been categorized as a novel group of plant hormones based on their ability to affect physiological phenomena in plants. The study analyzed the effects of synthetic strigolactone GR24, applied during the induction phase, on auxin response and formation of somatic embryos. The expression level of two SL biosynthetic genes, MOREAXILLARY GROWTH 3 and 4 (MAX3 and MAX4), which are responsible for the conversion of carotene to carotenal, increased during the induction phase of embryogenesis. Arabidopsis mutant studies indicated that the somatic embryo number was inhibited in max3 and max4 mutants, and this effect was reversed by applications of GR24, a synthetic strigolactone, and exacerbated by TIS108, a SL biosynthetic inhibitor. The transcriptional studies revealed that the regulation of GR24 and TIS108 on somatic embryogenesis correlated with changes in expression of AUXIN RESPONSIVE FACTORs 5, 8, 10, and 16, known to be required for the production of the embryogenic tissue, as well as the expression of WUSCHEL (WUS) and Somatic Embryogenesis Receptor-like Kinase 1 (SERK1), which are markers of cell dedifferentiation and embryogenic tissue formation. Collectively, this work demonstrated the novel role of SL in enhancing the embryogenic process in Arabidopsis and its requirement for inducing the expression of genes related to auxin signaling and production of embryogenic tissue.
Collapse
|
15
|
Qi S, Zhao R, Yan J, Fan Y, Huang C, Li H, Chen S, Zhang T, Kong L, Zhao J, Zhang J. Global Transcriptome and Coexpression Network Analyses Reveal New Insights Into Somatic Embryogenesis in Hybrid Sweetgum ( Liquidambar styraciflua × Liquidambar formosana). FRONTIERS IN PLANT SCIENCE 2021; 12:751866. [PMID: 34880884 PMCID: PMC8645980 DOI: 10.3389/fpls.2021.751866] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Somatic embryogenesis (SE) is a process of somatic cells that dedifferentiate to totipotent embryonic stem cells and generate embryos in vitro. Despite recent scientific headway in deciphering the difficulties of somatic embryogenesis, the overall picture of key genes, pathways, and co-expression networks regulating SE is still fragmented. Therefore, deciphering the molecular basis of somatic embryogenesis of hybrid sweetgum remains pertinent. In the present study, we analyzed the transcriptome profiles and gene expression regulation changes via RNA sequencing from three distinct developmental stages of hybrid sweetgum: non-embryogenic callus (NEC), embryogenic callus (EC), and redifferentiation. Comparative transcriptome analysis showed that 19,957 genes were differentially expressed in ten pairwise comparisons of SE. Among these, plant hormone signaling-related genes, especially the auxin and cytokinin signaling components, were significantly enriched in NEC and EC early. The K-means method was used to identify multiple transcription factors, including HB-WOX, B3-ARF, AP2/ERF, and GRFs (growth regulating factors). These transcription factors showed distinct stage- or tissue-specific expression patterns mirroring each of the 12 superclusters to which they belonged. For example, the WOX transcription factor family was expressed only at NEC and EC stages, ARF transcription factor was expressed in EC early, and GRFs was expressed in late SE. It was noteworthy that the AP2/ERF transcription factor family was expressed during the whole SE process, but almost not in roots, stems and leaves. A weighted gene co-expression network analysis (WGCNA) was used in conjunction with the gene expression profiles to recognize the genes and modules that may associate with specific tissues and stages. We constructed co-expression networks and revealed 22 gene modules. Four of these modules with properties relating to embryonic potential, early somatic embryogenesis, and somatic embryo development, as well as some hub genes, were identified for further functional studied. Through a combination analysis of WGCNA and K-means, SE-related genes including AUX22, ABI3, ARF3, ARF5, AIL1, AIL5, AGL15, WOX11, WOX9, IAA29, BBM1, MYB36, LEA6, SMR4 and others were obtained, indicating that these genes play an important role in the processes underlying the progression from EC to somatic embryos (SEs) morphogenesis. The transcriptome information provided here will form the foundation for future research on genetic transformation and epigenetic control of plant embryogenesis at a molecular level. In follow-up studies, these data could be used to construct a regulatory network for SE; Key genes obtained from coexpression network analysis at each critical stage of somatic embryo can be considered as potential candidate genes to verify these networks.
Collapse
Affiliation(s)
- Shuaizheng Qi
- College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, China
| | - Ruirui Zhao
- College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, China
| | - Jichen Yan
- College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, China
| | - Yingming Fan
- College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, China
| | - Chao Huang
- College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, China
| | - Hongxuan Li
- College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, China
| | - Siyuan Chen
- College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, China
| | - Ting Zhang
- College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, China
| | - Lisheng Kong
- College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, China
- Department of Biology, Centre for Forest Biology, University of Victoria, Victoria, BC, Canada
| | - Jian Zhao
- College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, China
| | - Jinfeng Zhang
- College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, China
| |
Collapse
|
16
|
Tu M, Wang W, Yao N, Cai C, Liu Y, Lin C, Zuo Z, Zhu Q. The transcriptional dynamics during de novo shoot organogenesis of Ma bamboo (Dendrocalamus latiflorus Munro): implication of the contributions of the abiotic stress response in this process. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1513-1532. [PMID: 34181801 DOI: 10.1111/tpj.15398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 06/08/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
De novo shoot organogenesis is an important biotechnological tool for fundamental studies in plant. However, it is difficult in most bamboo species, and the genetic control of this highly dynamic and complicated regeneration process remains unclear. In this study, based on an in-depth analysis at the cellular level, the shoot organogenesis from calli of Ma bamboo (Dendrocalamus latiflorus Munro) was divided into five stages. Subsequently, single-molecule long-read isoform sequencing of tissue samples pooled from all five stages was performed to generate a full-length transcript landscape. A total of 83 971 transcripts, including 73 209 high-quality full-length transcripts, were captured, which served as an annotation reference for the subsequent RNA sequencing analysis. Time-course transcriptome analysis of samples at the abovementioned five stages was conducted to investigate the global gene expression atlas showing genome-wide expression of transcripts during the course of bamboo shoot organogenesis. K-means clustering analysis and stage-specific transcript identification revealed important dynamically expressed transcription regulators that function in bamboo shoot organogenesis. The majority of abiotic stress-responsive genes altered their expression levels during this process, and further experiments demonstrated that exogenous application of moderate but not severe abiotic stress increased the shoot regeneration efficiency. In summary, our study provides an overview of the genetic flow dynamics during bamboo shoot organogenesis. Full-length cDNA sequences generated in this study can serve as a valuable resource for fundamental and applied research in bamboo in the future.
Collapse
Affiliation(s)
- Min Tu
- Basic Forestry and Proteomics Center (BFPC), College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Wenjia Wang
- Basic Forestry and Proteomics Center (BFPC), College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Nan Yao
- Basic Forestry and Proteomics Center (BFPC), College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Changyang Cai
- Basic Forestry and Proteomics Center (BFPC), College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Yuanyuan Liu
- Basic Forestry and Proteomics Center (BFPC), College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Chentao Lin
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA, 90095, USA
| | - Zecheng Zuo
- Basic Forestry and Proteomics Center (BFPC), College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Qiang Zhu
- Basic Forestry and Proteomics Center (BFPC), College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| |
Collapse
|
17
|
Somatic Embryogenesis in Centaurium erythraea Rafn-Current Status and Perspectives: A Review. PLANTS 2020; 10:plants10010070. [PMID: 33396285 PMCID: PMC7823438 DOI: 10.3390/plants10010070] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 12/25/2020] [Accepted: 12/29/2020] [Indexed: 12/13/2022]
Abstract
Centaurium erythraea (centaury) is a traditionally used medicinal plant, with a spectrum of secondary metabolites with confirmed healing properties. Centaury is an emerging model in plant developmental biology due to its vigorous regenerative potential and great developmental plasticity when cultured in vitro. Hereby, we review nearly two decades of research on somatic embryogenesis (SE) in centaury. During SE, somatic cells are induced by suitable culture conditions to express their totipotency, acquire embryogenic characteristics, and eventually give rise to somatic embryos. When SE is initiated from centaury root explants, the process occurs spontaneously (on hormone-free medium), directly (without the callusing phase), and the somatic embryos are of unicellular origin. SE from leaf explants has to be induced by plant growth regulators and is indirect (preceded by callusing). Histological observations and culture conditions are compared in these two systems. The changes in antioxidative enzymes were followed during SE from the leaf explants. Special focus is given to the role of arabinogalactan proteins during SE, which were analyzed using a variety of approaches. The newest and preliminary results, including centaury transcriptome, novel potential SE markers, and novel types of arabinogalactan proteins, are discussed as perspectives of centaury research.
Collapse
|
18
|
Ding M, Dong H, Xue Y, Su S, Wu Y, Li S, Liu H, Li H, Han J, Shan X, Yuan Y. Transcriptomic analysis reveals somatic embryogenesis-associated signaling pathways and gene expression regulation in maize (Zea mays L.). PLANT MOLECULAR BIOLOGY 2020; 104:647-663. [PMID: 32910317 DOI: 10.1007/s11103-020-01066-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 08/31/2020] [Indexed: 06/11/2023]
Abstract
Transcriptome analysis of maize embryogenic callus and somatic embryos reveals associated genes reprogramming, hormone signaling pathways and transcriptional regulation involved in somatic embryogenesis in maize. Somatic embryos are widely utilized in propagation and genetic engineering of crop plants. In our laboratory, an elite maize inbred line Y423 that could generate intact somatic embryos was obtained and applied to genetic transformation. To enhance our understanding of regulatory mechanisms during maize somatic embryogenesis, we used RNA-based sequencing (RNA-seq) to characterize the transcriptome of immature embryo (IE), embryogenic callus (EC) and somatic embryo (SE) from maize inbred line Y423. The number of differentially expressed genes (DEGs) in three pairwise comparisons (IE-vs-EC, IE-vs-SE and EC-vs-SE) was 5767, 7084 and 1065, respectively. The expression patterns of DEGs were separated into eight major clusters. Somatic embryogenesis associated genes were mainly grouped into cluster A or B with an expression trend toward up-regulation during dedifferentiation. GO annotation and KEGG pathway analysis revealed that DEGs were implicated in plant hormone signal transduction, stress response and metabolic process. Among the differentially expressed transcription factors, the most frequently represented families were associated with the common stress response or related to cell differentiation, embryogenic patterning and embryonic maturation processes. Genes include hormone response/transduction and stress response, as well as several transcription factors were discussed in this study, which may be potential candidates for further analyses regarding their roles in somatic embryogenesis. Furthermore, the temporal expression patterns of candidate genes were analyzed to reveal their roles in somatic embryogenesis. This transcriptomic data provide insights into future functional studies, which will facilitate further dissections of the molecular mechanisms that control maize somatic embryogenesis.
Collapse
Affiliation(s)
- Meiqi Ding
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Haixiao Dong
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Yingjie Xue
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Shengzhong Su
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Ying Wu
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Shipeng Li
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Hongkui Liu
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - He Li
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Junyou Han
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Xiaohui Shan
- College of Plant Science, Jilin University, Changchun, 130062, China.
| | - Yaping Yuan
- College of Plant Science, Jilin University, Changchun, 130062, China.
| |
Collapse
|
19
|
Almeida FA, Passamani LZ, Santa-Catarina C, Mooney BP, Thelen JJ, Silveira V. Label-Free Quantitative Phosphoproteomics Reveals Signaling Dynamics Involved in Embryogenic Competence Acquisition in Sugarcane. J Proteome Res 2020; 19:4145-4157. [PMID: 32964716 DOI: 10.1021/acs.jproteome.0c00652] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In this study, a label-free quantitative phosphoproteomic analysis was performed to identify and quantify signaling events related to the acquisition of embryogenic competence in sugarcane. Embryogenic and nonembryogenic calli were compared at the multiplication phase, resulting in the identification of 163 phosphoproteins unique to embryogenic calli, 9 unique to nonembryogenic calli, and 51 upregulated and 40 downregulated in embryogenic calli compared to nonembryogenic calli. Data are available via ProteomeXchange with identifier PXD018054. Motif-x analysis revealed the enrichment of [xxxpSPxxx], [RxxpSxxx], and [xxxpSDxxx] motifs, which are predicted phosphorylation sites for several kinases related to stress responses. The embryogenic-related phosphoproteins (those unique and upregulated in embryogenic calli) identified in the present study are related to abscisic acid-induced signaling and abiotic stress response; they include OSK3, ABF1, LEAs, and RD29Bs. On the other hand, the nonembryogenic-related phosphoproteins EDR1 and PP2Ac-2 are negative regulators of abscisic acid signaling, suggesting a relationship between phosphoproteins involved in the abscisic acid and stress responses in the acquisition of embryogenic competence. Moreover, embryogenic-related phosphoproteins associated with epigenetic modifications, such as HDA6, HDA19, and TOPLESS, and with RNA metabolism, including AGO1, DEAH5, SCL30, UB2C, and SR45, were identified to play potential roles in embryogenic competence. These results reveal novel phosphorylation sites for several proteins and identify potential candidate biomarkers for the acquisition of embryogenic competence in sugarcane.
Collapse
Affiliation(s)
- Felipe A Almeida
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego, 2000, 28013-602 Campos dos Goytacazes, Rio de Janeiro, Brazil.,Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, UENF, Av. Alberto Lamego, 2000, Campos dos Goytacazes, Rio de Janeiro 28013-602, Brazil
| | - Lucas Z Passamani
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego, 2000, 28013-602 Campos dos Goytacazes, Rio de Janeiro, Brazil.,Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, UENF, Av. Alberto Lamego, 2000, Campos dos Goytacazes, Rio de Janeiro 28013-602, Brazil
| | - Claudete Santa-Catarina
- Laboratório de Biologia Celular e Tecidual, CBB-UENF, Campos dos Goytacazes 28013-602, Rio de Janeiro, Brazil
| | - Brian P Mooney
- Department of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, 65211 Columbia, Missouri, United States
| | - Jay J Thelen
- Department of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, 65211 Columbia, Missouri, United States
| | - Vanildo Silveira
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego, 2000, 28013-602 Campos dos Goytacazes, Rio de Janeiro, Brazil.,Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, UENF, Av. Alberto Lamego, 2000, Campos dos Goytacazes, Rio de Janeiro 28013-602, Brazil
| |
Collapse
|
20
|
Regulation of cell reprogramming by auxin during somatic embryogenesis. ABIOTECH 2020; 1:185-193. [PMID: 36303566 PMCID: PMC9590521 DOI: 10.1007/s42994-020-00029-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 08/21/2020] [Indexed: 01/03/2023]
Abstract
How somatic cells develop into a whole plant is a central question in plant developmental biology. This powerful ability of plant cells is recognized as their totipotency. Somatic embryogenesis is an excellent example and a good research system for studying plant cell totipotency. However, very little is known about the molecular basis of cell reprogramming from somatic cells to totipotent cells in this process. During somatic embryogenesis from immature zygotic embryos in Arabidopsis, exogenous auxin treatment is required for embryonic callus formation, but removal of exogenous auxin inducing endogenous auxin biosynthesis is essential for somatic embryo (SE) induction. Ectopic expression of specific transcription factor genes, such as "LAFL" and BABY BOOM (BBM), can induce SEs without exogenous growth regulators. Somatic embryogenesis can also be triggered by stress, as well as by disruption of chromatin remodeling, including PRC2-mediated histone methylation, histone deacetylation, and PKL-related chromatin remodeling. It is evident that embryonic identity genes are required and endogenous auxin plays a central role for cell reprogramming during the induction of SEs. Thus, we focus on reviewing the regulation of cell reprogramming for somatic embryogenesis by auxin.
Collapse
|
21
|
Khalil-Ur-Rehman M, Wang W, Zheng H, Faheem M, Iqbal S, Shen ZG, Tao J. Role of hydrogen cyanamide (HC) in grape bud dormancy release: proteomic approach. 3 Biotech 2020; 10:229. [PMID: 32399379 DOI: 10.1007/s13205-020-02194-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/06/2020] [Indexed: 01/23/2023] Open
Abstract
In the present study, we identified changes in protein expression patterns of grapevine buds when treated with hydrogen cyanamide (HC). HC induced a shift of more than 2-folds in the expression of 1250 proteins out of approximately 7000 detected proteins. The majority of the differentially expressed proteins (DEPs) were localized in the chloroplast (419) and cytoplasm (347). Most of the detected DEPs were linked with energy metabolism, redox activity, hormone, and stress signaling. Particularly, the DEPs associated with defense and sugar metabolism showed significantly higher expression in HC-treated buds. Kyoto encyclopedia of genes and genomes (KEGG) analysis revealed significant enrichment for circadian rhythm, ribosome, and metabolic pathways. Moreover, the antioxidant activity of peroxidase (POD) increased at initial stages but declined at later stages (18 days post-treatment). This study identified several dormancy-related proteins that regulated signaling, as well as metabolic pathways upon HC application. The outcome of this study provides insights into the role of HC in dormancy release for grapevine production, hence useful to alleviate yield losses in mild winter regions.
Collapse
Affiliation(s)
- Muhammad Khalil-Ur-Rehman
- 1College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
- 2College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095 China
| | - Wu Wang
- 1College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Huan Zheng
- 1College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Muhammad Faheem
- 3The State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Shahid Iqbal
- 1College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Zhen Guo Shen
- 2College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jianmin Tao
- 1College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
22
|
de Araújo Silva-Cardoso IM, Meira FS, Gomes ACMM, Scherwinski-Pereira JE. Histology, histochemistry and ultrastructure of pre-embryogenic cells determined for direct somatic embryogenesis in the palm tree Syagrus oleracea. PHYSIOLOGIA PLANTARUM 2020; 168:845-875. [PMID: 31517991 DOI: 10.1111/ppl.13026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 07/01/2019] [Accepted: 09/10/2019] [Indexed: 05/11/2023]
Abstract
Somatic embryogenesis in palm trees is, in general, a slow and highly complex process, with a predominance of the indirect route and, consequently, a lack of knowledge about the direct route. We present new knowledge related to the morphological, histochemical and ultrastructural aspects of the transition from somatic to embryogenic cells and direct formation of somatic embryos from mature zygotic embryos of Syagrus oleracea, a palm tree. The results support the general concept that 2,4-dichlorophenoxyacetic acid plays a critical role for the formation of somatic embryos of direct and multicellular origin. Seven days in medium with auxin were enough for the identification of embryogenic cells. These cells had a set of characteristics corresponding to totipotent stem cells. At 14 days on induction medium, nodular formations were observed in the distal region of inoculated embryos, which evolved into globular somatic embryos. At 120 days on induction medium, the quality of the somatic embryos was compromised. The dynamics of the mobilization of reserve compounds was also demonstrated, with emphasis on starch and protein as energy sources required for the embryogenic process. This study shows for the first time the anatomical and ultrastructural events involved in direct somatic embryogenesis in a palm tree and incites the scientific community to return to the discussion of classical concepts related to direct somatic embryogenesis, especially regarding the characteristics and location of determined pre-embryogenic cells.
Collapse
Affiliation(s)
- Inaê M de Araújo Silva-Cardoso
- Department of Forest Engineering, University of Brasília, Brasília, DF, Brazil
- Laboratory of Plant Tissue Culture II, Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil
| | - Filipe S Meira
- Department of Cell Biology, University of Brasília, Brasília, DF, Brazil
| | - Ana C M M Gomes
- Laboratory of Bioimaging and Microscopy, Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil
| | - Jonny E Scherwinski-Pereira
- Laboratory of Plant Tissue Culture II, Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil
- Laboratory of Bioimaging and Microscopy, Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil
| |
Collapse
|
23
|
Fu Q, Chen LQ. Comparative transcriptome analysis of two reproductive modes in Adiantum reniforme var. sinense targeted to explore possible mechanism of apogamy. BMC Genet 2019; 20:55. [PMID: 31288742 PMCID: PMC6617869 DOI: 10.1186/s12863-019-0762-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 06/30/2019] [Indexed: 11/13/2022] Open
Abstract
Background Apogamy is a unique asexual reproduction in the ferns, in which somatic cells of gametophytes go through dedifferentiation and then differentiate into haploid sporophytes bypassing fertilization. Restricted to the lack of genomic information, molecular mechanisms of apogamy have remained unclear. Comparative transcriptome analysis was conducted at six stages between sexual reproduction and apogamy in the fern Adiantum reniforme var. sinense, in an effort to identify genes and pathways that might initiate the asexual reproduction. Results Approximately 928 million high-quality clean reads were assembled into 264,791 unigenes with an average length of 615 bp. A total of 147,865 (55.84%) unigenes were successfully annotated. Differential genes expression analysis indicated that transcriptional regulation was more active in the early stage of apogamy compared to sexual reproduction. Further comparative analysis of the enriched pathways between the early stages of the two reproductive modes demonstrated that starch and sucrose metabolism pathway responsible for cell wall was only significantly enriched in asexual embryonic cell initiation. Furthermore, regulation of plant hormone related genes was more vigorous in apogamy initiation. Conclusion These findings would be useful for revealing the initiation of apogamy and further understanding of the mechanisms related to asexual reproduction. Electronic supplementary material The online version of this article (10.1186/s12863-019-0762-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qi Fu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Kunming, 6502240, China
| | - Long-Qing Chen
- Southwest Research Center of Landscape Architecture Engineering (State Forestry and Grassland Administration), Southwest Forestry Universityy, Kunming, 650224, China.
| |
Collapse
|
24
|
Metabolome and Transcriptome Association Analysis Reveals Dynamic Regulation of Purine Metabolism and Flavonoid Synthesis in Transdifferentiation during Somatic Embryogenesis in Cotton. Int J Mol Sci 2019; 20:ijms20092070. [PMID: 31027387 PMCID: PMC6539419 DOI: 10.3390/ijms20092070] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/21/2019] [Accepted: 04/24/2019] [Indexed: 01/08/2023] Open
Abstract
Plant regeneration via somatic embryogenesis (SE) is a key step during genetic engineering. In the current study, integrated widely targeted metabolomics and RNA sequencing were performed to investigate the dynamic metabolic and transcriptional profiling of cotton SE. Our data revealed that a total of 581 metabolites were present in nonembryogenic staged calli (NEC), primary embryogenic calli (PEC), and initiation staged globular embryos (GE). Of the differentially accumulated metabolites (DAMs), nucleotides, and lipids were specifically accumulated during embryogenic differentiation, whereas flavones and hydroxycinnamoyl derivatives were accumulated during somatic embryo development. Additionally, metabolites related to purine metabolism were significantly enriched in PEC vs. NEC, whereas in GE vs. PEC, DAMs were remarkably associated with flavonoid biosynthesis. An association analysis of the metabolome and transcriptome data indicated that purine metabolism and flavonoid biosynthesis were co-mapped based on the Kyoto encyclopedia of genes and genomes (KEGG) database. Moreover, purine metabolism-related genes associated with signal recognition, transcription, stress, and lipid binding were significantly upregulated. Moreover, several classic somatic embryogenesis (SE) genes were highly correlated with their corresponding metabolites that were involved in purine metabolism and flavonoid biosynthesis. The current study identified a series of potential metabolites and corresponding genes responsible for SE transdifferentiation, which provides a valuable foundation for a deeper understanding of the regulatory mechanisms underlying cell totipotency at the molecular and biochemical levels.
Collapse
|
25
|
Guo H, Guo H, Zhang L, Fan Y, Fan Y, Tang Z, Zeng F. Dynamic TMT-Based Quantitative Proteomics Analysis of Critical Initiation Process of Totipotency during Cotton Somatic Embryogenesis Transdifferentiation. Int J Mol Sci 2019; 20:E1691. [PMID: 30987365 PMCID: PMC6480670 DOI: 10.3390/ijms20071691] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/27/2019] [Accepted: 04/02/2019] [Indexed: 01/03/2023] Open
Abstract
The somatic embryogenesis (SE) process of plants, as one of the typical responses to abiotic stresses with hormone, occurs through the dynamic expression of different proteins that constitute a complex regulatory network in biological activities and promotes plant totipotency. Plant SE includes two critical stages: primary embryogenic calli redifferentiation and somatic embryos development initiation, which leads to totipotency. The isobaric labels tandem mass tags (TMT) large-scale and quantitative proteomics technique was used to identify the dynamic protein expression changes in nonembryogenic calli (NEC), primary embryogenic calli (PEC) and globular embryos (GEs) of cotton. A total of 9369 proteins (6730 quantified) were identified; 805, 295 and 1242 differentially accumulated proteins (DAPs) were identified in PEC versus NEC, GEs versus PEC and GEs versus NEC, respectively. Eight hundred and five differentially abundant proteins were identified, 309 of which were upregulated and 496 down regulated in PEC compared with NEC. Of the 295 DAPs identified between GEs and PEC, 174 and 121 proteins were up- and down regulated, respectively. Of 1242 differentially abundant proteins, 584 and 658 proteins were up- and down regulated, respectively, in GEs versus NEC. We have also complemented the authenticity and accuracy of the proteomic analysis. Systematic analysis indicated that peroxidase, photosynthesis, environment stresses response processes, nitrogen metabolism, phytohormone response/signal transduction, transcription/posttranscription and modification were involved in somatic embryogenesis. The results generated in this study demonstrate a proteomic molecular basis and provide a valuable foundation for further investigation of the roles of DAPs in the process of SE transdifferentiation during cotton totipotency.
Collapse
Affiliation(s)
- Haixia Guo
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China.
| | - Huihui Guo
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China.
| | - Li Zhang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China.
| | - Yijie Fan
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China.
| | - Yupeng Fan
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China.
| | - Zhengmin Tang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China.
| | - Fanchang Zeng
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
26
|
Rose RJ. Somatic Embryogenesis in the Medicago truncatula Model: Cellular and Molecular Mechanisms. FRONTIERS IN PLANT SCIENCE 2019; 10:267. [PMID: 30984208 PMCID: PMC6447896 DOI: 10.3389/fpls.2019.00267] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 02/19/2019] [Indexed: 05/02/2023]
Abstract
Medicago truncatula is now widely regarded as a legume model where there is an increasing range of genomic resources. Highly regenerable lines have been developed from the wild-type Jemalong cultivar, most likely due to epigenetic changes. These lines with high rates of somatic embryogenesis (SE) can be compared with wild-type where SE is rare. Much of the research has been with the high SE genotype Jemalong 2HA (2HA). SE can be induced from leaf tissue explants or isolated mesophyll protoplasts. In 2HA, the exogenous phytohormones 1-naphthaleneacetic acid (NAA) and 6-benzylaminopurine (BAP) are central to SE. However, there are interactions with ethylene, abscisic acid (ABA), and gibberellic acid (GA) which produce maximum SE. In the main, somatic embryos are derived from dedifferentiated cells, undergo organellar changes, and produce stem-like cells. There is evidence that the SE is induced as a result of a stress and hormone interaction and this is discussed. In M. truncatula, there are connections between stress and specific up-regulated genes and specific hormones and up-regulated genes during the SE induction phase. Some of the transcription factors have been knocked down using RNAi to show they are critical for SE induction (MtWUSCHEL, MtSERF1). SE research in M. truncatula has utilized high throughput transcriptomic and proteomic studies and the more detailed investigation of some individual genes. In this review, these studies are integrated to suggest a framework and timeline for some of the key events of SE induction in M. truncatula.
Collapse
Affiliation(s)
- Ray J. Rose
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
27
|
Pais MS. Somatic Embryogenesis Induction in Woody Species: The Future After OMICs Data Assessment. FRONTIERS IN PLANT SCIENCE 2019; 10:240. [PMID: 30984207 PMCID: PMC6447717 DOI: 10.3389/fpls.2019.00240] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/12/2019] [Indexed: 05/15/2023]
Abstract
Very early somatic embryogenesis has been recognized as a powerful method to propagate plants in vitro. For some woody species and in particular for some coniferous trees, somatic embryogenesis induction has become a routine procedure. For the majority, the application of this technology presents yet many limitations especially due to the genotype, the induction conditions, the number of embryos produced, maturation, and conversion, among other factors that compromise the systematic use of somatic embryogenesis for commercial purposes especially of woody species and forest trees in particular. The advancements obtained on somatic embryogenesis in Arabidopsis and the development of OMIC technologies allowed the characterization of genes and the corresponding proteins that are conserved in woody species. This knowledge will help in understanding the molecular mechanisms underlying the complex regulatory networks that control somatic embryogenesis in woody plants. In this revision, we report on developments of OMICs (genomics, transcriptomics, metabolomics, and proteomics) applied to somatic embryogenesis induction and its contribution for understanding the change of fate giving rise to the expression of somatic embryogenesis competence.
Collapse
|
28
|
Ratjens S, Mortensen S, Kumpf A, Bartsch M, Winkelmann T. Embryogenic Callus as Target for Efficient Transformation of Cyclamen persicum Enabling Gene Function Studies. FRONTIERS IN PLANT SCIENCE 2018; 9:1035. [PMID: 30087683 PMCID: PMC6066641 DOI: 10.3389/fpls.2018.01035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/26/2018] [Indexed: 05/20/2023]
Abstract
Cyclamen persicum is an ornamental plant with economic relevance in many parts of the world. Moreover, it can be regarded as an applied model for somatic embryogenesis, since transcriptomic, proteomic, and metabolomic comparisons have revealed insights into this regeneration process on the molecular level. To enable gene function analyses, the aim of this study was to establish an efficient Agrobacterium tumefaciens-mediated genetic transformation protocol for C. persicum. For the first time, embryogenic callus cultures were used as a target material. The advantages of embryogenic callus are the defined and known genotype compared to seedlings, the high regeneration potential and the stability of the regenerated plants. A. tumefaciens strains EHA105 and LBA4404 were most efficient for transformation, resulting in transformation efficiencies of up to 43 and 20%, respectively. In regenerated plants, the presence of the transgenes was verified by PCR, Southern hybridization, and a histochemical GUS assay. The protocol was applied successfully to two C. persicum genotypes. Moreover, it served to transfer two reporter constructs, the auxin-responsive promoter DR5 driving the gus gene and the redox sensor roGFP2_Orp1, to the C. persicum genotypes, allowing the localization of high auxin concentrations and reactive oxygen species in order to study their roles in somatic embryogenesis in the future. For success in transformation, we regard the following factors as important: highly embryogenic cell lines, the use of Silwet® L-77 as a surfactant during co-culture, a genotype-specific appropriate selection schedule with hygromycin, and A. tumefaciens strains EHA105 and LBA4404.
Collapse
Affiliation(s)
| | | | | | | | - Traud Winkelmann
- Institute of Horticultural Production Systems, Leibniz Universität Hannover, Hanover, Germany
| |
Collapse
|
29
|
Cabrera-Ponce JL, González-Gómez IA, León-Ramírez CG, Sánchez-Arreguín JA, Jofre Y Garfias AE. Somatic Embryogenesis in Common BeanPhaseolus vulgaris L. Methods Mol Biol 2018; 1815:189-206. [PMID: 29981122 DOI: 10.1007/978-1-4939-8594-4_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Common bean Phaseolus vulgaris L. has been shown to be a recalcitrant plant to induce somatic embryogenesis (SE) under in vitro conditions. An alternative strategy to yield SE is based upon the use of a cytokinin (benzyladenine) coupled with osmotic stress adaptation instead of the auxin-inducing SE in common bean. Here we described the induction of proembryogenic masses (PEM) derived from the apical meristem and cotyledonary zone of zygotic embryos, from which secondary SE indirect embryogenesis emerged. Maturation of SE was achieved by using osmotic stress medium and converted to plants. Long-term recurrent SE was demonstrated by propagation of PEM at early stages of SE. This protocol is currently being applied for stable genetic transformation by means of Agrobacterium tumefaciens and biobalistics as well as basic biochemical and molecular biology research.
Collapse
Affiliation(s)
- José Luis Cabrera-Ponce
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del IPN, CP, Guanajuato, Mexico.
| | - Itzel Anayetzi González-Gómez
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del IPN, CP, Guanajuato, Mexico
| | - Claudia G León-Ramírez
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del IPN, CP, Guanajuato, Mexico
| | - José A Sánchez-Arreguín
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del IPN, CP, Guanajuato, Mexico
| | - Alba E Jofre Y Garfias
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del IPN, CP, Guanajuato, Mexico
| |
Collapse
|
30
|
Díaz-Sala C. Molecular Dissection of the Regenerative Capacity of Forest Tree Species: Special Focus on Conifers. FRONTIERS IN PLANT SCIENCE 2018; 9:1943. [PMID: 30687348 PMCID: PMC6333695 DOI: 10.3389/fpls.2018.01943] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/13/2018] [Indexed: 05/21/2023]
Abstract
Somatic embryogenesis (SE) and organogenesis have become leading biotechnologies for forest tree improvement and the implementation of multi-varietal forestry. Despite major advances in clonal propagation using these technologies, many forest tree species, such as conifers, show a low regeneration capacity. Developmental factors such as genotype, the type and age of the explant or tissue, and the age and maturity of the mother tree are limiting factors for the success of propagation programs. This review summarizes recent research on the molecular pathways involved in the regulation of key steps in SE and organogenesis of forest tree species, mainly conifers. The interaction between auxin and stress conditions, the induction of cell identity regulators and the role of cell wall remodeling are reviewed. This information is essential to develop tools and strategies to improve clonal propagation programs for forest tree species.
Collapse
|
31
|
Chu Z, Chen J, Sun J, Dong Z, Yang X, Wang Y, Xu H, Zhang X, Chen F, Cui D. De novo assembly and comparative analysis of the transcriptome of embryogenic callus formation in bread wheat (Triticum aestivum L.). BMC PLANT BIOLOGY 2017; 17:244. [PMID: 29258440 PMCID: PMC5735865 DOI: 10.1186/s12870-017-1204-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 12/06/2017] [Indexed: 05/26/2023]
Abstract
BACKGROUND During asexual reproduction the embryogenic callus can differentiate into a new plantlet, offering great potential for fostering in vitro culture efficiency in plants. The immature embryos (IMEs) of wheat (Triticum aestivum L.) are more easily able to generate embryogenic callus than mature embryos (MEs). To understand the molecular process of embryogenic callus formation in wheat, de novo transcriptome sequencing was used to generate transcriptome sequences from calli derived from IMEs and MEs after 3d, 6d, or 15d of culture (DC). RESULTS In total, 155 million high quality paired-end reads were obtained from the 6 cDNA libraries. Our de novo assembly generated 142,221 unigenes, of which 59,976 (42.17%) were annotated with a significant Blastx against nr, Pfam, Swissprot, KOG, KEGG, GO and COG/KOG databases. Comparative transcriptome analysis indicated that a total of 5194 differentially expressed genes (DEGs) were identified in the comparisons of IME vs. ME at the three stages, including 3181, 2085 and 1468 DEGs at 3, 6 and 15 DC, respectively. Of them, 283 overlapped in all the three comparisons. Furthermore, 4731 DEGs were identified in the comparisons between stages in IMEs and MEs. Functional analysis revealed that 271transcription factor (TF) genes (10 overlapped in all 3 comparisons of IME vs. ME) and 346 somatic embryogenesis related genes (SSEGs; 35 overlapped in all 3 comparisons of IME vs. ME) were differentially expressed in at least one comparison of IME vs. ME. In addition, of the 283 overlapped DEGs in the 3 comparisons of IME vs. ME, excluding the SSEGs and TFs, 39 possessed a higher rate of involvement in biological processes relating to response to stimuli, in multi-organism processes, reproductive processes and reproduction. Furthermore, 7 were simultaneously differentially expressed in the 2 comparisons between the stages in IMEs, but not MEs, suggesting that they may be related to embryogenic callus formation. The expression levels of genes, which were validated by qRT-PCR, showed a high correlation with the RNA-seq value. CONCLUSIONS This study provides new insights into the role of the transcriptome in embryogenic callus formation in wheat, and will serve as a valuable resource for further studies addressing embryogenic callus formation in plants.
Collapse
Affiliation(s)
- Zongli Chu
- Agronomy College/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046 People’s Republic of China
- Xinyang Agriculture and Forestry University, Xinyang, 464000 China
| | - Junying Chen
- Agronomy College/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046 People’s Republic of China
| | - Junyan Sun
- Xinyang Agriculture and Forestry University, Xinyang, 464000 China
| | - Zhongdong Dong
- Agronomy College/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046 People’s Republic of China
| | - Xia Yang
- Agronomy College/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046 People’s Republic of China
| | - Ying Wang
- Agronomy College/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046 People’s Republic of China
| | - Haixia Xu
- Agronomy College/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046 People’s Republic of China
| | - Xiaoke Zhang
- Agronomy College, North West Agriculture and Forestry University, Yangling, 712100 China
| | - Feng Chen
- Agronomy College/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046 People’s Republic of China
| | - Dangqun Cui
- Agronomy College/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046 People’s Republic of China
| |
Collapse
|
32
|
Elmaghrabi AM, Rogers HJ, Francis D, Ochatt SJ. PEG Induces High Expression of the Cell Cycle Checkpoint Gene WEE1 in Embryogenic Callus of Medicago truncatula: Potential Link between Cell Cycle Checkpoint Regulation and Osmotic Stress. FRONTIERS IN PLANT SCIENCE 2017; 8:1479. [PMID: 28928753 PMCID: PMC5591835 DOI: 10.3389/fpls.2017.01479] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 08/09/2017] [Indexed: 05/29/2023]
Abstract
Polyethylene glycol (PEG) can be used to mimic osmotic stress in plant tissue cultures to study mechanisms of tolerance. The aim of this experiment was to investigate the effects of PEG (M.W. 6000) on embryogenic callus of Medicago truncatula. Leaf explants were cultured on MS medium with 2 mg L-1 NAA and 0.5 mg L-1 BAP for 5 months. Then, calli were transferred to the same medium further supplemented with 10% (w/v) 6000 PEG for 6 months in order to study physiological and putative molecular markers of water stress. There were no significant differences in growth rate of callus or mitotic index ± PEG although embryogenic potential of PEG treated callus was morphologically enhanced. Cells were rounder on PEG medium and cell size, nuclear size and endoreduplication increased in response to the PEG treatment. Significant increases in soluble sugar and proline accumulation occurred under PEG treatment compared with the control. Significantly, high MtWEE1 and MtCCS52 expression resulted from 6 months of PEG treatment with no significant differences in MtSERK1 or MtP5CS expression but down regulation of MtSOS expression. The results are consistent in showing elevated expression of a cell cycle checkpoint gene, WEE1. It is likely that the cell cycle checkpoint surveillance machinery, that would include WEE1 expression, is ameliorating the effects of the stress imposed by PEG.
Collapse
Affiliation(s)
- Adel M. Elmaghrabi
- Biotechnology Research CenterTripoli, Libya
- School of Biosciences, Cardiff UniversityCardiff, United Kingdom
| | - Hilary J. Rogers
- School of Biosciences, Cardiff UniversityCardiff, United Kingdom
| | - Dennis Francis
- School of Biosciences, Cardiff UniversityCardiff, United Kingdom
| | - Sergio J. Ochatt
- Agroécologie, AgroSup Dijon, Institut National de la Recherche Agronomique (INRA), University of Bourgogne Franche-ComtéDijon, France
| |
Collapse
|
33
|
Cao A, Zheng Y, Yu Y, Wang X, Shao D, Sun J, Cui B. Comparative Transcriptome Analysis of SE initial dedifferentiation in cotton of different SE capability. Sci Rep 2017; 7:8583. [PMID: 28819177 PMCID: PMC5561258 DOI: 10.1038/s41598-017-08763-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/12/2017] [Indexed: 01/22/2023] Open
Abstract
Somatic embryogenesis (SE) is a critical transition from vegetative to embryogenic growth in higher plants; however, few studies have investigated the mechanism that regulates SE initial differentiation. Most cotton varieties have not undergone regeneration by SE, so only a few varieties can be used in genetic engineering. Here, two varieties of cotton with different SE capabilities (HD, higher differentiation and LD, lower differentiation) were analyzed by high throughout RNA-Seq at the pre-induction stage (0h) and two induction stages (3h and 3d) under callus-induction medium (CIM). About 1150 million clean reads were obtained from 98.21% raw data. Transcriptomic analysis revealed that "protein kinase activity" and "oxidoreductase activity" were highly represented GO terms during the same and different treatment stages among HD and LD. Moreover, several stress-related transcription factors might play important roles in SE initiation. The SE-related regulation genes (SERKs) showed different expression patterns between HD and LD. Furthermore, the complex auxin and ethylene signaling pathway contributes to initiation of differentiation in SE. Thus, our RNA-sequencing of comparative transcriptome analysis will lay a foundation for future studies to better define early somatic formation in cotton with different SE capabilities.
Collapse
Affiliation(s)
- Aiping Cao
- College of Agriculture/The Key Laboratory of Oasis Eco-Agriculture, Shihezi University, Shihezi, China
| | - Yinying Zheng
- Colleges of Life Science, Shihezi University, Shihezi, China
| | - Yu Yu
- Cotton research Institute, XinJiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Xuwen Wang
- Cotton research Institute, XinJiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Dongnan Shao
- College of Agriculture/The Key Laboratory of Oasis Eco-Agriculture, Shihezi University, Shihezi, China
| | - Jie Sun
- College of Agriculture/The Key Laboratory of Oasis Eco-Agriculture, Shihezi University, Shihezi, China
| | - Baiming Cui
- Colleges of Life Science, Shihezi University, Shihezi, China.
| |
Collapse
|
34
|
Wójcikowska B, Gaj MD. Expression profiling of AUXIN RESPONSE FACTOR genes during somatic embryogenesis induction in Arabidopsis. PLANT CELL REPORTS 2017; 36:843-858. [PMID: 28255787 PMCID: PMC5486788 DOI: 10.1007/s00299-017-2114-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 02/01/2017] [Indexed: 05/18/2023]
Abstract
Extensive modulation of numerous ARF transcripts in the embryogenic culture of Arabidopsis indicates a substantial role of auxin signaling in the mechanism of somatic embryogenesis induction. Somatic embryogenesis (SE) is induced by auxin in plants and auxin signaling is considered to play a key role in the molecular mechanism that controls the embryogenic transition of plant somatic cells. Accordingly, the expression of AUXIN RESPONSE FACTOR (ARF) genes in embryogenic culture of Arabidopsis was analyzed. The study revealed that 14 of the 22 ARFs were transcribed during SE in Arabidopsis. RT-qPCR analysis indicated that the expression of six ARFs (ARF5, ARF6, ARF8, ARF10, ARF16, and ARF17) was significantly up-regulated, whereas five other genes (ARF1, ARF2, ARF3, ARF11, and ARF18) were substantially down-regulated in the SE-induced explants. The activity of ARFs during SE was also monitored with GFP reporter lines and the ARFs that were expressed in areas of the explants engaged in SE induction were detected. A functional test of ARFs transcribed during SE was performed and the embryogenic potential of the arf mutants and overexpressor lines was evaluated. ARFs with a significantly modulated expression during SE coupled with an impaired embryogenic response of the relevant mutant and/or overexpressor line, including ARF1, ARF2, ARF3, ARF5, ARF6, ARF8, and ARF11 were indicated as possibly being involved in SE induction. The study provides evidence that embryogenic induction strongly depends on ARFs, which are key regulators of the auxin signaling. Some clues on the possible functions of the candidate ARFs, especially ARF5, in the mechanism of embryogenic transition are discussed. The results provide guidelines for further research on the auxin-related functional genomics of SE and the developmental plasticity of somatic cells.
Collapse
Affiliation(s)
- Barbara Wójcikowska
- Department of Genetics, University of Silesia, ul. Jagiellońska 28, 40-032, Katowice, Poland
| | - Małgorzata D Gaj
- Department of Genetics, University of Silesia, ul. Jagiellońska 28, 40-032, Katowice, Poland.
| |
Collapse
|
35
|
Szyrajew K, Bielewicz D, Dolata J, Wójcik AM, Nowak K, Szczygieł-Sommer A, Szweykowska-Kulinska Z, Jarmolowski A, Gaj MD. MicroRNAs Are Intensively Regulated during Induction of Somatic Embryogenesis in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2017; 8:18. [PMID: 28167951 PMCID: PMC5253390 DOI: 10.3389/fpls.2017.00018] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 01/04/2017] [Indexed: 05/06/2023]
Abstract
Several genes encoding transcription factors (TFs) were indicated to have a key role in the induction of somatic embryogenesis (SE), which is triggered in the somatic cells of plants. In order to further explore the genetic regulatory network that is involved in the embryogenic transition induced in plant somatic cells, micro-RNA (miRNAs) molecules, the products of MIRNA (MIR) genes and the common regulators of TF transcripts, were analyzed in an embryogenic culture of Arabidopsis thaliana. In total, the expression of 190 genes of the 114 MIRNA families was monitored during SE induction and the levels of the primary (pri-miRNAs) transcripts vs. the mature miRNAs were investigated. The results revealed that the majority (98%) of the MIR genes were active and that most of them (64%) were differentially expressed during SE. A distinct attribute of the MIR expression in SE was the strong repression of MIR transcripts at the early stage of SE followed by their significant up-regulation in the advanced stage of SE. Comparison of the mature miRNAs vs. pri-miRNAs suggested that the extensive post-transcriptional regulation of miRNA is associated with SE induction. Candidate miRNA molecules of the assumed function in the embryogenic response were identified among the mature miRNAs that had a differential expression in SE, including miR156, miR157, miR159, miR160, miR164, miR166, miR169, miR319, miR390, miR393, miR396, and miR398. Consistent with the central role of phytohormones and stress factors in SE induction, the functions of the candidate miRNAs were annotated to phytohormone and stress responses. To confirm the functions of the candidate miRNAs in SE, the expression patterns of the mature miRNAs and their presumed targets were compared and regulatory relation during SE was indicated for most of the analyzed miRNA-target pairs. The results of the study contribute to the refinement of the miRNA-controlled regulatory pathways that operate during embryogenic induction in plants and provide a valuable platform for the identification of the genes that are targeted by the candidate miRNAs in SE induction.
Collapse
Affiliation(s)
- Katarzyna Szyrajew
- Department of Genetics, Faculty of Biology and Environmental Protection, University of SilesiaKatowice, Poland
| | - Dawid Bielewicz
- Department of Gene Expression, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz UniversityPoznan, Poland
| | - Jakub Dolata
- Department of Gene Expression, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz UniversityPoznan, Poland
| | - Anna M. Wójcik
- Department of Genetics, Faculty of Biology and Environmental Protection, University of SilesiaKatowice, Poland
| | - Katarzyna Nowak
- Department of Genetics, Faculty of Biology and Environmental Protection, University of SilesiaKatowice, Poland
| | - Aleksandra Szczygieł-Sommer
- Department of Genetics, Faculty of Biology and Environmental Protection, University of SilesiaKatowice, Poland
| | - Zofia Szweykowska-Kulinska
- Department of Gene Expression, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz UniversityPoznan, Poland
| | - Artur Jarmolowski
- Department of Gene Expression, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz UniversityPoznan, Poland
| | - Małgorzata D. Gaj
- Department of Genetics, Faculty of Biology and Environmental Protection, University of SilesiaKatowice, Poland
- *Correspondence: Małgorzata D. Gaj
| |
Collapse
|
36
|
Fraga HPDF, Vieira LDN, Puttkammer CC, Dos Santos HP, Garighan JDA, Guerra MP. Glutathione and abscisic acid supplementation influences somatic embryo maturation and hormone endogenous levels during somatic embryogenesis in Podocarpus lambertii Klotzsch ex Endl. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 253:98-106. [PMID: 27969001 DOI: 10.1016/j.plantsci.2016.09.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 09/22/2016] [Accepted: 09/24/2016] [Indexed: 05/08/2023]
Abstract
Here we propose a protocol for embryogenic cultures induction, proliferation and maturation for the Brazilian conifer Podocarpus lambertii, and investigated the effect of abscisic acid (ABA) and glutathione (GSH) supplementation on the maturation phase. ABA, zeatin (Z) and salicylic acid (SA) endogenous levels were quantified. Number of somatic embryos obtained in ABA-supplemented treatment was significant higher than in ABA-free treatment, showing the relevance of ABA supplementation during somatic embryos maturation. Histological analysis showed the stereotyped sequence of developmental stages in conifer somatic embryos, reaching the late torpedo-staged embryo. GSH supplementation in maturation culture medium improved the somatic embryos number and morphological features. GSH 0mM and GSH 0.1mM treatments correlated with a decreased ABA endogenous level during maturation, while GSH 0.5mM treatment showed constant levels. All treatments resulted in decreased Z endogenous levels, supporting the concept that cytokinins are important during the initial cell division but not for the later stages of embryo development. The lowest SA levels found in GSH 0.5mM treatment were coincident with early embryonic development, and this treatment resulted in the highest development of somatic embryos. Thus, a correlation between lower SA levels and improved somatic embryo formation can be hypothesized.
Collapse
Affiliation(s)
- Hugo Pacheco de Freitas Fraga
- Laboratório de Fisiologia do Desenvolvimento e Genética Vegetal, Centro de Ciências Agrárias, Universidade Federal de Santa Catarina, Florianópolis, SC, 88034-001, Brazil
| | - Leila do Nascimento Vieira
- Laboratório de Fisiologia do Desenvolvimento e Genética Vegetal, Centro de Ciências Agrárias, Universidade Federal de Santa Catarina, Florianópolis, SC, 88034-001, Brazil
| | - Catarina Corrêa Puttkammer
- Laboratório de Fisiologia do Desenvolvimento e Genética Vegetal, Centro de Ciências Agrárias, Universidade Federal de Santa Catarina, Florianópolis, SC, 88034-001, Brazil
| | - Henrique Pessoa Dos Santos
- Laboratório de Fisiologia Vegetal, Empresa Brasileira de Pesquisa Agropecuária, Embrapa Uva e Vinho, Bento Gonçalves, RS, 95700-000, Brazil
| | - Julio de Andrade Garighan
- Laboratório de Fisiologia Vegetal, Empresa Brasileira de Pesquisa Agropecuária, Embrapa Uva e Vinho, Bento Gonçalves, RS, 95700-000, Brazil
| | - Miguel Pedro Guerra
- Laboratório de Fisiologia do Desenvolvimento e Genética Vegetal, Centro de Ciências Agrárias, Universidade Federal de Santa Catarina, Florianópolis, SC, 88034-001, Brazil.
| |
Collapse
|
37
|
Hand ML, de Vries S, Koltunow AMG. A Comparison of In Vitro and In Vivo Asexual Embryogenesis. Methods Mol Biol 2016; 1359:3-23. [PMID: 26619856 DOI: 10.1007/978-1-4939-3061-6_1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In plants, embryogenesis generally occurs through the sexual process of double fertilization, which involves a haploid sperm cell fusing with a haploid egg cell to ultimately give rise to a diploid embryo. Embryogenesis can also occur asexually in the absence of fertilization, both in vitro and in vivo. Somatic or gametic cells are able to differentiate into embryos in vitro following the application of plant growth regulators or stress treatments. Asexual embryogenesis also occurs naturally in some plant species in vivo, from either ovule cells as part of a process defined as apomixis, or from somatic leaf tissue in other species. In both in vitro and in vivo asexual embryogenesis, the embryo precursor cells must attain an embryogenic fate without the act of fertilization. This review compares the processes of in vitro and in vivo asexual embryogenesis including what is known regarding the genetic and epigenetic regulation of each process, and considers how the precursor cells are able to change fate and adopt an embryogenic pathway.
Collapse
Affiliation(s)
- Melanie L Hand
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture, Waite Campus, Urrbrae, South Australia
| | - Sacco de Vries
- Department of Biochemistry, University of Wageningen, Wageningen, 6703 HA, The Netherlands
| | - Anna M G Koltunow
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture, Waite Campus, Urrbrae, South Australia.
| |
Collapse
|
38
|
Fernández Da Silva R, Villarroel A, Cuamo L, Storaci V. Evaluación de un sistema de regeneración por embriogénesis somática de Neem (Azadirachta indica). ACTA BIOLÓGICA COLOMBIANA 2016. [DOI: 10.15446/abc.v21n3.52626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Azadirachta indica, también conocida como neem, es una especie arbórea leñosa perteneciente a la familia Meliaceae, de gran importancia en diversas disciplinas científicas, tales como la forestal y la médico-farmacéutica. Se estableció un método para la propagación in vitro de esta planta, evaluándose como explantes, secciones foliares de vitro-plantas, cotiledones y esquejes. Se emplearon medios semisólidos con combinaciones variables de la citocinina 6-benzylaminopurina (BAP) y las auxinas ácido 2,4-diclorofenoxiacético (2,4-D) y ácido indolacético (AIA). Se observó la formación de callo regenerativo, a partir del cual se generó embriogénesis somática primaria y secundaria, mediante los reguladores de crecimiento BAP (1,0 mg.L-1) y 2,4-D (0,2 mg.L-1), mientras que la formación de callo no regenerativo fue promovida por concentraciones mayores a 0,3 mg.L-1 de 2,4-D. De los explantes evaluados, la mayor frecuencia de regeneración de plantas (~67%) se presentó con secciones cotiledonares.
Collapse
|
39
|
Guan Y, Li SG, Fan XF, Su ZH. Application of Somatic Embryogenesis in Woody Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:938. [PMID: 27446166 PMCID: PMC4919339 DOI: 10.3389/fpls.2016.00938] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 06/13/2016] [Indexed: 05/23/2023]
Abstract
Somatic embryogenesis is a developmental process where a plant somatic cell can dedifferentiate to a totipotent embryonic stem cell that has the ability to give rise to an embryo under appropriate conditions. This new embryo can further develop into a whole plant. In woody plants, somatic embryogenesis plays a critical role in clonal propagation and is a powerful tool for synthetic seed production, germplasm conservation, and cryopreservation. A key step in somatic embryogenesis is the transition of cell fate from a somatic cell to embryo cell. Although somatic embryogenesis has already been widely used in a number of woody species, propagating adult woody plants remains difficult. In this review, we focus on molecular mechanisms of somatic embryogenesis and its practical applications in economic woody plants. Furthermore, we propose a strategy to improve the process of somatic embryogenesis using molecular means.
Collapse
Affiliation(s)
| | | | | | - Zhen-Hong Su
- Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural SciencesShanghai, China
| |
Collapse
|
40
|
Zhou T, Yang X, Guo K, Deng J, Xu J, Gao W, Lindsey K, Zhang X. ROS Homeostasis Regulates Somatic Embryogenesis via the Regulation of Auxin Signaling in Cotton. Mol Cell Proteomics 2016; 15:2108-24. [PMID: 27073181 PMCID: PMC5083107 DOI: 10.1074/mcp.m115.049338] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Indexed: 12/02/2022] Open
Abstract
Somatic embryogenesis (S.E.) is a versatile model for understanding the mechanisms of plant embryogenesis and a useful tool for plant propagation. To decipher the intricate molecular program and potentially to control the parameters affecting the frequency of S.E., a proteomics approach based on two-dimensional gel electrophoresis (2-DE) combined with MALDI-TOF/TOF was used. A total of 149 unique differentially expressed proteins (DEPs) were identified at different stages of cotton S.E. compared with the initial control (0 h explants). The expression profile and functional annotation of these DEPs revealed that S.E. activated stress-related proteins, including several reactive oxygen species (ROS)-scavenging enzymes. Proteins implicated in metabolic, developmental, and reproductive processes were also identified. Further experiments were performed to confirm the role of ROS-scavenging enzymes, suggesting the involvement of ROS homeostasis during S.E. in cotton. Suppressing the expression of specifically identified GhAPX proteins resulted in the inhibition of dedifferentiation. Accelerated redifferentiation was observed in the suppression lines of GhAPXs or GhGSTL3 in parallel with the alteration of endogenous ascorbate metabolism and accumulation of endogenous H2O2 content. Moreover, disrupting endogenous redox homeostasis through the application of high concentrations of DPI, H2O2, BSO, or GSH inhibited the dedifferentiation of cotton explants. Mild oxidation induced through BSO treatment facilitated the transition from embryogenic calluses (ECs) to somatic embryos. Meanwhile, auxin homeostasis was altered through the perturbation of ROS homeostasis by chemical treatments or suppression of ROS-scavenging proteins, along with the activating/suppressing the transcription of genes related to auxin transportation and signaling. These results show that stress responses are activated during S.E. and may regulate the ROS homeostasis by interacting with auxin signaling.
Collapse
Affiliation(s)
- Ting Zhou
- From the ‡National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Xiyan Yang
- From the ‡National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Kai Guo
- From the ‡National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Jinwu Deng
- From the ‡National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Jiao Xu
- From the ‡National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Wenhui Gao
- From the ‡National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Keith Lindsey
- §Integrative Cell Biology Laboratory, School of Biological and Biomedical Sciences, University of Durham, South Road, Durham DH1 3LE, United Kingdom
| | - Xianlong Zhang
- From the ‡National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China;
| |
Collapse
|
41
|
Fang Z, Lai C, Zhang Y, Lai Z. Molecular cloning, structural and expression profiling of DlRan genes during somatic embryogenesis in Dimocarpus longan Lour. SPRINGERPLUS 2016; 5:181. [PMID: 27026877 PMCID: PMC4766155 DOI: 10.1186/s40064-016-1887-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 02/16/2016] [Indexed: 11/18/2022]
Abstract
To clone and examine expression profiles of DlRan genes during somatic embryogenesis in Dimocarpus longan Lour. Thirty cDNA sequences and two genomic sequences encoding DlRan proteins were isolated from longan embryogenic cultures. Structural analysis of DlRan genes revealed that the longan Ran gene family is more expanded than that of Arabidopsis. Expression analysis of DlRan genes during somatic embryogenesis uncovered a high abundance of DlRan genes in early embryogenic cultures and heart- and torpedo-shaped embryos. The expression of DlRan genes in embryogenic calli was affected by exogenous 2,4-dichlorophenoxyacetic acid treatment. DlRan is involved in 2,4-D induced somatic embryogenesis and development of somatic embryos in longan.
Collapse
Affiliation(s)
- Zhizhen Fang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Cangshan District, Fuzhou, 350002 Fujian China
| | - Chengchun Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Cangshan District, Fuzhou, 350002 Fujian China
| | - Yaling Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Cangshan District, Fuzhou, 350002 Fujian China
| | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Cangshan District, Fuzhou, 350002 Fujian China
| |
Collapse
|
42
|
Shi X, Zhang C, Liu Q, Zhang Z, Zheng B, Bao M. De novo comparative transcriptome analysis provides new insights into sucrose induced somatic embryogenesis in camphor tree (Cinnamomum camphora L.). BMC Genomics 2016; 17:26. [PMID: 26727885 PMCID: PMC4700650 DOI: 10.1186/s12864-015-2357-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 09/11/2015] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Somatic embryogenesis is a notable illustration of cell totipotency, by which somatic cells undergo dedifferentiation and then differentiate into somatic embryos. Our previous work demonstrated that pretreatment of immature zygotic embryos with 0.5 M sucrose solution for 72 h efficiently induced somatic embryo initiation in camphor tree. To better understand the molecular basis of somatic embryogenesis induced by osmotic stress, de novo transcriptome sequencing of three tissues of camphor tree (immature zygotic embryos, sucrose-pretreated immature zygotic embryos, and somatic embryos induced from sucrose-pretreated zygotic embryos) were conducted using Illumina Hiseq 2000 platform. RESULTS A total of 30.70 G high quality clean reads were obtained from cDNA libraries of the three samples. The overall de novo assembly of cDNA sequence data generated 205592 transcripts, with an average length of 998 bp. 114229 unigenes (55.56 % of all transcripts) with an average length of 680 bp were annotated with gene descriptions, gene ontology terms or metabolic pathways based on Blastx search against Nr, Nt, Swissprot, GO, COG/KOG, and KEGG databases. CEGMA software identified 237 out of 248 ultra-conserved core proteins as 'complete' in the transcriptome assembly, showing a completeness of 95.6 %. A total of 897 genes previously annotated to be potentially involved in somatic embryogenesis were identified. Comparative transcriptome analysis showed that a total of 3335 genes were differentially expressed in the three samples. The differentially expressed genes were divided into six groups based on K-means clustering. Expression level analysis of 52 somatic embryogenesis-related genes indicated a high correlation between RNA-seq and qRT-PCR data. Gene enrichment analysis showed significantly differential expression of genes responding to stress and stimulus. CONCLUSIONS The present work reported a de novo transcriptome assembly and global analysis focused on gene expression changes during initiation and formation of somatic embryos in camphor tree. Differential expression of somatic embryogenesis-related genes indicates that sucrose induced somatic embryogenesis may share or partly share the mechanisms of somatic embryogenesis induced by plant hormones. This study provides comprehensive transcript information and gene expression data for camphor tree. It could also serve as an important platform resource for further functional studies in plant embryogenesis.
Collapse
Affiliation(s)
- Xueping Shi
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, P. R. China.
| | - Cuijie Zhang
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, P. R. China.
| | - Qinhong Liu
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, P. R. China.
| | - Zhe Zhang
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, P. R. China.
| | - Bo Zheng
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, P. R. China.
| | - Manzhu Bao
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, P. R. China.
| |
Collapse
|
43
|
Abstract
Proteomic approaches have been used to understand several regulatory aspects of plant development. Somatic embryogenesis is one of those developmental pathways that have beneficiated from the integration of proteomics data to the understanding of the molecular mechanisms that control embryogenic competence acquisition, somatic embryo development and conversion into viable plants. Nevertheless, most of the results obtained are based on the traditional model systems, very often not easily compared with the somatic embryogenesis systems of economical relevant woody species. The aim of this work is to summarize some of the applications of proteomics in the understanding of particular aspects of the somatic embryogenesis process in broad-leaf woody plants (model and non-model systems).
Collapse
|
44
|
Arnholdt-Schmitt B, Ragonezi C, Cardoso H. Do Mitochondria Play a Central Role in Stress-Induced Somatic Embryogenesis? Methods Mol Biol 2016; 1359:87-100. [PMID: 26619859 DOI: 10.1007/978-1-4939-3061-6_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This review highlights a four-step rational for the hypothesis that mitochondria play an upstream central role for stress-induced somatic embryogenesis (SE): (1) Initiation of SE is linked to programmed cell death (PCD) (2) Mitochondria are crucially connected to cell death (3) SE is challenged by stress per se (4) Mitochondria are centrally linked to plant stress response and its management. Additionally the review provides a rough perspective for the use of mitochondrial-derived functional marker (FM) candidates to improve SE efficiency. It is proposed to apply SE systems as phenotyping tool for identifying superior genotypes with high general plasticity under severe plant stress conditions.
Collapse
Affiliation(s)
- Birgit Arnholdt-Schmitt
- EU Marie Curie Chair, ICAAM, IIFA, Universidade de Évora, Núcleo da Mitra, Ap. 94, Évora, 7002-554, Portugal.
| | - Carla Ragonezi
- EU Marie Curie Chair, ICAAM, IIFA, Universidade de Évora, Núcleo da Mitra, Ap. 94, Évora, 7002-554, Portugal
| | - Hélia Cardoso
- EU Marie Curie Chair, ICAAM, IIFA, Universidade de Évora, Núcleo da Mitra, Ap. 94, Évora, 7002-554, Portugal
| |
Collapse
|
45
|
Abstract
Somatic embryogenesis involves a broad repertoire of genes, and complex expression patterns controlled by a concerted gene regulatory network. The present work describes this regulatory network focusing on the main aspects involved, with the aim of providing a deeper insight into understanding the total reprogramming of cells into a new organism through a somatic way. To the aim, the chromatin remodeling necessary to totipotent stem cell establishment is described, as the activity of numerous transcription factors necessary to cellular totipotency reprogramming. The eliciting effects of various plant growth regulators on the induction of somatic embryogenesis is also described and put in relation with the activity of specific transcription factors. The role of programmed cell death in the process, and the related function of specific hemoglobins as anti-stress and anti-death compounds is also described. The tools for biotechnology coming from this information is highlighted in the concluding remarks.
Collapse
|
46
|
Wang W, Li H, Lin X, Yang S, Wang Z, Fang B. Transcriptome analysis identifies genes involved in adventitious branches formation of Gracilaria lichenoides in vitro. Sci Rep 2015; 5:17099. [PMID: 26657019 PMCID: PMC4675990 DOI: 10.1038/srep17099] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/26/2015] [Indexed: 11/23/2022] Open
Abstract
Tissue culture could solve the problems associated with Gracilaria cultivation, including the consistent supply of high-quality seed stock, strain improvement, and efficient mass culture of high-yielding commercial strains. However, STC lags behind that of higher plants because of the paucity of genomic information. Transcriptome analysis and the identification of potential unigenes involved in the formation and regeneration of callus or direct induction of ABs are essential. Herein, the CK, EWAB and NPA G. lichenoides transcriptomes were analyzed using the Illumina sequencing platform in first time. A total of 17,922,453,300 nucleotide clean bases were generated and assembled into 21,294 unigenes, providing a total gene space of 400,912,038 nucleotides with an average length of 1,883 and N 50 of 5,055 nucleotides and a G + C content of 52.02%. BLAST analysis resulted in the assignment of 13,724 (97.5%), 3,740 (26.6%), 9,934 (70.6%), 10,611 (75.4%), 9,490 (67.4%), and 7,773 (55.2%) unigenes were annotated to the NR, NT, Swiss-Prot, KEGG, COG, and GO databases, respectively, and the total of annotated unigenes was 14,070. A total of 17,099 transcripts were predicted to possess open reading frames, including 3,238 predicted and 13,861 blasted based on protein databases. In addition, 3,287 SSRs were detected in G.lichenoides, providing further support for genetic variation and marker-assisted selection in the future. Our results suggest that auxin polar transport, auxin signal transduction, crosstalk with other endogenous plant hormones and antioxidant systems, play important roles for ABs formation in G. lichenoides explants in vitro. The present findings will facilitate further studies on gene discovery and on the molecular mechanisms underlying the tissue culture of seaweed.
Collapse
Affiliation(s)
- Wenlei Wang
- College of Biochemistry and Engineering, Xiamen University, Xiamen 361005, China
| | - Huanqin Li
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
| | - Xiangzhi Lin
- Engineering Research Center of Marine Biological Resource Comprehensive Utilization, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China
| | - Shanjun Yang
- Engineering Research Center of Marine Biological Resource Comprehensive Utilization, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China
| | - Zhaokai Wang
- Engineering Research Center of Marine Biological Resource Comprehensive Utilization, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China
| | - Baishan Fang
- College of Biochemistry and Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
47
|
Huang J, Gao Y, Jia H, Liu L, Zhang D, Zhang Z. Comparative transcriptomics uncovers alternative splicing changes and signatures of selection from maize improvement. BMC Genomics 2015; 16:363. [PMID: 25952680 PMCID: PMC4433066 DOI: 10.1186/s12864-015-1582-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/24/2015] [Indexed: 12/05/2022] Open
Abstract
Background Alternative splicing (AS) is an important regulatory mechanism that greatly contributes to eukaryotic transcriptome diversity. A substantial amount of evidence has demonstrated that AS complexity is relevant to eukaryotic evolution, development, adaptation, and complexity. In this study, six teosinte and ten maize transcriptomes were sequenced to analyze AS changes and signatures of selection in maize domestication and improvement. Results In maize and teosinte, 13,593 highly conserved genes, including 12,030 multiexonic genes, were detected. By identifying AS isoforms from mutliexonic genes, we found that AS types were not significantly different between maize and teosinte. In addition, the two main AS types (intron retention and alternative acceptor) contributed to more than 60% of the AS events in the two species, but the average unique AS events per each alternatively spliced gene in maize (4.12) was higher than that in teosinte (2.26). Moreover, 94 genes generating 98 retained introns with transposable element (TE) sequences were detected in maize, which is far more than 9 retained introns with TEs detected in teosinte. This indicates that TE insertion might be an important mechanism for intron retention in maize. Additionally, the AS levels of 3864 genes were significantly different between maize and teosinte. Of these, 151 AS level-altered genes that are involved in transcriptional regulation and in stress responses are located in regions that have been targets of selection during maize improvement. These genes were inferred to be putatively improved genes. Conclusions We suggest that both maize and teosinte share similar AS mechanisms, but more genes have increased AS complexity during domestication from teosinte to maize. Importantly, a subset of AS level-increased genes that encode transcription factors and stress-responsive proteins may have been selected during maize improvement. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1582-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jun Huang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Youjun Gao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Haitao Jia
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Lei Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Dan Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Zuxin Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China. .,Hubei Collaborative Innovation Center for Grain Crops, Jingzhou, 434025, China.
| |
Collapse
|
48
|
Cabrera-Ponce JL, López L, León-Ramírez CG, Jofre-Garfias AE, Verver-y-Vargas A. Stress induced acquisition of somatic embryogenesis in common bean Phaseolus vulgaris L. PROTOPLASMA 2015; 252:559-570. [PMID: 25252886 DOI: 10.1007/s00709-014-0702-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 09/12/2014] [Indexed: 06/03/2023]
Abstract
Common bean Phaseolus vulgaris L. has been shown to be a recalcitrant plant to induce somatic embryogenesis (SE) under in vitro conditions. We used an alternative strategy to induce SE in common bean based upon the use of a cytokinin (BAP) coupled with osmotic stress adaptation instead of SE response that is induced by auxins. Explants derived from zygotic embryos of common bean were subjected to osmotic stress (sucrose 12 % w/v, 0.5 M) in the presence of BAP 10 mg/L and adenine free base 40 mg/L to induce somatic embryos from specific competent cells of the apical meristem and cotyledonary node. Somatic embryos were obtained from the competent cells in a direct response (direct SE). In a secondary response (secondary SE), those somatic embryos formed proembryogenic masses (PEM) that originated/developed into secondary somatic embryos and showed the SE ontogeny. Maturation of somatic embryos was achieved by using different osmolality media and converted to plants. Full-visible light spectrum was necessary to achieve efficient plant regeneration. Long-term recurrent SE was demonstrated by propagation of PEM at early stages of SE. This protocol is currently being applied for stable genetic transformation by means of Agrobacterium tumefaciens and bioballistics as well as for basic biochemical and molecular biology experiments.
Collapse
Affiliation(s)
- José Luis Cabrera-Ponce
- Departamento de Ingeniería Genética, Unidad Irapuato. Centro de Investigación y de Estudios Avanzados del IPN, CP. 36821, Irapuato, Guanajuato, Mexico,
| | | | | | | | | |
Collapse
|
49
|
Ge X, Zhang C, Wang Q, Yang Z, Wang Y, Zhang X, Wu Z, Hou Y, Wu J, Li F. iTRAQ Protein Profile Differential Analysis between Somatic Globular and Cotyledonary Embryos Reveals Stress, Hormone, and Respiration Involved in Increasing Plantlet Regeneration of Gossypium hirsutum L. J Proteome Res 2014; 14:268-78. [PMID: 25367710 DOI: 10.1021/pr500688g] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Xiaoyang Ge
- State
Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Huanghe Road, Anyang, Henan 455000, China
| | - Chaojun Zhang
- State
Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Huanghe Road, Anyang, Henan 455000, China
| | - Qianhua Wang
- State
Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Huanghe Road, Anyang, Henan 455000, China
| | - Zuoren Yang
- State
Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Huanghe Road, Anyang, Henan 455000, China
| | - Ye Wang
- State
Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Huanghe Road, Anyang, Henan 455000, China
| | - Xueyan Zhang
- State
Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Huanghe Road, Anyang, Henan 455000, China
| | - Zhixia Wu
- State
Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Huanghe Road, Anyang, Henan 455000, China
| | - Yuxia Hou
- College
of Science, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, China
| | - Jiahe Wu
- Institute
of Microbiology, Chinese Academy of Sciences, No. 1 Beichen West Road, Beijing 100101, China
| | - Fuguang Li
- State
Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Huanghe Road, Anyang, Henan 455000, China
| |
Collapse
|
50
|
Salvo SAGD, Hirsch CN, Buell CR, Kaeppler SM, Kaeppler HF. Whole transcriptome profiling of maize during early somatic embryogenesis reveals altered expression of stress factors and embryogenesis-related genes. PLoS One 2014; 9:e111407. [PMID: 25356773 PMCID: PMC4214754 DOI: 10.1371/journal.pone.0111407] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 10/01/2014] [Indexed: 01/09/2023] Open
Abstract
Embryogenic tissue culture systems are utilized in propagation and genetic engineering of crop plants, but applications are limited by genotype-dependent culture response. To date, few genes necessary for embryogenic callus formation have been identified or characterized. The goal of this research was to enhance our understanding of gene expression during maize embryogenic tissue culture initiation. In this study, we highlight the expression of candidate genes that have been previously regarded in the literature as having important roles in somatic embryogenesis. We utilized RNA based sequencing (RNA-seq) to characterize the transcriptome of immature embryo explants of the highly embryogenic and regenerable maize genotype A188 at 0, 24, 36, 48, and 72 hours after placement of explants on tissue culture initiation medium. Genes annotated as functioning in stress response, such as glutathione-S-transferases and germin-like proteins, and genes involved with hormone transport, such as PINFORMED, increased in expression over 8-fold in the study. Maize genes with high sequence similarity to genes previously described in the initiation of embryogenic cultures, such as transcription factors BABY BOOM, LEAFY COTYLEDON, and AGAMOUS, and important receptor-like kinases such as SOMATIC EMBRYOGENESIS RECEPTOR LIKE KINASES and CLAVATA, were also expressed in this time course study. By combining results from whole genome transcriptome analysis with an in depth review of key genes that play a role in the onset of embryogenesis, we propose a model of coordinated expression of somatic embryogenesis-related genes, providing an improved understanding of genomic factors involved in the early steps of embryogenic culture initiation in maize and other plant species.
Collapse
Affiliation(s)
- Stella A. G. D. Salvo
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Candice N. Hirsch
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota, United States of America
| | - C. Robin Buell
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, United States of America
- DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, United States of America
| | - Shawn M. Kaeppler
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Heidi F. Kaeppler
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin, United States of America
| |
Collapse
|