1
|
Xue S, Zhou X, Yang ZH, Si XK, Sun X. Stroke-induced damage on the blood-brain barrier. Front Neurol 2023; 14:1248970. [PMID: 37840921 PMCID: PMC10569696 DOI: 10.3389/fneur.2023.1248970] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/08/2023] [Indexed: 10/17/2023] Open
Abstract
The blood-brain barrier (BBB) is a functional phenotype exhibited by the neurovascular unit (NVU). It is maintained and regulated by the interaction between cellular and non-cellular matrix components of the NVU. The BBB plays a vital role in maintaining the dynamic stability of the intracerebral microenvironment as a barrier layer at the critical interface between the blood and neural tissues. The large contact area (approximately 20 m2/1.3 kg brain) and short diffusion distance between neurons and capillaries allow endothelial cells to dominate the regulatory role. The NVU is a structural component of the BBB. Individual cells and components of the NVU work together to maintain BBB stability. One of the hallmarks of acute ischemic stroke is the disruption of the BBB, including impaired function of the tight junction and other molecules, as well as increased BBB permeability, leading to brain edema and a range of clinical symptoms. This review summarizes the cellular composition of the BBB and describes the protein composition of the barrier functional junction complex and the mechanisms regulating acute ischemic stroke-induced BBB disruption.
Collapse
Affiliation(s)
| | | | | | | | - Xin Sun
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
2
|
Sifat AE, Archie SR, Nozohouri S, Villalba H, Zhang Y, Sharma S, Ghanwatkar Y, Vaidya B, Mara D, Cucullo L, Abbruscato TJ. Short-term exposure to JUUL electronic cigarettes can worsen ischemic stroke outcome. Fluids Barriers CNS 2022; 19:74. [PMID: 36085043 PMCID: PMC9463848 DOI: 10.1186/s12987-022-00371-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The short and long-term health effects of JUUL electronic cigarette (e-Cig) are largely unknown and warrant extensive research. We hypothesized that JUUL exposure could cause cerebrovascular toxicities impacting the progression and outcome of ischemic stroke comparable to tobacco smoke (TS) exposure. METHODS We exposed male C57 mice to TS/JUUL vapor for 14 days. LCMS/MS was used to measure brain and plasma nicotine and cotinine level. Transient middle cerebral artery occlusion (tMCAO) followed by reperfusion was used to mimic ischemic stroke. Plasma levels of IL-6 and thrombomodulin were assessed by enzyme-linked immunosorbent assay. At the same time, western blotting was used to study blood-brain barrier (BBB) tight junction (TJ) proteins expression and key inflammatory and oxidative stress markers. RESULTS tMCAO upregulated IL-6 and decreased plasma thrombomodulin levels. Post-ischemic brain injury following tMCAO was significantly worsened by JUUL/TS pre-exposure. TJ proteins expression was also downregulated by JUUL/TS pre-exposure after tMCAO. Like TS, exposure to JUUL downregulated the expression of the antioxidant Nrf2. ICAM-1 was upregulated in mice subjected to tMCAO following pre-exposure to TS or JUUL, with a greater effect of TS than JUUL. CONCLUSIONS These results suggest that JUUL exposure could negatively impact the cerebrovascular system, although to a lesser extent than TS exposure.
Collapse
Affiliation(s)
- Ali Ehsan Sifat
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S Coulter St, Amarillo, TX, 79106, USA
| | - Sabrina Rahman Archie
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S Coulter St, Amarillo, TX, 79106, USA
| | - Saeideh Nozohouri
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S Coulter St, Amarillo, TX, 79106, USA
| | - Heidi Villalba
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S Coulter St, Amarillo, TX, 79106, USA
| | - Yong Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S Coulter St, Amarillo, TX, 79106, USA
| | - Sejal Sharma
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S Coulter St, Amarillo, TX, 79106, USA
| | - Yashwardhan Ghanwatkar
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S Coulter St, Amarillo, TX, 79106, USA
| | - Bhuvaneshwar Vaidya
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S Coulter St, Amarillo, TX, 79106, USA
| | - David Mara
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S Coulter St, Amarillo, TX, 79106, USA
| | - Luca Cucullo
- Oakland University William Beaumont School of Medicine, O' Dowd Hall, 586 Pioneer Dr, Room 415, Rochester, MI, 48309, USA.
| | - Thomas J Abbruscato
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S Coulter St, Amarillo, TX, 79106, USA.
| |
Collapse
|
3
|
Zhang W, Zhu L, An C, Wang R, Yang L, Yu W, Li P, Gao Y. The blood brain barrier in cerebral ischemic injury – Disruption and repair. BRAIN HEMORRHAGES 2020. [DOI: 10.1016/j.hest.2019.12.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
4
|
Sifat AE, Nozohouri S, Villalba H, Al Shoyaib A, Vaidya B, Karamyan VT, Abbruscato T. Prenatal electronic cigarette exposure decreases brain glucose utilization and worsens outcome in offspring hypoxic-ischemic brain injury. J Neurochem 2020; 153:63-79. [PMID: 31883376 DOI: 10.1111/jnc.14947] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/04/2019] [Accepted: 12/23/2019] [Indexed: 12/01/2022]
Abstract
It has been shown that prenatal nicotine and tobacco smoke exposure can cause different neurobehavioral disorders in the offspring. We hypothesize that prenatal exposure to nicotine-containing electronic cigarette (e-Cig) vapor can predispose newborn to enhanced sensitivity to hypoxic-ischemic (HI) brain injury and impaired motor and cognitive functions. In this study, pregnant CD1 mice were exposed to e-Cig vapor (2.4% nicotine). Primary cortical neurons isolated from e-Cig exposed fetus were exposed to oxygen-glucose deprivation followed by reoxygenation (OGD/R) to mimic HI brain injury. Cell viability and glucose utilization were analyzed in these neurons. HI brain injury was induced in 8-9-day-old pups. Short-term brain injury was evaluated by triphenyltetrazolium chloride staining. Long-term motor and cognitive functions were evaluated by open field, novel object recognition, Morris water maze, and foot fault tests. Western blotting and immunofluorescence were done to characterize glucose transporters in offspring brain. We found that e-Cig exposed neurons demonstrated decreased cell viability and glucose utilization in OGD/R. Prenatally e-Cig exposed pups also had increased brain injury and edema 24 hr after HI brain injury. Further, in utero e-Cig exposed offspring with HI brain injury displayed impaired memory, learning, and motor coordination at adolescence. Additionally, the expression of glucose transporters decreased in e-Cig exposed offspring brain after HI brain injury. These results indicate that reduced glucose utilization can contribute to prenatal e-Cig exposure induced worsened HI brain injury in offspring. This study is instrumental in elucidating the possible deleterious effects of e-Cig use in the general population.
Collapse
Affiliation(s)
- Ali E Sifat
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Saeideh Nozohouri
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Heidi Villalba
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Abdullah Al Shoyaib
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Bhuvaneshwar Vaidya
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | | | - Thomas Abbruscato
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| |
Collapse
|
5
|
Yuen NY, Chechneva OV, Chen YJ, Tsai YC, Little LK, Dang J, Tancredi DJ, Conston J, Anderson SE, O'Donnell ME. Exacerbated brain edema in a rat streptozotocin model of hyperglycemic ischemic stroke: Evidence for involvement of blood-brain barrier Na-K-Cl cotransport and Na/H exchange. J Cereb Blood Flow Metab 2019; 39:1678-1692. [PMID: 29739261 PMCID: PMC6727129 DOI: 10.1177/0271678x18770844] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cerebral edema is exacerbated in diabetic ischemic stroke through poorly understood mechanisms. We showed previously that blood-brain barrier (BBB) Na-K-Cl cotransport (NKCC) and Na/H exchange (NHE) are major contributors to edema formation in normoglycemic ischemic stroke. Here, we investigated whether hyperglycemia-exacerbated edema involves changes in BBB NKCC and NHE expression and/or activity and whether inhibition of NKCC or NHE effectively reduces edema and injury in a type I diabetic model of hyperglycemic stroke. Cerebral microvascular endothelial cell (CMEC) NKCC and NHE abundances and activities were determined by Western blot, radioisotopic flux and microspectrofluorometric methods. Cerebral edema and Na in rats subjected to middle cerebral artery occlusion (MCAO) were assessed by nuclear magnetic resonance methods. Hyperglycemia exposures of 1-7d significantly increased CMEC NKCC and NHE abundance and activity. Subsequent exposure to ischemic factors caused more robust increases in NKCC and NHE activities than in normoglycemic CMEC. MCAO-induced edema and brain Na uptake were greater in hyperglycemic rats. Intravenous bumetanide and HOE-642 significantly attenuated edema, brain Na uptake and ischemic injury. Our findings provide evidence that BBB NKCC and NHE contribute to increased edema in hyperglycemic stroke, suggesting that these Na transporters are promising therapeutic targets for reducing damage in diabetic stroke.
Collapse
Affiliation(s)
- Natalie Y Yuen
- 1 Department of Physiology and Membrane Biology, University of California, Davis, CA, USA
| | - Olga V Chechneva
- 1 Department of Physiology and Membrane Biology, University of California, Davis, CA, USA
| | - Yi-Je Chen
- 2 Department of Pharmacology, University of California, Davis, CA, USA
| | - Yi-Chen Tsai
- 1 Department of Physiology and Membrane Biology, University of California, Davis, CA, USA
| | - Logan K Little
- 1 Department of Physiology and Membrane Biology, University of California, Davis, CA, USA
| | - James Dang
- 1 Department of Physiology and Membrane Biology, University of California, Davis, CA, USA
| | - Daniel J Tancredi
- 3 Department of Pediatrics, University of California, Davis, CA, USA
| | - Jacob Conston
- 1 Department of Physiology and Membrane Biology, University of California, Davis, CA, USA
| | - Steven E Anderson
- 1 Department of Physiology and Membrane Biology, University of California, Davis, CA, USA
| | - Martha E O'Donnell
- 1 Department of Physiology and Membrane Biology, University of California, Davis, CA, USA
| |
Collapse
|
6
|
Yang WC, Wang Q, Chi LT, Wang YZ, Cao HL, Li WZ. Therapeutic hypercapnia reduces blood-brain barrier damage possibly via protein kinase Cε in rats with lateral fluid percussion injury. J Neuroinflammation 2019; 16:36. [PMID: 30760300 PMCID: PMC6375143 DOI: 10.1186/s12974-019-1427-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/01/2019] [Indexed: 11/17/2022] Open
Abstract
Background This study investigated whether therapeutic hypercapnia (TH) ameliorated blood–brain barrier (BBB) damage and improved the neurologic outcome in a rat model of lateral fluid percussion injury (FPI), and explored the possible underlying mechanism. Methods Rats underwent lateral FPI and received inhalation of 30%O2–70%N2 or 30%O2–N2 plus CO2 to maintain arterial blood CO2 tension (PaCO2) between 80 and 100 mmHg for 3 h. To further explore the possible mechanisms for the protective effects of TH, a PKC inhibitor staurosporine or PKCαβ inhibitor GÖ6976 was administered via intracerebral ventricular injection. Results TH significantly improved neurological function 24 h, 48 h, 7 d, and 14 d after FPI. The wet/dry ratio, computed tomography values, Evans blue content, and histological lesion volume were significantly reduced by TH. Moreover, numbers of survived neurons and the expression of tight junction proteins (ZO-1, occludin, and claudin-5) were significantly elevated after TH treatment at 48-h post-FPI. TH significantly increased the expression of protein kinase Cε (PKCε) at 48-h post-FPI, but did not significantly change the expression of PKCα and PKCβII. PKC inhibitor staurosporine (but not the selective PKCαβ inhibitor-GÖ6976) inhibited the protective effect of TH. Conclusions Therapeutic hypercapnia is a promising candidate that should be further evaluated for clinical treatment. It not only protects the traumatic penumbra from secondary injury and improves histological structure but also maintains the integrity of BBB and reduces neurologic deficits after trauma in a rat model of FPI.
Collapse
Affiliation(s)
- Wan-Chao Yang
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qi Wang
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lai-Ting Chi
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yue-Zhen Wang
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hong-Ling Cao
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wen-Zhi Li
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, Harbin, China. .,Anesthesiology Key Laboratory, Education Department, Harbin Medical University, No. 246 Xuefu Road, Harbin, 150086, China.
| |
Collapse
|
7
|
Sifat AE, Vaidya B, Kaisar MA, Cucullo L, Abbruscato TJ. Nicotine and electronic cigarette (E-Cig) exposure decreases brain glucose utilization in ischemic stroke. J Neurochem 2018; 147:204-221. [PMID: 30062776 PMCID: PMC6394831 DOI: 10.1111/jnc.14561] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 06/27/2018] [Accepted: 07/19/2018] [Indexed: 12/22/2022]
Abstract
Previous studies in our laboratory have shown that nicotine exposure decreases glucose transport across the blood-brain barrier in ischemia-reperfusion conditions. We hypothesize that nicotine can also dysregulate brain parenchymal glucose utilization by altering glucose transporters with effects on sensitivity to ischemic stroke. In this study, we investigated the effects of nicotine exposure on neuronal glucose utilization using an in vitro ischemic stroke model. We also tested the effects of e-Cig vaping on ischemic brain glucose utilization using an acute brain slice technique. Primary cortical neurons and brain slices were subjected to oxygen-glucose deprivation followed by reoxygenation to mimic ischemia-reperfusion injury. We estimated brain cell glucose utilization by measuring the uptake of [3 H] deoxy-d-glucose. Immunofluorescence and western blotting were done to characterize glucose transporters (GLUTs) and α7 nicotinic acetylcholine receptor (nAChR) expression. Furthermore, we used a glycolytic stress test to measure the effects of nicotine exposure on neuronal glucose metabolism. We observed that short- and long-term nicotine/cotinine exposure significantly decreased neuronal glucose utilization in ischemic conditions and the non-specific nAChR antagonist, mecamylamine reversed this effect. Nicotine/cotinine exposure also decreased neuronal GLUT1 and up-regulated α7 nAChR expression and decreased glycolysis. Exposure of mice to e-Cig vapor for 7 days likewise decreases brain glucose uptake under normoxic and ischemic conditions along with down-regulation of GLUT1 and GLUT3 expressions. These data support, from a cerebrovascular perspective, that nicotine and/or e-Cig vaping induce a state of glucose deprivation at the neurovascular unit which could lead to enhanced ischemic brain injury and/or stroke risk. OPEN PRACTICES: Open Science: This manuscript was awarded with the Open Materials Badge. For more information see: https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Ali E Sifat
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, USA
| | - Bhuvaneshwar Vaidya
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, USA
| | - Mohammad A Kaisar
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, USA
| | - Luca Cucullo
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, USA
| | - Thomas J Abbruscato
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, USA
| |
Collapse
|
8
|
Sifat AE, Vaidya B, Villalba H, Albekairi TH, Abbruscato TJ. Neurovascular unit transport responses to ischemia and common coexisting conditions: smoking and diabetes. Am J Physiol Cell Physiol 2018; 316:C2-C15. [PMID: 30207783 DOI: 10.1152/ajpcell.00187.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Transporters at the neurovascular unit (NVU) are vital for the regulation of normal brain physiology via ion, water, and nutrients movement. In ischemic stroke, the reduction of cerebral blood flow causes several complex pathophysiological changes in the brain, one of which includes alterations of the NVU transporters, which can exacerbate stroke outcome by increased brain edema (by altering ion, water, and glutamate transporters), altered energy metabolism (by altering glucose transporters), and enhanced drug toxicity (by altering efflux transporters). Smoking and diabetes are common risk factors as well as coexisting conditions in ischemic stroke that are also reported to change the expression and function of NVU transporters. Coexistence of these conditions could cause an additive effect in terms of the alterations of brain transporters that might lead to worsened ischemic stroke prognosis and recovery. In this review, we have discussed the effects of ischemic stroke, smoking, and diabetes on some essential NVU transporters and how the simultaneous presence of these conditions can affect the clinical outcome after an ischemic episode. Further scientific investigations are required to elucidate changes in NVU transport in cerebral ischemia, which can lead to better, personalized therapeutic interventions tailor-made for these comorbid conditions.
Collapse
Affiliation(s)
- Ali E Sifat
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center , Amarillo, Texas
| | - Bhuvaneshwar Vaidya
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center , Amarillo, Texas
| | - Heidi Villalba
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center , Amarillo, Texas
| | - Thamer H Albekairi
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center , Amarillo, Texas
| | - Thomas J Abbruscato
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center , Amarillo, Texas
| |
Collapse
|
9
|
Qian F, Tang FR. Metabotropic Glutamate Receptors and Interacting Proteins in Epileptogenesis. Curr Neuropharmacol 2017; 14:551-62. [PMID: 27030135 PMCID: PMC4983745 DOI: 10.2174/1570159x14666160331142228] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 12/30/2015] [Accepted: 03/13/2016] [Indexed: 02/07/2023] Open
Abstract
Neurotransmitter and receptor systems are involved in different neurological and neuropsychological disorders such as Parkinson's disease, depression, Alzheimer’s disease and epilepsy. Recent advances in studies of signal transduction pathways or interacting proteins of neurotransmitter receptor systems suggest that different receptor systems may share the common signal transduction pathways or interacting proteins which may be better therapeutic targets for development of drugs to effectively control brain diseases. In this paper, we reviewed metabotropic glutamate receptors (mGluRs) and their related signal transduction pathways or interacting proteins in status epilepticus and temporal lobe epilepsy, and proposed some novel therapeutical drug targets for controlling epilepsy and epileptogenesis.
Collapse
Affiliation(s)
| | - Feng-Ru Tang
- Radiobiology Research Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore.
| |
Collapse
|
10
|
Rakkar K, Bayraktutan U. Increases in intracellular calcium perturb blood–brain barrier via protein kinase C-alpha and apoptosis. Biochim Biophys Acta Mol Basis Dis 2016; 1862:56-71. [DOI: 10.1016/j.bbadis.2015.10.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 10/14/2015] [Accepted: 10/20/2015] [Indexed: 12/11/2022]
|
11
|
Datta P, Weis MT. Calcium glycerophosphate preserves transepithelial integrity in the Caco-2 model of intestinal transport. World J Gastroenterol 2015; 21:9055-9066. [PMID: 26290632 PMCID: PMC4533037 DOI: 10.3748/wjg.v21.i30.9055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/13/2015] [Accepted: 06/26/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To assess the direct effects of ischemia on intestinal epithelial integrity. Furthermore, clinical efforts at mitigating the effect of hypoperfusion on gut permeability have focused on restoring gut vascular function.
METHODS: We report that, in the Caco-2 cell model of transepithelial transport, calcium glycerophosphate (CGP), an inhibitor of intestinal alkaline phosphatase F3, has a significant effect to preserve transepithelial electrical resistance (TEER) and to attenuate increases in mannitol flux rates during hypoxia or cytokine stimulation.
RESULTS: The effect was observable even at concentrations as low as 1 μmol/L. As celiac disease is also marked by a loss of gut epithelial integrity, the effect of CGP to attenuate the effect of the α-gliadin peptide 31-55 was also examined. In this instance, CGP exerted little effect of preservation of TEER, but significantly attenuated peptide induced increase in mannitol flux.
CONCLUSION: It appears that CGP treatment might synergize with other therapies to preserve gut epithelial integrity.
Collapse
|
12
|
Shah KK, Boreddy PR, Abbruscato TJ. Nicotine pre-exposure reduces stroke-induced glucose transporter-1 activity at the blood-brain barrier in mice. Fluids Barriers CNS 2015; 12:10. [PMID: 25925411 PMCID: PMC4425877 DOI: 10.1186/s12987-015-0005-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 04/02/2015] [Indexed: 01/07/2023] Open
Abstract
Background With growing electronic cigarette usage in both the smoking and nonsmoking population, rigorous studies are needed to investigate the effects of nicotine on biological systems to determine long-term health consequences. We have previously shown that nicotine exerts specific neurovascular effects that influence blood brain barrier (BBB) function in response to stroke. In this study, we investigated the effects of nicotine on carrier-mediated glucose transport into ischemic brain. Specifically, the present study investigates glucose transporter-1 (GLUT1) function and expression at the BBB in a focal brain ischemia model of mice pre-exposed to nicotine. Methods Nicotine was administrated subcutaneously by osmotic pump at the dose of 4.5 mg/kg/day for 1, 7, or 14 days to reflect the plasma levels seen in smokers. Ischemic-reperfusion (IR) injury was induced by 1 h transient middle cerebral artery occlusion (tMCAO) and 24 h reperfusion. Glucose transport was estimated using an in situ brain perfusion technique with radiolabeled glucose and brain vascular GLUT1 expression was detected with immunofluorescence. Results The nicotine pre-exposure (1, 7 & 14 day) resulted in significant reduction in D-glucose influx rate (Kin) across the BBB, with a 49% reduction in 14 day nicotine-infused animals. We observed a 41% increase in carrier-mediated glucose transport across the BBB in saline-infused tMCAO animals compared to saline-infused sham animals. Interestingly, in the tMCAO group of animals pre-exposed to nicotine for 14 days had significantly attenuated increased glucose transport by 80% and 38% compared to saline-infused tMCAO and sham animals respectively. Furthermore, immunofluorescence studies of GLUT1 protein expression in the brain microvascular endothelium confirmed that GLUT1 was also induced in saline-infused tMCAO animals and this protein expression induction was reduced significantly (P < 0.01) with 14 day nicotine pre-exposure in tMCAO animals. Conclusions Nicotine pre-exposure reduced the IR-enhanced GLUT1 transporter function and expression at the BBB in a focal brain ischemia mouse model. These studies suggest that nicotine exposure prior to stroke could create an enhanced glucose deprived state at the neurovascular unit (NVU) and could provide an additional vulnerability to enhanced stroke injury.
Collapse
Affiliation(s)
- Kaushik K Shah
- Texas Tech University Health Sciences Center, 1300S Coulter, School of Pharmacy, Department of Pharmaceutical Sciences, Amarillo, TX, 79106, USA.
| | - Purushotham Reddy Boreddy
- Texas Tech University Health Sciences Center, 1300S Coulter, School of Pharmacy, Department of Pharmaceutical Sciences, Amarillo, TX, 79106, USA. .,National Center for Cell Science (NCCS), Cancer Biology, Laboratory No. 6, Pune, 411007, Maharashtra, India.
| | - Thomas J Abbruscato
- Texas Tech University Health Sciences Center, 1300S Coulter, School of Pharmacy, Department of Pharmaceutical Sciences, Amarillo, TX, 79106, USA.
| |
Collapse
|
13
|
Egleton RD, Abbruscato T. Drug abuse and the neurovascular unit. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2014; 71:451-80. [PMID: 25307226 DOI: 10.1016/bs.apha.2014.06.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Drug abuse continues to create a major international epidemic affecting society. A great majority of past drug abuse research has focused mostly on the mechanisms of addiction and the specific effects of substance use disorders on brain circuits and pathways that modulate reward, motivation, craving, and decision making. Few studies have focused on the neurobiology of acute and chronic substance abuse as it relates to the neurovascular unit (brain endothelial cell, neuron, astrocyte, microglia, and pericyte). Increasing research indicates that all cellular components of the neurovascular unit play a pivotal role in both the process of addiction and how drug abuse affects the brain response to diseases. This review will focus on the specific effects of opioids, amphetamines, alcohol, and nicotine on the neurovascular unit and its role in addiction and adaption to brain diseases. Elucidation of the role of the neurovascular unit on the neurobiology associated with drug addiction will help to facilitate the development of better therapeutic approaches for drug-dependent individuals.
Collapse
Affiliation(s)
- Richard D Egleton
- Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, USA.
| | - Thomas Abbruscato
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, USA.
| |
Collapse
|
14
|
De Bock M, Wang N, Decrock E, Bol M, Gadicherla AK, Culot M, Cecchelli R, Bultynck G, Leybaert L. Endothelial calcium dynamics, connexin channels and blood-brain barrier function. Prog Neurobiol 2013; 108:1-20. [PMID: 23851106 DOI: 10.1016/j.pneurobio.2013.06.001] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 06/12/2013] [Accepted: 06/18/2013] [Indexed: 01/11/2023]
Abstract
Situated between the circulation and the brain, the blood-brain barrier (BBB) protects the brain from circulating toxins while securing a specialized environment for neuro-glial signaling. BBB capillary endothelial cells exhibit low transcytotic activity and a tight, junctional network that, aided by the cytoskeleton, restricts paracellular permeability. The latter is subject of extensive research as it relates to neuropathology, edema and inflammation. A key determinant in regulating paracellular permeability is the endothelial cytoplasmic Ca(2+) concentration ([Ca(2+)]i) that affects junctional and cytoskeletal proteins. Ca(2+) signals are not one-time events restricted to a single cell but often appear as oscillatory [Ca(2+)]i changes that may propagate between cells as intercellular Ca(2+) waves. The effect of Ca(2+) oscillations/waves on BBB function is largely unknown and we here review current evidence on how [Ca(2+)]i dynamics influence BBB permeability.
Collapse
Affiliation(s)
- Marijke De Bock
- Dept. of Basic Medical Sciences, Ghent University, Ghent, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Gagnon KB, Delpire E. Molecular physiology of SPAK and OSR1: two Ste20-related protein kinases regulating ion transport. Physiol Rev 2013; 92:1577-617. [PMID: 23073627 DOI: 10.1152/physrev.00009.2012] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
SPAK (Ste20-related proline alanine rich kinase) and OSR1 (oxidative stress responsive kinase) are members of the germinal center kinase VI subfamily of the mammalian Ste20 (Sterile20)-related protein kinase family. Although there are 30 enzymes in this protein kinase family, their conservation across the fungi, plant, and animal kingdom confirms their evolutionary importance. Already, a large volume of work has accumulated on the tissue distribution, binding partners, signaling cascades, and physiological roles of mammalian SPAK and OSR1 in multiple organ systems. After reviewing this basic information, we will examine newer studies that demonstrate the pathophysiological consequences to SPAK and/or OSR1 disruption, discuss the development and analysis of genetically engineered mouse models, and address the possible role these serine/threonine kinases might have in cancer proliferation and migration.
Collapse
Affiliation(s)
- Kenneth B Gagnon
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2520, USA
| | | |
Collapse
|
16
|
Guo S, Zhou Y, Xing C, Lok J, Som AT, Ning M, Ji X, Lo EH. The vasculome of the mouse brain. PLoS One 2012; 7:e52665. [PMID: 23285140 PMCID: PMC3527566 DOI: 10.1371/journal.pone.0052665] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 11/20/2012] [Indexed: 01/08/2023] Open
Abstract
The blood vessel is no longer viewed as passive plumbing for the brain. Increasingly, experimental and clinical findings suggest that cerebral endothelium may possess endocrine and paracrine properties – actively releasing signals into and receiving signals from the neuronal parenchyma. Hence, metabolically perturbed microvessels may contribute to central nervous system (CNS) injury and disease. Furthermore, cerebral endothelium can serve as sensors and integrators of CNS dysfunction, releasing measurable biomarkers into the circulating bloodstream. Here, we define and analyze the concept of a brain vasculome, i.e. a database of gene expression patterns in cerebral endothelium that can be linked to other databases and systems of CNS mediators and markers. Endothelial cells were purified from mouse brain, heart and kidney glomeruli. Total RNA were extracted and profiled on Affymetrix mouse 430 2.0 micro-arrays. Gene expression analysis confirmed that these brain, heart and glomerular preparations were not contaminated by brain cells (astrocytes, oligodendrocytes, or neurons), cardiomyocytes or kidney tubular cells respectively. Comparison of the vasculome between brain, heart and kidney glomeruli showed that endothelial gene expression patterns were highly organ-dependent. Analysis of the brain vasculome demonstrated that many functionally active networks were present, including cell adhesion, transporter activity, plasma membrane, leukocyte transmigration, Wnt signaling pathways and angiogenesis. Analysis of representative genome-wide-association-studies showed that genes linked with Alzheimer’s disease, Parkinson’s disease and stroke were detected in the brain vasculome. Finally, comparison of our mouse brain vasculome with representative plasma protein databases demonstrated significant overlap, suggesting that the vasculome may be an important source of circulating signals in blood. Perturbations in cerebral endothelial function may profoundly affect CNS homeostasis. Mapping and dissecting the vasculome of the brain in health and disease may provide a novel database for investigating disease mechanisms, assessing therapeutic targets and exploring new biomarkers for the CNS.
Collapse
Affiliation(s)
- Shuzhen Guo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (SG); (EHL)
| | - Yiming Zhou
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute, Massachusetts Institute of Technology and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Changhong Xing
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Josephine Lok
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Angel T. Som
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - MingMing Ning
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Clinical Proteomics Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Xunming Ji
- Cerebrovascular Research Center, XuanWu Hospital, Capital Medical University, Beijing, Peoples Republic of China
| | - Eng H. Lo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Clinical Proteomics Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (SG); (EHL)
| |
Collapse
|
17
|
Kousik SM, Napier TC, Carvey PM. The effects of psychostimulant drugs on blood brain barrier function and neuroinflammation. Front Pharmacol 2012; 3:121. [PMID: 22754527 PMCID: PMC3386512 DOI: 10.3389/fphar.2012.00121] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 06/06/2012] [Indexed: 12/17/2022] Open
Abstract
The blood brain barrier (BBB) is a highly dynamic interface between the central nervous system (CNS) and periphery. The BBB is comprised of a number of components and is part of the larger neuro(glio)vascular unit. Current literature suggests that psychostimulant drugs of abuse alter the function of the BBB which likely contributes to the neurotoxicities associated with these drugs. In both preclinical and clinical studies, psychostimulants including methamphetamine, MDMA, cocaine, and nicotine, produce BBB dysfunction through alterations in tight junction protein expression and conformation, increased glial activation, increased enzyme activation related to BBB cytoskeleton remodeling, and induction of neuroinflammatory pathways. These detrimental changes lead to increased permeability of the BBB and subsequent vulnerability of the brain to peripheral toxins. In fact, abuse of these psychostimulants, notably methamphetamine and cocaine, has been shown to increase the invasion of peripheral bacteria and viruses into the brain. Much work in this field has focused on the co-morbidity of psychostimulant abuse and human immunodeficiency virus (HIV) infection. As psychostimulants alter BBB permeability, it is likely that this BBB dysfunction results in increased penetration of the HIV virus into the brain thus increasing the risk of and severity of neuro AIDS. This review will provide an overview of the specific changes in components within the BBB associated with psychostimulant abuse as well as the implications of these changes in exacerbating the neuropathology associated with psychostimulant drugs and HIV co-morbidity.
Collapse
Affiliation(s)
- Sharanya M Kousik
- Department of Pharmacology, Rush University Medical Center Chicago, IL, USA
| | | | | |
Collapse
|
18
|
Abstract
The chapter provides an introduction and brief overview of currently available in vitro blood-brain barrier models, pointing out the major advantages and disadvantages of the respective models and potential applications. Bovine brain microvessel endothelial cell isolation, culture, and transendothelial permeability measurement procedures are discussed in detail as a model system for a laboratory to begin brain vascular investigations.
Collapse
Affiliation(s)
- Kaushik K Shah
- School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | | | | |
Collapse
|
19
|
Zeng DX, Xu YJ, Liu XS, Wang R, Xiang M. Cigarette smoke extract induced rat pulmonary artery smooth muscle cells proliferation via PKCα-mediated cyclin D1 expression. J Cell Biochem 2011; 112:2082-8. [PMID: 21465534 DOI: 10.1002/jcb.23131] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cigarette smoke could induce pulmonary smooth muscle cells (PASMCs) proliferation. Although our previous study had implied the involvement of protein kinase Cα (PKCα), the molecular mechanism underlying PKCα pathway in this process is still unknown. In this study, rat PASMCs were stimulated by cigarette smoke extract (CSE) or PMA (a special activator to PKCα). Two percent CSE and PMA significantly enhanced cyclin D1 expression and cells proliferation. But cyclin D1-specific siRNA successfully inhibited DNA synthesis in CSE-treated or PMA-treated cells. On the other hand, PKCα-specific siRNA significantly suppressed cyclin D1 expression in CSE-treated cells. Moreover, PKCα-specific siRNA resulted in a cell-cycle arrest in G0/G1 and decreased cells number significantly. We conclude that CSE induced rat PASMCs proliferation at least partly via PKCα-mediated cyclin D1 expression.
Collapse
Affiliation(s)
- Da-Xiong Zeng
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Department of Respiratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | | | | | | | | |
Collapse
|
20
|
Yang L, Shah K, Wang H, Karamyan VT, Abbruscato TJ. Characterization of neuroprotective effects of biphalin, an opioid receptor agonist, in a model of focal brain ischemia. J Pharmacol Exp Ther 2011; 339:499-508. [PMID: 21856861 DOI: 10.1124/jpet.111.184127] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Approximately 795,000 people experience a new or recurrent stroke in the United States annually. The purpose of this study was to assess the protective effect of a nonselective opioid receptor agonist, biphalin, in brain edema and infarct damage by using both in vitro and in vivo models of stroke. In an in vivo model of ischemia, biphalin significantly decreased edema (66.6 and 58.3%) and infarct (52.2 and 56.4%) ratios in mouse transient (60-min occlusion/24-h reperfusion) and permanent (6 h) middle cerebral artery occlusion models, respectively. Biphalin administration also showed decreased neurodegeneration in hippocampal, cortical, and striatal brain tissue after ischemia, evidenced by reduced Fluoro-Jade C staining. In addition, biphalin improved neurological function after stroke injury evidenced by neurological score and locomotor activity evaluation. Biphalin significantly decreased penumbral expression of Na(+), K(+), 2Cl(-) cotransporter (NKCC) and the translocation of the conventional isoforms of protein kinase C (PKC). It also reversed the activation of PKC-induced cell volume increase during ischemia in primary neuronal cell cultures exposed to 1 h of oxygen glucose deprivation. These data suggest that opioid receptor activation provides neuroprotection during stroke, and a possible explanation of this mechanism could be the inhibition of NKCC function via the regulation of PKC-dependent cell signaling.
Collapse
Affiliation(s)
- Li Yang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S. Coulter, Amarillo, TX 79016, USA
| | | | | | | | | |
Collapse
|
21
|
Yu H, Wang P, An P, Yixue X. Recombinant Human Angiopoietin-1 Ameliorates the Expressions of ZO-1, Occludin, VE-cadherin, and PKCα Signaling after Focal Cerebral Ischemia/Reperfusion in Rats. J Mol Neurosci 2011; 46:236-47. [DOI: 10.1007/s12031-011-9584-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2011] [Accepted: 06/13/2011] [Indexed: 10/18/2022]
|
22
|
Redzic Z. Molecular biology of the blood-brain and the blood-cerebrospinal fluid barriers: similarities and differences. Fluids Barriers CNS 2011; 8:3. [PMID: 21349151 PMCID: PMC3045361 DOI: 10.1186/2045-8118-8-3] [Citation(s) in RCA: 253] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Accepted: 01/18/2011] [Indexed: 01/11/2023] Open
Abstract
Efficient processing of information by the central nervous system (CNS) represents an important evolutionary advantage. Thus, homeostatic mechanisms have developed that provide appropriate circumstances for neuronal signaling, including a highly controlled and stable microenvironment. To provide such a milieu for neurons, extracellular fluids of the CNS are separated from the changeable environment of blood at three major interfaces: at the brain capillaries by the blood-brain barrier (BBB), which is localized at the level of the endothelial cells and separates brain interstitial fluid (ISF) from blood; at the epithelial layer of four choroid plexuses, the blood-cerebrospinal fluid (CSF) barrier (BCSFB), which separates CSF from the CP ISF, and at the arachnoid barrier. The two barriers that represent the largest interface between blood and brain extracellular fluids, the BBB and the BCSFB, prevent the free paracellular diffusion of polar molecules by complex morphological features, including tight junctions (TJs) that interconnect the endothelial and epithelial cells, respectively. The first part of this review focuses on the molecular biology of TJs and adherens junctions in the brain capillary endothelial cells and in the CP epithelial cells. However, normal function of the CNS depends on a constant supply of essential molecules, like glucose and amino acids from the blood, exchange of electrolytes between brain extracellular fluids and blood, as well as on efficient removal of metabolic waste products and excess neurotransmitters from the brain ISF. Therefore, a number of specific transport proteins are expressed in brain capillary endothelial cells and CP epithelial cells that provide transport of nutrients and ions into the CNS and removal of waste products and ions from the CSF. The second part of this review concentrates on the molecular biology of various solute carrier (SLC) transport proteins at those two barriers and underlines differences in their expression between the two barriers. Also, many blood-borne molecules and xenobiotics can diffuse into brain ISF and then into neuronal membranes due to their physicochemical properties. Entry of these compounds could be detrimental for neural transmission and signalling. Thus, BBB and BCSFB express transport proteins that actively restrict entry of lipophilic and amphipathic substances from blood and/or remove those molecules from the brain extracellular fluids. The third part of this review concentrates on the molecular biology of ATP-binding cassette (ABC)-transporters and those SLC transporters that are involved in efflux transport of xenobiotics, their expression at the BBB and BCSFB and differences in expression in the two major blood-brain interfaces. In addition, transport and diffusion of ions by the BBB and CP epithelium are involved in the formation of fluid, the ISF and CSF, respectively, so the last part of this review discusses molecular biology of ion transporters/exchangers and ion channels in the brain endothelial and CP epithelial cells.
Collapse
Affiliation(s)
- Zoran Redzic
- Department of Physiology, Faculty of Medicine, Kuwait University, SAFAT 13110, Kuwait.
| |
Collapse
|
23
|
Bradford ST, Stamatovic SM, Dondeti RS, Keep RF, Andjelkovic AV. Nicotine aggravates the brain postischemic inflammatory response. Am J Physiol Heart Circ Physiol 2011; 300:H1518-29. [PMID: 21239632 DOI: 10.1152/ajpheart.00928.2010] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A substantial body of evidence suggests that nicotine adversely affects cerebral blood flow and the blood-brain barrier and is a risk factor for stroke. The present study investigated the effect of nicotine on cerebrovascular endothelium under basal and ischemia/reperfusion injury under in vivo condition. Nicotine (2 mg/kg sc) was administered to mice over 14 days, which resulted in plasma nicotine levels of ∼100 ng/ml, reflecting plasma concentrations in average to heavy smokers. An analysis of the phenotype of isolated brain microvessels after nicotine exposure indicated higher expression of inflammatory mediators, cytokines (IL-1β, TNF-α, and IL-18), chemokines (CCL2 and CX(3)CL1), and adhesion molecules (ICAM-1, VCAM-1, and P-selectins), and this was accompanied by enhanced leukocyte infiltration into brain during ischemia/reperfusion (P < 0.01). Nicotine had a profound effect on ischemia/reperfusion injury; i.e., increased brain infarct size (P < 0.01), worse neurological deficits, and a higher mortality rate. These experiments illuminate, for the first time, how nicotine regulates brain endothelial cell phenotype and postischemic inflammatory response at the brain-vascular interface.
Collapse
Affiliation(s)
- Shayna T Bradford
- Department of Pathology, University of Michigan, Medical School, Ann Arbor, 48109-0532, USA
| | | | | | | | | |
Collapse
|
24
|
Willis CL, Meske DS, Davis TP. Protein kinase C activation modulates reversible increase in cortical blood-brain barrier permeability and tight junction protein expression during hypoxia and posthypoxic reoxygenation. J Cereb Blood Flow Metab 2010; 30:1847-59. [PMID: 20700133 PMCID: PMC3023932 DOI: 10.1038/jcbfm.2010.119] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hypoxia (Hx) is a component of many disease states including stroke. Ischemic stroke occurs when there is a restriction of cerebral blood flow and oxygen to part of the brain. During the ischemic, and subsequent reperfusion phase of stroke, blood-brain barrier (BBB) integrity is lost with tight junction (TJ) protein disruption. However, the mechanisms of Hx and reoxygenation (HR)-induced loss of BBB integrity are not fully understood. We examined the role of protein kinase C (PKC) isozymes in modifying TJ protein expression in a rat model of global Hx. The Hx (6% O(2)) induced increased hippocampal and cortical vascular permeability to 4 and 10 kDa dextran fluorescein isothiocyanate (FITC) and endogenous rat-IgG. Cortical microvessels revealed morphologic changes in nPKC-θ distribution, increased nPKC-θ and aPKC-ζ protein expression, and activation by phosphorylation of nPKC-θ (Thr538) and aPKC-ζ (Thr410) residues after Hx treatment. Claudin-5, occludin, and ZO-1 showed disrupted organization at endothelial cell margins, whereas Western blot analysis showed increased TJ protein expression after Hx. The PKC inhibition with chelerythrine chloride (5 mg/kg intraperitoneally) attenuated Hx-induced hippocampal vascular permeability and claudin-5, PKC (θ and ζ) expression, and phosphorylation. This study supports the hypothesis that nPKC-θ and aPKC-ζ signaling mediates TJ protein disruption resulting in increased BBB permeability.
Collapse
Affiliation(s)
- Colin L Willis
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, USA.
| | | | | |
Collapse
|
25
|
Rigor RR, Hawkins BT, Miller DS. Activation of PKC isoform beta(I) at the blood-brain barrier rapidly decreases P-glycoprotein activity and enhances drug delivery to the brain. J Cereb Blood Flow Metab 2010; 30:1373-83. [PMID: 20197783 PMCID: PMC2949219 DOI: 10.1038/jcbfm.2010.21] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
P-glycoprotein is an ATP (adenosine triphosphate)-driven drug efflux transporter that is highly expressed at the blood-brain barrier (BBB) and is a major obstacle to the pharmacotherapy of central nervous system diseases, including brain tumors, neuro-AIDS, and epilepsy. Previous studies have shown that P-glycoprotein transport activity in rat brain capillaries is rapidly reduced by the proinflammatory cytokine, tumor necrosis factor-alpha (TNF-alpha) acting through protein kinase C (PKC)-dependent signaling. In this study, we used isolated rat brain capillaries to show that the TNF-alpha-induced reduction of P-glycoprotein activity was prevented by a PKCbeta(I/II) inhibitor, LY333531, and mimicked by a PKCbeta(I/II) activator, 12-deoxyphorbol-13-phenylacetate-20-acetate (dPPA). Western blotting of brain capillary extracts with phospho-specific antibodies showed that dPPA activated PKCbeta(I), but not PKCbeta(II). Moreover, in intact rats, intracarotid infusion of dPPA potently increased brain accumulation of the P-glycoprotein substrate, [(3)H]-verapamil without compromising tight junction integrity. Thus, PKCbeta(I) activation selectively reduced P-glycoprotein activity both in vitro and in vivo. Targeting PKCbeta(I) at the BBB may prove to be an effective strategy for enhancing the delivery of small molecule therapeutics to the brain.
Collapse
Affiliation(s)
- Robert R Rigor
- Laboratory of Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | | | |
Collapse
|
26
|
Role of PKCbetaII and PKCdelta in blood-brain barrier permeability during aglycemic hypoxia. Neurosci Lett 2009; 468:254-8. [PMID: 19900507 DOI: 10.1016/j.neulet.2009.11.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 11/02/2009] [Accepted: 11/04/2009] [Indexed: 11/23/2022]
Abstract
Blood-brain barrier (BBB) dysfunction contributes to the pathophysiology of cerebrovascular diseases such as stroke. In the present study, we investigated the role of PKC isoforms in aglycemic hypoxia-induced hyperpermeability using an in vitro model of the BBB consisting of mouse bEnd.3 cells. PKCbetaII and PKCdelta isoforms were activated during aglycemic hypoxia. CGP53353, a specific PKCbetaII inhibitor, significantly attenuated aglycemic hypoxia-induced BBB hyperpermeability and disruption of occludin and zonula occludens-1 (ZO-1), indicating a deleterious role of PKCbetaII in the regulation of BBB permeability during aglycemic hypoxia. Conversely, rottlerin, a specific PKCdelta inhibitor, exacerbated BBB hyperpermeability and tight junction (TJ) disruption during aglycemic hypoxia, indicating a protective role of PKCdelta against aglycemic hypoxia-induced BBB hyperpermeability. Furthermore, disruption of TJ proteins during aglycemic hypoxia was attenuated by PKCbetaII DN and PKCdelta WT overexpression, and aggravated by PKCbetaII WT and PKCdelta DN overexpression. These results suggest that PKCbetaII and PKCdelta counter-regulate BBB permeability during aglycemic hypoxia.
Collapse
|
27
|
Snow JB, Kanagy NL, Walker BR, Resta TC. Rat strain differences in pulmonary artery smooth muscle Ca(2+) entry following chronic hypoxia. Microcirculation 2009; 16:603-14. [PMID: 19626552 DOI: 10.1080/10739680903114268] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Effects of chronic hypoxia (CH) on store- and receptor-operated Ca(2+) entry (SOCE, ROCE) in pulmonary vascular smooth muscle (VSM) are controversial, although whether genetic variation explains such discrepancies in commonly studied rat strains is unclear. Since protein kinase C (PKC) can inhibit Ca(2+) permeable nonselective cation channels, we hypothesized that CH differentially alters PKC-dependent inhibition of SOCE and ROCE in pulmonary VSM from Sprague-Dawley and Wistar rats. To test this hypothesis, we examined SOCE and endothelin-1 (ET-1)-induced ROCE in endothelium-disrupted, pressurized pulmonary arteries from control and CH Sprague-Dawley and Wistar rats. Basal VSM Ca(2+) was elevated in CH Wistar, but not Sprague-Dawley, rats. Further, CH attenuated SOCE in VSM from Sprague-Dawley rats, while augmenting this response in Wistar rats. CH reduced ROCE in arteries from both strains. PKC inhibition restored SOCE in CH Sprague-Dawley arteries to control levels, while having no effect on SOCE in Wistar arteries or on ROCE in either strain. We conclude that effects of CH on pulmonary VSM SOCE are strain dependent, whereas inhibitory effects of CH on ROCE are strain independent. Further, PKC inhibits SOCE following CH in Sprague-Dawley, but not Wistar, rats but does not contribute to ET-1-induced ROCE in either strain.
Collapse
Affiliation(s)
- Jessica B Snow
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131-0001, USA.
| | | | | | | |
Collapse
|
28
|
Sandoval KE, Witt KA. Blood-brain barrier tight junction permeability and ischemic stroke. Neurobiol Dis 2008; 32:200-19. [PMID: 18790057 DOI: 10.1016/j.nbd.2008.08.005] [Citation(s) in RCA: 745] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 07/29/2008] [Accepted: 08/10/2008] [Indexed: 01/01/2023] Open
Abstract
The blood-brain barrier (BBB) is formed by the endothelial cells of cerebral microvessels, providing a dynamic interface between the peripheral circulation and the central nervous system. The tight junctions (TJs) between the endothelial cells serve to restrict blood-borne substances from entering the brain. Under ischemic stroke conditions decreased BBB TJ integrity results in increased paracellular permeability, directly contributing to cerebral vasogenic edema, hemorrhagic transformation, and increased mortality. This loss of TJ integrity occurs in a phasic manner, which is contingent on several interdependent mechanisms (ionic dysregulation, inflammation, oxidative and nitrosative stress, enzymatic activity, and angiogenesis). Understanding the inter-relation of these mechanisms is critical for the development of new therapies. This review focuses on those aspects of ischemic stroke impacting BBB TJ integrity and the principle regulatory pathways, respective to the phases of paracellular permeability.
Collapse
Affiliation(s)
- Karin E Sandoval
- Department of Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, Edwardsville, IL 62026, USA
| | | |
Collapse
|
29
|
Yang T, Roder KE, Abbruscato TJ. Evaluation of bEnd5 cell line as an in vitro model for the blood-brain barrier under normal and hypoxic/aglycemic conditions. J Pharm Sci 2008; 96:3196-213. [PMID: 17828743 DOI: 10.1002/jps.21002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The purpose of the study was to assess the suitability of the mouse endothelial cell line bEnd5 as a blood-brain barrier (BBB) model under normal or pathologic (stroke) conditions. In comparison to the well-established bovine brain endothelial cell (BBMEC) model, cultured bEnd5 monolayers reached a maximal transendothelial electrical resistance (TEER) of 121 Omega cm(2) on day 7, and possessed oval and spindle shape morphology. Structurally, confluent monolayers of bEnd5 cells and BBMECs exhibit peripheral band staining of the tight junction protein ZO-1 and occludin. Both bEnd5 and BBMECs express important tight junctional proteins, ZO-1, occludin and claudin-1, as well as the transporters P-glycoprotein (P-gp), NKCC, GLUT1, and most PKC isoforms. Marker permeability experiments suggest that bEnd5 cells form a tight barrier that compares to well-established in vitro BBB models, such as the BBMEC. After short durations of hypoxia/aglycemia (H/A), hyperpermeability was seen in the bEnd5 endothelial monolayer compared to later time periods for BBMECs, suggesting that bEnd5 cells are more sensitive to hypoxia/algycemia treatment than BBMECs. Taken together, bEnd5 cell culture model may provide a useful in vitro model of the BBB for drug delivery studies and modeling pathological states such as oxygen glucose deprivation associated with stroke.
Collapse
Affiliation(s)
- Tianzhi Yang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University, Health Sciences Center, 1300 Coulter Drive, Amarillo, TX 79106, USA
| | | | | |
Collapse
|
30
|
Kumar R, Singh VP, Baker KM. Kinase inhibitors for cardiovascular disease. J Mol Cell Cardiol 2006; 42:1-11. [PMID: 17059822 DOI: 10.1016/j.yjmcc.2006.09.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Revised: 09/05/2006] [Accepted: 09/08/2006] [Indexed: 02/07/2023]
Abstract
Over the last decade, there has been substantial progress toward understanding the pathophysiology and treatment of cardiovascular diseases (CVDs). Elucidating cellular responses to the extracellular environment and signal transduction mechanisms have provided the opportunity to explore novel molecular therapeutic approaches for the treatment of CVDs. Neurohormonal stimulation has been implicated in these diseases; blockade of the renin-angiotensin and beta-adrenergic systems are examples of therapeutic effectiveness. There are multiple cell signaling cascades, some of which are beneficial or compensatory and others deleterious. The balance between these pathways, which in large part is dictated by the cellular environment, determines the outcome as a diseased or non-diseased state. Selective targeting of signaling pathways using protein kinase inhibitors, would have a potential advantage over receptor blockers. We review potential protein kinase targets and recent evidence supporting therapeutic interventional value in CVDs.
Collapse
Affiliation(s)
- Rajesh Kumar
- Division of Molecular Cardiology, Cardiovascular Research Institute, Texas A&M University System Health Science Center, College of Medicine, Temple, TX 76504, USA
| | | | | |
Collapse
|