1
|
Harders AR, Watermann P, Karger G, Denieffe SC, Weller A, Dannemann AC, Willker JE, Köhler Y, Arend C, Dringen R. Consequences of a 2-Deoxyglucose Exposure on the ATP Content and the Cytosolic Glucose Metabolism of Cultured Primary Rat Astrocytes. Neurochem Res 2024; 49:3244-3262. [PMID: 38898248 PMCID: PMC11502578 DOI: 10.1007/s11064-024-04192-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
The glucose analogue 2-deoxyglucose (2DG) has frequently been used as a tool to study cellular glucose uptake and to inhibit glycolysis. Exposure of primary cultured astrocytes to 2DG caused a time- and concentration-dependent cellular accumulation of 2-deoxyglucose-6-phosphate (2DG6P) that was accompanied by a rapid initial decline in cellular ATP content. Inhibitors of mitochondrial respiration as well as inhibitors of mitochondrial uptake of pyruvate and activated fatty acids accelerated the ATP loss, demonstrating that mitochondrial ATP regeneration contributes to the partial maintenance of the ATP content in 2DG-treated astrocytes. After a 30 min exposure to 10 mM 2DG the specific content of cellular 2DG6P had accumulated to around 150 nmol/mg, while cellular ATP was lowered by 50% to around 16 nmol/mg. Following such a 2DG6P-loading of astrocytes, glycolytic lactate production from applied glucose was severely impaired during the initial 60 min of incubation, but was reestablished during longer incubation concomitant with a loss in cellular 2DG6P content. In contrast to glycolysis, the glucose-dependent NADPH regeneration via the pentose phosphate pathway (PPP) was only weakly affected in 2DG6P-loaded astrocytes and in cells that were coincubated with glucose in the presence of an excess of 2DG. Additionally, in the presence of 2DG PPP-dependent WST1 reduction was found to have doubled compared to hexose-free control incubations, indicating that cellular 2DG6P can serve as substrate for NADPH regeneration by the astrocytic PPP. The data presented provide new insights on the metabolic consequences of a 2DG exposure on the energy and glucose metabolism of astrocytes and demonstrate the reversibility of the inhibitory potential of a 2DG-treatment on the glucose metabolism of cultured astrocytes.
Collapse
Affiliation(s)
- Antonia Regina Harders
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany
- Centre for Environmental Research and Sustainable Technologies, University of Bremen, Bremen, Germany
| | - Patrick Watermann
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany
- Centre for Environmental Research and Sustainable Technologies, University of Bremen, Bremen, Germany
| | - Gabriele Karger
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany
- Centre for Environmental Research and Sustainable Technologies, University of Bremen, Bremen, Germany
| | - Sadhbh Cynth Denieffe
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany
| | - Alina Weller
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany
| | - Annika Carina Dannemann
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany
| | - Johanna Elisabeth Willker
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany
| | - Yvonne Köhler
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany
- Centre for Environmental Research and Sustainable Technologies, University of Bremen, Bremen, Germany
| | - Christian Arend
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany
- Centre for Environmental Research and Sustainable Technologies, University of Bremen, Bremen, Germany
| | - Ralf Dringen
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany.
- Centre for Environmental Research and Sustainable Technologies, University of Bremen, Bremen, Germany.
| |
Collapse
|
2
|
Toledano A, Rodríguez-Casado A, Älvarez MI, Toledano-Díaz A. Alzheimer's Disease, Obesity, and Type 2 Diabetes: Focus on Common Neuroglial Dysfunctions (Critical Review and New Data on Human Brain and Models). Brain Sci 2024; 14:1101. [PMID: 39595866 PMCID: PMC11591712 DOI: 10.3390/brainsci14111101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/17/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Obesity, type 2 diabetes (T2D), and Alzheimer's disease (AD) are pathologies that affect millions of people worldwide. They have no effective therapy and are difficult to prevent and control when they develop. It has been known for many years that these diseases have many pathogenic aspects in common. We highlight in this review that neuroglial cells (astroglia, oligodendroglia, and microglia) play a vital role in the origin, clinical-pathological development, and course of brain neurodegeneration. Moreover, we include the new results of a T2D-AD mouse model (APP+PS1 mice on a high-calorie diet) that we are investigating. METHODS Critical bibliographic revision and biochemical neuropathological study of neuroglia in a T2D-AD model. RESULTS T2D and AD are not only "connected" by producing complex pathologies in the same individual (obesity, T2D, and AD), but they also have many common pathogenic mechanisms. These include insulin resistance, hyperinsulinemia, hyperglycemia, oxidative stress, mitochondrial dysfunction, and inflammation (both peripheral and central-or neuroinflammation). Cognitive impairment and AD are the maximum exponents of brain neurodegeneration in these pathological processes. both due to the dysfunctions induced by metabolic changes in peripheral tissues and inadequate neurotoxic responses to changes in the brain. In this review, we first analyze the common pathogenic mechanisms of obesity, T2D, and AD (and/or cerebral vascular dementia) that induce transcendental changes and responses in neuroglia. The relationships between T2D and AD discussed mainly focus on neuroglial responses. Next, we present neuroglial changes within their neuropathological context in diverse scenarios: (a) aging involution and neurodegenerative disorders, (b) human obesity and diabetes and obesity/diabetes models, (c) human AD and in AD models, and (d) human AD-T2D and AD-T2D models. An important part of the data presented comes from our own studies on humans and experimental models over the past few years. In the T2D-AD section, we included the results of a T2D-AD mouse model (APP+PS1 mice on a high-calorie diet) that we investigated, which showed that neuroglial dysfunctions (astrocytosis and microgliosis) manifest before the appearance of amyloid neuropathology, and that the amyloid pathology is greater than that presented by mice fed a normal, non-high-caloric diet A broad review is finally included on pharmacological, cellular, genic, and non-pharmacological (especially diet and lifestyle) neuroglial-related treatments, as well as clinical trials in a comparative way between T2D and AD. These neuroglial treatments need to be included in the multimodal/integral treatments of T2D and AD to achieve greater therapeutic efficacy in many millions of patients. CONCLUSIONS Neuroglial alterations (especially in astroglia and microglia, cornerstones of neuroinflammation) are markedly defining brain neurodegeneration in T2D and A, although there are some not significant differences between each of the studied pathologies. Neuroglial therapies are a very important and p. promising tool that are being developed to prevent and/or treat brain dysfunction in T2D-AD. The need for further research in two very different directions is evident: (a) characterization of the phenotypic changes of astrocytes and microglial cells in each region of the brain and in each phase of development of each isolated and associated pathology (single-cell studies are mandatory) to better understand the pathologies and define new therapeutic targets; (b) studying new therapeutic avenues to normalize the function of neuroglial cells (preventing neurotoxic responses and/or reversing them) in these pathologies, as well as the phenotypic characteristics in each moment of the course and place of the neurodegenerative process.
Collapse
Affiliation(s)
- Adolfo Toledano
- Instituto Cajal, CSIC, 28002 Madrid, Spain; (A.R.-C.); (M.I.Ä.)
| | | | | | | |
Collapse
|
3
|
Gorbatenko VO, Goriainov SV, Babenko VA, Plotnikov EY, Chistyakov DV, Sergeeva MG. TLR3-mediated Astrocyte Responses in High and Normal Glucose Adaptation Differently Regulated by Metformin. Cell Biochem Biophys 2024; 82:2701-2715. [PMID: 38918312 DOI: 10.1007/s12013-024-01380-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2024] [Indexed: 06/27/2024]
Abstract
Toll-like receptors 3 (TLR3) are innate immune receptors expressed on a wide range of cell types, including glial cells. Inflammatory responses altered by hyperglycemia highlight the need to explore the molecular underpinnings of these changes in cellular models. Therefore, here we estimated TLR3-mediated response of astrocytes cultured at normal (NG, 5 mM) and high (HG, 22.5 mM) glucose concentrations for 48 h before stimulation with polyinosinic:polycytidylic acid Poly(I:C) (PIC) for 6 h. Seahorse Extracellular Flux Analyzer (Seahorse XFp) was used to estimate the extracellular acidification rate (ECAR) and oxygen consumption rate (OCR). Although adaptation to HG affected ECAR and OCR, the stimulation of cells with PIC had no effect on ECAR. PIC reduced maximal OCR, but this effect disappeared upon adaptation to HG. PIC-stimulated release of cytokines IL-1β, IL-10 was reduced, and that of IL-6 and iNOS was increased in the HG model. Adaptation to HG reduced PIC-stimulated synthesis of COX-derived oxylipins measured by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Adaptation to HG did not alter PIC-stimulated p38 activity, ERK mitogen-activated protein kinase, STAT3 and ROS production. Metformin exhibited anti-inflammatory activity, reducing PIC-stimulated synthesis of cytokines and oxylipins. Cell adaptation to high glucose concentration altered the sensitivity of astrocytes to TLR3 receptor activation, and the hypoglycemic drug metformin may exert anti-inflammatory effects under these conditions.
Collapse
Affiliation(s)
- Vladislav O Gorbatenko
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234, Moscow, Russia
| | - Sergey V Goriainov
- Peoples' Friendship University of Russia (RUDN University), 117198, Moscow, Russia
| | - Valentina A Babenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992, Moscow, Russia
| | - Egor Y Plotnikov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992, Moscow, Russia
| | - Dmitry V Chistyakov
- Peoples' Friendship University of Russia (RUDN University), 117198, Moscow, Russia.
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992, Moscow, Russia.
| | - Marina G Sergeeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992, Moscow, Russia
| |
Collapse
|
4
|
Bobermin LD, da Costa DS, de Moraes ADM, da Silva VF, de Oliveira GT, Sesterheim P, Tramontina AC, Basso LA, Leipnitz G, Quincozes-Santos A, Gonçalves CA. Effect of metformin in hypothalamic astrocytes from an immunocompromised mice model. Biochimie 2024; 223:196-205. [PMID: 38642825 DOI: 10.1016/j.biochi.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/24/2024] [Accepted: 04/15/2024] [Indexed: 04/22/2024]
Abstract
Astrocytes are glial cells that play key roles in neuroinflammation, which is a common feature in diabetic encephalopathy and aging process. Metformin is an antidiabetic compound that shows neuroprotective properties, including in inflammatory models, but astroglial signaling pathways involved are still poorly known. Interferons α/β are cytokines that participate in antiviral responses and the lack of their signaling increases susceptible to viral infections. Here, we investigated the effects of metformin on astrocytes from hypothalamus, a crucial brain region related to inflammatory processes. Astrocyte cultures were derived from interferon α/β receptor knockout (IFNα/βR-/-) and wild-type (WT) mice. Metformin did not change the expression of glial fibrillary acidic protein but caused an anti-inflammatory effect by decreasing pro-inflammatory cytokines (tumor necrosis factor-α and interleukin-1β), as well as increasing gene expression of anti-inflammatory proteins interleukin-10 and Nrf2 (nuclear factor erythroid derived 2 like 2). However, nuclear factor κB p65 and cyclooxygenase 2 were downregulated in WT astrocytes and upregulated in IFNα/βR-/- astrocytes. AMP-activated protein kinase (AMPK), a molecular target of metformin, was upregulated only in WT astrocytes, while sirtuin 1 increased in both mice models. The expression of inducible nitric oxide synthase was decreased in WT astrocytes and heme oxygenase 1 was increased in IFNα/βR-/- astrocytes. Although loss of IFNα/βR-mediated signaling affects some effects of metformin, our results support beneficial roles of this drug in hypothalamic astrocytes. Moreover, paradoxical response of metformin may involve AMPK. Thus, metformin can mediate glioprotection due its effects on age-related disorders in non-diabetic and diabetic encephalopathy individuals.
Collapse
Affiliation(s)
- Larissa Daniele Bobermin
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Daniele Schauren da Costa
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Aline Daniel Moreira de Moraes
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Vanessa Fernanda da Silva
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Giancarlo Tomazzoni de Oliveira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Patrícia Sesterheim
- Centro de Cardiologia Experimental, Instituto de Cardiologia/Fundação Universitária de Cardiologia, Porto Alegre, RS, Brazil; Centro Estadual de Vigilância em Saúde da Secretaria de Saúde do Estado do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ana Carolina Tramontina
- Programa de Pós-Graduação em Ambiente e Sustentabilidade, Universidade Estadual do Rio Grande do Sul, São Francisco de Paula, RS, Brazil
| | - Luiz Augusto Basso
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Guilhian Leipnitz
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - André Quincozes-Santos
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carlos-Alberto Gonçalves
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
5
|
Watermann P, Arend C, Dringen R. G6PDi-1 is a Potent Inhibitor of G6PDH and of Pentose Phosphate pathway-dependent Metabolic Processes in Cultured Primary Astrocytes. Neurochem Res 2023; 48:3177-3189. [PMID: 37394677 PMCID: PMC10471714 DOI: 10.1007/s11064-023-03964-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/31/2023] [Accepted: 06/03/2023] [Indexed: 07/04/2023]
Abstract
Glucose-6-phosphate dehydrogenase (G6PDH) catalyses the rate limiting first step of the oxidative part of the pentose phosphate pathway (PPP), which has a crucial function in providing NADPH for antioxidative defence and reductive biosyntheses. To explore the potential of the new G6PDH inhibitor G6PDi-1 to affect astrocytic metabolism, we investigated the consequences of an application of G6PDi-1 to cultured primary rat astrocytes. G6PDi-1 efficiently inhibited G6PDH activity in lysates of astrocyte cultures. Half-maximal inhibition was observed for 100 nM G6PDi-1, while presence of almost 10 µM of the frequently used G6PDH inhibitor dehydroepiandrosterone was needed to inhibit G6PDH in cell lysates by 50%. Application of G6PDi-1 in concentrations of up to 100 µM to astrocytes in culture for up to 6 h did not affect cell viability nor cellular glucose consumption, lactate production, basal glutathione (GSH) export or the high basal cellular ratio of GSH to glutathione disulfide (GSSG). In contrast, G6PDi-1 drastically affected astrocytic pathways that depend on the PPP-mediated supply of NADPH, such as the NAD(P)H quinone oxidoreductase (NQO1)-mediated WST1 reduction and the glutathione reductase-mediated regeneration of GSH from GSSG. These metabolic pathways were lowered by G6PDi-1 in a concentration-dependent manner in viable astrocytes with half-maximal effects observed for concentrations between 3 and 6 µM. The data presented demonstrate that G6PDi-1 efficiently inhibits the activity of astrocytic G6PDH and impairs specifically those metabolic processes that depend on the PPP-mediated regeneration of NADPH in cultured astrocytes.
Collapse
Affiliation(s)
- Patrick Watermann
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, 330440, 28334, Bremen, Germany
- Centre for Environmental Research and Sustainable Technologies, University of Bremen, Bremen, Germany
| | - Christian Arend
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, 330440, 28334, Bremen, Germany
- Centre for Environmental Research and Sustainable Technologies, University of Bremen, Bremen, Germany
| | - Ralf Dringen
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, 330440, 28334, Bremen, Germany.
- Centre for Environmental Research and Sustainable Technologies, University of Bremen, Bremen, Germany.
| |
Collapse
|
6
|
Meng F, Fu J, Zhang L, Guo M, Zhuang P, Yin Q, Zhang Y. Function and therapeutic value of astrocytes in diabetic cognitive impairment. Neurochem Int 2023; 169:105591. [PMID: 37543309 DOI: 10.1016/j.neuint.2023.105591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 08/07/2023]
Abstract
Diabetic cognitive impairment (DCI) is a complex complication of diabetes in the central nervous system, and its pathological mechanism is still being explored. Astrocytes are abundant glial cells in central nervous system that perform diverse functions in health and disease. Accumulating excellent research has identified astrocyte dysfunction in many neurodegenerative diseases (such as Alzheimer's disease, aging and Parkinson's disease), and summarized and discussed its pathological mechanisms and potential therapeutic value. However, the contribution of astrocytes to DCI has been largely overlooked. In this review, we first systematically summarized the effects and mechanisms of diabetes on brain astrocytes, and found that the diabetic environment (such as hyperglycemia, advanced glycation end products and cerebral insulin resistance) mediated brain reactive astrogliosis, which was specifically reflected in the changes of cell morphology and the remodeling of signature molecules. Secondly, we emphasized the contribution and potential targets of reactive astrogliosis to DCI, and found that reactive astrogliosis-induced increased blood-brain barrier permeability, glymphatic system dysfunction, neuroinflammation, abnormal cell communication and cholesterol metabolism dysregulation worsened cognitive function. In addition, we summarized effective strategies for treating DCI by targeting astrocytes. Finally, we discuss the application of new techniques in astrocytes, including single-cell transcriptome, in situ sequencing, and prospected new functions, new subsets and new targets of astrocytes in DCI.
Collapse
Affiliation(s)
- Fanyu Meng
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jiafeng Fu
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lin Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Mengqing Guo
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Pengwei Zhuang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Qingsheng Yin
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China.
| | - Yanjun Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China; First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China.
| |
Collapse
|
7
|
Szrok-Jurga S, Turyn J, Hebanowska A, Swierczynski J, Czumaj A, Sledzinski T, Stelmanska E. The Role of Acyl-CoA β-Oxidation in Brain Metabolism and Neurodegenerative Diseases. Int J Mol Sci 2023; 24:13977. [PMID: 37762279 PMCID: PMC10531288 DOI: 10.3390/ijms241813977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
This review highlights the complex role of fatty acid β-oxidation in brain metabolism. It demonstrates the fundamental importance of fatty acid degradation as a fuel in energy balance and as an essential component in lipid homeostasis, brain aging, and neurodegenerative disorders.
Collapse
Affiliation(s)
- Sylwia Szrok-Jurga
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (J.T.); (A.H.)
| | - Jacek Turyn
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (J.T.); (A.H.)
| | - Areta Hebanowska
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (J.T.); (A.H.)
| | - Julian Swierczynski
- Institute of Nursing and Medical Rescue, State University of Applied Sciences in Koszalin, 75-582 Koszalin, Poland;
| | - Aleksandra Czumaj
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.C.); (T.S.)
| | - Tomasz Sledzinski
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.C.); (T.S.)
| | - Ewa Stelmanska
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (J.T.); (A.H.)
| |
Collapse
|
8
|
Skiöldebrand E, Adepu S, Lützelschwab C, Nyström S, Lindahl A, Abrahamsson-Aurell K, Hansson E. A randomized, triple-blinded controlled clinical study with a novel disease-modifying drug combination in equine lameness-associated osteoarthritis. OSTEOARTHRITIS AND CARTILAGE OPEN 2023; 5:100381. [PMID: 37416846 PMCID: PMC10320210 DOI: 10.1016/j.ocarto.2023.100381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 07/08/2023] Open
Abstract
Objective This study aimed to test a novel treatment combination (TC) (equivalent to sildenafil, mepivacaine, and glucose) with disease-modifying properties compared to Celestone® bifas® (CB) in a randomized triple-blinded phase III clinical study in horses with mild osteoarthritis (OA). Joint biomarkers (reflecting the articular cartilage and subchondral bone remodelling) and clinical lameness were used as readouts to evaluate the treatment efficacy. Methods Twenty horses with OA-associated lameness in the carpal joint were included in the study and received either TC (n = 10) or CB (n = 10) drug intra-articularly-twice in the middle carpal joint with an interval of 2 weeks (visit 1 & 2). Clinical lameness was assessed both objectively (Lameness locator) and subjectively (visually). Synovial fluid and serum were sampled for quantification of the extracellular matrix (ECM) neo-epitope joint biomarkers represented by biglycan (BGN262) and cartilage oligomeric matrix protein (COMP156). Another two weeks later clinical lameness was recorded, and serum was collected for biomarkers analysis. The overall health status was compared pre and post-intervention by interviewing the trainer. Results Post-intervention, SF BGN262 levels significantly declined in TC (P = 0.002) and COMP156 levels significantly increased in CB (P = 0.002). The flexion test scores improved in the TC compared to CB (P =0.033) and also had an improved trotting gait quality (P =0.044). No adverse events were reported. Conclusion This is the first clinical study presenting companion diagnostics assisting in identifying OA phenotype and evaluating the efficacy and safety of a novel disease-modifying osteoarthritic drug.
Collapse
Affiliation(s)
- E. Skiöldebrand
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - S. Adepu
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - C. Lützelschwab
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - S. Nyström
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska University Hospital, Gothenburg University, Gothenburg, Sweden
| | - A. Lindahl
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska University Hospital, Gothenburg University, Gothenburg, Sweden
| | - K. Abrahamsson-Aurell
- Hallands Djursjukhus Kungsbacka Hästklinik, Älvsåkers Byväg 20, 434 95 Kungsbacka, Sweden
| | - E. Hansson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
9
|
Harders AR, Arend C, Denieffe SC, Berger J, Dringen R. Endogenous Energy Stores Maintain a High ATP Concentration for Hours in Glucose-Depleted Cultured Primary Rat Astrocytes. Neurochem Res 2023; 48:2241-2252. [PMID: 36914795 PMCID: PMC10182151 DOI: 10.1007/s11064-023-03903-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/16/2023]
Abstract
Adenosine triphosphate (ATP) is the central energy currency of all cells. Cultured primary rat astrocytes contain a specific cellular ATP content of 27.9 ± 4.7 nmol/mg. During incubation in a glucose- and amino acid-free incubation buffer, this high cellular ATP content was maintained for at least 6 h, while within 24 h the levels of ATP declined to around 30% of the initial value without compromising cell viability. In contrast, cells exposed to 1 mM and 5 mM glucose maintained the initial high cellular ATP content for 24 and 72 h, respectively. The loss in cellular ATP content observed during a 24 h glucose-deprivation was fully prevented by the presence of glucose, fructose or mannose as well as by the mitochondrial substrates lactate, pyruvate, β-hydroxybutyrate or acetate. The high initial specific ATP content in glucose-starved astrocytes, was almost completely abolished within 30 min after application of the respiratory chain inhibitor antimycin A or the mitochondrial uncoupler BAM-15, while these inhibitors lowered in glucose-fed cells the ATP content only to 60% (BAM-15) and 40% (antimycin A) within 5 h. Inhibition of the mitochondrial pyruvate carrier by UK5099 alone or of mitochondrial fatty acid uptake by etomoxir alone hardly affected the high ATP content of glucose-deprived astrocytes during an incubation for 8 h, while the co-application of both inhibitors depleted cellular ATP levels almost completely within 5 h. These data underline the importance of mitochondrial metabolism for the ATP regeneration of astrocytes and demonstrate that the mitochondrial oxidation of pyruvate and fatty acids strongly contributes to the maintenance of a high ATP concentration in glucose-deprived astrocytes.
Collapse
Affiliation(s)
- Antonia Regina Harders
- Centre for Biomolecular Interactions Bremen Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany.,Centre for Environmental Research and Sustainable Technologies, University of Bremen, Bremen, Germany
| | - Christian Arend
- Centre for Biomolecular Interactions Bremen Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany.,Centre for Environmental Research and Sustainable Technologies, University of Bremen, Bremen, Germany
| | - Sadhbh Cynth Denieffe
- Centre for Biomolecular Interactions Bremen Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany
| | - Julius Berger
- Centre for Biomolecular Interactions Bremen Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany
| | - Ralf Dringen
- Centre for Biomolecular Interactions Bremen Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany. .,Centre for Environmental Research and Sustainable Technologies, University of Bremen, Bremen, Germany.
| |
Collapse
|
10
|
β-lapachone-mediated WST1 Reduction as Indicator for the Cytosolic Redox Metabolism of Cultured Primary Astrocytes. Neurochem Res 2023; 48:2148-2160. [PMID: 36811754 PMCID: PMC10182120 DOI: 10.1007/s11064-023-03878-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/24/2023]
Abstract
Electron cycler-mediated extracellular reduction of the water-soluble tetrazolium salt 1 (WST1) is frequently used as tool for the determination of cell viability. We have adapted this method to monitor by determining the extracellular WST1 formazan accumulation the cellular redox metabolism of cultured primary astrocytes via the NAD(P)H-dependent reduction of the electron cycler β-lapachone by cytosolic NAD(P)H:quinone oxidoreductase 1 (NQO1). Cultured astrocytes that had been exposed to β-lapachone in concentrations of up to 3 µM remained viable and showed an almost linear extracellular accumulation of WST1 formazan for the first 60 min, while higher concentrations of β-lapachone caused oxidative stress and impaired cell metabolism. β-lapachone-mediated WST1 reduction was inhibited by the NQO1 inhibitors ES936 and dicoumarol in a concentration-dependent manner, with half-maximal inhibition observed at inhibitor concentrations of about 0.3 µM. β-lapachone-mediated WST1 reduction depended strongly on glucose availability, while mitochondrial substrates such as lactate, pyruvate or ketone bodies allowed only residual β-lapachone-mediated WST1 reduction. Accordingly, the mitochondrial respiratory chain inhibitors antimycin A and rotenone hardly affected astrocytic WST1 reduction. Both NADH and NADPH are known to supply electrons for reactions catalysed by cytosolic NQO1. Around 60% of the glucose-dependent β-lapachone-mediated WST1 reduction was prevented by the presence of the glucose-6-phosphate dehydrogenase inhibitor G6PDi-1, while the glyceraldehyde-3-phosphate dehydrogenase inhibitor iodoacetate had only little inhibitory potential. These data suggest that pentose phosphate pathway-generated NADPH, and not glycolysis-derived NADH, is the preferred electron source for cytosolic NQO1-catalysed reductions in cultured astrocytes.
Collapse
|
11
|
Shen Z, Li ZY, Yu MT, Tan KL, Chen S. Metabolic perspective of astrocyte dysfunction in Alzheimer's disease and type 2 diabetes brains. Biomed Pharmacother 2023; 158:114206. [PMID: 36916433 DOI: 10.1016/j.biopha.2022.114206] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/30/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
The term type III diabetes (T3DM) has been proposed for Alzheimer's disease (AD) due to the shared molecular and cellular features between type 2 diabetes (T2DM) and insulin resistance-associated memory deficits and cognitive decline in elderly individuals. Astrocytes elicit neuroprotective or deleterious effects in AD progression and severity. Patients with T2DM are at a high risk of cognitive impairment, and targeting astrocytes might be promising in alleviating neurodegeneration in the diabetic brain. Recent studies focusing on cell-specific activities in the brain have revealed the important role of astrocytes in brain metabolism (e.g., glucose metabolism, lipid metabolism), neurovascular coupling, synapses, and synaptic plasticity. In this review, we discuss how astrocytes and their dysfunction result in multiple pathological and clinical features of AD and T2DM from a metabolic perspective and the potential comorbid mechanism in these two diseases from the perspective of astrocytes.
Collapse
Affiliation(s)
- Zheng Shen
- Zunyi Medical University, Zhuhai Campus, Zhuhai, Guangdong 519041, China
| | - Zheng-Yang Li
- Zunyi Medical University, Zhuhai Campus, Zhuhai, Guangdong 519041, China
| | - Meng-Ting Yu
- Zunyi Medical University, Zhuhai Campus, Zhuhai, Guangdong 519041, China
| | - Kai-Leng Tan
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, China.
| | - Si Chen
- Zunyi Medical University, Zhuhai Campus, Zhuhai, Guangdong 519041, China.
| |
Collapse
|
12
|
Vizuete AFK, Fróes F, Seady M, Zanotto C, Bobermin LD, Roginski AC, Wajner M, Quincozes-Santos A, Gonçalves CA. Early effects of LPS-induced neuroinflammation on the rat hippocampal glycolytic pathway. J Neuroinflammation 2022; 19:255. [PMID: 36221097 PMCID: PMC9552490 DOI: 10.1186/s12974-022-02612-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/27/2022] [Indexed: 11/10/2022] Open
Abstract
Neuroinflammation is a common feature during the development of neurological disorders and neurodegenerative diseases, where glial cells, such as microglia and astrocytes, play key roles in the activation and maintenance of inflammatory responses in the central nervous system. Neuroinflammation is now known to involve a neurometabolic shift, in addition to an increase in energy consumption. We used two approaches (in vivo and ex vivo) to evaluate the effects of lipopolysaccharide (LPS)-induced neuroinflammation on neurometabolic reprogramming, and on the modulation of the glycolytic pathway during the neuroinflammatory response. For this, we investigated inflammatory cytokines and receptors in the rat hippocampus, as well as markers of glial reactivity. Mitochondrial respirometry and the glycolytic pathway were evaluated by multiple parameters, including enzymatic activity, gene expression and regulation by protein kinases. Metabolic (e.g., metformin, 3PO, oxamic acid, fluorocitrate) and inflammatory (e.g., minocycline, MCC950, arundic acid) inhibitors were used in ex vivo hippocampal slices. The induction of early inflammatory changes by LPS (both in vivo and ex vivo) enhanced glycolytic parameters, such as glucose uptake, PFK1 activity and lactate release. This increased glucose consumption was independent of the energy expenditure for glutamate uptake, which was in fact diverted for the maintenance of the immune response. Accordingly, inhibitors of the glycolytic pathway and Krebs cycle reverted neuroinflammation (reducing IL-1β and S100B) and the changes in glycolytic parameters induced by LPS in acute hippocampal slices. Moreover, the inhibition of S100B, a protein predominantly synthesized and secreted by astrocytes, inhibition of microglia activation and abrogation of NLRP3 inflammasome assembly confirmed the role of neuroinflammation in the upregulation of glycolysis in the hippocampus. Our data indicate a neurometabolic glycolytic shift, induced by inflammatory activation, as well as a central and integrative role of astrocytes, and suggest that interference in the control of neurometabolism may be a promising strategy for downregulating neuroinflammation and consequently for diminishing negative neurological outcomes.
Collapse
Affiliation(s)
- Adriana Fernanda K Vizuete
- Laboratory of Calcium-Binding Proteins in the CNS, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal Do Rio Grande Do Sul (UFRGS), Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, Zip Code: 90035-003, Brazil. .,Pos Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil.
| | - Fernanda Fróes
- Laboratory of Calcium-Binding Proteins in the CNS, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal Do Rio Grande Do Sul (UFRGS), Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, Zip Code: 90035-003, Brazil.,Pos Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil
| | - Marina Seady
- Laboratory of Calcium-Binding Proteins in the CNS, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal Do Rio Grande Do Sul (UFRGS), Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, Zip Code: 90035-003, Brazil.,Pos Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil
| | - Caroline Zanotto
- Laboratory of Calcium-Binding Proteins in the CNS, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal Do Rio Grande Do Sul (UFRGS), Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, Zip Code: 90035-003, Brazil.,Pos Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil
| | - Larissa Daniele Bobermin
- Pos Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil
| | - Ana Cristina Roginski
- Pos Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil
| | - Moacir Wajner
- Pos Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil.,Department of Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil.,Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - André Quincozes-Santos
- Pos Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil.,Department of Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil
| | - Carlos Alberto Gonçalves
- Laboratory of Calcium-Binding Proteins in the CNS, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal Do Rio Grande Do Sul (UFRGS), Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, Zip Code: 90035-003, Brazil.,Pos Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil.,Department of Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil
| |
Collapse
|
13
|
Zhou LY, Chen XQ, Yu BB, Pan MX, Fang L, Li J, Cui XJ, Yao M, Lu X. The effect of metformin on ameliorating neurological function deficits and tissue damage in rats following spinal cord injury: A systematic review and network meta-analysis. Front Neurosci 2022; 16:946879. [PMID: 36117612 PMCID: PMC9479497 DOI: 10.3389/fnins.2022.946879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/19/2022] [Indexed: 12/09/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating condition with few treatment options. Metformin, a classical antidiabetic and antioxidant, has extended its application to experimental SCI treatment. Here, we performed a systematic review to evaluate the neurobiological roles of metformin for treating SCI in rats, and to assess the potential for clinical translation. PubMed, Embase, China National Knowledge Infrastructure, WanFang data, SinoMed, and Vip Journal Integration Platform databases were searched from their inception dates to October 2021. Two reviewers independently selected controlled studies evaluating the neurobiological roles of metformin in rats following SCI, extracted data, and assessed the quality of methodology and evidence. Pairwise meta-analyses, subgroup analyses and network analysis were performed to assess the roles of metformin in neurological function and tissue damage in SCI rats. Twelve articles were included in this systematic review. Most of them were of moderate-to-high methodological quality, while the quality of evidence from those studies was not high. Generally, Basso, Beattie, and Bresnahan scores were increased in rats treated with metformin compared with controls, and the weighted mean differences (WMDs) between metformin and control groups exhibited a gradual upward trend from the 3rd (nine studies, n = 164, WMD = 0.42, 95% CI = −0.01 to 0.85, P = 0.06) to the 28th day after treatment (nine studies, n = 136, WMD = 3.48, 95% CI = 2.04 to 4.92, P < 0.00001). Metformin intervention was associated with improved inclined plane scores, tissue preservation ratio and number of anterior horn motor neurons. Subgroup analyses indicated an association between neuroprotection and metformin dose. Network meta-analysis showed that 50 mg/kg metformin exhibited greater protection than 10 and 100 mg/kg metformin. The action mechanisms behind metformin were associated with activating adenosine monophosphate-activated protein kinase signaling, regulating mitochondrial function and relieving endoplasmic reticulum stress. Collectively, this review indicates that metformin has a protective effect on SCI with satisfactory safety and we demonstrate a rational mechanism of action; therefore, metformin is a promising candidate for future clinical trials. However, given the limitations of animal experimental methodological and evidence quality, the findings of this pre-clinical review should be interpreted with caution.
Collapse
Affiliation(s)
- Long-Yun Zhou
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xu-Qing Chen
- Department of Otolaryngology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Bin-Bin Yu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Meng-Xiao Pan
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lu Fang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jian Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xue-Jun Cui
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Min Yao
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao Lu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
14
|
Gorbatenko VO, Goriainov SV, Babenko VA, Plotnikov EY, Sergeeva MG, Chistyakov DV. Anti-Inflammatory Properties of Metformin During Cultivation of Primary Rat Astrocytes in a Medium with High Glucose Concentration. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:577-589. [PMID: 36154879 DOI: 10.1134/s000629792207001x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/10/2022] [Accepted: 05/10/2022] [Indexed: 06/16/2023]
Abstract
Investigation of the relationship between inflammation and energy metabolism is important for understanding biology of chronic noncommunicable diseases. Use of metformin, a drug for treatment of diabetes, is considered as a promising direction for treatment of neurodegenerative diseases and other neuropathologies with an inflammatory component. Astrocytes play an important role in the regulation of energy metabolism and neuroinflammation; therefore, we studied the effect of metformin on the cellular responses of primary rat astrocytes cultured in a medium with high glucose concentration (22.5 mM, 48-h incubation). Lipopolysaccharide (LPS) was used to stimulate inflammation. The effects of metformin were assessed by monitoring changes in the expression of proinflammatory cytokines and synthesis of oxylipins, assayed with ultra-high-performance liquid chromatography and tandem mass spectrometry (UPLC-MS/MS). Changes at the intracellular level were assessed by analyzing phosphorylation of ERK kinase and transcription factor STAT3, as well as enzymes mediating oxylipin synthesis, cyclooxygenase 1 and 2 (COX). It was found that, independent on glucose concentration, metformin reduced the LPS-stimulated release of cytokines IL-1β and IL-6, decreased activity of the transcription factor STAT3, ERK kinase, synthesis of the derivatives of the cyclooxygenase branch of metabolism of oxylipins and anandamide, and did not affect formation of ROS. The study of energy phenotype of the cells showed that metformin activated glycolysis and inhibited mitochondrial respiration and oxidative phosphorylation, independent on LPS stimulation and cell cultivation at high glucose concentration. Thus, it has been shown that metformin exhibits anti-inflammatory effects, and its effect on the synthesis of cytokines, prostaglandins, and other lipid mediators could determine beneficial effects of metformin in models of neuropathology.
Collapse
Affiliation(s)
- Vladislav O Gorbatenko
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Sergey V Goriainov
- Peoples' Friendship University of Russia (RUDN University), Moscow, 117198, Russia
| | - Valentina A Babenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Egor Y Plotnikov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Marina G Sergeeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Dmitry V Chistyakov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.
| |
Collapse
|
15
|
Xiao N, Wang J, Wang T, Xiong X, Zhou J, Su X, Peng J, Yang C, Li X, Lin G, Lu G, Gong F, Cheng L. Metformin abrogates pathological TNF-α-producing B cells through mTOR-dependent metabolic reprogramming in polycystic ovary syndrome. eLife 2022; 11:74713. [PMID: 35748536 PMCID: PMC9270024 DOI: 10.7554/elife.74713] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 06/24/2022] [Indexed: 11/26/2022] Open
Abstract
B cells contribute to the pathogenesis of polycystic ovary syndrome (PCOS). Clinically, metformin is used to treat PCOS, but it is unclear whether metformin exerts its therapeutic effect by regulating B cells. Here, we showed that the expression level of tumor necrosis factor-alpha (TNF-α) in peripheral blood B cells from PCOS patients was increased. Metformin used in vitro and in vivo was able to reduce the production of TNF-α in B cells from PCOS patients. Administration of metformin improved mouse PCOS phenotypes induced by dehydroepiandrosterone (DHEA) and also inhibited TNF-α expression in splenic B cells. Furthermore, metformin induced metabolic reprogramming of B cells in PCOS patients, including the alteration in mitochondrial morphology, the decrease in mitochondrial membrane potential, Reactive Oxygen Species (ROS) production and glucose uptake. In DHEA-induced mouse PCOS model, metformin altered metabolic intermediates in splenic B cells. Moreover, the inhibition of TNF-α expression and metabolic reprogramming in B cells of PCOS patients and mouse model by metformin were associated with decreased mTOR phosphorylation. Together, TNF-α-producing B cells are involved in the pathogenesis of PCOS, and metformin inhibits mTOR phosphorylation and affects metabolic reprogramming, thereby inhibiting TNF-α expression in B cells, which may be a new mechanism of metformin in the treatment of PCOS.
Collapse
Affiliation(s)
- Na Xiao
- National Engineering and Research Center of Human Stem Cells, Changsha, China
| | - Jie Wang
- National Engineering and Research Center of Human Stem Cells, Changsha, China
| | - Ting Wang
- Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
| | - Xingliang Xiong
- Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
| | - Junyi Zhou
- Hunan Normal University, Changsha, China
| | - Xian Su
- National Engineering and Research Center of Human Stem Cells, Changsha, China
| | - Jing Peng
- National Engineering and Research Center of Human Stem Cells, Changsha, China
| | - Chao Yang
- National Engineering and Research Center of Human Stem Cells, Changsha, China
| | - Xiaofeng Li
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
| | - Guangxiu Lu
- National Engineering and Research Center of Human Stem Cells, Changsha, China
| | - Fei Gong
- Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
| | - Lamei Cheng
- Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
| |
Collapse
|
16
|
Hao Q, Huang Z, Li Q, Liu D, Wang P, Wang K, Li J, Cao W, Deng W, Wu K, Su R, Liu Z, Vadgama J, Wu Y. A Novel Metabolic Reprogramming Strategy for the Treatment of Diabetes-Associated Breast Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102303. [PMID: 35023320 PMCID: PMC8867195 DOI: 10.1002/advs.202102303] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/08/2021] [Indexed: 05/11/2023]
Abstract
Diabetes is directly related to the risk of breast cancer (BC) occurrence and worsened BC prognosis. Currently, there are no specific treatments for diabetes-associated BC. This paper aims to understand the fundamental mechanisms of diabetes-induced BC progression and to develop personalized treatments. It reports a metabolic reprogramming strategy (MRS) that pharmaceutical induction of glucose import and glycolysis with metformin and NF-κB inhibitor (NF-κBi) while blocking the export of excessive lactate via inhibiting monocarboxylate transporter 4 (MCT4) leads to a metabolic crisis within the cancer cells. It demonstrates that the MRS shifts the metabolism of BC cells toward higher production of lactate, blocks lactate secretion, prompts intracellular acidification and induces significant cytotoxicity. Moreover, a novel MCT4 inhibitor CB-2 has been identified by structure-based virtual screening. A triple combination of metformin, CB-2, and trabectedin, a drug that impedes NF-κB signaling, strongly inhibits BC cells. Compared to normal glucose condition, MRS elicits more potent cancer cell-killing effects under high glucose condition. Animal model studies show that diabetic conditions promote the proliferation and progression of BC xenografts in nude mice and that MRS treatment significantly inhibits HG-induced BC progression. Therefore, inhibition of MCT4 combined with metformin/NF-κBi is a promising cancer therapy, especially for diabetes-associated BC.
Collapse
Affiliation(s)
- Qiongyu Hao
- Division of Cancer Research and TrainingDepartment of Internal MedicineCharles Drew University of Medicine and ScienceDavid Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer CenterLos AngelesCA90095USA
| | - Zhimin Huang
- Key Laboratory of Cell Differentiation and ApoptosisMinistry of EducationDepartment of PathophysiologyShanghai Jiao‐Tong University School of MedicineShanghai200025China
- Department of BioengineeringRice UniversityHoustonTX77005USA
| | - Qun Li
- Department of OncologyShanghai East HospitalSchool of MedicineTongji UniversityShanghai200123China
| | - Dingxie Liu
- Bluewater Biotech LLCNew ProvidenceNJ07974USA
| | - Piwen Wang
- Division of Cancer Research and TrainingDepartment of Internal MedicineCharles Drew University of Medicine and ScienceDavid Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer CenterLos AngelesCA90095USA
| | - Kun Wang
- Department of Breast CancerCancer CenterGuangdong Provincial People's Hospital & Guangdong Academy of Medical SciencesGuangzhou510080China
| | - Jieqing Li
- Division of Cancer Research and TrainingDepartment of Internal MedicineCharles Drew University of Medicine and ScienceDavid Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer CenterLos AngelesCA90095USA
- Department of Breast CancerCancer CenterGuangdong Provincial People's Hospital & Guangdong Academy of Medical SciencesGuangzhou510080China
| | - Wei Cao
- Division of Cancer Research and TrainingDepartment of Internal MedicineCharles Drew University of Medicine and ScienceDavid Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer CenterLos AngelesCA90095USA
| | - Wenhong Deng
- Division of Cancer Research and TrainingDepartment of Internal MedicineCharles Drew University of Medicine and ScienceDavid Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer CenterLos AngelesCA90095USA
- Department of General SurgeryRenmin Hospital of Wuhan UniversityWuhan430060China
| | - Ke Wu
- Division of Cancer Research and TrainingDepartment of Internal MedicineCharles Drew University of Medicine and ScienceDavid Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer CenterLos AngelesCA90095USA
| | - Rui Su
- College of EngineeringUniversity of CaliforniaBerkeleyCA94720USA
| | - Zhongmin Liu
- The Institute for Biomedical Engineering & Nano ScienceShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Jay Vadgama
- Division of Cancer Research and TrainingDepartment of Internal MedicineCharles Drew University of Medicine and ScienceDavid Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer CenterLos AngelesCA90095USA
| | - Yong Wu
- Division of Cancer Research and TrainingDepartment of Internal MedicineCharles Drew University of Medicine and ScienceDavid Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer CenterLos AngelesCA90095USA
| |
Collapse
|
17
|
Beard E, Lengacher S, Dias S, Magistretti PJ, Finsterwald C. Astrocytes as Key Regulators of Brain Energy Metabolism: New Therapeutic Perspectives. Front Physiol 2022; 12:825816. [PMID: 35087428 PMCID: PMC8787066 DOI: 10.3389/fphys.2021.825816] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/20/2021] [Indexed: 12/11/2022] Open
Abstract
Astrocytes play key roles in the regulation of brain energy metabolism, which has a major impact on brain functions, including memory, neuroprotection, resistance to oxidative stress and homeostatic tone. Energy demands of the brain are very large, as they continuously account for 20–25% of the whole body’s energy consumption. Energy supply of the brain is tightly linked to neuronal activity, providing the origin of the signals detected by the widely used functional brain imaging techniques such as functional magnetic resonance imaging and positron emission tomography. In particular, neuroenergetic coupling is regulated by astrocytes through glutamate uptake that triggers astrocytic aerobic glycolysis and leads to glucose uptake and lactate release, a mechanism known as the Astrocyte Neuron Lactate Shuttle. Other neurotransmitters such as noradrenaline and Vasoactive Intestinal Peptide mobilize glycogen, the reserve for glucose exclusively localized in astrocytes, also resulting in lactate release. Lactate is then transferred to neurons where it is used, after conversion to pyruvate, as a rapid energy substrate, and also as a signal that modulates neuronal excitability, homeostasis, and the expression of survival and plasticity genes. Importantly, glycolysis in astrocytes and more generally cerebral glucose metabolism progressively deteriorate in aging and age-associated neurodegenerative diseases such as Alzheimer’s disease. This decreased glycolysis actually represents a common feature of several neurological pathologies. Here, we review the critical role of astrocytes in the regulation of brain energy metabolism, and how dysregulation of astrocyte-mediated metabolic pathways is involved in brain hypometabolism. Further, we summarize recent efforts at preclinical and clinical stages to target brain hypometabolism for the development of new therapeutic interventions in age-related neurodegenerative diseases.
Collapse
|
18
|
Gorina YV, Salmina AB, Erofeev AI, Can Z, Bolshakova AV, Balaban PM, Bezprozvanny IB, Vlasova OL. Metabolic Plasticity of Astrocytes. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021060016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
19
|
Bupivacaine in combination with sildenafil (Viagra) and vitamin D3 have anti-inflammatory effects in osteoarthritic chondrocytes. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100066. [PMID: 34909684 PMCID: PMC8663929 DOI: 10.1016/j.crphar.2021.100066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 11/21/2022] Open
Abstract
Aims To treat osteoarthritic chondrocytes and thereby reduce the inflammation with a drug combination that primarily affects 5-HT- and ATP-evoked Ca2+ signaling. In osteoarthritic chondrocytes, Ca2+ signaling is elevated, resulting in increased production of ATP and inflammatory mediators. The expression of TLR4 and Na+/K+-ATPase was used to evaluate the inflammatory status of the cells. Main methods Equine chondrocytes were collected from joints with mild structural osteoarthritic changes and cultured in monolayers. The cells were treated with a combination of bupivacaine (1 pM) and sildenafil (1 μM) in combination with vitamin D3 (100 nM). A high-throughput screening system, the Flexstation 3 microplate reader, was used to measure intra- and extracellular Ca2+ signaling after exposure to 5-HT, glutamate, or ATP. Expression of inflammatory receptors was assessed by Western blotting. Key findings Drug treatment substantially reduced 5-HT- and ATP-evoked intracellular Ca2+ release and TLR4 expression compared to those in untreated chondrocytes. The combination of sildenafil, vitamin D3 together with metformin, as the ability to take up glucose is limited, increased Na+/K+-ATPase expression. Significance The combination of these three therapeutic substances at concentrations much lower than usually used, reduced expression of the inflammatory receptor TLR4 and increased the cell membrane enzyme Na+/K+-ATPase, which regulates cell volume and reduces increased intracellular Ca2+ concentrations. These remarkable results indicate that this drug combination has disease-modifying osteoarthritis drug (DMOAD) properties and may be a new clinical therapy for osteoarthritis (OA).
Collapse
|
20
|
Said ES, Elsayed AM, Rashed LA, Nadwa EH, Alsuhaibani NA, Alfuraih BS, Mahmoud RH. Evaluation of nootropic activity of telmisartan and metformin on diazepam-induced cognitive dysfunction in mice through AMPK pathway and amelioration of hippocampal morphological alterations. Eur J Pharmacol 2021; 912:174511. [PMID: 34547248 DOI: 10.1016/j.ejphar.2021.174511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 08/24/2021] [Accepted: 09/17/2021] [Indexed: 10/20/2022]
Abstract
Cognitive impairments such as dementia are considered the biggest challenges for public health. Benzodiazepines are often prescribed for treatment of anxiety disorder but they are associated with elevated risk of dementia. The present study has been designed to evaluate the neuroprotective effect of telmisartan and metformin on diazepam-induced cognitive dysfunction in mice. Piracetam was used as an established nootropic agent. Mice were divided into 8 groups, group1; control group which received normal saline. groups 2, 3 and 4 were received telmisartan 0.3 mg/kg/day, metformin 100 mg/kg/day and piracetam 200 mg/kg/day respectively. group 5; DZP group that injected with diazepam 2.5 mg/kg, groups 6, 7 and 8 were received diazepam 2.5 mg/kg + telmisartan 0.3 mg/kg/day, metformin 100 mg/kg/day and piracetam 200 mg/kg/day respectively. All drugs were administrated for 15 successive days. Cognitive skills of the animals were examined with Elevated plus maze and Passive Shock Avoidance tests. Investigations of oxidative stress markers were performed. Gene expression levels of TNF-α, NFκB, Caspase 3 and AMPK were analyzed using RT-PCR. Histological and immunohistochemical techniques were performed in hippocampus using H&E, cresyl violet stain, anti GFAP and anti COX-2 immunostain. The study revealed that administration of diazepam increased initial and retention transfer latency as well as it decreased step down latency that means it caused memory impairment. There was a significant increase in hippocampal expression levels of TNF-α, NFκB, and Caspase 3 and downregulation of AMPK expression levels associated with increased neurodegeneration, astrocytes activation and COX-2 immunohistochemical staining. This study indicates that diazepam caused a decline in cognitive function depending on hippocampal activity. Telmisartan, a common antihypertensive agent and metformin, a traditional antidiabetic drug improved this cognitive dysfunction through their anti-oxidant and anti-inflammatory effect as they decreased initial and retention transfer latency as well as it increased step down latency. Also they decreased TNF-α, NFκB, and Caspase 3 and upregulated AMPK expression, moreover they ameliorated the hippocampal morphological alterations, GFAP and COX-2 immunoexpression.
Collapse
Affiliation(s)
- Eman S Said
- Department of Clinical Pharmacology, Faculty of Medicine, Fayoum University, Fayoum 63511, Egypt; Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 52571, Saudi Arabia.
| | - Asmaa M Elsayed
- Department of Histology, Faculty of Medicine, Fayoum University, Egypt
| | - Laila A Rashed
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Egypt
| | - Eman H Nadwa
- Department of Pharmacology and Therapeutics, College of Medicine, Jouf University, Sakaka, Saudi Arabia; Department of Medical Pharmacology, Faculty of Medicine, Cairo University, Giza, Egypt
| | | | | | - Rania H Mahmoud
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Fayoum University, Egypt
| |
Collapse
|
21
|
Suppression of Pyruvate Dehydrogenase Kinase by Dichloroacetate in Cancer and Skeletal Muscle Cells Is Isoform Specific and Partially Independent of HIF-1α. Int J Mol Sci 2021; 22:ijms22168610. [PMID: 34445316 PMCID: PMC8395311 DOI: 10.3390/ijms22168610] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/28/2021] [Accepted: 08/03/2021] [Indexed: 02/01/2023] Open
Abstract
Inhibition of pyruvate dehydrogenase kinase (PDK) emerged as a potential strategy for treatment of cancer and metabolic disorders. Dichloroacetate (DCA), a prototypical PDK inhibitor, reduces the abundance of some PDK isoenzymes. However, the underlying mechanisms are not fully characterized and may differ across cell types. We determined that DCA reduced the abundance of PDK1 in breast (MDA-MB-231) and prostate (PC-3) cancer cells, while it suppressed both PDK1 and PDK2 in skeletal muscle cells (L6 myotubes). The DCA-induced PDK1 suppression was partially dependent on hypoxia-inducible factor-1α (HIF-1α), a transcriptional regulator of PDK1, in cancer cells but not in L6 myotubes. However, the DCA-induced alterations in the mRNA and the protein levels of PDK1 and/or PDK2 did not always occur in parallel, implicating a role for post-transcriptional mechanisms. DCA did not inhibit the mTOR signaling, while inhibitors of the proteasome or gene silencing of mitochondrial proteases CLPP and AFG3L2 did not prevent the DCA-induced reduction of the PDK1 protein levels. Collectively, our results suggest that DCA reduces the abundance of PDK in an isoform-dependent manner via transcriptional and post-transcriptional mechanisms. Differential response of PDK isoenzymes to DCA might be important for its pharmacological effects in different types of cells.
Collapse
|
22
|
Thinnes A, Westenberger M, Piechotta C, Lehto A, Wirth F, Lau H, Klein J. Cholinergic and metabolic effects of metformin in mouse brain. Brain Res Bull 2021; 170:211-217. [PMID: 33617923 DOI: 10.1016/j.brainresbull.2021.02.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 01/05/2021] [Accepted: 02/16/2021] [Indexed: 01/11/2023]
Abstract
Metformin is widely used as a first-line treatment for type 2 diabetes, but central effects of metformin have received little attention. When metformin (200 mg/kg i.p.) was administered to C57Bl6 mice, metformin concentration in cerebrospinal fluid peaked at 29 μM after 30 min but dropped quickly and was low at 90 min. In mouse hypothalamus sampled by microdialysis, systemically administered metformin caused minor and transient increases of acetylcholine, glucose and lactate while choline levels decreased. When metformin (0.2-10 mM) was locally infused via retrodialysis, there was a short-lasting increase of acetylcholine in the hypothalamus. Extracellular lactate levels in hypothalamus showed a massive increase upon metformin infusion while glucose levels decreased. In isolated mitochondria of mouse brain, metformin inhibited oxygen consumption and the activity of complex I. Inhibition of mitochondrial respiration likely explains lactate formation in the brain during metformin infusion which may cause lactic acidosis during metformin intoxication. The changes of cholinergic activity in the hypothalamus may be associated with appetite suppression observed during metformin treatment.
Collapse
Affiliation(s)
- Anna Thinnes
- Department of Pharmacology and Clinical Pharmacy, College of Pharmacy, Goethe University of Frankfurt, 60438, Frankfurt, Germany
| | - Mara Westenberger
- Department of Pharmacology and Clinical Pharmacy, College of Pharmacy, Goethe University of Frankfurt, 60438, Frankfurt, Germany
| | - Christian Piechotta
- Bundesanstalt für Materialforschung und -prüfung (BAM), 12200, Berlin, Germany
| | - Alina Lehto
- Department of Pharmacology and Clinical Pharmacy, College of Pharmacy, Goethe University of Frankfurt, 60438, Frankfurt, Germany
| | - Franziska Wirth
- Department of Pharmacology and Clinical Pharmacy, College of Pharmacy, Goethe University of Frankfurt, 60438, Frankfurt, Germany
| | - Helene Lau
- Department of Pharmacology and Clinical Pharmacy, College of Pharmacy, Goethe University of Frankfurt, 60438, Frankfurt, Germany
| | - Jochen Klein
- Department of Pharmacology and Clinical Pharmacy, College of Pharmacy, Goethe University of Frankfurt, 60438, Frankfurt, Germany.
| |
Collapse
|
23
|
Ehrke E, Steinmeier J, Stapelfeldt K, Dringen R. The Menadione-Mediated WST1 Reduction by Cultured Astrocytes Depends on NQO1 Activity and Cytosolic Glucose Metabolism. Neurochem Res 2021; 46:88-99. [PMID: 31902045 DOI: 10.1007/s11064-019-02930-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 12/03/2019] [Accepted: 12/05/2019] [Indexed: 01/07/2023]
Abstract
The reduction of water-soluble tetrazolium salts (WSTs) is frequently used to determine the metabolic integrity and the viability of cultured cells. Recently, we have reported that the electron cycler menadione can efficiently connect intracellular oxidation reactions in cultured astrocytes with the extracellular reduction of WST1 and that this menadione cycling reaction involves an enzyme. The enzymatic reaction involved in the menadione-dependent WST1 reduction was found strongly enriched in the cytosolic fraction of cultured astrocytes and is able to efficiently use both NADH and NADPH as electron donors. In addition, the reaction was highly sensitive towards dicoumarol with Kic values in the low nanomolar range, suggesting that the NAD(P)H:quinone oxidoreductase 1 (NQO1) catalyzes the menadione-dependent WST1 reduction in astrocytes. Also, in intact astrocytes, dicoumarol inhibited the menadione-dependent WST1 reduction in a concentration-dependent manner with half-maximal inhibition observed at around 50 nM. Moreover, the menadione-dependent WST1 reduction by viable astrocytes was strongly affected by the availability of glucose. In the absence of glucose only residual WST1 reduction was observed, while a concentration-dependent increase in WST1 reduction was found during a 30 min incubation with maximal WST1 reduction already determined in the presence of 0.5 mM glucose. Mannose could fully replace glucose as substrate for astrocytic WST1 reduction, while other hexoses, lactate and the mitochondrial substrate β-hydroxybutyrate failed to provide electrons for the cell-dependent WST1 reduction. These results demonstrate that the menadione-mediated WST1 reduction involves cytosolic NQO1 activity and that this process is strongly affected by the availability of glucose as metabolic substrate.
Collapse
Affiliation(s)
- Eric Ehrke
- Center for Biomolecular Interactions Bremen (CBIB), Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany
- Center for Environmental Research and Sustainable Technology (UFT), University of Bremen, Bremen, Germany
| | - Johann Steinmeier
- Center for Biomolecular Interactions Bremen (CBIB), Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany
- Center for Environmental Research and Sustainable Technology (UFT), University of Bremen, Bremen, Germany
| | - Karsten Stapelfeldt
- Center for Biomolecular Interactions Bremen (CBIB), Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany
- Institute for Biophysics, University of Bremen, Bremen, Germany
| | - Ralf Dringen
- Center for Biomolecular Interactions Bremen (CBIB), Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany.
- Center for Environmental Research and Sustainable Technology (UFT), University of Bremen, Bremen, Germany.
| |
Collapse
|
24
|
Effects of Ketone Bodies on Brain Metabolism and Function in Neurodegenerative Diseases. Int J Mol Sci 2020; 21:ijms21228767. [PMID: 33233502 PMCID: PMC7699472 DOI: 10.3390/ijms21228767] [Citation(s) in RCA: 214] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/14/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023] Open
Abstract
Under normal physiological conditions the brain primarily utilizes glucose for ATP generation. However, in situations where glucose is sparse, e.g., during prolonged fasting, ketone bodies become an important energy source for the brain. The brain’s utilization of ketones seems to depend mainly on the concentration in the blood, thus many dietary approaches such as ketogenic diets, ingestion of ketogenic medium-chain fatty acids or exogenous ketones, facilitate significant changes in the brain’s metabolism. Therefore, these approaches may ameliorate the energy crisis in neurodegenerative diseases, which are characterized by a deterioration of the brain’s glucose metabolism, providing a therapeutic advantage in these diseases. Most clinical studies examining the neuroprotective role of ketone bodies have been conducted in patients with Alzheimer’s disease, where brain imaging studies support the notion of enhancing brain energy metabolism with ketones. Likewise, a few studies show modest functional improvements in patients with Parkinson’s disease and cognitive benefits in patients with—or at risk of—Alzheimer’s disease after ketogenic interventions. Here, we summarize current knowledge on how ketogenic interventions support brain metabolism and discuss the therapeutic role of ketones in neurodegenerative disease, emphasizing clinical data.
Collapse
|
25
|
Köhler S, Schmidt H, Fülle P, Hirrlinger J, Winkler U. A Dual Nanosensor Approach to Determine the Cytosolic Concentration of ATP in Astrocytes. Front Cell Neurosci 2020; 14:565921. [PMID: 33192312 PMCID: PMC7530325 DOI: 10.3389/fncel.2020.565921] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/26/2020] [Indexed: 11/17/2022] Open
Abstract
Adenosine triphosphate (ATP) is the central energy carrier of all cells and knowledge on the dynamics of the concentration of ATP ([ATP]) provides important insights into the energetic state of a cell. Several genetically encoded fluorescent nanosensors for ATP were developed, which allow following the cytosolic [ATP] at high spatial and temporal resolution using fluorescence microscopy. However, to calibrate the fluorescent signal to [ATP] has remained challenging. To estimate basal cytosolic [ATP] ([ATP]0) in astrocytes, we here took advantage of two ATP nanosensors of the ATeam-family (ATeam1.03; ATeam1.03YEMK) with different affinities for ATP. Altering [ATP] by external stimuli resulted in characteristic pairs of signal changes of both nanosensors, which depend on [ATP]0. Using this dual nanosensor strategy and epifluorescence microscopy, [ATP]0 was estimated to be around 1.5 mM in primary cultures of cortical astrocytes from mice. Furthermore, in astrocytes in acutely isolated cortical slices from mice expressing both nanosensors after stereotactic injection of AAV-vectors, 2-photon microscopy revealed [ATP]0 of 0.7 mM to 1.3 mM. Finally, the change in [ATP] induced in the cytosol of cultured cortical astrocytes by application of azide, glutamate, and an increased extracellular concentration of K+ were calculated as −0.50 mM, −0.16 mM, and 0.07 mM, respectively. In summary, the dual nanosensor approach adds another option for determining the concentration of [ATP] to the increasing toolbox of fluorescent nanosensors for metabolites. This approach can also be applied to other metabolites when two sensors with different binding properties are available.
Collapse
Affiliation(s)
- Susanne Köhler
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University Leipzig, Leipzig, Germany
| | - Hartmut Schmidt
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University Leipzig, Leipzig, Germany
| | - Paula Fülle
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University Leipzig, Leipzig, Germany.,Wilhelm-Ostwald-Schule, Gymnasium der Stadt Leipzig, Leipzig, Germany
| | - Johannes Hirrlinger
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University Leipzig, Leipzig, Germany.,Department of Neurogenetics, Max-Planck-Institute for Experimental Medicine, Göttingen, Germany
| | - Ulrike Winkler
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University Leipzig, Leipzig, Germany
| |
Collapse
|
26
|
Zhu X, Shen J, Feng S, Huang C, Liu Z, Sun YE, Liu H. Metformin improves cognition of aged mice by promoting cerebral angiogenesis and neurogenesis. Aging (Albany NY) 2020; 12:17845-17862. [PMID: 32938817 PMCID: PMC7585073 DOI: 10.18632/aging.103693] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/09/2020] [Indexed: 02/06/2023]
Abstract
Metformin is a widely used drug for type 2 diabetes that is considered to have potential anti-aging effects. However, the beneficial effects of metformin in middle-aged normoglycemic mice are less explored. Here, we report that metformin treated by tail vein injection improved cognitive function of aged mice better than oral administration, which seem to show a dose-dependent manner. Correspondingly, long-term oral administration of metformin was associated with significant disability rates. Further, metformin restored cerebral blood flow and brain vascular density and promoted neurogenic potential of the subependymal zone/subventricular zone both in vivo and in vitro. RNA-Seq and q-PCR results indicated that metformin could enhance relative mRNA glycolysis expression in blood and hippocampal tissue, respectively. Mechanistically, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a key enzyme in glycolysis pathway, may contribute to angiogenic and neurogenic potentials of NSCs. Interestingly, the relative GAPDH mRNA expression of peripheral blood mononuclear cell was gradually decreased with aging. Meanwhile its expression level positively correlated with cognitive levels. Our results indicated that metformin represents a candidate pharmacological approach for recruitment of NSCs in aged mouse brain by enhancing glycolysis and promoting neurovascular generation, a strategy that might be of therapeutic value for anti-aging in humans.
Collapse
Affiliation(s)
- Xiaoqi Zhu
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, China
| | - Junyan Shen
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, China
| | - Shengyu Feng
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, China
| | - Ce Huang
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, China
| | - Zhongmin Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, China
| | - Yi Eve Sun
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, China
| | - Hailiang Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, China
| |
Collapse
|
27
|
Zhao Y, Zhou X, Zhao X, Yu X, Wang A, Chen X, Qi H, Han TL, Zhang H, Baker PN. Metformin administration during pregnancy attenuated the long-term maternal metabolic and cognitive impairments in a mouse model of gestational diabetes. Aging (Albany NY) 2020; 12:14019-14036. [PMID: 32697764 PMCID: PMC7425475 DOI: 10.18632/aging.103505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 06/04/2020] [Indexed: 12/30/2022]
Abstract
Background: Gestational diabetes mellitus (GDM) is a metabolic disease that can have long-term adverse effects on the cognitive function of mothers. In our study, we explored the changes in metabolic health and cognitive function in mice of middle- and old- age after exposure to GDM, and whether metformin therapy during pregnancy provided long-term benefits. Results: Mice with GDM demonstrated significant cognitive impairment in old age, which was associated with insulin resistance. Gestational metformin therapy was shown to increase insulin sensitivity and improve cognition. The ovarian aging rate was also accelerated in mice exposed to GDM during pregnancy, which may be related to fatty acid metabolism in the ovaries. Conclusion: Treatment with metformin during pregnancy was shown to improve fatty acid metabolism in ovarian tissues. Method: During pregnancy, mice were fed with a high-fat diet (GDM group) or a low-fat diet (Control group), and a third group received metformin while receiving a high-fat diet (Treatment group). At 12 months old, the mice completed an oral glucose tolerance test, insulin tolerance test, Morris water maze test, female sex hormones were measured, and metabolite profiles of tissue from the ovaries, hypothalamus, and pituitary glands were analysed using gas chromatography-mass spectrometry.
Collapse
Affiliation(s)
- Yalan Zhao
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China.,Department of Obstetrics, The First People's Hospital of Yunnan Province, Kunming, China
| | - Xiaobo Zhou
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xue Zhao
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xinyang Yu
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Andi Wang
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuyang Chen
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongbo Qi
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ting-Li Han
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China.,Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Hua Zhang
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Philip N Baker
- College of Medicine, Biological Sciences and Psychology, University of Leicester, Leicester, UK
| |
Collapse
|
28
|
Ludman T, Melemedjian OK. Bortezomib and metformin opposingly regulate the expression of hypoxia-inducible factor alpha and the consequent development of chemotherapy-induced painful peripheral neuropathy. Mol Pain 2020; 15:1744806919850043. [PMID: 31041875 PMCID: PMC6509977 DOI: 10.1177/1744806919850043] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chemotherapy-induced painful peripheral neuropathy is a significant clinical problem that is associated with widely used chemotherapeutics. Unfortunately, the molecular mechanisms by which chemotherapy-induced painful peripheral neuropathy develops have remained elusive. The proteasome inhibitor, bortezomib, has been shown to induce aerobic glycolysis in sensory neurons. This altered metabolic phenotype leads to the extrusion of metabolites which sensitize primary afferents and cause pain. Hypoxia-inducible factor alpha is a transcription factor that is known to reprogram cellular metabolism. Furthermore, hypoxia-inducible factor 1 alpha protein is constantly synthesized and undergoes proteasomal degradation in normal conditions. However, metabolic stress or hypoxia stabilizes the expression of hypoxia-inducible factor 1 alpha leading to the transcription of genes that reprogram cellular metabolism. This study demonstrates that treatment of mice with bortezomib stabilizes the expression of hypoxia-inducible factor 1 alpha. Moreover, knockdown of hypoxia-inducible factor 1 alpha, inhibition of hypoxia-inducible factor 1 alpha binding to its response element, or limiting its translation by using metformin prevent the development of bortezomib-induced neuropathic pain. Strikingly, the blockade of hypoxia-inducible factor 1 alpha expression does not attenuate mechanical allodynia in mice with existing bortezomib-induced neuropathic pain. These results establish the stabilization of hypoxia-inducible factor 1 alpha expression as the molecular mechanism by which bortezomib initiates chemotherapy-induced painful peripheral neuropathy. Crucially, these findings reveal that the initiation and maintenance of bortezomib-induced neuropathic pain are regulated by distinct mechanisms.
Collapse
Affiliation(s)
- Taylor Ludman
- 1 Department of Neural and Pain Sciences, School of Dentistry, University of Maryland, Baltimore, Baltimore, MD, USA
| | - Ohannes K Melemedjian
- 1 Department of Neural and Pain Sciences, School of Dentistry, University of Maryland, Baltimore, Baltimore, MD, USA.,2 University of Maryland Center to Advance Chronic Pain Research, Baltimore, MD, USA
| |
Collapse
|
29
|
Bouras H, Roig SR, Kurstjens S, Tack CJJ, Kebieche M, de Baaij JHF, Hoenderop JGJ. Metformin regulates TRPM6, a potential explanation for magnesium imbalance in type 2 diabetes patients. Can J Physiol Pharmacol 2020; 98:400-411. [PMID: 32017603 DOI: 10.1139/cjpp-2019-0570] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Metformin therapy is associated with lower serum magnesium (Mg2+) levels in type 2 diabetes patients. The TRPM6 channel determines the fine-tuning of Mg2+ (re)absorption in intestine and kidney. Therefore, we aimed to investigate the short- and long-term effects of metformin on TRPM6. Patch clamp recordings and biotinylation assays were performed upon 1 h of incubation with metformin in TRPM6-transfected HEK293 cells. Additionally, 24 h of treatment of mDCT15 kidney and hCaco-2 colon cells with metformin was applied to measure the effects on endogenous TRPM6 expression by quantitative real-time PCR. To assess Mg2+ absorption, 25Mg2+ uptake measurements were performed using inductively coupled plasma mass spectrometry. Short-term effects of metformin significantly increased TRPM6 activity and its cell surface trafficking. In contrast, long-term effects significantly decreased TRPM6 mRNA expression and 25Mg2+ uptake. Metformin lowered TRPM6 mRNA levels independently of insulin- and AMPK-mediated pathways. Moreover, in type 2 diabetes patients, metformin therapy was associated with lower plasma Mg2+ concentrations and fractional excretion of Mg2+. Thereby, short-term metformin treatment increases TRPM6 activity explained by enhanced cell surface expression. Conversely, long-term metformin treatment results in downregulation of TRPM6 gene expression in intestine and kidney cells. This long-term effect translated in an inverse correlation between metformin and plasma Mg2+ concentration in type 2 diabetes patients.
Collapse
Affiliation(s)
- Hacene Bouras
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands.,Faculty of Nature and Life Sciences, University of Mohamed Seddik Ben Yahia, Jijel, Algeria
| | - Sara R Roig
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Steef Kurstjens
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Cees J J Tack
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mohamed Kebieche
- Faculty of Nature and Life Sciences, University of Batna2, Algeria
| | - Jeroen H F de Baaij
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Joost G J Hoenderop
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
30
|
Metformin and cognition from the perspectives of sex, age, and disease. GeroScience 2020; 42:97-116. [PMID: 31897861 DOI: 10.1007/s11357-019-00146-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/06/2019] [Indexed: 12/13/2022] Open
Abstract
Metformin is the safest and the most widely prescribed first-line therapy for managing hyperglycemia due to different underlying causes, primarily type 2 diabetes mellitus. In addition to its euglycemic properties, metformin has stimulated a wave of clinical trials to investigate benefits on aging-related diseases and longevity. Such an impact on the lifespan extension would undoubtedly expand the therapeutic utility of metformin regardless of glycemic status. However, there is a scarcity of studies evaluating whether metformin has differential cognitive effects across age, sex, glycemic status, metformin dose, and duration of metformin treatment and associated pathological conditions. By scrutinizing the available literature on animal and human studies for metformin and brain function, we expect to shed light on the potential impact of metformin on cognition across age, sex, and pathological conditions. This review aims to provide readers with a broader insight of (a) how metformin differentially affects cognition and (b) why there is a need for more translational and clinical studies examining multifactorial interactions. The outcomes of such comprehensive studies will streamline precision medicine practices, avoiding "fit for all" approach, and optimizing metformin use for longevity benefit irrespective of hyperglycemia.
Collapse
|
31
|
Arend C, Ehrke E, Dringen R. Consequences of a Metabolic Glucose-Depletion on the Survival and the Metabolism of Cultured Rat Astrocytes. Neurochem Res 2019; 44:2288-2300. [PMID: 30788754 DOI: 10.1007/s11064-019-02752-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/08/2019] [Accepted: 02/12/2019] [Indexed: 11/29/2022]
Abstract
Brain astrocytes are considered to be highly glycolytic, but these cells also produce ATP via mitochondrial oxidative phosphorylation. To investigate how a metabolic depletion of glucose will affect the metabolism of astrocytes, we applied glucose at an initial concentration of 2 mM to cultured primary astrocytes and monitored the cell viability and various metabolic parameters during an incubation for up to 2 weeks. Already within 2 days of incubation the cells had completely consumed the applied glucose and lactate had accumulated in the medium to a concentration of around 3 mM. During the subsequent 10 days of incubation, the cell viability was not compromised while the extracellular lactate concentration declined to values of around 0.2 mM, before the cell viability was compromised. Application of known inhibitors of mitochondrial metabolism strongly accelerated glucose consumption and initial lactate production, while the lactate consumption was completely (antimycin A or 8-hydroxy efavirenz) and partially (efavirenz, metformin or tyrphostin 23) inhibited which caused rapid and delayed cell toxicity, respectively. The switch from glycolytic glucose metabolism to mitochondrial metabolism during the incubation was neither accompanied by alterations in the specific cytosolic lactate dehydrogenase activity or in the WST1 reduction capacity nor in the mitochondrial citrate synthase activity, but a cellular redistribution of mitochondria from a perinuclear to a more spread cytoplasmic localization was observed during the lactate consumption phase. These results demonstrate that cultured astrocytes survive a metabolism-induced glucose depletion very well by consuming lactate as fuel for mitochondrial ATP generation.
Collapse
Affiliation(s)
- Christian Arend
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany.,Centre for Environmental Research and Sustainable Technology, University of Bremen, Bremen, Germany
| | - Eric Ehrke
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany.,Centre for Environmental Research and Sustainable Technology, University of Bremen, Bremen, Germany
| | - Ralf Dringen
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany. .,Centre for Environmental Research and Sustainable Technology, University of Bremen, Bremen, Germany.
| |
Collapse
|
32
|
Cossu V, Marini C, Piccioli P, Rocchi A, Bruno S, Orengo AM, Emionite L, Bauckneht M, Grillo F, Capitanio S, Balza E, Yosifov N, Castellani P, Caviglia G, Panfoli I, Morbelli S, Ravera S, Benfenati F, Sambuceti G. Obligatory role of endoplasmic reticulum in brain FDG uptake. Eur J Nucl Med Mol Imaging 2019; 46:1184-1196. [PMID: 30617965 DOI: 10.1007/s00259-018-4254-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/27/2018] [Indexed: 12/12/2022]
Abstract
PURPOSE The endoplasmic reticulum (ER) contains hexose-6P-dehydrogenase (H6PD). This enzyme competes with glucose-6P-phosphatase for processing a variety of phosphorylated hexoses including 2DG-6P. The present study aimed to verify whether this ER glucose-processing machinery contributes to brain FDG uptake. METHODS Effect of the H6PD inhibitor metformin on brain 18F-FDG accumulation was studied, in vivo, by microPET imaging. These data were complemented with the in vitro estimation of the lumped constant (LC). Finally, reticular accumulation of the fluorescent 2DG analogue 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxyglucose (2NBDG) and its response to metformin was studied by confocal microscopy in cultured neurons and astrocytes. RESULTS Metformin halved brain 18F-FDG accumulation without altering whole body tracer clearance. Ex vivo, this same response faced the doubling of both glucose consumption and lactate release. The consequent fall in LC was not explained by any change in expression or activity of its theoretical determinants (GLUTs, hexokinases, glucose-6P-phosphatase), while it agreed with the drug-induced inhibition of H6PD function. In vitro, 2NBDG accumulation selectively involved the ER lumen and correlated with H6PD activity being higher in neurons than in astrocytes, despite a lower glucose consumption. CONCLUSIONS The activity of the reticular enzyme H6PD profoundly contributes to brain 18F-FDG uptake. These data challenge the current dogma linking 2DG/FDG uptake to the glycolytic rate and introduce a new model to explain the link between 18-FDG uptake and neuronal activity.
Collapse
Affiliation(s)
- Vanessa Cossu
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - Cecilia Marini
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genoa, Italy.,CNR Institute of Molecular Bioimaging and Physiology (IBFM), Milan, Italy
| | - Patrizia Piccioli
- Cell Biology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Anna Rocchi
- Center for Synaptic Neuroscience and Technology, Italian Institute of Technology (IIT), Genoa, Italy
| | - Silvia Bruno
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Anna Maria Orengo
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - Laura Emionite
- Animal Facility, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Matteo Bauckneht
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genoa, Italy.,Department of Health Science, University of Genoa, Genoa, Italy
| | - Federica Grillo
- Department of Integrated Surgical and Diagnostic Sciences (DISC), University of Genoa, Genoa, Italy
| | - Selene Capitanio
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - Enrica Balza
- Cell Biology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Nikola Yosifov
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | | | - Giacomo Caviglia
- Department of Mathematics (DIMA), University of Genoa, Genoa, Italy
| | - Isabella Panfoli
- Department of Pharmacy, Section of Biochemistry, University of Genoa, Genoa, Italy
| | - Silvia Morbelli
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genoa, Italy.,Department of Health Science, University of Genoa, Genoa, Italy
| | - Silvia Ravera
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Italian Institute of Technology (IIT), Genoa, Italy.,Department of Experimental Medicine, Section of Physiology, University of Genoa, Genoa, Italy
| | - Gianmario Sambuceti
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genoa, Italy. .,CNR Institute of Molecular Bioimaging and Physiology (IBFM), Milan, Italy.
| |
Collapse
|
33
|
Blumrich EM, Dringen R. Metformin Accelerates Glycolytic Lactate Production in Cultured Primary Cerebellar Granule Neurons. Neurochem Res 2017; 44:188-199. [PMID: 28688035 DOI: 10.1007/s11064-017-2346-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/19/2017] [Accepted: 06/27/2017] [Indexed: 12/13/2022]
Abstract
Metformin is the most frequently used drug for the treatment of type-II diabetes. As metformin has been reported to cross the blood-brain barrier, brain cells will encounter this drug. To test whether metformin may affect the metabolism of neurons, we exposed cultured rat cerebellar granule neurons to metformin. Treatment with metformin caused a time- and concentration-dependent increase in glycolytic lactate release from viable neurons as demonstrated by the three-to fivefold increase in extracellular lactate concentration determined after exposure to metformin. Half-maximal stimulation of lactate production was found after incubation of neurons for 4 h with around 2 mM or for 24 h with around 0.5 mM metformin. Neuronal cell viability was not affected by millimolar concentrations of metformin during acute incubations in the hour range nor during prolonged incubations, although alterations in cell morphology were observed during treatment with 10 mM metformin for days. The acute stimulation of neuronal lactate release by metformin was persistent upon removal of metformin from the medium and was not affected by the presence of modulators of adenosine monophosphate activated kinase activity. In contrast, rabeprazole, an inhibitor of the organic cation transporter 3, completely prevented metformin-mediated stimulation of neuronal lactate production. In summary, the data presented identify metformin as a potent stimulator of glycolytic lactate production in viable cultured neurons and suggest that organic cation transporter 3 mediates the uptake of metformin into neurons.
Collapse
Affiliation(s)
- Eva-Maria Blumrich
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany.,Centre for Environmental Research and Sustainable Technology, University of Bremen, Bremen, Germany
| | - Ralf Dringen
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany. .,Centre for Environmental Research and Sustainable Technology, University of Bremen, Bremen, Germany.
| |
Collapse
|
34
|
Metabolism of Mannose in Cultured Primary Rat Neurons. Neurochem Res 2017; 42:2282-2293. [DOI: 10.1007/s11064-017-2241-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 03/16/2017] [Accepted: 03/17/2017] [Indexed: 10/19/2022]
|
35
|
Hohnholt MC, Blumrich EM, Waagepetersen HS, Dringen R. The antidiabetic drug metformin decreases mitochondrial respiration and tricarboxylic acid cycle activity in cultured primary rat astrocytes. J Neurosci Res 2017; 95:2307-2320. [PMID: 28316081 DOI: 10.1002/jnr.24050] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 12/18/2022]
Abstract
Metformin is an antidiabetic drug that is used daily by millions of patients worldwide. Metformin is able to cross the blood-brain barrier and has recently been shown to increase glucose consumption and lactate release in cultured astrocytes. However, potential effects of metformin on mitochondrial tricarboxylic acid (TCA) cycle metabolism in astrocytes are unknown. We investigated this by mapping 13 C labeling in TCA cycle intermediates and corresponding amino acids after incubation of primary rat astrocytes with [U-13 C]glucose. The presence of metformin did not compromise the viability of cultured astrocytes during 4 hr of incubation, but almost doubled cellular glucose consumption and lactate release. Compared with control cells, the presence of metformin dramatically lowered the molecular 13 C carbon labeling (MCL) of the cellular TCA cycle intermediates citrate, α-ketoglutarate, succinate, fumarate, and malate, as well as the MCL of the TCA cycle intermediate-derived amino acids glutamate, glutamine, and aspartate. In addition to the total molecular 13 C labeling, analysis of the individual isotopomers of TCA cycle intermediates confirmed a severe decline in labeling and a significant lowering in TCA cycling ratio in metformin-treated astrocytes. Finally, the oxygen consumption of mitochondria isolated from metformin-treated astrocytes was drastically reduced in the presence of complex I substrates, but not of complex II substrates. These data demonstrate that exposure to metformin strongly impairs complex I-mediated mitochondrial respiration in astrocytes, which is likely to cause the observed decrease in labeling of mitochondrial TCA cycle intermediates and the stimulation of glycolytic lactate production. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Michaela C Hohnholt
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Eva-Maria Blumrich
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, Bremen, Germany.,Centre for Environmental Research and Sustainable Technology, Bremen, Germany
| | - Helle S Waagepetersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Ralf Dringen
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, Bremen, Germany.,Centre for Environmental Research and Sustainable Technology, Bremen, Germany
| |
Collapse
|
36
|
Zhang L, Han J, Jackson AL, Clark LN, Kilgore J, Guo H, Livingston N, Batchelor K, Yin Y, Gilliam TP, Gehrig PA, Sheng X, Zhou C, Bae-Jump VL. NT1014, a novel biguanide, inhibits ovarian cancer growth in vitro and in vivo. J Hematol Oncol 2016; 9:91. [PMID: 27655410 PMCID: PMC5031332 DOI: 10.1186/s13045-016-0325-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/15/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND NT1014 is a novel biguanide and AMPK activator with a high affinity for the organic cation-specific transporters, OCT1 and OCT3. We sought to determine the anti-tumorigenic effects of NT1014 in human ovarian cancer cell lines as well as in a genetically engineered mouse model of high-grade serous ovarian cancer. METHODS The effects of NT1014 and metformin on cell proliferation were assessed by MTT assay using the human ovarian cancer cell lines, SKOV3 and IGROV1, as well as in primary cultures. In addition, the impact of NT1014 on cell cycle progression, apoptosis, cellular stress, adhesion, invasion, glycolysis, and AMPK activation/mTOR pathway inhibition was also explored. The effects of NT1014 treatment in vivo was evaluated using the K18 - gT121+/-; p53fl/fl; Brca1fl/fl (KpB) mouse model of high-grade serous ovarian cancer. RESULTS NT1014 significantly inhibited cell proliferation in both ovarian cancer cell lines as well as in primary cultures. In addition, NT1014 activated AMPK, inhibited downstream targets of the mTOR pathway, induced G1 cell cycle arrest/apoptosis/cellular stress, altered glycolysis, and reduced invasion/adhesion. Similar to its anti-tumorigenic effects in vitro, NT1014 decreased ovarian cancer growth in the KpB mouse model of ovarian cancer. NT1014 appeared to be more potent than metformin in both our in vitro and in vivo studies. CONCLUSIONS NT1014 inhibited ovarian cancer cell growth in vitro and in vivo, with greater efficacy than the traditional biguanide, metformin. These results support further development of NT1014 as a useful therapeutic approach for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Gynecologic Oncology, Shandong Cancer Hospital and Institute, Jinan, People's Republic of China.,Division of Gynecologic Oncology, University of North Carolina, Chapel Hill, NC, USA
| | - Jianjun Han
- Division of Gynecologic Oncology, University of North Carolina, Chapel Hill, NC, USA.,Department of Surgical Oncology, Shandong Cancer Hospital and Institute, Jinan, China
| | - Amanda L Jackson
- Division of Gynecologic Oncology, University of North Carolina, Chapel Hill, NC, USA
| | - Leslie N Clark
- Division of Gynecologic Oncology, University of North Carolina, Chapel Hill, NC, USA
| | - Joshua Kilgore
- Division of Gynecologic Oncology, University of North Carolina, Chapel Hill, NC, USA
| | - Hui Guo
- Department of Gynecologic Oncology, Shandong Cancer Hospital and Institute, Jinan, People's Republic of China.,Division of Gynecologic Oncology, University of North Carolina, Chapel Hill, NC, USA.,School of Medicine and Life Sciences, University of Jinan, Shandong Academy of Medical Sciences, Jinan, People's Republic of China
| | - Nick Livingston
- NovaTarg Therapeutics, Research Triangle Park, Durham, NC, 27709, USA
| | - Kenneth Batchelor
- NovaTarg Therapeutics, Research Triangle Park, Durham, NC, 27709, USA
| | - Yajie Yin
- Department of Gynecologic Oncology, Shandong Cancer Hospital and Institute, Jinan, People's Republic of China.,Division of Gynecologic Oncology, University of North Carolina, Chapel Hill, NC, USA.,School of Medicine and Life Sciences, University of Jinan, Shandong Academy of Medical Sciences, Jinan, People's Republic of China
| | - Timothy P Gilliam
- Division of Gynecologic Oncology, University of North Carolina, Chapel Hill, NC, USA
| | - Paola A Gehrig
- Division of Gynecologic Oncology, University of North Carolina, Chapel Hill, NC, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Xiugui Sheng
- Department of Gynecologic Oncology, Shandong Cancer Hospital and Institute, Jinan, People's Republic of China
| | - Chunxiao Zhou
- Division of Gynecologic Oncology, University of North Carolina, Chapel Hill, NC, USA. .,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Victoria L Bae-Jump
- Division of Gynecologic Oncology, University of North Carolina, Chapel Hill, NC, USA. .,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
37
|
The Protein Tyrosine Kinase Inhibitor Tyrphostin 23 Strongly Accelerates Glycolytic Lactate Production in Cultured Primary Astrocytes. Neurochem Res 2016; 41:2607-2618. [PMID: 27278759 DOI: 10.1007/s11064-016-1972-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 05/29/2016] [Accepted: 06/01/2016] [Indexed: 02/07/2023]
Abstract
Tyrphostin 23 (T23) is a well-known inhibitor of protein tyrosine kinases. To investigate potential acute effects of T23 on the viability and the glucose metabolism of brain cells, we exposed cultured primary rat astrocytes to T23 for up to 4 h. While the viability and the morphology of the cultured astrocytes were not acutely affected by the presence of T23 in concentrations of up to 300 µM, this compound caused a rapid, time- and concentration-dependent increase in glucose consumption and lactate release. Maximal effects on glycolytic flux were found for incubations with 100 µM T23 for 2 h which doubled both glucose consumption and lactate production. The stimulation of glycolytic flux by T23 was reversible, completely abolished upon removal of the compound and not found in presence of other known inhibitors of endocytosis. Structurally related compounds such as tyrphostin 25 and catechol or modulators of AMP kinase activity did neither affect the basal nor the T23-stimulated lactate production by astrocytes. In contrast, the presence of the phosphatase inhibitor vanadate completely abolished the stimulation by T23 of astrocytic lactate production in a concentration-dependent manner. These data suggest that T23-sensitive phosphorylation/dephosphorylation events are involved in the regulation of astrocytic glycolysis.
Collapse
|