1
|
Jarosz ŁS, Socała K, Michalak K, Bulak K, Ciszewski A, Marek A, Grądzki Z, Wlaź P, Kowalczuk-Vasilev E, Rysiak A. Subacute exposure to apigenin induces changes in protein synthesis in the liver of Swiss mice. Front Physiol 2025; 16:1576310. [PMID: 40415790 PMCID: PMC12100293 DOI: 10.3389/fphys.2025.1576310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 04/16/2025] [Indexed: 05/27/2025] Open
Abstract
Apigenin is a natural flavonoid with various pharmacological properties. Available data indicate that it affects the metabolic processes and protein profile of cells, including hepatocytes. However, there is speculation that the use of apigenin may have a hepatotoxic effect. The aim of the experiment was to assess the effect of apigenin administered intraperitoneally to mice on the concentrations of pro- and anti-inflammatory cytokines in the liver tissue and to analyse liver weight and morphological changes in the liver parenchyma. A proteomic analysis was also performed to examine differences in genes expression for specific proteins in liver cells. Adult male albino Swiss mice were divided into two groups and treated with either apigenin (50 mg/kg BW) - APG, or a vehicle (1% DMSO) - CONT, every 24 h for 14 days. The material for the study consisted of liver samples. Slight hepatocyte degeneration microscopically were demonstrated in most mice exposed to apigenin. No significant differences were observed in the absolute and relative weight of the liver or the concentrations of pro- and anti-inflammatory cytokines between the control and experimental group. The mass spectrometry results indicate significantly higher synthesis of the proteins MAP2K19, CEP69, GNMT, BPIFA3, SYT17, ANKRD1, GRHPR, CLEC1A and EF2 in the livers of mice from the APG group in comparison to CONT group. Exposure of mice to apigenin induces functional changes in the liver. In conjunction with the microscopical and proteomic analyses, this study may indicate that inflammatory changes developing in the liver could be self-limiting and subject to regenerative processes.
Collapse
Affiliation(s)
- Łukasz S. Jarosz
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | - Katarzyna Socała
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie–Skłodowska University, Lublin, Poland
| | - Katarzyna Michalak
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | - Kamila Bulak
- Department of Pathomorphology and Forensic Veterinary Medicine, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | - Artur Ciszewski
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | - Agnieszka Marek
- Department of Preventive Veterinary and Avian Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | - Zbigniew Grądzki
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie–Skłodowska University, Lublin, Poland
| | - Edyta Kowalczuk-Vasilev
- Institute of Animal Nutrition and Bromatology, Faculty of Animal Science and Bioeconomy, University of Life Sciences in Lublin, Lublin, Poland
| | - Anna Rysiak
- Department of Botany, Mycology, and Ecology, Maria Curie-Skłodowska University, Lublin, Poland
| |
Collapse
|
2
|
Dutta D, Hoque AA, Paul B, Begum S, Sarkar UA, Mukherjee B. Molecular insights into the antineoplastic potential of apigenin and its derivatives: paving the way for nanotherapeutic innovations. Expert Opin Drug Deliv 2025; 22:639-658. [PMID: 40063738 DOI: 10.1080/17425247.2025.2477664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 03/06/2025] [Indexed: 03/18/2025]
Abstract
INTRODUCTION Apigenin, a widely distributed bioactive flavonoid, has recently gained excellent attention among researchers as an effective anticancer drug that can alternate cancer-signaling pathways, induce programmed cell death, and reduce tumor growth in various cancer types. Despite its impressive anti-neoplastic activity, high hydrophobicity, and nonspecific biodistribution make apigenin difficult for pharmaceutical applications. AREAS COVERED We highlighted the therapeutic potential of apigenin and its derivatives in different cancer types, along with their mechanism of action. Nanoengineered drug delivery systems have remarkable applications in minimizing drug degradation and enhancing the therapeutic efficacy of drugs with sustained release, prolonged blood retention time, and reduced off-target toxicities. This review has evaluated and explored the molecular interactions of this novel flavonoid in various cancer signaling pathways to selectively inhibit neoplastic development in multiple cancer types. To ensure the complete coverage of the explored research area, Google Scholar, PubMed, and Web of Science were used to find not only the most relevant but also connected and similar articles. EXPERT OPINION A comprehensive overview of apigenin nanotherapy in cancer treatment can establish a platform to overcome its difficulties for pharmaceutical applications and efficient clinical translation from bench to bedside.
Collapse
Affiliation(s)
- Debasmita Dutta
- Dana Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Ashique Al Hoque
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Brahamacharry Paul
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Shahnaz Begum
- Department of Chemistry, Jadavpur University, Kolkata, India
| | - Uday Aditya Sarkar
- Dana Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Biswajit Mukherjee
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| |
Collapse
|
3
|
Kaushik M, Tiku AB. Therapeutic Potential of Phytochemicals as Adjuvants in Head and Neck Cancer. Nutr Rev 2025:nuaf009. [PMID: 40105614 DOI: 10.1093/nutrit/nuaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025] Open
Abstract
Owing to the developments in various therapeutic modalities, cancer treatment has come a long way, including the discovery of various anticancer drugs, innovations in delivery technology, and increased personalization of treatments. Despite this, head and neck cancer (HNC) is a cancer that has eluded the current conventional treatments. To improve quality of life and preserve vital organ function in patients with HNC, there is a need for research into therapeutic regimes that would reduce the toxicity of the current therapeutic modalities. The use of a single approach has not been enough to completely eradicate this malignancy. Therefore, the use of adjuvants and combinatorial approaches, using molecules from natural compounds that have no or minimal side effects, is a growing area of research. One objective of this review was to clarify the potentiality of novel therapeutic strategies for HNC, such as the use of phytochemicals as adjuvants with chemotherapy or radiotherapy, and use of nano-formulation for therapeutic delivery. Another objective of this review was to delineate the associated challenges in the clinical application of these therapies in HNC. Possible strategies for overcoming critical issues associated with the clinical application of phytochemicals for HNC are also discussed.
Collapse
Affiliation(s)
- Mahesh Kaushik
- Radiation and Cancer Therapeutics Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ashu Bhan Tiku
- Radiation and Cancer Therapeutics Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
4
|
Li Y, Liang J, Liang L. Identification of non-volatile compounds during the pile fermentation process of Liupao tea using widely targeted metabolomics based on UPLC-QTOF-MS. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2025; 62:377-388. [PMID: 39868396 PMCID: PMC11757836 DOI: 10.1007/s13197-024-06036-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 01/28/2025]
Abstract
Pile fermentation plays a crucial role in the formation of the unique flavor of Liupao tea, which can effectively reduce the bitterness of the tea and promote the formation of red tea soup. In this study, the non-volatiles changes of Liupao tea during pile fermentation processing were fully analyzed by UPLC-QTOF-MS/MS. A total of 271 metabolites with significant differences were identified in Liupao tea during pile fermentation(P < 0.01, VIP > 1), and their trends were grouped into 10 subclasses by K-means analysis. Three differential metabolites Choline Alfoscerate, N1-Methyl-4-pyridone-5-carboxamide, and 2-Aminovalienone were shared among the three different pile fermentation periods. The results provided valuable information for understanding the dynamic changes of non-volatile substances during the pile fermentation process of Liupao tea. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-024-06036-7.
Collapse
Affiliation(s)
- Ya Li
- School of Food and Pharmaceutical Engineering (Liupao Tea modern Industry College), Wuzhou University, Wuzhou, 543002 China
| | - Jianfeng Liang
- School of Food and Pharmaceutical Engineering (Liupao Tea modern Industry College), Wuzhou University, Wuzhou, 543002 China
| | - Lili Liang
- School of Food and Pharmaceutical Engineering (Liupao Tea modern Industry College), Wuzhou University, Wuzhou, 543002 China
| |
Collapse
|
5
|
Doghish AS, Mageed SSA, Zaki MB, Abd-Elmawla MA, Sayed GA, Hatawsh A, Aborehab NM, Moussa R, Mohammed OA, Abdel-Reheim MA, Elimam H. Role of long non-coding RNAs and natural products in prostate cancer: insights into key signaling pathways. Funct Integr Genomics 2025; 25:16. [PMID: 39821470 DOI: 10.1007/s10142-025-01526-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/18/2024] [Accepted: 01/01/2025] [Indexed: 01/19/2025]
Abstract
Prostate cancer (PC) ranks among the most prevalent cancers in males. Recent studies have highlighted intricate connections between long non-coding RNAs (lncRNAs), natural products, and cellular signaling in PC development. LncRNAs, which are RNA transcripts without protein-coding function, influence cell growth, programmed cell death, metastasis, and resistance to treatments through pathways like PI3K/AKT, WNT/β-catenin, and androgen receptor signaling. Certain lncRNAs, including HOTAIR and PCA3, are associated with PC progression, with potential as diagnostic markers. Natural compounds, such as curcumin and resveratrol, demonstrate anticancer effects by targeting these pathways, reducing tumor growth, and modulating lncRNA expression. For instance, curcumin suppresses HOTAIR levels, hindering PC cell proliferation and invasion. The interaction between lncRNAs and natural compounds may open new avenues for therapy, as these substances can simultaneously impact multiple signaling pathways. These complex interactions offer promising directions for developing innovative PC treatments, enhancing diagnostics, and identifying new biomarkers for improved prevention and targeted therapy. This review aims to map the multifaceted relationship among natural products, lncRNAs, and signaling pathways in PC pathogenesis, focusing on key pathways such as AR, PI3K/AKT/mTOR, WNT/β-catenin, and MAPK, which are crucial in PC progression and therapy resistance. Regulation of these pathways by natural products and lncRNAs could lead to new insights into biomarker identification, preventive measures, and targeted PC therapies.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt.
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt.
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, CairoE, 11829, Egypt
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ghadir A Sayed
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Cairo, 11829, Egypt
| | - Abdulrahman Hatawsh
- Biotechnology School, Nile University, 26th of July Corridor, Sheikh Zayed City, Giza, 12588, Egypt
| | - Nora M Aborehab
- Department of Biochemistry, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Rewan Moussa
- School Faculty of Medicine, Helwan University, Cairo, 11795, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | | | - Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| |
Collapse
|
6
|
Lauritzen KH, Yang K, Frisk M, Louwe MC, Olsen MB, Ziegler M, Louch WE, Halvorsen B, Aukrust P, Yndestad A, Sandanger Ø. Apigenin inhibits NLRP3 inflammasome activation in monocytes and macrophages independently of CD38. Front Immunol 2025; 15:1497984. [PMID: 39840045 PMCID: PMC11746122 DOI: 10.3389/fimmu.2024.1497984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/16/2024] [Indexed: 01/23/2025] Open
Abstract
Introduction CD38, a regulator of intracellular calcium signalling, is highly expressed in immune cells. Mice lacking CD38 are very susceptible to acute bacterial infections, implicating CD38 in innate immune responses. The effects of CD38 inhibition on NLRP3 inflammasome activation in human primary monocytes and monocyte-derived macrophages have not been investigated. Apigenin is a naturally occurring flavonoid known to inhibit CD38. However, apigenin has also been proposed to inhibit the extracellular ATP receptor P2XR7, an upstream activator of NLRP3. In this study we aimed to investigate whether apigenin attenuates NLRP3 inflammasome activation in human monocytes and monocyte-derived macrophages through CD38 inhibition. Methods LPS-primed human monocytes and monocyte-derived macrophages were treated with apigenin, the CD38 inhibitor 78c, antagonists of CD38 second messengers (8-br-ADPR and 8-br-cADPR) or the ATP hydrolase, apyrase, prior to NLRP3 activation with ATP, monosodium urate crystals (MSU) or nigericin. IL-1β and TNF secretion and mRNA expression, as well as N-terminal gasdermin-D formation were quantified. Ca2+ mobilization was determined by live confocal microscopy. NLRP3 activity was also compared in WT and CD38-/- mouse bone marrow-derived macrophages (BMDMs) with and without CD38 inhibitors. Results Apigenin significantly inhibited IL-1β release from LPS-primed monocytes and macrophages activated with ATP, MSU, or nigericin. CD38 inhibition with 78c also attenuated NLRP3-dependent IL-1β release. Apigenin was a potent inhibitor of Ca2+ flux from the endoplasmic reticulum to the cytosol in human monocyte-derived macrophages. Apyrase attenuated IL-1β release induced by ATP or MSU, but not by nigericin. However, the NLRP3 inflammasome is not compromised in CD38-/- bone marrow-derived macrophages compared to corresponding WT cells, and apigenin moderated IL-1β release in both genotypes. Discussion Our data support that apigenin attenuates NLRP3 activation independently of CD38. Our results also suggest that MSU crystals activate NLRP3 through autocrine or paracrine ATP signalling.
Collapse
Affiliation(s)
- Knut Husø Lauritzen
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet and University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Kuan Yang
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet and University of Oslo, Oslo, Norway
| | - Michael Frisk
- Institute for Experimental Medical Research, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Mieke C. Louwe
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet and University of Oslo, Oslo, Norway
| | - Maria Belland Olsen
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet and University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Mathias Ziegler
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - William E. Louch
- Institute for Experimental Medical Research, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Bente Halvorsen
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet and University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet and University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Arne Yndestad
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet and University of Oslo, Oslo, Norway
| | - Øystein Sandanger
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet and University of Oslo, Oslo, Norway
- Section of Dermatology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| |
Collapse
|
7
|
Vanshita, Rawal T, Bhati H, Bansal K. Harnessing the power of novel drug delivery systems for effective delivery of apigenin: an updated review. J Microencapsul 2025; 42:83-106. [PMID: 39670876 DOI: 10.1080/02652048.2024.2437375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/22/2024] [Indexed: 12/14/2024]
Abstract
Phytochemicals as dietary components are being extensively explored in order to prevent and treat a wide range of diseases. Apigenin is among the most studied flavonoids found in significant amount in fruits (oranges), vegetables (celery, parsley, onions), plant-based beverages (beer, tea, wine) and herbs (thyme, chamomile, basil, oregano) that has recently gained interest due to its promising pharmacological effects. However, the poor solubility and extended first pass metabolism of apigenin limits its clinical use. Various advantages have been demonstrated by nanocarrier-based platforms in the delivery of hydrophobic drugs like apigenin to diseased tissues. Apigenin nanoformulations have been reported to have better stability, high encapsulation efficiency, prolonged circulation time, sustained release, enhanced accumulation at targeted sites and better therapeutic efficacy. An overview of the major nanocarriers based delivery including liposomes, niosomes, solid lipid nanoparticles, micelles, dendrimers etc., is described. This review sheds insight into the therapeutic effects and advanced drug delivery strategies for the delivery of apigenin.
Collapse
Affiliation(s)
- Vanshita
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Tanu Rawal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Hemant Bhati
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Keshav Bansal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| |
Collapse
|
8
|
Monadi T, Mohajer Z, Soltani A, Khazeei Tabari MA, Manayi A, Azadbakht M. The influence of apigenin on cellular responses to radiation: From protection to sensitization. Biofactors 2025; 51:e2113. [PMID: 39134426 DOI: 10.1002/biof.2113] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 07/24/2024] [Indexed: 12/29/2024]
Abstract
Apigenin, a dietary flavonoid, has gained increasing attention for its potential therapeutic applications in radiation protection and radiosensitization. Ionizing radiation (IR) can harm healthy cells, but as radiotherapy remains crucial in cancer treatment. Owing to the remarkable application of radiotherapy in the treatment of cancers, it is vital to protect healthy cells from radiation hazards while increasing the sensitivity of cancer cells to radiation. This article reviews the current understanding of apigenin's radioprotective and radiosensitive properties with a focuses on the involved signaling pathways and key molecular targets. When exposed to irradiation, apigenin reduces inflammation via cyclooxygenase-2 inhibition and modulates proapoptotic and antiapoptotic biomarkers. Apigenin's radical scavenging abilities and antioxidant enhancement mitigate oxidative DNA damage. It inhibits radiation-induced mammalian target of rapamycin activation, vascular endothelial growth factor (VEGF), matrix metalloproteinase-2 (MMP), and STAT3 expression, while promoting AMPK, autophagy, and apoptosis, suggesting potential in cancer prevention. As a radiosensitizer, apigenin inhibits tumor growth by inducing apoptosis, suppressing VEGF-C, tumor necrosis factor alpha, and STAT3, reducing MMP-2/9 activity, and inhibiting cancer cell glucose uptake. Cellular and animal studies support apigenin's radioprotective and anticancer potential, making it a potential candidate for further research. Investigation into apigenin's therapeutic efficacy in diverse cancer types and radiation damage is essential.
Collapse
Affiliation(s)
- Taha Monadi
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Pharmacognosy and Biotechnology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Mohajer
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- USERN Office, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afsaneh Soltani
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- USERN Office, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Khazeei Tabari
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
- USERN Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Azadeh Manayi
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Azadbakht
- Department of Pharmacognosy and Biotechnology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Medicinal Plants Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
9
|
Mir MA, Banik BK. Heterocyclic Phytochemicals as Anticancer Agents. Curr Top Med Chem 2025; 25:533-553. [PMID: 39350414 DOI: 10.2174/0115680266314693240914070250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/08/2024] [Accepted: 08/29/2024] [Indexed: 04/25/2025]
Abstract
Cancer continues to be a major global health challenge, driving the need for the discovery of novel therapeutic agents. Among these, heterocyclic phytochemicals have gained significant attention for their potential as anticancer agents. This review offers a detailed analysis of various classes of heterocyclic compounds with proven anticancer properties, shedding light on their mechanisms of action. The study draws from a diverse array of natural product sources, detailing the chemical structures and bioactivities of these compounds. Key heterocyclic classes such as alkaloids, flavonoids, coumarins, and terpenoids are emphasized due to their potent anticancer effects. Heterocyclic phytochemicals exhibit diverse anticancer mechanisms, including the modulation of cellular pathways like apoptosis, angiogenesis, and cell cycle progression. The combination of heterocyclic phytochemicals with conventional cancer therapies has shown promising synergistic effects, enhanced treatment efficacy and reducing side effects. The review systematically evaluates both preclinical and clinical studies, revealing the efficacy, safety profiles, and pharmacokinetics of selected heterocyclic compounds. The promising outcomes highlighted in this review underscore the critical need for ongoing research to fully realize the therapeutic potential of heterocyclic phytochemicals in cancer treatment.
Collapse
Affiliation(s)
- M Amin Mir
- Department of Chemistry, Prince Mohammad Bin Fahd University, AL Khobar, Saudi Arabia
| | - Bimal Krishna Banik
- Department of Chemistry, Prince Mohammad Bin Fahd University, AL Khobar, Saudi Arabia
| |
Collapse
|
10
|
Yenigun S, Basar Y, Ipek Y, Behcet L, Demirtas I, Ozen T. DNA protection, molecular docking, molecular dynamic, enzyme inhibition, and kinetics studies of apigenin isolated from Nepeta baytopii Hedge & Lamond by bioactivity-guided fractionation. J Biomol Struct Dyn 2024:1-12. [PMID: 39692135 DOI: 10.1080/07391102.2024.2442753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 04/29/2024] [Indexed: 12/19/2024]
Abstract
Plant-derived bioactive substances have demonstrated significant qualities that suggest they may be crucial in preventing various chronic diseases. Flavonoids, which include apigenin, are the biggest group of polyphenols. In our study, we aimed to obtain the methanol-chloroform (1:1) extract from the aerial parts of Nepeta baytopii Hedge & Lamond and purify the apigenin using bioactivity-guided isolation to separate the active fraction. The current in vitro study provides updated knowledge on apigenin regarding its previously unresearched DNA protection activity and enzyme inhibition, enzyme inhibition kinetics, and enzyme-apigenin interactions. In this context, these studies will be the first and will contribute to the literature. Apigenin had high urease (IC50-5.00 ± 0.00 µM), butyrlcholinesterase (BChE:IC50-10.48 ± 0.00 µM), and tyrosinase (IC50-177.82 ± 14.40 µM) inhibition activities, while inhibition binding constants were high in urease (Ki-0.05 mM), tyrosinase (Ki-0.06 mM), and carbonic anhydrase (Ki-0.08 mM). The binding affinities and constants of the interaction were also ascertained to be high for BChE (-9.50 kcal/mol, and Ki-0.11 µM), and tyrosinase (-8.80 kcal/mol, and Ki, 0.62 µM) with apigenin. In summary, apigenin can be used as an inhibitor for five enzymes. These results will give priority to further studies. Apigenin showed high DNA protection activity with a Form I value of 67.37%. These data demonstrated that the interaction formed by BChE-apigenin gave the best results regarding enzyme inhibition and enzyme-molecule interaction. The stability of this complex was evaluated using molecular dynamics modeling.
Collapse
Affiliation(s)
- Semiha Yenigun
- Department of Chemistry, Faculty of Science, Kurupelit Campus, Ondokuz Mayıs University, Samsun, Turkey
| | - Yunus Basar
- Department of Biochemistry, Faculty of Arts and Sciences, Iğdır University, Iğdır, Turkey
| | - Yasar Ipek
- Department of Chemistry, Faculty of Science, Uluyazı Campus, Çankırı Karatekin University, Çankırı, Turkey
| | - Lutfi Behcet
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Bingöl University, Bingöl, Turkey
| | - Ibrahim Demirtas
- Department of Biochemistry, Faculty of Arts and Sciences, Iğdır University, Iğdır, Turkey
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ondokuz Mayıs University, Samsun, Turkey
| | - Tevfik Ozen
- Department of Chemistry, Faculty of Science, Kurupelit Campus, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
11
|
Khoi CS, Lin TY, Chiang CK. Targeting Insulin Resistance, Reactive Oxygen Species, Inflammation, Programmed Cell Death, ER Stress, and Mitochondrial Dysfunction for the Therapeutic Prevention of Free Fatty Acid-Induced Vascular Endothelial Lipotoxicity. Antioxidants (Basel) 2024; 13:1486. [PMID: 39765815 PMCID: PMC11673094 DOI: 10.3390/antiox13121486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/26/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
Excessive intake of free fatty acids (FFAs), especially saturated fatty acids, can lead to atherosclerosis and increase the incidence of cardiovascular diseases. FFAs also contribute to obesity, hyperlipidemia, and nonalcoholic fatty liver disease. Palmitic acid (PA) is human plasma's most abundant saturated fatty acid. It is often used to study the toxicity caused by free fatty acids in different organs, including vascular lipotoxicity. Fatty acid overload induces endothelial dysfunction through various molecular mechanisms. Endothelial dysfunction alters vascular homeostasis by reducing vasodilation and increasing proinflammatory and prothrombotic states. It is also linked to atherosclerosis, which leads to coronary artery disease, peripheral artery disease, and stroke. In this review, we summarize the latest studies, revealing the molecular mechanism of free fatty acid-induced vascular dysfunction, targeting insulin resistance, reactive oxygen species, inflammation, programmed cell death, ER stress, and mitochondrial dysfunction. Meanwhile, this review provides new strategies and perspectives for preventing and reducing the impact of cardiovascular diseases on human health through the relevant targeting molecular mechanism.
Collapse
Affiliation(s)
- Chong-Sun Khoi
- Department of Anesthesiology, Far-Eastern Memorial Hospital, New Taipei City 220216, Taiwan;
- Graduate School of Biotechnology and Bioengineering, College of Engineering, Yuan Ze University, Taoyuan City 320315, Taiwan
| | - Tzu-Yu Lin
- Department of Anesthesiology, Far-Eastern Memorial Hospital, New Taipei City 220216, Taiwan;
- Department of Mechanical Engineering, College of Engineering, Yuan Ze University, Taoyuan City 320315, Taiwan
| | - Chih-Kang Chiang
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei City 10617, Taiwan
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei City 10617, Taiwan
- Department of Integrated Diagnostics & Therapeutics, National Taiwan University Hospital, Taipei City 100229, Taiwan
| |
Collapse
|
12
|
Liu S, Zheng X, Luo Z, Tang C, Hu Y, Peng Q, Mi P, Chen H, Yao X. The synthesis and bioactivity of apigenin derivatives. Fitoterapia 2024; 179:106228. [PMID: 39332505 DOI: 10.1016/j.fitote.2024.106228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/19/2024] [Accepted: 09/21/2024] [Indexed: 09/29/2024]
Abstract
BACKGROUND Apigenin, a naturally occurring compound with a flavone core structure, is known for its diverse bioactivities, including anti-inflammation, anti-toxicant, anti-cancer and so on. There has been significant interest in the medicinal chemistry community. To address these challenges, researchers have developed various derivatives of apigenin to address challenges such as poor water-solubility and low intestinal absorption, aiming to enhance the pharmacological activities and pharmacokinetic properties of this compound. OBJECTIVE In recent years, there has been a proliferation of apigenin derivatives with enhanced bioactivity. However, there is a lack of comprehensive reviews on the function-based modification of these derivatives. In this paper, we provide an overview of the apigenin derivatives with varying bioactivities and explored their structure activity relationships. And the functions of different groups of apigenin derivatives were also analyzed. CONCLUSION This review summarized the current achievements that could provide some clues for further study of apigenin-based drugs.
Collapse
Affiliation(s)
- Shun Liu
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan 421001, China
| | - Xing Zheng
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan 421001, China; Department of Pharmacy, Hunan Vocational College of Science and Technology, Third ZhongyiShan Road, Changsha, Hunan 410004, China
| | - Zhongqin Luo
- Shaoyang Hospital of TCM, No. 631, Dongda Road, Shaoyang, Hunan 422000, China
| | - Caihong Tang
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan 421001, China
| | - Yufei Hu
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan 421001, China
| | - Qingying Peng
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan 421001, China
| | - Pengbing Mi
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan 421001, China.
| | - Hongfei Chen
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan 421001, China.
| | - Xu Yao
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
13
|
Eren E, Das J, Tollefsbol TO. Polyphenols as Immunomodulators and Epigenetic Modulators: An Analysis of Their Role in the Treatment and Prevention of Breast Cancer. Nutrients 2024; 16:4143. [PMID: 39683540 PMCID: PMC11644657 DOI: 10.3390/nu16234143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Breast cancer poses a substantial health challenge for women globally. Recently, there has been a notable increase in scholarly attention regarding polyphenols, primarily attributed to not only the adverse effects associated with conventional treatments but also their immune-preventive impacts. Polyphenols, nature-derived substances present in vegetation, including fruits and vegetables, have received considerable attention in various fields of science due to their probable wellness merits, particularly in the treatment and hindrance of cancer. This review focuses on the immunomodulatory effects of polyphenols in breast cancer, emphasizing their capacity to influence the reaction of adaptive and innate immune cells within the tumor-associated environment. Polyphenols are implicated in the modulation of inflammation, the enhancement of antioxidant defenses, the promotion of epigenetic modifications, and the support of immune functions. Additionally, these compounds have been shown to influence the activity of critical immune cells, including macrophages and T cells. By targeting pathways involved in immune evasion, polyphenols may augment the capacity of the defensive system to detect and eliminate tumors. The findings suggest that incorporating polyphenol-rich foods into the diet could offer a promising, collaborative (integrative) approach to classical breast cancer remedial procedures by regulating how the defense mechanism interacts with the disease.
Collapse
Affiliation(s)
- Esmanur Eren
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (E.E.); (J.D.)
| | - Jyotirmoyee Das
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (E.E.); (J.D.)
| | - Trygve O. Tollefsbol
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (E.E.); (J.D.)
- Integrative Center for Aging Research, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- O’Neal Comprehensive Cancer Research, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
14
|
Frenț OD, Stefan L, Morgovan CM, Duteanu N, Dejeu IL, Marian E, Vicaș L, Manole F. A Systematic Review: Quercetin-Secondary Metabolite of the Flavonol Class, with Multiple Health Benefits and Low Bioavailability. Int J Mol Sci 2024; 25:12091. [PMID: 39596162 PMCID: PMC11594109 DOI: 10.3390/ijms252212091] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/01/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
The main goal of this systematic review on the flavonol class secondary metabolite quercetin is to evaluate and summarize the existing research on quercetin's potential health benefits, therapeutic properties, and effectiveness in disease prevention and treatment. In addition to evaluating quercetin's potential for drug development with fewer side effects and lower toxicity, this type of review attempts to collect scientific evidence addressing quercetin's roles as an antioxidant, anti-inflammatory, antibacterial, and anticancer agent. In the first part, we analyze various flavonoid compounds, focusing on their chemical structure, classification, and natural sources. We highlight their most recent biological activities as reported in the literature. Among these compounds, we pay special attention to quercetin, detailing its chemical structure, physicochemical properties, and process of biosynthesis in plants. We also present natural sources of quercetin and emphasize its health benefits, such as its antioxidant and anti-inflammatory effects. Additionally, we discuss methods to enhance its bioavailability, analyzing the latest and most effective delivery systems based on quercetin.
Collapse
Affiliation(s)
- Olimpia-Daniela Frenț
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, No. 29 Nicolae Jiga Street, 410028 Oradea, Romania; (O.-D.F.); (E.M.); (L.V.)
| | - Liana Stefan
- Department of Surgical Discipline, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | - Claudia Mona Morgovan
- Department of Chemistry, Faculty of Informatics and Sciences, University of Oradea, No 1 University Street, 410087 Oradea, Romania
| | - Narcis Duteanu
- Faculty of Chemical Engineering, Biotechnologies, and Environmental Protection, Politehnica University of Timisoara, No. 2 Victoriei Square, 300006 Timişoara, Romania
- National Institute of Research and Development for Electrochemistry and Condensed Matter, 144 Dr. A. P. Podeanu, 300569 Timisoara, Romania
| | - Ioana Lavinia Dejeu
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, No. 29 Nicolae Jiga Street, 410028 Oradea, Romania; (O.-D.F.); (E.M.); (L.V.)
| | - Eleonora Marian
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, No. 29 Nicolae Jiga Street, 410028 Oradea, Romania; (O.-D.F.); (E.M.); (L.V.)
| | - Laura Vicaș
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, No. 29 Nicolae Jiga Street, 410028 Oradea, Romania; (O.-D.F.); (E.M.); (L.V.)
| | - Felicia Manole
- Department of Surgical Discipline, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| |
Collapse
|
15
|
Singh H, Mishra AK, Mohanto S, Kumar A, Mishra A, Amin R, Darwin CR, Emran TB. A recent update on the connection between dietary phytochemicals and skin cancer: emerging understanding of the molecular mechanism. Ann Med Surg (Lond) 2024; 86:5877-5913. [PMID: 39359831 PMCID: PMC11444613 DOI: 10.1097/ms9.0000000000002392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/08/2024] [Indexed: 10/04/2024] Open
Abstract
Constant exposure to harmful substances from both inside and outside the body can mess up the body's natural ways of keeping itself in balance. This can cause severe skin damage, including basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and melanoma. However, plant-derived compounds found in fruits and vegetables have been shown to protect against skin cancer-causing free radicals and other harmful substances. It has been determined that these dietary phytochemicals are effective in preventing skin cancer and are widely available, inexpensive, and well-tolerated. Studies have shown that these phytochemicals possess anti-inflammatory, antioxidant, and antiangiogenic properties that can aid in the prevention of skin cancers. In addition, they influence crucial cellular processes such as angiogenesis and cell cycle control, which can halt the progression of skin cancer. The present paper discusses the benefits of specific dietary phytochemicals found in fruits and vegetables, as well as the signaling pathways they regulate, the molecular mechanisms involved in the prevention of skin cancer, and their drawbacks.
Collapse
Affiliation(s)
- Harpreet Singh
- School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh
| | | | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka
| | - Arvind Kumar
- School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh
| | - Amrita Mishra
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi
| | - Ruhul Amin
- Faculty of Pharmaceutical Science, Assam downtown University, Panikhaiti, Gandhinagar, Guwahati, Assam
| | | | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| |
Collapse
|
16
|
Guo J, Zhong L, Momeni MR. MicroRNA-155 and its exosomal form: Small pieces in the gastrointestinal cancers puzzle. Cell Biol Toxicol 2024; 40:77. [PMID: 39283408 PMCID: PMC11405467 DOI: 10.1007/s10565-024-09920-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024]
Abstract
Gastrointestinal (GI) cancers are common cancers that are responsible for a large portion of global cancer fatalities. Due to this, there is a pressing need for innovative strategies to identify and treat GI cancers. MicroRNAs (miRNAs) are short ncRNAs that can be considered either cancer-causing or tumor-inhibiting molecules. MicroRNA-155, also known as miR-155, is a vital regulator in various cancer types. This miRNA has a carcinogenic role in a variety of gastrointestinal cancers, including pancreatic, colon, and gastric cancers. Since the abnormal production of miR-155 has been detected in various malignancies and has a correlation with increased mortality, it is a promising target for future therapeutic approaches. Moreover, exosomal miR-155 associated with tumors have significant functions in communicating between cells and establishing the microenvironment for cancer in GI cancers. Various types of genetic material, such as specifically miR-155 as well as proteins found in cancer-related exosomes, have the ability to be transmitted to other cells and have a function in the advancement of tumor. Therefore, it is critical to conduct a review that outlines the diverse functions of miR-155 in gastrointestinal malignancies. As a result, we present a current overview of the role of miR-155 in gastrointestinal cancers. Our research highlighted the role of miR-155 in GI cancers and covered critical issues in GI cancer such as pharmacologic inhibitors of miRNA-155, miRNA-155-assosiated circular RNAs, immune-related cells contain miRNA-155. Importantly, we discussed miRNA-155 in GI cancer resistance to chemotherapy, diagnosis and clinical trials. Furthermore, the function of miR-155 enclosed in exosomes that are released by cancer cells or tumor-associated macrophages is also covered.
Collapse
Affiliation(s)
- Jinbao Guo
- Department of Thoracic Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Li Zhong
- Department of Gynecology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | | |
Collapse
|
17
|
Kumar G, Jain P, Virmani T, Sharma A, Akhtar MS, Aldosari SA, Khan MF, Duarte SOD, Fonte P. Enhancing therapy with nano-based delivery systems: exploring the bioactive properties and effects of apigenin. Ther Deliv 2024; 15:717-735. [PMID: 39259258 DOI: 10.1080/20415990.2024.2386928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/29/2024] [Indexed: 09/12/2024] Open
Abstract
Apigenin, a potent natural flavonoid, has emerged as a key therapeutic agent due to its multifaceted medicinal properties in combating various diseases. However, apigenin's clinical utility is greatly limited by its poor water solubility, low bioavailability and stability issues. To address these challenges, this review paper explores the innovative field of nanotechnology-based delivery systems, which have shown significant promise in improving the delivery and effectiveness of apigenin. This paper also explores the synergistic potential of co-delivering apigenin with conventional therapeutic agents. Despite the advantageous properties of these nanoformulations, critical challenges such as scalable production, regulatory approvals and comprehensive long-term safety assessments remain key hurdles in their clinical adoption which must be addressed for commercialization of apigenin-based formulations.
Collapse
Affiliation(s)
- Girish Kumar
- Amity Institute of Pharmacy, Amity University, Greater Noida, Uttar Pradesh, 201313, India
| | - Pushpika Jain
- School of Pharmaceutical Sciences, MVN University, Haryana, 121105, India
| | - Tarun Virmani
- Amity Institute of Pharmacy, Amity University, Greater Noida, Uttar Pradesh, 201313, India
| | - Ashwani Sharma
- Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, 110017, India
| | - Md Sayeed Akhtar
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, AlFara, Abha, 62223, Saudi Arabia
| | - Saad A Aldosari
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Mohd Faiyaz Khan
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Sofia O D Duarte
- iBB - Institute for Bioengineering & Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, Lisboa, 1049-001, Portugal
- Associate Laboratory i4HB-Institute for Health & Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa, 1049-001, Portugal
| | - Pedro Fonte
- iBB - Institute for Bioengineering & Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, Lisboa, 1049-001, Portugal
- Associate Laboratory i4HB-Institute for Health & Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa, 1049-001, Portugal
- Department of Chemistry & Pharmacy, Faculty of Sciences & Technology, University of Algarve, Gambelas Campus, Faro, 8005-139, Portugal
- Center for Marine Sciences (CCMAR), University of Algarve, Gambelas Campus, Faro, 8005-139, Portugal
| |
Collapse
|
18
|
Brodzicka A, Galanty A, Paśko P. Modulation of Multidrug Resistance Transporters by Food Components and Dietary Supplements: Implications for Cancer Therapy Efficacy and Safety. Curr Issues Mol Biol 2024; 46:9686-9706. [PMID: 39329928 PMCID: PMC11430623 DOI: 10.3390/cimb46090576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024] Open
Abstract
The aim of this review is to explore how diet and dietary supplements influence the activity of key multidrug resistance (MDR) transporters-MRP2, BCRP, and P-gp. These transporters play a crucial role in drug efflux from cancer cells and significantly affect chemotherapy outcomes. This review focuses on how dietary phytochemicals, such as catechins and quercetin, impact the expression and function of these transporters. Both in vitro and in vivo experiments were examined to assess changes in drug bioavailability and intracellular drug accumulation. The findings show that certain dietary components-such as catechins, flavonoids, resveratrol, curcumin, terpenoids, sterols, and alkaloids-can either inhibit or induce MDR transporter activity, thus influencing the effectiveness of chemotherapy. These results highlight the importance of understanding diet-drug interactions in cancer therapy to improve treatment outcomes and reduce side effects. In conclusion, dietary modifications and supplements should be carefully considered in cancer treatment plans to optimize therapeutic efficacy.
Collapse
Affiliation(s)
- Agnieszka Brodzicka
- Department of Food Chemistry and Nutrition, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland
| | - Agnieszka Galanty
- Department of Pharmacognosy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland;
| | - Paweł Paśko
- Department of Food Chemistry and Nutrition, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland
| |
Collapse
|
19
|
Ahmadzadeh K, Roshdi Dizaji S, Ramezani F, Imani F, Shamseddin J, Sarveazad A, Yousefifard M. Potential therapeutic effects of apigenin for colorectal adenocarcinoma: A systematic review and meta-analysis. Cancer Med 2024; 13:e70171. [PMID: 39254067 PMCID: PMC11386296 DOI: 10.1002/cam4.70171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/05/2024] [Accepted: 08/19/2024] [Indexed: 09/11/2024] Open
Abstract
PURPOSE Therapeutic management of colorectal cancer (CRC) does not yet yield promising long-term results. Therefore, there is a need for further investigation of possible therapeutic options. Various experiments have studied the effects of apigenin on CRC and have shown conflicting results. This systematic review and meta-analysis investigates the currently existing evidence on the effect of apigenin on CRC. METHODS Medline, Embase, Scopus, and Web of Science databases were searched for articles related to apigenin and its effect on CRC in the preclinical setting. Cell viability, growth inhibition, apoptosis, and cell cycle arrest for in-vitro, and body weight, tumor size, and mortality in in-vivo studies were extracted as outcomes. RESULTS Thirty-nine articles investigating colorectal adenocarcinoma were included in this meta-analysis. Thirty-seven of these studies had data for in vitro experiments, with eight studies having data for in vivo experiments. Six articles had both in vitro and in vivo assessments. Our analysis showed apigenin reduces cell viability and induces growth inhibition, apoptosis, and cell cycle arrest in in vitro studies. The few in vivo studies indicate that apigenin decreases tumor size while showing no effects on the body weight of animal colorectal adenocarcinoma models. CONCLUSION Our results demonstrated that apigenin, through reducing cell viability, inducing growth inhibition, apoptosis, and cell cycle arrest, and also by decreasing the tumor size, can be considered as a possible adjuvant agent in the management of colorectal adenocarcinoma. However, further in vivo studies are needed before any efforts to translate the current evidence into clinical studies.
Collapse
Affiliation(s)
| | | | - Fatemeh Ramezani
- Physiology Research CenterIran University of Medical SciencesTehranIran
| | - Farnad Imani
- Pain Research Center, Department of Anesthesiology and Pain MedicineIran University of Medical SciencesTehranIran
| | - Jebreil Shamseddin
- Infectious and Tropical Diseases Research CenterHormozgan Health Institute, Hormozgan University of Medical SciencesBandar AbbasIran
| | - Arash Sarveazad
- Colorectal Research CenterIran University of Medical SciencesTehranIran
- Nursing Care Research CenterIran University of Medical SciencesTehranIran
| | - Mahmoud Yousefifard
- Physiology Research CenterIran University of Medical SciencesTehranIran
- Pediatric Chronic Kidney Disease Research CenterTehran University of Medical SciencesTehranIran
| |
Collapse
|
20
|
Singh A, Singh J, Parween G, Khator R, Monga V. A comprehensive review of apigenin a dietary flavonoid: biological sources, nutraceutical prospects, chemistry and pharmacological insights and health benefits. Crit Rev Food Sci Nutr 2024:1-37. [PMID: 39154213 DOI: 10.1080/10408398.2024.2390550] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
A multitude of plant-derived bioactive compounds have shown significant promise in preventing chronic illnesses, with flavonoids constituting a substantial class of naturally occurring polyphenolic compounds. Apigenin, a flavone identified as 4',5,7-trihydroxyflavone, holds immense promise as a preventative agent against chronic illnesses. Despite its extensive research and recognized nutraceutical value, its therapeutic application remains underexplored, necessitating further clinical investigations. This review delves into the biological sources, nutraceutical prospects, chemistry, pharmacological insights, and health benefits of apigenin. Through multifaceted analytical studies, we explore its diverse pharmacological profile and potential therapeutic applications across various health domains. The manuscript comprehensively examines apigenin's role as a neuroprotective , anti-inflammatory compound, and a potent antioxidant agent. Additionally, its efficacy in combating cardiovascular diseases, anti-diabetic properties, and anticancer potential has been discussed. Furthermore, the antimicrobial attributes and the challenges surrounding its bioavailability, particularly from herbal supplements have been addressed. Available in diverse forms including tablets, capsules, solid dispersions, co-crystals, inclusion complexes and nano formulations. Additionally, it is prevalent as a nutraceutical supplement in herbal formulations. While strides have been made in overcoming pharmacokinetic hurdles, further research into apigenin's clinical effectiveness and bioavailability from herbal supplements remains imperative for its widespread utilization in preventive medicine.
Collapse
Affiliation(s)
- Abhinav Singh
- Drug Design and Molecular Synthesis Laboratory, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, VPO-Ghudda, Bathinda, India
| | - Jagjit Singh
- Drug Design and Molecular Synthesis Laboratory, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, VPO-Ghudda, Bathinda, India
| | - Gulistan Parween
- Drug Design and Molecular Synthesis Laboratory, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, VPO-Ghudda, Bathinda, India
| | - Rakesh Khator
- Drug Design and Molecular Synthesis Laboratory, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, VPO-Ghudda, Bathinda, India
| | - Vikramdeep Monga
- Drug Design and Molecular Synthesis Laboratory, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, VPO-Ghudda, Bathinda, India
| |
Collapse
|
21
|
Abdelmaksoud NM, Abulsoud AI, Abdelghany TM, Elshaer SS, Rizk SM, Senousy MA, Maurice NW. Uncovering SIRT3 and SHMT2-dependent pathways as novel targets for apigenin in modulating colorectal cancer: In vitro and in vivo studies. Exp Cell Res 2024; 441:114150. [PMID: 38971519 DOI: 10.1016/j.yexcr.2024.114150] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/29/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Despite significant advances in the treatment of colorectal cancer (CRC), identification of novel targets and treatment options are imperative for improving its prognosis and survival rates. The mitochondrial SIRT3 and SHMT2 have key roles in metabolic reprogramming and cell proliferation. This study investigated the potential use of the natural product apigenin in CRC treatment employing both in vivo and in vitro models and explored the role of SIRT3 and SHMT2 in apigenin-induced CRC apoptosis. The role of SHMT2 in CRC patients' survival was verified using TCGA database. In vivo, apigenin treatment restored the normal colon appearance. On the molecular level, apigenin augmented the immunohistochemical expression of cleaved caspase-3 and attenuated SIRT3 and SHMT2 mRNA expression CRC patients with decreased SHMT2 expression had improved overall and disease-free survival rates. In vitro, apigenin reduced the cell viability in a time-dependent manner, induced G0/G1 cell cycle arrest, and increased the apoptotic cell population compared to the untreated control. Mechanistically, apigenin treatment mitigated the expression of SHMT2, SIRT3, and its upstream long intergenic noncoding RNA LINC01234 in CRC cells. Conclusively, apigenin induces caspase-3-dependent apoptosis in CRC through modulation of SIRT3-triggered mitochondrial pathway suggesting it as a promising therapeutic agent to improve patient outcomes.
Collapse
Affiliation(s)
- Nourhan M Abdelmaksoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, 3 Cairo-Belbeis Desert Road, P.O. Box 3020, El Salam, 11785, Cairo, Egypt
| | - Ahmed I Abulsoud
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11823, Egypt; Faculty of Pharmacy, Heliopolis University, 3 Cairo-Belbeis Desert Road, P.O. Box 3020, El Salam, 11785, Cairo, Egypt.
| | - Tamer M Abdelghany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11884, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, 3 Cairo-Belbeis Desert Road, P.O. Box 3020, El Salam, 11785, Cairo, Egypt
| | - Shereen Saeid Elshaer
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, 3 Cairo-Belbeis Desert Road, P.O. Box 3020, El Salam, 11785, Cairo, Egypt; Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo, 11823, Egypt
| | - Sherine Maher Rizk
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Mahmoud A Senousy
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt; Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, 11786, Egypt
| | - Nadine W Maurice
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| |
Collapse
|
22
|
Zhang W, Zhuang X, Wu C, Jin Y, Xing J, Hou M, Yang W, Feng Q, Wang H. Apigenin inhibits tumor angiogenesis by hindering microvesicle biogenesis via ARHGEF1. Cancer Lett 2024; 596:216961. [PMID: 38823764 DOI: 10.1016/j.canlet.2024.216961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 06/03/2024]
Abstract
Extracellular vesicles are essential for intercellular communication and are involved in tumor progression. Inhibiting the direct release of extracellular vesicles seems to be an effective strategy in inhibiting tumor progression, but lacks of investigation. Here, we report a natural flavonoid compound, apigenin, could significantly inhibit the growth of hepatocellular carcinoma by preventing microvesicle secretion. Mechanistically, apigenin primarily targets the guanine nucleotide exchange factor ARHGEF1, inhibiting the activity of small G protein Cdc42, which is essential in regulating the release of microvesicles from tumor cells. In turn, this inhibits tumor angiogenesis related to VEGF90K transported on microvesicles, ultimately impeding tumor progression. Collectively, these findings highlight the therapeutic potential of apigenin and shed light on its anticancer mechanisms through inhibiting microvesicle biogenesis, providing a solid foundation for the refinement and practical application of apigenin.
Collapse
Affiliation(s)
- Wanying Zhang
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230036, China
| | - XiangJin Zhuang
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230036, China
| | - Chenlong Wu
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230036, China
| | - Yong Jin
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230036, China
| | - Jiayu Xing
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230036, China
| | - Mei Hou
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230036, China
| | - Wen Yang
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230036, China; International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200438, China; National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China; Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Shanghai, 200438, China.
| | - Qiyu Feng
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230036, China; Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Shanghai, 200438, China.
| | - Hongyang Wang
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230036, China; International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200438, China; National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China; Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Shanghai, 200438, China.
| |
Collapse
|
23
|
Drif AI, Yücer R, Damiescu R, Ali NT, Abu Hagar TH, Avula B, Khan IA, Efferth T. Anti-Inflammatory and Cancer-Preventive Potential of Chamomile ( Matricaria chamomilla L.): A Comprehensive In Silico and In Vitro Study. Biomedicines 2024; 12:1484. [PMID: 39062057 PMCID: PMC11275008 DOI: 10.3390/biomedicines12071484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/14/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND AND AIM Chamomile tea, renowned for its exquisite taste, has been appreciated for centuries not only for its flavor but also for its myriad health benefits. In this study, we investigated the preventive potential of chamomile (Matricaria chamomilla L.) towards cancer by focusing on its anti-inflammatory activity. METHODS AND RESULTS A virtual drug screening of 212 phytochemicals from chamomile revealed β-amyrin, β-eudesmol, β-sitosterol, apigenin, daucosterol, and myricetin as potent NF-κB inhibitors. The in silico results were verified through microscale thermophoresis, reporter cell line experiments, and flow cytometric determination of reactive oxygen species and mitochondrial membrane potential. An oncobiogram generated through comparison of 91 anticancer agents with known modes of action using the NCI tumor cell line panel revealed significant relationships of cytotoxic chamomile compounds, lupeol, and quercetin to microtubule inhibitors. This hypothesis was verified by confocal microscopy using α-tubulin-GFP-transfected U2OS cells and molecular docking of lupeol and quercetin to tubulins. Both compounds induced G2/M cell cycle arrest and necrosis rather than apoptosis. Interestingly, lupeol and quercetin were not involved in major mechanisms of resistance to established anticancer drugs (ABC transporters, TP53, or EGFR). Performing hierarchical cluster analyses of proteomic expression data of the NCI cell line panel identified two sets of 40 proteins determining sensitivity and resistance to lupeol and quercetin, further pointing to the multi-specific nature of chamomile compounds. Furthermore, lupeol, quercetin, and β-amyrin inhibited the mRNA expression of the proinflammatory cytokines IL-1β and IL6 in NF-κB reporter cells (HEK-Blue Null1). Moreover, Kaplan-Meier-based survival analyses with NF-κB as the target protein of these compounds were performed by mining the TCGA-based KM-Plotter repository with 7489 cancer patients. Renal clear cell carcinomas (grade 3, low mutational rate, low neoantigen load) were significantly associated with shorter survival of patients, indicating that these subgroups of tumors might benefit from NF-κB inhibition by chamomile compounds. CONCLUSION This study revealed the potential of chamomile, positioning it as a promising preventive agent against inflammation and cancer. Further research and clinical studies are recommended.
Collapse
Affiliation(s)
- Assia I. Drif
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (A.I.D.); (R.Y.); (R.D.); (N.T.A.)
| | - Rümeysa Yücer
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (A.I.D.); (R.Y.); (R.D.); (N.T.A.)
| | - Roxana Damiescu
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (A.I.D.); (R.Y.); (R.D.); (N.T.A.)
| | - Nadeen T. Ali
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (A.I.D.); (R.Y.); (R.D.); (N.T.A.)
| | - Tobias H. Abu Hagar
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (A.I.D.); (R.Y.); (R.D.); (N.T.A.)
| | - Bharati Avula
- National Center for Natural Products Research (NCNPR), School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA; (B.A.); (I.A.K.)
| | - Ikhlas A. Khan
- National Center for Natural Products Research (NCNPR), School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA; (B.A.); (I.A.K.)
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (A.I.D.); (R.Y.); (R.D.); (N.T.A.)
| |
Collapse
|
24
|
Wang Y, Zeng Y, Yang W, Wang X, Jiang J. Targeting CD8 + T cells with natural products for tumor therapy: Revealing insights into the mechanisms. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155608. [PMID: 38642413 DOI: 10.1016/j.phymed.2024.155608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/27/2024] [Accepted: 04/07/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND Despite significant advances in cancer immunotherapy over the past decades, such as T cell-engaging chimeric antigen receptor (CAR)-T cell therapy and immune checkpoint blockade (ICB), therapeutic failure resulting from various factors remains prevalent. Therefore, developing combinational immunotherapeutic strategies is of great significance for improving the clinical outcome of cancer immunotherapy. Natural products are substances that naturally exist in various living organisms with multiple pharmacological or biological activities, and some of them have been found to have anti-tumor potential. Notably, emerging evidences have suggested that several natural compounds may boost the anti-tumor effects through activating immune response of hosts, in which CD8+ T cells play a pivotal role. METHODS The data of this review come from PubMed, Web of Science, Google Scholar, and ClinicalTrials (https://clinicaltrials.gov/) with the keywords "CD8+ T cell", "anti-tumor", "immunity", "signal 1", "signal 2", "signal 3", "natural products", "T cell receptor (TCR)", "co-stimulation", "co-inhibition", "immune checkpoint", "inflammatory cytokine", "hesperidin", "ginsenoside", "quercetin", "curcumin", "apigenin", "dendrobium officinale polysaccharides (DOPS)", "luteolin", "shikonin", "licochalcone A", "erianin", "resveratrol", "procyanidin", "berberine", "usnic acid", "naringenin", "6-gingerol", "ganoderma lucidum polysaccharide (GL-PS)", "neem leaf glycoprotein (NLGP)", "paclitaxel", "source", "pharmacological activities", and "toxicity". These literatures were published between 1993 and 2023. RESULTS Natural products have considerable advantages as anti-tumor drugs based on the various species, wide distribution, low price, and few side effects. This review summarized the effects and mechanisms of some natural products that exhibit anti-tumor effects via targeting CD8+ T cells, mainly focused on the three signals that activate CD8+ T cells: TCR, co-stimulation, and inflammatory cytokines. CONCLUSION Clarifying the role and underlying mechanism of natural products in cancer immunotherapy may provide more options for combinational treatment strategies and benefit cancer therapy, to shed light on identifying potential natural compounds for improving the clinical outcome in cancer immunotherapy.
Collapse
Affiliation(s)
- Yuke Wang
- West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China; Department of Neurosurgery, Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Yan Zeng
- West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wenyong Yang
- Department of Neurosurgery, Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Xiuxuan Wang
- Research and Development Department, Beijing DCTY Biotech Co., Ltd., Beijing, China
| | - Jingwen Jiang
- West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
25
|
Barathan M, Vellasamy KM, Mariappan V, Venkatraman G, Vadivelu J. Naturally Occurring Phytochemicals to Target Breast Cancer Cell Signaling. Appl Biochem Biotechnol 2024; 196:4644-4660. [PMID: 37773580 DOI: 10.1007/s12010-023-04734-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2023] [Indexed: 10/01/2023]
Abstract
Almost 70% of clinically used antineoplastic drugs are originated from natural products such as plants, marine organism, and microorganisms and some of them are also structurally modified natural products. The naturally occurring drugs may specifically act as inducers of selective cytotoxicity, anti-metastatic, anti-mutagenic, anti-angiogenesis, antioxidant accelerators, apoptosis inducers, autophagy inducers, and cell cycle inhibitors in cancer therapy. Precisely, several reports have demonstrated the involvement of naturally occurring anti-breast cancer drugs in regulating the expression of oncogenic and tumor suppressors associated with carcinogen metabolism and signaling pathways. Anticancer therapies based on nanotechnology have the potential to improve patient outcomes through targeted therapy, improved drug delivery, and combination therapies. This paper has reviewed the current treatment for breast cancer and the potential disadvantages of those therapies, besides the various mechanism used by naturally occurring phytochemicals to induce apoptosis in different types of breast cancer. Along with this, the contribution of nanotechnology in improving the effectiveness of anticancer drugs was also reviewed. With the development of sciences and technologies, phytochemicals derived from natural products are continuously discovered; however, the search for novel natural products as chemoprevention drugs is still ongoing, especially for the advanced stage of breast cancer. Continued research and development in this field hold great promise for advancing cancer care and improving patient outcomes.
Collapse
Affiliation(s)
- Muttiah Barathan
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Lembah Pantai, 50603, Kuala Lumpur, Malaysia.
| | - Kumutha Malar Vellasamy
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Lembah Pantai, 50603, Kuala Lumpur, Malaysia
| | - Vanitha Mariappan
- Center of Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Aziz, 50300, Kuala Lumpur, Malaysia
| | - Gopinath Venkatraman
- Universiti Malaya Centre for Proteomics Research, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600 077, India
| | - Jamuna Vadivelu
- MERDU, Faculty of Medicine, Universiti Malaya, Lembah Pantai, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
26
|
Monu, Agnihotri P, Saquib M, Biswas S. Targeting TNF-α-induced expression of TTR and RAGE in rheumatoid arthritis: Apigenin's mediated therapeutic approach. Cytokine 2024; 179:156616. [PMID: 38626647 DOI: 10.1016/j.cyto.2024.156616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 04/10/2024] [Indexed: 04/18/2024]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a chronic inflammatory disease induced by TNF-α, which increases fibroblast-like synoviocytes inflammation, resulting in cartilage destruction. The current work sought to comprehend the pathophysiological importance of TNF-α stimulation on differential protein expression and their regulation by apigenin using in-vitro and in-vivo models of RA. METHODS The human RA synovial fibroblast cells were stimulated with or without TNF-α (10 ng/ml) and treated with 40 μM apigenin. In-silico, in-vitro and in-vivo studies were performed to confirm the pathophysiological significance of apigenin on pro-inflammatory cytokines and on differential expression of TTR and RAGE proteins. RESULTS TNF-α induced inflammatory response in synoviocytes revealed higher levels of IL-6, IL-1β, and TNF-α cytokines and upregulated differential expression of TTR and RAGE. In-silico results demonstrated that apigenin has a binding affinity towards TNF-α, indicating its potential effect in the inflammatory process. Both in-vitro and in-vivo results obtained by Western Blot analysis suggested that apigenin reduced the level of p65 (p = 0.005), TTR (p = 0.002), and RAGE (p = 0.020). CONCLUSION The findings of this study suggested that TNF-α promotes the differential expression of pro-inflammatory cytokines, TTR, and RAGE via NF-kB pathways activation. Anti-inflammatory effect of apigenin impedes TNF-α mediated dysregulation or expression associated with RA pathogenesis.
Collapse
Affiliation(s)
- Monu
- Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Mall Road, Delhi University Campus, Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Prachi Agnihotri
- Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Mall Road, Delhi University Campus, Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mohd Saquib
- Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Mall Road, Delhi University Campus, Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sagarika Biswas
- Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Mall Road, Delhi University Campus, Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
27
|
Abutayeh RF, Altah M, Mehdawi A, Al-Ataby I, Ardakani A. Chemopreventive Agents from Nature: A Review of Apigenin, Rosmarinic Acid, and Thymoquinone. Curr Issues Mol Biol 2024; 46:6600-6619. [PMID: 39057035 PMCID: PMC11276303 DOI: 10.3390/cimb46070393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/15/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Cancer, a major challenge to global health and healthcare systems, requires the study of alternative and supportive treatments due to the limitations of conventional therapies. This review examines the chemopreventive potential of three natural compounds: rosmarinic acid, apigenin, and thymoquinone. Derived from various plants, these compounds have demonstrated promising chemopreventive properties in in vitro, in vivo, and in silico studies. Specifically, they have been shown to inhibit cancer cell growth, induce apoptosis, and modulate key signaling pathways involved in cancer progression. The aim of this review is to provide a comprehensive overview of the current research on these phytochemicals, elucidating their mechanisms of action, therapeutic efficacy, and potential as adjuncts to traditional cancer therapies. This information serves as a valuable resource for researchers and healthcare providers interested in expanding their knowledge within the field of alternative cancer therapies.
Collapse
Affiliation(s)
- Reem Fawaz Abutayeh
- Faculty of Pharmacy, Applied Science Private University, Amman 11937, Jordan;
| | - Maram Altah
- School of Pharmacy, Al-Qadisiyah College, Amman 11118, Jordan;
| | - Amani Mehdawi
- School of Pharmacy, Al-Qadisiyah College, Amman 11118, Jordan;
| | - Israa Al-Ataby
- Faculty of Pharmacy, Applied Science Private University, Amman 11937, Jordan;
| | - Adel Ardakani
- College of Pharmacy, Amman Arab University, Amman 11953, Jordan;
| |
Collapse
|
28
|
Habrowska-Górczyńska DE, Kozieł MJ, Urbanek KA, Kowalska K, Piastowska-Ciesielska AW. FOXO3a/PI3K/Akt pathway participates in the ROS- induced apoptosis triggered by α-ZEL and β-ZEL. Sci Rep 2024; 14:13281. [PMID: 38858492 PMCID: PMC11164887 DOI: 10.1038/s41598-024-64350-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024] Open
Abstract
Zearalenone (ZEN), an estrogenic mycotoxin, is one of the most common food and feed contaminants. Also, its metabolites α-zearalenol (α-ZEL) and β-zearalenol (β-ZEL) are considered to induce oxidative stress, however its effect in prostate cells is not known yet. Our previous observations showed that forehead box transcription factor 3a (FOXO3a) expression is modified in hormone- sensitive cells in the response to mycotoxins, similar to the phosphoinositide 3-kinase (PI3K)/ protein kinase B (Akt) pathway. Thus, this study evaluated the direct molecular effect of α-ZEL and β-ZEL in a dose of 30 µM in hormone-dependent human prostate cancer (PCa) cells with the focus of the involvement of FOXO3a and PI3K/Akt signaling pathway in that effect. We observed that both active metabolites of ZEN reduced cell viability, induced oxidative stress, cell cycle arrest and apoptosis in PCa cells. Furthermore, we observed that FOXO3a as well as PI3K/Akt signaling pathway participate in ZELs induced toxicity in PCa cells, indicating that this signaling pathway might be a regulator of mycotoxin-induced toxicity generally.
Collapse
Affiliation(s)
| | - Marta Justyna Kozieł
- Department of Cell Culture and Genomic Analysis, Medical University of Lodz, Zeligowskiego 7/9, 90-752, Lodz, Poland
- BRaIn Laboratories, Medical University of Lodz, Czechoslowacka 4, 92-216, Lodz, Poland
| | - Kinga Anna Urbanek
- Department of Cell Culture and Genomic Analysis, Medical University of Lodz, Zeligowskiego 7/9, 90-752, Lodz, Poland
| | - Karolina Kowalska
- Department of Cell Culture and Genomic Analysis, Medical University of Lodz, Zeligowskiego 7/9, 90-752, Lodz, Poland
| | - Agnieszka Wanda Piastowska-Ciesielska
- Department of Cell Culture and Genomic Analysis, Medical University of Lodz, Zeligowskiego 7/9, 90-752, Lodz, Poland
- BRaIn Laboratories, Medical University of Lodz, Czechoslowacka 4, 92-216, Lodz, Poland
| |
Collapse
|
29
|
Ozkan G, Ceyhan T, Çatalkaya G, Rajan L, Ullah H, Daglia M, Capanoglu E. Encapsulated phenolic compounds: clinical efficacy of a novel delivery method. PHYTOCHEMISTRY REVIEWS 2024; 23:781-819. [DOI: 10.1007/s11101-023-09909-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 12/05/2023] [Indexed: 01/15/2025]
Abstract
AbstractEncapsulation is a drug or food ingredient loaded-delivery system that entraps active components, protecting them from decomposition/degradation throughout the processing and storage stages and facilitates their delivery to the target tissue/organ, improving their bioactivities. The application of this technology is expanding gradually from pharmaceuticals to the food industry, since dietary bioactive ingredients, including polyphenols, are susceptible to environmental and/or gastrointestinal conditions. Polyphenols are the largest group of plants' secondary metabolites, with a wide range of biological effects. Literature data have indicated their potential in the prevention of several disorders and pathologies, ranging from simpler allergic conditions to more complex metabolic syndrome and cardiovascular and neurodegenerative diseases. Despite the promising health effects in preclinical studies, the clinical use of dietary polyphenols is still very limited due to their low bioaccessibility and/or bioavailability. Encapsulation can be successfully employed in the development of polyphenol-based functional foods, which may improve their bioaccessibility and/or bioavailability. Moreover, encapsulation can also aid in the targeted delivery of polyphenols and may prevent any possible adverse events. For the encapsulation of bioactive ingredients, several techniques are applied such as emulsion phase separation, emulsification/internal gelation, film formation, spray drying, spray-bed-drying, fluid-bed coating, spray-chilling, spray-cooling, and melt injection. The present review aims to throw light on the existing literature highlighting the possibility and clinical benefits of encapsulated polyphenols in health and disease. However, the clinical data is still very scarce and randomized clinical trials are needed before any conclusion is drawn.
Graphical abstract
Collapse
|
30
|
Chen R, Jiang Z, Cheng Y, Ye J, Li S, Xu Y, Ye Z, Shi Y, Ding J, Zhao Y, Zheng H, Wu F, Lin G, Xie C, Yao Q, Kou L. Multifunctional iron-apigenin nanocomplex conducting photothermal therapy and triggering augmented immune response for triple negative breast cancer. Int J Pharm 2024; 655:124016. [PMID: 38503397 DOI: 10.1016/j.ijpharm.2024.124016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/27/2024] [Accepted: 03/16/2024] [Indexed: 03/21/2024]
Abstract
Triple negative breast cancer (TNBC) presents a formidable challenge due to its low sensitivity to many chemotherapeutic drugs and a relatively low overall survival rate in clinical practice. Photothermal therapy has recently garnered substantial interest in cancer treatment, owing to its swift therapeutic effectiveness and minimal impact on normal cells. Metal-polyphenol nanostructures have recently garnered significant attention as photothermal transduction agents due to their facile preparation and favorable photothermal properties. In this study, we employed a coordinated approach involving Fe3+ and apigenin, a polyphenol compound, to construct the nanostructure (nFeAPG), with the assistance of β-CD and DSPE-PEG facilitating the formation of the complex nanostructure. In vitro research demonstrated that the formed nFeAPG could induce cell death by elevating intracellular oxidative stress, inhibiting antioxidative system, and promoting apoptosis and ferroptosis, and near infrared spectrum irradiation further strengthen the therapeutic outcome. In 4T1 tumor bearing mice, nFeAPG could effectively accumulate into tumor site and exhibit commendable control over tumor growth. Futher analysis demonstrated that nFeAPG ameliorated the suppressed immune microenvironment by augmenting the response of DC cells and T cells. This study underscores that nFeAPG encompasses a multifaceted capacity to combat TNBC, holding promise as a compelling therapeutic strategy for TNBC treatment.
Collapse
Affiliation(s)
- Ruijie Chen
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325027, China
| | - Zewei Jiang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325027, China
| | - Yingfeng Cheng
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Jinyao Ye
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology, Wenzhou 325000, China; Zhejiang-Hong Kong Precision Theranostics of Thoracic Tumors Joint Laboratory, Wenzhou 325000, China
| | - Shize Li
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Yitianhe Xu
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Zhanzheng Ye
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Yifan Shi
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Jie Ding
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Yingyi Zhao
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Hailun Zheng
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Fugen Wu
- Department of Pediatric, The First People's Hospital of Wenling, Taizhou, China
| | - Guangyong Lin
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| | - Congying Xie
- Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology, Wenzhou 325000, China; Zhejiang-Hong Kong Precision Theranostics of Thoracic Tumors Joint Laboratory, Wenzhou 325000, China.
| | - Qing Yao
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Longfa Kou
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325027, China.
| |
Collapse
|
31
|
Chou JC, Liu CC, Lee MF. Apigenin Suppresses MED28-Mediated Cell Growth in Human Liver Cancer Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38619972 DOI: 10.1021/acs.jafc.3c09276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Flavonoids exhibit health-promoting benefits against multiple chronic diseases, including cancer. Apigenin (4',5,7-trihydroxyflavone), one flavonoid present in fruits and vegetables, is potentially applicable to chemoprevention. Despite considerable progress in the therapeutic regimen of liver cancer, its prognosis remains poor. MED28, a Mediator subunit for transcriptional activation, is implicated in the development of several types of malignancy; however, its role in liver cancer is unknown at present. In liver cancer, the AKT/mammalian target of rapamycin (mTOR) is one major pathway involved in the oncogenic process. The aim of this study is to investigate the role of apigenin and MED28 in AKT/mTOR signaling in liver cancer. We first identified a connectivity score of 92.77 between apigenin treatment and MED28 knockdown in several cancer cell lines using CLUE, a cloud-based software platform to assess connectivity among compounds and genetic perturbagens. Higher expression of MED28 predicted a poorer survival prognosis; MED28 expression in liver cancer tissue was significantly higher than that of normal tissue, and it was positively correlated with tumor stage and grade in The Cancer Genome Atlas Liver Cancer (TCGA-LIHC) data set. Knockdown of MED28 induced cell cycle arrest and suppressed the AKT/mTOR signaling in two human liver cancer cell lines, HepG2 and Huh 7, accompanied by less lipid accumulation and lower expression and nuclear localization of sterol regulatory element binding protein 1 (SREBP1). Apigenin inhibited the expression of MED28, and the effect of apigenin mimicked that of the MED28 knockdown. On the other hand, the AKT/mTOR signaling was upregulated when MED28 was overexpressed. These data indicated that MED28 was associated with the survival prognosis and the progression of liver cancer by regulating AKT/mTOR signaling and apigenin appeared to inhibit cell growth through MED28-mediated mTOR signaling, which may be applicable as an adjuvant of chemotherapy or chemoprevention in liver cancer.
Collapse
Affiliation(s)
- Jou-Chia Chou
- Department of Nutrition, China Medical University, Taichung 406040, Taiwan
| | - Chen-Chia Liu
- Department of Nutrition, China Medical University, Taichung 406040, Taiwan
| | - Ming-Fen Lee
- Department of Nutrition, China Medical University, Taichung 406040, Taiwan
| |
Collapse
|
32
|
Lv LL, Li LY, Xiao LQ, Pi JH. Transcriptomic and targeted metabolomic analyses provide insights into the flavonoids biosynthesis in the flowers of Lonicera macranthoides. BMC Biotechnol 2024; 24:19. [PMID: 38609923 PMCID: PMC11015657 DOI: 10.1186/s12896-024-00846-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Flavonoids are one of the bioactive ingredients of Lonicera macranthoides (L. macranthoides), however, their biosynthesis in the flower is still unclear. In this study, combined transcriptomic and targeted metabolomic analyses were performed to clarify the flavonoids biosynthesis during flowering of L. macranthoides. RESULTS In the three sample groups, GB_vs_WB, GB_vs_WF and GB_vs_GF, there were 25, 22 and 18 differentially expressed genes (DEGs) in flavonoids biosynthetic pathway respectively. A total of 339 flavonoids were detected and quantified at four developmental stages of flower in L. macranthoides. In the three sample groups, 113, 155 and 163 differentially accumulated flavonoids (DAFs) were detected respectively. Among the DAFs, most apigenin derivatives in flavones and most kaempferol derivatives in flavonols were up-regulated. Correlation analysis between DEGs and DAFs showed that the down-regulated expressions of the CHS, DFR, C4H, F3'H, CCoAOMT_32 and the up-regulated expressions of the two HCTs resulted in down-regulated levels of dihydroquercetin, epigallocatechin and up-regulated level of kaempferol-3-O-(6''-O-acetyl)-glucoside, cosmosiin and apigenin-4'-O-glucoside. The down-regulated expressions of F3H and FLS decreased the contents of 7 metabolites, including naringenin chalcone, proanthocyanidin B2, B3, B4, C1, limocitrin-3,7-di-O-glucoside and limocitrin-3-O-sophoroside. CONCLUSION The findings are helpful for genetic improvement of varieties in L.macranthoides.
Collapse
Affiliation(s)
- Ling Ling Lv
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Key Laboratory of Hunan Higher Education for Western Hunan Medicinal Plant and Ethnobotany, Huaihua University, 418008, Huaihua, China.
| | - Li Yun Li
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Key Laboratory of Hunan Higher Education for Western Hunan Medicinal Plant and Ethnobotany, Huaihua University, 418008, Huaihua, China
| | - Long Qian Xiao
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Key Laboratory of Hunan Higher Education for Western Hunan Medicinal Plant and Ethnobotany, Huaihua University, 418008, Huaihua, China
| | - Jian Hui Pi
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Key Laboratory of Hunan Higher Education for Western Hunan Medicinal Plant and Ethnobotany, Huaihua University, 418008, Huaihua, China
| |
Collapse
|
33
|
Rithidech KN, Peanlikhit T, Honikel L, Li J, Liu J, Karakach T, Zimmerman T, Welsh J. Consumption of Apigenin Prevents Radiation-induced Gut Dysbiosis in Male C57BL/6J Mice Exposed to Silicon Ions. Radiat Res 2024; 201:317-329. [PMID: 38373016 DOI: 10.1667/rade-23-00110.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 02/06/2024] [Indexed: 02/20/2024]
Abstract
The search for medical treatments to prevent radiation-induced damage to gastrointestinal tissue is crucial as such injuries can be fatal. This study aimed to investigate the effects of apigenin (AP) on the gut microbiome of irradiated mice, as it is a promising radiation countermeasure. Male C57BL/6J mice were divided into four groups, with six mice in each group. Two groups were given food with apigenin (20 mg/kg body weight or AP 20) before and after exposure to 0 or 50 cGy of silicon (28Si) ions, while another two groups of mice received regular diet without apigenin (0 mg/kg body weight or AP 0) before and after irradiation. The duodenum, the primary site for oral AP absorption, was collected from each mouse seven days after radiation exposure. Using 16S rRNA amplicon sequencing, we found significant differences in microbial diversity among groups. Firmicutes and Bacteroidetes were the major phyla for all groups, while actinobacterial and proteobacterial sequences represented only a small percentage. Mice not given dietary apigenin had a higher Firmicutes and Bacteroidetes (F/B) ratio and an imbalanced duodenal microbiota after exposure to radiation, while irradiated mice given apigenin had maintained homeostasis of the microbiota. Additionally, irradiated mice not given apigenin had decreased probiotic bacteria abundance and increased inflammation, while apigenin-supplemented mice had reduced inflammation and restored normal histological structure. In conclusion, our results demonstrate the potential of dietary apigenin as a countermeasure against radiation-induced gut injuries due to its anti-inflammatory activity, reduction of gut microbiota dysbiosis, and increase in probiotic bacteria (e.g., Lachnospiraceae, Muribaculaceae and Bifidobacteriaceae).
Collapse
Affiliation(s)
| | - Tanat Peanlikhit
- Pathology Department, Stony Brook University, Stony Brook, New York 11794-8691
| | - Louise Honikel
- Pathology Department, Stony Brook University, Stony Brook, New York 11794-8691
| | - Jinyu Li
- Pathology Department, Stony Brook University, Stony Brook, New York 11794-8691
| | - Jingxuan Liu
- Pathology Department, Stony Brook University, Stony Brook, New York 11794-8691
| | - Tobias Karakach
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada B3H 4R2
| | - Thomas Zimmerman
- Pathology Department, Stony Brook University, Stony Brook, New York 11794-8691
- Division of Laboratory Animal Resources, Stony Brook University, Stony Brook, New York 11794-8611
| | - James Welsh
- Department of Radiation Oncology, Loyola University Health System, Maywood, Illinois 60153
| |
Collapse
|
34
|
Youssif YM, Elhagali GAM, Zahran MA, Ahmed FA, Ragab A. Utilising UPLC-QTOF-MS/MS to determine the phytochemical profile and in vitro cytotoxic potential of Ziziphora capitata L. with molecular docking simulation. Nat Prod Res 2024:1-9. [PMID: 38557274 DOI: 10.1080/14786419.2024.2335666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
Ziziphora capitata (Lamiaceae family) aerial parts extract contains 57 metabolites, including flavonoids, phenolic acids, anthocyanins, and coumarins, as assessed by UPLC-QTOF-MS/MS. Successive extracts (hexane, chloroform, ethyl acetate, ethanol 95%, and water) were tested in vitro cytotoxic activity against HepG-2, MCF-7, HCT-116, A549, and PC3 cell lines. The results revealed that hexane extract exhibited the most potent cytotoxic activity among PC3 and A549 cell lines, IC50 = 47.1 ± 1.75 and 49.2 ± 1.08 µg/mL compared to Vinblastine IC50 = 42.47 ± 1.95 and 24.64 ± 1.18 µg/mL, respectively, and had a moderate impact on the remaining cell lines. Moreover, the chloroform and ethyl acetate extracts exhibited moderate affinity among all tested cell lines. Furthermore, the total phenolic and flavonoid contents were assessed. The molecular docking simulation was performed inside the effective sites of VEGFR-2 and TS as anticancer targets for the top ten phytochemicals. The results showed higher binding energy values for VEGFR-2 than for TS compared to vinblastine and co-crystallized ligands.
Collapse
Affiliation(s)
- Youssif M Youssif
- Medicinal and Aromatic Plants Department, Desert Research Center, Cairo, Egypt
| | - Gameel A M Elhagali
- Chemistry Department, Faculty of Science (Boys), Al-Azhar University, Cairo, Egypt
| | - Medhat A Zahran
- Chemistry Department, Faculty of Science (Boys), Al-Azhar University, Cairo, Egypt
| | - Fatma A Ahmed
- Medicinal and Aromatic Plants Department, Desert Research Center, Cairo, Egypt
| | - Ahmed Ragab
- Chemistry Department, Faculty of Science (Boys), Al-Azhar University, Cairo, Egypt
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
35
|
Mini JJ, Khan S, Aravind M, Mol T, Ahmed Awadh Bahajjaj A, Robert HM, Kumaresubitha T, Anwar A, Li H. Investigation of antimicrobial and anti-cancer activity of thermally sensitive SnO 2 nanostructures with green-synthesized cauliflower morphology at ambient weather conditions. ENVIRONMENTAL RESEARCH 2024; 245:117878. [PMID: 38147921 DOI: 10.1016/j.envres.2023.117878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 11/01/2023] [Accepted: 12/04/2023] [Indexed: 12/28/2023]
Abstract
A tin oxide (SnO2) nanostructure was prepared using Matricaria recutita leaf extract to investigate its anticancer activity against SK-MEL-28 cells. The tetragonal crystal structure of tin oxide nanoparticles with an average crystal size of 27 nm was confirmed by X-ray diffraction (XRD) analysis. The tetragonal crystal structure of the tin oxide nanoparticles, with an average crystallite size of 27 nm, was confirmed by XRD an absorbance peak at 365 nm was identified by UV-visible spectroscopy analysis as belonging to the bio-mediated synthesis of SnO2 nanoparticles. The SnO2 NPs are capped and stabilized with diverse functional groups derived from bioactive molecules, including aldehydes, benzene rings, amines, alcohols, and carbonyl stretch protein molecules. Fourier transform infrared spectroscopy (FTIR) analysis validated the presence of these capping and stabilizing chemical bonds. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) studies revealed the cauliflower-shaped morphology of the SnO2 nanoparticles with an average particle size of 28 nm. The antimicrobial activity of both prepared and encapsulated samples confirmed their biological activities. Furthermore, both prepared and encapsulated tin oxide samples exhibited excellent anticancer activity against SK-MEL-28 human cancer cells. The present study introduces a reliable and uncomplicated approach to produce SnO2 nanoparticles and demonstrates their effectiveness in various applications, including cancer therapy, drug administration, and disinfectant.
Collapse
Affiliation(s)
- J Josphin Mini
- Department of Botany, Women's Christian College, Nagercoil, Tamil Nadu, India
| | - Safia Khan
- Shandong Technology Centre of Nanodevices and Integration, School of Microelectronics, Shandong University, Jinan, 250101, China
| | - M Aravind
- Department of Physics, National Engineering College, Kovilpatti, Tamil Nadu, India.
| | - Thibi Mol
- Department of Chemistry, Nesamony Memorial Christian College, Marthandam, Tamil Nadu, India
| | | | - H Marshan Robert
- Department of Physics, Nanjil Catholic College of Arts and Science, Kaliyakkaviali, Tamil Nadu, India
| | - T Kumaresubitha
- Department of Botany, Pachaiyappa's College, Chennai, Tamil Nadu, India
| | - Aneela Anwar
- Department of Chemistry, University of Engineering and Technology, Lahore, Pakistan.
| | - Hu Li
- Ångström Laboratory, Department of Materials Science and Engineering, Uppsala University, 75121, Uppsala, Sweden.
| |
Collapse
|
36
|
Sopjani M, Falco F, Impellitteri F, Guarrasi V, Nguyen Thi X, Dërmaku-Sopjani M, Faggio C. Flavonoids derived from medicinal plants as a COVID-19 treatment. Phytother Res 2024; 38:1589-1609. [PMID: 38284138 DOI: 10.1002/ptr.8123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/30/2023] [Accepted: 12/29/2023] [Indexed: 01/30/2024]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes COVID-19 disease. Through its viral spike (S) protein, the virus enters and infects epithelial cells by utilizing angiotensin-converting enzyme 2 as a host cell's receptor protein. The COVID-19 pandemic had a profound impact on global public health and economies. Although various effective vaccinations and medications are now available to prevent and treat COVID-19, natural compounds derived from medicinal plants, particularly flavonoids, demonstrated therapeutic potential to treat COVID-19 disease. Flavonoids exhibit dual antiviral mechanisms: direct interference with viral invasion and inhibition of replication. Specifically, they target key viral molecules, particularly viral proteases, involved in infection. These compounds showcase significant immunomodulatory and anti-inflammatory properties, effectively inhibiting various inflammatory cytokines. Additionally, emerging evidence supports the potential of flavonoids to mitigate the progression of COVID-19 in individuals with obesity by positively influencing lipid metabolism. This review aims to elucidate the molecular structure of SARS-CoV-2 and the underlying mechanism of action of flavonoids on the virus. This study evaluates the potential anti-SARS-CoV-2 properties exhibited by flavonoid compounds, with a specific interest in their structure and mechanisms of action, as therapeutic applications for the prevention and treatment of COVID-19. Nevertheless, a significant portion of existing knowledge is based on theoretical frameworks and findings derived from in vitro investigations. Further research is required to better assess the effectiveness of flavonoids in combating SARS-CoV-2, with a particular emphasis on in vivo and clinical investigations.
Collapse
Affiliation(s)
- Mentor Sopjani
- Faculty of Medicine, University of Prishtina, Prishtina, Kosova
| | - Francesca Falco
- Institute for Marine Biological Resources and Biotechnology (IRBIM)-CNR, Mazara del Vallo, Italy
| | | | - Valeria Guarrasi
- Institute of Biophysics, National Research Council (CNR), Palermo, Italy
| | - Xuan Nguyen Thi
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | | | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Messina, Italy
- Department of Eco sustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy
| |
Collapse
|
37
|
Zhang C, Liao Y, Li T, Zhong H, Shan L, Yu P, Xia C, Xu L. Apigenin promotes apoptosis of 4T1 cells through PI3K/AKT/Nrf2 pathway and improves tumor immune microenvironment in vivo. Toxicol Res (Camb) 2024; 13:tfae011. [PMID: 38283821 PMCID: PMC10811521 DOI: 10.1093/toxres/tfae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/03/2024] [Accepted: 01/13/2024] [Indexed: 01/30/2024] Open
Abstract
The 2022 US Cancer Statistics show that breast cancer is one of the most common cancers in women. Epidemiology has shown that adding flavonoids to the diet inhibits cancers that arise in particular women, such as cervical cancer, ovarian cancer, and breast cancer. Although there have been research reports on apigenin (API) and breast cancer, its anti-tumor effect and potential mechanism on breast cancer have not yet been clarified. Therefore, in this study, we used 4T1 cells and a 4T1 xenograft tumor mouse model to investigate the antitumor effect of API on breast cancer and its underlying mechanism. In vitro, we used MTT, transwell, staining, and western blotting to investigate the inhibitory effect of apigenin on 4T1 and the underlying molecular mechanism. In vivo by establishing a xenograft tumor model, using immunohistochemistry, and flow cytometry to study the inhibitory effect of apigenin on solid breast tumors and its effect on the tumor immune microenvironment. The results showed that API can induce breast cancer cell apoptosis through the PI3K/AKT/Nrf2 pathway and can improve the tumor immune microenvironment in mice with breast tumors, thereby inhibiting the growth of breast cancer. Thus, API may be a promising agent for breast cancer treatment.
Collapse
Affiliation(s)
- Chu Zhang
- Institute of New Drug Research, College of Pharmacy/Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases/International Cooperative Laboratory of Traditional Chinese, Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Yupei Liao
- Institute of New Drug Research, College of Pharmacy/Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases/International Cooperative Laboratory of Traditional Chinese, Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Tangjia Li
- Institute of New Drug Research, College of Pharmacy/Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases/International Cooperative Laboratory of Traditional Chinese, Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Haijing Zhong
- Institute of New Drug Research, College of Pharmacy/Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases/International Cooperative Laboratory of Traditional Chinese, Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Luchen Shan
- Institute of New Drug Research, College of Pharmacy/Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases/International Cooperative Laboratory of Traditional Chinese, Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Pei Yu
- Institute of New Drug Research, College of Pharmacy/Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases/International Cooperative Laboratory of Traditional Chinese, Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Chenglai Xia
- Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan 528000, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lipeng Xu
- Institute of New Drug Research, College of Pharmacy/Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases/International Cooperative Laboratory of Traditional Chinese, Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| |
Collapse
|
38
|
Wahi A, Jain P, Sinhari A, Jadhav HR. Progress in discovery and development of natural inhibitors of histone deacetylases (HDACs) as anti-cancer agents. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:675-702. [PMID: 37615708 DOI: 10.1007/s00210-023-02674-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/12/2023] [Indexed: 08/25/2023]
Abstract
The study of epigenetic translational modifications had drawn great interest for the last few decades. These processes play a vital role in many diseases and cancer is one of them. Histone acetyltransferase (HAT) and histone deacetylases (HDACs) are key enzymes involved in the acetylation and deacetylation of histones and ultimately in post-translational modifications. Cancer frequently exhibits epigenetic changes, particularly disruption in the expression and activity of HDACs. It includes the capacity to regulate proliferative signalling, circumvent growth inhibitors, escape cell death, enable replicative immortality, promote angiogenesis, stimulate invasion and metastasis, prevent immunological destruction, and genomic instability. The majority of tumours develop and spread as a result of HDAC dysregulation. As a result, HDAC inhibitors (HDACis) were developed, and they today stand as a very promising therapeutic approach. One of the most well-known and efficient therapies for practically all cancer types is chemotherapy. However, the efficiency and safety of treatment are constrained by higher toxicity. The same has been observed with the synthetic HDACi. Natural products, owing to many advantages over synthetic compounds for cancer treatment have always been a choice for therapy. Hence, naturally available molecules are of particular interest for HDAC inhibition and HDAC has drawn the attention of the research fraternity due to their potential to offer a diverse array of chemical structures and bioactive compounds. This diversity opens up new avenues for exploring less toxic HDAC inhibitors to reduce side effects associated with conventional synthetic inhibitors. The review presents comprehensive details on natural product HDACi, their mechanism of action and their biological effects. Moreover, this review provides a brief discussion on the structure activity relationship of selected natural HDAC inhibitors and their analogues which can guide future research to discover selective, more potent HDACi with minimal toxicity.
Collapse
Affiliation(s)
- Abhishek Wahi
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, DPSRU, New Delhi, 110017, India
| | - Priti Jain
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, DPSRU, New Delhi, 110017, India.
| | - Apurba Sinhari
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Vidya Vihar, Pilani, Rajasthan, 333031, India
| | - Hemant R Jadhav
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Vidya Vihar, Pilani, Rajasthan, 333031, India
| |
Collapse
|
39
|
|
40
|
Fossatelli L, Maroccia Z, Fiorentini C, Bonucci M. Resources for Human Health from the Plant Kingdom: The Potential Role of the Flavonoid Apigenin in Cancer Counteraction. Int J Mol Sci 2023; 25:251. [PMID: 38203418 PMCID: PMC10778966 DOI: 10.3390/ijms25010251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Apigenin is one of the most widespread flavonoids in the plant kingdom. For centuries, apigenin-containing plant preparations have been used in traditional medicines to treat diseases that have an inflammatory and/or degenerative component. In the 1980s, apigenin was proposed to interfere with the process of carcinogenesis. Since then, more and more evidence has demonstrated its anticancer efficacy, both in vitro and in vivo. Apigenin has been shown to target signaling pathways involved in the development and progression of cancer, such as PI3K/Akt/mTOR, MAPK/ERK, JAK/STAT, NF-κB, and Wnt/β-catenin pathways, and to modulate different hallmarks of cancer, such as cell proliferation, metastasis, apoptosis, invasion, and cell migration. Furthermore, apigenin modulates PD1/PD-L1 expression in cancer/T killer cells and regulates the percentage of T killer and T regulatory cells. Recently, apigenin has been studied for its synergic and additive effects when combined with chemotherapy, minimizing the side effects. Unfortunately, its low bioavailability and high permeability limit its therapeutic applications. Based on micro- and nanoformulations that enhance the physical stability and drug-loading capacity of apigenin and increase the bioavailability of apigenin, novel drug-delivery systems have been investigated to improve its solubility.
Collapse
Affiliation(s)
- Laura Fossatelli
- Association for Research on Integrative Oncology Therapies (ARTOI) Foundation, Via Ludovico Micara 73, 00165 Rome, Italy; (L.F.); (M.B.)
| | - Zaira Maroccia
- Department of Cardiovascular, Endocrine-Metabolic Diseases and Aging, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Carla Fiorentini
- Association for Research on Integrative Oncology Therapies (ARTOI) Foundation, Via Ludovico Micara 73, 00165 Rome, Italy; (L.F.); (M.B.)
| | - Massimo Bonucci
- Association for Research on Integrative Oncology Therapies (ARTOI) Foundation, Via Ludovico Micara 73, 00165 Rome, Italy; (L.F.); (M.B.)
| |
Collapse
|
41
|
Arias-Rodríguez LI, Pablos JL, Vallet-Regí M, Rodríguez-Mendiola MA, Arias-Castro C, Sánchez-Salcedo S, Salinas AJ. Enhancing Osteoblastic Cell Cultures with Gelatin Methacryloyl, Bovine Lactoferrin, and Bioactive Mesoporous Glass Scaffolds Loaded with Distinct Parsley Extracts. Biomolecules 2023; 13:1764. [PMID: 38136635 PMCID: PMC10741674 DOI: 10.3390/biom13121764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
The increasing interest in innovative solutions for addressing bone defects has driven research into the use of Bioactive Mesoporous Glasses (MBGs). These materials, distinguished by their well-ordered mesoporous structure, possess the capability to accommodate plant extracts with well-established osteogenic properties, including bovine lactoferrin (bLF), as part of their 3D scaffold composition. This harmonizes seamlessly with the ongoing advancements in the field of biomedicine. In this study, we fabricated 3D scaffolds utilizing MBGs loaded with extracts from parsley leaves (PL) and embryogenic cultures (EC), rich in bioactive compounds such as apigenin and kaempferol, which hold potential benefits for bone metabolism. Gelatin Methacryloyl (GelMa) served as the polymer, and bLF was included in the formulation. Cytocompatibility, Runx2 gene expression, ALP enzyme activity, and biomineralization were assessed in preosteoblastic MC3T3-E1 cell cultures. MBGs effectively integrated PL and EC extracts with loadings between 22.6 ± 0.1 and 43.6 ± 0.3 µM for PL and 26.3 ± 0.3 and 46.8 ± 0.4 µM for EC, ensuring cell viability through a release percentage between 28.3% and 59.9%. The incorporation of bLF in the 3D scaffold formulation showed significant differences compared to the control in all assays, even at concentrations below 0.2 µM. Combinations, especially PL + bLF at 0.19 µM, demonstrated additive potential, with superior biomineralization compared to EC. In summary, this study highlights the effectiveness of MBGs in incorporating PL and EC extracts, along with bLF, into 3D scaffolds. The results underscore cytocompatibility, osteogenic activity, and biomineralization, offering exciting potential for future in vivo applications.
Collapse
Affiliation(s)
- Laura Isabel Arias-Rodríguez
- Plant Biotechnology Laboratory, Instrumental Analysis Laboratory and Plant Biochemistry Laboratory of the National Technological Institute of Mexico Campus Tlajomulco, 10th km Tlajomulco Highway, Southern Metropolitan Circuit, Tlajomulco de Zúñiga 45640, Jalisco, Mexico; (L.I.A.-R.); (M.A.R.-M.); (C.A.-C.)
| | - Jesús L. Pablos
- Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid (UCM).12 de Octubre Hospital Research Institute, Imas12, 28040 Madrid, Spain; (J.L.P.); (M.V.-R.)
| | - María Vallet-Regí
- Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid (UCM).12 de Octubre Hospital Research Institute, Imas12, 28040 Madrid, Spain; (J.L.P.); (M.V.-R.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28040 Madrid, Spain
| | - Martha A. Rodríguez-Mendiola
- Plant Biotechnology Laboratory, Instrumental Analysis Laboratory and Plant Biochemistry Laboratory of the National Technological Institute of Mexico Campus Tlajomulco, 10th km Tlajomulco Highway, Southern Metropolitan Circuit, Tlajomulco de Zúñiga 45640, Jalisco, Mexico; (L.I.A.-R.); (M.A.R.-M.); (C.A.-C.)
| | - Carlos Arias-Castro
- Plant Biotechnology Laboratory, Instrumental Analysis Laboratory and Plant Biochemistry Laboratory of the National Technological Institute of Mexico Campus Tlajomulco, 10th km Tlajomulco Highway, Southern Metropolitan Circuit, Tlajomulco de Zúñiga 45640, Jalisco, Mexico; (L.I.A.-R.); (M.A.R.-M.); (C.A.-C.)
| | - Sandra Sánchez-Salcedo
- Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid (UCM).12 de Octubre Hospital Research Institute, Imas12, 28040 Madrid, Spain; (J.L.P.); (M.V.-R.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28040 Madrid, Spain
| | - Antonio J. Salinas
- Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid (UCM).12 de Octubre Hospital Research Institute, Imas12, 28040 Madrid, Spain; (J.L.P.); (M.V.-R.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28040 Madrid, Spain
| |
Collapse
|
42
|
Mir SA, Dar A, Hamid L, Nisar N, Malik JA, Ali T, Bader GN. Flavonoids as promising molecules in the cancer therapy: An insight. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2023; 6:100167. [PMID: 38144883 PMCID: PMC10733705 DOI: 10.1016/j.crphar.2023.100167] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/16/2023] [Accepted: 11/30/2023] [Indexed: 12/26/2023] Open
Abstract
Cancer continues to increase global morbidity and mortality rates. Despite substantial progress in the development of various chemically synthesized anti-cancer drugs, the poor prognosis of the disease still remains a big challenge. The most common drawback of conventional cancer therapies is the emergence of drug resistance eventually leading to the discontinuation of chemotherapy. Moreover, advanced target-specific therapies including immunotherapy and stem cell therapy are expensive enough and are unaffordable for most patients in poorer nations. Therefore, alternative and cheaper therapeutic strategies are needed to complement the current cancer treatment approaches. Phytochemicals are bioactive compounds produced naturally by plants and have great potential in human health and disease. These compounds possess antiproliferative, anti-oxidant, and immunomodulatory properties. Among the phytochemicals, flavonoids are very effective in treating a wide range of diseases from cardiovascular diseases and immunological disorders to cancer. They scavenge reactive oxygen species (ROS), inhibit cancer metastasis, modulate the immune system and induce apoptotic or autophagic cell death in cancers. This review will discuss the potential of various phytochemicals particularly flavonoids in attempts to target various cancers.
Collapse
Affiliation(s)
- Suhail Ahmad Mir
- Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar, J & K, 190006, India
| | - Ashraf Dar
- Department of Biochemistry, University of Kashmir, Hazratbal, Srinagar, J & K, 190006, India
| | - Laraibah Hamid
- Department of Zoology, University of Kashmir, Hazratbal, Srinagar, J & K, 190006, India
| | - Nasir Nisar
- Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar, J & K, 190006, India
| | - Jonaid Ahmad Malik
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, India
| | - Tabasum Ali
- Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar, J & K, 190006, India
| | - Ghulam Nabi Bader
- Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar, J & K, 190006, India
| |
Collapse
|
43
|
Alsaidan OA, Zafar A, Al-Ruwaili RH, Yasir M, Alzarea SI, Alsaidan AA, Singh L, Khalid M. Niosomes gel of apigenin to improve the topical delivery: development, optimization, ex vivo permeation, antioxidant study, and in vivo evaluation. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2023; 51:604-617. [PMID: 37910394 DOI: 10.1080/21691401.2023.2274526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 10/14/2023] [Indexed: 11/03/2023]
Abstract
Niosomes (NS) are the promising and novel carrier of the drug for effective transdermal delivery. Apigenin (AN) is a natural bioactive compound and has various pharmacological activities. AN is poorly water soluble which directly affects therapeutic efficacy. The aim of this research work was to develop the AN-NS gel to improve transdermal delivery. The thin-film hydration method was used for the development of AN-NS. The optimized AN-NS (AN-NS2) has a vesicle size of 272.56 ± 12.49 nm, PDI is 0.249, zeta potential is -38.7 mV, and entrapment efficiency of 86.19 ± 1.51%. The FTIR spectra of the AN-NS2 depicted that AN encapsulated in the NS matrix. AN-NS2 formulation was successfully incorporated into chitosan gel and evaluated. The optimized AN-NS2 gel (AN-NS2G4) has 2110 ± 14cps of viscosity, 10.40 ± 0.21g.cm/sec of spreadability, and 99.65 ± 0.53% of drug content. AN-NS2G4 displayed significantly (p < 0.05) higher AN released (67.64 ± 3.03%) than pure AN-gel (37.31 ± 2.87%). AN-NS2G4 showed the Korsmeyer Peppas release model. AN-NS2G4 displayed significantly (p < 0.05) higher antioxidant activity (90.72%) than pure AN (64.53%) at 300 µg/ml. AN-NS2G4 displayed significantly (p < 0.05) higher % inhibition of swelling than pane AN-gel in carrageenin-induced paw oedema in rats. The finding concluded that niosomes-laden gel is a good carrier of drugs to improve transdermal delivery and therapeutic efficacy.
Collapse
Affiliation(s)
- Omar Awad Alsaidan
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Rayan Hamood Al-Ruwaili
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Mohd Yasir
- Department of Pharmacy, College of Health Sciences, Arsi University, Asella, Ethiopia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Aseel Awad Alsaidan
- Department of Family and Community Medicine, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Lubhan Singh
- Kharvel Subharti College of Pharmacy, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, India
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Saudi Arabia
| |
Collapse
|
44
|
Bonilla-Vidal L, Świtalska M, Espina M, Wietrzyk J, García ML, Souto EB, Gliszczyńska A, Sánchez López E. Dually Active Apigenin-Loaded Nanostructured Lipid Carriers for Cancer Treatment. Int J Nanomedicine 2023; 18:6979-6997. [PMID: 38026534 PMCID: PMC10680483 DOI: 10.2147/ijn.s429565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose Cancer is one of the major causes of death worldwide affecting more than 19 million people. Traditional cancer therapies have many adverse effects and often result in unsatisfactory outcomes. Natural flavones, such as apigenin (APG), have demonstrated excellent antitumoral properties. However, they have a low aqueous solubility. To overcome this drawback, APG can be encapsulated in nanostructured lipid carriers (NLC). Therefore, we developed dual NLC encapsulating APG (APG-NLC) with a lipid matrix containing rosehip oil, which is known for its anti-inflammatory and antioxidant properties. Methods Optimisation, physicochemical characterisation, biopharmaceutical behaviour, and therapeutic efficacy of this novel nanostructured system were assessed. Results APG-NLC were optimized obtaining an average particle size below 200 nm, a surface charge of -20 mV, and an encapsulation efficiency over 99%. The APG-NLC released APG in a sustained manner, and the results showed that the formulation was stable for more than 10 months. In vitro studies showed that APG-NLC possess significant antiangiogenic activity in ovo and selective antiproliferative activity in several cancer cell lines without exhibiting toxicity in healthy cells. Conclusion APG-NLC containing rosehip oil were optimised. They exhibit suitable physicochemical parameters, storage stability for more than 10 months, and prolonged APG release. Moreover, APG-NLC were internalised inside tumour cells, showing the capacity to cause cytotoxicity in cancer cells without damaging healthy cells.
Collapse
Affiliation(s)
- Lorena Bonilla-Vidal
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (INUB), University of Barcelona, Barcelona, Spain
| | - Marta Świtalska
- Department of Experimental Oncology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Marta Espina
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (INUB), University of Barcelona, Barcelona, Spain
| | - Joanna Wietrzyk
- Department of Experimental Oncology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Maria Luisa García
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (INUB), University of Barcelona, Barcelona, Spain
| | - Eliana B Souto
- Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Anna Gliszczyńska
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Elena Sánchez López
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (INUB), University of Barcelona, Barcelona, Spain
- Unit of Synthesis and Biomedical Applications of Peptides, IQAC-CSIC, Barcelona, Spain
| |
Collapse
|
45
|
Gabbianelli R, Shahar E, de Simone G, Rucci C, Bordoni L, Feliziani G, Zhao F, Ferrati M, Maggi F, Spinozzi E, Mahajna J. Plant-Derived Epi-Nutraceuticals as Potential Broad-Spectrum Anti-Viral Agents. Nutrients 2023; 15:4719. [PMID: 38004113 PMCID: PMC10675658 DOI: 10.3390/nu15224719] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Although the COVID-19 pandemic appears to be diminishing, the emergence of SARS-CoV-2 variants represents a threat to humans due to their inherent transmissibility, immunological evasion, virulence, and invulnerability to existing therapies. The COVID-19 pandemic affected more than 500 million people and caused over 6 million deaths. Vaccines are essential, but in circumstances in which vaccination is not accessible or in individuals with compromised immune systems, drugs can provide additional protection. Targeting host signaling pathways is recommended due to their genomic stability and resistance barriers. Moreover, targeting host factors allows us to develop compounds that are effective against different viral variants as well as against newly emerging virus strains. In recent years, the globe has experienced climate change, which may contribute to the emergence and spread of infectious diseases through a variety of factors. Warmer temperatures and changing precipitation patterns can increase the geographic range of disease-carrying vectors, increasing the risk of diseases spreading to new areas. Climate change may also affect vector behavior, leading to a longer breeding season and more breeding sites for disease vectors. Climate change may also disrupt ecosystems, bringing humans closer to wildlife that transmits zoonotic diseases. All the above factors may accelerate the emergence of new viral epidemics. Plant-derived products, which have been used in traditional medicine for treating pathological conditions, offer structurally novel therapeutic compounds, including those with anti-viral activity. In addition, plant-derived bioactive substances might serve as the ideal basis for developing sustainable/efficient/cost-effective anti-viral alternatives. Interest in herbal antiviral products has increased. More than 50% of approved drugs originate from herbal sources. Plant-derived compounds offer diverse structures and bioactive molecules that are candidates for new drug development. Combining these therapies with conventional drugs could improve patient outcomes. Epigenetics modifications in the genome can affect gene expression without altering DNA sequences. Host cells can use epigenetic gene regulation as a mechanism to silence incoming viral DNA molecules, while viruses recruit cellular epitranscriptomic (covalent modifications of RNAs) modifiers to increase the translational efficiency and transcript stability of viral transcripts to enhance viral gene expression and replication. Moreover, viruses manipulate host cells' epigenetic machinery to ensure productive viral infections. Environmental factors, such as natural products, may influence epigenetic modifications. In this review, we explore the potential of plant-derived substances as epigenetic modifiers for broad-spectrum anti-viral activity, reviewing their modulation processes and anti-viral effects on DNA and RNA viruses, as well as addressing future research objectives in this rapidly emerging field.
Collapse
Affiliation(s)
- Rosita Gabbianelli
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Ehud Shahar
- Department of Nutrition and Natural Products, Migal—Galilee Research Institute, Kiryat Shmona 11016, Israel;
- Department of Biotechnology, Tel-Hai College, Kiryat Shmona 1220800, Israel
| | - Gaia de Simone
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Chiara Rucci
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Laura Bordoni
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Giulia Feliziani
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Fanrui Zhao
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Marta Ferrati
- Chemistry Interdisciplinary Project (ChIP) Research Centre, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (M.F.); (F.M.); (E.S.)
| | - Filippo Maggi
- Chemistry Interdisciplinary Project (ChIP) Research Centre, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (M.F.); (F.M.); (E.S.)
| | - Eleonora Spinozzi
- Chemistry Interdisciplinary Project (ChIP) Research Centre, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (M.F.); (F.M.); (E.S.)
| | - Jamal Mahajna
- Department of Nutrition and Natural Products, Migal—Galilee Research Institute, Kiryat Shmona 11016, Israel;
- Department of Biotechnology, Tel-Hai College, Kiryat Shmona 1220800, Israel
| |
Collapse
|
46
|
Sharma P, Kishore A, De I, Negi S, Kumar G, Bhardwaj S, Singh M. Mitigating neuroinflammation in Parkinson's disease: Exploring the role of proinflammatory cytokines and the potential of phytochemicals as natural therapeutics. Neurochem Int 2023; 170:105604. [PMID: 37683836 DOI: 10.1016/j.neuint.2023.105604] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Abstract
Parkinson's disease (PD) is one of the most prevalent neuroinflammatory illnesses, characterized by the progressive loss of neurons in the brain. Proinflammatory cytokines play a key role in initiating and perpetuating neuroinflammation, which can lead to the activation of glial cells and the deregulation of inflammatory pathways, ultimately leading to permanent brain damage. Currently, available drugs for PD mostly alleviate symptoms but do not target underlying inflammatory processes. There is a growing interest in exploring the potential of phytochemicals to mitigate neuroinflammation. Phytochemicals such as resveratrol, apigenin, catechin, anthocyanins, amentoflavone, quercetin, berberine, and genistein have been studied for their ability to scavenge free radicals and reduce proinflammatory cytokine levels in the brain. These plant-derived compounds offer a natural and potentially safe alternative to conventional drugs for managing neuroinflammation in PD and other neurodegenerative diseases. However, further research is necessary to elucidate their underlying mechanisms of action and clinical effectiveness. So, this review delves into the pathophysiology of PD and its intricate relationship with proinflammatory cytokines, and explores how their insidious contributions fuel the disease's initiation and progression via cytokine-dependent signaling pathways. Additionally, we tried to give an account of PD management using existing drugs along with their limitations. Furthermore, our aim is to provide a thorough overview of the diverse groups of phytochemicals, their plentiful sources, and the current understanding of their anti-neuroinflammatory properties. Through this exploration, we posit the innovative idea that consuming nutrient-rich phytochemicals could be an effective approach to preventing and treating PD.
Collapse
Affiliation(s)
- Prashant Sharma
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India
| | - Abhinoy Kishore
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India
| | - Indranil De
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India
| | - Swarnima Negi
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India
| | - Gulshan Kumar
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India
| | - Sahil Bhardwaj
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India
| | - Manish Singh
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India.
| |
Collapse
|
47
|
Kapral-Piotrowska J, Strawa JW, Jakimiuk K, Wiater A, Tomczyk M, Gruszecki WI, Pawlikowska-Pawlęga B. Investigation of the Membrane Localization and Interaction of Selected Flavonoids by NMR and FTIR Spectroscopy. Int J Mol Sci 2023; 24:15275. [PMID: 37894955 PMCID: PMC10607445 DOI: 10.3390/ijms242015275] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
In this report, we discuss the effects of undescribed flavone derivatives, HZ4 and SP9, newly isolated from the aerial parts of Hottonia palustris L. and Scleranthus perennis L. on membranes. Interaction of flavonoids with lipid bilayers is important for medicinal applications. The experiments were performed with FTIR and NMR techniques on liposomes prepared from DPPC (dipalmitoylphosphatidylcholine) and EYPC (egg yolk phosphatidylcholine). The data showed that the examined polyphenols incorporate into the polar head group region of DPPC phospholipids at both 25 °C and 45 °C. At the lower temperature, a slight effect in the spectral region of the ester carbonyl group is observed. In contrast, at 45 °C, both compounds bring about the changes in the spectral regions attributed to antisymmetric and symmetric stretching vibrations of CH2 and CH3 moieties. Similarly, as in DPPC lipids, the tested compounds interact with the fingerprint region of the polar head groups of the EYPC lipids and cause its reorganization. The outcomes obtained by NMR analyses confirmed the localization of both flavonoids in the polar heads zone. Unraveled effects of HZ4 and SP9 in respect to lipid bilayers can partly determine their biological activities and are crucial for their usability in medicine as disease-preventing phytochemicals.
Collapse
Affiliation(s)
- Justyna Kapral-Piotrowska
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Sklodowska University, ul. Akademicka 19, 20-033 Lublin, Poland;
| | - Jakub W. Strawa
- Department of Pharmacognosy, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, ul. Mickiewicza 2a, 15-230 Białystok, Poland; (J.W.S.); (K.J.); (M.T.)
| | - Katarzyna Jakimiuk
- Department of Pharmacognosy, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, ul. Mickiewicza 2a, 15-230 Białystok, Poland; (J.W.S.); (K.J.); (M.T.)
| | - Adrian Wiater
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Maria Curie-Sklodowska University, ul. Akademicka 19, 20-033 Lublin, Poland;
| | - Michał Tomczyk
- Department of Pharmacognosy, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, ul. Mickiewicza 2a, 15-230 Białystok, Poland; (J.W.S.); (K.J.); (M.T.)
| | - Wiesław I. Gruszecki
- Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University, ul. Pl. M. Curie-Sklodowskiej 1, 20-031 Lublin, Poland;
| | - Bożena Pawlikowska-Pawlęga
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Sklodowska University, ul. Akademicka 19, 20-033 Lublin, Poland;
| |
Collapse
|
48
|
Hasan N, Nadaf A, Imran M, Jiba U, Sheikh A, Almalki WH, Almujri SS, Mohammed YH, Kesharwani P, Ahmad FJ. Skin cancer: understanding the journey of transformation from conventional to advanced treatment approaches. Mol Cancer 2023; 22:168. [PMID: 37803407 PMCID: PMC10559482 DOI: 10.1186/s12943-023-01854-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 08/30/2023] [Indexed: 10/08/2023] Open
Abstract
Skin cancer is a global threat to the healthcare system and is estimated to incline tremendously in the next 20 years, if not diagnosed at an early stage. Even though it is curable at an early stage, novel drug identification, clinical success, and drug resistance is another major challenge. To bridge the gap and bring effective treatment, it is important to understand the etiology of skin carcinoma, the mechanism of cell proliferation, factors affecting cell growth, and the mechanism of drug resistance. The current article focusses on understanding the structural diversity of skin cancers, treatments available till date including phytocompounds, chemotherapy, radiotherapy, photothermal therapy, surgery, combination therapy, molecular targets associated with cancer growth and metastasis, and special emphasis on nanotechnology-based approaches for downregulating the deleterious disease. A detailed analysis with respect to types of nanoparticles and their scope in overcoming multidrug resistance as well as associated clinical trials has been discussed.
Collapse
Affiliation(s)
- Nazeer Hasan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Arif Nadaf
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammad Imran
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, 4102, Australia
| | - Umme Jiba
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, 24381, Makkah, Saudi Arabia
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, 61421, Asir-Abha, Saudi Arabia
| | | | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Kuthambakkam, India.
| | - Farhan Jalees Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
49
|
Heydarzadeh S, Moshtaghie AA, Daneshpour M, Hedayati M. The effect of Apigenin on glycometabolism and cell death in an anaplastic thyroid cancer cell line. Toxicol Appl Pharmacol 2023; 475:116626. [PMID: 37437745 DOI: 10.1016/j.taap.2023.116626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/02/2023] [Accepted: 07/05/2023] [Indexed: 07/14/2023]
Abstract
AIMS AND BACKGROUND A more pronounced characteristic of cancer cells is the energy dependence on glucose, which mitigated by glucose transporters. The comprehension of the regulatory mechanisms behind the Warburg effect holds promise for developing therapeutic interventions for cancers. Studies are lacking which targeted the GLUTs for treatment of malignancy of thyroid tumors. In our current investigation, we have undertaken this study to determine the potential of Apigenin, plant derived flavonoid in modulating tumor apoptosis by targeting GLUTs expression in SW1736 cell line of anaplastic thyroid carcinoma. MATERIAL METHODS Flow cytometry with propidium iodide staining was used to determine cell apoptosis. For glucose uptake detection, the "GOD-PAP" enzymatic colorimetric test was used to measure the direct glucose levels inside the cells. To determine the expression of GLUT1 and GLUT3 mRNA in the SW1736 cell line qRT-PCR was employed. Protein levels of GLUT1 and GLUT3 in the SW1736 cell line were detected with western blotting. Also, the scratch wound healing assay was conducted for cell migration. RESULTS According to qRT-PCR analysis, the levels of GLUT1 and GLUT3 mRNA were lower in the group that received Apigenin relative to the control group. The Apigenin treatment of SW1736 cells decreased protein expression of the GLUT1 and GLUT3 levels in conformity to qRT-PCR. The scratch assays revealed that Apigenin treatment of cancer cell lines inhibited cell migration as compared to control. CONCLUSION These findings demonstrate the possibility of targeting the glucose facilitators' pathway for making thyroid cancer cells more susceptible to programmed cell death.
Collapse
Affiliation(s)
- Shabnam Heydarzadeh
- Department of Biochemistry, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Ali Asghar Moshtaghie
- Department of Biochemistry, Falavarjan Branch, Islamic Azad University, Isfahan, Iran.
| | - Maryam Daneshpour
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
50
|
Silitonga M, Sinaga E, Nugrahalia M, Silitonga PM. Hepatoprotective activity of ethanolic extract of Plectranthus amboinicus (lour.) spreng leaf in DMBA induced rats. Toxicon 2023:107212. [PMID: 37419284 DOI: 10.1016/j.toxicon.2023.107212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/15/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023]
Abstract
The hepatoprotective activity of ethanolic of Plectranthus amboinicus Lour Spreng leaf extract (PEE) on blood biochemical profiles, non-specific immune system, liver histology were evaluated in rats induced DMBA. Twenty five female rats were divided into five groups, each with 5 rats. The negative control group (NC) received only food and water. The positive control group (PC) administered orally DMBA 20 mg/kg body weight (bw) once every four days for 32 days. The treatment groups received the PEE with three different doses of 175 (T1), 350 (T2), 700 (T3) mg/kg bw, respectively for 27 days after DMBA induction. At the end of the treatment, blood samples were collected to investigate the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), bilirubin, total protein, albumin and globulin as well as the hematological parameter, such as neutrophils, monocyte, mean corpuscular hemoglobin (MCH), mean corpuscular volume (MCV), mean corpuscular hemoglobin concentration (MCHC), and red cell distribution width (RDW) were monitored. The results showed an increased level in ALT, AST, ALP, and bilirubin in the PC group. However, the T3 group (PEE 700 mg/kg) showed a significant decrease value (p < 0.05) in ALT, ALP, and bilirubin compared to the PC group. Our finding revealed that all PEE treatments had a significant increase (p < 0.05) in the total protein, albumin and globulin compared to the PC group. The neutrophils (18.60 ± 4.64) and monocytes (61.40 ± 4.99) are lowest in the T2 groups as well as the value of MCH, RDW and MCV were significantly alleviated compared to all other groups. Histopathological observation demonstrated that the administration of PEE improved hepatocyte architecture and reduced the number of necrosis and hydrophilic degeneration. In conclusion, PEE has hepatoprotective activity by improving liver function, enhancing the non-specific immune system and recovering histopathological hepatocytes in rats exposed to DMBA.
Collapse
Affiliation(s)
- Melva Silitonga
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Medan, Medan 20221, Jl. Willem Iskandar Psr V Medan, Indonesia.
| | - Erlintan Sinaga
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Medan, Medan 20221, Jl. Willem Iskandar Psr V Medan, Indonesia
| | - Meida Nugrahalia
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Medan, Medan 20221, Jl. Willem Iskandar Psr V Medan, Indonesia
| | - Pasar M Silitonga
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Medan, Medan 20221, Jl. Willem Iskandar Psr V Medan, Indonesia
| |
Collapse
|