1
|
Ma B, Tao M, Li Z, Zheng Q, Wu H, Chen P. Mucosal vaccines for viral diseases: Status and prospects. Virology 2024; 593:110026. [PMID: 38373360 DOI: 10.1016/j.virol.2024.110026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/21/2024]
Abstract
Virus-associated infectious diseases are highly detrimental to human health and animal husbandry. Among all countermeasures against infectious diseases, prophylactic vaccines, which developed through traditional or novel approaches, offer potential benefits. More recently, mucosal vaccines attract attention for their extraordinary characteristics compared to conventional parenteral vaccines, particularly for mucosal-related pathogens. Representatively, coronavirus disease 2019 (COVID-19), a respiratory disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), further accelerated the research and development efforts for mucosal vaccines by thoroughly investigating existing strategies or involving novel techniques. While several vaccine candidates achieved positive progresses, thus far, part of the current COVID-19 mucosal vaccines have shown poor performance, which underline the need for next-generation mucosal vaccines and corresponding platforms. In this review, we summarized the typical mucosal vaccines approved for humans or animals and sought to elucidate the underlying mechanisms of these successful cases. In addition, mucosal vaccines against COVID-19 that are in human clinical trials were reviewed in detail since this public health event mobilized all advanced technologies for possible solutions. Finally, the gaps in developing mucosal vaccines, potential solutions and prospects were discussed. Overall, rational application of mucosal vaccines would facilitate the establishing of mucosal immunity and block the transmission of viral diseases.
Collapse
Affiliation(s)
- Bingjie Ma
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, China
| | - Mengxiao Tao
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, China
| | - Zhili Li
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, China
| | - Quanfang Zheng
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, China
| | - Haigang Wu
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, China
| | - Peirong Chen
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, China.
| |
Collapse
|
2
|
Grey EL, McClendon J, Suresh J, Alper S, Janssen WJ, Bryant SJ. Thiol-Michael Addition Microparticles: Their Synthesis, Characterization, and Uptake by Macrophages. ACS Biomater Sci Eng 2023; 9:4223-4240. [PMID: 37379254 PMCID: PMC10619202 DOI: 10.1021/acsbiomaterials.3c00441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Polymeric microparticles are promising biomaterial platforms for targeting macrophages in the treatment of disease. This study investigates microparticles formed by a thiol-Michael addition step-growth polymerization reaction with tunable physiochemical properties and their uptake by macrophages. The hexafunctional thiol monomer dipentaerythritol hexa-3-mercaptopropionate (DPHMP) and tetrafunctional acrylate monomer di(trimethylolpropane) tetraacrylate (DTPTA) were reacted in a stepwise dispersion polymerization, achieving tunable monodisperse particles over a size range (1-10 μm) relevant for targeting macrophages. An off-stoichiometry thiol-acrylate reaction afforded facile secondary chemical functionalization to create particles with different chemical moieties. Uptake of the microparticles by RAW 264.7 macrophages was highly dependent on treatment time, particle size, and particle chemistry with amide, carboxyl, and thiol terminal chemistries. The amide-terminated particles were non-inflammatory, while the carboxyl- and thiol-terminated particles induced pro-inflammatory cytokine production in conjunction with particle phagocytosis. Finally, a lung-specific application was explored through time-dependent uptake of amide-terminated particles by human alveolar macrophages in vitro and mouse lungs in vivo without inducing inflammation. The findings demonstrate a promising microparticulate delivery vehicle that is cyto-compatible, is non-inflammatory, and exhibits high rates of uptake by macrophages.
Collapse
Affiliation(s)
- Emerson L. Grey
- Department of Chemical and Biological Engineering, University of Colorado, 3415 Colorado Ave, Boulder, CO 80309-0596, USA
| | - Jazalle McClendon
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, 1400 Jackson St, Denver, CO 80206, USA
| | - Joshita Suresh
- Department of Chemical and Biological Engineering, University of Colorado, 3415 Colorado Ave, Boulder, CO 80309-0596, USA
| | - Scott Alper
- Department of Immunology and Genomic Medicine, Center for Genes, Environment and Health, National Jewish Health, 1400 Jackson St, Denver, CO 80206, USA
| | - William J. Janssen
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, 1400 Jackson St, Denver, CO 80206, USA
- Department of Medicine, University of Colorado Anschutz Medical Campus, 12631 East 17th Avenue, Aurora, CO 80045, USA
| | - Stephanie J. Bryant
- Department of Chemical and Biological Engineering, University of Colorado, 3415 Colorado Ave, Boulder, CO 80309-0596, USA
- Materials Science & Engineering Program, University of Colorado, 4001 Discovery Dr, Boulder, CO 80309-0613, USA
- BioFrontiers Institute, University of Colorado, 3415 Colorado Ave, Boulder, CO 80309-0596, USA
| |
Collapse
|
3
|
Lipid Microparticles Show Similar Efficacy With Lipid Nanoparticles in Delivering mRNA and Preventing Cancer. Pharm Res 2023; 40:265-279. [PMID: 36451070 PMCID: PMC9713120 DOI: 10.1007/s11095-022-03445-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 11/20/2022] [Indexed: 12/03/2022]
Abstract
PURPOSE Messenger RNA (mRNA) has shown great promise for vaccine against both infectious diseases and cancer. However, mRNA is unstable and requires a delivery vehicle for efficient cellular uptake and degradation protection. So far, lipid nanoparticles (LNPs) represent the most advanced delivery platform for mRNA delivery. However, no published studies have compared lipid microparticles (LMPs) with lipid nanoparticles (LNPs) in delivering mRNA systematically, therefore, we compared the impact of particle size on delivery efficacy of mRNA vaccine and subsequent immune responses. METHODS Herein, we prepared 3 different size lipid particles, from nano-sized to micro-sized, and they loaded similar amounts of mRNA. These lipid particles were investigated both in vitro and in vivo, followed by evaluating the impact of particle size on inducing cellular and humoral immune responses. RESULTS In this study, all mRNA vaccines showed a robust immune response and lipid microparticles (LMPs) show similar efficacy with lipid nanoparticles (LNPs) in delivering mRNA and preventing cancer. In addition, immune adjuvants, either toll like receptors or active molecules from traditional Chinese medicine, can improve the efficacy of mRNA vaccines. CONCLUSIONS Considering the efficiency of delivery and endocytosis, besides lipid nanoparticles with size smaller than 150 nm, lipid microparticles (LMPs) also have the potential to be an alternative and promising delivery system for mRNA vaccines.
Collapse
|
4
|
Hartmeier PR, Kosanovich JL, Velankar KY, Armen-Luke J, Lipp MA, Gawalt ES, Giannoukakis N, Empey KM, Meng WS. Immune Cells Activating Biotin-Decorated PLGA Protein Carrier. Mol Pharm 2022; 19:2638-2650. [PMID: 35621214 PMCID: PMC10105284 DOI: 10.1021/acs.molpharmaceut.2c00343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nanoparticle formulations have long been proposed as subunit vaccine carriers owing to their ability to entrap proteins and codeliver adjuvants. Poly(lactic-co-glycolic acid) (PLGA) remains one of the most studied polymers for controlled release and nanoparticle drug delivery, and numerous studies exist proposing PLGA particles as subunit vaccine carriers. In this work we report using PLGA nanoparticles modified with biotin (bNPs) to deliver proteins via adsorption and stimulate professional antigen-presenting cells (APCs). We present evidence showing bNPs are capable of retaining proteins through the biotin-avidin interaction. Surface accessible biotin bound both biotinylated catalase (bCAT) through avidin and streptavidin horseradish peroxidase (HRP). Analysis of the HRP found that activity on the bNPs was preserved once captured on the surface of bNP. Further, bNPs were found to have self-adjuvant properties, evidenced by bNP induced IL-1β, IL-18, and IL-12 production in vitro in APCs, thereby licensing the cells to generate Th1-type helper T cell responses. Cytokine production was reduced in avidin precoated bNPs (but not with other proteins), suggesting that the proinflammatory response is due in part to exposed biotin on the surface of bNPs. bNPs injected subcutaneously were localized to draining lymph nodes detectable after 28 days and were internalized by bronchoalveolar lavage dendritic cells and macrophages in mice in a dose-dependent manner when delivered intranasally. Taken together, these data provide evidence that bNPs should be explored further as potential adjuvanting carriers for subunit vaccines.
Collapse
Affiliation(s)
- Paul R Hartmeier
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Jessica L Kosanovich
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| | - Ketki Y Velankar
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Jennifer Armen-Luke
- Department of Chemistry and Biochemistry, Bayer School of Natural and Environmental Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Madeline A Lipp
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| | - Ellen S Gawalt
- Department of Chemistry and Biochemistry, Bayer School of Natural and Environmental Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| | - Nick Giannoukakis
- Allegheny-Singer Research Institute, Allegheny Health Network, Pittsburgh, Pennsylvania 15212, United States.,Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Kerry M Empey
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States.,Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| | - Wilson S Meng
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania 15282, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| |
Collapse
|
5
|
Rossi I, Spagnoli G, Buttini F, Sonvico F, Stellari F, Cavazzini D, Chen Q, Müller M, Bolchi A, Ottonello S, Bettini R. A respirable HPV-L2 dry-powder vaccine with GLA as amphiphilic lubricant and immune-adjuvant. J Control Release 2021; 340:209-220. [PMID: 34740725 DOI: 10.1016/j.jconrel.2021.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/16/2021] [Accepted: 11/01/2021] [Indexed: 11/19/2022]
Abstract
Vaccines not requiring cold-chain storage/distribution and suitable for needle-free delivery are urgently needed. Pulmonary administration is one of the most promising non-parenteral routes for vaccine delivery. Through a multi-component excipient and spray-drying approach, we engineered highly respirable dry-powder vaccine particles containing a three-fold repeated peptide epitope derived from human papillomavirus (HPV16) minor capsid protein L2 displayed on Pyrococcus furious thioredoxin as antigen. A key feature of our engineering approach was the use of the amphiphilic endotoxin derivative glucopyranosyl lipid A (GLA) as both a coating agent enhancing particle de-aggregation and respirability as well as a built-in immune-adjuvant. Following an extensive characterization of the in vitro aerodynamic performance, lung deposition was verified in vivo by intratracheal administration in mice of a vaccine powder containing a fluorescently labeled derivative of the antigen. This was followed by a short-term immunization study that highlighted the ability of the GLA-adjuvanted vaccine powder to induce an anti-L2 systemic immune response comparable to (or even better than) that of the subcutaneously administered liquid-form vaccine. Despite the very short-term immunization conditions employed for this preliminary vaccination experiment, the intratracheally administered dry-powder, but not the subcutaneously injected liquid-state, vaccine induced consistent HPV neutralizing responses. Overall, the present data provide proof-of-concept validation of a new formulation design to produce a dry-powder vaccine that may be easily transferred to other antigens.
Collapse
Affiliation(s)
- Irene Rossi
- Department of Food and Drug Sciences, University of Parma, Parco Area delle Scienze Parma, Italy; Interdepartmental Center Biopharmanet-tec, University of Parma, Parco Area delle Scienze Parma, Italy
| | - Gloria Spagnoli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze Parma, Italy; Interdepartmental Center Biopharmanet-tec, University of Parma, Parco Area delle Scienze Parma, Italy
| | - Francesca Buttini
- Department of Food and Drug Sciences, University of Parma, Parco Area delle Scienze Parma, Italy; Interdepartmental Center Biopharmanet-tec, University of Parma, Parco Area delle Scienze Parma, Italy
| | - Fabio Sonvico
- Department of Food and Drug Sciences, University of Parma, Parco Area delle Scienze Parma, Italy; Interdepartmental Center Biopharmanet-tec, University of Parma, Parco Area delle Scienze Parma, Italy
| | - Fabio Stellari
- Chiesi Farmaceutici SpA, Largo Belloli 11a, Parma, Italy
| | - Davide Cavazzini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze Parma, Italy
| | - Quigxin Chen
- German Cancer Research Center, Im Neuenheimer Feld 280, Heidelberg, Germany
| | - Martin Müller
- German Cancer Research Center, Im Neuenheimer Feld 280, Heidelberg, Germany
| | - Angelo Bolchi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze Parma, Italy; Interdepartmental Center Biopharmanet-tec, University of Parma, Parco Area delle Scienze Parma, Italy
| | - Simone Ottonello
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze Parma, Italy; Interdepartmental Center Biopharmanet-tec, University of Parma, Parco Area delle Scienze Parma, Italy.
| | - Ruggero Bettini
- Department of Food and Drug Sciences, University of Parma, Parco Area delle Scienze Parma, Italy; Interdepartmental Center Biopharmanet-tec, University of Parma, Parco Area delle Scienze Parma, Italy.
| |
Collapse
|
6
|
3D printing technologies for in vitro vaccine testing platforms and vaccine delivery systems against infectious diseases. Essays Biochem 2021; 65:519-531. [PMID: 34342360 DOI: 10.1042/ebc20200105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/21/2021] [Accepted: 07/05/2021] [Indexed: 11/17/2022]
Abstract
Recent advances in 3D printing (3DP) and tissue engineering approaches enable the potential application of these technologies to vaccine research. Reconstituting the native tissue or cellular microenvironment will be vital for successful evaluation of pathogenicity of viral infection and screening of potential vaccines. Therefore, establishing a reliable in vitro model to study the vaccine efficiency or delivery of viral disease is important. Here, this review summarizes two major ways that tissue engineering and 3DP strategies could contribute to vaccine research: (1) 3D human tissue models to study the response to virus can be served as a testbed for new potential therapeutics. Using 3D tissue platform attempts to explore alternative options to pre-clinical animal research for evaluating vaccine candidates. (2) 3DP technologies can be applied to improve the vaccination strategies which could replace existing vaccine delivery. Controlled antigen release using carriers that are generated with biodegradable biomaterials can further enhance the efficient development of immunity as well as combination of multiple-dose vaccines into a single injection. This mini review discusses the up-to-date report of current 3D tissue/organ models for potential vaccine potency and known bioengineered vaccine delivery systems.
Collapse
|
7
|
Structural and Biomedical Properties of Common Additively Manufactured Biomaterials: A Concise Review. METALS 2020. [DOI: 10.3390/met10121677] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biomaterials are in high demand due to the increasing geriatric population and a high prevalence of cardiovascular and orthopedic disorders. The combination of additive manufacturing (AM) and biomaterials is promising, especially towards patient-specific applications. With AM, unique and complex structures can be manufactured. Furthermore, the direct link to computer-aided design and digital scans allows for a direct replicable product. However, the appropriate selection of biomaterials and corresponding AM methods can be challenging but is a key factor for success. This article provides a concise material selection guide for the AM biomedical field. After providing a general description of biomaterial classes—biotolerant, bioinert, bioactive, and biodegradable—we give an overview of common ceramic, polymeric, and metallic biomaterials that can be produced by AM and review their biomedical and mechanical properties. As the field of load-bearing metallic implants experiences rapid growth, we dedicate a large portion of this review to this field and portray interesting future research directions. This article provides a general overview of the field, but it also provides possibilities for deepening the knowledge in specific aspects as it comprises comprehensive tables including materials, applications, AM techniques, and references.
Collapse
|
8
|
Dewangan HK. Rational application of nanoadjuvant for mucosal vaccine delivery system. J Immunol Methods 2020; 481-482:112791. [PMID: 32387695 DOI: 10.1016/j.jim.2020.112791] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/20/2020] [Accepted: 04/24/2020] [Indexed: 12/11/2022]
Abstract
The surface of the mucosa is the biggest path through which pathogens enter the human body. We need an understanding of mucosal immune systems to use vaccines that generate protective mucosal and systemic immunity to regulate the outbreak of various infectious diseases. The better impact of the mucosal vaccine over traditional injectable vaccines are that not only do they induce efficient immune reactions to the mucosa but they are also comfortable in physical aspect & psychological aspect. The material of the vaccine includes pathogens antigens and adjuvants, which enable vaccination to be effective. Vaccines are classified into different criteria, including the used vaccine material and method of administration. Vaccines have traditionally been injected through a needle. However, as most of the pathogens first infect the mucosal surfaces, and growing interest is expressed in establishing protective immunity from the mucosa, which is accomplished through mucosal paths through vaccinosis. To improve the existing vaccines further, innovative strategies derived from interdisciplinary scientific research will need to develop new vaccine production, storage, and delivery systems. A distinctive & vast research and development platform has been set up for the growth of the next generation of mucosal vaccinations. The latest science and technological advancement in the areas of molecular biology, bio and chemical engineering, genome and system biology has provided accumulated understanding of the inborn and acquired multi-dimensional immune system. This review summarizes recent developments in the use of mucosal vaccines and their associated nanoadjuvants for the control of infectious diseases.
Collapse
Affiliation(s)
- Hitesh Kumar Dewangan
- Institute of Pharmaceutical Research (IPR), GLA University, Mathura, NH-2, Mathura Delhi Road, Chaumuhan Mathura, Uttar Pradesh 281406, India.
| |
Collapse
|
9
|
Miquel‐Clopés A, Bentley EG, Stewart JP, Carding SR. Mucosal vaccines and technology. Clin Exp Immunol 2019; 196:205-214. [PMID: 30963541 PMCID: PMC6468177 DOI: 10.1111/cei.13285] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2019] [Indexed: 12/28/2022] Open
Abstract
There is an urgent and unmet need to develop effective vaccines to reduce the global burden of infectious disease in both animals and humans, and in particular for the majority of pathogens that infect via mucosal sites. Here we summarise the impediments to developing mucosal vaccines and review the new and emerging technologies aimed at overcoming the lack of effective vaccine delivery systems that is the major obstacle to developing new mucosal vaccines.
Collapse
Affiliation(s)
- A. Miquel‐Clopés
- Gut Microbes and Health Research ProgrammeQuadram Institute BioscienceNorwichUK
| | - E. G. Bentley
- Department of Infection BiologyUniversity of LiverpoolLiverpoolUK
| | - J. P. Stewart
- Department of Infection BiologyUniversity of LiverpoolLiverpoolUK
| | - S. R. Carding
- Gut Microbes and Health Research ProgrammeQuadram Institute BioscienceNorwichUK
- Norwich Medical SchoolUniversity of East AngliaNorwichUK
| |
Collapse
|
10
|
Marasini N, Kaminskas LM. Subunit-based mucosal vaccine delivery systems for pulmonary delivery - Are they feasible? Drug Dev Ind Pharm 2019; 45:882-894. [PMID: 30767591 DOI: 10.1080/03639045.2019.1583758] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Pulmonary infections are the most common cause of death globally. However, the development of mucosal vaccines that provide protective immunity against respiratory pathogens are limited. In contrast to needle-based vaccines, efficient vaccines that are delivered via noninvasive mucosal routes (such as via the lungs and nasal passage) produce both antigen-specific local mucosal IgA and systemic IgG protective antibodies. One major challenge in the development of pulmonary vaccines using subunit antigens however, is the production of optimal immune responses. Subunit vaccines therefore rely upon use of adjuvants to potentiate immune responses. While the lack of suitable mucosal adjuvants has hindered progress in the development of efficient pulmonary vaccines, particle-based systems can provide an alternative approach for the safe and efficient delivery of subunit vaccines. In particular, the rational engineering of particulate vaccines with optimal physicochemical characteristics can produce long-term protective immunity. These protect antigens against enzymatic degradation, target antigen presenting cells and initiate optimal humoral and cellular immunity. This review will discuss our current understanding of pulmonary immunology and developments in fabricating particle characteristics that may evoke potent and durable pulmonary immunity.
Collapse
Affiliation(s)
- Nirmal Marasini
- a School of Biomedical Sciences, Faculty of medicine, The University of Queensland , St Lucia , Australia
| | - Lisa M Kaminskas
- a School of Biomedical Sciences, Faculty of medicine, The University of Queensland , St Lucia , Australia
| |
Collapse
|
11
|
Kanojia G, Have RT, Soema PC, Frijlink H, Amorij JP, Kersten G. Developments in the formulation and delivery of spray dried vaccines. Hum Vaccin Immunother 2018; 13:2364-2378. [PMID: 28925794 PMCID: PMC5647985 DOI: 10.1080/21645515.2017.1356952] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Spray drying is a promising method for the stabilization of vaccines, which are usually formulated as liquids. Usually, vaccine stability is improved by spray drying in the presence of a range of excipients. Unlike freeze drying, there is no freezing step involved, thus the damage related to this step is avoided. The edge of spray drying resides in its ability for particles to be engineered to desired requirements, which can be used in various vaccine delivery methods and routes. Although several spray dried vaccines have shown encouraging preclinical results, the number of vaccines that have been tested in clinical trials is limited, indicating a relatively new area of vaccine stabilization and delivery. This article reviews the current status of spray dried vaccine formulations and delivery methods. In particular it discusses the impact of process stresses on vaccine integrity, the application of excipients in spray drying of vaccines, process and formulation optimization strategies based on Design of Experiment approaches as well as opportunities for future application of spray dried vaccine powders for vaccine delivery.
Collapse
Affiliation(s)
- Gaurav Kanojia
- a Intravacc (Institute for Translational Vaccinology) , Bilthoven , The Netherlands.,b Department of Pharmaceutical Technology and Biopharmacy , University of Groningen , Groningen , The Netherlands
| | - Rimko Ten Have
- a Intravacc (Institute for Translational Vaccinology) , Bilthoven , The Netherlands
| | - Peter C Soema
- a Intravacc (Institute for Translational Vaccinology) , Bilthoven , The Netherlands
| | - Henderik Frijlink
- b Department of Pharmaceutical Technology and Biopharmacy , University of Groningen , Groningen , The Netherlands
| | | | - Gideon Kersten
- a Intravacc (Institute for Translational Vaccinology) , Bilthoven , The Netherlands.,c Division of Drug Delivery Technology, Leiden Academic Center for Drug Research , Leiden University , Leiden , The Netherlands
| |
Collapse
|
12
|
Abstract
Veterinary vaccine development has several similarities with human vaccine development to improve the overall health and well-being of species. However, veterinary goals lean more toward feasible large-scale administration methods and low cost to high benefit immunization. Since the respiratory mucosa is easily accessible and most infectious agents begin their infection cycle at the mucosa, immunization through the respiratory route has been a highly attractive vaccine delivery strategy against infectious diseases. Additionally, vaccines administered via the respiratory mucosa could lower costs by removing the need of trained medical personnel, and lowering doses yet achieving similar or increased immune stimulation. The respiratory route often brings challenges in antigen delivery efficiency with enough potency to induce immunity. Nanoparticle (NP) technology has been shown to enhance immune activation by producing higher antibody titers and protection. Although specific mechanisms between NPs and biological membranes are still under investigation, physical parameters such as particle size and shape, as well as biological tissue distribution including mucociliary clearance influence the protection and delivery of antigens to the site of action and uptake by target cells. For respiratory delivery, various biomaterials such as mucoadhesive polymers, lipids, and polysaccharides have shown enhanced antibody production or protection in comparison to antigen alone. This review presents promising NPs administered via the nasal or pulmonary routes for veterinary applications specifically focusing on livestock animals including poultry.
Collapse
|
13
|
Corthésy B, Bioley G. Lipid-Based Particles: Versatile Delivery Systems for Mucosal Vaccination against Infection. Front Immunol 2018; 9:431. [PMID: 29563912 PMCID: PMC5845866 DOI: 10.3389/fimmu.2018.00431] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/19/2018] [Indexed: 12/19/2022] Open
Abstract
Vaccination is the process of administering immunogenic formulations in order to induce or harness antigen (Ag)-specific antibody and T cell responses in order to protect against infections. Important successes have been obtained in protecting individuals against many deleterious pathological situations after parenteral vaccination. However, one of the major limitations of the current vaccination strategies is the administration route that may not be optimal for the induction of immunity at the site of pathogen entry, i.e., mucosal surfaces. It is now well documented that immune responses along the genital, respiratory, or gastrointestinal tracts have to be elicited locally to ensure efficient trafficking of effector and memory B and T cells to mucosal tissues. Moreover, needle-free mucosal delivery of vaccines is advantageous in terms of safety, compliance, and ease of administration. However, the quest for mucosal vaccines is challenging due to (1) the fact that Ag sampling has to be performed across the epithelium through a relatively limited number of portals of entry; (2) the deleterious acidic and proteolytic environment of the mucosae that affect the stability, integrity, and retention time of the applied Ags; and (3) the tolerogenic environment of mucosae, which requires the addition of adjuvants to elicit efficient effector immune responses. Until now, only few mucosally applicable vaccine formulations have been developed and successfully tested. In animal models and clinical trials, the use of lipidic structures such as liposomes, virosomes, immune stimulating complexes, gas-filled microbubbles and emulsions has proven efficient for the mucosal delivery of associated Ags and the induction of local and systemic immune reponses. Such particles are suitable for mucosal delivery because they protect the associated payload from degradation and deliver concentrated amounts of Ags via specialized sampling cells (microfold cells) within the mucosal epithelium to underlying antigen-presenting cells. The review aims at summarizing recent development in the field of mucosal vaccination using lipid-based particles. The modularity ensured by tailoring the lipidic design and content of particles, and their known safety as already established in humans, make the continuing appraisal of these vaccine candidates a promising development in the field of targeted mucosal vaccination.
Collapse
Affiliation(s)
- Blaise Corthésy
- R&D Laboratory, Division of Immunology and Allergy, Centre des Laboratoires d'Epalinges, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Gilles Bioley
- R&D Laboratory, Division of Immunology and Allergy, Centre des Laboratoires d'Epalinges, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| |
Collapse
|
14
|
Roointan A, Kianpour S, Memari F, Gandomani M, Gheibi Hayat SM, Mohammadi-Samani S. Poly(lactic-co-glycolic acid): The most ardent and flexible candidate in biomedicine! INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2017.1405350] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Amir Roointan
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sedigheh Kianpour
- Department of Pharmaceutical Biotechnology, Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Memari
- Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Molood Gandomani
- Department of Bioengineering, Biotechnology Research Center, Cyprus international University, Nicosia, Cyprus
| | - Seyed Mohammad Gheibi Hayat
- Student Research Committee, Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soliman Mohammadi-Samani
- Department of Pharmaceutics, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
15
|
Inhaled sildenafil as an alternative to oral sildenafil in the treatment of pulmonary arterial hypertension (PAH). J Control Release 2017; 250:96-106. [PMID: 28185800 DOI: 10.1016/j.jconrel.2017.02.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 02/02/2017] [Indexed: 01/08/2023]
Abstract
The practice of treating PAH patients with oral or intravenous sildenafil suffers from the limitations of short dosing intervals, peripheral vasodilation, unwanted side effects, and restricted use in pediatric patients. In this study, we sought to test the hypothesis that inhalable poly(lactic-co-glycolic acid) (PLGA) particles of sildenafil prolong the release of the drug, produce pulmonary specific vasodilation, reduce the systemic exposure of the drug, and may be used as an alternative to oral sildenafil in the treatment of PAH. Thus, we prepared porous PLGA particles of sildenafil using a water-in-oil-in-water double emulsion solvent evaporation method with polyethyleneimine (PEI) as a porosigen and characterized the formulations for surface morphology, respirability, in-vitro drug release, and evaluated for in vivo absorption, alveolar macrophage uptake, and safety. PEI increased the particle porosity, drug entrapment, and produced drug release for 36h. Fluorescent particles showed reduced uptake by alveolar macrophages. The polymeric particles were safe to rat pulmonary arterial smooth muscle cell and to the lungs, as evidenced by the cytotoxicity assay and analyses of the injury markers in the bronchoalveolar lavage fluid, respectively. Intratracheally administered sildenafil particles elicited more pulmonary specific and sustained vasodilation in SUGEN-5416/hypoxia-induced PAH rats than oral, intravenous, or intratracheal plain sildenafil did, when administered at the same dose. Overall, true to the hypothesis, this study shows that inhaled PLGA particles of sildenafil can be administered, as a substitute for oral form of sildenafil, at a reduced dose and longer dosing interval.
Collapse
|
16
|
Patel B, Rashid J, Gupta N, Ahsan F. Low-Molecular-Weight Heparin-Coated and Montelukast-Filled Inhalable Particles: A Dual-Drug Delivery System for Combination Therapy in Asthma. J Pharm Sci 2017; 106:1124-1135. [PMID: 28057540 DOI: 10.1016/j.xphs.2016.12.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/17/2016] [Accepted: 12/21/2016] [Indexed: 12/18/2022]
Abstract
Montelukast, a cysteinyl leukotriene type 1 receptor antagonist, exhibits secondary anti-inflammatory properties when used at higher concentrations. Low-molecular-weight heparin (LMWH) evokes pronounced anti-inflammatory effects by interrupting leukocyte adhesion and migration. We hypothesized that inhalable particles containing montelukast plus LMWH release both drugs in a sustained fashion and protect the lungs against allergen-induced inflammation. Large porous particles of montelukast and LMWH were prepared using a double-emulsion-solvent-evaporation method. Montelukast was first encapsulated in copolymer-based particles using polyethylenimine as a porosigen; the resulting particles were then coated with LMWH. The particles were evaluated for physicochemical properties, respirability, and release profiles. The anti-inflammatory effect of the optimized formulation was studied in ovalbumin-sensitized asthmatic Sprague Dawley rats. The optimized large porous particles had a diameter of 10.3 ± 0.7 μm, exhibited numerous surface indentations and pores, showed acceptable drug entrapment efficiency (66.8% ± 0.4% for montelukast; 91.7% ± 0.8% adsorption efficiency for LMWH), demonstrated biphasic release patterns, and escaped the uptake by the rat alveolar macrophages. The number of infiltrating inflammatory cells in asthmatic rat lungs, treated with dual-drug particles, was >74% fewer than in untreated asthmatic rat lungs. Similarly, the airway walls of asthmatic animals treated with dual-drug particles were 3-fold thinner than those of untreated asthmatic animals (p < 0.001). The optimized formulation protects lungs against methacholine-induced airway hyper-reactivity. Overall, this study demonstrates the feasibility of loading 2 drugs, montelukast and LMWH, into an inhalable particulate system and establishes that this novel combination therapy produces sustained drug release and elicits a robust anti-inflammatory response in the lungs.
Collapse
Affiliation(s)
- Brijeshkumar Patel
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Science Center, Amarillo, Texas 79106
| | - Jahidur Rashid
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Science Center, Amarillo, Texas 79106
| | - Nilesh Gupta
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Science Center, Amarillo, Texas 79106
| | - Fakhrul Ahsan
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Science Center, Amarillo, Texas 79106.
| |
Collapse
|
17
|
Zhu L, Li M, Liu X, Du L, Jin Y. Inhalable oridonin-loaded poly(lactic- co-glycolic)acid large porous microparticles for in situ treatment of primary non-small cell lung cancer. Acta Pharm Sin B 2017; 7:80-90. [PMID: 28119812 PMCID: PMC5237759 DOI: 10.1016/j.apsb.2016.09.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/16/2016] [Accepted: 08/23/2016] [Indexed: 10/28/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) accounts for about 85% of all lung cancers. Traditional chemotherapy for this disease leads to serious side effects. Here we prepared an inhalable oridonin-loaded poly(lactic-co-glycolic)acid (PLGA) large porous microparticle (LPMP) for in situ treatment of NSCLC with the emulsion/solvent evaporation/freeze-drying method. The LPMPs were smooth spheres with many internal pores. Despite a geometric diameter of ~10 µm, the aerodynamic diameter of the spheres was only 2.72 µm, leading to highly efficient lung deposition. In vitro studies showed that most of oridonin was released after 1 h, whereas the alveolar macrophage uptake of LPMPs occurred after 8 h, so that most of oridonin would enter the surroundings without undergoing phagocytosis. Rat primary NSCLC models were built and administered with saline, oridonin powder, gemcitabine, and oridonin-loaded LPMPs via airway, respectively. The LPMPs showed strong anticancer effects. Oridonin showed strong angiogenesis inhibition and apoptosis. Relevant mechanisms are thought to include oridonin-induced mitochondrial dysfunction accompanied by low mitochondrial membrane potentials, downregulation of BCL-2 expressions, upregulation of expressions of BAX, caspase-3 and caspase-9. The oridonin-loaded PLGA LPMPs showed high anti-NSCLC effects after pulmonary delivery. In conclusion, LPMPs are promising dry powder inhalations for in situ treatment of lung cancer.
Collapse
Key Words
- BSA, bovine serum albumin
- DAB, 3,3ʹ-diaminobenzidine
- DAPI, 4ʹ,6-diamidino-2-phenylindole
- DPI, dry powder inhalation
- EGFR, epidermal growth factor receptor
- FPF, fine particle fraction
- HPLC, high performance liquid chromatography
- HRP, horseradish peroxidase
- LPMP, large porous microparticle
- Large porous microparticle
- NSCLC, non-small cell lung cancer
- Non-small cell lung cancer
- Oridonin
- PLGA, poly(lactic-co-glycolic)acid
- PVA, polyvinyl alcohol
- Poly(lactic-co-glycolic)acid
- Pulmonary delivery
- SEM, scanning electron microscopy
- SLF, simulated lung fluid
- TCM, traditional Chinese medicine
- XRD, X-ray diffraction
- qPCR, quantitative polymerase chain reaction
Collapse
Affiliation(s)
- Lifei Zhu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
- Anhui Medical University, Hefei 230001, China
- Department of Pharmacy, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China
| | - Miao Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xiaoyan Liu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Lina Du
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yiguang Jin
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
- Anhui Medical University, Hefei 230001, China
| |
Collapse
|
18
|
Jia J, Zhang W, Liu Q, Yang T, Wang L, Ma G. Adjuvanticity Regulation by Biodegradable Polymeric Nano/microparticle Size. Mol Pharm 2016; 14:14-22. [PMID: 28043126 DOI: 10.1021/acs.molpharmaceut.6b00434] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Polymeric nano/microparticles as vaccine adjuvants have been researched in experimental and clinical studies. A more profound understanding of how the physicochemical properties regulate specific immune responses has become a vital requirement. Here we prepared poly(d,l-lactic-co-glycolic acid) (PLGA) nano/microparticles with uniform sizes (500 nm, 900 nm, 2.1 μm, and 4.9 μm), and the size effects on particle uptake, activation of macrophages, and antigen internalization were evaluated. Particle uptake kinetic studies demonstrated that 900 nm particles were the easiest to accumulate in cells. Moreover, they could induce macrophages to secrete NO and IL-1β and facilitate antigen internalization. Furthermore, 900 nm particles, mixed with antigen, could exhibit superior adjuvanticity in both humoral and cellular immune responses in vivo, including offering the highest antibody protection, promoting the maximum secretion levels of IFN-γ and IL-4 than particles with other sizes. Overall, 900 nm might be the optimum choice for PLGA particle-based vaccine adjuvants especially for recombinant antigens. Understanding the effect of particle size on the adjuvanticity based immune responses might have important enlightenments for rational vaccine design and applications.
Collapse
Affiliation(s)
- Jilei Jia
- State Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190, PR China.,University of Chinese Academy of Sciences , Beijing 100049, PR China
| | - Weifeng Zhang
- State Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190, PR China.,University of Chinese Academy of Sciences , Beijing 100049, PR China
| | - Qi Liu
- State Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190, PR China.,University of Chinese Academy of Sciences , Beijing 100049, PR China
| | - Tingyuan Yang
- State Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190, PR China
| | - Lianyan Wang
- State Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190, PR China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190, PR China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing 210023, PR China
| |
Collapse
|
19
|
Gilert A, Baruch L, Bronshtein T, Machluf M. PLGA-Listeriolysin O microspheres: Opening the gate for cytosolic delivery of cancer antigens. Biomed Microdevices 2016; 18:23. [PMID: 26888439 DOI: 10.1007/s10544-016-0050-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Strategies for cancer protein vaccination largely aim to activate the cellular arm of the immune system against cancer cells. This approach, however, is limited since protein vaccines mostly activate the system's humoral arm instead. One way to overcome this problem is to enhance the cross-presentation of such proteins by antigen-presenting cells, which may consequently lead to intense cellular response. Here we examined the ability of listeriolysin O (LLO) incorporated into poly-lactic-co-glycolic acid (PLGA) microspheres to modify the cytosolic delivery of low molecular weight peptides and enhance their cross-presentation. PLGA microspheres were produced in a size suitable for uptake by phagocytic cells. The peptide encapsulation and release kinetics were improved by adding NaCl to the preparation. PLGA microspheres loaded with the antigenic peptide and incorporated with LLO were readily up-taken by phagocytic cells, which exhibited an increase in the expression of peptide-MHC-CI complexes on the cell surface. Furthermore, this system enhanced the activation of a specific T hybridoma cell line, thus simulating cytotoxic T cells. These results establish, for the first time, a proof of concept for the use of PLGA microspheres incorporated with a pore-forming agent and the antigen peptide of choice as a unique cancer protein vaccination delivery platform.
Collapse
Affiliation(s)
- Ariel Gilert
- The Laboratory for Cancer Drug Delivery & Cell Based Technologies, Faculty of Biotechnology & Food Engineering, Technion - Israel Institute of Technology, 32000, Haifa, Israel
| | - Limor Baruch
- The Laboratory for Cancer Drug Delivery & Cell Based Technologies, Faculty of Biotechnology & Food Engineering, Technion - Israel Institute of Technology, 32000, Haifa, Israel
| | - Tomer Bronshtein
- The Laboratory for Cancer Drug Delivery & Cell Based Technologies, Faculty of Biotechnology & Food Engineering, Technion - Israel Institute of Technology, 32000, Haifa, Israel
| | - Marcelle Machluf
- The Laboratory for Cancer Drug Delivery & Cell Based Technologies, Faculty of Biotechnology & Food Engineering, Technion - Israel Institute of Technology, 32000, Haifa, Israel.
| |
Collapse
|
20
|
Patel B, Rashid J, Ahsan F. Aerosolizable modified-release particles of montelukast improve retention and availability of the drug in the lungs. Eur J Pharm Sci 2016; 96:560-570. [PMID: 27989858 DOI: 10.1016/j.ejps.2016.10.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/25/2016] [Accepted: 10/26/2016] [Indexed: 11/17/2022]
Abstract
Montelukast, a cysteinyl leukotriene receptor antagonist available as oral tablets, is used as a second-line therapy in asthma. In this study, we sought to enhance the availability of montelukast in the lungs by encapsulating the drug in poly (lactide-co-glycolic acid)-based (PLGA) respirable large porous particles. We determined the oral and lung specific availability of montelukast by assessing metabolic stability of the drug in the lung and liver homogenates, respectively. We similarly measured the oral and inhalational bioavailability by monitoring the pharmacokinetics and disposition of the drug in live animals. After preparing montelukast-loaded particles with various polymers, in the absence or presence of polyethylenimine (PEI-1), we characterized the particles for physical-chemical properties, entrapment efficiency, in vitro release, uptake by alveolar macrophages, deposition in the lungs, and safety after pulmonary administration. When incubated in lung or liver homogenates, the amount of intact drug in the lung homogenates was greater than that in the liver homogenates. Likewise, the extent of montelukast absorption via the lungs was greater than that via the oral route. Compared with smaller non-porous particles, large porous particles (PEI-1) were taken up by the alveolar macrophages at a lesser extent but deposited in the lungs at a greater extent. The levels of injury markers in the bronchoalveolar lavage fluid (BALF), collected from rat lungs treated with PEI-1, were no different from that in BALF collected from saline treated rats. Overall, the retention time and concentration of montelukast in the lungs can be increased by formulating the drug in large porous particles of PLGA.
Collapse
Affiliation(s)
- Brijeshkumar Patel
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 Coulter Drive, Amarillo, TX 79106, USA
| | - Jahidur Rashid
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 Coulter Drive, Amarillo, TX 79106, USA
| | - Fakhrul Ahsan
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 Coulter Drive, Amarillo, TX 79106, USA.
| |
Collapse
|
21
|
Benne N, van Duijn J, Kuiper J, Jiskoot W, Slütter B. Orchestrating immune responses: How size, shape and rigidity affect the immunogenicity of particulate vaccines. J Control Release 2016; 234:124-34. [PMID: 27221070 DOI: 10.1016/j.jconrel.2016.05.033] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/13/2016] [Accepted: 05/13/2016] [Indexed: 02/05/2023]
Abstract
Particulate carrier systems are promising drug delivery vehicles for subunit vaccination as they can enhance and direct the type of T cell response. In order to develop vaccines with optimal immunogenicity, a thorough understanding of parameters that could affect the strength and quality of immune responses is required. Pathogens have different dimensions and stimulate the immune system in a specific way. It is therefore not surprising that physicochemical characteristics of particulate vaccines, such as particle size, shape, and rigidity, affect multiple processes that impact their immunogenicity. Among these processes are the uptake of the particles from the site of administration, passage through lymphoid tissue and the uptake, antigen processing and activation of antigen-presenting cells. Herein, we systematically review the role of the size, shape and rigidity of particulate vaccines in enhancing and skewing T cell response and attempted to provide a "roadmap" for rational vaccine design.
Collapse
Affiliation(s)
- Naomi Benne
- Division of Drug Delivery Technology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands; Cluster BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Janine van Duijn
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands; Cluster BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Johan Kuiper
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands; Cluster BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Wim Jiskoot
- Division of Drug Delivery Technology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands; Cluster BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Bram Slütter
- Division of Drug Delivery Technology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands; Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands; Cluster BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
22
|
Allahyari M, Mohit E. Peptide/protein vaccine delivery system based on PLGA particles. Hum Vaccin Immunother 2016; 12:806-28. [PMID: 26513024 PMCID: PMC4964737 DOI: 10.1080/21645515.2015.1102804] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 09/15/2015] [Accepted: 09/27/2015] [Indexed: 12/19/2022] Open
Abstract
Due to the excellent safety profile of poly (D,L-lactide-co-glycolide) (PLGA) particles in human, and their biodegradability, many studies have focused on the application of PLGA particles as a controlled-release vaccine delivery system. Antigenic proteins/peptides can be encapsulated into or adsorbed to the surface of PLGA particles. The gradual release of loaded antigens from PLGA particles is necessary for the induction of efficient immunity. Various factors can influence protein release rates from PLGA particles, which can be defined intrinsic features of the polymer, particle characteristics as well as protein and environmental related factors. The use of PLGA particles encapsulating antigens of different diseases such as hepatitis B, tuberculosis, chlamydia, malaria, leishmania, toxoplasma and allergy antigens will be described herein. The co-delivery of antigens and immunostimulants (IS) with PLGA particles can prevent the systemic adverse effects of immunopotentiators and activate both dendritic cells (DCs) and natural killer (NKs) cells, consequently enhancing the therapeutic efficacy of antigen-loaded PLGA particles. We will review co-delivery of different TLR ligands with antigens in various models, highlighting the specific strengths and weaknesses of the system. Strategies to enhance the immunotherapeutic effect of DC-based vaccine using PLGA particles can be designed to target DCs by functionalized PLGA particle encapsulating siRNAs of suppressive gene, and disease specific antigens. Finally, specific examples of cellular targeting where decorating the surface of PLGA particles target orally administrated vaccine to M-cells will be highlighted.
Collapse
Affiliation(s)
- Mojgan Allahyari
- Department of Recombinant Protein Production, Research & Production Complex, Pasteur Institute of Iran, Tehran, Iran
| | - Elham Mohit
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Lin X, Wang J, Xu Y, Tang X, Chen J, Zhang Y, Zhang Y, Yang Z. Tracking the effect of microspheres size on the drug release from a microsphere/sucrose acetate isobutyrate (SAIB) hybrid depotin vitroandin vivo. Drug Dev Ind Pharm 2016; 42:1455-65. [DOI: 10.3109/03639045.2016.1143952] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
24
|
Silva AL, Soema PC, Slütter B, Ossendorp F, Jiskoot W. PLGA particulate delivery systems for subunit vaccines: Linking particle properties to immunogenicity. Hum Vaccin Immunother 2016; 12:1056-69. [PMID: 26752261 PMCID: PMC4962933 DOI: 10.1080/21645515.2015.1117714] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Among the emerging subunit vaccines are recombinant protein- and synthetic peptide-based vaccine formulations. However, proteins and peptides have a low intrinsic immunogenicity. A common strategy to overcome this is to co-deliver (an) antigen(s) with (an) immune modulator(s) by co-encapsulating them in a particulate delivery system, such as poly(lactic-co-glycolic acid) (PLGA) particles. Particulate PLGA formulations offer many advantages for antigen delivery as they are biocompatible and biodegradable; can protect the antigens from degradation and clearance; allow for co-encapsulation of antigens and immune modulators; can be targeted to antigen presenting cells; and their particulate nature can increase uptake and cross-presentation by mimicking the size and shape of an invading pathogen. In this review we discuss the pros and cons of using PLGA particulate formulations for subunit vaccine delivery and provide an overview of formulation parameters that influence their adjuvanticity and the ensuing immune response.
Collapse
Affiliation(s)
- A L Silva
- a Division of Drug Delivery Technology , Leiden Academic Center for Drug Research, Leiden University , Leiden , The Netherlands
| | - P C Soema
- b Intravacc (Institute for Translational Vaccinology) , Bilthoven , The Netherlands
| | - B Slütter
- a Division of Drug Delivery Technology , Leiden Academic Center for Drug Research, Leiden University , Leiden , The Netherlands.,c Cluster BioTherapeutics, Leiden Academic Center for Drug Research, Leiden University , Leiden , The Netherlands
| | - F Ossendorp
- d Department of Immunohematology and Blood Transfusion , Leiden University Medical Center , Leiden , The Netherlands
| | - W Jiskoot
- a Division of Drug Delivery Technology , Leiden Academic Center for Drug Research, Leiden University , Leiden , The Netherlands
| |
Collapse
|
25
|
Shape and size-dependent immune response to antigen-carrying nanoparticles. J Control Release 2015; 220:141-148. [DOI: 10.1016/j.jconrel.2015.09.069] [Citation(s) in RCA: 192] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 09/20/2015] [Accepted: 09/30/2015] [Indexed: 11/17/2022]
|
26
|
Lee DJ. Intraocular Implants for the Treatment of Autoimmune Uveitis. J Funct Biomater 2015; 6:650-66. [PMID: 26264035 PMCID: PMC4598676 DOI: 10.3390/jfb6030650] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 07/21/2015] [Accepted: 07/27/2015] [Indexed: 12/15/2022] Open
Abstract
Uveitis is the third leading cause of blindness in developed countries. Currently, the most widely used treatment of non-infectious uveitis is corticosteroids. Posterior uveitis and macular edema can be treated with intraocular injection of corticosteroids, however, this is problematic in chronic cases because of the need for repeat injections. Another option is systemic immunosuppressive therapies that have their own undesirable side effects. These systemic therapies result in a widespread suppression of the entire immune system, leaving the patient susceptible to infection. Therefore, an effective localized treatment option is preferred. With the recent advances in bioengineering, biodegradable polymers that allow for a slow sustained-release of a medication. These advances have culminated in drug delivery implants that are food and drug administration (FDA) approved for the treatment of non-infectious uveitis. In this review, we discuss the types of ocular implants available and some of the polymers used, implants used for the treatment of non-infectious uveitis, and bioengineered alternatives that are on the horizon.
Collapse
Affiliation(s)
- Darren J Lee
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, DMEI PA404, Oklahoma City, OK 73104, USA.
| |
Collapse
|
27
|
Lin X, Xu Y, Tang X, Zhang Y, Chen J, Zhang Y, He H, Yang Z. A Uniform Ultra-Small Microsphere/SAIB Hybrid Depot with Low Burst Release for Long-Term Continuous Drug Release. Pharm Res 2015; 32:3708-21. [PMID: 26077999 DOI: 10.1007/s11095-015-1731-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 06/01/2015] [Indexed: 01/14/2023]
Abstract
PURPOSE In the present study, a uniform ultra-small microsphere/sucrose acetate isobutyrate (SAIB) hybrid depot (m-SAIB depot) was designed to provide a long-term sustained release drug delivery system which not only reduced the burst release of an SAIB depot, but also eliminated the lag-time of PLGA microspheres. METHODS Risperidone loaded m-SAIB depot (Ris-m-SAIB depot) was characterized by in vitro drug release, pharmacokinetics, in vivo degradation and biocompatibility, in comparison with risperidone loaded SAIB depot (Ris-SAIB depot). RESULTS Ris-m-SAIB depot showed a low burst release (0.64%) and a reduced in vitro drug release rate due to the encapsulation of most drug in microspheres. After intramuscular administration, the in vivo burst release of Ris-m-SAIB was significantly decreased, as reflected by the low Cmax/Cs(4-td) (approximately 30-fold reduction), in comparison with Ris-SAIB depot. From 4 to 78 days, Ris-m-SAIB depot showed a higher plasma drug level (1.55 ~ 16.30 ng/ml) with a steadier drug release profile compared with Ris-SAIB depot. Ris-m-SAIB depot degraded gradually with a degradation t1/2 of 54.6 days and exhibited good biocompatibility in vivo. CONCLUSION These results demonstrate the potential application of a uniform ultra-small microsphere/SAIB hybrid depot for continuously delivering small drug molecules for long periods of time without burst release.
Collapse
Affiliation(s)
- Xia Lin
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China.
- School of Pharmaceutical Science, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, People's Republic of China.
| | - Yuhong Xu
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Xing Tang
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, People's Republic of China
| | - Yan Zhang
- Normal College, Shenyang University, Shenyang, 110044, People's Republic of China
| | - Jian Chen
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Yu Zhang
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, People's Republic of China
| | - Haibing He
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, People's Republic of China
| | - Ziyi Yang
- School of Pharmaceutical Science, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, People's Republic of China.
| |
Collapse
|
28
|
Jia Y, Krishnan L, Omri A. Nasal and pulmonary vaccine delivery using particulate carriers. Expert Opin Drug Deliv 2015; 12:993-1008. [PMID: 25952104 DOI: 10.1517/17425247.2015.1044435] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Many human pathogens cause respiratory illness by colonizing and invading the respiratory mucosal surfaces. Preventing infection at local sites via mucosally active vaccines is a promising and rational approach for vaccine development. However, stimulating mucosal immunity is often challenging. Particulate adjuvants that can specifically target mucosal immune cells offer a promising opportunity to stimulate local immunity at the nasal and/or pulmonary mucosal surfaces. AREAS COVERED This review analyzes the common causes of respiratory infections, the challenges in the induction of mucosal and systemic responses and current pulmonary and nasal mucosal vaccination strategies. The ability of various particulate adjuvant formulations, including lipid-based particles, polymers and other particulate systems, to be effectively utilized for mucosal vaccine delivery is discussed. EXPERT OPINION Induction of antibody and cell-mediated mucosal immunity that can effectively combat respiratory pathogens remains a challenge. Particulate delivery systems can be developed to target mucosal immune cells and effectively present antigen to evoke a rapid and long-term local immunity in the respiratory mucosa. In particular, particulate delivery systems offer the versatility of being formulated with multiple adjuvants and antigenic cargo, and can be tailored to effectively prime immune responses across the mucosal barrier. The opportunity for rational design of novel subunit particulate vaccines is emerging.
Collapse
Affiliation(s)
- Yimei Jia
- National Research Council of Canada-Human Health Therapeutics , Ottawa, Ontario K1A 0R6 , Canada +1 613 991 3210 ;
| | | | | |
Collapse
|
29
|
Arora S, Mahajan RR, Kushwah V, Baradia D, Misra A, Jain S. Development of voriconazole loaded large porous particles for inhalation delivery: effect of surface forces on aerosolisation performance, assessment of in vitro safety potential and uptake by macrophages. RSC Adv 2015. [DOI: 10.1039/c5ra00248f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Inhalation delivery of voriconazole loaded large porous particles represent an effective and safe way to prolong pulmonary residence of voriconazole.
Collapse
Affiliation(s)
- Sumit Arora
- Centre for Pharmaceutical Nanotechnology
- Department of Pharmaceutics
- National Institute of Pharmaceutical Education and Research (NIPER)
- Mohali
- India
| | - Rahul R. Mahajan
- Centre for Pharmaceutical Nanotechnology
- Department of Pharmaceutics
- National Institute of Pharmaceutical Education and Research (NIPER)
- Mohali
- India
| | - Varun Kushwah
- Centre for Pharmaceutical Nanotechnology
- Department of Pharmaceutics
- National Institute of Pharmaceutical Education and Research (NIPER)
- Mohali
- India
| | - Dipesh Baradia
- TIFAC-CORE in NDDS
- Pharmacy Department
- Faculty of Technology and Engineering
- The Maharaja Sayajirao University of Baroda
- Vadodara-390 001
| | - Ambikanandan Misra
- TIFAC-CORE in NDDS
- Pharmacy Department
- Faculty of Technology and Engineering
- The Maharaja Sayajirao University of Baroda
- Vadodara-390 001
| | - Sanyog Jain
- Centre for Pharmaceutical Nanotechnology
- Department of Pharmaceutics
- National Institute of Pharmaceutical Education and Research (NIPER)
- Mohali
- India
| |
Collapse
|
30
|
Marshall LJ, Oguejiofor W, Willetts RS, Griffiths HR, Devitt A. Developing accurate models of the human airways. J Pharm Pharmacol 2014; 67:464-72. [DOI: 10.1111/jphp.12340] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 08/19/2014] [Indexed: 12/14/2022]
Abstract
Abstract
Objectives
Particle delivery to the airways is an attractive prospect for many potential therapeutics, including vaccines. Developing strategies for inhalation of particles provides a targeted, controlled and non-invasive delivery route but, as with all novel therapeutics, in vitro and in vivo testing are needed prior to clinical use. Whilst advanced vaccine testing demands the use of animal models to address safety issues, the production of robust in vitro cellular models would take account of the ethical framework known as the 3Rs (Replacement, Reduction and Refinement of animal use), by permitting initial screening of potential candidates prior to animal use. There is thus a need for relevant, realistic in vitro models of the human airways.
Key findings
Our laboratory has designed and characterised a multi-cellular model of human airways that takes account of the conditions in the airways and recapitulates many salient features, including the epithelial barrier and mucus secretion.
Summary
Our human pulmonary models recreate many of the obstacles to successful pulmonary delivery of particles and therefore represent a valid test platform for screening compounds and delivery systems.
Collapse
Affiliation(s)
| | - Wilson Oguejiofor
- School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Rachel S Willetts
- School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Helen R Griffiths
- School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Andrew Devitt
- School of Life and Health Sciences, Aston University, Birmingham, UK
| |
Collapse
|
31
|
Uniform-sized water-in-oil vaccine formulations enhance immune response against Newcastle disease and avian influenza in chickens. Int Immunopharmacol 2014; 23:603-8. [DOI: 10.1016/j.intimp.2014.10.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 09/30/2014] [Accepted: 10/03/2014] [Indexed: 11/20/2022]
|
32
|
Bergmann-Leitner ES, Leitner WW. Adjuvants in the Driver's Seat: How Magnitude, Type, Fine Specificity and Longevity of Immune Responses Are Driven by Distinct Classes of Immune Potentiators. Vaccines (Basel) 2014; 2:252-96. [PMID: 26344620 PMCID: PMC4494256 DOI: 10.3390/vaccines2020252] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 03/20/2014] [Accepted: 03/28/2014] [Indexed: 12/16/2022] Open
Abstract
The mechanism by which vaccine adjuvants enhance immune responses has historically been considered to be the creation of an antigen depot. From here, the antigen is slowly released and provided to immune cells over an extended period of time. This "depot" was formed by associating the antigen with substances able to persist at the injection site, such as aluminum salts or emulsions. The identification of Pathogen-Associated Molecular Patterns (PAMPs) has greatly advanced our understanding of how adjuvants work beyond the simple concept of extended antigen release and has accelerated the development of novel adjuvants. This review focuses on the mode of action of different adjuvant classes in regards to the stimulation of specific immune cell subsets, the biasing of immune responses towards cellular or humoral immune response, the ability to mediate epitope spreading and the induction of persistent immunological memory. A better understanding of how particular adjuvants mediate their biological effects will eventually allow them to be selected for specific vaccines in a targeted and rational manner.
Collapse
Affiliation(s)
- Elke S Bergmann-Leitner
- US Military Malaria Research Program, Malaria Vaccine Branch, 503 Robert Grant Ave, 3W65, Silver Spring, MD 20910, USA.
| | - Wolfgang W Leitner
- Division on Allergy, Immunology and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 6610 Rockledge Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
33
|
Laube BL. The expanding role of aerosols in systemic drug delivery, gene therapy and vaccination: an update. TRANSLATIONAL RESPIRATORY MEDICINE 2014; 2:3. [PMID: 25505695 PMCID: PMC4215822 DOI: 10.1186/2213-0802-2-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 10/23/2013] [Indexed: 01/06/2023]
Abstract
Until the late 1990s, aerosol therapy consisted of beta2-adrenergic agonists, anti-cholinergics, steroidal and non-steroidal agents, mucolytics and antibiotics that were used to treat patients with asthma, COPD and cystic fibrosis. Since then, inhalation therapy has matured to include drugs that: (1) are designed to treat diseases outside the lung and whose target is the systemic circulation (systemic drug delivery); (2) deliver nucleic acids that lead to permanent expression of a gene construct, or protein coding sequence, in a population of cells (gene therapy); and (3) provide needle-free immunization against disease (aerosolized vaccination). During the evolution of these advanced applications, it was also necessary to develop new devices that provided increased dosing efficiency and less loss during delivery. This review will present an update on the success of each of these new applications and their devices. The early promise of aerosolized systemic drug delivery and its outlook for future success will be highlighted. In addition, the challenges to aerosolized gene therapy and the need for appropriate gene vectors will be discussed. Finally, progress in the development of aerosolized vaccination will be presented. The continued expansion of the role of aerosol therapy in the future will depend on: (1) improving the bioavailability of systemically delivered drugs; (2) developing gene therapy vectors that can efficiently penetrate the mucus barrier and cell membrane, navigate the cell cytoplasm and efficiently transfer DNA material to the cell nucleus; (3) improving delivery of gene vectors and vaccines to infants; and (4) developing formulations that are safe for acute and chronic administrations.
Collapse
Affiliation(s)
- Beth L Laube
- The Johns Hopkins Medical Institutions, Suite 3015, The David M. Rubenstein Building, 200 North Wolfe Street, Baltimore, MD 21287 USA
| |
Collapse
|
34
|
Gebril A, Alsaadi M, Acevedo R, Mullen AB, Ferro VA. Optimizing efficacy of mucosal vaccines. Expert Rev Vaccines 2014; 11:1139-55. [DOI: 10.1586/erv.12.81] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
35
|
Nimtrakul P, Atthi R, Limpeanchob N, Tiyaboonchai W. Development ofPasteurella multocida-loaded microparticles for hemorrhagic septicemia vaccine. Drug Dev Ind Pharm 2013; 41:423-9. [DOI: 10.3109/03639045.2013.873448] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
36
|
Lu Y, Sturek M, Park K. Microparticles produced by the hydrogel template method for sustained drug delivery. Int J Pharm 2013; 461:258-69. [PMID: 24333903 DOI: 10.1016/j.ijpharm.2013.11.058] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 10/17/2013] [Accepted: 11/30/2013] [Indexed: 11/27/2022]
Abstract
Polymeric microparticles have been used widely for sustained drug delivery. Current methods of microparticle production can be improved by making homogeneous particles in size and shape, increasing the drug loading, and controlling the initial burst release. In the current study, the hydrogel template method was used to produce homogeneous poly(lactide-co-glycolide) (PLGA) microparticles and to examine formulation and process-related parameters. Poly(vinyl alcohol) (PVA) was used to make hydrogel templates. The parameters examined include PVA molecular weight, type of PLGA (as characterized by lactide content, inherent viscosity), polymer concentration, drug concentration and composition of solvent system. Three model compounds studied were risperidone, methylprednisolone acetate and paclitaxel. The ability of the hydrogel template method to produce microparticles with good conformity to template was dependent on molecular weight of PVA and viscosity of the PLGA solution. Drug loading and encapsulation efficiency were found to be influenced by PLGA lactide content, polymer concentration and composition of the solvent system. The drug loading and encapsulation efficiency were 28.7% and 82% for risperidone, 31.5% and 90% for methylprednisolone acetate, and 32.2% and 92% for paclitaxel, respectively. For all three drugs, release was sustained for weeks, and the in vitro release profile of risperidone was comparable to that of microparticles prepared using the conventional emulsion method. The hydrogel template method provides a new approach of manipulating microparticles.
Collapse
Affiliation(s)
- Ying Lu
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN 47906, USA
| | - Michael Sturek
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kinam Park
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN 47906, USA; Department of Biomedical Engineering, Purdue University, West Lafayette, IN 47906, USA.
| |
Collapse
|
37
|
Tonnis WF, Lexmond AJ, Frijlink HW, de Boer AH, Hinrichs WLJ. Devices and formulations for pulmonary vaccination. Expert Opin Drug Deliv 2013; 10:1383-97. [DOI: 10.1517/17425247.2013.810622] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
38
|
Parra J, Abad-Somovilla A, Mercader JV, Taton TA, Abad-Fuentes A. Carbon nanotube-protein carriers enhance size-dependent self-adjuvant antibody response to haptens. J Control Release 2013; 170:242-51. [PMID: 23735572 DOI: 10.1016/j.jconrel.2013.05.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 05/22/2013] [Accepted: 05/23/2013] [Indexed: 12/17/2022]
Abstract
Carbon nanotubes (CNTs) are nanomaterials with interesting emerging applications. Their properties make CNTs excellent candidates for use as new nanovehicles in drug delivery, immunization and diagnostics. In the current study, we assessed the immune-response-amplifying properties of CNTs to haptens by using azoxystrobin, the first developed strobilurin fungicide, as a model analyte. An azoxystrobin derivative bearing a carboxylated spacer arm (hapten AZc6) was covalently coupled to bovine serum albumin (BSA), and the resulting BSA-AZc6 conjugate was covalently linked to four functionalized CNTs of different shapes and sizes, varying in diameter and length. These four types of CNT-based constructs were obtained using efficient, fast, and easy functionalization procedures based on microwave-assisted chemistry. New Zealand rabbits and BALB/c mice were immunized with BSA-AZc6 alone and with the four CNT-BSA-AZc6 constructs, both with and without Freund's adjuvant. The IgG-type antibody responses were assessed in terms of the titer and affinity, paying special attention to the relationship between the immune response and the size and shape of the employed CNTs. Immunization with CNT-BSA-AZc6 resulted in enhanced titers and excellent affinities for azoxystrobin. More important, remarkable IgG responses were obtained even in the absence of an adjuvant, thus proving the self-adjuvanting capability of CNTs. Immunogens were able to produce strong anti-azoxystrobin immune responses in rabbits even when administered at a BSA-AZc6 conjugate dose as low as 0.05 μg. The short and thick CNT-BSA-AZc6 construct produced the best antibody response under all tested conditions.
Collapse
Affiliation(s)
- Javier Parra
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-IATA, Spanish National Research Council-CSIC, Agustí Escardino 7, 46980 Paterna, Valencia, Spain
| | | | | | | | | |
Collapse
|
39
|
Liu Y, Yin Y, Wang L, Zhang W, Chen X, Yang X, Xu J, Ma G. Surface hydrophobicity of microparticles modulates adjuvanticity. J Mater Chem B 2013; 1:3888-3896. [DOI: 10.1039/c3tb20383b] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
40
|
Yang T, Nyiawung D, Silber A, Hao J, Lai L, Bai S. Comparative studies on chitosan and polylactic-co-glycolic acid incorporated nanoparticles of low molecular weight heparin. AAPS PharmSciTech 2012; 13:1309-18. [PMID: 23054983 DOI: 10.1208/s12249-012-9854-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 09/10/2012] [Indexed: 11/30/2022] Open
Abstract
This study was performed to test the feasibility of chitosan and polylactic-co-glycolic acid (PLGA) incorporated nanoparticles as sustained-release carriers for the delivery of negatively charged low molecular weight heparin (LMWH). Fourier transform infrared (FTIR) spectrometry was used to evaluate the interactions between chitosan and LMWH. The shifts, intensity, and broadening of the characteristic peaks for the functional groups in the FTIR spectra indicated that strong interactions occur between the positively charged chitosans and the negatively charged LMWHs. Three types of LMWH nanoparticles (NP-1, NP-2, and NP-3) were prepared using chitosan with or without PLGA: NP-1 nanoparticles were formed by polyelectrolyte complexation after single mixing, NP-2 nanoparticles were prepared by polyelectrolyte complexation after single emulsion-diffusion-evaporation, and NP-3 nanoparticles were optimized by double emulsion-diffusion-evaporation. NP-3 nanoparticles of LMWH prepared by the emulsion-diffusion-evaporation method showed significant differences in particle morphology, size, zeta potential, and drug release profile compared to NP-1 nanoparticles formed by polyelectrolyte complexation. Another ionic complex of LMWH with chitosan-incorporated PLGA nanoparticles (NP-2) showed lower drug entrapment efficiency than that of NP-1 and NP-3. The drug release rate of NP-3 was slower than the release rates of NP-1 and NP-2, although particle morphology of NP-3 was similar to that of NP-2. Cell viability was not adversely affected when cells were treated with all three types of nanoparticles. The data presented in this study demonstrate that nanoparticles formulated with chitosan-PLGA could be a safe sustained-release carrier for the delivery of LMWH.
Collapse
|
41
|
|
42
|
Tonnis WF, Kersten GF, Frijlink HW, Hinrichs WL, de Boer AH, Amorij JP. Pulmonary Vaccine Delivery: A Realistic Approach? J Aerosol Med Pulm Drug Deliv 2012; 25:249-60. [DOI: 10.1089/jamp.2011.0931] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Wouter F. Tonnis
- University of Groningen, Department Pharmaceutical Technology and Biopharmacy, Groningen, The Netherlands
| | - Gideon F. Kersten
- National Institute for Public Health and the Environment, Vaccinology Unit, Bilthoven, The Netherlands
| | - Henderik W. Frijlink
- University of Groningen, Department Pharmaceutical Technology and Biopharmacy, Groningen, The Netherlands
| | - Wouter L.J. Hinrichs
- University of Groningen, Department Pharmaceutical Technology and Biopharmacy, Groningen, The Netherlands
| | - Anne H. de Boer
- University of Groningen, Department Pharmaceutical Technology and Biopharmacy, Groningen, The Netherlands
| | - Jean-Pierre Amorij
- National Institute for Public Health and the Environment, Vaccinology Unit, Bilthoven, The Netherlands
| |
Collapse
|
43
|
Patel B, Gupta V, Ahsan F. PEG–PLGA based large porous particles for pulmonary delivery of a highly soluble drug, low molecular weight heparin. J Control Release 2012; 162:310-20. [DOI: 10.1016/j.jconrel.2012.07.003] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 07/07/2012] [Indexed: 10/28/2022]
|
44
|
Mao S, Guo C, Shi Y, Li LC. Recent advances in polymeric microspheres for parenteral drug delivery--part 2. Expert Opin Drug Deliv 2012; 9:1209-23. [PMID: 22924745 DOI: 10.1517/17425247.2012.717926] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Currently marketed microsphere products are manufactured with the use of organic solvents which have a negative impact on the environment and stability of biological molecules. With recent advances in fabrication technologies, solvent free methods have demonstrated potential for the preparation of microspheres. AREAS COVERED New technical advances recently achieved in solvent based microsphere manufacturing processes have allowed for major improvement in product quality and properties. Novel solvent free fabrication methods combined with newly functionalized biodegradable polymers have been explored for their application in the preparation of microspheres containing biological molecules. EXPERT OPINION Novel fabrication methods for microspheres have been recently reported but technical challenges and development risks remain high for scale up from bench to industrial commercialization. While the applications of microspheres for delivery of proteins, genes and vaccines have shown promise for clinical use, the approval of newly functionalized polymers as carriers may still face scrutiny on safety and biocompatibility, which can be key factors in securing the regulatory approval of the product.
Collapse
Affiliation(s)
- Shirui Mao
- Shenyang Pharmaceutical University, School of Pharmacy, China
| | | | | | | |
Collapse
|
45
|
Immunogenicity of protein aggregates--concerns and realities. Int J Pharm 2012; 431:1-11. [PMID: 22546296 DOI: 10.1016/j.ijpharm.2012.04.040] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 04/10/2012] [Accepted: 04/13/2012] [Indexed: 01/14/2023]
Abstract
Protein aggregation is one of the key challenges in the development of protein biotherapeutics. It is a critical product quality issue as well as a potential safety concern due to the increased immunogenicity potential of these aggregates. The overwhelming safety concern has led to an increased development effort and regulatory scrutiny in recent years. The main purposes of this review are to examine the literature data on the relationship between protein aggregates and immunogenicity, to highlight the linkage and existing inconsistencies/uncertainties, and to propose directions for future investigations/development.
Collapse
|
46
|
Ungaro F, d' Angelo I, Miro A, La Rotonda MI, Quaglia F. Engineered PLGA nano- and micro-carriers for pulmonary delivery: challenges and promises. J Pharm Pharmacol 2012; 64:1217-35. [DOI: 10.1111/j.2042-7158.2012.01486.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Abstract
Objectives
The aim of this review is to summarize the current state-of-the-art in poly(lactic-co-glycolic acid) (PLGA) carriers for inhalation. It presents the rational of use, the potential and the recent advances in developing PLGA microparticles and nanoparticles for pulmonary delivery. The most promising particle engineering strategies are discussed, highlighting the advantages along with the major challenges for researchers working in this field.
Key findings
Biodegradable polymer carriers, such as PLGA particles, may permit effective protection and long-term delivery of the inhaled drug and, when adequately engineered, its efficient transport to the target. The carrier can be designed for inhalation on the basis of several strategies through the adequate combination of available particle technologies and excipients. In so doing, the properties of PLGA particles can be finely tuned at micro-size and nano-size level to fulfill specific therapeutic needs. This means not only to realize optimal in vitro/in vivo lung deposition of the formulation, which is still crucial, but also to control the fate of the drug in the lung after particle landing.
Summary
Although many challenges still exist, PLGA carriers may be highly beneficial and present a new scenario for patients suffering from chronic lung diseases and for pharmaceutical companies working to develop novel inhaled products.
Collapse
Affiliation(s)
- Francesca Ungaro
- Department of Pharmaceutical and Toxicological Chemistry, University of Naples Federico II, Via D. Montesano, Naples, Italy
| | - Ivana d' Angelo
- Department of Pharmaceutical and Toxicological Chemistry, University of Naples Federico II, Via D. Montesano, Naples, Italy
| | - Agnese Miro
- Department of Pharmaceutical and Toxicological Chemistry, University of Naples Federico II, Via D. Montesano, Naples, Italy
| | - Maria I La Rotonda
- Department of Pharmaceutical and Toxicological Chemistry, University of Naples Federico II, Via D. Montesano, Naples, Italy
| | - Fabiana Quaglia
- Department of Pharmaceutical and Toxicological Chemistry, University of Naples Federico II, Via D. Montesano, Naples, Italy
| |
Collapse
|
47
|
Ulery BD, Nair LS, Laurencin CT. Biomedical Applications of Biodegradable Polymers. JOURNAL OF POLYMER SCIENCE. PART B, POLYMER PHYSICS 2011; 49:832-864. [PMID: 21769165 PMCID: PMC3136871 DOI: 10.1002/polb.22259] [Citation(s) in RCA: 1193] [Impact Index Per Article: 91.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Utilization of polymers as biomaterials has greatly impacted the advancement of modern medicine. Specifically, polymeric biomaterials that are biodegradable provide the significant advantage of being able to be broken down and removed after they have served their function. Applications are wide ranging with degradable polymers being used clinically as surgical sutures and implants. In order to fit functional demand, materials with desired physical, chemical, biological, biomechanical and degradation properties must be selected. Fortunately, a wide range of natural and synthetic degradable polymers has been investigated for biomedical applications with novel materials constantly being developed to meet new challenges. This review summarizes the most recent advances in the field over the past 4 years, specifically highlighting new and interesting discoveries in tissue engineering and drug delivery applications.
Collapse
Affiliation(s)
- Bret D. Ulery
- Department of Orthopaedic Surgery, New England Musculoskeletal Institute, University of Connecticut Health Center, Farmington, Connecticut 06030
- Institute of Regenerative Engineering, University of Connecticut Health Center, Farmington, Connecticut 06030
| | - Lakshmi S. Nair
- Department of Orthopaedic Surgery, New England Musculoskeletal Institute, University of Connecticut Health Center, Farmington, Connecticut 06030
- Institute of Regenerative Engineering, University of Connecticut Health Center, Farmington, Connecticut 06030
- Department of Chemical, Materials & Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06268
| | - Cato T. Laurencin
- Department of Orthopaedic Surgery, New England Musculoskeletal Institute, University of Connecticut Health Center, Farmington, Connecticut 06030
- Institute of Regenerative Engineering, University of Connecticut Health Center, Farmington, Connecticut 06030
- Department of Chemical, Materials & Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06268
| |
Collapse
|
48
|
Why and how to prepare biodegradable, monodispersed, polymeric microparticles in the field of pharmacy? Int J Pharm 2011; 407:1-11. [DOI: 10.1016/j.ijpharm.2011.01.027] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 01/01/2011] [Accepted: 01/12/2011] [Indexed: 11/21/2022]
|
49
|
Blank F, Stumbles P, von Garnier C. Opportunities and challenges of the pulmonary route for vaccination. Expert Opin Drug Deliv 2011; 8:547-63. [PMID: 21438741 DOI: 10.1517/17425247.2011.565326] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION The respiratory tract is an attractive target for the delivery of vaccine antigens. Potential advantages of drug delivery by means of the pulmonary route include accessibility, non-invasiveness, ease of administration, and the possibility to reach an elaborate mucosal network of antigen-presenting cells. AREAS COVERED This review discusses current pulmonary vaccination strategies and their advantages and disadvantages. EXPERT OPINION To improve efficiency of vaccination and develop new strategies, a well-founded knowledge about composition and characterization of antigen-presenting cell populations throughout the respiratory tract is essential. In particular, respiratory tract dendritic cells, as key antigen-presenting cells in the lung, constitute an ideal target for vaccine delivery. Furthermore, particle size is a key factor when designing new inhalable vaccines, as size determines not only deposition in different respiratory tract compartments, but also how an antigen and its carrier will interact with lung tissue components and immune cells. An increased knowledge of different respiratory tract antigen-presenting cell populations and their interactions with other components of the immune system will enable new targeting strategies to improve the efficacy of pulmonary vaccination.
Collapse
Affiliation(s)
- Fabian Blank
- Bern University, Pulmonary Medicine, Department of Clinical Research, Murtenstrasse 50, CH-3010 Berne, Switzerland.
| | | | | |
Collapse
|
50
|
Thomas C, Rawat A, Hope-Weeks L, Ahsan F. Aerosolized PLA and PLGA Nanoparticles Enhance Humoral, Mucosal and Cytokine Responses to Hepatitis B Vaccine. Mol Pharm 2011; 8:405-15. [DOI: 10.1021/mp100255c] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chandan Thomas
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 Coulter, Amarillo, Texas 79106, United States
| | - Amit Rawat
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 Coulter, Amarillo, Texas 79106, United States
| | - Louisa Hope-Weeks
- Department of Chemistry and Biochemistry, Texas Tech University, Memorial Circle and Boston, Lubbock, Texas 79409, United States
| | - Fakhrul Ahsan
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 Coulter, Amarillo, Texas 79106, United States
| |
Collapse
|