1
|
Mohamed AH, Abaza T, Youssef YA, Rady M, Fahmy SA, Kamel R, Hamdi N, Efthimiado E, Braoudaki M, Youness RA. Extracellular vesicles: from intracellular trafficking molecules to fully fortified delivery vehicles for cancer therapeutics. NANOSCALE ADVANCES 2025:d4na00393d. [PMID: 39823046 PMCID: PMC11733735 DOI: 10.1039/d4na00393d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 12/22/2024] [Indexed: 01/19/2025]
Abstract
Extracellular vesicles (EVs) are emerging as viable tools in cancer treatment due to their ability to carry a wide range of theranostic activities. This review summarizes different forms of EVs such as exosomes, microvesicles, apoptotic bodies, and oncosomes. It also sheds the light onto isolation methodologies, characterization techniques and therapeutic applications of all discussed EVs. Evidence indicates that EVs are particularly effective in delivering chemotherapeutic medications, and immunomodulatory agents. However, the advancement of EV-based therapies into clinical practice is hindered by challenges including EVs heterogeneity, cargo loading efficiency, and in vivo stability. Overall, EVs have the potential to change cancer therapeutic paradigms. Continued research and development activities are critical for improving EV-based medications and increasing their therapeutic impact.
Collapse
Affiliation(s)
- Adham H Mohamed
- Department of Chemistry, Faculty of Science, Cairo University 12613 Giza Egypt
| | - Tasneem Abaza
- Biotechnology and Biomolecular Chemistry Program, Faculty of Science, Cairo University 12613 Giza Egypt
- Université Paris-Saclay, Université d'Evry Val D'Essonne 91000 Évry-Courcouronnes Île-de-France France
| | - Yomna A Youssef
- Department of Physiology, Faculty of Physical Therapy, German International University (GIU) 11835 Cairo Egypt
- Molecular Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU) 11835 Cairo Egypt
| | - Mona Rady
- Microbiology, Immunology and Biotechnology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC) 11835 Cairo Egypt
- Faculty of Biotechnology, German International University New Administrative Capital 11835 Cairo Egypt
| | - Sherif Ashraf Fahmy
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg Robert-Koch-Str. 4 35037 Marburg Germany
| | - Rabab Kamel
- Pharmaceutical Technology Department, National Research Centre 12622 Cairo Egypt
| | - Nabila Hamdi
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC) 11835 Cairo Egypt
| | - Eleni Efthimiado
- Inorganic Chemistry Laboratory, Chemistry Department, National and Kapodistrian University of Athens Athens Greece
| | - Maria Braoudaki
- Department of Clinical, Pharmaceutical, and Biological Science, School of Life and Medical Sciences, University of Hertfordshire Hatfield AL10 9AB UK
| | - Rana A Youness
- Molecular Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU) 11835 Cairo Egypt
| |
Collapse
|
2
|
Fagbohun OF, Rollins A, Mattern L, Cipollini K, Rupasinghe HV. Frondoside A of Cucumaria frondosa (Gennerus, 1767): Chemistry, biosynthesis, medicinal applications, and mechanism of actions. J Pharm Pharmacol 2025; 77:32-42. [PMID: 38843504 DOI: 10.1093/jpp/rgae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/23/2024] [Indexed: 01/07/2025]
Abstract
Cucumaria frondosa (Gennerus, 1767) or orange-footed sea cucumbers are traditional food and are used as natural sources of anti-diabetic, anti-inflammatory, antioxidant, anti-angiogenic, antimicrobial, and anticancer agents. Currently, the introduction of value-added sea cucumber products to the global market has inspired basic research on frondoside A and other saponins in sea cucumbers. These saponins serve as a means of their chemical defence. However, recent studies revealed that exposure to these saponins can lead to irritating symptoms from aerosolization of various holothurins. Moreover, extraction methods are critical to the bioavailability of various bioactive compounds found in sea cucumbers. Therefore, we have critically reviewed recent studies on the chemistry, biosynthesis, and pharmacological properties of frondoside A. Furthermore, the mechanism of actions of frondoside A was postulated and further studies are required for applications in functional foods, nutraceuticals, and pharmaceuticals. Frondoside A was first discovered from Cucumaria frondosa, and it is involved in protein kinase (PI3K/AKT/ERK1/2/p38 MAPK, RAC/CDC42 PAK1, NFκB/MAPK/JNK, and LXR-β) signalling pathways. It is also involved in the suppression of MYC oncogene transcriptional factors implicated and upregulated in over 70% of cancer types. Future research needs to be aimed at optimized green extraction techniques, efficient delivery methods, safety, and efficacy.
Collapse
Affiliation(s)
- Oladapo F Fagbohun
- Department of Biology, Wilmington College, 1870 Quaker Way, Wilmington, OH 45177, United States
| | - Amanda Rollins
- Department of Biology, Wilmington College, 1870 Quaker Way, Wilmington, OH 45177, United States
| | - Lindsey Mattern
- Department of Biology, Wilmington College, 1870 Quaker Way, Wilmington, OH 45177, United States
| | - Kendra Cipollini
- Department of Biology, Wilmington College, 1870 Quaker Way, Wilmington, OH 45177, United States
| | - Hp Vasantha Rupasinghe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada
| |
Collapse
|
3
|
Sousa Severo DD, Martins WF, Miotto M, Verruck S, Rodrigues de Oliveira R, Aragão GMFD. Propidium monoazide (PMA) qPCR assay compared to the plate count method for quantifying the growth of Salmonella enterica serotypes in vacuum-packaged turkey breast combined with a mathematical modeling approach. Food Microbiol 2025; 125:104650. [PMID: 39448160 DOI: 10.1016/j.fm.2024.104650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024]
Abstract
This study compares the plate count (PC) and the Propidium Monoazide-quantitative Polymerase Chain Reaction (PMA-qPCR) methods to assess the growth of a cocktail of three serotypes of Salmonella enterica (Heidelberg, Typhimurium, and Enteritidis) in cooked, sliced, and vacuum-packaged turkey breast (STB) under isothermal storage temperatures (8 °C-20 °C), using predictive models. Standard curves were developed for PMA-qPCR, demonstrating high efficiency (101%) and sensitivity, with quantification limits ranging from 1 to 2 log10 CFU/g for all temperatures studied. Comparative analysis revealed a significant correlation (R2 = 0.99; 95% CI) between the PC and PMA-qPCR methods; however, the agreement analysis indicated a mean difference (Bias) of -0.11 log10 CFU/g (p < 0.05), suggesting underestimation by the PC method. This indicates the presence of stressed or viable but nonculturable (VBNC) cells, detectable by PMA-qPCR but not by PC. The Baranyi and Roberts model showed a good ability to describe the behavior of S. enterica cocktail in STB for PC and PMA-qPCR data under all isothermal conditions. The exponential secondary model more accurately represented the temperature dependence of the maximum specific growth rate compared to the Ratkowsky square root model, with R2 values ≥ 0.984 and RMSE values ≤ 0.011 for both methods. These results suggest that combining PMA-qPCR with predictive modeling allows for a more accurate prediction of S. enterica growth, compared to PC method. In the event of cold chain disruptions of meat products, the use of PMA-qPCR method allow the quantification of VBNC cells, that can still pose a health risk to consumers, especially in ready-to-eat products.
Collapse
Affiliation(s)
- Danielle de Sousa Severo
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, 88040-970, Florianópolis, SC, Brazil
| | - Wiaslan Figueiredo Martins
- Department of Food Technology, Goiano Federal Institute of Education, Science, and Technology, Morrinhos Campus, 75650-000, Morrinhos, GO, Brazil.
| | - Marília Miotto
- Department of Food Science and Technology, Agrarian Science Center, Federal University of Santa Catarina, 88034-001, Florianópolis, SC, Brazil
| | - Silvani Verruck
- Department of Food Science and Technology, Agrarian Science Center, Federal University of Santa Catarina, 88034-001, Florianópolis, SC, Brazil
| | | | - Gláucia Maria Falcão de Aragão
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, 88040-970, Florianópolis, SC, Brazil
| |
Collapse
|
4
|
Romano E, Perut F, Avnet S, Di Pompo G, Silvestri S, Roffo F, Baldini N, Netti PA, Torino E. Mesenchymal Stem Cells-Derived Small Extracellular Vesicles and Their Validation as a Promising Treatment for Chondrosarcoma in a 3D Model in Vitro. Biotechnol Bioeng 2024. [PMID: 39690717 DOI: 10.1002/bit.28909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/19/2024]
Abstract
Chondrosarcomas (CHS) constitute approximately 20% of all primary malignant bone tumors, characterized by a slow growth rate with initial manifestation of few signs and symptoms. These malignant cartilaginous neoplasms, particularly those with dedifferentiated histological subtypes, pose significant therapeutic challenges, as they exhibit high resistance to both radiation and chemotherapy. Ranging from relatively benign, low-grade tumors (grade I) to aggressive high-grade tumors with the potential for lung metastases and a grim prognosis, there is a critical need for innovative diagnostic and therapeutic approaches, particularly for patients with more aggressive forms. Herein, small extracellular vesicles (sEVs) derived from mesenchymal stem cells are presented as an efficient nanodelivery tool to enhance drug penetration in an in vitro 3D model of CHS. Employing high-pressure homogenization (HPH), we achieved unprecedented encapsulation efficiency of doxorubicin (DXR) in sEVs derived from mesenchymal stem cells (MSC-EVs). Subsequently, a comparative analysis between free DXR and MSC-EVs encapsulated with DXR (DXR-MSC-EVs) was conducted to assess their penetration and uptake efficacy in the 3D model. The results unveiled a higher incidence of necrotic cells and a more pronounced toxic effect with DXR-MSC-EVs compared to DXR alone. This underscores the remarkable ability of MSC-EVs to deliver drugs in complex environments, highlighting their potential application in the treatment of aggressive CHS.
Collapse
Affiliation(s)
- Eugenia Romano
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Naples, Italy
- Department of Chemical, Materials and Production Engineering (DICMaPI), University of Naples Federico II, Naples, Italy
| | - Francesca Perut
- Biomedical Science and Technologies and Nanobiotechnology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Sofia Avnet
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Gemma Di Pompo
- Biomedical Science and Technologies and Nanobiotechnology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Simona Silvestri
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Naples, Italy
- Department of Chemical, Materials and Production Engineering (DICMaPI), University of Naples Federico II, Naples, Italy
- Fondazione Istituto Italiano di Tecnologia, IIT, Naples, Italy
| | - Felicia Roffo
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Naples, Italy
- Department of Chemical, Materials and Production Engineering (DICMaPI), University of Naples Federico II, Naples, Italy
| | - Nicola Baldini
- Biomedical Science and Technologies and Nanobiotechnology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Paolo Antonio Netti
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Naples, Italy
- Department of Chemical, Materials and Production Engineering (DICMaPI), University of Naples Federico II, Naples, Italy
- Fondazione Istituto Italiano di Tecnologia, IIT, Naples, Italy
| | - Enza Torino
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Naples, Italy
- Department of Chemical, Materials and Production Engineering (DICMaPI), University of Naples Federico II, Naples, Italy
- Fondazione Istituto Italiano di Tecnologia, IIT, Naples, Italy
| |
Collapse
|
5
|
Garza-Miyazato D, Hanashima S, Umegawa Y, Murata M, Kinoshita M, Matsumori N, Greimel P. Mode of molecular interaction of triterpenoid saponin ginsenoside Rh2 with membrane lipids in liquid-disordered phases. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184366. [PMID: 38960300 DOI: 10.1016/j.bbamem.2024.184366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 06/07/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024]
Abstract
Ginsenoside Rh2 (Rh2) is a ginseng saponin comprising a triterpene core and one unit of glucose and has attracted much attention due to its diverse biological activities. In the present study, we used small-angle X-ray diffraction, solid-state NMR, fluorescence microscopy, and MD simulations to investigate the molecular interaction of Rh2 with membrane lipids in the liquid-disordered (Ld) phase mainly composed of palmitoyloleoylphosphatidylcholine compared with those in liquid-ordered (Lo) phase mainly composed of sphingomyelin and cholesterol. The electron density profiles determined by X-ray diffraction patterns indicated that Rh2 tends to be present in the shallow interior of the bilayer in the Ld phase, while Rh2 accumulation was significantly smaller in the Lo phase. Order parameters at intermediate depths in the bilayer leaflet obtained from 2H NMR spectra and MD simulations indicated that Rh2 reduces the order of the acyl chains of lipids in the Ld phase. The dihydroxy group and glucose moiety at both ends of the hydrophobic triterpene core of Rh2 cause tilting of the molecular axis relative to the membrane normal, which may enhance membrane permeability by loosening the packing of lipid acyl chains. These features of Rh2 are distinct from steroidal saponins such as digitonin and dioscin, which exert strong membrane-disrupting activity.
Collapse
Affiliation(s)
- Darcy Garza-Miyazato
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Shinya Hanashima
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan; Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8552, Japan.
| | - Yuichi Umegawa
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Michio Murata
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan; Forefront Research Centre for Fundamental Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.
| | - Masanao Kinoshita
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Nobuaki Matsumori
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Peter Greimel
- Laboratory for Cell Function Dynamics, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| |
Collapse
|
6
|
Li Y, Wang Y, Zhang Y, Zhu Y, Dong Y, Cheng H, Zhang Y, Wang Y, Li Z, Gao J. Engineered mesenchymal stem cell-derived extracellular vesicles: kill tumors and protect organs. Theranostics 2024; 14:6202-6217. [PMID: 39431009 PMCID: PMC11488101 DOI: 10.7150/thno.99618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/20/2024] [Indexed: 10/22/2024] Open
Abstract
Solid tumors cause 90% of cancers and remain the primary cause of mortality. However, treating solid tumors presents significant challenges due to the complex tumor microenvironment and drug resistance, leading to inadequate treatment targeting and severe side effects. Surgery, radiotherapy, and chemotherapy Although it is an effective method for the treatment of solid tumors, it can lead to organ dysfunction and affect patient prognosis. Therefore, it is imperative to improve treatment precision and organ repair capabilities to manage solid tumors. Mesenchymal stem cell extracellular vesicles (MSC-EVs) have wide application prospects as a new agent for solid tumor therapy. Firstly, MSC-EVs is a derivative of MSCs. It has the function of promoting tissue regeneration by inducing dedifferentiation in surviving cells after injury. Additionally, MSC-EVs offer unique advantages in terms of safety, stability and penetrability, making them a promising extracellular therapeutic modality for solid tumor treatment. Finally, MSC-EVs are able to enhance therapeutic efficacy through engineering strategies. To sum up, this review takes MSC-EVs as its object. And then we discuss recent advancements and engineering strategies in the use of MSC-EVs for soid tumor suppression. This review aims to inspire researchers to devise a new method for effectively treat solid tumors.
Collapse
Affiliation(s)
- Yu Li
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Stem Cell and Regeneration Medicine Institute, Research Center of Translational Medicine, Naval Medical University, Shanghai, 200433, China
- Changhai Clinical Research Unit, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yao Wang
- Changhai Clinical Research Unit, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- College of Life Science, Mudanjiang Medical University, Heilongjiang Mudanjiang, 157011, China
| | - Yu Zhang
- Shanghai Key Laboratory of Cell Engineering, Shanghai, 200120, China
| | - Yuruchen Zhu
- School of Basic Medical Sciences, Naval Medical University, Shanghai, 200433, China
| | - Yuhui Dong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Haobin Cheng
- School of Basic Medical Sciences, Naval Medical University, Shanghai, 200433, China
| | - Yinan Zhang
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yue Wang
- Stem Cell and Regeneration Medicine Institute, Research Center of Translational Medicine, Naval Medical University, Shanghai, 200433, China
- Shanghai Key Laboratory of Cell Engineering, Shanghai, 200120, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China
| | - Zhaoshen Li
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Changhai Clinical Research Unit, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- National Clinical Research Center for Digestive Diseases, Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- National Key Laboratory of lmmunology and Inflammation, Naval Medical University, Shanghai, 200433, China
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai, 200433, China
| | - Jie Gao
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Changhai Clinical Research Unit, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai, 200433, China
| |
Collapse
|
7
|
Ercelen S, Bulkurcuoglu B, Oksuz M, Nalbantsoy A, Sarikahya NB. Development and Characterization of Plant-derived Aristatoside C and Davisianoside B Saponin-loaded Phytosomes with Suppressed Hemolytic Activity. ChemistryOpen 2024; 13:e202300254. [PMID: 38466160 PMCID: PMC11633355 DOI: 10.1002/open.202300254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/20/2024] [Indexed: 03/12/2024] Open
Abstract
Saponins are glycosides widely distributed in the plant kingdom and have many pharmacological activities. However, their tendency to bind to cell membranes can cause cell rupture, limiting their clinical use. In the previous study, aristatoside C and davisianoside B were isolated from Cephalaria species. Cytotoxicity assays showed that they are more active on A-549 cell lines than doxorubicin but caused hemolysis. In the current research, aristatoside C and davisianoside B were loaded to phytosomes called ALPs and DLPs respectively, and characterized for particle size, zeta potential, encapsulation efficiency, release kinetic, hemolytic activity, and cytotoxicity on A-549 cell line. DLPs maintained the cytotoxic activity of the free saponins against A-549 cells with IC50 of 9,64±0,02 μg/ml but dramatically reduced their hemolytic activity. Furthermore, temperature and time-dependent stability studies based on the size and zeta potential of ALPs and DLPs revealed that the phytosomes have sustained release properties over 2 weeks. Overall, DLPs displayed cytotoxicity against A-549 cells with minimal hemolysis and sustained release, highlighting their potential as nanotherapeutics for clinical applications.
Collapse
Affiliation(s)
- Sebnem Ercelen
- Life SciencesBionanotechnology Lab.Scientific And Technological Research Council of Türkiye (TUBITAK)Marmara Research Center (MRC)Gebze41470Kocaeli/Türkiye
- Hamidiye Faculty of MedicineDepartment of BiophysicsUniversity of Health SciencesÜsküdar34668İstanbul/Türkiye
| | - Bunyamin Bulkurcuoglu
- Life SciencesBionanotechnology Lab.Scientific And Technological Research Council of Türkiye (TUBITAK)Marmara Research Center (MRC)Gebze41470Kocaeli/Türkiye
- Institute of BiotechnologyGebze Technical UniversityGebze41400Kocaeli/Türkiye
| | - Mustafa Oksuz
- Life SciencesBionanotechnology Lab.Scientific And Technological Research Council of Türkiye (TUBITAK)Marmara Research Center (MRC)Gebze41470Kocaeli/Türkiye
- Faculty of PharmacyBiochemistry DepartmentMersin UniversityYenişehir33160Mersin/Türkiye
| | - Ayse Nalbantsoy
- Faculty of EngineeringDepartment of BioengineeringEge UniversityBornova35040İzmir/Türkiye
| | - Nazli Boke Sarikahya
- Faculty of ScienceDepartment of ChemistryEge UniversityBornova35040İzmir/Türkiye
| |
Collapse
|
8
|
Soltanmohammadi F, Gharehbaba AM, Zangi AR, Adibkia K, Javadzadeh Y. Current knowledge of hybrid nanoplatforms composed of exosomes and organic/inorganic nanoparticles for disease treatment and cell/tissue imaging. Biomed Pharmacother 2024; 178:117248. [PMID: 39098179 DOI: 10.1016/j.biopha.2024.117248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024] Open
Abstract
Exosome-nanoparticle hybrid nanoplatforms, can be prepared by combining exosomes with different types of nanoparticles. The main purpose of combining exosomes with nanoparticles is to overcome the limitations of using each of them as drug delivery systems. Using nanoparticles for drug delivery has some limitations, such as high immunogenicity, poor cellular uptake, low biocompatibility, cytotoxicity, low stability, and rapid clearance by immune cells. However, using exosomes as drug delivery systems also has its own drawbacks, such as poor encapsulation efficiency, low production yield, and the inability to load large molecules. These limitations can be addressed by utilizing hybrid nanoplatforms. Additionally, the use of exosomes allows for targeted delivery within the hybrid system. Exosome-inorganic/organic hybrid nanoparticles may be used for both therapy and diagnosis in the future. This may lead to the development of personalized medicine using hybrid nanoparticles. However, there are a few challenges associated with this. Surface modifications, adding functional groups, surface charge adjustments, and preparing nanoparticles with the desired size are crucial to the possibility of preparing exosome-nanoparticle hybrids. Additional challenges for the successful implementation of hybrid platforms in medical treatments and diagnostics include scaling up the manufacturing process and ensuring consistent quality and reproducibility across various batches. This review focuses on various types of exosome-nanoparticle hybrid systems and also discusses the preparation and loading methods for these hybrid nanoplatforms. Furthermore, the potential applications of these hybrid nanocarriers in drug/gene delivery, disease treatment and diagnosis, and cell/tissue imaging are explained.
Collapse
Affiliation(s)
- Fatemeh Soltanmohammadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Adel Mahmoudi Gharehbaba
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Rajabi Zangi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khosro Adibkia
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Javadzadeh
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
9
|
Grabowska K, Galanty A, Pecio Ł, Stojakowska A, Malarz J, Żmudzki P, Zagrodzki P, Podolak I. Selectivity Screening and Structure-Cytotoxic Activity Observations of Selected Oleanolic Acid (OA)-Type Saponins from the Amaranthaceae Family on a Wiade Panel of Human Cancer Cell Lines. Molecules 2024; 29:3794. [PMID: 39202875 PMCID: PMC11357256 DOI: 10.3390/molecules29163794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
Plants from the Amaranthaceae family are a source of oleanolic acid (OA)-type saponins with cytotoxic activity. Two known OA-type saponins, calenduloside E and chikusetsusaponin IVa, were isolated from the roots of Chenopodium strictum Roth. Their structures were confirmed using MS and NMR techniques. This constitutes the inaugural report of the saponins in Ch. strictum. Both the isolated saponins and structurally similar compounds, momordin Ic and OA, were compared for their cytotoxicity against various cancer and normal cell lines (including skin, breast, thyroid, gastrointestinal, and prostate panels). Their effects were dose- and time-dependent, varying with the specific cell line and compound structure. A chemometric approach demonstrated the effects of the compounds on the cell lines. The study discusses the structure-activity observations. The key structural elements for potent cytotoxic activity included the free carboxyl group 28COOH in the sapogenin structure (OA) and the presence of a sugar moiety. The monodesmosides with glucuronic acid (GlcA) at the C3 position of OA were generally more cytotoxic than bidesmosides or OA alone. The addition of xylose in the sugar chain modified the activity towards the cancer cells depending on the specific cell line. OA-type saponins with GlcA (particularly calenduloside E and momordin Ic) represent a promising avenue for further investigation as potential anticancer agents.
Collapse
Affiliation(s)
- Karolina Grabowska
- Department of Pharmacognosy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Cracow, Poland; (K.G.); (I.P.)
| | - Agnieszka Galanty
- Department of Pharmacognosy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Cracow, Poland; (K.G.); (I.P.)
| | - Łukasz Pecio
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation–State Research Institute, ul. Czartoryskich 8, 24-100 Puławy, Poland;
- Department of Chemistry of Natural Products, Medical University of Lublin, 20-093 Lublin, Poland
| | - Anna Stojakowska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna Street 12, 31-343 Kraków, Poland; (A.S.); (J.M.)
| | - Janusz Malarz
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna Street 12, 31-343 Kraków, Poland; (A.S.); (J.M.)
| | - Paweł Żmudzki
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Cracow, Poland;
- Center for the Development of Therapies for Civilization and Age-Related Diseases, Jagiellonian University Medical College, Skawińska 8, 31-066 Krakow, Poland
| | - Paweł Zagrodzki
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, 9 Medyczna, 30-688 Kraków, Poland;
| | - Irma Podolak
- Department of Pharmacognosy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Cracow, Poland; (K.G.); (I.P.)
| |
Collapse
|
10
|
Wang J, Yin B, Lian J, Wang X. Extracellular Vesicles as Drug Delivery System for Cancer Therapy. Pharmaceutics 2024; 16:1029. [PMID: 39204374 PMCID: PMC11359799 DOI: 10.3390/pharmaceutics16081029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/18/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
In recent decades, the pursuit of drug delivery systems has led to the development of numerous synthetic options aimed at enhancing drug efficacy while minimizing side effects. However, the practical application of these systems is often hindered by challenges such as inefficiency, cytotoxicity, and immunogenicity. Extracellular vesicles, natural carriers for drugs, emerge as promising alternatives with distinct advantages over synthetic carriers. Notably, EVs exhibit biocompatibility, low immunogenicity, and inherent tissue-targeting capabilities, thus opening new avenues for drug delivery strategies. This review provides an overview of EVs, including their biogenesis and absorption mechanisms. Additionally, we explore the current research efforts focusing on harnessing their potential as drug carriers, encompassing aspects such as purification techniques, drug loading, and bioengineering for targeted delivery. Finally, we discuss the existing challenges and future prospects of EVs as therapeutic agents in clinical settings. This comprehensive analysis aims to shed light on the potential of EVs as versatile and effective tools for drug delivery, particularly in the realm of cancer therapy.
Collapse
Affiliation(s)
- Jin Wang
- School of Life Sciences, Liaoning University, Shenyang 110036, China; (J.W.); (J.L.)
| | - Bohang Yin
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang 110001, China;
| | - Jiabing Lian
- School of Life Sciences, Liaoning University, Shenyang 110036, China; (J.W.); (J.L.)
| | - Xia Wang
- Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenyang 110122, China
| |
Collapse
|
11
|
Guo L, Xiao D, Xing H, Yang G, Yang X. Engineered exosomes as a prospective therapy for diabetic foot ulcers. BURNS & TRAUMA 2024; 12:tkae023. [PMID: 39026930 PMCID: PMC11255484 DOI: 10.1093/burnst/tkae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/29/2024] [Indexed: 07/20/2024]
Abstract
Diabetic foot ulcer (DFU), characterized by high recurrence rate, amputations and mortality, poses a significant challenge in diabetes management. The complex pathology involves dysregulated glucose homeostasis leading to systemic and local microenvironmental complications, including peripheral neuropathy, micro- and macro-angiopathy, recurrent infection, persistent inflammation and dysregulated re-epithelialization. Novel approaches to accelerate DFU healing are actively pursued, with a focus on utilizing exosomes. Exosomes are natural nanovesicles mediating cellular communication and containing diverse functional molecular cargos, including DNA, mRNA, microRNA (miRNA), lncRNA, proteins, lipids and metabolites. While some exosomes show promise in modulating cellular function and promoting ulcer healing, their efficacy is limited by low yield, impurities, low loading content and inadequate targeting. Engineering exosomes to enhance their curative activity represents a potentially more efficient approach for DFUs. This could facilitate focused repair and regeneration of nerves, blood vessels and soft tissue after ulcer development. This review provides an overview of DFU pathogenesis, strategies for exosome engineering and the targeted therapeutic application of engineered exosomes in addressing critical pathological changes associated with DFUs.
Collapse
Affiliation(s)
- Lifei Guo
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Chang-Le Xi Street #127, Xi'an 710032, China
- The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Chang-Le Xi Street #127, Xi'an 710032, China
- Cadet Team 6 of School of Basic Medicine, Fourth Military Medical University, Chang-Le Xi Street #127, Xi'an 710032, China
| | - Dan Xiao
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Chang-Le Xi Street #127, Xi'an 710032, China
- The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Chang-Le Xi Street #127, Xi'an 710032, China
| | - Helin Xing
- Department of Prosthodontics, Beijing Stomatological Hospital and School of Stomatology, Capital Medical University, Tiantanxili Street #4, Dongcheng District, Beijing 100050, China
| | - Guodong Yang
- The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Chang-Le Xi Street #127, Xi'an 710032, China
| | - Xuekang Yang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Chang-Le Xi Street #127, Xi'an 710032, China
| |
Collapse
|
12
|
Bahadorani M, Nasiri M, Dellinger K, Aravamudhan S, Zadegan R. Engineering Exosomes for Therapeutic Applications: Decoding Biogenesis, Content Modification, and Cargo Loading Strategies. Int J Nanomedicine 2024; 19:7137-7164. [PMID: 39050874 PMCID: PMC11268655 DOI: 10.2147/ijn.s464249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024] Open
Abstract
Exosomes emerge from endosomal invagination and range in size from 30 to 200 nm. Exosomes contain diverse proteins, lipids, and nucleic acids, which can indicate the state of various physiological and pathological processes. Studies have revealed the remarkable clinical potential of exosomes in diagnosing and prognosing multiple diseases, including cancer, cardiovascular disorders, and neurodegenerative conditions. Exosomes also have the potential to be engineered and deliver their cargo to a specific target. However, further advancements are imperative to optimize exosomes' diagnostic and therapeutic capabilities for practical implementation in clinical settings. This review highlights exosomes' diagnostic and therapeutic applications, emphasizing their engineering through simple incubation, biological, and click chemistry techniques. Additionally, the loading of therapeutic agents onto exosomes, utilizing passive and active strategies, and exploring hybrid and artificial exosomes are discussed.
Collapse
Affiliation(s)
- Mehrnoosh Bahadorani
- Department of Nanoengineering, Joint School of Nanoscience & Nanoengineering, North Carolina Agriculture and Technical State University, Greensboro, NC, USA
| | - Mahboobeh Nasiri
- Department of Nanoengineering, Joint School of Nanoscience & Nanoengineering, North Carolina Agriculture and Technical State University, Greensboro, NC, USA
| | - Kristen Dellinger
- Department of Nanoengineering, Joint School of Nanoscience & Nanoengineering, North Carolina Agriculture and Technical State University, Greensboro, NC, USA
| | - Shyam Aravamudhan
- Department of Nanoengineering, Joint School of Nanoscience & Nanoengineering, North Carolina Agriculture and Technical State University, Greensboro, NC, USA
| | - Reza Zadegan
- Department of Nanoengineering, Joint School of Nanoscience & Nanoengineering, North Carolina Agriculture and Technical State University, Greensboro, NC, USA
| |
Collapse
|
13
|
Rallis S, Tomou EM, Drakopoulou SK, Tzakos AG, Thomaidis NS, Skaltsa H. NMR-guided isolation of undescribed triterpenoid saponins from Lysimachia atropurpurea L. PHYTOCHEMISTRY 2024; 223:114104. [PMID: 38657884 DOI: 10.1016/j.phytochem.2024.114104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/02/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
Phytochemical investigation on aerial parts of Lysimachia atropurpurea L. (Myrsinaceae), guided by NMR methods, resulted in the isolation and characterization of three previously undescribed triterpenoid saponins named stralysaponins A-C along with five known compounds. Their structures were elucidated by 1D and 2D NMR spectroscopy and HR-ESI-MS. Stralysaponins A-C were categorized into 13β-28-epoxyoleanane-type triterpenoid saponins, reaffirming their prevalent presence of this type in the Myrsinaceae family and the genus Lysimachia. The identified derivatives share a common four-unit branched sugar chain, with rhamnose as the terminal sugar linked at C-3 of the aglycone. The presence of triterpenoid saponins in L. atropurpurea is reported herein for the first time. This study enriched the chemical diversity of triterpenoid saponins of the genus Lysimachia. Additionally, it demonstrates the effectiveness of NMR-profiling in isolating previously undescribed triterpenoid saponins from Lysimachia spp.
Collapse
Affiliation(s)
- Stylianos Rallis
- Department of Pharmacognosy & Chemistry of Natural Products, School of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece
| | - Ekaterina-Michaela Tomou
- Department of Pharmacognosy & Chemistry of Natural Products, School of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece.
| | - Sofia K Drakopoulou
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Andreas G Tzakos
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, Ioannina, Greece
| | - Nikolaos S Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Helen Skaltsa
- Department of Pharmacognosy & Chemistry of Natural Products, School of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece.
| |
Collapse
|
14
|
Smakosz A, Matkowski A, Nawrot-Hadzik I. Phytochemistry and Biological Activities of Agrostemma Genus-A Review. PLANTS (BASEL, SWITZERLAND) 2024; 13:1673. [PMID: 38931105 PMCID: PMC11207627 DOI: 10.3390/plants13121673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/09/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
The family Caryophyllaceae comprises more than 2600 species spread widely across all the continents. Their economic importance is mainly as ornamentals (carnation) and as weeds in agriculture. Some species have been used traditionally (and some are still) in herbal medicine or as emulsifiers in food processing. These applications are based on the high content of triterpenoid saponins. Typical for this family are also ribosome-inactivating proteins (RIPs), which are potentially highly toxic. Agrostemma githago L. (common corncockle) was historically considered a serious toxicological hazard owing to cereal grain contamination by its seeds. Notwithstanding, it was also recommended as a drug by various herbalists. In this review, the literature was searched in the PubMed, Google Scholar, and Scopus databases for papers focused on the chemical composition and bioactivity of the two accepted species of the Agrostemma genus. This systematic review adhered to the Preferred Reporting Items for Systematic Reviews and MetaAnalysis (PRISMA) guidelines. Current research reports the cytotoxicity against neoplastic cells; the protection against oxidative stress; the suppression of Leishmania major culture growth; the inhibition of protein synthesis; and the antiviral, anti-angiogenic, and antihypercholesterolemic activities of common corncockle. The future prospects of using A. githago saponins as adjuvants in drug formulations and enhancing the cytotoxicity of RIPs are also discussed.
Collapse
Affiliation(s)
| | - Adam Matkowski
- Department of Pharmaceutical Biology and Biotechnology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland; (A.S.); (I.N.-H.)
| | | |
Collapse
|
15
|
Liu Q, Yu H, Dong Y, Quan W, Su Z, Li L. Quality Evaluation of Lonicerae Flos Produced in Southwest China Based on HPLC Analysis and Antioxidant Activity. Molecules 2024; 29:2560. [PMID: 38893434 PMCID: PMC11173438 DOI: 10.3390/molecules29112560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Lonicera macranthoides, the main source of traditional Chinese medicine Lonicerae Flos, is extensively cultivated in Southwest China. However, the quality of L. macranthoides produced in this region significantly varies due to its wide distribution and various cultivation breeds. Herein, 50 Lonicerae Flos samples derived from different breeds of L. macranthoides cultivated in Southwest China were collected for quality evaluation. Six organic acids and three saponin compounds were quantitatively analyzed using HPLC. Furthermore, the antioxidant activity of a portion of samples was conducted with 2,2'-Azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS) and 1,1-diphenyl-2-picryl-hydrazyl (DPPH) radical scavenging experiments. According to the quantitative results, all samples met the quality standards outlined in the Chinese Pharmacopoeia. The samples from Guizhou, whether derived from unopened or open wild-type breeds, exhibited high quality, while the wild-type samples showed relatively significant fluctuation in quality. The samples from Chongqing and Hunan demonstrated similar quality, whereas those from Sichuan exhibited relatively lower quality. These samples demonstrated significant abilities in clearing ABTS and DPPH radicals. The relationship between HPLC chromatograms and antioxidant activity, as elucidated by multivariate analysis, indicated that chlorogenic acid, isochlorogenic acid A, isochlorogenic acid B, and isochlorogenic acid C are active components and can serve as Q-markers for quality evaluation.
Collapse
Affiliation(s)
- Qundong Liu
- Chongqing Academy of Chinese Materia Medica, Chongqing 400065, China; (Q.L.)
| | - Huanhuan Yu
- Chongqing Institute for Food and Drug Control, Chongqing 401121, China
| | - Yuzhuo Dong
- Research Centre of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Wenjing Quan
- Chongqing Academy of Chinese Materia Medica, Chongqing 400065, China; (Q.L.)
| | - Zhimin Su
- Chongqing Academy of Chinese Materia Medica, Chongqing 400065, China; (Q.L.)
| | - Longyun Li
- Chongqing Academy of Chinese Materia Medica, Chongqing 400065, China; (Q.L.)
| |
Collapse
|
16
|
Zhou W, Wang X, Dong Y, Gao P, Zhao X, Wang M, Wu X, Shen J, Zhang X, Lu Z, An W. Stem cell-derived extracellular vesicles in the therapeutic intervention of Alzheimer's Disease, Parkinson's Disease, and stroke. Theranostics 2024; 14:3358-3384. [PMID: 38855176 PMCID: PMC11155406 DOI: 10.7150/thno.95953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/23/2024] [Indexed: 06/11/2024] Open
Abstract
With the increase in the aging population, the occurrence of neurological disorders is rising. Recently, stem cell therapy has garnered attention due to its convenient sourcing, minimal invasiveness, and capacity for directed differentiation. However, there are some disadvantages, such as poor quality control, safety assessments, and ethical and logistical issues. Consequently, scientists have started to shift their attention from stem cells to extracellular vesicles due to their similar structures and properties. Beyond these parallels, extracellular vesicles can enhance biocompatibility, facilitate easy traversal of barriers, and minimize side effects. Furthermore, stem cell-derived extracellular vesicles can be engineered to load drugs and modify surfaces to enhance treatment outcomes. In this review, we summarize the functions of native stem cell-derived extracellular vesicles, subsequently review the strategies for the engineering of stem cell-derived extracellular vesicles and their applications in Alzheimer's disease, Parkinson's disease, and stroke, and discuss the challenges and solutions associated with the clinical translation of stem cell-derived extracellular vesicles.
Collapse
Affiliation(s)
- Wantong Zhou
- National Vaccine Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China
| | - Xudong Wang
- National Vaccine Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China
| | - Yumeng Dong
- Capital Medical University, 10 Xitoutiao, Youanmenwai Street, Beijing 100069, China
| | - Peifen Gao
- National Vaccine Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China
| | - Xian Zhao
- National Vaccine Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China
| | - Mengxia Wang
- National Vaccine Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China
| | - Xue Wu
- National Vaccine Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China
| | - Jiuheng Shen
- National Vaccine Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China
| | - Xin Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhiguo Lu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Wenlin An
- National Vaccine Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China
| |
Collapse
|
17
|
Abdul-Rahman T, Roy P, Herrera-Calderón RE, Khidri FF, Omotesho QA, Rumide TS, Fatima M, Roy S, Wireko AA, Atallah O, Roy S, Amekpor F, Ghosh S, Agyigra IA, Horbas V, Teslyk T, Bumeister V, Papadakis M, Alexiou A. Extracellular vesicle-mediated drug delivery in breast cancer theranostics. Discov Oncol 2024; 15:181. [PMID: 38780753 PMCID: PMC11116322 DOI: 10.1007/s12672-024-01007-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Breast cancer (BC) continues to be a significant global challenge due to drug resistance and severe side effects. The increasing prevalence is alarming, requiring new therapeutic approaches to address these challenges. At this point, Extracellular vesicles (EVs), specifically small endosome-released nanometer-sized EVs (SEVs) or exosomes, have been explored by literature as potential theranostics. Therefore, this review aims to highlight the therapeutic potential of exosomes in BC, focusing on their advantages in drug delivery and their ability to mitigate metastasis. Following the review, we identified exosomes' potential in combination therapies, serving as miRNA carriers and contributing to improved anti-tumor effects. This is evident in clinical trials investigating exosomes in BC, which have shown their ability to boost chemotherapy efficacy by delivering drugs like paclitaxel (PTX) and doxorubicin (DOX). However, the translation of EVs into BC therapy is hindered by various challenges. These challenges include the heterogeneity of EVs, the selection of the appropriate parent cell, the loading procedures, and determining the optimal administration routes. Despite the promising therapeutic potential of EVs, these obstacles must be addressed to realize their benefits in BC treatment.
Collapse
Affiliation(s)
| | - Poulami Roy
- Department of Medicine, North Bengal Medical College and Hospital, Siliguri, India
| | - Ranferi Eduardo Herrera-Calderón
- Center for Research in Health Sciences (CICSA), Faculty of Medicine, Anahuac University North Campus, 52786, Huixquilucan, Mexico
| | | | | | | | | | - Sakshi Roy
- School of Medicine, Queens University Belfast, Northern Ireland, UK
| | | | - Oday Atallah
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Subham Roy
- Hull York Medical School, University of York, York, UK
| | - Felix Amekpor
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Shankhaneel Ghosh
- Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan, Bhubaneswar, India
| | | | | | | | | | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, Heusnerstrasse 40, University of Witten-Herdecke, 42283, Wuppertal, Germany.
| | - Athanasios Alexiou
- University Centre for Research and Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India.
- Department of Research and Development, Funogen, 11741, Athens, Greece.
- Department of Research and Development, AFNP Med, 1030, Vienna, Austria.
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia.
| |
Collapse
|
18
|
Stefanowicz-Hajduk J, Graczyk P, Hering A, Gucwa M, Nowak A, Hałasa R. An In Vitro Study on the Cytotoxic, Antioxidant, and Antimicrobial Properties of Yamogenin-A Plant Steroidal Saponin and Evaluation of Its Mechanism of Action in Gastric Cancer Cells. Int J Mol Sci 2024; 25:4627. [PMID: 38731847 PMCID: PMC11083171 DOI: 10.3390/ijms25094627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Yamogenin is a steroidal saponin occurring in plant species such as Asparagus officinalis, Dioscorea collettii, Trigonella foenum-graecum, and Agave sp. In this study, we evaluated in vitro cytotoxic, antioxidant, and antimicrobial properties of yamogenin. The cytotoxic activity was estimated on human colon cancer HCT116, gastric cancer AGS, squamous carcinoma UM-SCC-6 cells, and human normal fibroblasts with MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay. The amount of apoptotic and dead AGS cells after treatment with yamogenin was estimated with flow cytometry. Also, in yamogenin-treated AGS cells we investigated the reactive oxygen species (ROS) production, mitochondrial membrane depolarization, activity level of caspase-8 and -9, and gene expression at mRNA level with flow cytometry, luminometry, and RT-PCR, respectively. The antioxidant properties of yamogenin were assessed with DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) assays. The antimicrobial potential of the compound was estimated on Staphylococcus aureus, Bacillus cereus, Klebsiella pneumoniae, Escherichia coli, Salmonella enterica, Helicobacter pylori, Campylobacter coli, Campylobacter jejuni, Listeria monocytogenes, Lactobacillus paracasei, and Lactobacillus acidophilus bacteria strains. Yamogenin showed the strongest cytotoxic effect on AGS cells (IC50 18.50 ± 1.24 µg/mL) among the tested cell lines. This effect was significantly stronger in combinations of yamogenin with oxaliplatin or capecitabine than for the single compounds. Furthermore, yamogenin induced ROS production, depolarized mitochondrial membrane, and increased the activity level of caspase-8 and -9 in AGS cells. RT-PCR analysis revealed that this sapogenin strongly up-regulated TNFRSF25 expression at the mRNA level. These results indicate that yamogenin induced cell death via the extrinsic and intrinsic way of apoptosis. Antioxidant study showed that yamogenin had moderate in vitro potential (IC50 704.7 ± 5.9 µg/mL in DPPH and 631.09 ± 3.51 µg/mL in ABTS assay) as well as the inhibition of protein denaturation properties (with IC50 1421.92 ± 6.06 µg/mL). Antimicrobial test revealed a weak effect of yamogenin on bacteria strains, the strongest one being against S. aureus (with MIC value of 350 µg/mL). In conclusion, yamogenin may be a potential candidate for the treatment and prevention of gastric cancers.
Collapse
Affiliation(s)
- Justyna Stefanowicz-Hajduk
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, 80-416 Gdańsk, Poland; (P.G.); (A.H.); (M.G.)
| | - Piotr Graczyk
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, 80-416 Gdańsk, Poland; (P.G.); (A.H.); (M.G.)
| | - Anna Hering
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, 80-416 Gdańsk, Poland; (P.G.); (A.H.); (M.G.)
| | - Magdalena Gucwa
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, 80-416 Gdańsk, Poland; (P.G.); (A.H.); (M.G.)
| | - Anna Nowak
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland;
| | - Rafał Hałasa
- Department of Pharmaceutical Microbiology, Medical University of Gdańsk, 80-416 Gdańsk, Poland;
| |
Collapse
|
19
|
Jolly A, Hour Y, Lee YC. An outlook on the versatility of plant saponins: A review. Fitoterapia 2024; 174:105858. [PMID: 38365071 DOI: 10.1016/j.fitote.2024.105858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/08/2024] [Accepted: 02/11/2024] [Indexed: 02/18/2024]
Abstract
The abundance of saponin-rich plants across different ecosystems indicates their great potential as a replacement for harmful synthetic surfactants in modern commercial products. These organic saponins have remarkable biological and surface-active properties and align with sustainable and eco-friendly practices. This article examines and discusses the structure and properties of plant saponins with high yield of saponin concentrations and their exploitable applications. This highlights the potential of saponins as ethical substitutes for traditional synthetic surfactants and pharmacological agents, with favorable effects on the economy and environment. For this purpose, studies on the relevant capabilities, structure, and yield of selected plants were thoroughly examined. Studies on the possible uses of the selected saponins have also been conducted. This in-depth analysis highlights the potential of saponins as workable and ethical replacements for traditional synthetic medications and surfactants, thus emphasizing their favorable effects on human health and the environment.
Collapse
Affiliation(s)
- Annu Jolly
- Department of BioNanotechnology, Gachon University, 1342 Seongnam-Daero, Sujeon-Gu, Seongnam-Si, Gyeonggi-Do 13120, Republic of Korea
| | - Youl Hour
- 125-6, Techno 2-ro, Yuseong-gu, Daejeon 34024, BTGin co., Ltd., Republic of Korea.
| | - Young-Chul Lee
- Department of BioNanotechnology, Gachon University, 1342 Seongnam-Daero, Sujeon-Gu, Seongnam-Si, Gyeonggi-Do 13120, Republic of Korea.
| |
Collapse
|
20
|
Grzywaczyk A, Smułek W, Kaczorek E. Saponaria officinalis saponins as a factor increasing permeability of Candida yeasts' biomembrane. World J Microbiol Biotechnol 2024; 40:152. [PMID: 38553646 DOI: 10.1007/s11274-024-03961-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 03/18/2024] [Indexed: 04/02/2024]
Abstract
Saponins are a large group of compounds, produced mostly by plants as a side product of their metabolic activity. These compounds have attracted much attention over the years mostly because of their surface activity and antibacterial, anti-inflammatory and antifungal properties. On the other hand, most of the hitherto research has concerned the action of saponins against microbial cells as a whole. Therefore, knowing the possible interaction of saponins with biomembrane, we decided to check in-vitro the influence of saponin-rich extract of Saponaria officinalis on spheroplasts of two Candida sp. The obtained results show that 10 mg L- 1 of extract increased the permeability of spheroplasts up to 21.76% relative to that of the control sample. Moreover, the evaluation of surface potential has revealed a decrease by almost 10 mV relative to that of the untreated samples. Such results suggest its direct correlation to integration of saponins into the biomembrane structure. The obtained results have proved the antifungal potential of saponins and their ability of permeabilization of cells. This proves the high potential of saponins use as additives to antifungal pharmaceutics, which is expected to lead to improvement of their action or reduction of required dosage.
Collapse
Affiliation(s)
- Adam Grzywaczyk
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, Poznan, 60-695, Poland.
| | - Wojciech Smułek
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, Poznan, 60-695, Poland
| | - Ewa Kaczorek
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, Poznan, 60-695, Poland
| |
Collapse
|
21
|
Yaghoobi A, Rezaee M, Behnoush AH, Khalaji A, Mafi A, Houjaghan AK, Masoudkabir F, Pahlavan S. Role of long noncoding RNAs in pathological cardiac remodeling after myocardial infarction: An emerging insight into molecular mechanisms and therapeutic potential. Biomed Pharmacother 2024; 172:116248. [PMID: 38325262 DOI: 10.1016/j.biopha.2024.116248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/09/2024] Open
Abstract
Myocardial infarction (MI) is the leading cause of heart failure (HF), accounting for high mortality and morbidity worldwide. As a consequence of ischemia/reperfusion injury during MI, multiple cellular processes such as oxidative stress-induced damage, cardiomyocyte death, and inflammatory responses occur. In the next stage, the proliferation and activation of cardiac fibroblasts results in myocardial fibrosis and HF progression. Therefore, developing a novel therapeutic strategy is urgently warranted to restrict the progression of pathological cardiac remodeling. Recently, targeting long non-coding RNAs (lncRNAs) provided a novel insight into treating several disorders. In this regard, numerous investigations have indicated that several lncRNAs could participate in the pathogenesis of MI-induced cardiac remodeling, suggesting their potential therapeutic applications. In this review, we summarized lncRNAs displayed in the pathophysiology of cardiac remodeling after MI, emphasizing molecular mechanisms. Also, we highlighted the possible translational role of lncRNAs as therapeutic targets for this condition and discussed the potential role of exosomes in delivering the lncRNAs involved in post-MI cardiac remodeling.
Collapse
Affiliation(s)
- Alireza Yaghoobi
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Malihe Rezaee
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Behnoush
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirmohammad Khalaji
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Farzad Masoudkabir
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Sara Pahlavan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
22
|
Bhattacharya D, Bharati MR, Sakhare K, Khandelia P, Banerjee R, Narayan KP. Steroid hormone receptor based gene delivery systems as potential oral cancer therapeutics. Biomed Mater 2024; 19:025036. [PMID: 38290150 DOI: 10.1088/1748-605x/ad2407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/30/2024] [Indexed: 02/01/2024]
Abstract
Glucocorticoid and Mineralocorticoid receptors are principally ligand-dependent intracellular transcription factors that are known to influence the development and growth of many human cancers. Our study investigates the potential of these receptors to act as a target for oral cancer treatment since findings in this regard are sparse till date. Leveraging the aberrant behavior of steroid hormone receptors (SHRs) in cancer, we have targeted oral cancer cells in 2D-culture using liposomes containing both synthetic as well as crude, natural SHR ligands isolated from an aqueous Indian medicinal plant. Lipoplexes thus formulated demonstrated targeted transfectability as indicated by expression of green fluorescent protein. Transfection of oral squamous cell carcinoma cells with exogenous, anticancer gene p53 lipoplexed with crude saponin-based liposome induced apoptosis of cancer cells via regulation of BAX and B-cell leukemia/lymphoma-2 (BCL2) protein levels at levels comparable with pre-established delivery systems based on synthetic SHR ligands. Our findings strongly indicate a possibility of developing plant saponin-based inexpensive delivery systems which would target cancer cells selectively with reduced risks of off target delivery and its side effects.
Collapse
Affiliation(s)
- Dwaipayan Bhattacharya
- Department of Biological Science, Birla Institute of Technology & Science Pilani, Hyderabad Campus, Jawaharnagar, Kapra Mandal, Hyderabad, Telangana 500078, India
| | - Madhu Rani Bharati
- Department of Biological Science, Birla Institute of Technology & Science Pilani, Hyderabad Campus, Jawaharnagar, Kapra Mandal, Hyderabad, Telangana 500078, India
| | - Kalyani Sakhare
- Department of Biological Science, Birla Institute of Technology & Science Pilani, Hyderabad Campus, Jawaharnagar, Kapra Mandal, Hyderabad, Telangana 500078, India
| | - Piyush Khandelia
- Department of Biological Science, Birla Institute of Technology & Science Pilani, Hyderabad Campus, Jawaharnagar, Kapra Mandal, Hyderabad, Telangana 500078, India
| | - Rajkumar Banerjee
- Division of Oils, Lipid Science & Technology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, Telangana 500076, India
| | - Kumar Pranav Narayan
- Department of Biological Science, Birla Institute of Technology & Science Pilani, Hyderabad Campus, Jawaharnagar, Kapra Mandal, Hyderabad, Telangana 500078, India
| |
Collapse
|
23
|
Liu X, Cao Y, Wang S, Liu J, Hao H. Extracellular vesicles: powerful candidates in nano-drug delivery systems. Drug Deliv Transl Res 2024; 14:295-311. [PMID: 37581742 DOI: 10.1007/s13346-023-01411-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2023] [Indexed: 08/16/2023]
Abstract
Extracellular vesicles (EVs), which are nanoparticles that are actively released by cells, contain a variety of biologically active substances, serve as significant mediators of intercellular communication, and participate in many processes, in health and pathologically. Compared with traditional nanodrug delivery systems (NDDSs), EVs have unique advantages due to their natural physiological properties, such as their biocompatibility, stability, ability to cross barriers, and inherent homing properties. A growing number of studies have reported that EVs deliver therapeutic proteins, small-molecule drugs, siRNAs, miRNAs, therapeutic proteins, and nanomaterials for targeted therapy in various diseases. However, due to the lack of standardized techniques for isolating, quantifying, and characterizing EVs; lower-than-anticipated drug loading efficiency; insufficient clinical production; and potential safety concerns, the practical application of EVs still faces many challenges. Here, we systematically review the current commonly used methods for isolating EVs, summarize the types and methods of loading therapeutic drugs into EVs, and discuss the latest progress in applying EVs as NDDs. Finally, we present the challenges that hinder the clinical application of EVs.
Collapse
Affiliation(s)
- Xiaofei Liu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia, People's Republic of China
| | - Yinfang Cao
- Department of Laboratory Medicine, Inner Mongolia People's Hospital, No. 17 Zhaowuda Road, Saihan District, Hohhot, Inner Mongolia, People's Republic of China
| | - Shuming Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia, People's Republic of China
| | - Jiahui Liu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia, People's Republic of China
| | - Huifang Hao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia, People's Republic of China.
- Department of Chemistry and Chemical Engineering, Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Inner Mongolia University, Hohhot, Inner Mongolia, People's Republic of China.
| |
Collapse
|
24
|
White CS, Dilger RN. Immunomodulatory potential of dietary soybean-derived saponins. J Anim Sci 2024; 102:skae349. [PMID: 39529449 PMCID: PMC11630861 DOI: 10.1093/jas/skae349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
Soybeans are widely recognized as a valuable crop, often included as a high-quality protein source in production animal diets. In addition to contributing to the macronutrient composition of the diet, soybeans also contain many minor bioactive components which can influence the health and growth of animals. This review examined the immunomodulatory potential of soy saponins and their specific effects on the inflammatory response, oxidative stress, and intestinal barrier function. Saponins are amphiphilic molecules, a property imparted by their polar carbohydrate chains that attach to a nonpolar aglycone backbone. This structure also complicates their isolation, thus most research investigating soy saponins has been performed in models that only require small amounts of isolated material. Many experiments conducted in vitro or in rodents reported that saponins can reduce damage, particularly in conditions where a challenge was first introduced to stimulate inflammation or oxidative stress. It appears that saponins can exert their anti-inflammatory effects through modulation of the NF-κB pathway, reducing its activation and the release of pro-inflammatory molecules later in the cascade. Furthermore, soy saponins can influence levels of important anti-oxidative enzymes and reduce the generation of reactive oxygen species, thus attenuating levels of oxidative stress in the model. As these results were obtained from experiments done in vitro or in rodents, they neglect to provide a good representation of how soy saponins may affect some of the greatest consumers of soy-based products, with those being production animals. The work that has been done seems to indicate that soy saponins may exert similar anti-inflammatory and anti-oxidative effects in production animals as those observed in other research models along with immunostimulatory activity that may help boost host defense systems. Overall, there is a dearth of research regarding the effects of soy saponins on species that commonly consume soy products, which begins by developing more effective methods of saponin extraction.
Collapse
Affiliation(s)
- Cameron S White
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| | - Ryan N Dilger
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| |
Collapse
|
25
|
Seo Y, Lim C, Lee J, Kim J, Kim YH, Lee PCW, Jang SW. Sakurasosaponin inhibits lung cancer cell proliferation by inducing autophagy via AMPK activation. Oncol Lett 2023; 26:501. [PMID: 37920436 PMCID: PMC10618918 DOI: 10.3892/ol.2023.14088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/19/2023] [Indexed: 11/04/2023] Open
Abstract
Sakurasosaponin (S-saponin; PubChem ID: 3085160), a recently identified saponin from the roots of Primula sieboldii, has shown potential anticancer properties against various types of cancer. In the present study, the effects of S-saponin on non-small cell lung cancer (NSCLC) cell proliferation and the underlying mechanisms, were investigated. The effect of S-saponin on cell proliferation and cell death were assessed CCK-8, clonogenic assay, western blotting and Annexin V/PI double staining. S-saponin-induced autophagy was determined by confocal microscopic analysis and immunoblotting. S-saponin inhibited the proliferation of A549 and H1299 NSCLC cell lines in a dose- and time-dependent manner, without inducing apoptosis. S-saponin treatment induced autophagy in these cells, as evidenced by the increased LC3-II levels and GFP-LC3 puncta formation. It activated the adenosine monophosphate-activated protein kinase (AMPK) signaling pathway, which is crucial for autophagy induction. Inhibition of AMPK with Compound C or siRNA-mediated knockdown of AMPK abrogated S-saponin-induced autophagy and partially rescued cell proliferation. Therefore, S-saponin exerts anti-proliferative effects on NSCLC cells through autophagy induction via AMPK activation. Understanding the molecular mechanisms underlying the anticancer effects of S-saponin in NSCLC cells could provide insights for the development of novel therapeutic strategies for NSCLC.
Collapse
Affiliation(s)
- Yulyeong Seo
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
- Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, Seoul 138-736, Republic of Korea
| | - Chungun Lim
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
- Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, Seoul 138-736, Republic of Korea
| | - Jimin Lee
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
- Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, Seoul 138-736, Republic of Korea
| | - Jinho Kim
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
- Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, Seoul 138-736, Republic of Korea
| | - Yoon Hyoung Kim
- Department of Medicine, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - Peter C W Lee
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - Sung-Wuk Jang
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
- Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, Seoul 138-736, Republic of Korea
| |
Collapse
|
26
|
Grudzińska M, Stachnik B, Galanty A, Sołtys A, Podolak I. Progress in Antimelanoma Research of Natural Triterpenoids and Their Derivatives: Mechanisms of Action, Bioavailability Enhancement and Structure Modifications. Molecules 2023; 28:7763. [PMID: 38067491 PMCID: PMC10707933 DOI: 10.3390/molecules28237763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/17/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Melanoma is one of the most dangerous forms of skin cancer, characterized by early metastasis and rapid development. In search for effective treatment options, much attention is given to triterpenoids of plant origin, which are considered promising drug candidates due to their well described anticancer properties and relatively low toxicity. This paper comprehensively summarizes the antimelanoma potential of natural triterpenoids, that are also used as scaffolds for the development of more effective derivatives. These include betulin, betulinic acid, ursolic acid, maslinic acid, oleanolic acid, celastrol and lupeol. Some lesser-known triterpenoids that deserve attention in this context are 22β-hydroxytingenone, cucurbitacins, geoditin A and ganoderic acids. Recently described mechanisms of action are presented, together with the results of preclinical in vitro and in vivo studies, as well as the use of drug delivery systems and pharmaceutical technologies to improve the bioavailability of triterpenoids. This paper also reviews the most promising structural modifications, based on structure-activity observations. In conclusion, triterpenoids of plant origin and some of their semi-synthetic derivatives exert significant cytotoxic, antiproliferative and chemopreventive effects that can be beneficial for melanoma treatment. Recent data indicate that their poor solubility in water, and thus low bioavailability, can be overcome by complexing with cyclodextrins, or the use of nanoparticles and ethosomes, thus making these compounds promising antimelanoma drug candidates for further development.
Collapse
Affiliation(s)
- Marta Grudzińska
- Department of Pharmacognosy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (M.G.); (B.S.); (A.S.); (I.P.)
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
- Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, Łazarza 16, 31-530 Kraków, Poland
| | - Bogna Stachnik
- Department of Pharmacognosy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (M.G.); (B.S.); (A.S.); (I.P.)
| | - Agnieszka Galanty
- Department of Pharmacognosy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (M.G.); (B.S.); (A.S.); (I.P.)
| | - Agnieszka Sołtys
- Department of Pharmacognosy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (M.G.); (B.S.); (A.S.); (I.P.)
| | - Irma Podolak
- Department of Pharmacognosy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (M.G.); (B.S.); (A.S.); (I.P.)
| |
Collapse
|
27
|
Rocha DCP, Sisnande T, Gavino-Leopoldino D, Guimarães-Andrade IP, Cruz FF, Assunção-Miranda I, Mendonça SC, Leitão GG, Simas RC, Mohana-Borges R, Leitão SG, Allonso D. Antiviral, Cytoprotective, and Anti-Inflammatory Effect of Ampelozizyphus amazonicus Ducke Ethanolic Wood Extract on Chikungunya Virus Infection. Viruses 2023; 15:2232. [PMID: 38005909 PMCID: PMC10674702 DOI: 10.3390/v15112232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Chikungunya fever, a debilitating disease caused by Chikungunya virus (CHIKV), is characterized by a high fever of sudden onset and an intense arthralgia that impairs individual regular activities. Although most symptoms are self-limited, long-term persistent arthralgia is observed in 30-40% of infected individuals. Currently, there is no vaccine or specific treatment against CHIKV infection, so there is an urgent need for the discovery of new therapeutic options for CHIKF chronic cases. This present study aims to test the antiviral, cytoprotective, and anti-inflammatory activities of an ethanol extract (FF72) from Ampelozizyphus amazonicus Ducke wood, chemically characterized using mass spectrometry, which indicated the major presence of dammarane-type triterpenoid saponins. The major saponin in the extract, with a deprotonated molecule ion m/z 897 [M-H]-, was tentatively assigned as a jujubogenin triglycoside, a dammarane-type triterpenoid saponin. Treatment with FF72 resulted in a significant reduction in both virus replication and the production of infective virions in BHK-21-infected cells. The viability of infected cells was assessed using an MTT, and the result indicated that FF72 treatment was able to revert the toxicity mediated by CHIKV infection. In addition, FF72 had a direct effect on CHIKV, since the infectivity was completely abolished in the presence of the extract. FF72 treatment also reduced the expression of the major pro-inflammatory mediators overexpressed during CHIKV infection, such as IL-1β, IL-6, IL-8, and MCP-1. Overall, the present study elucidates the potential of FF72 to become a promising candidate of herbal medicine for alphaviruses infections.
Collapse
Affiliation(s)
- Daniele C. P. Rocha
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil;
- Laboratório de Biotecnologia e Bioengenharia Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (T.S.); (R.M.-B.)
| | - Tháyna Sisnande
- Laboratório de Biotecnologia e Bioengenharia Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (T.S.); (R.M.-B.)
| | - Daniel Gavino-Leopoldino
- Laboratório de Resposta Celular à Infecções Virais, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (D.G.-L.); (I.P.G.-A.); (I.A.-M.)
| | - Iris Paula Guimarães-Andrade
- Laboratório de Resposta Celular à Infecções Virais, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (D.G.-L.); (I.P.G.-A.); (I.A.-M.)
| | - Fernanda F. Cruz
- Laboratório de Investigação Pulmonar, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil;
| | - Iranaia Assunção-Miranda
- Laboratório de Resposta Celular à Infecções Virais, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (D.G.-L.); (I.P.G.-A.); (I.A.-M.)
| | - Simony C. Mendonça
- Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (S.C.M.); (G.G.L.)
- Departamento de Produtos Naturais e Alimentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil;
| | - Gilda Guimarães Leitão
- Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (S.C.M.); (G.G.L.)
| | - Rosineide Costa Simas
- Faculdade de Química, Escola de Engenharia, Universidade Presbiteriana Mackenzie, São Paulo 01302-907, SP, Brazil;
| | - Ronaldo Mohana-Borges
- Laboratório de Biotecnologia e Bioengenharia Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (T.S.); (R.M.-B.)
| | - Suzana Guimarães Leitão
- Departamento de Produtos Naturais e Alimentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil;
| | - Diego Allonso
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil;
| |
Collapse
|
28
|
Hu J, Liu Y, Du Y, Peng X, Liu Z. Cellular organelles as drug carriers for disease treatment. J Control Release 2023; 363:114-135. [PMID: 37742846 DOI: 10.1016/j.jconrel.2023.09.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023]
Abstract
Organelles not only constitute the basic structure of the cell but also are important in maintaining the normal physiological activities of the cell. With the development of biomimetic nanoscience, researchers have developed technologies to use organelles as drug carriers for disease treatment. Compared with traditional drug carriers, organelle drug carriers have the advantages of good biocompatibility, high drug loading efficiency, and modifiability, and the surface biomarkers of organelles can also participate in intracellular signal transduction to enhance intracellular and intercellular communication, and assist in enhancing the therapeutic effect of drugs. Among different types of organelles, extracellular vesicles, lipid droplets, lysosomes, and mitochondria have been used as drug carriers. This review briefly reviews the biogenesis, isolation methods, and drug-loading methods of four types of organelles, and systematically summarizes the research progress in using organelles as drug-delivery systems for disease treatment. Finally, the challenges faced by organelle-based drug delivery systems are discussed. Although the organelle-based drug delivery systems still face challenges before they can achieve clinical translation, they offer a new direction and vision for the development of next-generation drug carriers.
Collapse
Affiliation(s)
- Jiaxin Hu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Yanfei Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan Province, PR China
| | - Yimin Du
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Xingxing Peng
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China; Molecular Imaging Research Center of Central South University, Changsha 410008, Hunan Province, PR China.
| |
Collapse
|
29
|
Guo M, Wang L, Yin Z, Chen F, Lei P. Small extracellular vesicles as potential theranostic tools in central nervous system disorders. Biomed Pharmacother 2023; 167:115407. [PMID: 37683594 DOI: 10.1016/j.biopha.2023.115407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Small extracellular vesicles(sEVs), a subset of extracellular vesicles with a bilateral membrane structure, contain biological cargoes, such as lipids, nucleic acids, and proteins. sEVs are crucial mediators of intercellular communications in the physiological and pathological processes of the central nervous system. Because of the special structure and complex pathogenesis of the brain, central nervous system disorders are characterized by high mortality and morbidity. Increasing evidence has focused on the potential of sEVs in clinical application for central nervous system disorders. sEVs are emerging as a promising diagnostic and therapeutic tool with high sensitivity, low immunogenicity, superior safety profile, and high transfer efficiency. This review highlighted the development of sEVs in central nervous system disorder clinical application. We also outlined the role of sEVs in central nervous system disorders and discussed the limitations of sEVs in clinical translation.
Collapse
Affiliation(s)
- Mengtian Guo
- Department of Internal Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Lu Wang
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhenyu Yin
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | | | - Ping Lei
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
30
|
Wang W, Xu Z, Liu M, Cai M, Liu X. Prospective applications of extracellular vesicle-based therapies in regenerative medicine: implications for the use of dental stem cell-derived extracellular vesicles. Front Bioeng Biotechnol 2023; 11:1278124. [PMID: 37936823 PMCID: PMC10627172 DOI: 10.3389/fbioe.2023.1278124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/06/2023] [Indexed: 11/09/2023] Open
Abstract
In the 21st century, research on extracellular vesicles (EVs) has made remarkable advancements. Recently, researchers have uncovered the exceptional biological features of EVs, highlighting their prospective use as therapeutic targets, biomarkers, innovative drug delivery systems, and standalone therapeutic agents. Currently, mesenchymal stem cells stand out as the most potent source of EVs for clinical applications in tissue engineering and regenerative medicine. Owing to their accessibility and capability of undergoing numerous differentiation inductions, dental stem cell-derived EVs (DSC-EVs) offer distinct advantages in the field of tissue regeneration. Nonetheless, it is essential to note that unmodified EVs are currently unsuitable for use in the majority of clinical therapeutic scenarios. Considering the high feasibility of engineering EVs, it is imperative to modify these EVs to facilitate the swift translation of theoretical knowledge into clinical practice. The review succinctly presents the known biotherapeutic effects of odontogenic EVs and the underlying mechanisms. Subsequently, the current state of functional cargo loading for engineered EVs is critically discussed. For enhancing EV targeting and in vivo circulation time, the review highlights cutting-edge engineering solutions that may help overcome key obstacles in the clinical application of EV therapeutics. By presenting innovative concepts and strategies, this review aims to pave the way for the adaptation of DSC-EVs in regenerative medicine within clinical settings.
Collapse
Affiliation(s)
- Wenhao Wang
- School of Stomatology, Jinan University, Guangzhou, China
- Center of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zinan Xu
- School of Stomatology, Jinan University, Guangzhou, China
- Center of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Minyi Liu
- Center of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Clinical Research Platform for Interdiscipline, Jinan University, Guangzhou, China
| | - Mingxiang Cai
- School of Stomatology, Jinan University, Guangzhou, China
- Center of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiangning Liu
- School of Stomatology, Jinan University, Guangzhou, China
- Center of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Clinical Research Platform for Interdiscipline, Jinan University, Guangzhou, China
| |
Collapse
|
31
|
Nahar K, Zohora FT, Begum R, Hasan M, Aziz A, Jui Y, Al-Mansur MA, Anwar MR. Isolation and Evaluation of Cytotoxic, Anti-Inflammatory, Anti-Ulcer Activity of Methanolic Extract of Ceriops decandra leaves. BIOMEDICAL AND PHARMACOLOGY JOURNAL 2023; 16:1681-1691. [DOI: 10.13005/bpj/2746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2024]
Abstract
The current study was undertaken to provide scientific validation for the traditional medicinal applications of Ceriops decandra leaves in treating gastrointestinal disorders and inflammation. Additionally, the study aimed to isolate a pure component from the extracted leaves for further analysis. Lupeol was extracted from the crude methanolic extract of Ceriops decandra leaves by column chromatography as part of a phytochemical inquiry. Its structure was determined using 1H and 13C NMR spectroscopy. In order to assess the cytotoxicity, the unrefined methanolic extract was divided into two fractions: a petroleum fraction and an aqueous fraction, employing the modified Kupchan method. The brine shrimp lethality test revealed that both the aqueous and petroleum ether fractions had significant cytotoxic activity, with LC50 values of 1.93 µg/l and 2.04 µg/l, respectively. These values were compared to the LC50 value of the standard Vincristine Sulphate, which was found to be 0.02 µg/l. The results of the anti-inflammatory trial demonstrated that the administration of the extract at doses of 250mg/kg and 500mg/kg resulted in protection rates of 62.5% and 87.5%, respectively, as compared to the carrageenan control group after 3 hours post-injection. It is worth noting that Ibuprofen exhibited a higher level of protection, with a rate of 91.7%. In the context of ethanol-induced stomach ulcer, the administration of extracts at doses of 250 mg/kg and 500 mg/kg resulted in 45.5% and 59.1% protection against gastric ulcer, respectively. These findings were compared to the protective effect of Omeprazole, which demonstrated 63.6% protection and served as the standard reference. The findings suggest that the methanolic leaf extract of Ceriops decandra possesses robust cytotoxic and potent anti-inflammatory and anti-ulcer properties. These results provide support for the traditional application of this extract in the management of gastrointestinal diseases, inflammation, and cancer.
Collapse
Affiliation(s)
- Kamrun Nahar
- 1Department of Pharmacy, Primeasia University, Bangladesh. Star Tower, 12 Kemal Ataturk Ave, Dhaka
| | - Fatema-Tuz- Zohora
- 2Department of Pharmacy, University of Asia Pacific, Bangladesh. 74/A Green Rd, Dhaka
| | - Rayhana Begum
- 1Department of Pharmacy, Primeasia University, Bangladesh. Star Tower, 12 Kemal Ataturk Ave, Dhaka
| | - Maruf Hasan
- 1Department of Pharmacy, Primeasia University, Bangladesh. Star Tower, 12 Kemal Ataturk Ave, Dhaka
| | - Abdul Aziz
- 1Department of Pharmacy, Primeasia University, Bangladesh. Star Tower, 12 Kemal Ataturk Ave, Dhaka
| | - Yasmin Jui
- 1Department of Pharmacy, Primeasia University, Bangladesh. Star Tower, 12 Kemal Ataturk Ave, Dhaka
| | - Muhammad Abdullah Al-Mansur
- 3Institute of National Analytical Research and Service (INARS), BCSIR; P9RP+375, Dr. Qudrat-E-Khuda Road Dhaka
| | - Md. Rafi Anwar
- 4University of Louisiana at Monroe, College of Pharmacy, Louisiana, USA
| |
Collapse
|
32
|
Liu Q, Li D, Pan X, Liang Y. Targeted therapy using engineered extracellular vesicles: principles and strategies for membrane modification. J Nanobiotechnology 2023; 21:334. [PMID: 37717008 PMCID: PMC10505332 DOI: 10.1186/s12951-023-02081-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/26/2023] [Indexed: 09/18/2023] Open
Abstract
Extracellular vesicles (EVs) are 30-150 nm membrane-bound vesicles naturally secreted by cells and play important roles in intercellular communication by delivering regulatory molecules such as proteins, lipids, nucleic acids and metabolites to recipient cells. As natural nano-carriers, EVs possess desirable properties such as high biocompatibility, biological barrier permeability, low toxicity, and low immunogenicity, making them potential therapeutic delivery vehicles. EVs derived from specific cells have inherent targeting capacity towards specific cell types, which is yet not satisfactory enough for targeted therapy development and needs to be improved. Surface modifications endow EVs with targeting abilities, significantly improving their therapeutic efficiency. Herein, we first briefly introduce the biogenesis, composition, uptake and function of EVs, and review the cargo loading approaches for EVs. Then, we summarize the recent advances in surface engineering strategies of EVs, focusing on the applications of engineered EVs for targeted therapy. Altogether, EVs hold great promise for targeted delivery of various cargos, and targeted modifications show promising effects on multiple diseases.
Collapse
Affiliation(s)
- Qisong Liu
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, China
- Department of Orthopaedics, The Second Affiliated Hospital of Shenzhen University (People's Hospital of Shenzhen Baoan District), China, Shenzhen, 518000, China
| | - Defeng Li
- Department of Gastroenterology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, China
| | - Xiaohua Pan
- Department of Orthopaedics, The Second Affiliated Hospital of Shenzhen University (People's Hospital of Shenzhen Baoan District), China, Shenzhen, 518000, China.
| | - Yujie Liang
- Department of Orthopaedics, The Second Affiliated Hospital of Shenzhen University (People's Hospital of Shenzhen Baoan District), China, Shenzhen, 518000, China.
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen Institute of Mental Health, Shenzhen Mental Health Center, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen, 518020, Guangdong, China.
| |
Collapse
|
33
|
Siddiq A, Dong G, Balan B, Harrison LG, Jex A, Olivier M, Allain T, Buret AG. A thermo-resistant and RNase-sensitive cargo from Giardia duodenalis extracellular vesicles modifies the behaviour of enterobacteria. JOURNAL OF EXTRACELLULAR BIOLOGY 2023; 2:e109. [PMID: 38938375 PMCID: PMC11080815 DOI: 10.1002/jex2.109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 06/29/2024]
Abstract
Extracellular vesicles (EVs) recently emerged as important players in the pathophysiology of parasitic infections. While the protist parasite Giardia duodenalis can produce EVs, their role in giardiasis remains obscure. Giardia can disrupt gut microbiota biofilms and transform commensal bacteria into invasive pathobionts at sites devoid of colonizing trophozoites via unknown mechanisms. We hypothesized that Giardia EVs could modify gut bacterial behaviour via a novel mode of trans-kingdom communication. Our findings indicate that Giardia EVs exert bacteriostatic effects on Escherichia coli HB101 and Enterobacter cloacae TW1, increasing their swimming motility. Giardia EVs also decreased the biofilm-forming ability of E. coli HB101 but not by E. cloacae TW1, supporting the hypothesis that these effects are, at least in part, bacteria-selective. E. coli HB101 and E. cloacae TW1 exhibited increased adhesion/invasion onto small intestine epithelial cells when exposed to Giardia EVs. EVs labelled with PKH67 revealed colocalization with E. coli HB101 and E. cloacae TW1 bacterial cells. Small RNA sequencing revealed a high abundance of ribosomal RNA (rRNA)- and transfer RNA (tRNA)-derived small RNAs, short-interfering RNAs (siRNAs) and micro-RNAs (miRNAs) within Giardia EVs. Proteomic analysis of EVs uncovered the presence of RNA chaperones and heat shock proteins that can facilitate the thermal stability of EVs and its sRNA cargo, as well as protein-modifying enzymes. In vitro, RNase heat-treatment assays showed that total RNAs in EVs, but not proteins, are responsible for modulating bacterial swimming motility and biofilm formation. G. duodenalis small RNAs of EVs, but not proteins, were responsible for the increased bacterial adhesion to intestinal epithelial cells induced upon exposure to Giardia EVs. Together, the findings indicate that Giardia EVs contain a heat-stable, RNase-sensitive cargo that can trigger the development of pathobiont characteristics in Enterobacteria, depicting a novel trans-kingdom cross-talk in the gut.
Collapse
Affiliation(s)
- Affan Siddiq
- Department of Biological SciencesUniversity of CalgaryCalgaryAlbertaCanada
- Inflammation Research NetworkUniversity of CalgaryCalgaryAlbertaCanada
- Host‐Parasite InteractionsUniversity of CalgaryCalgaryAlbertaCanada
| | - George Dong
- Department of Microbiology and Immunology, The Research Institute of the McGill University Health Centre, Program in Infectious Diseases and Immunology in Global HeathMontréalQCCanada
| | - Balu Balan
- The Walter and Eliza Hall Institute of Medical ResearchMelbourneAustralia
- The University of MelbourneMelbourneAustralia
| | - Luke G. Harrison
- Department of Biological SciencesUniversity of CalgaryCalgaryAlbertaCanada
- Inflammation Research NetworkUniversity of CalgaryCalgaryAlbertaCanada
- Host‐Parasite InteractionsUniversity of CalgaryCalgaryAlbertaCanada
| | - Aaron Jex
- The Walter and Eliza Hall Institute of Medical ResearchMelbourneAustralia
- The University of MelbourneMelbourneAustralia
| | - Martin Olivier
- Department of Microbiology and Immunology, The Research Institute of the McGill University Health Centre, Program in Infectious Diseases and Immunology in Global HeathMontréalQCCanada
| | - Thibault Allain
- Department of Biological SciencesUniversity of CalgaryCalgaryAlbertaCanada
- Inflammation Research NetworkUniversity of CalgaryCalgaryAlbertaCanada
- Host‐Parasite InteractionsUniversity of CalgaryCalgaryAlbertaCanada
| | - Andre G. Buret
- Department of Biological SciencesUniversity of CalgaryCalgaryAlbertaCanada
- Inflammation Research NetworkUniversity of CalgaryCalgaryAlbertaCanada
- Host‐Parasite InteractionsUniversity of CalgaryCalgaryAlbertaCanada
| |
Collapse
|
34
|
Timilsena YP, Phosanam A, Stockmann R. Perspectives on Saponins: Food Functionality and Applications. Int J Mol Sci 2023; 24:13538. [PMID: 37686341 PMCID: PMC10487995 DOI: 10.3390/ijms241713538] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Saponins are a diverse group of naturally occurring plant secondary metabolites present in a wide range of foods ranging from grains, pulses, and green leaves to sea creatures. They consist of a hydrophilic sugar moiety linked to a lipophilic aglycone, resulting in an amphiphilic nature and unique functional properties. Their amphiphilic structures enable saponins to exhibit surface-active properties, resulting in stable foams and complexes with various molecules. In the context of food applications, saponins are utilized as natural emulsifiers, foaming agents, and stabilizers. They contribute to texture and stability in food products and have potential health benefits, including cholesterol-lowering and anticancer effects. Saponins possess additional bioactivities that make them valuable in the pharmaceutical industry as anti-inflammatory, antimicrobial, antiviral, and antiparasitic agents to name a few. Saponins can demonstrate cytotoxic activity against cancer cell lines and can also act as adjuvants, enhancing the immune response to vaccines. Their ability to form stable complexes with drugs further expands their potential in drug delivery systems. However, challenges such as bitterness, cytotoxicity, and instability under certain conditions need to be addressed for effective utilization of saponins in foods and related applications. In this paper, we have reviewed the chemistry, functionality, and application aspects of saponins from various plant sources, and have summarized the regulatory aspects of the food-based application of quillaja saponins. Further research to explore the full potential of saponins in improving food quality and human health has been suggested. It is expected that this article will be a useful resource for researchers in food, feed, pharmaceuticals, and material science.
Collapse
Affiliation(s)
- Yakindra Prasad Timilsena
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture and Food, Werribee, VIC 3030, Australia;
| | - Arissara Phosanam
- Department of Food Technology and Nutrition, Faculty of Natural Resources and Agro-Industry, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakhon Nakon 47000, Thailand;
| | - Regine Stockmann
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture and Food, Werribee, VIC 3030, Australia;
| |
Collapse
|
35
|
Danilushkina AA, Emene CC, Barlev NA, Gomzikova MO. Strategies for Engineering of Extracellular Vesicles. Int J Mol Sci 2023; 24:13247. [PMID: 37686050 PMCID: PMC10488046 DOI: 10.3390/ijms241713247] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Extracellular vesicles (EVs) are membrane vesicles released by cells into the extracellular space. EVs mediate cell-to-cell communication through local and systemic transportation of biomolecules such as DNA, RNA, transcription factors, cytokines, chemokines, enzymes, lipids, and organelles within the human body. EVs gained a particular interest from cancer biology scientists because of their role in the modulation of the tumor microenvironment through delivering bioactive molecules. In this respect, EVs represent an attractive therapeutic target and a means for drug delivery. The advantages of EVs include their biocompatibility, small size, and low immunogenicity. However, there are several limitations that restrict the widespread use of EVs in therapy, namely, their low specificity and payload capacity. Thus, in order to enhance the therapeutic efficacy and delivery specificity, the surface and composition of extracellular vesicles should be modified accordingly. In this review, we describe various approaches to engineering EVs, and further discuss their advantages and disadvantages to promote the application of EVs in clinical practice.
Collapse
Affiliation(s)
- Anna A. Danilushkina
- Laboratory of Intercellular Communications, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420021 Kazan, Russia
| | - Charles C. Emene
- Laboratory of Intercellular Communications, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420021 Kazan, Russia
| | - Nicolai A. Barlev
- Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Department of Biomedicine, Nazarbayev University School of Medicine, Astana 001000, Kazakhstan
| | - Marina O. Gomzikova
- Laboratory of Intercellular Communications, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420021 Kazan, Russia
- Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| |
Collapse
|
36
|
Zarroug SHO, Bajaman JS, Hamza FN, Saleem RA, Abdalla HK. Caenorhabditis elegans as an In Vivo Model for the Discovery and Development of Natural Plant-Based Antimicrobial Compounds. Pharmaceuticals (Basel) 2023; 16:1070. [PMID: 37630985 PMCID: PMC10458014 DOI: 10.3390/ph16081070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Antimicrobial resistance (AMR) due to the prevalence of multidrug-resistant (MDR) pathogens is rapidly increasing worldwide, and the identification of new antimicrobial agents with innovative mechanisms of action is urgently required. Medicinal plants that have been utilised for centuries with minor side effects may hold great promise as sources of effective antimicrobial products. The free-living nematode Caenorhabditis elegans (C. elegans) is an excellent live infection model for the discovery and development of new antimicrobial compounds. However, while C. elegans has widely been utilised to explore the effectiveness and toxicity of synthetic antibiotics, it has not been used to a comparable extent for the analysis of natural products. By screening the PubMed database, we identified articles reporting the use of the C. elegans model for the identification of natural products endowed with antibacterial and antifungal potential, and we critically analysed their results. The studies discussed here provide important information regarding "in vivo" antimicrobial effectiveness and toxicity of natural products, as evaluated prior to testing in conventional vertebrate models, thereby supporting the relevance of C. elegans as a highly proficient model for their identification and functional assessment. However, their critical evaluation also underlines that the characterisation of active phytochemicals and of their chemical structure, and the unravelling of their mechanisms of action represent decisive challenges for future research in this area.
Collapse
Affiliation(s)
- Samah H. O. Zarroug
- Department of Pharmacology, College of Medicine, Alfaisal University, Takassusy Road, Riyadh 11533, Saudi Arabia
| | - Juhaina S. Bajaman
- Department of Pharmacology, College of Medicine, Alfaisal University, Takassusy Road, Riyadh 11533, Saudi Arabia
| | - Fatheia N. Hamza
- Department of Biochemistry, College of Medicine, Alfaisal University, Takassusy Road, Riyadh 11533, Saudi Arabia; (F.N.H.); (R.A.S.)
| | - Rimah A. Saleem
- Department of Biochemistry, College of Medicine, Alfaisal University, Takassusy Road, Riyadh 11533, Saudi Arabia; (F.N.H.); (R.A.S.)
| | - Hana K. Abdalla
- Department of Microbiology, College of Medicine, Alfaisal University, Takassusy Road, Riyadh 11533, Saudi Arabia;
| |
Collapse
|
37
|
Alcaide IV, Hamdi A, Guilleín-Bejarano R, Jiménez-Araujo A, Rodríguez-Arcos R. Sustainable valorization of co-products from asparagus cultivation by obtaining bioactive compounds. FRONTIERS IN PLANT SCIENCE 2023; 14:1199436. [PMID: 37521938 PMCID: PMC10373885 DOI: 10.3389/fpls.2023.1199436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023]
Abstract
Asparagus cultivation generates every year a significant amount of by-products that consist of root and frond. Leaving these residues on the fields after harvesting negatively affects the following asparagus crops, since they release autotoxic (allelopathic) substances into the soil, whose accumulation causes that asparagus yields gradually decrease over the years, becoming an unprofitable crop in a period of about 10 to 15 years. This phenomenon is known as decay and forces the entire asparagus plantation to be lifted (abandoned). On the other hand, once a certain plantation has been lifted, it is not profitable to immediately re-plant new asparagus plants, since the yields that are achieved are never more than half of normal ones. It is necessary to wait an average of 4 or 5 years before replanting asparagus in these lands. This phenomenon is known as the replanting problem, and causes the need to continually search for new land for growing asparagus. Another added problem for farmers is that the elimination of those plant residues from asparagus cultivation entails significant economic costs. For all these reasons, it is essential to seek alternatives for the management of that waste that improve the sustainability of the crop within the scope of the circular economy. In this context, this work proposes the valorization of asparagus by-products by obtaining bioactive compounds. Main objectives of the present work include: i) phytochemical analyses of asparagus fronds and roots; ii) obtaining bioactive extracts, with distinct technological and nutritional functionalities, by using an environmentally sustainable extraction process, easy to implement in the practice of a food industry and with methods compatible with food use. Characterization of asparagus by-products shown that fronds had an average flavonoid content of 2.637 ± 0.014 g/Kg fresh weight, which is up to 5-6 times higher than that of the spears; and roots contained up to 10 times more saponins (2.25 g/Kg fresh weight), which were accompanied by lower quantities of phenolic acids (368 mg/Kg fresh weight). Statistical analysis revealed that those phytochemical contents were mainly determined by location and phase of the vegetative cycle, whereas genetic factors did not significantly influence them. Based on the results of the present work, the proposal for the recovery and valorization of asparagus by-products is based on obtaining two bioactive extracts, the first being an antioxidant extract enriched in flavonoids, with an average yield of 10.7 g/Kg fresh frond and a flavonoid richness of 17%; and the second, a saponins extract with an average yield of 10.3 g/Kg fresh root and a richness of 51%. These natural extracts have great techno-functional potential in the agri-food industry and some of them are already being tested as additives in the preparation of soups, breads and meat products.
Collapse
|
38
|
Timofeeva AM, Paramonik AP, Sedykh SS, Nevinsky GA. Milk Exosomes: Next-Generation Agents for Delivery of Anticancer Drugs and Therapeutic Nucleic Acids. Int J Mol Sci 2023; 24:10194. [PMID: 37373342 DOI: 10.3390/ijms241210194] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/05/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Exosomes are nanovesicles 40-120 nm in diameter secreted by almost all cell types and providing humoral intercellular interactions. Given the natural origin and high biocompatibility, the potential for loading various anticancer molecules and therapeutic nucleic acids inside, and the surface modification possibility for targeted delivery, exosomes are considered to be a promising means of delivery to cell cultures and experimental animal organisms. Milk is a unique natural source of exosomes available in semi-preparative and preparative quantities. Milk exosomes are highly resistant to the harsh conditions of the gastrointestinal tract. In vitro studies have demonstrated that milk exosomes have an affinity to epithelial cells, are digested by cells by endocytosis mechanism, and can be used for oral delivery. With milk exosome membranes containing hydrophilic and hydrophobic components, exosomes can be loaded with hydrophilic and lipophilic drugs. This review covers a number of scalable protocols for isolating and purifying exosomes from human, cow, and horse milk. Additionally, it considers passive and active methods for drug loading into exosomes, as well as methods for modifying and functionalizing the surface of milk exosomes with specific molecules for more efficient and specific delivery to target cells. In addition, the review considers various approaches to visualize exosomes and determine cellular localization and bio-distribution of loaded drug molecules in tissues. In conclusion, we outline new challenges for studying milk exosomes, a new generation of targeted delivery agents.
Collapse
Affiliation(s)
- Anna M Timofeeva
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Anastasia P Paramonik
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Sergey S Sedykh
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Georgy A Nevinsky
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
39
|
Hassan F, Edo GI, Nwosu LC, Jalloh AA, Onyibe PN, Itoje-akpokiniovo LO, Irogbo PU. An inventory of medicinal plants used as sedative, analgesic and blood tonic in Abeokuta, Ogun State, Nigeria. ACTA ECOLOGICA SINICA 2023; 43:459-468. [DOI: 10.1016/j.chnaes.2021.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
40
|
Nazaryan S, Bruguière A, Hovhannisyan N, Miyamoto T, Dias AMM, Bellaye PS, Collin B, Briand L, Mitaine-Offer AC. Oleanolic Acid Glycosides from Scabiosa caucasica and Scabiosa ochroleuca: Structural Analysis and Cytotoxicity. Molecules 2023; 28:molecules28114329. [PMID: 37298806 DOI: 10.3390/molecules28114329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023] Open
Abstract
In the field of research on medicinal plants from the Armenian flora, the phytochemical study of two Scabiosa L. species, S. caucasica M. Bieb. and S. ochroleuca L. (Caprifoliaceae), has led to the isolation of five previously undescribed oleanolic acid glycosides from an aqueous-ethanolic extract of the roots: 3-O-α-L-rhamnopyranosyl-(1→3)-β-D-glucopyranosyl-(1→4)-β-D-glucopyranosyl-(1→4)-β-D-xylopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranosyloleanolic acid 28-O-β-D-glucopyranosyl-(1→6)-β-D-glucopyranosyl ester, 3-O-β-D-xylopyranosyl-(1→2)-[α-L-rhamnopyranosyl-(1→4)]-β-D-glucopyranosyl-(1→4)-β-D-glucopyranosyl-(1→4)-β-D-xylopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranosyloleanolic acid 28-O-β-D-glucopyranosyl-(1→6)-β-D-glucopyranosyl ester, 3-O-β-D-xylopyranosyl-(1→2)-[α-L-rhamnopyranosyl-(1→4)]-β-D-glucopyranosyl-(1→4)-β-D-glucopyranosyl-(1→4)-β-D-xylopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranosyloleanolic acid, 3-O-β-D-xylopyranosyl-(1→2)-[α-L-rhamnopyranosyl-(1→4)]-β-D-xylopyranosyl-(1→4)-β-D-glucopyranosyl-(1→4)-β-D-xylopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranosyloleanolic acid 28-O-β-D-glucopyranosyl-(1→6)-β-D-glucopyranosyl ester, 3-O-α-L-rhamnopyranosyl-(1→4)-β-D-glucopyranosyl-(1→4)-β-D-glucopyranosyl-(1→4)-β-D-xylopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranosyloleanolic acid 28-O-β-D-glucopyranosyl-(1→6)-β-D-glucopyranosyl ester. Their full structural elucidation required extensive 1D and 2D NMR experiments, as well as mass spectrometry analysis. For the biological activity of the bidesmosidic saponins and the monodesmosidic saponin, their cytotoxicity on a mouse colon cancer cell line (MC-38) was evaluated.
Collapse
Affiliation(s)
- Samvel Nazaryan
- Center for Taste and Feeding Behavior (CSGA), CNRS, INRAE, Agro Institute, Université de Bourgogne, 21000 Dijon, France
- Center of Excellence in Applied Biosciences, Yerevan State University (YSU), Yerevan 0025, Armenia
| | - Antoine Bruguière
- Center for Taste and Feeding Behavior (CSGA), CNRS, INRAE, Agro Institute, Université de Bourgogne, 21000 Dijon, France
| | - Nelli Hovhannisyan
- Center of Excellence in Applied Biosciences, Yerevan State University (YSU), Yerevan 0025, Armenia
| | - Tomofumi Miyamoto
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Alexandre M M Dias
- Plateforme d'Imagerie et de Radiothérapie Précliniques, Service de Médecine Nucléaire, Centre Georges-François Leclerc, 21000 Dijon, France
| | - Pierre-Simon Bellaye
- Plateforme d'Imagerie et de Radiothérapie Précliniques, Service de Médecine Nucléaire, Centre Georges-François Leclerc, UMR INSERM, Université de Bourgogne, Institut Agro 1231, 21000 Dijon, France
| | - Bertrand Collin
- Plateforme d'Imagerie et de Radiothérapie Précliniques, Service de Médecine Nucléaire, Centre Georges-François Leclerc, ICMUB, UMR CNRS, Université de Bourgogne 6302, 21000 Dijon, France
| | - Loïc Briand
- Center for Taste and Feeding Behavior (CSGA), CNRS, INRAE, Agro Institute, Université de Bourgogne, 21000 Dijon, France
| | - Anne-Claire Mitaine-Offer
- Center for Taste and Feeding Behavior (CSGA), CNRS, INRAE, Agro Institute, Université de Bourgogne, 21000 Dijon, France
| |
Collapse
|
41
|
Ahmed AAQ, Besio R, Xiao L, Forlino A. Outer Membrane Vesicles (OMVs) as Biomedical Tools and Their Relevance as Immune-Modulating Agents against H. pylori Infections: Current Status and Future Prospects. Int J Mol Sci 2023; 24:ijms24108542. [PMID: 37239888 DOI: 10.3390/ijms24108542] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/26/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Outer membrane vesicles (OMVs) are lipid-membrane-bounded nanoparticles that are released from Gram-negative bacteria via vesiculation of the outer membrane. They have vital roles in different biological processes and recently, they have received increasing attention as possible candidates for a broad variety of biomedical applications. In particular, OMVs have several characteristics that enable them to be promising candidates for immune modulation against pathogens, such as their ability to induce the host immune responses given their resemblance to the parental bacterial cell. Helicobacter pylori (H. pylori) is a common Gram-negative bacterium that infects half of the world's population and causes several gastrointestinal diseases such as peptic ulcer, gastritis, gastric lymphoma, and gastric carcinoma. The current H. pylori treatment/prevention regimens are poorly effective and have limited success. This review explores the current status and future prospects of OMVs in biomedicine with a special focus on their use as a potential candidate in immune modulation against H. pylori and its associated diseases. The emerging strategies that can be used to design OMVs as viable immunogenic candidates are discussed.
Collapse
Affiliation(s)
- Abeer Ahmed Qaed Ahmed
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, 27100 Pavia, Italy
| | - Roberta Besio
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, 27100 Pavia, Italy
| | - Lin Xiao
- School of Biomedical Engineering, Shenzhen Campus, Sun Yat-sen University, Shenzhen 518107, China
| | - Antonella Forlino
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
42
|
Khushboo M, Sanjeev S, Murthy MK, Sunitadevi M, Dinata R, Bhanushree B, Bidanchi RM, Nisa N, Lalrinzuali S, Manikandan B, Saeed AL, Abinash G, Pori B, Arati C, Roy VK, Gurusubramanian G. Dietary phytoestrogen diosgenin interrupts metabolism, physiology, and reproduction of Swiss albino mice: Possible mode of action as an emerging environmental contaminant, endocrine disruptor and reproductive toxicant. Food Chem Toxicol 2023; 176:113798. [PMID: 37146712 DOI: 10.1016/j.fct.2023.113798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 04/14/2023] [Accepted: 04/20/2023] [Indexed: 05/07/2023]
Abstract
Dietary phytoestrogens are the main source of environmental contamination due to their estrogen-mimicking and endocrine-disrupting effects, posing a threat to microbial, soil, plant, and animal health. Diosgenin, a phytosteroid saponin, is used in many traditional medicines, nutraceuticals, dietary supplements, contraceptives, and hormone replacement therapies against numerous diseases and disorders. It is important to be aware of the potential risks associated with diosgenin, as well as its potential to cause reproductive and endocrine toxicity. Due to the lack of research on the safety and probable adverse side effects of diosgenin, this work evaluated the endocrine-disrupting and reproductive toxicity of diosgenin in albino mice by following acute toxicity (OECD-423), repeated dose 90-day oral toxicity (OECD-468), and F1 extended one-generation reproductive toxicity (OECD-443) studies. Diosgenin was found to be slightly toxic, with LD50 for male and female mice being 546.26 and 538.72 mg/kg, respectively. Chronic exposure of diosgenin (10, 50, 100, and 200 mg/kg) generated oxidative stress, depleted antioxidant enzymes, disturbed homeostasis of the reproductive hormones, and interrupted steroidogenesis, germ cell apoptosis, gametogenesis, sperm quality, estrous cycle, and reproductive performance in the F0 and F1 offspring. Long-term oral exposure of diosgenin to the mice disturbed the endocrine and reproductive functions and generated transgenerational reproductive toxic effects in F0 and F1 offspring. These results suggest that diosgenin should be used carefully in food products and medical applications due to its potential endocrine-disrupting and reproductive toxic effects. The findings of this study provide a better understanding of the potential adverse effects of diosgenin and the need for appropriate risk assessment and management of its use.
Collapse
Affiliation(s)
- Maurya Khushboo
- Department of Zoology, Mizoram University, Aizawl, 796004, Mizoram, India.
| | - Sanasam Sanjeev
- Department of Zoology, Mizoram University, Aizawl, 796004, Mizoram, India.
| | | | - Maibam Sunitadevi
- Department of Zoology, Mizoram University, Aizawl, 796004, Mizoram, India.
| | - Roy Dinata
- Department of Zoology, Mizoram University, Aizawl, 796004, Mizoram, India.
| | - Baishya Bhanushree
- Department of Zoology, Mizoram University, Aizawl, 796004, Mizoram, India.
| | | | - Nisekhoto Nisa
- Department of Zoology, Mizoram University, Aizawl, 796004, Mizoram, India.
| | - Sailo Lalrinzuali
- Department of Zoology, Mizoram University, Aizawl, 796004, Mizoram, India.
| | - Bose Manikandan
- Department of Zoology, Mizoram University, Aizawl, 796004, Mizoram, India.
| | - Ahmed-Laskar Saeed
- Department of Zoology, Mizoram University, Aizawl, 796004, Mizoram, India.
| | - Giri Abinash
- Department of Zoology, Mizoram University, Aizawl, 796004, Mizoram, India.
| | - Buragohain Pori
- Department of Zoology, Mizoram University, Aizawl, 796004, Mizoram, India.
| | - Chettri Arati
- Department of Zoology, Mizoram University, Aizawl, 796004, Mizoram, India.
| | - Vikas Kumar Roy
- Department of Zoology, Mizoram University, Aizawl, 796004, Mizoram, India.
| | | |
Collapse
|
43
|
Wallen M, Aqil F, Spencer W, Gupta RC. Milk/colostrum exosomes: A nanoplatform advancing delivery of cancer therapeutics. Cancer Lett 2023; 561:216141. [PMID: 36963459 PMCID: PMC10155642 DOI: 10.1016/j.canlet.2023.216141] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/09/2023] [Accepted: 03/19/2023] [Indexed: 03/26/2023]
Abstract
Chemotherapeutics continue to play a central role in the treatment of a wide variety of cancers. Conventional chemotherapy involving bolus intravenous doses results in severe side effects - in some cases life threatening - delayed toxicity and compromised quality-of-life. Attempts to deliver small drug molecules using liposomes, polymeric nanoparticles, micelles, lipid nanoparticles, etc. have produced limited nanoformulations for clinical use, presumably due to a lack of biocompatibility of the material, costs, toxicity, scalability, and/or lack of effective administration. Naturally occurring small extracellular vesicles, or exosomes, may offer a solution and a viable system for delivering cancer therapeutics. Combined with their inherent trafficking ability and versatility of cargo capacity, exosomes can be engineered to specifically target cancerous cells, thereby minimizing off-target effects, and increasing the efficacy of cancer therapeutics. Exosomal formulations have mitigated the toxic effects of several drugs in murine cancer models. In this article, we review studies related to exosomal delivery of both small molecules and biologics, including siRNA to inhibit specific gene expression, in the pursuit of effective cancer therapeutics. We focus primarily on bovine milk and colostrum exosomes as the cancer therapeutic delivery vehicles based on their high abundance, cost effectiveness, scalability, high drug loading, functionalization of exosomes for targeted delivery, and lack of toxicity. While bovine milk exosomes may provide a new platform for drug delivery, extensive comparison to other nanoformulations and evaluation of long-term toxicity will be required to fully realize its potential.
Collapse
Affiliation(s)
| | - Farrukh Aqil
- Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA; Department of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Wendy Spencer
- 3P Biotechnologies, Inc., Louisville, KY, 40202, USA
| | - Ramesh C Gupta
- 3P Biotechnologies, Inc., Louisville, KY, 40202, USA; Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA.
| |
Collapse
|
44
|
Lee J, Lim JH, Jung GY, Kang J, Jo I, Kang K, Kim JH, Kim BS, Yang H. Triterpenoid saponins from Camellia sinensis roots with cytotoxic and immunomodulatory effects. PHYTOCHEMISTRY 2023; 212:113688. [PMID: 37121294 DOI: 10.1016/j.phytochem.2023.113688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 04/14/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023]
Abstract
Camellia sinensis L. (Theaceae) leaves have been used as a beverage in both Eastern and Western cultures for a long time, while its root has not been intensively studied. In this study, seven undescribed triterpenoid saponins (1-7) and twelve known saponins (8-19) with different combinations of substituents, such as oxygenated isoprenyl substituents and sugar moieties, and lengths of sugar chains, were isolated from the C. sinensis roots. Their structures were unequivocally determined using one- and two-dimensional nuclear magnetic resonance data and acid hydrolysis analysis. Investigation of the biological activities of isolated compounds revealed that only those without functional acetyl groups exhibited cytotoxic activities against mouse and human cancer cells (B16F10) and human cervical cancer cell line (HeLa) at 50 μM. Compounds with an aldehyde group at C-23 of aglycone showed immunomodulatory activity against Th1 and Th17 cells at 10 μM. Ten compounds with biological activities from C. sinensis roots extracts, including three previously undescribed ones (3, 6, and 7), were identified.
Collapse
Affiliation(s)
- Jiho Lee
- College of Pharmacy, Kangwon National University, Chuncheon, 24341, South Korea
| | - Jae-Hee Lim
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, South Korea
| | - Go-Yeon Jung
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, South Korea
| | - Jeongyeon Kang
- College of Pharmacy, Kangwon National University, Chuncheon, 24341, South Korea
| | - Inhee Jo
- College of Pharmacy, Kangwon National University, Chuncheon, 24341, South Korea
| | - Kiyoon Kang
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, South Korea
| | - Jung-Hwan Kim
- Department of Pharmacology, School of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, 52727, South Korea.
| | - Byung-Seok Kim
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, South Korea.
| | - Heejung Yang
- College of Pharmacy, Kangwon National University, Chuncheon, 24341, South Korea.
| |
Collapse
|
45
|
Essono Mintsa M, Kumulungui BS, Obiang CS, Dussert E, Choque E, Herfurth D, Ravallec R, Ondo JP, Mesnard F. Cytotoxicity and Identification of Antibacterial Compounds from Baillonella toxisperma Bark Using a LC-MS/MS and Molecular Networking Approach. Metabolites 2023; 13:metabo13050599. [PMID: 37233640 DOI: 10.3390/metabo13050599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/20/2023] [Accepted: 04/20/2023] [Indexed: 05/27/2023] Open
Abstract
Baillonella toxisperma is a medicinal plant used in northern Gabon to treat microbial diseases. It is a plant well-known by local populations, but very few studies have focused on the molecules responsible for the antibacterial activities of B. toxisperma. This study proposes a dereplication strategy based on molecular networking generated from HPLC-ESI-Q/TOF data, allowing investigation of the molecules responsible for the antibacterial activity of B. toxisperma. From this strategy, eighteen compounds were putatively identified. All of these compounds belonged mainly to five families of natural compounds, including phenylpropanolamines, stilbenes, flavonoids, lignans and phenolic glycosides. The chemical study carried out from the bark of B. toxisperma allowed us to identify, for the first time, compounds such as resveratrol and derivatives, epicatechin, epigallocatechin and epigallocatechin gallate. In addition, antibacterial activity (diffusion method and microdilution) and cytotoxicity (Cell Counting Kit-8 (CCK-8 Assay)) in vitro were evaluated. The crude ethanolic extract, as well as the fractions of B. toxisperma, showed significant antibacterial activity. However, the ethanolic fractions F2 and F4 presented high antibacterial activity compared to the crude extract. Cytotoxicity studies on colon-cancer cells (Caco-2) and human keratinocyte cells (HaCaT) showed moderate cytotoxicity in both cell types. This study clearly shows the therapeutic potential of the ethanolic extract of the bark of B. toxisperma and provides information on the phytochemical composition and bioactive compounds of the plant.
Collapse
Affiliation(s)
- Morel Essono Mintsa
- UMRt BioEcoAgro 1158-INRAE, BIOPI, Université de Picardie Jules Verne, 1 Rue des Louvels, 80000 Amiens, France
- Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville P.O. Box 769, Gabon
- Laboratoire Innovation Matériau Bois Habitat (LIMBHA), Ecole Supérieure du Bois, 7 Rue Christian Pauc, 44306 Nantes, France
| | - Brice Serge Kumulungui
- Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville P.O. Box 769, Gabon
| | - Cédric Sima Obiang
- Laboratoire de Recherches en Biochimie (LAREBIO), Université des Sciences et Techniques de Masuku, Franceville P.O. Box 943, Gabon
| | - Elodie Dussert
- UMRt BioEcoAgro 1158-INRAE, Institut Charles Violette, Université de Lille, 59655 Lille, France
| | - Elodie Choque
- UMRt BioEcoAgro 1158-INRAE, BIOPI, Université de Picardie Jules Verne, 1 Rue des Louvels, 80000 Amiens, France
| | - Damien Herfurth
- UMRt BioEcoAgro 1158-INRAE, BIOPI, Université de Picardie Jules Verne, 1 Rue des Louvels, 80000 Amiens, France
| | - Rozenn Ravallec
- UMRt BioEcoAgro 1158-INRAE, Institut Charles Violette, Université de Lille, 59655 Lille, France
| | - Joseph-Privat Ondo
- Laboratoire de Recherches en Biochimie (LAREBIO), Université des Sciences et Techniques de Masuku, Franceville P.O. Box 943, Gabon
| | - François Mesnard
- UMRt BioEcoAgro 1158-INRAE, BIOPI, Université de Picardie Jules Verne, 1 Rue des Louvels, 80000 Amiens, France
| |
Collapse
|
46
|
Rademacher DJ. Potential for Therapeutic-Loaded Exosomes to Ameliorate the Pathogenic Effects of α-Synuclein in Parkinson's Disease. Biomedicines 2023; 11:biomedicines11041187. [PMID: 37189807 DOI: 10.3390/biomedicines11041187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/08/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Pathogenic forms of α-synuclein (α-syn) are transferred to and from neurons, astrocytes, and microglia, which spread α-syn pathology in the olfactory bulb and the gut and then throughout the Parkinson's disease (PD) brain and exacerbate neurodegenerative processes. Here, we review attempts to minimize or ameliorate the pathogenic effects of α-syn or deliver therapeutic cargo into the brain. Exosomes (EXs) have several important advantages as carriers of therapeutic agents including an ability to readily cross the blood-brain barrier, the potential for targeted delivery of therapeutic agents, and immune resistance. Diverse cargo can be loaded via various methods, which are reviewed herein, into EXs and delivered into the brain. Genetic modification of EX-producing cells or EXs and chemical modification of EX have emerged as powerful approaches for the targeted delivery of therapeutic agents to treat PD. Thus, EXs hold great promise for the development of next-generation therapeutics for the treatment of PD.
Collapse
Affiliation(s)
- David J Rademacher
- Department of Microbiology and Immunology and Core Imaging Facility, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| |
Collapse
|
47
|
Joorabloo A, Liu T. Engineering exosome-based biomimetic nanovehicles for wound healing. J Control Release 2023; 356:463-480. [PMID: 36907562 DOI: 10.1016/j.jconrel.2023.03.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023]
Abstract
Complexity and difficulties in wound management are pressing concerns that affect patients' quality of life and may result in tissue infection, necrosis, and loss of local and systemic functions. Hence, novel approaches to accelerate wound healing are being actively explored over the last decade. Exosomes as important mediators of intercellular communications are promising natural nanocarriers due to their biocompatibility, low immunogenicity, drug loading and targeting capacities, and innate stability. More importantly, exosomes are developed as a versatile pharmaceutical engineering platform for wound repair. This review provides an overview of the biological and physiological functions of exosomes derived from a variety of biological origins during wound healing phases, strategies for exosomal engineering, and therapeutic applications in skin regeneration.
Collapse
Affiliation(s)
- Alireza Joorabloo
- NICM Health Research Institute, Western Sydney University, Westmead, Australia
| | - Tianqing Liu
- NICM Health Research Institute, Western Sydney University, Westmead, Australia.
| |
Collapse
|
48
|
Characterization of metabolites of five typical saponins from Caulophyllum robustum Maxim and their biotransformation in Fibroblast-like synoviocytes by UHPLC-Q-Exactive-Plus-Orbitrap-MS. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
|
49
|
Horse Chestnut Saponins-Escins, Isoescins, Transescins, and Desacylescins. Molecules 2023; 28:molecules28052087. [PMID: 36903330 PMCID: PMC10004172 DOI: 10.3390/molecules28052087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Escins constitute an abundant family of saponins (saponosides) and are the most active components in Aesculum hippocastanum (horse chestnut-HC) seeds. They are of great pharmaceutical interest as a short-term treatment for venous insufficiency. Numerous escin congeners (slightly different compositions), as well as numerous regio-and stereo-isomers, are extractable from HC seeds, making quality control trials mandatory, especially since the structure-activity relationship (SAR) of the escin molecules remains poorly described. In the present study, mass spectrometry, microwave activation, and hemolytic activity assays were used to characterize escin extracts (including a complete quantitative description of the escin congeners and isomers), modify the natural saponins (hydrolysis and transesterification) and measure their cytotoxicity (natural vs. modified escins). The aglycone ester groups characterizing the escin isomers were targeted. A complete quantitative analysis, isomer per isomer, of the weight content in the saponin extracts as well as in the seed dry powder is reported for the first time. An impressive 13% in weight of escins in the dry seeds was measured, confirming that the HC escins must be absolutely considered for high-added value applications, provided that their SAR is established. One of the objectives of this study was to contribute to this development by demonstrating that the aglycone ester functions are mandatory for the toxicity of the escin derivative, and that the cytotoxicity also depends on the relative position of the ester functions on the aglycone.
Collapse
|
50
|
Majnooni MB, Fakhri S, Ghanadian SM, Bahrami G, Mansouri K, Iranpanah A, Farzaei MH, Mojarrab M. Inhibiting Angiogenesis by Anti-Cancer Saponins: From Phytochemistry to Cellular Signaling Pathways. Metabolites 2023; 13:metabo13030323. [PMID: 36984763 PMCID: PMC10052344 DOI: 10.3390/metabo13030323] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/06/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023] Open
Abstract
Saponins are one of the broadest classes of high-molecular-weight natural compounds, consisting mainly of a non-polar moiety with 27 to 30 carbons and a polar moiety containing sugars attached to the sapogenin structure. Saponins are found in more than 100 plant families as well as found in marine organisms. Saponins have several therapeutic effects, including their administration in the treatment of various cancers. These compounds also reveal noteworthy anti-angiogenesis effects as one of the critical strategies for inhibiting cancer growth and metastasis. In this study, a comprehensive review is performed on electronic databases, including PubMed, Scopus, ScienceDirect, and ProQuest. Accordingly, the structural characteristics of triterpenoid/steroid saponins and their anti-cancer effects were highlighted, focusing on their anti-angiogenic effects and related mechanisms. Consequently, the anti-angiogenic effects of saponins, inhibiting the expression of genes related to vascular endothelial growth factor (VEGF) and hypoxia-inducible factor 1-α (HIF-1α) are two main anti-angiogenic mechanisms of triterpenoid and steroidal saponins. The inhibition of inflammatory signaling pathways that stimulate angiogenesis, such as pro-inflammatory cytokines, mitogen-activated protein kinase (MAPKs), and phosphoinositide 3-kinases/protein kinase B (PI3K/Akt), are other anti-angiogenic mechanisms of saponins. Furthermore, the anti-angiogenic and anti-cancer activity of saponins was closely related to the binding site of the sugar moiety, the type and number of their monosaccharide units, as well as the presence of some functional groups in their aglycone structure. Therefore, saponins are suitable candidates for cancer treatment by inhibiting angiogenesis, for which extensive pre-clinical and comprehensive clinical trial studies are recommended.
Collapse
Affiliation(s)
- Mohammad Bagher Majnooni
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah 6714415153, Iran
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Syed Mustafa Ghanadian
- Department of Pharmacognosy, Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Gholamreza Bahrami
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Kamran Mansouri
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran
| | - Amin Iranpanah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
- Correspondence: or (M.H.F.); (M.M.); Tel.: +98-08334266780 (M.M.)
| | - Mahdi Mojarrab
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
- Correspondence: or (M.H.F.); (M.M.); Tel.: +98-08334266780 (M.M.)
| |
Collapse
|