1
|
Krasauskas J, Ganie SA, Al-Husari A, Bindschedler L, Spanu P, Ito M, Devoto A. Jasmonates, gibberellins, and powdery mildew modify cell cycle progression and evoke differential spatiotemporal responses along the barley leaf. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:180-203. [PMID: 37611210 PMCID: PMC10735486 DOI: 10.1093/jxb/erad331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/22/2023] [Indexed: 08/25/2023]
Abstract
Barley (Hordeum vulgare) is an important cereal crop, and its development, defence, and stress responses are modulated by different hormones including jasmonates (JAs) and the antagonistic gibberellins (GAs). Barley productivity is severely affected by the foliar biotrophic fungal pathogen Blumeria hordei. In this study, primary leaves were used to examine the molecular processes regulating responses to methyl-jasmonate (MeJA) and GA to B. hordei infection along the leaf axis. Flow cytometry, microscopy, and spatiotemporal expression patterns of genes associated with JA, GA, defence, and the cell cycle provided insights on cell cycle progression and on the gradient of susceptibility to B. hordei observed along the leaf. Notably, the combination of B. hordei with MeJA or GA pre-treatment had a different effect on the expression patterns of the analysed genes compared to individual treatments. MeJA reduced susceptibility to B. hordei in the proximal part of the leaf blade. Overall, distinctive spatiotemporal gene expression patterns correlated with different degrees of cell proliferation, growth capacity, responses to hormones, and B. hordei infection along the leaf. Our results highlight the need to further investigate differential spatial and temporal responses to pathogens at the organ, tissue, and cell levels in order to devise effective disease control strategies in crops.
Collapse
Affiliation(s)
- Jovaras Krasauskas
- Plant Molecular Science and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | - Showkat Ahmad Ganie
- Plant Molecular Science and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | - Aroub Al-Husari
- Plant Molecular Science and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | - Laurence Bindschedler
- Plant Molecular Science and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | - Pietro Spanu
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Masaki Ito
- School of Biological Science and Technology, Kanazawa University, Ishikawa 920-1192, Japan
| | - Alessandra Devoto
- Plant Molecular Science and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| |
Collapse
|
2
|
Cui K, Qin L, Tang X, Nong J, Chen J, Wu N, Gong X, Yi L, Yang C, Xia S. A Single Amino Acid Substitution in RFC4 Leads to Endoduplication and Compromised Resistance to DNA Damage in Arabidopsis thaliana. Genes (Basel) 2022; 13:genes13061037. [PMID: 35741798 PMCID: PMC9223238 DOI: 10.3390/genes13061037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023] Open
Abstract
Replication factor C (RFC) is a heteropentameric ATPase associated with the diverse cellular activities (AAA+ATPase) protein complex, which is composed of one large subunit, known as RFC1, and four small subunits, RFC2/3/4/5. Among them, RFC1 and RFC3 were previously reported to mediate genomic stability and resistance to pathogens in Arabidopsis. Here, we generated a viable rfc4e (rfc4-1/RFC4G54E) mutant with a single amino acid substitution by site-directed mutagenesis. Three of six positive T2 mutants with the same amino acid substitution, but different insertion loci, were sequenced to identify homozygotes, and the three homozygote mutants showed dwarfism, early flowering, and a partially sterile phenotype. RNA sequencing revealed that genes related to DNA repair and replication were highly upregulated. Moreover, the frequency of DNA lesions was found to be increased in rfc4e mutants. Consistent with this, the rfc4e mutants were very sensitive to DSB-inducing genotoxic agents. In addition, the G54E amino acid substitution in AtRFC4 delayed cell cycle progression and led to endoduplication. Overall, our study provides evidence supporting the notion that RFC4 plays an important role in resistance to genotoxicity and cell proliferation by regulating DNA damage repair in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Kan Cui
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (K.C.); (L.Q.); (X.T.); (J.N.); (N.W.); (X.G.); (C.Y.)
| | - Lei Qin
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (K.C.); (L.Q.); (X.T.); (J.N.); (N.W.); (X.G.); (C.Y.)
| | - Xianyu Tang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (K.C.); (L.Q.); (X.T.); (J.N.); (N.W.); (X.G.); (C.Y.)
| | - Jieying Nong
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (K.C.); (L.Q.); (X.T.); (J.N.); (N.W.); (X.G.); (C.Y.)
| | - Jin Chen
- Hunan Academy of Agricultural Sciences, Changsha 410125, China; (J.C.); (L.Y.)
- Changsha Technology Innovation Center for Phytoremediation of Heavy Metal Contaminated Soil, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Nan Wu
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (K.C.); (L.Q.); (X.T.); (J.N.); (N.W.); (X.G.); (C.Y.)
| | - Xin Gong
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (K.C.); (L.Q.); (X.T.); (J.N.); (N.W.); (X.G.); (C.Y.)
| | - Lixiong Yi
- Hunan Academy of Agricultural Sciences, Changsha 410125, China; (J.C.); (L.Y.)
| | - Chenghuizi Yang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (K.C.); (L.Q.); (X.T.); (J.N.); (N.W.); (X.G.); (C.Y.)
| | - Shitou Xia
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (K.C.); (L.Q.); (X.T.); (J.N.); (N.W.); (X.G.); (C.Y.)
- Correspondence:
| |
Collapse
|
3
|
Cabral D, Banora MY, Antonino JD, Rodiuc N, Vieira P, Coelho RR, Chevalier C, Eekhout T, Engler G, De Veylder L, Grossi-de-Sa MF, de Almeida Engler J. The plant WEE1 kinase is involved in checkpoint control activation in nematode-induced galls. THE NEW PHYTOLOGIST 2020; 225:430-447. [PMID: 31505035 DOI: 10.1111/nph.16185] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 08/15/2019] [Indexed: 06/10/2023]
Abstract
Galls induced by plant-parasitic nematodes involve a hyperactivation of the plant mitotic and endocycle machinery for their profit. Dedifferentiation of host root cells includes drastic cellular and molecular readjustments. In such a background, potential DNA damage in the genome of gall cells is evident. We investigated whether DNA damage checkpoint activation followed by DNA repair occurred, or was eventually circumvented, in nematode-induced galls. Galls display transcriptional activation of the DNA damage checkpoint kinase WEE1, correlated with its protein localization in the nuclei. The promoter of the stress marker gene SMR7 was evaluated under the WEE1-knockout background. Drugs inducing DNA damage and a marker for DNA repair, PARP1, were used to understand the mechanisms for coping with DNA damage in galls. Our functional study revealed that gall cells lacking WEE1 conceivably entered mitosis prematurely, disturbing the cell cycle despite the loss of genome integrity. The disrupted nuclei phenotype in giant cells hinted at the accumulation of mitotic defects. In addition, WEE1-knockout in Arabidopsis and downregulation in tomato repressed infection and reproduction of root-knot nematodes. Together with data on DNA-damaging drugs, we suggest a conserved function for WEE1 in controlling G1/S cell cycle arrest in response to a replication defect in galls.
Collapse
Affiliation(s)
- Danila Cabral
- INRA, Université Côte d'Azur, CNRS, ISA, 06903, Sophia Antipolis, France
| | - Mohamed Youssef Banora
- Department of Plant Pathology, Faculty of Agriculture, Ain Shams University, PO Box 68, Hadayek Shoubra, 11241, Cairo, Egypt
- Department of Biology, Faculty of Science and Art-Khulais, University of Jeddah, Saudi Arabia
| | - José Dijair Antonino
- INRA, Université Côte d'Azur, CNRS, ISA, 06903, Sophia Antipolis, France
- Laboratório de Interação Molecular Planta-Praga, Embrapa Recursos Genéticos e Biotecnologia, PqEB, Av. W5 Norte Final, Brasília, DF, 70770-900, Brazil
- Departamento de Agronomia/Entomologia, Universidade Federal Rural de Pernambuco, Av. Dom Manoel de Medeiros S/N, Dois Irmãos,, Recife, PE, 521171-900, Brazil
| | - Natalia Rodiuc
- INRA, Université Côte d'Azur, CNRS, ISA, 06903, Sophia Antipolis, France
- Laboratório de Interação Molecular Planta-Praga, Embrapa Recursos Genéticos e Biotecnologia, PqEB, Av. W5 Norte Final, Brasília, DF, 70770-900, Brazil
| | - Paulo Vieira
- INRA, Université Côte d'Azur, CNRS, ISA, 06903, Sophia Antipolis, France
| | - Roberta R Coelho
- INRA, Université Côte d'Azur, CNRS, ISA, 06903, Sophia Antipolis, France
- Laboratório de Interação Molecular Planta-Praga, Embrapa Recursos Genéticos e Biotecnologia, PqEB, Av. W5 Norte Final, Brasília, DF, 70770-900, Brazil
| | - Christian Chevalier
- UMR1332 BFP, INRA, University of Bordeaux, 33882, Villenave d'Ornon Cedex, France
| | - Thomas Eekhout
- Department of Plant Biotechnology and Genetics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Gilbert Engler
- INRA, Université Côte d'Azur, CNRS, ISA, 06903, Sophia Antipolis, France
| | - Lieven De Veylder
- Department of Plant Biotechnology and Genetics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Maria Fatima Grossi-de-Sa
- Laboratório de Interação Molecular Planta-Praga, Embrapa Recursos Genéticos e Biotecnologia, PqEB, Av. W5 Norte Final, Brasília, DF, 70770-900, Brazil
| | | |
Collapse
|
4
|
Zhang S, Wang L, Sun X, Li Y, Yao J, van Nocker S, Wang X. Genome-Wide Analysis of the YABBY Gene Family in Grapevine and Functional Characterization of VvYABBY4. FRONTIERS IN PLANT SCIENCE 2019; 10:1207. [PMID: 31649691 PMCID: PMC6791920 DOI: 10.3389/fpls.2019.01207] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 09/03/2019] [Indexed: 05/22/2023]
Abstract
Genes of the plant-specific YABBY transcription factor family have various roles, including lateral organ development, establishment of dorsoventral polarity, and response to abiotic stress. In this study, we carried out a genomic census of YABBY genes in grapevine (Vitis vinifera) and characterized their expression pattern during ovule development. We identified seven YABBY genes and classified them into five subfamilies, based on peptide sequence, similarity of exon-intron structure and composition of peptide sequence motifs. Analysis of YABBY gene expression in various grapevine structures and organs suggested that these genes function in diverse aspects of development and physiology. Analysis of expression during ovule development in four cultivars showed that one gene, VvYABBY4, was preferentially expressed during the period of ovule abortion in seedless cultivars. Transgenic expression of VvYABBY4 in tomato conferred reduced plant stature, dark green leaves, elongated pistil, and reduced size of fruit and seeds. Reduced seed size was associated with smaller endosperm cells. Expression of VvYABBY4 also affected expression of numerous tomato genes with presumed roles in seed development. These data suggest the potential for VvYABBY4 to influence seed development in grapevine, which may impact seedless grape breeding.
Collapse
Affiliation(s)
- Songlin Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Li Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
- College of Horticulture, Agricultural University of Hebei, Baoding, China
| | - Xiaomeng Sun
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Yunduan Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Jin Yao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Steve van Nocker
- Department of Horticulture, Michigan State University, East Lansing, MI, United States
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, China
| |
Collapse
|
5
|
Elmaghrabi AM, Rogers HJ, Francis D, Ochatt S. Toward Unravelling the Genetic Determinism of the Acquisition of Salt and Osmotic Stress Tolerance Through In Vitro Selection in Medicago truncatula. Methods Mol Biol 2018; 1822:291-314. [PMID: 30043311 DOI: 10.1007/978-1-4939-8633-0_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Changes in global climate and the nonstop increase in demographic pressure have provoked a stronger demand for agronomic resources at a time where land suitable for agriculture is becoming a rare commodity. They have also generated a number of abiotic stresses which exacerbate effects of diseases and pests and result in physiological and metabolic disorders that ultimately impact on yield when and where it is most needed. Therefore, a major scientific and agronomic challenge today is that of understanding and countering the impact of stress on yield. In this respect, in vitro biotechnology would be an efficient and feasible breeding alternative, particularly now that the genetic and genomic tools needed to unravel the mechanisms underlying the acquisition of tolerance to stress have become available. Legumes in general play a central role in a sustainable agriculture due to their capacity to symbiotically fix the atmospheric nitrogen, thereby reducing the need for fertilizers. They also produce grains that are rich in protein and thus are important as food and feed. However, they also suffer from abiotic stresses in general and osmotic stress and salinity in particular. This chapter provides a detailed overview of the methods employed for in vitro selection in the model legume Medicago truncatula for the generation of novel germplasm capable of resisting NaCl- and PEG-induced osmotic stress. We also address the understanding of the genetic determinism in the acquisition of stress resistance, which differs between NaCl and PEG. Thus, the expression of genes linked to growth (WEE1), in vitro embryogenesis (SERK), salt tolerance (SOS1) proline synthesis (P5CS), and ploidy level and cell cycle (CCS52 and WEE1) was upregulated under NaCl stress, while under PEG treatment the expression of MtWEE1 and MtCCS52 was significantly increased, but no significant differences were observed in the expression of genes MtSERK1 and MtP5CS, and MtSOS1 was downregulated. A number of morphological and physiological traits relevant to the acquisition of stress resistance were also assessed, and methods used to do so are also detailed.
Collapse
Affiliation(s)
- Adel M Elmaghrabi
- Biotechnology Research Center (BTRC), Tripoli, Libya
- School of Biosciences, Cardiff University, Cardiff, UK
| | | | | | - Sergio Ochatt
- Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne Franche-Comté, Dijon, France.
| |
Collapse
|
6
|
Elmaghrabi AM, Rogers HJ, Francis D, Ochatt SJ. PEG Induces High Expression of the Cell Cycle Checkpoint Gene WEE1 in Embryogenic Callus of Medicago truncatula: Potential Link between Cell Cycle Checkpoint Regulation and Osmotic Stress. FRONTIERS IN PLANT SCIENCE 2017; 8:1479. [PMID: 28928753 PMCID: PMC5591835 DOI: 10.3389/fpls.2017.01479] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 08/09/2017] [Indexed: 05/29/2023]
Abstract
Polyethylene glycol (PEG) can be used to mimic osmotic stress in plant tissue cultures to study mechanisms of tolerance. The aim of this experiment was to investigate the effects of PEG (M.W. 6000) on embryogenic callus of Medicago truncatula. Leaf explants were cultured on MS medium with 2 mg L-1 NAA and 0.5 mg L-1 BAP for 5 months. Then, calli were transferred to the same medium further supplemented with 10% (w/v) 6000 PEG for 6 months in order to study physiological and putative molecular markers of water stress. There were no significant differences in growth rate of callus or mitotic index ± PEG although embryogenic potential of PEG treated callus was morphologically enhanced. Cells were rounder on PEG medium and cell size, nuclear size and endoreduplication increased in response to the PEG treatment. Significant increases in soluble sugar and proline accumulation occurred under PEG treatment compared with the control. Significantly, high MtWEE1 and MtCCS52 expression resulted from 6 months of PEG treatment with no significant differences in MtSERK1 or MtP5CS expression but down regulation of MtSOS expression. The results are consistent in showing elevated expression of a cell cycle checkpoint gene, WEE1. It is likely that the cell cycle checkpoint surveillance machinery, that would include WEE1 expression, is ameliorating the effects of the stress imposed by PEG.
Collapse
Affiliation(s)
- Adel M. Elmaghrabi
- Biotechnology Research CenterTripoli, Libya
- School of Biosciences, Cardiff UniversityCardiff, United Kingdom
| | - Hilary J. Rogers
- School of Biosciences, Cardiff UniversityCardiff, United Kingdom
| | - Dennis Francis
- School of Biosciences, Cardiff UniversityCardiff, United Kingdom
| | - Sergio J. Ochatt
- Agroécologie, AgroSup Dijon, Institut National de la Recherche Agronomique (INRA), University of Bourgogne Franche-ComtéDijon, France
| |
Collapse
|
7
|
Kalhorzadeh P, Hu Z, Cools T, Amiard S, Willing EM, De Winne N, Gevaert K, De Jaeger G, Schneeberger K, White CI, De Veylder L. Arabidopsis thaliana RNase H2 deficiency counteracts the needs for the WEE1 checkpoint kinase but triggers genome instability. THE PLANT CELL 2014; 26:3680-92. [PMID: 25217508 PMCID: PMC4213155 DOI: 10.1105/tpc.114.128108] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The WEE1 kinase is an essential cell cycle checkpoint regulator in Arabidopsis thaliana plants experiencing replication defects. Whereas under non-stress conditions WEE1-deficient plants develop normally, they fail to adapt to replication inhibitory conditions, resulting in the accumulation of DNA damage and loss of cell division competence. We identified mutant alleles of the genes encoding subunits of the ribonuclease H2 (RNase H2) complex, known for its role in removing ribonucleotides from DNA-RNA duplexes, as suppressor mutants of WEE1 knockout plants. RNase H2 deficiency triggered an increase in homologous recombination (HR), correlated with the accumulation of γ-H2AX foci. However, as HR negatively impacts the growth of WEE1-deficient plants under replication stress, it cannot account for the rescue of the replication defects of the WEE1 knockout plants. Rather, the observed increase in ribonucleotide incorporation in DNA indicates that the substitution of deoxynucleotide with ribonucleotide abolishes the need for WEE1 under replication stress. Strikingly, increased ribonucleotide incorporation in DNA correlated with the occurrence of small base pair deletions, identifying the RNase H2 complex as an important suppressor of genome instability.
Collapse
Affiliation(s)
- Pooneh Kalhorzadeh
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), B-9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Zhubing Hu
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), B-9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Toon Cools
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), B-9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Simon Amiard
- Génétique, Reproduction et Développement, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 6293-Clermont Université-Institut National de la Santé et de la Recherche Médicale U1103, F-63177 Aubière, France
| | - Eva-Maria Willing
- Department for Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Nancy De Winne
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), B-9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Kris Gevaert
- Department of Medical Protein Research, Flanders Institute for Biotechnology (VIB), B-9000 Ghent, Belgium Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | - Geert De Jaeger
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), B-9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Korbinian Schneeberger
- Department for Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Charles I White
- Génétique, Reproduction et Développement, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 6293-Clermont Université-Institut National de la Santé et de la Recherche Médicale U1103, F-63177 Aubière, France
| | - Lieven De Veylder
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), B-9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| |
Collapse
|
8
|
Apri M, Kromdijk J, de Visser PHB, de Gee M, Molenaar J. Modelling cell division and endoreduplication in tomato fruit pericarp. J Theor Biol 2014; 349:32-43. [PMID: 24486251 DOI: 10.1016/j.jtbi.2014.01.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 01/18/2014] [Accepted: 01/23/2014] [Indexed: 11/17/2022]
Abstract
In many developing plant tissues and organs, differentiating cells switch from the classical cell cycle to an alternative partial cycle. This partial cycle bypasses mitosis and allows for multiple rounds of genome duplication without cell division, giving rise to cells with high ploidy numbers. This partial cycle is referred to as endoreduplication. Cell division and endoreduplication are important processes for biomass allocation and yield in tomato. Quantitative trait loci for tomato fruit size or weight are frequently associated with variations in the pericarp cell number, and due to the tight connection between endoreduplication and cell expansion and the prevalence of polyploidy in storage tissues, a functional correlation between nuclear ploidy number and cell growth has also been implicated (karyoplasmic ratio theory). In this paper, we assess the applicability of putative mechanisms for the onset of endoreduplication in tomato pericarp cells via development of a mathematical model for the cell cycle gene regulatory network. We focus on targets for regulation of the transition to endoreduplication by the phytohormone auxin, which is known to play a vital role in the onset of cell expansion and differentiation in developing tomato fruit. We show that several putative mechanisms are capable of inducing the onset of endoreduplication. This redundancy in explanatory mechanisms is explained by analysing system behaviour as a function of their combined action. Namely, when all these routes to endoreduplication are used in a combined fashion, robustness of the regulation of the transition to endoreduplication is greatly improved.
Collapse
Affiliation(s)
- Mochamad Apri
- Biometris, Wageningen University and Research Center, 6708 PB Wageningen, The Netherlands; Netherlands Consortium for Systems Biology, 1090 GE, Amsterdam, The Netherlands; Industrial and Financial Mathematics Group, Bandung Institute of Technology, Bandung 40132, Indonesia.
| | - Johannes Kromdijk
- Greenhouse Horticulture, Wageningen University and Research Center, The Netherlands
| | - Pieter H B de Visser
- Greenhouse Horticulture, Wageningen University and Research Center, The Netherlands
| | - Maarten de Gee
- Biometris, Wageningen University and Research Center, 6708 PB Wageningen, The Netherlands; Netherlands Consortium for Systems Biology, 1090 GE, Amsterdam, The Netherlands
| | - Jaap Molenaar
- Biometris, Wageningen University and Research Center, 6708 PB Wageningen, The Netherlands; Netherlands Consortium for Systems Biology, 1090 GE, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Wijnker E, Schnittger A. Control of the meiotic cell division program in plants. PLANT REPRODUCTION 2013; 26:143-58. [PMID: 23852379 PMCID: PMC3747318 DOI: 10.1007/s00497-013-0223-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 06/23/2013] [Indexed: 05/02/2023]
Abstract
While the question of why organisms reproduce sexually is still a matter of controversy, it is clear that the foundation of sexual reproduction is the formation of gametes with half the genomic DNA content of a somatic cell. This reduction in genomic content is accomplished through meiosis that, in contrast to mitosis, comprises two subsequent chromosome segregation steps without an intervening S phase. In addition, meiosis generates new allele combinations through the compilation of new sets of homologous chromosomes and the reciprocal exchange of chromatid segments between homologues. Progression through meiosis relies on many of the same, or at least homologous, cell cycle regulators that act in mitosis, e.g., cyclin-dependent kinases and the anaphase-promoting complex/cyclosome. However, these mitotic control factors are often differentially regulated in meiosis. In addition, several meiosis-specific cell cycle genes have been identified. We here review the increasing knowledge on meiotic cell cycle control in plants. Interestingly, plants appear to have relaxed cell cycle checkpoints in meiosis in comparison with animals and yeast and many cell cycle mutants are viable. This makes plants powerful models to study meiotic progression and allows unique modifications to their meiotic program to develop new plant-breeding strategies.
Collapse
Affiliation(s)
- Erik Wijnker
- Department of Molecular Mechanisms of Phenotypic Plasticity, Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg, France
- Trinationales Institut für Pflanzenforschung, Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg, France
| | - Arp Schnittger
- Department of Molecular Mechanisms of Phenotypic Plasticity, Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg, France
- Trinationales Institut für Pflanzenforschung, Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg, France
| |
Collapse
|
10
|
Cook GS, Grønlund AL, Siciliano I, Spadafora N, Amini M, Herbert RJ, Bitonti MB, Graumann K, Francis D, Rogers HJ. Plant WEE1 kinase is cell cycle regulated and removed at mitosis via the 26S proteasome machinery. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:2093-106. [PMID: 23536609 PMCID: PMC3638832 DOI: 10.1093/jxb/ert066] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
In yeasts and animals, premature entry into mitosis is prevented by the inhibitory phosphorylation of cyclin-dependent kinase (CDK) by WEE1 kinase, and, at mitosis, WEE1 protein is removed through the action of the 26S proteasome. Although in higher plants WEE1 function has been confirmed in the DNA replication checkpoint, Arabidopsis wee1 insertion mutants grow normally, and a role for the protein in the G2/M transition during an unperturbed plant cell cycle is yet to be confirmed. Here data are presented showing that the inhibitory effect of WEE1 on CDK activity in tobacco BY-2 cell cultures is cell cycle regulated independently of the DNA replication checkpoint: it is high during S-phase but drops as cells traverse G2 and enter mitosis. To investigate this mechanism further, a yeast two-hybrid screen was undertaken to identify proteins interacting with Arabidopsis WEE1. Three F-box proteins and a subunit of the proteasome complex were identified, and bimolecular fluorescence complementation confirmed an interaction between AtWEE1 and the F-box protein SKP1 interacting partner 1 (SKIP1). Furthermore, the AtWEE1-green fluorescent protein (GFP) signal in Arabidopsis primary roots treated with the proteasome inhibitor MG132 was significantly increased compared with mock-treated controls. Expression of AtWEE1-YFP(C) (C-terminal portion of yellow fluorescent protein) or AtWEE1 per se in tobacco BY-2 cells resulted in a premature increase in the mitotic index compared with controls, whereas co-expression of AtSKIP1-YFP(N) negated this effect. These data support a role for WEE1 in a normal plant cell cycle and its removal at mitosis via the 26S proteasome.
Collapse
Affiliation(s)
- Gemma S. Cook
- School of Biosciences, Cardiff University, Main Building, Park Place, Cardiff CF10 3TL, UK
- Institute of Science and the Environment, University of Worcester, Henwick Grove, Worcester, UK
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Anne Lentz Grønlund
- School of Biosciences, Cardiff University, Main Building, Park Place, Cardiff CF10 3TL, UK
- Institute of Science and the Environment, University of Worcester, Henwick Grove, Worcester, UK
- Biopharm R&D, GlaxoSmithKline, Stevenage, Herts SG1 2NY, UK
| | - Ilario Siciliano
- School of Biosciences, Cardiff University, Main Building, Park Place, Cardiff CF10 3TL, UK
- Institute of Science and the Environment, University of Worcester, Henwick Grove, Worcester, UK
| | - Natasha Spadafora
- School of Biosciences, Cardiff University, Main Building, Park Place, Cardiff CF10 3TL, UK
- Institute of Science and the Environment, University of Worcester, Henwick Grove, Worcester, UK
- Department of Ecology, University of Calabria, Arcavacata di Rende (Cosenza), Italy
| | - Maryam Amini
- School of Biosciences, Cardiff University, Main Building, Park Place, Cardiff CF10 3TL, UK
| | - Robert J. Herbert
- Institute of Science and the Environment, University of Worcester, Henwick Grove, Worcester, UK
| | - M. Beatrice Bitonti
- Department of Ecology, University of Calabria, Arcavacata di Rende (Cosenza), Italy
| | - Katja Graumann
- Plant Nuclear Envelope Group, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Dennis Francis
- School of Biosciences, Cardiff University, Main Building, Park Place, Cardiff CF10 3TL, UK
| | - Hilary J. Rogers
- School of Biosciences, Cardiff University, Main Building, Park Place, Cardiff CF10 3TL, UK
| |
Collapse
|
11
|
Liu J, Tang X, Gao L, Gao Y, Li Y, Huang S, Sun X, Miao M, Zeng H, Tian X, Niu X, Zheng L, Giovannoni J, Xiao F, Liu Y. A role of tomato UV-damaged DNA binding protein 1 (DDB1) in organ size control via an epigenetic manner. PLoS One 2012; 7:e42621. [PMID: 22927934 PMCID: PMC3424292 DOI: 10.1371/journal.pone.0042621] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 07/10/2012] [Indexed: 11/24/2022] Open
Abstract
Epigenetic modification generally refers to phenotypic changes by a mechanism other than changes in DNA sequence and plays a significant role in developmental processes. In this study, we found that overexpression of one alternatively spliced tomato DDB1 transcript, DDB1(F) that is prevalently present in all tested tissues, resulted in reduction of organ size. Transgenic plants constitutively expressing the DDB1(F) from a strong cauliflower mosaic virus (CaMV) 35S promoter displayed moderately reduced size in vegetative organs (leaves and stems) and radically decreased size in reproductive organs (flowers, seeds and fruits), in which several genes encoding negative regulators for cell division were upregulated. Significantly, reduction of organ size conferred by overexpression of DDB1(F) transgene appears not to segregate in the subsequent generations, suggesting the phenotypic alternations are manipulated in an epigenetic manner and can be transmitted over generations. This notion was further substantiated by analysis of DNA methylation level at the SlWEE1 gene (encoding a negative regulator of cell division), revealing a correlation between less methylation in the promoter region and elevated expression level of this gene. Thus, our results suggest DDB1 plays an important role in regulation of the epigenetic state of genes involved in organogenesis, despite the underlying mechanism remains to be elucidated.
Collapse
Affiliation(s)
- Jikai Liu
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Science, Sichuan University, Chengdu, China
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, China
| | - Xiaofeng Tang
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Science, Sichuan University, Chengdu, China
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, China
| | - Lanyang Gao
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Science, Sichuan University, Chengdu, China
| | - Yongfeng Gao
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Science, Sichuan University, Chengdu, China
| | - Yuxiang Li
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Science, Sichuan University, Chengdu, China
| | - Shengxiong Huang
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Science, Sichuan University, Chengdu, China
| | - Xiaochun Sun
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Science, Sichuan University, Chengdu, China
| | - Min Miao
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Science, Sichuan University, Chengdu, China
- Department of Plant, Soil and Entomological Sciences, University of Idaho, Moscow, Idaho, United State of America
| | - Hui Zeng
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Science, Sichuan University, Chengdu, China
| | - Xuefen Tian
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Science, Sichuan University, Chengdu, China
| | - Xiangli Niu
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, China
| | - Lei Zheng
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, China
| | - Jim Giovannoni
- United States Department of Agriculture-Agricultural Research Service, Robert Holly Center and Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York, United State of America
| | - Fangming Xiao
- Department of Plant, Soil and Entomological Sciences, University of Idaho, Moscow, Idaho, United State of America
| | - Yongsheng Liu
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Science, Sichuan University, Chengdu, China
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, China
| |
Collapse
|
12
|
Spadafora ND, Parfitt D, Marchbank A, Li S, Bruno L, Vaughan R, Nieuwland J, Buchanan-Wollaston V, Herbert RJ, Bitonti MB, Doonan J, Albani D, Prinsen E, Francis D, Rogers HJ. Perturbation of cytokinin and ethylene-signalling pathways explain the strong rooting phenotype exhibited by Arabidopsis expressing the Schizosaccharomyces pombe mitotic inducer, cdc25. BMC PLANT BIOLOGY 2012; 12:45. [PMID: 22452972 PMCID: PMC3362767 DOI: 10.1186/1471-2229-12-45] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 03/27/2012] [Indexed: 05/29/2023]
Abstract
BACKGROUND Entry into mitosis is regulated by cyclin dependent kinases that in turn are phosphoregulated. In most eukaryotes, phosphoregulation is through WEE1 kinase and CDC25 phosphatase. In higher plants a homologous CDC25 gene is unconfirmed and hence the mitotic inducer Schizosaccharomyces pombe (Sp) cdc25 has been used as a tool in transgenic plants to probe cell cycle function. Expression of Spcdc25 in tobacco BY-2 cells accelerates entry into mitosis and depletes cytokinins; in whole plants it stimulates lateral root production. Here we show, for the first time, that alterations to cytokinin and ethylene signaling explain the rooting phenotype elicited by Spcdc25 expression in Arabidopsis. RESULTS Expressing Spcdc25 in Arabidopsis results in increased formation of lateral and adventitious roots, a reduction of primary root width and more isodiametric cells in the root apical meristem (RAM) compared with wild type. Furthermore it stimulates root morphogenesis from hypocotyls when cultured on two way grids of increasing auxin and cytokinin concentrations. Microarray analysis of seedling roots expressing Spcdc25 reveals that expression of 167 genes is changed by > 2-fold. As well as genes related to stress responses and defence, these include 19 genes related to transcriptional regulation and signaling. Amongst these was the up-regulation of genes associated with ethylene synthesis and signaling. Seedlings expressing Spcdc25 produced 2-fold more ethylene than WT and exhibited a significant reduction in hypocotyl length both in darkness or when exposed to 10 ppm ethylene. Furthermore in Spcdc25 expressing plants, the cytokinin receptor AHK3 was down-regulated, and endogenous levels of iPA were reduced whereas endogeous IAA concentrations in the roots increased. CONCLUSIONS We suggest that the reduction in root width and change to a more isodiametric cell phenotype in the RAM in Spcdc25 expressing plants is a response to ethylene over-production. The increased rooting phenotype in Spcdc25 expressing plants is due to an increase in the ratio of endogenous auxin to cytokinin that is known to stimulate an increased rate of lateral root production. Overall, our data reveal important cross talk between cell division and plant growth regulators leading to developmental changes.
Collapse
Affiliation(s)
- Natasha D Spadafora
- School of Biosciences, Cardiff University, Cardiff CF10 3AT, UK
- Dipartimento di Ecologia, Università della Calabria, Arcavacata di Rende, Cosenza I-87030, Italy
| | - David Parfitt
- School of Biosciences, Cardiff University, Cardiff CF10 3AT, UK
| | | | - Sherong Li
- School of Biosciences, Cardiff University, Cardiff CF10 3AT, UK
| | - Leonardo Bruno
- Dipartimento di Ecologia, Università della Calabria, Arcavacata di Rende, Cosenza I-87030, Italy
| | - Rhys Vaughan
- School of Biosciences, Cardiff University, Cardiff CF10 3AT, UK
| | | | | | - Robert J Herbert
- Institute of Science and the Environment, University of Worcester, Henwick Grove, Worcester WR2 6AJ, UK
| | - Maria Beatrice Bitonti
- Dipartimento di Ecologia, Università della Calabria, Arcavacata di Rende, Cosenza I-87030, Italy
| | - John Doonan
- Plant Phenomics Centre, Institute of Biological, Environmental and Rural Sciences, Penglais, Aberystwyth University, Ceredigion SY23 3DA, Aberystwyth, UK
| | - Diego Albani
- Department of Botanical, Ecological and Geological Sciences, University of Sassari, Via Piandanna 4, Sassari 07100, Italy
| | - Els Prinsen
- Department of Biology, University of Antwerp, Groenenborgerlaan 171, Antwerp B-2020, Belgium
| | - Dennis Francis
- School of Biosciences, Cardiff University, Cardiff CF10 3AT, UK
| | - Hilary J Rogers
- School of Biosciences, Cardiff University, Cardiff CF10 3AT, UK
| |
Collapse
|
13
|
Chevalier C, Nafati M, Mathieu-Rivet E, Bourdon M, Frangne N, Cheniclet C, Renaudin JP, Gévaudant F, Hernould M. Elucidating the functional role of endoreduplication in tomato fruit development. ANNALS OF BOTANY 2011; 107:1159-69. [PMID: 21199834 PMCID: PMC3091799 DOI: 10.1093/aob/mcq257] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
BACKGROUND Endoreduplication is the major source of endopolyploidy in higher plants. The process of endoreduplication results from the ability of cells to modify their classical cell cycle into a partial cell cycle where DNA synthesis occurs independently from mitosis. Despite the ubiquitous occurrence of the phenomenon in eukaryotic cells, the physiological meaning of endoreduplication remains vague, although several roles during plant development have been proposed, mostly related to cell differentiation and cell size determination. SCOPE Here recent advances in the knowledge of endoreduplication and fruit organogenesis are reviewed, focusing on tomato (Solanum lycopersicum) as a model, and the functional analyses of endoreduplication-associated regulatory genes in tomato fruit are described. CONCLUSIONS The cyclin-dependent kinase inhibitory kinase WEE1 and the anaphase promoting complex activator CCS52A both participate in the control of cell size and the endoreduplication process driving cell expansion during early fruit development in tomato. Moreover the fruit-specific functional analysis of the tomato CDK inhibitor KRP1 reveals that cell size and fruit size determination can be uncoupled from DNA ploidy levels, indicating that endoreduplication acts rather as a limiting factor for cell growth. The overall functional data contribute to unravelling the physiological role of endoreduplication in growth induction of fleshy fruits.
Collapse
Affiliation(s)
- Christian Chevalier
- Institut National de la Recherche Agronomique, Université de Bordeaux, Unité Mixte de Recherche 619 sur la Biologie du Fruit, Villenave d'Ornon Cedex, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Lipavská H, Masková P, Vojvodová P. Regulatory dephosphorylation of CDK at G₂/M in plants: yeast mitotic phosphatase cdc25 induces cytokinin-like effects in transgenic tobacco morphogenesis. ANNALS OF BOTANY 2011; 107:1071-86. [PMID: 21339187 PMCID: PMC3091802 DOI: 10.1093/aob/mcr016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 11/02/2010] [Accepted: 12/03/2010] [Indexed: 05/07/2023]
Abstract
BACKGROUND During the last three decades, the cell cycle and its control by cyclin-dependent kinases (CDKs) have been extensively studied in eukaryotes. This endeavour has produced an overall picture that basic mechanisms seem to be largely conserved among all eukaryotes. The intricate regulation of CDK activities includes, among others, CDK activation by CDC25 phosphatase at G₂/M. In plants, however, studies of this regulation have lagged behind as a plant Cdc25 homologue or other unrelated phosphatase active at G₂/M have not yet been identified. SCOPE Failure to identify a plant mitotic CDK activatory phosphatase led to characterization of the effects of alien cdc25 gene expression in plants. Tobacco, expressing the Schizosaccharomyces pombe mitotic activator gene, Spcdc25, exhibited morphological, developmental and biochemical changes when compared with wild type (WT) and, importantly, increased CDK dephosphorylation at G₂/M. Besides changes in leaf shape, internode length and root development, in day-neutral tobacco there was dramatically earlier onset of flowering with a disturbed acropetal floral capacity gradient typical of WT. In vitro, de novo organ formation revealed substantially earlier and more abundant formation of shoot primordia on Spcdc25 tobacco stem segments grown on shoot-inducing media when compared with WT. Moreover, in contrast to WT, stem segments from transgenic plants formed shoots even without application of exogenous growth regulator. Spcdc25-expressing BY-2 cells exhibited a reduced mitotic cell size due to a shortening of the G₂ phase together with high activity of cyclin-dependent kinase, NtCDKB1, in early S-phase, S/G₂ and early M-phase. Spcdc25-expressing tobacco ('Samsun') cell suspension cultures showed a clustered, more circular, cell phenotype compared with chains of elongated WT cells, and increased content of starch and soluble sugars. Taken together, Spcdc25 expression had cytokinin-like effects on the characteristics studied, although determination of endogenous cytokinin levels revealed a dramatic decrease in Spcdc25 transgenics. CONCLUSIONS The data gained using the plants expressing yeast mitotic activator, Spcdc25, clearly argue for the existence and importance of activatory dephosphorylation at G₂/M transition and its interaction with cytokinin signalling in plants. The observed cytokinin-like effects of Spcdc25 expression are consistent with the concept of interaction between cell cycle regulators and phytohormones during plant development. The G₂/M control of the plant cell cycle, however, remains an elusive issue as doubts persist about the mode of activatory dephosphorylation, which in other eukaryotes is provided by Cdc25 phosphatase serving as a final all-or-nothing mitosis regulator.
Collapse
Affiliation(s)
- Helena Lipavská
- Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, Viničná 5, Prague 2, Czech Republic.
| | | | | |
Collapse
|
15
|
Ohno R, Kadota Y, Fujii S, Sekine M, Umeda M, Kuchitsu K. Cryptogein-induced cell cycle arrest at G2 phase is associated with inhibition of cyclin-dependent kinases, suppression of expression of cell cycle-related genes and protein degradation in synchronized tobacco BY-2 cells. PLANT & CELL PHYSIOLOGY 2011; 52:922-32. [PMID: 21565910 DOI: 10.1093/pcp/pcr042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Induction of defense responses by pathogens or elicitors is often accompanied by growth inhibition in planta, but its molecular mechanisms are poorly understood. In this report, we characterized the molecular events that occur during cryptogein-induced cell cycle arrest at G(2) phase in synchronously cultured tobacco Bright Yellow-2 (BY-2) cells. Concomitant with the proteinaceous elicitor-induced G(2) arrest, we observed inhibition of the histone H1 kinase activity of cyclin-dependent kinases (CDKs), which correlated with a decrease in mRNA and protein levels of CDKB1. In contrast, the amount of CDKA was almost unaffected by cryptogein even at M phase. Cryptogein rapidly inhibited the expression not only of positive, e.g. A- and B-type cyclins and NtCAK, but also of negative cell cycle regulators such as WEE1, suggesting that cryptogein affects multiple targets to inactivate CDKA to induce G(2) arrest by mechanisms distinct from known checkpoint regulation. Moreover, we show that CDKB1 and cyclin proteins are also rapidly degraded by cryptogein and that the proteasome-dependent protein degradation has a crucial role in the control of cryptogein-induced hypersensitive cell death.
Collapse
Affiliation(s)
- Ryoko Ohno
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | | | | | | | | | | |
Collapse
|
16
|
Malladi A, Johnson LK. Expression profiling of cell cycle genes reveals key facilitators of cell production during carpel development, fruit set, and fruit growth in apple (Malusxdomestica Borkh.). JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:205-19. [PMID: 20732881 PMCID: PMC2993910 DOI: 10.1093/jxb/erq258] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 08/01/2010] [Accepted: 08/02/2010] [Indexed: 05/19/2023]
Abstract
Cell production is an essential facilitator of fruit growth and development. Cell production during carpel/floral-tube growth, fruit set, and fruit growth, and its regulation by cell cycle genes were investigated in apple (Malus×domestica Borkh.). Cell production was inhibited during late carpel/floral-tube development, resulting in growth arrest before bloom. Fruit set re-activated cell production between 8 d and 11 d after full bloom (DAFB) and triggered fruit growth. The early phase of fruit growth involved rapid cell production followed by exit from cell proliferation at ∼24 DAFB. Seventy-one cell cycle genes were identified, and expression of 59 genes was investigated using quantitative RT-PCR. Changes in expression of 19 genes were consistently associated with transitions in cell production during carpel/floral-tube growth, fruit set, and fruit growth. Fourteen genes, including B-type cyclin-dependent kinases (CDKs) and A2-, B1-, and B2-type cyclins, were positively associated with cell production, suggesting that availability of G2/M phase regulators of the cell cycle is limiting for cell proliferation. Enhanced expression of five genes including that of the putative CDK inhibitors, MdKRP4 and MdKRP5, was associated with reduced cell production. Exit from cell proliferation at G0/G1 during fruit growth was facilitated by multiple mechanisms including down-regulation of putative regulators of G1/S and G2/M phase progression and up-regulation of KRP genes. Interestingly, two CDKA genes and several CDK-activating factors were up-regulated during this period, suggesting functions for these genes in mediating exit from cell proliferation at G0/G1. Together, the data indicate that cell cycle genes are important facilitators of cell production during apple fruit development.
Collapse
Affiliation(s)
- Anish Malladi
- Department of Horticulture, 1111 Miller Plant Sciences, University of Georgia, Athens, GA 30602, USA.
| | | |
Collapse
|
17
|
Dissmeyer N, Weimer AK, De Veylder L, Novak B, Schnittger A. The regulatory network of cell-cycle progression is fundamentally different in plants versus yeast or metazoans. PLANT SIGNALING & BEHAVIOR 2010; 5:1613-8. [PMID: 21139435 PMCID: PMC3115114 DOI: 10.4161/psb.5.12.13969] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 10/18/2010] [Indexed: 05/18/2023]
Abstract
Plant growth and proliferation control is coming into a global focus due to recent ecological and economical developments. Plants represent not only the largest food supply for mankind but also may serve as a global source of renewable energies. However, plant breeding has to accomplish a tremendous boost in yield to match the growing demand of a still rapidly increasing human population. Moreover, breeding has to adjust to changing environmental conditions, in particular increased drought. Regulation of cell-cycle control is a major determinant of plant growth and therefore an obvious target for plant breeding. Furthermore, cell-cycle control is also crucial for the DNA damage response, for instance upon irradiation. Thus, an in-depth understanding of plant cell-cycle regulation is of importance beyond a scientific point of view. The mere presence of many conserved core cell-cycle regulators, e.g. CDKs, cyclins, or CDK inhibitors, has formed the idea that the cell cycle in plants is exactly or at least very similarly controlled as in yeast or human cells. Here together with a recent publication we demonstrate that this dogma is not true and show that the control of entry into mitosis is fundamentally different in plants versus yeast or metazoans. Our findings build an important base for the understanding and ultimate modulation of plant growth not only during unperturbed but also under harsh environmental conditions.
Collapse
Affiliation(s)
- Nico Dissmeyer
- Department of Molecular Mechanisms of Phenotypic Plasticity; Institut de Biologie Moléculaire des Plantes du CNRS; IBMP-CNRS; Unité Propre de Recherche 2357; Conventionné avec l'Université de Strasbourg; Strasbourg, France
| | - Annika K Weimer
- Department of Molecular Mechanisms of Phenotypic Plasticity; Institut de Biologie Moléculaire des Plantes du CNRS; IBMP-CNRS; Unité Propre de Recherche 2357; Conventionné avec l'Université de Strasbourg; Strasbourg, France
| | - Lieven De Veylder
- Department of Plant Systems Biology; Vlaams Interuniversitair Instituut voor Biotechnologie (VIB); Universiteit Gent; Gent, Belgium
- Department of Plant Biotechnology and Genetics; Universiteit Gent; Gent, Belgium
| | - Bela Novak
- Oxford Centre for Integrative Systems Biology; Department of Biochemistry; University of Oxford; Oxford UK
| | - Arp Schnittger
- Department of Molecular Mechanisms of Phenotypic Plasticity; Institut de Biologie Moléculaire des Plantes du CNRS; IBMP-CNRS; Unité Propre de Recherche 2357; Conventionné avec l'Université de Strasbourg; Strasbourg, France
| |
Collapse
|
18
|
Mathieu-Rivet E, Gévaudant F, Sicard A, Salar S, Do PT, Mouras A, Fernie AR, Gibon Y, Rothan C, Chevalier C, Hernould M. Functional analysis of the anaphase promoting complex activator CCS52A highlights the crucial role of endo-reduplication for fruit growth in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 62:727-41. [PMID: 20230486 DOI: 10.1111/j.1365-313x.2010.04198.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Tomato fruit growth is characterized by the occurrence of numerous rounds of DNA endo-reduplication in connection with cell expansion and final fruit size determination. Endo-reduplication is an impairment of mitosis that originates from the selective degradation of M phase-specific cyclins via the ubiquitin-mediated proteolytic pathway, requiring the E3 ubiquitin ligase anaphase promoting complex/cyclosome (APC/C). Two types of APC/C activators, namely CCS52 and CDC20 proteins, exist in plants. We report here the molecular characterization of such APC/C activators during fruit development, and provide an in planta functional analysis of SlCCS52A, a gene that is specifically associated with endo-reduplication in tomato. Altering SlCCS52A expression in either a negative or positive manner had an impact on the extent of endo-reduplication in fruit, and fruit size was reduced in both cases. In SlCCS52A over-expressing fruits, endo-reduplication was initially delayed, accounting for the altered final fruit size, but resumed and was even enhanced at 15 days post anthesis (dpa), leading to fruit growth recovery. This induction of growth mediated by endo-reduplication had a considerable impact on nitrogen metabolism in developing fruits. Our data contribute to unravelling of the physiological role of endo-reduplication in growth induction during tomato fruit development.
Collapse
Affiliation(s)
- Elodie Mathieu-Rivet
- Institut National de la Recherche Agronomique, Université de Bordeaux, Unité Mixte de Recherche 619 sur la Biologie du Fruit, Institut Fédératif de Recherche 103, Institut National de la Recherche Agronomique, BP 81, F-33883 Villenave d'Ornon Cedex, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Bourdon M, Frangne N, Mathieu-Rivet E, Nafati M, Cheniclet C, Renaudin JP, Chevalier C. Endoreduplication and Growth of Fleshy Fruits. PROGRESS IN BOTANY 2010. [DOI: 10.1007/978-3-642-02167-1_4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
20
|
Dissmeyer N, Weimer AK, Pusch S, De Schutter K, Alvim Kamei CL, Nowack MK, Novak B, Duan GL, Zhu YG, De Veylder L, Schnittger A. Control of cell proliferation, organ growth, and DNA damage response operate independently of dephosphorylation of the Arabidopsis Cdk1 homolog CDKA;1. THE PLANT CELL 2009; 21:3641-54. [PMID: 19948791 PMCID: PMC2798325 DOI: 10.1105/tpc.109.070417] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 09/24/2009] [Accepted: 10/22/2009] [Indexed: 05/18/2023]
Abstract
Entry into mitosis is universally controlled by cyclin-dependent kinases (CDKs). A key regulatory event in metazoans and fission yeast is CDK activation by the removal of inhibitory phosphate groups in the ATP binding pocket catalyzed by Cdc25 phosphatases. In contrast with other multicellular organisms, we show here that in the flowering plant Arabidopsis thaliana, cell cycle control does not depend on sudden changes in the phosphorylation pattern of the PSTAIRE-containing Cdk1 homolog CDKA;1. Consistently, we found that neither mutants in a previously identified CDC25 candidate gene nor plants in which it is overexpressed display cell cycle defects. Inhibitory phosphorylation of CDKs is also the key event in metazoans to arrest cell cycle progression upon DNA damage. However, we show here that the DNA damage checkpoint in Arabidopsis can also operate independently of the phosphorylation of CDKA;1. These observations reveal a surprising degree of divergence in the circuitry of highly conserved core cell cycle regulators in multicellular organisms. Based on biomathematical simulations, we propose a plant-specific model of how progression through the cell cycle could be wired in Arabidopsis.
Collapse
Affiliation(s)
- Nico Dissmeyer
- Unigruppe am Max-Planck-Institut für Züchtungsforschung, Max-Delbrück-Laboratorium, Lehrstuhl für Botanik III, Universität zu Köln, Köln, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Suchomelová-Mašková P, Novák O, Lipavská H. Tobacco cells transformed with the fission yeast Spcdc25 mitotic inducer display growth and morphological characteristics as well as starch and sugar status evocable by cytokinin application. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2008; 46:673-684. [PMID: 18550380 DOI: 10.1016/j.plaphy.2008.04.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2007] [Indexed: 05/26/2023]
Abstract
In plants, the G2/M control of cell cycle remains an elusive issue as doubts persist about activatory dephosphorylation--in other eukaryotes provided by CDC25 phosphatase and serving as a final all-or-nothing mitosis regulator. We report on the effects of tobacco (Nicotiana tabacum L., cv. Samsun) transformation with fission yeast (Schizosaccharomyces pombe) cdc25 (Spcdc25) on cell characteristics. Transformed cell suspension cultures showed higher dry mass accumulation during the exponential phase and clustered more circular cell phenotypes compared to chains of elongated WT cells. Similar cell parameters, as in the transformants, can be induced in WT by cytokinins. Spcdc25 cells, after cytokinin treatment, showed giant cell clusters and growth inhibition. In addition, Spcdc25 expression led to altered carbohydrate status: increased starch and soluble sugars with higher sucrose:hexoses ratio, inducible in WT by cytokinin treatment. Taken together, the Spcdc25 transformation had a cytokinin-like effect on studied characteristics. However, endogenous cytokinin determination revealed markedly lower cytokinin levels in Spcdc25 transformants. This indicates that the cells sense Spcdc25 expression as an increased cytokinin availability, manifested by changed cell morphology, and in consequence decrease endogenous cytokinin levels. Clearly, the results on cell growth and morphology are consistent with the model of G2/M control including cytokinin-regulated activatory dephosphorylation. Nevertheless, no clear link is obvious between Spcdc25 transformation and carbohydrate status and thus the observed cytokinin-like effect on carbohydrate levels poses a problem. Hence, we propose that Spcdc25-induced higher CDK(s) activity at G2/M generates a signal-modifying carbohydrate metabolism to meet high energy and C demands of forthcoming cell division.
Collapse
Affiliation(s)
- Petra Suchomelová-Mašková
- Department of Plant Physiology, Faculty of Science, Charles University in Prague, Viničná 5, 128 44 Prague 2, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Palacký University & Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Šlechtitelů 11, Olomouc, Czech Republic
| | - Helena Lipavská
- Department of Plant Physiology, Faculty of Science, Charles University in Prague, Viničná 5, 128 44 Prague 2, Czech Republic
| |
Collapse
|
22
|
Janssen BJ, Thodey K, Schaffer RJ, Alba R, Balakrishnan L, Bishop R, Bowen JH, Crowhurst RN, Gleave AP, Ledger S, McArtney S, Pichler FB, Snowden KC, Ward S. Global gene expression analysis of apple fruit development from the floral bud to ripe fruit. BMC PLANT BIOLOGY 2008; 8:16. [PMID: 18990244 PMCID: PMC2287172 DOI: 10.1186/1471-2229-8-16] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Accepted: 02/17/2008] [Indexed: 05/18/2023]
Abstract
BACKGROUND Apple fruit develop over a period of 150 days from anthesis to fully ripe. An array representing approximately 13000 genes (15726 oligonucleotides of 45-55 bases) designed from apple ESTs has been used to study gene expression over eight time points during fruit development. This analysis of gene expression lays the groundwork for a molecular understanding of fruit growth and development in apple. RESULTS Using ANOVA analysis of the microarray data, 1955 genes showed significant changes in expression over this time course. Expression of genes is coordinated with four major patterns of expression observed: high in floral buds; high during cell division; high when starch levels and cell expansion rates peak; and high during ripening. Functional analysis associated cell cycle genes with early fruit development and three core cell cycle genes are significantly up-regulated in the early stages of fruit development. Starch metabolic genes were associated with changes in starch levels during fruit development. Comparison with microarrays of ethylene-treated apple fruit identified a group of ethylene induced genes also induced in normal fruit ripening. Comparison with fruit development microarrays in tomato has been used to identify 16 genes for which expression patterns are similar in apple and tomato and these genes may play fundamental roles in fruit development. The early phase of cell division and tissue specification that occurs in the first 35 days after pollination has been associated with up-regulation of a cluster of genes that includes core cell cycle genes. CONCLUSION Gene expression in apple fruit is coordinated with specific developmental stages. The array results are reproducible and comparisons with experiments in other species has been used to identify genes that may play a fundamental role in fruit development.
Collapse
Affiliation(s)
- Bart J Janssen
- The Horticulture and Food Research Institute of New Zealand Ltd., Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
| | - Kate Thodey
- John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
| | - Robert J Schaffer
- The Horticulture and Food Research Institute of New Zealand Ltd., Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
| | - Rob Alba
- Boyce Thompson Institute for Plant Research, Tower Road, Cornell University Campus, Ithaca, NY 14853, USA
- Monsanto Company – O3D, Product Safety Center, 800 North Lindbergh Blvd., St. Louis, MO 63167, USA
| | | | - Rebecca Bishop
- 4 La Trobe Track, RD2 New Lynn, Karekare, Auckland, New Zealand
| | - Judith H Bowen
- The Horticulture and Food Research Institute of New Zealand Ltd., Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
| | - Ross N Crowhurst
- The Horticulture and Food Research Institute of New Zealand Ltd., Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
| | - Andrew P Gleave
- The Horticulture and Food Research Institute of New Zealand Ltd., Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
| | - Susan Ledger
- The Horticulture and Food Research Institute of New Zealand Ltd., Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
| | - Steve McArtney
- Department of Horticultural Science, North Carolina State University, Mountain Horticultural Crops Research and Extension Centre, 455 Research Drive, Fletcher, NC 28732-9244, USA
| | - Franz B Pichler
- Microbial Ecology & Genomics Lab, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Kimberley C Snowden
- The Horticulture and Food Research Institute of New Zealand Ltd., Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
| | - Shayna Ward
- The Horticulture and Food Research Institute of New Zealand Ltd., Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
| |
Collapse
|
23
|
Gonzalez N, Gévaudant F, Hernould M, Chevalier C, Mouras A. The cell cycle-associated protein kinase WEE1 regulates cell size in relation to endoreduplication in developing tomato fruit. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 51:642-55. [PMID: 17587306 DOI: 10.1111/j.1365-313x.2007.03167.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Tomato fruit size results from the combination of cell number and cell size which are respectively determined by cell division and cell expansion processes. As fruit growth is mainly sustained by cell expansion, the development of pericarp and locular tissues is characterized by the concomitant arrest of mitotic activity, inhibition of cyclin-dependent kinase (CDK) activity, and numerous rounds of endoreduplication inducing a spectacular increase in DNA ploidy and mean cell size. To decipher the molecular basis of the endoreduplication-associated cell growth in fruit, we investigated the putative involvement of the WEE1 kinase (Solly;WEE1). We here report a functional analysis of Solly;WEE1 in tomato. Impairing the expression of Solly;WEE1 in transgenic tomato plants resulted in a reduction of plant size and fruit size. In the most altered phenotypes, fruits displayed a reduced number of seeds without embryo development. The reduction of plant-, fruit- and seed size originated from a reduction in cell size which could be correlated with a decrease of the DNA ploidy levels. At the molecular level downregulating Solly;WEE1 in planta resulted in the increase of CDKA activity levels originating from a decrease of the amount of Y15-phosphorylated CDKA, thus indicating a release of the negative regulation on CDK activity exerted by WEE1. Our data indicated that Solly;WEE1 participates in the control of cell size and/or the onset of the endoreduplication process putatively driving cell expansion.
Collapse
Affiliation(s)
- Nathalie Gonzalez
- Unité Mixte de Recherche 619 sur la Biologie du Fruit (Institut National de la Recherche Agronomique; Université Bordeaux 1; Université Victor Segalen-Bordeaux 2), Institut Fédératif de Recherche 103, Institut National de la Recherche Agronomique, France
| | | | | | | | | |
Collapse
|
24
|
Abstract
The basic components of the plant cell cycle are G1 (postmitotic interphase), S-phase (DNA synthesis phase), G2 (premitotic interphase) and mitosis/cytokinesis. Proliferating cells are phosphoregulated by cyclin-dependent protein kinases (CDKs). Plant D-type cyclins are sensors of the G0 to G1 transition, and are also important for G2/M. At G1/S, the S-phase transcription factor, E2F, is released from inhibitory retinoblastoma protein. Negative regulation of G1 events is through KRPs (Kip-related proteins). Plant S-phase genes are similar to animal ones, but timing of expression can be different (e.g. CDC6 at the start of S-phase) and functional evidence is limited. At G2/M, A-type and the unique B-type CDKs when bound to A, B and D cyclins, drive cells into division; they are negatively regulated by ICK1/2 and perhaps also by WEE1 kinase. In Arabidopsis, a putative CDC25 lacks a regulatory domain. Mitosis depends on correct temporal activity of CDKs, Aurora kinases and anaphase promotion complex; CDK-cyclin B activity beyond metaphase is catastrophic. Endoreduplication (re-replication of DNA in the absence of mitosis) is characterized by E2F expression and down-regulation of mitotic cyclins. Some cell size data support, whilst others negate, the idea of cell size having an impact on development.
Collapse
Affiliation(s)
- Dennis Francis
- School of Biosciences, Cardiff University, PO Box 915, Cardiff CF10 3TL, UK
| |
Collapse
|
25
|
De Schutter K, Joubès J, Cools T, Verkest A, Corellou F, Babiychuk E, Van Der Schueren E, Beeckman T, Kushnir S, Inzé D, De Veylder L. Arabidopsis WEE1 kinase controls cell cycle arrest in response to activation of the DNA integrity checkpoint. THE PLANT CELL 2007; 19:211-25. [PMID: 17209125 PMCID: PMC1820959 DOI: 10.1105/tpc.106.045047] [Citation(s) in RCA: 220] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Upon the incidence of DNA stress, the ataxia telangiectasia-mutated (ATM) and Rad3-related (ATR) signaling kinases activate a transient cell cycle arrest that allows cells to repair DNA before proceeding into mitosis. Although the ATM-ATR pathway is highly conserved over species, the mechanisms by which plant cells stop their cell cycle in response to the loss of genome integrity are unclear. We demonstrate that the cell cycle regulatory WEE1 kinase gene of Arabidopsis thaliana is transcriptionally activated upon the cessation of DNA replication or DNA damage in an ATR- or ATM-dependent manner, respectively. In accordance with a role for WEE1 in DNA stress signaling, WEE1-deficient plants showed no obvious cell division or endoreduplication phenotype when grown under nonstress conditions but were hypersensitive to agents that impair DNA replication. Induced WEE1 expression inhibited plant growth by arresting dividing cells in the G2-phase of the cell cycle. We conclude that the plant WEE1 gene is not rate-limiting for cycle progression under normal growth conditions but is a critical target of the ATR-ATM signaling cascades that inhibit the cell cycle upon activation of the DNA integrity checkpoints, coupling mitosis to DNA repair in cells that suffer DNA damage.
Collapse
Affiliation(s)
- Kristof De Schutter
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology, Ghent University, B-9052 Gent, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Bisbis B, Delmas F, Joubès J, Sicard A, Hernould M, Inzé D, Mouras A, Chevalier C. Cyclin-dependent Kinase (CDK) Inhibitors Regulate the CDK-Cyclin Complex Activities in Endoreduplicating Cells of Developing Tomato Fruit. J Biol Chem 2006; 281:7374-83. [PMID: 16407228 DOI: 10.1074/jbc.m506587200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The jelly-like locular (gel) tissue of tomato fruit is made up of large thin-walled and highly vacuolized cells. The development of the gel tissue is characterized by the arrest of mitotic activities, the inhibition of cyclin-dependent kinase A (CDKA) activity, and numerous rounds of nuclear DNA endoreduplication. To decipher the molecular determinants controlling these developmental events, we investigated the putative involvement of CDK inhibitors (p27(Kip)-related proteins, or KRPs) during the endoreduplication process. Two cDNAs, LeKRP1 and LeKRP2, encoding tomato CDK inhibitors were isolated. The LeKRP1 and LeKRP2 transcript expression was shown to be enhanced in the differentiating cells of the gel undergoing endoreduplication. At the translational level, LeKRP1 was shown to accumulate in the gel tissue and to participate in the inhibition of the CDK-cyclin kinase activities occurring in endoreduplicating cells of the gel tissue. We here propose that LeKRP1 participates in the control of both the cell cycle and the endoreduplication cycle.
Collapse
Affiliation(s)
- Badia Bisbis
- Unité Mixte de Recherche 619 en Physiologie et Biotechnologie Végétales, Institut de Biologie Végétale Moléculaire, Institut National de la Recherche Agronomique, Université de Bordeaux 1, BP 81, 33883 Villenave d'Ornon Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|