1
|
Liu X, Luo M, Wang Z, Yang SJ, Su M, Wang Y, Wang W, Sun Z, Cai Y, Wu L, Zhou R, Xu M, Zhao Q, Chen L, Zuo W, Huang Y, Ren P, Huang X. Mind shift I: Fructus Aurantii - Rhizoma Chuanxiong synergistically anchors stress-induced depression-like behaviours and gastrointestinal dysmotility cluster by regulating psycho-immune-neuroendocrine network. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155324. [PMID: 38552437 DOI: 10.1016/j.phymed.2023.155324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 12/14/2023] [Accepted: 12/26/2023] [Indexed: 05/01/2024]
Abstract
BACKGROUND Researchers have not studied the integrity, orderly correlation, and dynamic openness of complex organisms and explored the laws of systems from a global perspective. In the context of reductionism, antidepressant development formerly focused on advanced technology and molecular details, clear targets and mechanisms, but the clinical results were often unsatisfactory. PURPOSE MDD represents an aggregate of different and highly diverse disease subtypes. The co-occurrence of stress-induced nonrandom multimorbidity is widespread, whereas only a fraction of the potential clusters are well known, such as the MDD-FGID cluster. Mapping these clusters, and determining which are nonrandom, is vital for discovering new mechanisms, developing treatments, and reconfiguring services to better meet patient needs. STUDY DESIGN Acute stress 15-minute forced swimming (AFS) or CUMS protocols can induce the nonrandom MDD-FGID cluster. Multiple biological processes of rats with depression-like behaviours and gastrointestinal dysmobility will be captured under conditions of stress, and the Fructus Aurantii-Rhizoma Chuanxiong (ZQCX) decoction will be utilized to dock the MDD-FGID cluster. METHODS/RESULTS Here, Rhizoma Chuanxiong, one of the seven components of Chaihu-shugan-San, elicited the best antidepressant effect on CUMS rats, followed by Fructus Aurantii. ZQCX reversed AFS-induced depression-like behaviours and gastrointestinal dysmobility by regulating the glutamatergic system, AMPAR/BDNF/mTOR/synapsin I pathway, ghrelin signalling and gastrointestinal nitric oxide synthase. Based on the bioethnopharmacological analysis strategy, the determined meranzin hydrate (MH) and senkyunolide I (SI) by UPLC-PDA, simultaneously absorbed by the jejunum and hippocampus of rats, have been considered major absorbed bioactive compounds acting on behalf of ZQCX. Cotreatment with MH and SI at an equivalent dose in ZQCX synergistically replicated over 50.33 % efficacy of the parent formula in terms of antidepressant and prokinetic actions by modulating neuroinflammation and ghrelin signalling. CONCLUSION Brain-centric mind shifts require the integration of multiple central and peripheral systems and the elucidation of the underlying neurobiological mechanisms that ultimately contribute to novel therapeutic options. Ghrelin signalling and the immune system may partially underlie multimorbidity vulnerability, and ZQCX anchors stress-induced MDD-FGID clusters by docking them. Combining the results of micro details with the laws of the macro world may be more effective in finding treatments for MDD.
Collapse
Affiliation(s)
- XiangFei Liu
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, No.138 XianLin Avenue, QiXia District, Nanjing, Jiangsu, China
| | - Min Luo
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, No.138 XianLin Avenue, QiXia District, Nanjing, Jiangsu, China; Laboratory of Ethnopharmacology, Xiangya Hospital, Central South University, 410008 Changsha, China
| | - Zheng Wang
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, No.138 XianLin Avenue, QiXia District, Nanjing, Jiangsu, China
| | - Shu Jie Yang
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, No.138 XianLin Avenue, QiXia District, Nanjing, Jiangsu, China
| | - Mengqing Su
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, No.138 XianLin Avenue, QiXia District, Nanjing, Jiangsu, China
| | - Yang Wang
- Laboratory of Ethnopharmacology, Xiangya Hospital, Central South University, 410008 Changsha, China
| | - Wenzhu Wang
- Laboratory of Ethnopharmacology, Xiangya Hospital, Central South University, 410008 Changsha, China
| | - ZhongHua Sun
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, No.138 XianLin Avenue, QiXia District, Nanjing, Jiangsu, China
| | - YaWen Cai
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, No.138 XianLin Avenue, QiXia District, Nanjing, Jiangsu, China
| | - Lei Wu
- Department of Pharmacy, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - RunZe Zhou
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, No.138 XianLin Avenue, QiXia District, Nanjing, Jiangsu, China
| | - Min Xu
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, No.138 XianLin Avenue, QiXia District, Nanjing, Jiangsu, China
| | - QiuLong Zhao
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, No.138 XianLin Avenue, QiXia District, Nanjing, Jiangsu, China
| | - Li Chen
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, No.138 XianLin Avenue, QiXia District, Nanjing, Jiangsu, China
| | - WenTing Zuo
- Department of Reproductive Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - YunKe Huang
- Women's Hospital, Zhejiang University School of Medicine, China
| | - Ping Ren
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, No.138 XianLin Avenue, QiXia District, Nanjing, Jiangsu, China; Department of Geriatrics, Jiangsu Province Hospital of TCM, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xi Huang
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, No.138 XianLin Avenue, QiXia District, Nanjing, Jiangsu, China.
| |
Collapse
|
2
|
Jian J, Li LG, Zhao PJ, Zheng RJ, Dong XW, Zhao YH, Yin BQ, Li S, Cheng H, Li HL, Li EY. Mouse nerve growth factor suppresses neuronal apoptosis in valproic acid-induced autism spectrum disorder rats by regulating the phosphoinositide-3-kinase/serine/threonine kinase signaling pathway. Pharmacogenet Genomics 2023; 33:101-110. [PMID: 37261937 DOI: 10.1097/fpc.0000000000000498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders characterized by deficits in social communication and restrictive behaviors. Mouse nerve growth factor (mNGF), a neurotrophic factor, is critical for neuronal growth and survival, and the mNGF treatment is considered a promising therapy for neurodegeneration. In light of this, we aimed to evaluate the effect of mNGF on neurological function in ASD. METHODS An ASD rat model was established by intraperitoneal injection of valproic acid (VPA). Social behavior, learning, and memory of the rats were measured. TdT-mediated dUTP Nick-end labeling and Nissl assays were performed to detect neuronal apoptosis and survival in the hippocampus and prefrontal cortex. Apoptosis-related proteins and oxidative stress markers were detected. RESULTS mNGF improved locomotor activity, exploratory behavior, social interaction, and spatial learning and memory in VPA-induced ASD rats. In the hippocampus and prefrontal cortex, mNGF suppressed neuronal apoptosis, increased the number of neurons, superoxide dismutase, and glutathione levels, and decreased reactive oxygen species, nitric oxide, TNF-α, and IL-1β levels compared with the VPA group. In addition, mNGF increased the levels of Bcl-2, p-phosphoinositide-3-kinase (PI3K), and p-serine/threonine kinase (Akt), and decreased the levels of Bax and cleaved caspase-3, while the PI3K inhibitor LY294002 reversed these effects. CONCLUSION These data suggest that mNGF suppressed neuronal apoptosis and ameliorated the abnormal behaviors in VPA-induced ASD rats, in part, by activating the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Jie Jian
- Department of Children Rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan, the Fifth Affiliated Hospital of Zhengzhou University
| | - Li-Guo Li
- Department of Children Rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan, the Fifth Affiliated Hospital of Zhengzhou University
- Institute of Health Engineering, Zhengzhou Health Vocational College, Zhengzhou
| | - Peng-Ju Zhao
- Department of Children Rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan, the Fifth Affiliated Hospital of Zhengzhou University
| | - Rui-Juan Zheng
- Department of Children Rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan, the Fifth Affiliated Hospital of Zhengzhou University
| | - Xian-Wen Dong
- Department of Children Rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan, the Fifth Affiliated Hospital of Zhengzhou University
| | - Yong-Hong Zhao
- Department of Children Rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan, the Fifth Affiliated Hospital of Zhengzhou University
| | - Bao-Qi Yin
- Department of Children Rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan, the Fifth Affiliated Hospital of Zhengzhou University
| | - Sheng Li
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Hui Cheng
- Department of Children Rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan, the Fifth Affiliated Hospital of Zhengzhou University
| | - Hong-Lei Li
- Department of Children Rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan, the Fifth Affiliated Hospital of Zhengzhou University
| | - En-Yao Li
- Department of Children Rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan, the Fifth Affiliated Hospital of Zhengzhou University
| |
Collapse
|
3
|
Bose M, Farias Quipildor G, Ehrlich ME, Salton SR. Intranasal Peptide Therapeutics: A Promising Avenue for Overcoming the Challenges of Traditional CNS Drug Development. Cells 2022; 11:3629. [PMID: 36429060 PMCID: PMC9688574 DOI: 10.3390/cells11223629] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022] Open
Abstract
The central nervous system (CNS) has, among all organ systems in the human body, the highest failure rate of traditional small-molecule drug development, ranging from 80-100% depending on the area of disease research. This has led to widespread abandonment by the pharmaceutical industry of research and development for CNS disorders, despite increased diagnoses of neurodegenerative disorders and the continued lack of adequate treatment options for brain injuries, stroke, neurodevelopmental disorders, and neuropsychiatric illness. However, new approaches, concurrent with the development of sophisticated bioinformatic and genomic tools, are being used to explore peptide-based therapeutics to manipulate endogenous pathways and targets, including "undruggable" intracellular protein-protein interactions (PPIs). The development of peptide-based therapeutics was previously rejected due to systemic off-target effects and poor bioavailability arising from traditional oral and systemic delivery methods. However, targeted nose-to-brain, or intranasal (IN), approaches have begun to emerge that allow CNS-specific delivery of therapeutics via the trigeminal and olfactory nerve pathways, laying the foundation for improved alternatives to systemic drug delivery. Here we review a dozen promising IN peptide therapeutics in preclinical and clinical development for neurodegenerative (Alzheimer's, Parkinson's), neuropsychiatric (depression, PTSD, schizophrenia), and neurodevelopmental disorders (autism), with insulin, NAP (davunetide), IGF-1, PACAP, NPY, oxytocin, and GLP-1 agonists prominent among them.
Collapse
Affiliation(s)
- Meenakshi Bose
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gabriela Farias Quipildor
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michelle E. Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Stephen R. Salton
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
4
|
Application of Intranasal Administration in the Delivery of Antidepressant Active Ingredients. Pharmaceutics 2022; 14:pharmaceutics14102070. [PMID: 36297505 PMCID: PMC9611373 DOI: 10.3390/pharmaceutics14102070] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 11/16/2022] Open
Abstract
As a mental disease in modern society, depression shows an increasing occurrence, with low cure rate and high recurrence rate. It has become the most disabling disease in the world. At present, the treatment of depression is mainly based on drug therapy combined with psychological therapy, physical therapy, and other adjuvant therapy methods. Antidepressants are primarily administered peripherally (oral and intravenous) and have a slow onset of action. Antidepressant active ingredients, such as neuropeptides, natural active ingredients, and some chemical agents, are limited by factors such as the blood–brain barrier (BBB), first-pass metabolism, and extensive adverse effects caused by systemic administration. The potential anatomical link between the non-invasive nose–brain pathway and the lesion site of depression may provide a more attractive option for the delivery of antidepressant active ingredients. The purpose of this article is to describe the specific link between intranasal administration and depression, the challenges of intranasal administration, as well as studies of intranasal administration of antidepressant active ingredients.
Collapse
|
5
|
Manni L, Conti G, Chiaretti A, Soligo M. Intranasal Delivery of Nerve Growth Factor in Neurodegenerative Diseases and Neurotrauma. Front Pharmacol 2021; 12:754502. [PMID: 34867367 PMCID: PMC8635100 DOI: 10.3389/fphar.2021.754502] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/01/2021] [Indexed: 01/01/2023] Open
Abstract
Since the 1980s, the development of a pharmacology based on nerve growth factor (NGF) has been postulated for the therapy of Alzheimer’s disease (AD). This hypothesis was based on the rescuing effect of the neurotrophin on the cholinergic phenotype of the basal forebrain neurons, primarily compromised during the development of AD. Subsequently, the use of NGF was put forward to treat a broader spectrum of neurological conditions affecting the central nervous system, such as Parkinson’s disease, degenerative retinopathies, severe brain traumas and neurodevelopmental dysfunctions. While supported by solid rational assumptions, the progress of a pharmacology founded on these hypotheses has been hampered by the difficulty of conveying NGF towards the brain parenchyma without resorting to invasive and risky delivery methods. At the end of the last century, it was shown that NGF administered intranasally to the olfactory epithelium was able to spread into the brain parenchyma. Notably, after such delivery, pharmacologically relevant concentration of exogenous NGF was found in brain areas located at considerable distances from the injection site along the rostral-caudal axis. These observations paved the way for preclinical characterization and clinical trials on the efficacy of intranasal NGF for the treatment of neurodegenerative diseases and of the consequences of brain trauma. In this review, a summary of the preclinical and clinical studies published to date will be attempted, as well as a discussion about the mechanisms underlying the efficacy and the possible development of the pharmacology based on intranasal conveyance of NGF to the brain.
Collapse
Affiliation(s)
- Luigi Manni
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), Rome, Italy
| | - Giorgio Conti
- Department of Emergency, Intensive Pediatric Therapy and Pediatric Trauma Center, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Antonio Chiaretti
- Department of Woman and Child Health, Institute of Pediatrics, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Marzia Soligo
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), Rome, Italy
| |
Collapse
|
6
|
Amadio P, Zarà M, Sandrini L, Ieraci A, Barbieri SS. Depression and Cardiovascular Disease: The Viewpoint of Platelets. Int J Mol Sci 2020; 21:E7560. [PMID: 33066277 PMCID: PMC7589256 DOI: 10.3390/ijms21207560] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023] Open
Abstract
Depression is a major cause of morbidity and low quality of life among patients with cardiovascular disease (CVD), and it is now considered as an independent risk factor for major adverse cardiovascular events. Increasing evidence indicates not only that depression worsens the prognosis of cardiac events, but also that a cross-vulnerability between the two conditions occurs. Among the several mechanisms proposed to explain this interplay, platelet activation is the more attractive, seeing platelets as potential mirror of the brain function. In this review, we dissected the mechanisms linking depression and CVD highlighting the critical role of platelet behavior during depression as trigger of cardiovascular complication. In particular, we will discuss the relationship between depression and molecules involved in the CVD (e.g., catecholamines, adipokines, lipids, reactive oxygen species, and chemokines), emphasizing their impact on platelet activation and related mechanisms.
Collapse
Affiliation(s)
- Patrizia Amadio
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanism, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (L.S.)
| | - Marta Zarà
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanism, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (L.S.)
| | - Leonardo Sandrini
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanism, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (L.S.)
| | - Alessandro Ieraci
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy;
| | - Silvia Stella Barbieri
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanism, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (L.S.)
| |
Collapse
|
7
|
Ando I, Karasawa K, Shioya T, Matsuda H, Tanaka A. Evaluation of stress status using the stress map for guide dog candidates in the training stage using variations in the serum cortisol with nerve growth factor and magnesium ions. Vet Anim Sci 2020; 10:100129. [PMID: 32734029 PMCID: PMC7386704 DOI: 10.1016/j.vas.2020.100129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 11/19/2022] Open
Abstract
Most studies on guide dogs for the blind were conducted to investigate the appropriateness of the animals, including in terms of their breeding, constitution, and temperament. However, research to comprehend the stress status of guide dog candidates in response to their training has been unclear. In this study, the levels of serum cortisol, nerve growth factor (NGF), and magnesium ion (Mg2+) levels of guide dog candidates during the three training stages-the elementary, intermediate, and advanced classes-were examined. Dogs were classified based on the contents of the classes and period during the training in which they were subjected. Since the dogs in the elementary class had the lowest serum NGF and Mg2+ levels, they were understood to be under mental stress and to be unfamiliar with their new surroundings. In contrast, the serum NGF and Mg2+ levels were high in the dogs in the advanced class, though they were demonstrated to be mentally stable and acclimated to their environment. Additionally, they were almost free from the stress caused by daily life, since they had the lowest serum cortisol levels. The status of each dog was plotted on a map consisting of 2 axes representing the serum NGF and Mg2+ levels with high or low cortisol levels. Plots could be divided into three domains corresponding to the elementary, intermediate, and advanced classes. Therefore, for working dogs, serum NGF and Mg2+ levels in addition to serum cortisol levels may be important factors to comprehend the type of stress situation that each dog was in.
Collapse
Affiliation(s)
- Izumi Ando
- Cooperative Major in Advanced Health Science, Graduate School of Bio-Applications and System Engineering, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Kaoru Karasawa
- Laboratory of Comparative Animal Medicine, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | | | - Hiroshi Matsuda
- Laboratory of Comparative Animal Medicine, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Akane Tanaka
- Cooperative Major in Advanced Health Science, Graduate School of Bio-Applications and System Engineering, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
- Laboratory of Comparative Animal Medicine, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
- Corresponding author.
| |
Collapse
|
8
|
Demin KA, Sysoev M, Chernysh MV, Savva AK, Koshiba M, Wappler-Guzzetta EA, Song C, De Abreu MS, Leonard B, Parker MO, Harvey BH, Tian L, Vasar E, Strekalova T, Amstislavskaya TG, Volgin AD, Alpyshov ET, Wang D, Kalueff AV. Animal models of major depressive disorder and the implications for drug discovery and development. Expert Opin Drug Discov 2019; 14:365-378. [PMID: 30793996 DOI: 10.1080/17460441.2019.1575360] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Depression is a highly debilitating psychiatric disorder that affects the global population and causes severe disabilities and suicide. Depression pathogenesis remains poorly understood, and the disorder is often treatment-resistant and recurrent, necessitating the development of novel therapies, models and concepts in this field. Areas covered: Animal models are indispensable for translational biological psychiatry, and markedly advance the study of depression. Novel approaches continuously emerge that may help untangle the disorder heterogeneity and unclear categories of disease classification systems. Some of these approaches include widening the spectrum of model species used for translational research, using a broader range of test paradigms, exploring new pathogenic pathways and biomarkers, and focusing more closely on processes beyond neural cells (e.g. glial, inflammatory and metabolic deficits). Expert opinion: Dividing the core symptoms into easily translatable, evolutionarily conserved phenotypes is an effective way to reevaluate current depression modeling. Conceptually novel approaches based on the endophenotype paradigm, cross-species trait genetics and 'domain interplay concept', as well as using a wider spectrum of model organisms and target systems will enhance experimental modeling of depression and antidepressant drug discovery.
Collapse
Affiliation(s)
- Konstantin A Demin
- a Institute of Experimental Medicine , Almazov National Medical Research Centre , St. Petersburg , Russia.,b Institute of Translational Biomedicine , St. Petersburg State University , St. Petersburg , Russia
| | - Maxim Sysoev
- c Laboratory of Preclinical Bioscreening , Russian Research Center for Radiology and Surgical Technologies , St. Petersburg , Russia.,d Institute of Experimental Medicine , St. Petersburg , Russia
| | - Maria V Chernysh
- b Institute of Translational Biomedicine , St. Petersburg State University , St. Petersburg , Russia
| | - Anna K Savva
- e Faculty of Biology , St. Petersburg State University , St. Petersburg , Russia
| | | | | | - Cai Song
- h Research Institute of Marine Drugs and Nutrition , Guangdong Ocean University , Zhanjiang , China.,i Marine Medicine Development Center, Shenzhen Institute , Guangdong Ocean University , Shenzhen , China
| | - Murilo S De Abreu
- j Bioscience Institute , University of Passo Fundo (UPF) , Passo Fundo , Brazil
| | | | - Matthew O Parker
- l Brain and Behaviour Lab , School of Pharmacy and Biomedical Science, University of Portsmouth , Portsmouth , UK
| | - Brian H Harvey
- m Center of Excellence for Pharmaceutical Sciences , Division of Pharmacology, School of Pharmacy, North-West University , Potchefstroom , South Africa
| | - Li Tian
- n Institute of Biomedicine and Translational Medicine , University of Tartu , Tartu , Estonia
| | - Eero Vasar
- n Institute of Biomedicine and Translational Medicine , University of Tartu , Tartu , Estonia
| | - Tatyana Strekalova
- o Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, and Department of Normal Physiology , Sechenov First Moscow State Medical University , Moscow , Russia.,p Laboratory of Cognitive Dysfunctions , Institute of General Pathology and Pathophysiology , Moscow , Russia.,q Department of Neuroscience , Maastricht University , Maastricht , The Netherlands
| | | | - Andrey D Volgin
- g The International Zebrafish Neuroscience Research Consortium (ZNRC) , Slidell , LA , USA.,r Scientific Research Institute of Physiology and Basic Medicine , Novosibirsk , Russia
| | - Erik T Alpyshov
- s School of Pharmacy , Southwest University , Chongqing , China
| | - Dongmei Wang
- s School of Pharmacy , Southwest University , Chongqing , China
| | - Allan V Kalueff
- s School of Pharmacy , Southwest University , Chongqing , China.,t Almazov National Medical Research Centre , St. Petersburg , Russia.,u Ural Federal University , Ekaterinburg , Russia.,v Granov Russian Research Center of Radiology and Surgical Technologies , St. Petersburg , Russia.,w Laboratory of Biological Psychiatry, Institute of Translational Biomedicine , St. Petersburg State University , St. Petersburg , Russia.,x Laboratory of Translational Biopsychiatry , Scientific Research Institute of Physiology and Basic Medicine , Novosibirsk , Russia.,y ZENEREI Institute , Slidell , LA , USA.,z The International Stress and Behavior Society (ISBS), US HQ , New Orleans , LA , USA
| |
Collapse
|
9
|
Pytka K, Głuch-Lutwin M, Kotańska M, Waszkielewicz A, Kij A, Walczak M. Single Administration of HBK-15-a Triple 5-HT 1A, 5-HT 7, and 5-HT 3 Receptor Antagonist-Reverses Depressive-Like Behaviors in Mouse Model of Depression Induced by Corticosterone. Mol Neurobiol 2018; 55:3931-3945. [PMID: 28550529 PMCID: PMC5884906 DOI: 10.1007/s12035-017-0605-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/08/2017] [Indexed: 02/06/2023]
Abstract
Studies suggest that the blockade of 5-HT1A, 5-HT7, and 5-HT3 receptor may increase the speed of antidepressant response. 1-[(2,6-Dimethylphenoxy)ethoxyethyl]-4-(2-methoxyphenyl)piperazine hydrochloride (HBK-14) and 1-[(2-chloro-6-methylphenoxy)ethoxyethyl]-4-(2-methoxyphenyl)piperazine hydrochloride (HBK-15), dual 5-HT1A and 5-HT7 antagonists, showed significant antidepressant- and anxiolytic-like properties in our previous tests in rodents. In this study, we aimed to investigate their antidepressant potential using mouse model of corticosterone-induced depression. We chose sucrose preference test, forced swim test, and elevated plus maze to determine anhedonic-, antidepressant-, and anxiolytic-like activities. We also evaluated the influence of the active compound on brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) levels in the hippocampus. Moreover, for both compounds, we performed biofunctional (5-HT3 receptor) and pharmacokinetic studies. We found that HBK-14 and HBK-15 were potent 5-HT3 receptor antagonists. HBK-14 (2.5 mg/kg) and HBK-15 (1.25 mg/kg) after intravenous (i.v.) and intraperitoneal (i.p.) administration permeated the blood-brain barrier with brain/plasma ratio lower than 1. The bioavailability of studied compounds after i.p. administration was 15% for HBK-14 and 54% for HBK-15. Chronic administration of HBK-15 (1.25 mg/kg) and fluoxetine (10 mg/kg) protected corticosterone-treated mice from anhedonic-, depressive-, and anxiety-like behaviors, as well as decreases in BDNF and NGF levels in the hippocampus. HBK-14 (2.5 mg/kg) counteracted anxiety-like behaviors in corticosterone-treated mice. Single administration of HBK-15 (1.25 mg/kg) and ketamine (1 mg/kg) reversed depression-like behavior and regulated decreased BDNF level in the hippocampus in corticosterone-treated mice. Our results suggest that simultaneous blockade of serotonergic 5-HT1A, 5-HT7, and 5-HT3 receptors might accelerate antidepressant response.
Collapse
Affiliation(s)
- Karolina Pytka
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland.
| | - Monika Głuch-Lutwin
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
| | - Magdalena Kotańska
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
| | - Anna Waszkielewicz
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
| | - Agnieszka Kij
- Chair and Department of Toxicology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
- Jagiellonian Centre for Experimental Therapeutics, Bobrzyńskiego 14, 30-348, Krakow, Poland
| | - Maria Walczak
- Chair and Department of Toxicology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
- Jagiellonian Centre for Experimental Therapeutics, Bobrzyńskiego 14, 30-348, Krakow, Poland
| |
Collapse
|
10
|
HBK-15 protects mice from stress-induced behavioral disturbances and changes in corticosterone, BDNF, and NGF levels. Behav Brain Res 2017. [DOI: 10.1016/j.bbr.2017.06.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
11
|
Zhong SJ, Gong YH, Lin YC. Combined intranasal nerve growth factor and ventricle neural stem cell grafts prolong survival and improve disease outcome in amyotrophic lateral sclerosis transgenic mice. Neurosci Lett 2017; 656:1-8. [PMID: 28694091 DOI: 10.1016/j.neulet.2017.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/29/2017] [Accepted: 07/05/2017] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal disease that selectively involves motor neurons. Neurotrophic factor supplementation and neural stem cell (NSC) alternative therapy have been used to treat ALS. The two approaches can affect each other in their pathways of action, and there is a possibility for synergism. However, to date, there have been no studies demonstrating the effects of combined therapy in the treatment of ALS. In this study, for the first time, we adopted a method involving the intranasal administration of nerve growth factor combined with lateral ventricle NSC transplantation using G93A-SOD1 transgenic mice as experimental subjects to explore the treatment effect of this combined therapy in ALS. We discover that the combined therapy increase the quantity of TrkA receptors, broaden the migration of exogenous NSCs, further promote active proliferation in neurogenic regions of the brain and enhance the preservation of motor neurons in the spinal cord. Regarding physical activity, the combined therapy improved motor functions, further postponed ALS onset and extended the survival time of the mice.
Collapse
Affiliation(s)
- Shi-Jiang Zhong
- Department of Neurology, Logistic University Affiliated Hospital, Logistic University of Chinese People's Armed Police Force, Tianjin 300162, PR China
| | - Yan-Hua Gong
- Department of Biochemistry and Molecular Biology, Logistic University of the Chinese People's Armed Police Force, Tianjin, PR China
| | - Yan-Chen Lin
- Department of Neurology, Logistic University Affiliated Hospital, Logistic University of Chinese People's Armed Police Force, Tianjin 300162, PR China.
| |
Collapse
|
12
|
Hashikawa N, Utaka Y, Ogawa T, Tanoue R, Morita Y, Yamamoto S, Yamaguchi S, Kayano M, Zamami Y, Hashikawa-Hobara N. HSP105 prevents depression-like behavior by increasing hippocampal brain-derived neurotrophic factor levels in mice. SCIENCE ADVANCES 2017; 3:e1603014. [PMID: 28580422 PMCID: PMC5451194 DOI: 10.1126/sciadv.1603014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 04/07/2017] [Indexed: 06/07/2023]
Abstract
Heat shock proteins (HSPs) are stress-induced chaperones that are involved in neurological disease. Although increasingly implicated in behavioral disorders, the mechanisms of HSP action, and the relevant functional pathways, are still unclear. We examined whether oral administration of geranylgeranylacetone (GGA), a known HSP inducer, produced an antidepressant effect in a social defeat stress model of depression in mice. We also investigated the possible molecular mechanisms involved, particularly focusing on hippocampal neurogenesis and neurotrophic factor expression. In stressed mice, hippocampal HSP105 expression decreased. However, administration of GGA increased HSP105 expression and improved depression-like behavior, induced hippocampal cell proliferation, and elevated brain-derived neurotrophic factor (BDNF) levels in mouse hippocampus. Co-treatment with GGA and the BDNF receptor inhibitor K252a suppressed the antidepressant effects of GGA. HSP105 knockdown decreased BDNF mRNA levels in HT22 hippocampal cell lines and hippocampal tissue and inhibited the GGA-mediated antidepressant effect. These observations suggest that GGA administration is a therapeutic candidate for depressive diseases by increasing hippocampal BDNF levels via HSP105 expression.
Collapse
Affiliation(s)
- Naoya Hashikawa
- Department of Life Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama, Japan
| | - Yuta Utaka
- Department of Life Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama, Japan
| | - Takumi Ogawa
- Department of Life Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama, Japan
| | - Ryo Tanoue
- Department of Life Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama, Japan
| | - Yuna Morita
- Department of Life Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama, Japan
| | - Sayumi Yamamoto
- Department of Life Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama, Japan
| | - Satoru Yamaguchi
- Department of Life Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama, Japan
| | - Masafumi Kayano
- Department of Emergency Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, Japan
| | - Yoshito Zamami
- Department of Emergency Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, Japan
- Department of Clinical Pharmacy, Institute of Biomedical Sciences, Tokushima University Graduate School, 2-50-1 Kuramoto-cho, Tokushima, Japan
| | - Narumi Hashikawa-Hobara
- Department of Life Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama, Japan
| |
Collapse
|
13
|
Sakamoto Y, Ogawa T, Ogawa M, Matsuo Y, Hashikawa N, Hashikawa N. [Effects of 15-day chronic stress on behavior and neurological changes in the hippocampus of ICR mice]. YAKUGAKU ZASSHI 2017; 135:151-8. [PMID: 25743912 DOI: 10.1248/yakushi.14-00180] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Numerous rodent models of depression have been reported, most requiring a long experimental period and significant effort. We explored a new potential mouse model for depression by investigating whether exposure to a 15-day chronic stress paradigm could induce depression-like behavior in ICR mice. Animals in the stress-exposed groups were subjected to 3 h of restraint while immersed in a 28°C water bath daily for 15 consecutive days. Immobility time in the forced swim test was increased in the chronic stress-exposed mice compared with the controls. Serum corticosterone levels were also much higher in the stressed mice than in the control mice. Hippocampal cell survival (BrdU-positive cells) and neurotrophic factor (NGF, TrkA) mRNA levels were significantly decreased in the chronic stress-exposed mice compared with controls. Administration of the anti-depressant drugs clomipramine (20 mg/kg/d) or imipramine (30 mg/kg/d) did not change the immobility time in the forced swim test, but treatment with lithium (100 mg/kg/d) did result in slight improvement. These results suggest that this 15-day chronic stress paradigm can induce depression-like behavior and neurological changes, in a short time and with minimal effort, facilitating the assessment of treatments for depression.
Collapse
|
14
|
Chrysin promotes attenuation of depressive-like behavior and hippocampal dysfunction resulting from olfactory bulbectomy in mice. Chem Biol Interact 2016; 260:154-162. [DOI: 10.1016/j.cbi.2016.11.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 10/25/2016] [Accepted: 11/02/2016] [Indexed: 12/17/2022]
|
15
|
Calcitonin gene-related peptide pre-administration acts as a novel antidepressant in stressed mice. Sci Rep 2015; 5:12559. [PMID: 26251188 PMCID: PMC4528222 DOI: 10.1038/srep12559] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 07/03/2015] [Indexed: 12/21/2022] Open
Abstract
Calcitonin gene-related peptide (CGRP) is a neuropeptide that has potent vasodilator properties and is involved in various behavioral disorders. The relationship between CGRP and depression-like behavior is unclear. In this study, we used chronically stressed mice to investigate whether CGRP is involved in depression-like behavior. Each mouse was exposed to restraint and water immersion stress for 15 days. After stress exposure, mice were assessed using behavioral tests: open field test, forced swim test and sucrose preference test. Serum corticosterone levels, hippocampal proliferation and mRNA expression of neurotrophins were measured. After stress exposure, mice exhibited depression-like behavior and decreased CGRP mRNA levels in the hippocampus. Although intracerebroventricular CGRP administration (0.5 nmol) did not alter depression-like behavior after 15-day stress exposure, a single CGRP administration into the brain, before the beginning of the 15-day stress exposure, normalized the behavioral dysfunctions and increased nerve growth factor (Ngf) mRNA levels in stressed mice. Furthermore, in the mouse E14 hippocampal cell line, CGRP treatment induced increased expression of Ngf mRNA. The NGF receptor inhibitor K252a inhibited CGRP's antidepressant-like effects in stressed mice. These results suggest that CGRP expression in the mouse hippocampus is associated with depression-like behavior and changes in Ngf mRNA levels.
Collapse
|
16
|
Hashikawa N, Ogawa T, Sakamoto Y, Ogawa M, Matsuo Y, Zamami Y, Hashikawa-Hobara N. Time Course of Behavioral Alteration and mRNA Levels of Neurotrophic Factor Following Stress Exposure in Mouse. Cell Mol Neurobiol 2015; 35:807-17. [PMID: 25820756 DOI: 10.1007/s10571-015-0174-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 03/07/2015] [Indexed: 10/23/2022]
Abstract
Stress is known to affect neurotrophic factor expression, which induces depression-like behavior. However, whether there are time-dependent changes in neurotrophic factor mRNA expression following stress remains unclear. In the present study, we tested whether chronic stress exposure induces long-term changes in depression-related behavior, serum corticosterone, and hippocampal proliferation as well as neurotrophic factor family mRNA levels, such as brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), neurotrophin-3 (NT-3), and ciliary neurotrophic factor (CNTF), in the mouse hippocampus. The mRNA level of neurotrophic factors (BDNF, NGF, NT-3, and CNTF) was measured using the real-time PCR. The serum corticosterone level was evaluated by enzyme-linked immunosorbent assay, and, for each subject, the hippocampal proliferation was examined by 5-bromo-2-deoxyuridine immunostaining. Mice exhibited depression-like behavior in the forced-swim test (FST) and decreased BDNF mRNA and hippocampal proliferation in the middle of the stress exposure. After 15 days of stress exposure, we observed increased immobility in the FST, serum corticosterone levels, and BDNF mRNA levels and degenerated hippocampal proliferation, maintained for at least 2 weeks. Anhedonia-like behavior in the sucrose preference test and NGF mRNA levels were decreased following 15 days of stress. NGF mRNA levels were significantly higher 1 week after stress exposure. The current data demonstrate that chronic stress exposure induces prolonged BDNF and NGF mRNA changes and increases corticosterone levels and depression-like behavior in the FST, but does not alter other neurotrophic factors or performance in the sucrose preference test.
Collapse
Affiliation(s)
- Naoya Hashikawa
- Department of Life Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama, 700-0005, Japan
| | | | | | | | | | | | | |
Collapse
|
17
|
Antunes MS, Ruff JR, de Oliveira Espinosa D, Piegas MB, de Brito MLO, Rocha KA, de Gomes MG, Goes ATR, Souza LC, Donato F, Boeira SP, Jesse CR. Neuropeptide Y administration reverses tricyclic antidepressant treatment-resistant depression induced by ACTH in mice. Horm Behav 2015; 73:56-63. [PMID: 26122290 DOI: 10.1016/j.yhbeh.2015.05.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 05/19/2015] [Accepted: 05/28/2015] [Indexed: 10/23/2022]
Abstract
Depression is one of the most common mental disorders and a primary cause of disability. To better treat patients suffering this illness, elucidation of the underlying psychopathological and neurobiological mechanisms is urgently needed. Based on the above-mentioned evidence, we sought to investigate the effects of neuropeptide Y (NPY) treatment in tricyclic antidepressant treatment-resistant depression induced by adrenocorticotropic hormone (ACTH) administration. Mice were treated with NPY (5.84, 11.7 or 23.4mmol/μl) intracerebroventricularly (i.c.v.) for one or five days. The levels of serum corticosterone, tryptophan (TRP), kynurenine (KYN), serotonin (5-HT), 5-hydroxyindoleacetic acid (5-HIAA), brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF) and indoleamine 2,3-dioxygenase (IDO) activity in the hippocampus were analyzed. The behavioral parameters (depressive-like and locomotor activity) were also verified. This study demonstrated that ACTH administration increased serum corticosterone levels, KYN, 5-HIAA levels, IDO activity (hippocampus), immobility in the forced swimming test (FST) and the latency to feed in the novelty suppressed feeding test (NSFT). In addition, ACTH administration decreased the BDNF and NGF levels in the hippocampus of mice. NPY treatment was effective in preventing these hormonal, neurochemical and behavioral alterations. It is suggested that the main target of NPY is the modulation of corticosterone and neuronal plasticity protein levels, which may be closely linked with pharmacological action in a model of tricyclic antidepressant treatment-resistant depression. Thus, this study demonstrated a protective effect of NPY on the alterations induced by ACTH administration in mice, indicating that it could be useful as a therapy for the treatment of tricyclic antidepressant treatment-resistant depression.
Collapse
Affiliation(s)
- Michelle S Antunes
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas, LaftamBio Pampa, Universidade Federal do Pampa, CEP 97650-000 Itaqui, RS, Brazil
| | - Jossana Rodrigues Ruff
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas, LaftamBio Pampa, Universidade Federal do Pampa, CEP 97650-000 Itaqui, RS, Brazil
| | - Dieniffer de Oliveira Espinosa
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas, LaftamBio Pampa, Universidade Federal do Pampa, CEP 97650-000 Itaqui, RS, Brazil
| | - Manuela Bastos Piegas
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas, LaftamBio Pampa, Universidade Federal do Pampa, CEP 97650-000 Itaqui, RS, Brazil
| | - Maicon Lenon Otenio de Brito
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas, LaftamBio Pampa, Universidade Federal do Pampa, CEP 97650-000 Itaqui, RS, Brazil
| | - Kellen Athaíde Rocha
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas, LaftamBio Pampa, Universidade Federal do Pampa, CEP 97650-000 Itaqui, RS, Brazil
| | - Marcelo Gomes de Gomes
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas, LaftamBio Pampa, Universidade Federal do Pampa, CEP 97650-000 Itaqui, RS, Brazil
| | - André Tiago Rossito Goes
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas, LaftamBio Pampa, Universidade Federal do Pampa, CEP 97650-000 Itaqui, RS, Brazil
| | - Leandro Cattelan Souza
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas, LaftamBio Pampa, Universidade Federal do Pampa, CEP 97650-000 Itaqui, RS, Brazil
| | - Franciele Donato
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas, LaftamBio Pampa, Universidade Federal do Pampa, CEP 97650-000 Itaqui, RS, Brazil
| | - Silvana Peterini Boeira
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas, LaftamBio Pampa, Universidade Federal do Pampa, CEP 97650-000 Itaqui, RS, Brazil
| | - Cristiano R Jesse
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas, LaftamBio Pampa, Universidade Federal do Pampa, CEP 97650-000 Itaqui, RS, Brazil.
| |
Collapse
|
18
|
Filho C, Jesse C, Donato F, Giacomeli R, Del Fabbro L, da Silva Antunes M, de Gomes M, Goes A, Boeira S, Prigol M, Souza L. Chronic unpredictable mild stress decreases BDNF and NGF levels and Na+,K+-ATPase activity in the hippocampus and prefrontal cortex of mice: Antidepressant effect of chrysin. Neuroscience 2015; 289:367-80. [DOI: 10.1016/j.neuroscience.2014.12.048] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 12/30/2014] [Accepted: 12/31/2014] [Indexed: 10/24/2022]
|
19
|
Ma L, Lu N, Wu G. Antiplatelet aggregation and endothelial protection of I4, a new synthetic anti-diabetes sulfonylurea compound. Platelets 2014; 26:342-8. [DOI: 10.3109/09537104.2014.912749] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
20
|
Su GY, Yang JY, Wang F, Ma J, Zhang K, Dong YX, Song SJ, Lu XM, Wu CF. Antidepressant-like effects of Xiaochaihutang in a rat model of chronic unpredictable mild stress. JOURNAL OF ETHNOPHARMACOLOGY 2014; 152:217-226. [PMID: 24440317 DOI: 10.1016/j.jep.2014.01.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 11/14/2013] [Accepted: 01/07/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xiaochaihutang (XCHT) has been used in China for thousands of years to treat "Shaoyang syndrome", which involves depressive-like symptoms. However, few studies have investigated its antidepressant effects and pharmacological mechanism of action. The present study was designed to confirm the antidepressant effect of XCHT using a chronic unpredictable mild stress (CUMS) model and explore its potential mechanism of action by investigating the monoamine neurotransmitters (dopamine and 5-hydroxytryptamine) and neurotrophins (BDNF and NGF). MATERIALS AND METHODS The CUMS model was established in rats, and the antidepressant effect of XCHT (0.6, 1.7 and 5mg/kg/day, given by gastric gavage for 4 weeks) was investigated using the open field test (OFT), food consumption test and sucrose preference test. The concentrations of 5-HT and DA in the hippocampus were measured by high performance liquid chromatography with electrochemical detection (HPLC-ECD). The expressions of brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), and their receptors tyrosine receptor kinase B (TrkB) and tyrosine receptor kinase A (TrkA) in the hippocampus were measured by immunohistochemical staining analysis. RESULTS CUMS caused a significant decrease in OFT, food consumption and sucrose preference in rats, and these depression-like behaviors were significantly improved by XCHT (1.7 and 5 g/kg/day). Moreover, XCHT significantly increased the concentrations of 5-HT (0.6 and 5 g/kg/day) and DA (5 g/kg/day), and improved the BDNF, NGF, TrkB and TrkA expressions in the hippocampus (1.7 and 5 g/kg/day), which was reduced in CUMS rats. CONCLUSION The results obtained suggested that XCHT may have therapeutic actions on depression-like behavior induced by CUMS in rats possibly mediated by increasing the monoamine neurotransmitter concentration and neurotrophin expression in the hippocampus.
Collapse
Affiliation(s)
- Guang Yue Su
- Department of Pharmacology, Shenyang Pharmaceutical University, Box 31, 103 Wenhua Road, 110016 Shenyang, PR China
| | - Jing Yu Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Box 31, 103 Wenhua Road, 110016 Shenyang, PR China
| | - Fang Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Box 31, 103 Wenhua Road, 110016 Shenyang, PR China
| | - Jie Ma
- Department of Pharmacology, Shenyang Pharmaceutical University, Box 31, 103 Wenhua Road, 110016 Shenyang, PR China
| | - Kuo Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, Box 31, 103 Wenhua Road, 110016 Shenyang, PR China
| | - Ying Xu Dong
- Department of Pharmacology, Shenyang Pharmaceutical University, Box 31, 103 Wenhua Road, 110016 Shenyang, PR China
| | - Shao Jiang Song
- Department of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 110016 Shenyang, PR China
| | - Xiu Mei Lu
- Department of pharmaceutical analysis, Shenyang Pharmaceutical University, 110016 Shenyang, China
| | - Chun Fu Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, Box 31, 103 Wenhua Road, 110016 Shenyang, PR China.
| |
Collapse
|
21
|
Behavioral and biochemical evidences for antidepressant-like activity of palmatine in mice subjected to chronic unpredictable mild stress. Pharmacol Rep 2014; 66:1-9. [DOI: 10.1016/j.pharep.2013.06.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 06/01/2013] [Accepted: 06/24/2013] [Indexed: 11/22/2022]
|
22
|
Audet MC, Anisman H. Interplay between pro-inflammatory cytokines and growth factors in depressive illnesses. Front Cell Neurosci 2013; 7:68. [PMID: 23675319 PMCID: PMC3650474 DOI: 10.3389/fncel.2013.00068] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 04/22/2013] [Indexed: 01/18/2023] Open
Abstract
The development of depressive disorders had long been attributed to monoamine variations, and pharmacological treatment strategies likewise focused on methods of altering monoamine availability. However, the limited success achieved by treatments that altered these processes spurred the search for alternative mechanisms and treatments. Here we provide a brief overview concerning a possible role for pro-inflammatory cytokines and growth factors in major depression, as well as the possibility of targeting these factors in treating this disorder. The data suggest that focusing on one or another cytokine or growth factor might be counterproductive, especially as these factors may act sequentially or in parallel in affecting depressive disorders. It is also suggested that cytokines and growth factors might be useful biomarkers for individualized treatments of depressive illnesses.
Collapse
|
23
|
Hill MN, Hellemans KGC, Verma P, Gorzalka BB, Weinberg J. Neurobiology of chronic mild stress: parallels to major depression. Neurosci Biobehav Rev 2012; 36:2085-117. [PMID: 22776763 PMCID: PMC4821201 DOI: 10.1016/j.neubiorev.2012.07.001] [Citation(s) in RCA: 304] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 06/21/2012] [Accepted: 07/01/2012] [Indexed: 01/28/2023]
Abstract
The chronic mild (or unpredictable/variable) stress (CMS) model was developed as an animal model of depression more than 20 years ago. The foundation of this model was that following long-term exposure to a series of mild, but unpredictable stressors, animals would develop a state of impaired reward salience that was akin to the anhedonia observed in major depressive disorder. In the time since its inception, this model has also been used for a variety of studies examining neurobiological variables that are associated with depression, despite the fact that this model has never been critically examined to validate that the neurobiological changes induced by CMS are parallel to those documented in depressive disorder. The aim of the current review is to summarize the current state of knowledge regarding the effects of chronic mild stress on neurobiological variables, such as neurochemistry, neurochemical receptor expression and functionality, neurotrophin expression and cellular plasticity. These findings are then compared to those of clinical research examining common variables in populations with depressive disorders to determine if the changes observed following chronic mild stress are in fact consistent with those observed in major depression. We conclude that the chronic mild stress paradigm: (1) evokes an array of neurobiological changes that mirror those seen in depressive disorders and (2) may be a suitable tool to investigate novel systems that could be disturbed in depression, and thus aid in the development of novel targets for the treatment of depression.
Collapse
Affiliation(s)
- Matthew N Hill
- Departments of Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, AB Canada.
| | | | | | | | | |
Collapse
|
24
|
Neto FL, Borges G, Torres-Sanchez S, Mico JA, Berrocoso E. Neurotrophins role in depression neurobiology: a review of basic and clinical evidence. Curr Neuropharmacol 2012; 9:530-52. [PMID: 22654714 PMCID: PMC3263450 DOI: 10.2174/157015911798376262] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2010] [Revised: 08/18/2010] [Accepted: 08/09/2010] [Indexed: 01/02/2023] Open
Abstract
Depression is a neuropsychiatric disorder affecting a huge percentage of the active population especially in developed countries. Research has devoted much of its attention to this problematic and many drugs have been developed and are currently prescribed to treat this pathology. Yet, many patients are refractory to the available therapeutic drugs, which mainly act by increasing the levels of the monoamines serotonin and noradrenaline in the synaptic cleft. Even in the cases antidepressants are effective, it is usually observed a delay of a few weeks between the onset of treatment and remission of the clinical symptoms. Additionally, many of these patients who show remission with antidepressant therapy present a relapse of depression upon treatment cessation. Thus research has focused on other possible molecular targets, besides monoamines, underlying depression. Both basic and clinical evidence indicates that depression is associated with
several structural and neurochemical changes where the levels of neurotrophins, particularly of brain-derived neurotrophic factor (BDNF), are altered. Antidepressants, as well as other therapeutic strategies, seem to restore these levels. Neuronal atrophy, mostly detected in limbic structures that regulate mood and cognition, like the hippocampus, is observed in depressed patients and in animal behavioural paradigms for depression. Moreover, chronic antidepressant treatment enhances adult hippocampal neurogenesis, supporting the notion that this event underlies antidepressants effects. Here we review some of the preclinical and clinical studies, aimed at disclosing the role of neurotrophins in the pathophysiological
mechanisms of depression and the mode of action of antidepressants, which favour the neurotrophic/neurogenic hypothesis.
Collapse
Affiliation(s)
- Fani L Neto
- Instituto de Histologia e Embriologia, Faculdade de Medicina e IBMC, Universidade do Porto, 4200-319, Porto, Portugal
| | | | | | | | | |
Collapse
|
25
|
Lochhead JJ, Thorne RG. Intranasal delivery of biologics to the central nervous system. Adv Drug Deliv Rev 2012; 64:614-28. [PMID: 22119441 DOI: 10.1016/j.addr.2011.11.002] [Citation(s) in RCA: 744] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 11/03/2011] [Accepted: 11/07/2011] [Indexed: 12/28/2022]
Abstract
Treatment of central nervous system (CNS) diseases is very difficult due to the blood-brain barrier's (BBB) ability to severely restrict entry of all but small, non-polar compounds. Intranasal administration is a non-invasive method of drug delivery which may bypass the BBB to allow therapeutic substances direct access to the CNS. Intranasal delivery of large molecular weight biologics such as proteins, gene vectors, and stem cells is a potentially useful strategy to treat a variety of diseases/disorders of the CNS including stroke, Parkinson's disease, multiple sclerosis, Alzheimer's disease, epilepsy, and psychiatric disorders. Here we give an overview of relevant nasal anatomy and physiology and discuss the pathways and mechanisms likely involved in drug transport from the nasal epithelium to the CNS. Finally we review both pre-clinical and clinical studies involving intranasal delivery of biologics to the CNS.
Collapse
Affiliation(s)
- Jeffrey J Lochhead
- Pharmaceutical Sciences Division, University of Wisconsin-Madison School of Pharmacy, Madison, WI 53705, USA
| | | |
Collapse
|
26
|
Intranasally administered neuropeptide S (NPS) exerts anxiolytic effects following internalization into NPS receptor-expressing neurons. Neuropsychopharmacology 2012; 37:1323-37. [PMID: 22278093 PMCID: PMC3327839 DOI: 10.1038/npp.2011.317] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Experiments in rodents revealed neuropeptide S (NPS) to constitute a potential novel treatment option for anxiety diseases such as panic and post-traumatic stress disorder. However, both its cerebral target sites and the molecular underpinnings of NPS-mediated effects still remain elusive. By administration of fluorophore-conjugated NPS, we pinpointed NPS target neurons in distinct regions throughout the entire brain. We demonstrated their functional relevance in the hippocampus. In the CA1 region, NPS modulates synaptic transmission and plasticity. NPS is taken up into NPS receptor-expressing neurons by internalization of the receptor-ligand complex as we confirmed by subsequent cell culture studies. Furthermore, we tracked internalization of intranasally applied NPS at the single-neuron level and additionally demonstrate that it is delivered into the mouse brain without losing its anxiolytic properties. Finally, we show that NPS differentially modulates the expression of proteins of the glutamatergic system involved inter alia in synaptic plasticity. These results not only enlighten the path of NPS in the brain, but also establish a non-invasive method for NPS administration in mice, thus strongly encouraging translation into a novel therapeutic approach for pathological anxiety in humans.
Collapse
|
27
|
Tian L, Guo R, Yue X, Lv Q, Ye X, Wang Z, Chen Z, Wu B, Xu G, Liu X. Intranasal administration of nerve growth factor ameliorate β-amyloid deposition after traumatic brain injury in rats. Brain Res 2012; 1440:47-55. [PMID: 22284619 DOI: 10.1016/j.brainres.2011.12.059] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 10/10/2011] [Accepted: 12/29/2011] [Indexed: 11/27/2022]
Abstract
The marked increase of amyloid-β (Aβ) peptide after traumatic brain injury (TBI), confers a risk factor for Alzheimer's disease (AD) in patients' later life. Nerve growth factor (NGF) is great potential to repair brain injury. But its clinical application is limited because of lacking feasible methods for delivering NGF into brain. This study investigated the effects of NGF, delivered intranasally, on the Aβ burden in the injured ipsilateral cortex and hippocampus of rats with TBI. Adult male Sprague-Dawley rats were subjected to the modified Feeney's weight-drop model and treated without or with NGF by intranasal route. Motor and cognitive functional outcome, immunostaining, ELISA assay and western blot were performed. Compared to sham operated rats, TBI rats exhibited significantly increased APP and Aβ₄₂ expression as well as decreased functional outcome after TBI. Intranasal administration of NGF significantly attenuated Aβ₄₂ deposits, and improved functional outcome after TBI. Thus, intranasal delivery of NGF provides a potential strategy for reducing the risk of developing AD in the later life of TBI patients.
Collapse
Affiliation(s)
- Lili Tian
- Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
McGeary JE, Gurel V, Knopik VS, Spaulding J, McMichael J. Effects of nerve growth factor (NGF), fluoxetine, and amitriptyline on gene expression profiles in rat brain. Neuropeptides 2011; 45:317-22. [PMID: 21820738 DOI: 10.1016/j.npep.2011.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 05/05/2011] [Accepted: 06/07/2011] [Indexed: 01/18/2023]
Abstract
Evidence suggests that nerve growth factor (NGF) may have antidepressant properties but the pharmacological mechanisms remain unknown. Previously, we found that NGF improved performance in the forced swim test in Flinders Sensitive Line rats, but did not appear to have similar biochemical actions with the antidepressant fluoxetine. Gene expression profiles for neurotransmitter receptors and regulator-related genes in the amygdala/hippocampus were determined in rats treated for 14days with NGF, fluoxetine, amitriptyline, or saline. Gene expression was measured using an RT(2) profiler PCR Array System to determine the basis for this effect. Compared with saline, there were numerous genes with significantly altered mRNA levels in the amygdala/hippocampal region. Overlap was found between the mRNA levels of genes altered by NGF and the two antidepressant medications including genes related to the cholinergic and dopaminergic systems. However, decreased mRNA levels of Drd5, Sstr3, Htr3a, and Cckar genes in the amygdala/hippocampus were uniquely regulated by NGF. The results of this study are consistent with a previous conclusion that the antidepressant effects of NGF are mediated through non-traditional receptors for traditionally considered neurotransmitters and may suggest a particular utility of NGF in treating comorbid depression and addiction.
Collapse
Affiliation(s)
- John E McGeary
- Providence Veterans Affairs Medical Center, Brown University, RI 02912, USA.
| | | | | | | | | |
Collapse
|
29
|
Agostinho FR, Réus GZ, Stringari RB, Ribeiro KF, Pfaffenseller B, Stertz L, Panizzutti BS, Kapczinski F, Quevedo J. Olanzapine plus fluoxetine treatment increases Nt-3 protein levels in the rat prefrontal cortex. Neurosci Lett 2011; 497:99-103. [PMID: 21545827 DOI: 10.1016/j.neulet.2011.04.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 04/14/2011] [Accepted: 04/18/2011] [Indexed: 01/19/2023]
Abstract
Evidence is emerging for a role for neurotrophins in the treatment of mood disorders. In this study, we evaluated the effects of chronic administration of fluoxetine, olanzapine and the combination of fluoxetine/olanzapine on the brain-derived-neurotrophic factor (BDNF), nerve growth factor (NGF), and neurotrophin-3 (NT-3) in the rat brain. Wistar rats received daily injections of olanzapine (3 or 6 mg/kg) and/or fluoxetine (12.5 or 25mg/kg) for 28 days, and we evaluated for BDNF, NGF and NT-3 protein levels in the prefrontal cortex, hippocampus and amygdala. Our results showed that treatment with fluoxetine and olanzapine alone or in combination did not alter BDNF in the prefrontal cortex (p=0.37), hippocampus (p=0.98) and amygdala (p=0.57) or NGF protein levels in the prefrontal cortex (p=0.72), hippocampus (p=0.23) and amygdala (p=0.64), but NT-3 protein levels were increased by olanzapine 6 mg/kg/fluoxetine 25mg/kg combination in the prefrontal cortex (p=0.03), in the hippocampus (p=0.83) and amygdala (p=0.88) NT-3 protein levels did not alter. Finally, these findings further support the hypothesis that NT-3 could be involved in the effect of treatment with antipsychotic and antidepressant combination in mood disorders.
Collapse
Affiliation(s)
- Fabiano R Agostinho
- Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, SC, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Calza A, Florenzano F, Pellegrini D, Tirassa P. Time-dependent activation of c-fos in limbic brain areas by ocular administration of nerve growth factor in adult rats. J Ocul Pharmacol Ther 2011; 27:209-18. [PMID: 21510807 DOI: 10.1089/jop.2010.0139] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
PURPOSE The ocular administration of the neurotrophin nerve growth factor (NGF) has been successfully used in humans to recover damaged ocular tissues. Studies on animal models have demonstrated the ability of ocular applied NGF to reach the retina and the optic nerve and affect brain visual areas. The aim of this study was to examine whether the ocular application of NGF as eye drops might affect brain areas other than the primary visual centers. METHODS Two drops (10 μL) of NGF solution (200 μg/mL) or saline were applied as collyrium to both eyes of adult male Sprague-Dawley rats. The animals were sacrificed at 4, 8, or 24 h after treatment and the brains were fixed through intracardiac perfusion. Coronal brain sections were cut with a cryostat and used for immunohistochemical time series and double immunofluorescence studies using c-fos and NeuN as markers for neuronal activation. RESULTS The immunohistochemical studies show a time-dependent effect of NGF eye drop treatment. At 4 h after NGF ocular administration, the increase in c-fos immunoreactivity is mainly observed in areas belonging to the central visual system, such as the lateral geniculate nucleus and visual cortex. At 8 h posttreatment, c-fos expression is enhanced in several limbic structures, including the frontal cortex, hippocampus, amygdala, and hypothalamus. The effects of NGF on c-fos distribution persist at 24 h postadministration. Specificity of NGF-induced c-fos in brain was confirmed using inactivated NGF. The neuronal nature of the NGF-activated cells was demonstrated by confocal microscopy observation of c-fos and NeuN colocalization. CONCLUSION This study demonstrates that NGF, when applied on ocular surface, is able to activate c-fos in several areas of the limbic system in a time-dependent manner. These findings suggest that the effects of NGF eye drops are not restricted to the primary visual areas, but are extended to all the retinal central targets, including the forebrain structure. Based on these data, the use of NGF eye drops as a strategy to produce NGF-mediated protective and reparative actions in brain is hypothesizable.
Collapse
Affiliation(s)
- Arianna Calza
- National Council of Research, Institute of Cellular Biology and Neurobiology, Rome, Italy
| | | | | | | |
Collapse
|
31
|
Zhu W, Cheng S, Xu G, Ma M, Zhou Z, Liu D, Liu X. Intranasal nerve growth factor enhances striatal neurogenesis in adult rats with focal cerebral ischemia. Drug Deliv 2011; 18:338-43. [PMID: 21348576 DOI: 10.3109/10717544.2011.557785] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nerve growth factor (NGF) has been proved with the potential of promoting neurogenesis in adult mammalians. This study was aimed to investigate the effect of intranasal (IN) NGF on striatal neurogenesis and functional recovery in adult rats with focal cerebral ischemia. Rats were subjected to middle cerebral artery occlusion (MCAO) for 2 h, and then reperfused. NGF or vehicle was intranasally administered 24 h after cerebral reperfusion, and the treatments continued for 6 consecutive days there after. All animals were injected with 5-bromodeoxyuridine (BrdU) twice daily for 5-7 days after MCAO, and sacrificed 1 day and 28 days, respectively, after the last BrdU injection. Neural cell proliferation and survival in different brain regions were analyzed. Functional tests and immunohistochemical staining were also performed. The results showed that treatment with IN NGF failed to increase cell proliferation but improved survival of newly generated cells in ipsilateral striatum and subventricular zones (SVZ). Double immunofluorescence with BrdU and neuronal nuclei protein, a mature neuronal marker, were increased in striatum and SVZ in rats treated with IN NGF. The functional recovery was also observed at time of neurogenesis enhancement in striate. In conclusion, IN NGF may enhance neurogenesis and survival of newly generated cells, which may result in improved functional recovery after cerebral ischemia.
Collapse
Affiliation(s)
- Wusheng Zhu
- Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Jiangsu Province, PR China
| | | | | | | | | | | | | |
Collapse
|