1
|
Xu Y, Wu Z, Shen W, Zhou H, Li H, He X, Li R, Qin B. Disruption of the rice ALS1 localized in chloroplast causes seedling-lethal albino phenotype. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 338:111925. [PMID: 37981085 DOI: 10.1016/j.plantsci.2023.111925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/03/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023]
Abstract
Chloroplasts are the organelles responsible for photosynthesis and regulate normal plant growth. Although translation elongation factors play important roles in chloroplast development, functional studies of chloroplast translation elongation factors in higher plants remain very sparse. Here, we obtained a rice mutant exhibiting seedling-lethal albino phenotype and named it albino and lethal seedling 1 (als1). Consistently, low content of photosynthetic pigments, malformed chloroplasts and defective photosynthesis were observed in als1 mutant leaves. Map-based cloning experiment showed that als1 mutant had a T base insertion in Os02g0595700, causing a frame shift and premature stop codon. ALS1 encoded a GTP-binding protein EF-Tu, which acts as a translation elongation factor in chloroplast protein translation. ALS1 was found to be expressed throughout plant with highest expression level in young leaves. Moreover, ALS1 was located in chloroplast, whereas the truncated als1 could not normally be located in chloroplast. Additionally, the ALS1 mutation significantly influenced the expression of downstream genes, such as genes relevant to chlorophyll biosynthesis, photosynthesis as well as chloroplast development. These results show that ALS1 acts as a key regulator of chloroplast development and plant growth.
Collapse
Affiliation(s)
- Yibo Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Agricultural College, Guangxi University, Nanning 530005, China
| | - Zishuai Wu
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Wei Shen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Agricultural College, Guangxi University, Nanning 530005, China
| | - Haiyu Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Agricultural College, Guangxi University, Nanning 530005, China
| | - Hu Li
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Xinhua He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Agricultural College, Guangxi University, Nanning 530005, China
| | - Rongbai Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Agricultural College, Guangxi University, Nanning 530005, China
| | - Baoxiang Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Agricultural College, Guangxi University, Nanning 530005, China.
| |
Collapse
|
2
|
Li W, Liu Z, Huang Y, Zheng J, Yang Y, Cao Y, Ding L, Meng Y, Shan W. Phytophthora infestans RXLR effector Pi23014 targets host RNA-binding protein NbRBP3a to suppress plant immunity. MOLECULAR PLANT PATHOLOGY 2024; 25:e13416. [PMID: 38279850 PMCID: PMC10777756 DOI: 10.1111/mpp.13416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 01/29/2024]
Abstract
Phytophthora infestans is a destructive oomycete that causes the late blight of potato and tomato worldwide. It secretes numerous small proteins called effectors in order to manipulate host cell components and suppress plant immunity. Identifying the targets of these effectors is crucial for understanding P. infestans pathogenesis and host plant immunity. In this study, we show that the virulence RXLR effector Pi23014 of P. infestans targets the host nucleus and chloroplasts. By using a liquid chromatogrpahy-tandem mass spectrometry assay and co-immunoprecipitation assasys, we show that it interacts with NbRBP3a, a putative glycine-rich RNA-binding protein. We confirmed the co-localization of Pi23014 and NbRBP3a within the nucleus, by using bimolecular fluorescence complementation. Reverse transcription-quantitative PCR assays showed that the expression of NbRBP3a was induced in Nicotiana benthamiana during P. infestans infection and the expression of marker genes for multiple defence pathways were significantly down-regulated in NbRBP3-silenced plants compared with GFP-silenced plants. Agrobacterium tumefaciens-mediated transient overexpression of NbRBP3a significantly enhanced plant resistance to P. infestans. Mutations in the N-terminus RNA recognition motif (RRM) of NbRBP3a abolished its interaction with Pi23014 and eliminated its capability to enhance plant resistance to leaf colonization by P. infestans. We further showed that silencing NbRBP3 reduced photosystem II activity, reduced host photosynthetic efficiency, attenuated Pi23014-mediated suppression of cell death triggered by P. infestans pathogen-associated molecular pattern elicitor INF1, and suppressed plant immunity.
Collapse
Affiliation(s)
- Wanyue Li
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, and College of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| | - Zeming Liu
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, and College of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| | - Yuli Huang
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, and College of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| | - Jie Zheng
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, and College of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| | - Yang Yang
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, and College of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, and College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Yimeng Cao
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, and College of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| | - Liwen Ding
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, and College of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| | - Yuling Meng
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, and College of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| | - Weixing Shan
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, and College of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, and College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| |
Collapse
|
3
|
Corredor-Moreno P, Badgami R, Jones S, Saunders DGO. Temporally coordinated expression of nuclear genes encoding chloroplast proteins in wheat promotes Puccinia striiformis f. sp. tritici infection. Commun Biol 2022; 5:853. [PMID: 35996019 PMCID: PMC9395331 DOI: 10.1038/s42003-022-03780-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 07/28/2022] [Indexed: 11/09/2022] Open
Abstract
Targeting host processes that allow pathogens to thrive can be invaluable in resistance breeding. Here, we generated a deep-sequencing transcriptome time course for Puccinia striiformis f. sp. tritici (Pst) infection on wheat and compared datasets from three wheat varieties with different levels of susceptibility to two tested pathogen isolates. We sought genes specifically altered in a susceptible host as candidates that might support colonisation. Host responses differed between Pst-varietal pairs most prominently early during infection. Notably, however, nuclear genes encoding chloroplast-localised proteins (NGCPs) exhibited temporal coordination of expression profiles that differed at later time points in relation to Pst susceptibility. Disrupting one such NGCP, encoding the chloroplast-localised RNA binding protein TaCSP41a, led to lower Pst susceptibility. These analyses thus highlight NGCPs as prime targets for Pst manipulation during infection and point to TaCSP41a disruption as a potential source of Pst resistance for breeding programmes. A transcriptome time course of Puccinia striiformis f. sp. tritici (Pst) infection reveals nuclear genes encoding chloroplast-localized proteins are manipulated during infection and highlights TaCSP41a disruption as a target for resistance breeding.
Collapse
Affiliation(s)
| | | | - Sally Jones
- John Innes Centre, Norwich Research Park, Norwich, UK
| | | |
Collapse
|
4
|
Lande NV, Barua P, Gayen D, Wardhan V, Jeevaraj T, Kumar S, Chakraborty S, Chakraborty N. Dehydration-responsive chickpea chloroplast protein, CaPDZ1, confers dehydration tolerance by improving photosynthesis. PHYSIOLOGIA PLANTARUM 2022; 174:e13613. [PMID: 35199362 DOI: 10.1111/ppl.13613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 05/27/2023]
Abstract
The screening of a dehydration-responsive chloroplast proteome of chickpea led us to identify and investigate the functional importance of an uncharacterized protein, designated CaPDZ1. In all, we identified 14 CaPDZs, and phylogenetic analysis revealed that these belong to photosynthetic eukaryotes. Sequence analyses of CaPDZs indicated that CaPDZ1 is a unique member, which harbours a TPR domain besides a PDZ domain. The global expression analysis showed that CaPDZs are intimately associated with various stresses such as dehydration and oxidative stress along with certain phytohormone responses. The CaPDZ1-overexpressing chickpea seedlings exhibited distinct phenotypic and molecular responses, particularly increased photosystem (PS) efficiency, ETR and qP that validated its participation in PSII complex assembly and/or repair. The investigation of CaPDZ1 interacting proteins through Y2H library screening and co-IP analysis revealed the interacting partners to be PSII associated CP43, CP47, D1, D2 and STN8. These findings supported the earlier hypothesis regarding the role of direct or indirect involvement of PDZ proteins in PS assembly or repair. Moreover, the GUS-promoter analysis demonstrated the preferential expression of CaPDZ1 specifically in photosynthetic tissues. We classified CaPDZ1 as a dehydration-responsive chloroplast intrinsic protein with multi-fold abundance under dehydration stress, which may participate synergistically with other chloroplast proteins in the maintenance of the photosystem.
Collapse
Affiliation(s)
- Nilesh Vikram Lande
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, New Delhi, India
| | - Pragya Barua
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, New Delhi, India
| | - Dipak Gayen
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, New Delhi, India
| | - Vijay Wardhan
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, New Delhi, India
| | - Theboral Jeevaraj
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, New Delhi, India
| | - Sunil Kumar
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, New Delhi, India
| | - Subhra Chakraborty
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, New Delhi, India
| | - Niranjan Chakraborty
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, New Delhi, India
| |
Collapse
|
5
|
Castandet B, Germain A, Hotto AM, Stern DB. Systematic sequencing of chloroplast transcript termini from Arabidopsis thaliana reveals >200 transcription initiation sites and the extensive imprints of RNA-binding proteins and secondary structures. Nucleic Acids Res 2020; 47:11889-11905. [PMID: 31732725 PMCID: PMC7145512 DOI: 10.1093/nar/gkz1059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 10/02/2019] [Accepted: 11/05/2019] [Indexed: 12/23/2022] Open
Abstract
Chloroplast transcription requires numerous quality control steps to generate the complex but selective mixture of accumulating RNAs. To gain insight into how this RNA diversity is achieved and regulated, we systematically mapped transcript ends by developing a protocol called Terminome-seq. Using Arabidopsis thaliana as a model, we catalogued >215 primary 5′ ends corresponding to transcription start sites (TSS), as well as 1628 processed 5′ ends and 1299 3′ ends. While most termini were found in intergenic regions, numerous abundant termini were also found within coding regions and introns, including several major TSS at unexpected locations. A consistent feature was the clustering of both 5′ and 3′ ends, contrasting with the prevailing description of discrete 5′ termini, suggesting an imprecision of the transcription and/or RNA processing machinery. Numerous termini correlated with the extremities of small RNA footprints or predicted stem-loop structures, in agreement with the model of passive RNA protection. Terminome-seq was also implemented for pnp1–1, a mutant lacking the processing enzyme polynucleotide phosphorylase. Nearly 2000 termini were altered in pnp1–1, revealing a dominant role in shaping the transcriptome. In summary, Terminome-seq permits precise delineation of the roles and regulation of the many factors involved in organellar transcriptome quality control.
Collapse
Affiliation(s)
- Benoît Castandet
- Boyce Thompson Institute, Ithaca, NY 14853, USA.,Institut des Sciences des Plantes de Paris Saclay (IPS2), UEVE, INRA, CNRS, Univ. Paris Sud, Université Paris-Saclay, F-91192 Gif sur Yvette, France.,Université de Paris, IPS2, F-91192 Gif sur Yvette, France
| | | | | | | |
Collapse
|
6
|
Krüger M, Abeyawardana OAJ, Juříček M, Krüger C, Štorchová H. Variation in plastid genomes in the gynodioecious species Silene vulgaris. BMC PLANT BIOLOGY 2019; 19:568. [PMID: 31856730 PMCID: PMC6921581 DOI: 10.1186/s12870-019-2193-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 12/10/2019] [Indexed: 05/10/2023]
Abstract
BACKGROUND Gynodioecious species exist in two sexes - male-sterile females and hermaphrodites. Male sterility in higher plants often results from mitonuclear interaction between the CMS (cytoplasmic male sterility) gene(s) encoded by mitochondrial genome and by nuclear-encoded restorer genes. Mitochondrial and nuclear-encoded transcriptomes in females and hermaphrodites are intensively studied, but little is known about sex-specific gene expression in plastids. We have compared plastid transcriptomes between females and hermaphrodites in two haplotypes of a gynodioecious species Silene vulgaris with known CMS candidate genes. RESULTS We generated complete plastid genome sequences from five haplotypes S. vulgaris including the haplotypes KRA and KOV, for which complete mitochondrial genome sequences were already published. We constructed a phylogenetic tree based on plastid sequences of S. vulgaris. Whereas lowland S. vulgaris haplotypes including KRA and KOV clustered together, the accessions from high European mountains diverged early in the phylogram. S. vulgaris belongs among Silene species with slowly evolving plastid genomes, but we still detected 212 substitutions and 112 indels between two accessions of this species. We estimated elevated Ka/Ks in the ndhF gene, which may reflect the adaptation of S. vulgaris to high altitudes, or relaxed selection. We compared depth of coverage and editing rates between female and hermaphrodite plastid transcriptomes and found no significant differences between the two sexes. We identified 51 unique C to U editing sites in the plastid genomes of S. vulgaris, 38 of them in protein coding regions, 2 in introns, and 11 in intergenic regions. The editing site in the psbZ gene was edited only in one of two plastid genomes under study. CONCLUSIONS We revealed no significant differences between the sexes in plastid transcriptomes of two haplotypes of S. vulgaris. It suggests that gene expression of plastid genes is not affected by CMS in flower buds of S. vulgaris, although both sexes may still differ in plastid gene expression in specific tissues. We revealed the difference between the plastid transcriptomes of two S. vulgaris haplotypes in editing rate and in the coverage of several antisense transcripts. Our results document the variation in plastid genomes and transcriptomes in S. vulgaris.
Collapse
Affiliation(s)
- Manuela Krüger
- Plant Reproduction Laboratory, Institute of Experimental Botany v.v.i, Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic
| | - Oushadee A. J. Abeyawardana
- Plant Reproduction Laboratory, Institute of Experimental Botany v.v.i, Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic
| | - Miloslav Juříček
- Plant Reproduction Laboratory, Institute of Experimental Botany v.v.i, Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic
| | | | - Helena Štorchová
- Plant Reproduction Laboratory, Institute of Experimental Botany v.v.i, Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic
| |
Collapse
|
7
|
Karaca N, Ates D, Nemli S, Ozkuru E, Yilmaz H, Yagmur B, Kartal C, Tosun M, Ocak OO, Otles S, Kahriman A, Tanyolac MB. Association mapping of magnesium and manganese concentrations in the seeds of C. arietinum and C. reticulatum. Genomics 2019; 112:1633-1642. [PMID: 31669504 DOI: 10.1016/j.ygeno.2019.09.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 09/05/2019] [Accepted: 09/16/2019] [Indexed: 12/30/2022]
Abstract
Chickpea (Cicer arietinum L.) is one of the oldest and most important pulse crops grown and consumed all over the world, especially in developing countries. Magnesium (Mg) and manganese (Mn) are essential plant nutrients in terms of human health and many health problems arise in their deficiencies. The objectives of this study were to characterize genetic variability in the seed Mg and Mn concentrations and identify single nucleotide polymorphism (SNP) markers associated with these traits in 107 Cicer reticulatum and 73C. arietinum genotypes, using a genome wide association study. The genotypes were grown in four environments, characterized for Mg and Mn concentrations, and genotyped with 121,841 SNP markers. The population showed three-fold and two-fold variation for the Mg and Mn concentrations, respectively. The population structure was identified using STRUCTURE software, which divided 180 genotypes into two (K = 2) groups. Principal component analysis and neighbor joining tree analysis confirmed the results of STRUCTURE. A total of 4 and 16 consistent SNPs were detected for the Mg and Mn concentrations, respectively. The identified markers can be utilized in breeding of chickpea to increase Mg and Mn levels in order to improve human and livestock nutrition.
Collapse
Affiliation(s)
- Nur Karaca
- Ege University, Department of Bioengineering, 35040, Bornova, Izmir, Turkey
| | - Duygu Ates
- Ege University, Department of Bioengineering, 35040, Bornova, Izmir, Turkey
| | - Seda Nemli
- Ege University, Department of Bioengineering, 35040, Bornova, Izmir, Turkey
| | - Esin Ozkuru
- Ege University, Department of Bioengineering, 35040, Bornova, Izmir, Turkey
| | - Hasan Yilmaz
- Ege University, Department of Bioengineering, 35040, Bornova, Izmir, Turkey
| | - Bulent Yagmur
- Ege University, Department of Soil Sciences, 35040, Bornova, Izmir, Turkey
| | - Canan Kartal
- Ege University, Department of Food Engineering, 35040, Bornova, Izmir, Turkey
| | - Muzaffer Tosun
- Ege University, Department of Field Crops, 35040, Bornova, Izmir, Turkey
| | - Ozgul Ozdestan Ocak
- Ege University, Department of Food Engineering, 35040, Bornova, Izmir, Turkey
| | - Semih Otles
- Ege University, Department of Food Engineering, 35040, Bornova, Izmir, Turkey
| | - Abdullah Kahriman
- Harran University, Department of Field Crops, 64000 Sanli Urfa, Turkey
| | | |
Collapse
|
8
|
Zhang S, Zhang H, Xia Y, Xiong L. The caseinolytic protease complex component CLPC1 in Arabidopsis maintains proteome and RNA homeostasis in chloroplasts. BMC PLANT BIOLOGY 2018; 18:192. [PMID: 30208840 PMCID: PMC6136230 DOI: 10.1186/s12870-018-1396-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 08/27/2018] [Indexed: 05/18/2023]
Abstract
BACKGROUND Homeostasis of the proteome is critical to the development of chloroplasts and also affects the expression of certain nuclear genes. CLPC1 facilitates the translocation of chloroplast pre-proteins and mediates protein degradation. RESULTS We found that proteins involved in photosynthesis are dramatically decreased in their abundance in the clpc1 mutant, whereas many proteins involved in chloroplast transcription and translation were increased in the mutant. Expression of the full-length CLPC1 protein, but not of the N-terminus-deleted CLPC1 (ΔN), in the clpc1 mutant background restored the normal levels of most of these proteins. Interestingly, the ΔN complementation line could also restore some proteins affected by the mutation to normal levels. We also found that that the clpc1 mutation profoundly affects transcript levels of chloroplast genes. Sense transcripts of many chloroplast genes are up-regulated in the clpc1 mutant. The level of SVR7, a PPR protein, was affected by the clpc1 mutation. We showed that SVR7 might be a target of CLPC1 as CLPC1-SVR7 interaction was detected through co-immunoprecipitation. CONCLUSION Our study indicates that in addition to its role in maintaining proteome homeostasis, CLPC1 and likely the CLP proteasome complex also play a role in transcriptome homeostasis through its functions in maintaining proteome homeostasis.
Collapse
Affiliation(s)
- Shoudong Zhang
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia
- Centre for Soybean Research, Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, Special Administrative Region China
| | - Huoming Zhang
- Core labs, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia
| | - Yiji Xia
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
- Partner State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Shatin, Hong Kong SAR, China
- Partner State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Shatin, Hong Kong, SAR, China
| | - Liming Xiong
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia
- Texas A&M AgriLife Research Center, Dallas, TX 75252 USA
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843 USA
| |
Collapse
|
9
|
Shen ZJ, Chen J, Ghoto K, Hu WJ, Gao GF, Luo MR, Li Z, Simon M, Zhu XY, Zheng HL. Proteomic analysis on mangrove plant Avicennia marina leaves reveals nitric oxide enhances the salt tolerance by up-regulating photosynthetic and energy metabolic protein expression. TREE PHYSIOLOGY 2018; 38:1605-1622. [PMID: 29917117 DOI: 10.1093/treephys/tpy058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 05/01/2018] [Indexed: 05/25/2023]
Affiliation(s)
- Zhi-jun Shen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, PR China
| | - Juan Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, PR China
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu, PR China
| | - Kabir Ghoto
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, PR China
| | - Wen-jun Hu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, PR China
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, PR China
| | - Gui-feng Gao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, PR China
| | - Mei-rong Luo
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, PR China
| | - Zan Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, PR China
| | - Martin Simon
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, PR China
| | - Xue-yi Zhu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, PR China
| | - Hai-lei Zheng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, PR China
| |
Collapse
|
10
|
RNA-stabilization factors in chloroplasts of vascular plants. Essays Biochem 2018; 62:51-64. [PMID: 29453323 PMCID: PMC5897788 DOI: 10.1042/ebc20170061] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/02/2018] [Accepted: 01/12/2018] [Indexed: 12/23/2022]
Abstract
In contrast to the cyanobacterial ancestor, chloroplast gene expression is predominantly governed on the post-transcriptional level such as modifications of the RNA sequence, decay rates, exo- and endonucleolytic processing as well as translational events. The concerted function of numerous chloroplast RNA-binding proteins plays a fundamental and often essential role in all these processes but our understanding of their impact in regulation of RNA degradation is only at the beginning. Moreover, metabolic processes and post-translational modifications are thought to affect the function of RNA protectors. These protectors contain a variety of different RNA-recognition motifs, which often appear as multiple repeats. They are required for normal plant growth and development as well as diverse stress responses and acclimation processes. Interestingly, most of the protectors are plant specific which reflects a fast-evolving RNA metabolism in chloroplasts congruent with the diverging RNA targets. Here, we mainly focused on the characteristics of known chloroplast RNA-binding proteins that protect exonuclease-sensitive sites in chloroplasts of vascular plants.
Collapse
|
11
|
Zhan Y, Marchand CH, Maes A, Mauries A, Sun Y, Dhaliwal JS, Uniacke J, Arragain S, Jiang H, Gold ND, Martin VJJ, Lemaire SD, Zerges W. Pyrenoid functions revealed by proteomics in Chlamydomonas reinhardtii. PLoS One 2018; 13:e0185039. [PMID: 29481573 PMCID: PMC5826530 DOI: 10.1371/journal.pone.0185039] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 01/29/2018] [Indexed: 01/19/2023] Open
Abstract
Organelles are intracellular compartments which are themselves compartmentalized. Biogenic and metabolic processes are localized to specialized domains or microcompartments to enhance their efficiency and suppress deleterious side reactions. An example of intra-organellar compartmentalization is the pyrenoid in the chloroplasts of algae and hornworts. This microcompartment enhances the photosynthetic CO2-fixing activity of the Calvin-Benson cycle enzyme Rubisco, suppresses an energetically wasteful oxygenase activity of Rubisco, and mitigates limiting CO2 availability in aquatic environments. Hence, the pyrenoid is functionally analogous to the carboxysomes in cyanobacteria. However, a comprehensive analysis of pyrenoid functions based on its protein composition is lacking. Here we report a proteomic characterization of the pyrenoid in the green alga Chlamydomonas reinhardtii. Pyrenoid-enriched fractions were analyzed by quantitative mass spectrometry. Contaminant proteins were identified by parallel analyses of pyrenoid-deficient mutants. This pyrenoid proteome contains 190 proteins, many of which function in processes that are known or proposed to occur in pyrenoids: e.g. the carbon concentrating mechanism, starch metabolism or RNA metabolism and translation. Using radioisotope pulse labeling experiments, we show that pyrenoid-associated ribosomes could be engaged in the localized synthesis of the large subunit of Rubisco. New pyrenoid functions are supported by proteins in tetrapyrrole and chlorophyll synthesis, carotenoid metabolism or amino acid metabolism. Hence, our results support the long-standing hypothesis that the pyrenoid is a hub for metabolism. The 81 proteins of unknown function reveal candidates for new participants in these processes. Our results provide biochemical evidence of pyrenoid functions and a resource for future research on pyrenoids and their use to enhance agricultural plant productivity. Data are available via ProteomeXchange with identifier PXD004509.
Collapse
Affiliation(s)
- Yu Zhan
- Department of Biology & Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - Christophe H. Marchand
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Universités, UPMC Univ Paris 06, 13 rue Pierre et Marie Curie, Paris, France
| | - Alexandre Maes
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Universités, UPMC Univ Paris 06, 13 rue Pierre et Marie Curie, Paris, France
| | - Adeline Mauries
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Universités, UPMC Univ Paris 06, 13 rue Pierre et Marie Curie, Paris, France
| | - Yi Sun
- Department of Biology & Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - James S. Dhaliwal
- Department of Biology & Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - James Uniacke
- Department of Biology & Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - Simon Arragain
- Department of Biology & Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - Heng Jiang
- Department of Biology & Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - Nicholas D. Gold
- Department of Biology & Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - Vincent J. J. Martin
- Department of Biology & Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - Stéphane D. Lemaire
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Universités, UPMC Univ Paris 06, 13 rue Pierre et Marie Curie, Paris, France
- * E-mail: (SDL); (WZ)
| | - William Zerges
- Department of Biology & Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
- * E-mail: (SDL); (WZ)
| |
Collapse
|
12
|
Lehniger MK, Finster S, Melonek J, Oetke S, Krupinska K, Schmitz-Linneweber C. Global RNA association with the transcriptionally active chromosome of chloroplasts. PLANT MOLECULAR BIOLOGY 2017; 95:303-311. [PMID: 28887777 DOI: 10.1007/s11103-017-0649-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 08/07/2017] [Indexed: 06/07/2023]
Abstract
KEY MESSAGE Processed chloroplast RNAs are co-enriched with preparations of the chloroplast transcriptionally active chromosome. Chloroplast genomes are organized as a polyploid DNA-protein structure called the nucleoid. Transcriptionally active chloroplast DNA together with tightly bound protein factors can be purified by gel filtration as a functional entity called the transcriptionally active chromosome (TAC). Previous proteomics analyses of nucleoids and of TACs demonstrated a considerable overlap in protein composition including RNA binding proteins. Therefore the RNA content of TAC preparations from Nicotiana tabacum was determined using whole genome tiling arrays. A large number of chloroplast RNAs was found to be associated with the TAC. The pattern of RNAs attached to the TAC consists of RNAs produced by different chloroplast RNA polymerases and differs from the pattern of RNA found in input controls. An analysis of RNA splicing and RNA editing of selected RNA species demonstrated that TAC-associated RNAs are processed to a similar extent as the RNA in input controls. Thus, TAC fractions contain a specific subset of the processed chloroplast transcriptome.
Collapse
Affiliation(s)
- Marie-Kristin Lehniger
- Institute of Biology, Humboldt University of Berlin, Philippstr. 11-13, 10115, Berlin, Germany
| | - Sabrina Finster
- Institute of Biology, Humboldt University of Berlin, Philippstr. 11-13, 10115, Berlin, Germany
| | - Joanna Melonek
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Svenja Oetke
- Institute of Botany, Christian-Albrechts-University of Kiel, Olshausenstr. 40, 24098, Kiel, Germany
| | - Karin Krupinska
- Institute of Botany, Christian-Albrechts-University of Kiel, Olshausenstr. 40, 24098, Kiel, Germany.
| | | |
Collapse
|
13
|
Mei J, Li F, Liu X, Hu G, Fu Y, Liu W. Newly identified CSP41b gene localized in chloroplasts affects leaf color in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 256:39-45. [PMID: 28167036 DOI: 10.1016/j.plantsci.2016.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/02/2016] [Accepted: 12/08/2016] [Indexed: 05/05/2023]
Abstract
A rice mutant with light-green leaves was discovered from a transgenic line of Oryza sativa. The mutant has reduced chlorophyll content and abnormal chloroplast morphology throughout its life cycle. Genetic analysis revealed that a single nuclear-encoded recessive gene is responsible for the mutation, here designated as lgl1. To isolate the lgl1 gene, a high-resolution physical map of the chromosomal region around the lgl1 gene was made using a mapping population consisting of 1984 mutant individuals. The lgl1 gene was mapped in the 76.5kb region between marker YG4 and marker YG5 on chromosome 12. Sequence analysis revealed that there was a 39bp deletion within the fourth exon of the candidate gene Os12g0420200 (TIGR locus Os12g23180) encoding a chloroplast stem-loop-binding protein of 41kDa b (CSP41b). The lgl1 mutation was rescued by transformation with the wild type CSP41b gene. Accordingly, the CSP41b gene is identified as the LGL1 gene. CSP41b was transcribed in various tissues and was mainly expressed in leaves. Expression of CSP41b-GFP fusion protein indicated that CSP41b is localized in chloroplasts. The expression levels of some key genes involved in chlorophyll biosynthesis and photosynthesis, such as ChlD, ChlI, Hema1, Ygl1, POR, Cab1R, Cab2R, PsaA, and rbcL, was significantly changed in the lgl1 mutant. Our results demonstrate that CSP41b is a novel gene required for normal leaf color and chloroplast morphology in rice.
Collapse
Affiliation(s)
- Jiasong Mei
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang 310006, China
| | - Feifei Li
- School of Agriculture and Food Science, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Xuri Liu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang 310006, China
| | - Guocheng Hu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang 310006, China
| | - Yaping Fu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang 310006, China
| | - Wenzhen Liu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang 310006, China.
| |
Collapse
|
14
|
Teubner M, Fuß J, Kühn K, Krause K, Schmitz-Linneweber C. The RNA recognition motif protein CP33A is a global ligand of chloroplast mRNAs and is essential for plastid biogenesis and plant development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:472-485. [PMID: 27743418 DOI: 10.1111/tpj.13396] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 09/29/2016] [Accepted: 10/07/2016] [Indexed: 06/06/2023]
Abstract
Chloroplast RNA metabolism depends on a multitude of nuclear-encoded RNA-binding proteins (RBPs). Most known chloroplast RBPs address specific RNA targets and RNA-processing functions. However, members of the small chloroplast ribonucleoprotein family (cpRNPs) play a global role in processing and stabilizing chloroplast RNAs. Here, we show that the cpRNP CP33A localizes to a distinct sub-chloroplastic domain and is essential for chloroplast development. The loss of CP33A yields albino seedlings that exhibit aberrant leaf development and can only survive in the presence of an external carbon source. Genome-wide RNA association studies demonstrate that CP33A associates with all chloroplast mRNAs. For a given transcript, quantification of CP33A-bound versus free RNAs demonstrates that CP33A associates with the majority of most mRNAs analyzed. Our results further show that CP33A is required for the accumulation of a number of tested mRNAs, and is particularly relevant for unspliced and unprocessed precursor mRNAs. Finally, CP33A fails to associate with polysomes or to strongly co-precipitate with ribosomal RNA, suggesting that it defines a ribodomain that is separate from the chloroplast translation machinery. Collectively, these findings suggest that CP33A contributes to globally essential RNA processes in the chloroplasts of higher plants.
Collapse
Affiliation(s)
- Marlene Teubner
- Humboldt-Universität Berlin, Institut für Biologie, Chausseestrasse 117, 10115, Berlin, Germany
| | - Janina Fuß
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Dramsvegen 201, 9037, Tromsø, Norway
| | - Kristina Kühn
- Humboldt-Universität Berlin, Institut für Biologie, Chausseestrasse 117, 10115, Berlin, Germany
| | - Kirsten Krause
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Dramsvegen 201, 9037, Tromsø, Norway
| | | |
Collapse
|
15
|
Ghosh R, Mishra RC, Choi B, Kwon YS, Bae DW, Park SC, Jeong MJ, Bae H. Exposure to Sound Vibrations Lead to Transcriptomic, Proteomic and Hormonal Changes in Arabidopsis. Sci Rep 2016; 6:33370. [PMID: 27665921 PMCID: PMC5036088 DOI: 10.1038/srep33370] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 08/22/2016] [Indexed: 11/09/2022] Open
Abstract
Sound vibration (SV) is considered as an external mechanical force that modulates plant growth and development like other mechanical stimuli (e.g., wind, rain, touch and vibration). A number of previous and recent studies reported developmental responses in plants tailored against SV of varied frequencies. This strongly suggests the existence of sophisticated molecular mechanisms for SV perception and signal transduction. Despite this there exists a huge gap in our understanding regarding the SV-mediated molecular alterations, which is a prerequisite to gain insight into SV-mediated plant development. Herein, we investigated the global gene expression changes in Arabidopsis thaliana upon treatment with five different single frequencies of SV at constant amplitude for 1 h. As a next step, we also studied the SV-mediated proteomic changes in Arabidopsis. Data suggested that like other stimuli, SV also activated signature cellular events, for example, scavenging of reactive oxygen species (ROS), alteration of primary metabolism, and hormonal signaling. Phytohormonal analysis indicated that SV-mediated responses were, in part, modulated by specific alterations in phytohormone levels; especially salicylic acid (SA). Notably, several touch regulated genes were also up-regulated by SV treatment suggesting a possible molecular crosstalk among the two mechanical stimuli, sound and touch. Overall, these results provide a molecular basis to SV triggered global transcriptomic, proteomic and hormonal changes in plant.
Collapse
Affiliation(s)
- Ritesh Ghosh
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | | | - Bosung Choi
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Young Sang Kwon
- Environmental Biology and Chemistry Center, Korea Institute of Toxicology, Jinju 52834, Republic of Korea
| | - Dong Won Bae
- Central Instrument Facility, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Soo-Chul Park
- National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Mi-Jeong Jeong
- National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Hanhong Bae
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
16
|
Chevalier F, Ghulam MM, Rondet D, Pfannschmidt T, Merendino L, Lerbs-Mache S. Characterization of the psbH precursor RNAs reveals a precise endoribonuclease cleavage site in the psbT/psbH intergenic region that is dependent on psbN gene expression. PLANT MOLECULAR BIOLOGY 2015; 88:357-67. [PMID: 26012647 DOI: 10.1007/s11103-015-0325-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 04/23/2015] [Indexed: 05/15/2023]
Abstract
The plastid psbB operon harbours 5 genes, psbB, psbT, psbH, petB and petD. A sixth gene, the psbN gene, is located on the opposite DNA strand in the psbT/psbH intergenic region. Its transcription produces antisense RNA to a large part of the psbB pentacistronic mRNA. We have investigated whether transcription of the psbN gene, i.e. production of antisense RNA, influences psbT/psbH intergenic processing. Results reveal the existence of four different psbH precursor RNAs. Three of them result from processing and one is produced by transcription initiation. One of the processed RNAs is probably created by site-specific RNA cleavage. This RNA is absent in plants where the psbN gene is not transcribed suggesting that cleavage at this site is dependent on the formation of sense/antisense double-stranded RNA. In order to characterize the nuclease that might be responsible for double-stranded RNA cleavage, we analysed csp41a and csp41b knock-out mutants and the corresponding double mutant. Both CSP41 proteins are known to interact physically and CSP41a had been shown to cleave within 3'-untranslated region stem-loop structures, which contain double-stranded RNA, in vitro. We demonstrate that the psbH RNA, that is absent in plants where the psbN gene is not transcribed, is also strongly diminished in all csp41 plants. Altogether, results reveal a site-specific endoribonuclease cleavage event that seems to depend on antisense RNA and might implicate endoribonuclease activity of CSP41a.
Collapse
Affiliation(s)
- Fabien Chevalier
- Laboratoire Physiologie Cellulaire Végétale, UMR 5168, CNRS, Grenoble, France
| | | | | | | | | | | |
Collapse
|
17
|
Ariga H, Tanaka T, Ono H, Sakata Y, Hayashi T, Taji T. CSP41b, a protein identified via FOX hunting using Eutrema salsugineum cDNAs, improves heat and salinity stress tolerance in transgenic Arabidopsis thaliana. Biochem Biophys Res Commun 2015; 464:318-23. [PMID: 26123393 DOI: 10.1016/j.bbrc.2015.06.151] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 06/24/2015] [Indexed: 12/29/2022]
Abstract
Eutrema salsugineum (also known as Thellungiella salsuginea and formerly Thellungiella halophila), a species closely related to Arabidopsis thaliana, shows tolerance not only to salt stress, but also to chilling, freezing, and high temperatures. To identify genes responsible for stress tolerance, we conducted Full-length cDNA Over-eXpressing gene (FOX) hunting among a collection of E. salsugineum cDNAs that were stress-induced according to gene ontology analysis or over-expressed in E. salsugineum compared with A. thaliana. We identified E. salsugineum CSP41b (chloroplast stem-loop-binding protein of 41 kDa; also known as CRB, chloroplast RNA binding; named here as EsCSP41b) as a gene that can confer heat and salinity stress tolerance on A. thaliana. A. thaliana CSP41b is reported to play an important role in the proper functioning of the chloroplast: the atcsp41b mutant is smaller and paler than wild-type plants and shows altered chloroplast morphology and photosynthetic performance. We observed that AtCSP41b-overexpressing transgenic A. thaliana lines also exhibited marked heat tolerance and significant salinity stress tolerance. The EsCSP41b-overexpressing transgenic A. thaliana lines showed significantly higher photosynthesis activity than wild-type plants not only under normal growth conditions but also under heat stress. In wild-type plants, the expression levels of both EsCSP41b and AtCSP41b were significantly reduced under heat or salinity stress. We conclude that maintenance of CSP41b expression under abiotic stresses may alleviate photoinhibition and improve survival under such stresses.
Collapse
Affiliation(s)
- Hirotaka Ariga
- Department of Bio-Science, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | - Tomoko Tanaka
- Department of Bio-Science, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | - Hirokazu Ono
- Department of Bio-Science, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | - Yoichi Sakata
- Department of Bio-Science, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | - Takahisa Hayashi
- Department of Bio-Science, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | - Teruaki Taji
- Department of Bio-Science, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan.
| |
Collapse
|
18
|
Hao J, Wu W, Wang Y, Yang Z, Liu Y, Lv Y, Zhai Y, Yang J, Liang Z, Huang K, Xu W. Arabidopsis thaliana defense response to the ochratoxin A-producing strain (Aspergillus ochraceus 3.4412). PLANT CELL REPORTS 2015; 34:705-19. [PMID: 25666274 DOI: 10.1007/s00299-014-1731-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 10/29/2014] [Accepted: 12/05/2014] [Indexed: 05/20/2023]
Abstract
OTA-producing strain Aspergillus ochraceus induced necrotic lesions, ROS accumulation and defense responses in Arabidopsis . Primary metabolic and defense-related proteins changed in proteomics. Ascorbate-glutathione cycle and voltage-dependent anion-selective channel proteins fluctuated. Mycotoxigenic fungi, as widespread contaminants by synthesizing mycotoxins in pre-/post-harvest infected plants and even stored commercial cereals, could usually induce plant-fungi defense responses. Notably, ochratoxin A (OTA) is a nephrotoxic, hepatotoxic, teratogenic, immunotoxic and phytotoxic mycotoxin. Herein, defense responses of model system Arabidopsis thaliana detached leaves to infection of Aspergillus ochraceus 3.4412, an OTA high-producing strain, were studied from physiological, proteomic and transcriptional perspectives. During the first 72 h after inoculation (hai), the newly formed hypersensitive responses-like lesions, decreased chlorophyll content, accumulated reactive oxygen species and upregulated defense genes expressions indicated the defense response was induced in the leaves with the possible earlier motivated jasmonic acid/ethylene signaling pathways and the later salicylic acid-related pathway. Moreover, proteomics using two-dimensional gel electrophoresis 72 hai showed 16 spots with significantly changed abundance and 13 spots corresponding to 12 unique proteins were successfully identified by MALDI-TOF/TOF MS/MS. Of these, six proteins were involved in basic metabolism and four in defense-related processes, which included glutathione-S-transferase F7, voltage-dependent anion-selective channel protein 3 (VDAC-3), osmotin-like protein OSM34 and blue copper-binding protein. Verified from proteomic and/or transcriptional perspectives, it is concluded that the primary metabolic pathways were suppressed with the ascorbate-glutathione cycle fluctuated in response to A. ochraceus and the modulation of VDACs suggested the possibility of structural damage and dysfunction of mitochondria in the process. Taken together, these findings exhibited a dynamic overview of the defense responses of A. thaliana to A. ochraceus and provided a better insight into the pathogen-resistance mechanisms in plants.
Collapse
Affiliation(s)
- Junran Hao
- Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Nováková S, Flores-Ramírez G, Glasa M, Danchenko M, Fiala R, Skultety L. Partially resistant Cucurbita pepo showed late onset of the Zucchini yellow mosaic virus infection due to rapid activation of defense mechanisms as compared to susceptible cultivar. FRONTIERS IN PLANT SCIENCE 2015; 6:263. [PMID: 25972878 PMCID: PMC4411989 DOI: 10.3389/fpls.2015.00263] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 04/02/2015] [Indexed: 05/29/2023]
Abstract
Zucchini yellow mosaic virus (ZYMV) is an emerging viral pathogen in cucurbit-growing areas wordwide. Infection causes significant yield losses in several species of the family Cucurbitaceae. To identify proteins potentially involved with resistance toward infection by the severe ZYMV-H isolate, two Cucurbita pepo cultivars (Zelena susceptible and Jaguar partially resistant) were analyzed using a two-dimensional gel electrophoresis-based proteomic approach. Initial symptoms on leaves (clearing veins) developed 6-7 days post-inoculation (dpi) in the susceptible C. pepo cv. Zelena. In contrast, similar symptoms appeared on the leaves of partially resistant C. pepo cv. Jaguar only after 15 dpi. This finding was confirmed by immune-blot analysis which showed higher levels of viral proteins at 6 dpi in the susceptible cultivar. Leaf proteome analyses revealed 28 and 31 spots differentially abundant between cultivars at 6 and 15 dpi, respectively. The variance early in infection can be attributed to a rapid activation of proteins involved with redox homeostasis in the partially resistant cultivar. Changes in the proteome of the susceptible cultivar are related to the cytoskeleton and photosynthesis.
Collapse
Affiliation(s)
| | | | - Miroslav Glasa
- Institute of Virology, Slovak Academy of SciencesBratislava, Slovakia
| | - Maksym Danchenko
- Institute of Virology, Slovak Academy of SciencesBratislava, Slovakia
| | - Roderik Fiala
- Institute of Botany, Slovak Academy of SciencesBratislava, Slovakia
| | - Ludovit Skultety
- Institute of Virology, Slovak Academy of SciencesBratislava, Slovakia
- Institute of Microbiology, Academy of Sciences of Czech RepublicPrague, Czech Republic
| |
Collapse
|
20
|
Bohne AV. The nucleoid as a site of rRNA processing and ribosome assembly. FRONTIERS IN PLANT SCIENCE 2014; 5:257. [PMID: 24926303 PMCID: PMC4046486 DOI: 10.3389/fpls.2014.00257] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 05/19/2014] [Indexed: 05/08/2023]
|
21
|
Kremnev D, Strand Å. Plastid encoded RNA polymerase activity and expression of photosynthesis genes required for embryo and seed development in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2014; 5:385. [PMID: 25161659 PMCID: PMC4130184 DOI: 10.3389/fpls.2014.00385] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 07/19/2014] [Indexed: 05/03/2023]
Abstract
Chloroplast biogenesis and function is essential for proper plant embryo and seed development but the molecular mechanisms underlying the role of plastids during embryogenesis are poorly understood. Expression of plastid encoded genes is dependent on two different transcription machineries; a plastid-encoded bacterial-type RNA polymerase (PEP) and a nuclear-encoded phage-type RNA polymerase (NEP), which recognize distinct types of promoters. However, the division of labor between PEP and NEP during plastid development and in mature chloroplasts is unclear. We show here that PLASTID REDOX INSENSITIVE 2 (PRIN2) and CHLOROPLAST STEM-LOOP BINDING PROTEIN 41 kDa (CSP41b), two proteins identified in plastid nucleoid preparations, are essential for proper plant embryo development. Using Co-IP assays and native PAGE we have shown a direct physical interaction between PRIN2 and CSP41b. Moreover, PRIN2 and CSP41b form a distinct protein complex in vitro that binds DNA. The prin2.2 and csp41b-2 single mutants displayed pale phenotypes, abnormal chloroplasts with reduced transcript levels of photosynthesis genes and defects in embryo development. The respective csp41b-2prin2.2 homo/heterozygote double mutants produced abnormal white colored ovules and shrunken seeds. Thus, the csp41b-2prin2.2 double mutant is embryo lethal. In silico analysis of available array data showed that a large number of genes traditionally classified as PEP dependent genes are transcribed during early embryo development from the pre-globular stage to the mature-green-stage. Taken together, our results suggest that PEP activity and consequently the switch from NEP to PEP activity, is essential during embryo development and that the PRIN2-CSP41b DNA binding protein complex possibly is important for full PEP activity during this process.
Collapse
Affiliation(s)
| | - Åsa Strand
- *Correspondence: Åsa Strand, Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, S-901 87 Umeå, Sweden e-mail:
| |
Collapse
|
22
|
Leister D. Complex(iti)es of the ubiquitous RNA-binding CSP41 proteins. FRONTIERS IN PLANT SCIENCE 2014; 5:255. [PMID: 24936205 PMCID: PMC4047790 DOI: 10.3389/fpls.2014.00255] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 05/19/2014] [Indexed: 05/22/2023]
Affiliation(s)
- Dario Leister
- Department Biology I, Plant Molecular Biology (Botany), Ludwig-Maximilians-University MunichMartinsried, Germany
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of CopenhagenCopenhagen, Denmark
- *Correspondence:
| |
Collapse
|
23
|
Germain A, Hotto AM, Barkan A, Stern DB. RNA processing and decay in plastids. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 4:295-316. [PMID: 23536311 DOI: 10.1002/wrna.1161] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Plastids were derived through endosymbiosis from a cyanobacterial ancestor, whose uptake was followed by massive gene transfer to the nucleus, resulting in the compact size and modest coding capacity of the extant plastid genome. Plastid gene expression is essential for plant development, but depends on nucleus-encoded proteins recruited from cyanobacterial or host-cell origins. The plastid genome is heavily transcribed from numerous promoters, giving posttranscriptional events a critical role in determining the quantity and sizes of accumulating RNA species. The major events reviewed here are RNA editing, which restores protein conservation or creates correct open reading frames by converting C residues to U, RNA splicing, which occurs both in cis and trans, and RNA cleavage, which relies on a variety of exoribonucleases and endoribonucleases. Because the RNases have little sequence specificity, they are collectively able to remove extraneous RNAs whose ends are not protected by RNA secondary structures or sequence-specific RNA-binding proteins (RBPs). Other plastid RBPs, largely members of the helical-repeat superfamily, confer specificity to editing and splicing reactions. The enzymes that catalyze RNA processing are also the main actors in RNA decay, implying that these antagonistic roles are optimally balanced. We place the actions of RBPs and RNases in the context of a recent proteomic analysis that identifies components of the plastid nucleoid, a protein-DNA complex with multiple roles in gene expression. These results suggest that sublocalization and/or concentration gradients of plastid proteins could underpin the regulation of RNA maturation and degradation.
Collapse
|
24
|
Bohne AV, Schwarz C, Schottkowski M, Lidschreiber M, Piotrowski M, Zerges W, Nickelsen J. Reciprocal regulation of protein synthesis and carbon metabolism for thylakoid membrane biogenesis. PLoS Biol 2013; 11:e1001482. [PMID: 23424285 PMCID: PMC3570535 DOI: 10.1371/journal.pbio.1001482] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 01/04/2013] [Indexed: 11/19/2022] Open
Abstract
A subunit of the chloroplast pyruvate dehydrogenase complex, which serves as a metabolic enzyme, also has a dual function as an RNA-binding protein and influences mRNA translation. Metabolic control of gene expression coordinates the levels of specific gene products to meet cellular demand for their activities. This control can be exerted by metabolites acting as regulatory signals and/or a class of metabolic enzymes with dual functions as regulators of gene expression. However, little is known about how metabolic signals affect the balance between enzymatic and regulatory roles of these dual functional proteins. We previously described the RNA binding activity of a 63 kDa chloroplast protein from Chlamydomonas reinhardtii, which has been implicated in expression of the psbA mRNA, encoding the D1 protein of photosystem II. Here, we identify this factor as dihydrolipoamide acetyltransferase (DLA2), a subunit of the chloroplast pyruvate dehydrogenase complex (cpPDC), which is known to provide acetyl-CoA for fatty acid synthesis. Analyses of RNAi lines revealed that DLA2 is involved in the synthesis of both D1 and acetyl-CoA. Gel filtration analyses demonstrated an RNP complex containing DLA2 and the chloroplast psbA mRNA specifically in cells metabolizing acetate. An intrinsic RNA binding activity of DLA2 was confirmed by in vitro RNA binding assays. Results of fluorescence microscopy and subcellular fractionation experiments support a role of DLA2 in acetate-dependent localization of the psbA mRNA to a translation zone within the chloroplast. Reciprocally, the activity of the cpPDC was specifically affected by binding of psbA mRNA. Beyond that, in silico analysis and in vitro RNA binding studies using recombinant proteins support the possibility that RNA binding is an ancient feature of dihydrolipoamide acetyltransferases. Our results suggest a regulatory function of DLA2 in response to growth on reduced carbon energy sources. This raises the intriguing possibility that this regulation functions to coordinate the synthesis of lipids and proteins for the biogenesis of photosynthetic membranes. Metabolic control of gene expression coordinates the levels of specific gene products to meet cellular demand for their activities. This control can be exerted by metabolites acting as regulatory signals on a class of metabolic enzymes with dual functions as regulators of gene expression. However, little is known about how metabolic signals affect the balance between enzymatic and regulatory roles of these proteins. Here, we report an example of a protein with dual functions in gene expression and carbon metabolism. The chloroplast pyruvate dehydrogenase complex is well-known to produce activated di-carbon precursors for fatty acid, which is required for lipid synthesis. Our results show that a subunit of this enzyme forms ribonucleoprotein particles and influences chloroplast mRNA translation. Conversely, RNA binding affects pyruvate dehydrogenase (metabolic) activity. These findings offer insight into how intracellular metabolic signaling and gene expression are reciprocally regulated during membrane biogenesis. In addition, our results suggest that these dual roles of the protein might exist in evolutionary distant organisms ranging from cyanobacteria to humans.
Collapse
Affiliation(s)
- Alexandra-Viola Bohne
- Molecular Plant Sciences, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Christian Schwarz
- Molecular Plant Sciences, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Marco Schottkowski
- Biology Department and Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - Michael Lidschreiber
- Molecular Plant Sciences, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Markus Piotrowski
- Department of Plant Physiology, Ruhr-University Bochum, Bochum, Germany
| | - William Zerges
- Biology Department and Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - Jörg Nickelsen
- Molecular Plant Sciences, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
- * E-mail:
| |
Collapse
|
25
|
Suzuki Y, Makino A. Availability of Rubisco small subunit up-regulates the transcript levels of large subunit for stoichiometric assembly of its holoenzyme in rice. PLANT PHYSIOLOGY 2012; 160:533-40. [PMID: 22811433 PMCID: PMC3440226 DOI: 10.1104/pp.112.201459] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 07/15/2012] [Indexed: 05/20/2023]
Abstract
Rubisco is composed of eight small subunits coded for by the nuclear RBCS multigene family and eight large subunits coded for by the rbcL gene in the plastome. For synthesis of the Rubisco holoenzyme, both genes need to be expressed coordinately. To investigate this molecular mechanism, the protein synthesis of two subunits of Rubisco was characterized in transgenic rice (Oryza sativa) plants with overexpression or antisense suppression of the RBCS gene. Total RBCS and rbcL messenger RNA (mRNA) levels and RBCS and RbcL synthesis simultaneously increased in RBCS-sense plants, although the increase in total RBCS mRNA level was greater. In RBCS-antisense plants, the levels of these mRNAs and the synthesis of the corresponding proteins declined to a similar extent. The amount of RBCS synthesized was tightly correlated with rbcL mRNA level among genotypes but not associated with changes in mRNA levels of other major chloroplast-encoded photosynthetic genes. The level of rbcL mRNA, in turn, was tightly correlated with the amount of RbcL synthesized, the molar ratio of RBCS synthesis to RbcL synthesis being identical irrespective of genotype. Polysome loading of rbcL mRNA was not changed. These results demonstrate that the availability of RBCS protein up-regulates the gene expression of rbcL primarily at the transcript level in a quantitative manner for stoichiometric assembly of Rubisco holoenzyme.
Collapse
MESH Headings
- Cell Culture Techniques/methods
- Chloroplasts/enzymology
- Chloroplasts/genetics
- Enzyme Activation
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Plant
- Genes, Plant
- Holoenzymes/genetics
- Holoenzymes/metabolism
- Oryza/enzymology
- Oryza/genetics
- Photosynthesis
- Plant Leaves/enzymology
- Plant Leaves/genetics
- Plant Proteins/genetics
- Plants, Genetically Modified/enzymology
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- Polyribosomes/metabolism
- Protein Biosynthesis
- Protein Subunits/genetics
- Protein Subunits/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Plant/analysis
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Ribulose-Bisphosphate Carboxylase/genetics
- Ribulose-Bisphosphate Carboxylase/metabolism
- Transcription, Genetic
- Up-Regulation
Collapse
Affiliation(s)
- Yuji Suzuki
- Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan.
| | | |
Collapse
|
26
|
Stoppel R, Meurer J. The cutting crew - ribonucleases are key players in the control of plastid gene expression. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1663-73. [PMID: 22140236 DOI: 10.1093/jxb/err401] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Chloroplast biogenesis requires constant adjustment of RNA homeostasis under conditions of on-going developmental and environmental change and its regulation is achieved mainly by post-transcriptional control mechanisms mediated by various nucleus-encoded ribonucleases. More than 180 ribonucleases are annotated in Arabidopsis, but only 17 are predicted to localize to the chloroplast. Although different ribonucleases act at different RNA target sites in vivo, most nucleases that attack RNA are thought to lack intrinsic cleavage specificity and show non-specific activity in vitro. In vivo, specificity is thought to be imposed by auxiliary RNA-binding proteins, including members of the huge pentatricopeptide repeat family, which protect RNAs from non-specific nucleolytic attack by masking otherwise vulnerable sites. RNA stability is also influenced by secondary structure, polyadenylation, and ribosome binding. Ribonucleases may cleave at internal sites (endonucleases) or digest successively from the 5' or 3' end of the polynucleotide chain (exonucleases). In bacteria, RNases act in the maturation of rRNA and tRNA precursors, as well as in initiating the degradation of mRNAs and small non-coding RNAs. Many ribonucleases in the chloroplasts of higher plants possess homologies to their bacterial counterparts, but their precise functions have rarely been described. However, many ribonucleases present in the chloroplast process polycistronic rRNAs, tRNAs, and mRNAs. The resulting production of monocistronic, translationally competent mRNAs may represent an adaptation to the eukaryotic cellular environment. This review provides a basic overview of the current knowledge of RNases in plastids and highlights gaps to stimulate future studies.
Collapse
Affiliation(s)
- Rhea Stoppel
- Biozentrum der Ludwig-Maximilians-Universität, Plant Molecular Biology/Botany, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
| | | |
Collapse
|
27
|
Chi W, He B, Mao J, Li Q, Ma J, Ji D, Zou M, Zhang L. The function of RH22, a DEAD RNA helicase, in the biogenesis of the 50S ribosomal subunits of Arabidopsis chloroplasts. PLANT PHYSIOLOGY 2012; 158:693-707. [PMID: 22170977 PMCID: PMC3271760 DOI: 10.1104/pp.111.186775] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 12/12/2011] [Indexed: 05/18/2023]
Abstract
The chloroplast ribosome is a large and dynamic ribonucleoprotein machine that is composed of the 30S and 50S subunits. Although the components of the chloroplast ribosome have been identified in the last decade, the molecular mechanisms driving chloroplast ribosome biogenesis remain largely elusive. Here, we show that RNA helicase 22 (RH22), a putative DEAD RNA helicase, is involved in chloroplast ribosome assembly in Arabidopsis (Arabidopsis thaliana). A loss of RH22 was lethal, whereas a knockdown of RH22 expression resulted in virescent seedlings with clear defects in chloroplast ribosomal RNA (rRNA) accumulation. The precursors of 23S and 4.5S, but not 16S, rRNA accumulated in rh22 mutants. Further analysis showed that RH22 was associated with the precursors of 50S ribosomal subunits. These results suggest that RH22 may function in the assembly of 50S ribosomal subunits in chloroplasts. In addition, RH22 interacted with the 50S ribosomal protein RPL24 through yeast two-hybrid and pull-down assays, and it was also bound to a small 23S rRNA fragment encompassing RPL24-binding sites. This action of RH22 may be similar to, but distinct from, that of SrmB, a DEAD RNA helicase that is involved in the ribosomal assembly in Escherichia coli, which suggests that DEAD RNA helicases and rRNA structures may have coevolved with respect to ribosomal assembly and function.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lixin Zhang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
28
|
Qi Y, Armbruster U, Schmitz-Linneweber C, Delannoy E, de Longevialle AF, Rühle T, Small I, Jahns P, Leister D. Arabidopsis CSP41 proteins form multimeric complexes that bind and stabilize distinct plastid transcripts. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1251-70. [PMID: 22090436 PMCID: PMC3276088 DOI: 10.1093/jxb/err347] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 10/06/2011] [Accepted: 10/10/2011] [Indexed: 05/20/2023]
Abstract
The spinach CSP41 protein has been shown to bind and cleave chloroplast RNA in vitro. Arabidopsis thaliana, like other photosynthetic eukaryotes, encodes two copies of this protein. Several functions have been described for CSP41 proteins in Arabidopsis, including roles in chloroplast rRNA metabolism and transcription. CSP41a and CSP41b interact physically, but it is not clear whether they have distinct functions. It is shown here that CSP41b, but not CSP41a, is an essential and major component of a specific subset of RNA-binding complexes that form in the dark and disassemble in the light. RNA immunoprecipitation and hybridization to gene chips (RIP-chip) experiments indicated that CSP41 complexes can contain chloroplast mRNAs coding for photosynthetic proteins and rRNAs (16S and 23S), but no tRNAs or mRNAs for ribosomal proteins. Leaves of plants lacking CSP41b showed decreased steady-state levels of CSP41 target RNAs, as well as decreased plastid transcription and translation rates. Representative target RNAs were less stable when incubated with broken chloroplasts devoid of CSP41 complexes, indicating that CSP41 proteins can stabilize target RNAs. Therefore, it is proposed that (i) CSP41 complexes may serve to stabilize non-translated target mRNAs and precursor rRNAs during the night when the translational machinery is less active in a manner responsive to the redox state of the chloroplast, and (ii) that the defects in translation and transcription in CSP41 protein-less mutants are secondary effects of the decreased transcript stability.
Collapse
Affiliation(s)
- Yafei Qi
- Lehrstuhl für Molekularbiologie der Pflanzen (Botanik), Department Biologie I, Ludwig-Maximilians-Universität München, D-82152 Planegg-Martinsried, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Majeran W, Friso G, Asakura Y, Qu X, Huang M, Ponnala L, Watkins KP, Barkan A, van Wijk KJ. Nucleoid-enriched proteomes in developing plastids and chloroplasts from maize leaves: a new conceptual framework for nucleoid functions. PLANT PHYSIOLOGY 2012; 158:156-89. [PMID: 22065420 PMCID: PMC3252073 DOI: 10.1104/pp.111.188474] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 11/06/2011] [Indexed: 05/18/2023]
Abstract
Plastids contain multiple copies of the plastid chromosome, folded together with proteins and RNA into nucleoids. The degree to which components of the plastid gene expression and protein biogenesis machineries are nucleoid associated, and the factors involved in plastid DNA organization, repair, and replication, are poorly understood. To provide a conceptual framework for nucleoid function, we characterized the proteomes of highly enriched nucleoid fractions of proplastids and mature chloroplasts isolated from the maize (Zea mays) leaf base and tip, respectively, using mass spectrometry. Quantitative comparisons with proteomes of unfractionated proplastids and chloroplasts facilitated the determination of nucleoid-enriched proteins. This nucleoid-enriched proteome included proteins involved in DNA replication, organization, and repair as well as transcription, mRNA processing, splicing, and editing. Many proteins of unknown function, including pentatricopeptide repeat (PPR), tetratricopeptide repeat (TPR), DnaJ, and mitochondrial transcription factor (mTERF) domain proteins, were identified. Strikingly, 70S ribosome and ribosome assembly factors were strongly overrepresented in nucleoid fractions, but protein chaperones were not. Our analysis strongly suggests that mRNA processing, splicing, and editing, as well as ribosome assembly, take place in association with the nucleoid, suggesting that these processes occur cotranscriptionally. The plastid developmental state did not dramatically change the nucleoid-enriched proteome but did quantitatively shift the predominating function from RNA metabolism in undeveloped plastids to translation and homeostasis in chloroplasts. This study extends the known maize plastid proteome by hundreds of proteins, including more than 40 PPR and mTERF domain proteins, and provides a resource for targeted studies on plastid gene expression. Details of protein identification and annotation are provided in the Plant Proteome Database.
Collapse
|
30
|
Sharwood RE, Halpert M, Luro S, Schuster G, Stern DB. Chloroplast RNase J compensates for inefficient transcription termination by removal of antisense RNA. RNA (NEW YORK, N.Y.) 2011; 17:2165-76. [PMID: 22033332 PMCID: PMC3222129 DOI: 10.1261/rna.028043.111] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 09/13/2011] [Indexed: 05/20/2023]
Abstract
Ribonuclease J is an essential enzyme, and the Bacillus subtilis ortholog possesses both endoribonuclease and 5' → 3' exoribonuclease activities. Chloroplasts also contain RNase J, which has been postulated to participate, as both an exo- and endonuclease, in the maturation of polycistronic mRNAs. Here we have examined recombinant Arabidopsis RNase J and found both 5' → 3' exoribonuclease and endonucleolytic activities. Virus-induced gene silencing was used to reduce RNase J expression in Arabidopsis and Nicotiana benthamiana, leading to chlorosis but surprisingly few disruptions in the cleavage of polycistronic rRNA and mRNA precursors. In contrast, antisense RNAs accumulated massively, suggesting that the failure of chloroplast RNA polymerase to terminate effectively leads to extensive symmetric transcription products that are normally eliminated by RNase J. Mung bean nuclease digestion and polysome analysis revealed that this antisense RNA forms duplexes with sense strand transcripts and prevents their translation. We conclude that a major role of chloroplast RNase J is RNA surveillance to prevent overaccumulation of antisense RNA, which would otherwise exert deleterious effects on chloroplast gene expression.
Collapse
Affiliation(s)
- Robert E. Sharwood
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, USA
| | - Michal Halpert
- Department of Biology, Technion–Israel Institute of Technology, Haifa 32000, Israel
| | - Scott Luro
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, USA
| | - Gadi Schuster
- Department of Biology, Technion–Israel Institute of Technology, Haifa 32000, Israel
| | - David B. Stern
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, USA
- Corresponding author.E-mail .
| |
Collapse
|
31
|
Kusumi K, Sakata C, Nakamura T, Kawasaki S, Yoshimura A, Iba K. A plastid protein NUS1 is essential for build-up of the genetic system for early chloroplast development under cold stress conditions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:1039-50. [PMID: 21981410 DOI: 10.1111/j.1365-313x.2011.04755.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
During early chloroplast differentiation, the regulation of the plastid genetic system including transcription and translation differs greatly from that in the mature chloroplast, suggesting the existence of a stage-dependent mechanism that regulates the chloroplast genetic system during this period. The virescent-1 (v(1)) mutant of rice (Oryza sativa) is temperature-conditional and develops chlorotic leaves under low-temperature conditions. We reported previously that leaf chlorosis in the v(1) mutant is caused by blockage of the activation of the chloroplast genetic system during early leaf development. Here we identify the V(1) gene, which encodes a chloroplast-localized protein NUS1. Accumulation of NUS1 specifically occurred in the pre-emerged immature leaves, and is enhanced by low-temperature treatment. The C-terminus of NUS1 shows structural similarity to the bacterial antitermination factor NusB, which is known to play roles in the regulation of ribosomal RNA transcription. The RNA-immunoprecipitation and gel mobility shift assays indicated that NUS1 binds to several regions of chloroplast RNA including the upstream leader region of the 16S rRNA precursor. In the leaves of the NUS1-deficient mutant, accumulation of chloroplast rRNA during early leaf development was impaired and chloroplast translation/transcription capacity was severely suppressed under low temperature. Our results suggest that NUS1 is involved in the regulation of chloroplast RNA metabolism and promotes the establishment of the plastid genetic system during early chloroplast development under cold stress conditions.
Collapse
Affiliation(s)
- Kensuke Kusumi
- Department of Biology, Kyushu University, Fukuoka 812-8581, Japan.
| | | | | | | | | | | |
Collapse
|
32
|
Steiner S, Schröter Y, Pfalz J, Pfannschmidt T. Identification of essential subunits in the plastid-encoded RNA polymerase complex reveals building blocks for proper plastid development. PLANT PHYSIOLOGY 2011; 157:1043-55. [PMID: 21949211 PMCID: PMC3252157 DOI: 10.1104/pp.111.184515] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 09/14/2011] [Indexed: 05/18/2023]
Abstract
The major RNA polymerase activity in mature chloroplasts is a multisubunit, Escherichia coli-like protein complex called PEP (for plastid-encoded RNA polymerase). Its subunit structure has been extensively investigated by biochemical means. Beside the "prokaryotic" subunits encoded by the plastome-located RNA polymerase genes, a number of additional nucleus-encoded subunits of eukaryotic origin have been identified in the PEP complex. These subunits appear to provide additional functions and regulation modes necessary to adapt transcription to the varying functional situations in chloroplasts. However, despite the enormous progress in genomic data and mass spectrometry techniques, it is still under debate which of these subunits belong to the core complex of PEP and which ones represent rather transient or peripheral components. Here, we present a catalog of true PEP subunits that is based on comparative analyses from biochemical purifications, protein mass spectrometry, and phenotypic analyses. We regard reproducibly identified protein subunits of the basic PEP complex as essential when the corresponding knockout mutants reveal an albino or pale-green phenotype. Our study provides a clearly defined subunit catalog of the basic PEP complex, generating the basis for a better understanding of chloroplast transcription regulation. In addition, the data support a model that links PEP complex assembly and chloroplast buildup during early seedling development in vascular plants.
Collapse
|
33
|
Fan P, Feng J, Jiang P, Chen X, Bao H, Nie L, Jiang D, Lv S, Kuang T, Li Y. Coordination of carbon fixation and nitrogen metabolism in
Salicornia europaea
under salinity: Comparative proteomic analysis on chloroplast proteins. Proteomics 2011; 11:4346-67. [DOI: 10.1002/pmic.201100054] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 08/16/2011] [Accepted: 08/18/2011] [Indexed: 12/30/2022]
Affiliation(s)
- Pengxiang Fan
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, P. R. China
| | - Juanjuan Feng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, P. R. China
| | - Ping Jiang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, P. R. China
| | - Xianyang Chen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, P. R. China
| | - Hexigeduleng Bao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, P. R. China
| | - Lingling Nie
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, P. R. China
| | - Dan Jiang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, P. R. China
| | - Sulian Lv
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, P. R. China
| | - Tingyun Kuang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, P. R. China
| | - Yinxin Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, P. R. China
| |
Collapse
|
34
|
Dobrá J, Vanková R, Havlová M, Burman AJ, Libus J, Storchová H. Tobacco leaves and roots differ in the expression of proline metabolism-related genes in the course of drought stress and subsequent recovery. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:1588-97. [PMID: 21481968 DOI: 10.1016/j.jplph.2011.02.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 02/02/2011] [Accepted: 02/03/2011] [Indexed: 05/18/2023]
Abstract
In plants, members of gene families differ in function and mode of regulation. Fine-tuning of the expression of individual genes helps plants to cope with a variable environment. Genes encoding proline dehydrogenase (PDH), the key enzyme in proline degradation, and the proline biosynthetic enzyme, Δ(1)-pyrroline-5-carboxylate synthetase (P5CS), play an important role in responses to osmotic and drought stresses. We compared the expression patterns of three PDH and two putative P5CS genes during drought stress progression and subsequent recovery. Whereas the NtPDH1 gene was affected little by dehydration or rehydration, the NtPDH2 gene responded rapidly to both conditions, and was down-regulated under drought. The CIG1 gene, encoding cytokinin-inducible PDH, exhibited an intermediate transcription pattern. Whereas P5CS B was not affected by the stress conditions, the P5CS A gene was highly up-regulated during drought stress. CIG1 and NtPDH1 transcription was not activated, and P5CS A was only partially reduced in leaves within 24-h after rehydration, a re-watering period sufficient for large physiological changes to occur. The lack of activation of tobacco PDH genes and incomplete reduction of the P5CS A gene in leaves within 24-h of rehydration may reflect the need for the protection of plants to potential subsequent stresses. The data indicate that recovery is a specific physiological process following different patterns in leaves and roots.
Collapse
Affiliation(s)
- Jana Dobrá
- Institute of Experimental Botany, v.v.i., Academy of Sciences of the Czech Republic, Rozvojová 263, 165 02 Prague 6, Lysolaje, Czech Republic
| | | | | | | | | | | |
Collapse
|
35
|
Liere K, Weihe A, Börner T. The transcription machineries of plant mitochondria and chloroplasts: Composition, function, and regulation. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:1345-60. [PMID: 21316793 DOI: 10.1016/j.jplph.2011.01.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 01/07/2011] [Accepted: 01/10/2011] [Indexed: 05/04/2023]
Abstract
Although genomes of mitochondria and plastids are very small compared to those of their bacterial ancestors, the transcription machineries of these organelles are of surprising complexity. With respect to the number of different RNA polymerases per organelle, the extremes are represented on one hand by chloroplasts of eudicots which use one bacterial-type RNA polymerase and two phage-type RNA polymerases to transcribe their genes, and on the other hand by Physcomitrella possessing three mitochondrial RNA polymerases of the phage type. Transcription of genes/operons is often driven by multiple promoters in both organelles. This review describes the principle components of the transcription machineries (RNA polymerases, transcription factors, promoters) and the division of labor between the different RNA polymerases. While regulation of transcription in mitochondria seems to be only of limited importance, the plastid genes of higher plants respond to exogenous and endogenous cues rather individually by altering their transcriptional activities.
Collapse
Affiliation(s)
- Karsten Liere
- Institut für Biologie/Genetik, Humboldt-Universität zu Berlin, Chausseestrasse 117, Berlin, Germany
| | | | | |
Collapse
|
36
|
Gicquel M, Esnault MA, Jorrín-Novo JV, Cabello-Hurtado F. Application of proteomics to the assessment of the response to ionising radiation in Arabidopsis thaliana. J Proteomics 2011; 74:1364-77. [DOI: 10.1016/j.jprot.2011.03.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 03/18/2011] [Accepted: 03/21/2011] [Indexed: 11/24/2022]
|
37
|
Chen X, Zhang W, Zhang B, Zhou J, Wang Y, Yang Q, Ke Y, He H. Phosphoproteins regulated by heat stress in rice leaves. Proteome Sci 2011; 9:37. [PMID: 21718517 PMCID: PMC3150237 DOI: 10.1186/1477-5956-9-37] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 06/30/2011] [Indexed: 12/23/2022] Open
Abstract
Background High temperature is a critical abiotic stress that reduces crop yield and quality. Rice (Oryza sativa L.) plants remodel their proteomes in response to high temperature stress. Moreover, phosphorylation is the most common form of protein post-translational modification (PTM). However, the differential expression of phosphoproteins induced by heat in rice remains unexplored. Methods Phosphoprotein in the leaves of rice under heat stress were displayed using two-dimensional electrophoresis (2-DE) and Pro-Q Diamond dye. Differentially expressed phosphoproteins were identified by MALDI-TOF-TOF-MS/MS and confirmed by Western blotting. Results Ten heat-phosphoproteins were identified from twelve protein spots, including ribulose bisphos-phate carboxylase large chain, 2-Cys peroxiredoxin BAS1, putative mRNA binding protein, Os01g0791600 protein, OSJNBa0076N16.12 protein, putative H(+)-transporting ATP synthase, ATP synthase subunit beta and three putative uncharacterized proteins. The identification of ATP synthase subunit beta was further validated by Western-blotting. Four phosphorylation site predictors were also used to predict the phosphorylation sites and the specific kinases for these 10 phosphoproteins. Conclusion Heat stress induced the dephosphorylation of RuBisCo and the phosphorylation of ATP-β, which decreased the activities of RuBisCo and ATP synthase. The observed dephosphorylation of the mRNA binding protein and 2-Cys peroxiredoxin may be involved in the transduction of heat-stress signaling, but the functional importance of other phosphoproteins, such as H+-ATPase, remains unknown.
Collapse
Affiliation(s)
- Xinhai Chen
- Key Laboratory of Ministry of Education for Genetic, Breeding and Multiple Utilization of Crops, Fuzhou 350002, China.,College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenfeng Zhang
- Key Laboratory of Ministry of Education for Genetic, Breeding and Multiple Utilization of Crops, Fuzhou 350002, China.,College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Baoqian Zhang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiechao Zhou
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yongfei Wang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qiaobin Yang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuqin Ke
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huaqin He
- Key Laboratory of Ministry of Education for Genetic, Breeding and Multiple Utilization of Crops, Fuzhou 350002, China.,College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
38
|
Park YJ, Cho HK, Jung HJ, Ahn CS, Kang H, Pai HS. PRBP plays a role in plastid ribosomal RNA maturation and chloroplast biogenesis in Nicotiana benthamiana. PLANTA 2011; 233:1073-85. [PMID: 21290146 DOI: 10.1007/s00425-011-1362-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 01/12/2011] [Indexed: 05/08/2023]
Abstract
In the present study, we investigated protein characteristics and physiological functions of PRBP (plastid RNA-binding protein) in Nicotiana benthamiana. PRBP fused to green fluorescent protein (GFP) localized to the chloroplasts. Recombinant PRBP proteins bind to single-stranded RNA in vitro, but not to DNA in a double- or a single-stranded form. Virus-induced gene silencing (VIGS) of PRBP resulted in leaf yellowing in N. benthamiana. At the cellular level, PRBP depletion disrupted chloroplast biogenesis: chloroplast number and size were reduced, and the thylakoid membrane was poorly developed. In PRBP-silenced leaves, protein levels of plastid-encoded genes were significantly reduced, whereas their mRNA levels were normal regardless of their promoter types indicating that PRBP deficiency primarily affects translational or post-translational processes. Depletion of PRBP impaired processing of the plastid-encoded 4.5S ribosomal RNA, resulting in accumulation of the larger precursor rRNAs in the chloroplasts. In addition, PRBP-deficient chloroplasts contained significantly reduced levels of mature 4.5S and 5S rRNAs in the polysomal fractions, indicating decreased chloroplast translation. These results suggest that PRBP plays a role in chloroplast rRNA processing and chloroplast development in higher plants.
Collapse
Affiliation(s)
- Yong-Joon Park
- Department of Biology, Yonsei University, Seoul 120-749, Korea
| | | | | | | | | | | |
Collapse
|
39
|
Gowik U, Bräutigam A, Weber KL, Weber APM, Westhoff P. Evolution of C4 photosynthesis in the genus Flaveria: how many and which genes does it take to make C4? THE PLANT CELL 2011; 23:2087-105. [PMID: 21705644 PMCID: PMC3160039 DOI: 10.1105/tpc.111.086264] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 05/24/2011] [Accepted: 06/15/2011] [Indexed: 05/18/2023]
Abstract
Selective pressure exerted by a massive decline in atmospheric CO(2) levels 55 to 40 million years ago promoted the evolution of a novel, highly efficient mode of photosynthetic carbon assimilation known as C(4) photosynthesis. C(4) species have concurrently evolved multiple times in a broad range of plant families, and this multiple and parallel evolution of the complex C(4) trait indicates a common underlying evolutionary mechanism that might be elucidated by comparative analyses of related C(3) and C(4) species. Here, we use mRNA-Seq analysis of five species within the genus Flaveria, ranging from C(3) to C(3)-C(4) intermediate to C(4) species, to quantify the differences in the transcriptomes of closely related plant species with varying degrees of C(4)-associated characteristics. Single gene analysis defines the C(4) cycle enzymes and transporters more precisely and provides new candidates for yet unknown functions as well as identifies C(4) associated pathways. Molecular evidence for a photorespiratory CO(2) pump prior to the establishment of the C(4) cycle-based CO(2) pump is provided. Cluster analysis defines the upper limit of C(4)-related gene expression changes in mature leaves of Flaveria as 3582 alterations.
Collapse
Affiliation(s)
- Udo Gowik
- Institute of Plant Molecular and Developmental Biology, Heinrich-Heine-University, 40225 Duesseldorf, Germany.
| | | | | | | | | |
Collapse
|
40
|
Sharwood RE, Hotto AM, Bollenbach TJ, Stern DB. Overaccumulation of the chloroplast antisense RNA AS5 is correlated with decreased abundance of 5S rRNA in vivo and inefficient 5S rRNA maturation in vitro. RNA (NEW YORK, N.Y.) 2011; 17:230-43. [PMID: 21148395 PMCID: PMC3022273 DOI: 10.1261/rna.2336611] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 11/08/2010] [Indexed: 05/21/2023]
Abstract
Post-transcriptional regulation in the chloroplast is exerted by nucleus-encoded ribonucleases and RNA-binding proteins. One of these ribonucleases is RNR1, a 3'-to-5' exoribonuclease of the RNase II family. We have previously shown that Arabidopsis rnr1-null mutants exhibit specific abnormalities in the expression of the rRNA operon, including the accumulation of precursor 23S, 16S, and 4.5S species and a concomitant decrease in the mature species. 5S rRNA transcripts, however, accumulate to a very low level in both precursor and mature forms, suggesting that they are unstable in the rnr1 background. Here we demonstrate that rnr1 plants overaccumulate an antisense RNA, AS5, that is complementary to the 5S rRNA, its intergenic spacer, and the downstream trnR gene, which encodes tRNA(Arg), raising the possibility that AS5 destabilizes 5S rRNA or its precursor and/or blocks rRNA maturation. To investigate this, we used an in vitro system that supports 5S rRNA and trnR processing. We show that AS5 inhibits 5S rRNA maturation from a 5S-trnR precursor, and shorter versions of AS5 demonstrate that inhibition requires intergenic sequences. To test whether the sense and antisense RNAs form double-stranded regions in vitro, treatment with the single-strand-specific mung bean nuclease was used. These results suggest that 5S-AS5 duplexes interfere with a sense-strand secondary structure near the endonucleolytic cleavage site downstream from the 5S rRNA coding region. We hypothesize that these duplexes are degraded by a dsRNA-specific ribonuclease in vivo, contributing to the 5S rRNA deficiency observed in rnr1.
Collapse
Affiliation(s)
- Robert E Sharwood
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
41
|
Role and regulation of plastid sigma factors and their functional interactors during chloroplast transcription – Recent lessons from Arabidopsis thaliana. Eur J Cell Biol 2010; 89:940-6. [DOI: 10.1016/j.ejcb.2010.06.016] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
42
|
Hotto AM, Huston ZE, Stern DB. Overexpression of a natural chloroplast-encoded antisense RNA in tobacco destabilizes 5S rRNA and retards plant growth. BMC PLANT BIOLOGY 2010; 10:213. [PMID: 20920268 PMCID: PMC3017836 DOI: 10.1186/1471-2229-10-213] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 09/29/2010] [Indexed: 05/19/2023]
Abstract
BACKGROUND The roles of non-coding RNAs in regulating gene expression have been extensively studied in both prokaryotes and eukaryotes, however few reports exist as to their roles in organellar gene regulation. Evidence for accumulation of natural antisense RNAs (asRNAs) in chloroplasts comes from the expressed sequence tag database and cDNA libraries, while functional data have been largely obtained from artificial asRNAs. In this study, we used Nicotiana tabacum to investigate the effect on sense strand transcripts of overexpressing a natural chloroplast asRNA, AS5, which is complementary to the region which encodes the 5S rRNA and tRNAArg. RESULTS AS5-overexpressing (AS5ox) plants obtained by chloroplast transformation exhibited slower growth and slightly pale green leaves. Analysis of AS5 transcripts revealed four distinct species in wild-type (WT) and AS5ox plants, and additional AS5ox-specific products. Of the corresponding sense strand transcripts, tRNAArg overaccumulated several-fold in transgenic plants whereas 5S rRNA was unaffected. However, run-on transcription showed that the 5S-trnR region was transcribed four-fold more in the AS5ox plants compared to WT, indicating that overexpression of AS5 was associated with decreased stability of 5S rRNA. In addition, polysome analysis of the transformants showed less 5S rRNA and rbcL mRNA associated with ribosomes. CONCLUSIONS Our results suggest that AS5 can modulate 5S rRNA levels, giving it the potential to affect Chloroplast translation and plant growth. More globally, overexpression of asRNAs via chloroplast transformation may be a useful strategy for defining their functions.
Collapse
MESH Headings
- Gene Expression Regulation, Plant
- Phenotype
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- RNA, Antisense/genetics
- RNA, Antisense/metabolism
- RNA, Chloroplast/genetics
- RNA, Chloroplast/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- RNA, Ribosomal, 5S/genetics
- RNA, Ribosomal, 5S/metabolism
- RNA, Transfer, Arg/genetics
- RNA, Transfer, Arg/metabolism
- Nicotiana/genetics
- Nicotiana/growth & development
- Nicotiana/metabolism
- Transformation, Genetic
Collapse
Affiliation(s)
- Amber M Hotto
- Boyce Thompson Institute for Plant Research, Cornell University, Tower Rd., Ithaca, NY 14853, USA
| | - Zoe E Huston
- Riverdale High School, 9727 SW Terwilliger Blvd., Portland, OR 97219, USA
| | - David B Stern
- Boyce Thompson Institute for Plant Research, Cornell University, Tower Rd., Ithaca, NY 14853, USA
| |
Collapse
|
43
|
Olinares PDB, Ponnala L, van Wijk KJ. Megadalton complexes in the chloroplast stroma of Arabidopsis thaliana characterized by size exclusion chromatography, mass spectrometry, and hierarchical clustering. Mol Cell Proteomics 2010; 9:1594-615. [PMID: 20423899 DOI: 10.1074/mcp.m000038-mcp201] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
To characterize MDa-sized macromolecular chloroplast stroma protein assemblies and to extend coverage of the chloroplast stroma proteome, we fractionated soluble chloroplast stroma in the non-denatured state by size exclusion chromatography with a size separation range up to approximately 5 MDa. To maximize protein complex stability and resolution of megadalton complexes, ionic strength and composition were optimized. Subsequent high accuracy tandem mass spectrometry analysis (LTQ-Orbitrap) identified 1081 proteins across the complete native mass range. Protein complexes and assembly states above 0.8 MDa were resolved using hierarchical clustering, and protein heat maps were generated from normalized protein spectral counts for each of the size exclusion chromatography fractions; this complemented previous analysis of stromal complexes up to 0.8 MDa (Peltier, J. B., Cai, Y., Sun, Q., Zabrouskov, V., Giacomelli, L., Rudella, A., Ytterberg, A. J., Rutschow, H., and van Wijk, K. J. (2006) The oligomeric stromal proteome of Arabidopsis thaliana chloroplasts. Mol. Cell. Proteomics 5, 114-133). This combined experimental and bioinformatics analyses resolved chloroplast ribosomes in different assembly and functional states (e.g. 30, 50, and 70 S), which enabled the identification of plastid homologues of prokaryotic ribosome assembly factors as well as proteins involved in co-translational modifications, targeting, and folding. The roles of these ribosome-associating proteins will be discussed. Known RNA splice factors (e.g. CAF1/WTF1/RNC1) as well as uncharacterized proteins with RNA-binding domains (pentatricopeptide repeat, RNA recognition motif, and chloroplast ribosome maturation), RNases, and DEAD box helicases were found in various sized complexes. Chloroplast DNA (>3 MDa) was found in association with the complete heteromeric plastid-encoded DNA polymerase complex, and a dozen other DNA-binding proteins, e.g. DNA gyrase, topoisomerase, and various DNA repair enzymes. The heteromeric >or=5-MDa pyruvate dehydrogenase complex and the 0.8-1-MDa acetyl-CoA carboxylase complex associated with uncharacterized biotin carboxyl carrier domain proteins constitute the entry point to fatty acid metabolism in leaves; we suggest that their large size relates to the need for metabolic channeling. Protein annotations and identification data are available through the Plant Proteomics Database, and mass spectrometry data are available through Proteomics Identifications database.
Collapse
|
44
|
Schröter Y, Steiner S, Matthäi K, Pfannschmidt T. Analysis of oligomeric protein complexes in the chloroplast sub-proteome of nucleic acid-binding proteins from mustard reveals potential redox regulators of plastid gene expression. Proteomics 2010; 10:2191-204. [DOI: 10.1002/pmic.200900678] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
45
|
Friso G, Majeran W, Huang M, Sun Q, van Wijk KJ. Reconstruction of metabolic pathways, protein expression, and homeostasis machineries across maize bundle sheath and mesophyll chloroplasts: large-scale quantitative proteomics using the first maize genome assembly. PLANT PHYSIOLOGY 2010; 152:1219-50. [PMID: 20089766 PMCID: PMC2832236 DOI: 10.1104/pp.109.152694] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 01/17/2010] [Indexed: 05/17/2023]
Abstract
Chloroplasts in differentiated bundle sheath (BS) and mesophyll (M) cells of maize (Zea mays) leaves are specialized to accommodate C(4) photosynthesis. This study provides a reconstruction of how metabolic pathways, protein expression, and homeostasis functions are quantitatively distributed across BS and M chloroplasts. This yielded new insights into cellular specialization. The experimental analysis was based on high-accuracy mass spectrometry, protein quantification by spectral counting, and the first maize genome assembly. A bioinformatics workflow was developed to deal with gene models, protein families, and gene duplications related to the polyploidy of maize; this avoided overidentification of proteins and resulted in more accurate protein quantification. A total of 1,105 proteins were assigned as potential chloroplast proteins, annotated for function, and quantified. Nearly complete coverage of primary carbon, starch, and tetrapyrole metabolism, as well as excellent coverage for fatty acid synthesis, isoprenoid, sulfur, nitrogen, and amino acid metabolism, was obtained. This showed, for example, quantitative and qualitative cell type-specific specialization in starch biosynthesis, arginine synthesis, nitrogen assimilation, and initial steps in sulfur assimilation. An extensive overview of BS and M chloroplast protein expression and homeostasis machineries (more than 200 proteins) demonstrated qualitative and quantitative differences between M and BS chloroplasts and BS-enhanced levels of the specialized chaperones ClpB3 and HSP90 that suggest active remodeling of the BS proteome. The reconstructed pathways are presented as detailed flow diagrams including annotation, relative protein abundance, and cell-specific expression pattern. Protein annotation and identification data, and projection of matched peptides on the protein models, are available online through the Plant Proteome Database.
Collapse
|
46
|
Abstract
The chloroplast genome encodes proteins required for photosynthesis, gene expression, and other essential organellar functions. Derived from a cyanobacterial ancestor, the chloroplast combines prokaryotic and eukaryotic features of gene expression and is regulated by many nucleus-encoded proteins. This review covers four major chloroplast posttranscriptional processes: RNA processing, editing, splicing, and turnover. RNA processing includes the generation of transcript 5' and 3' termini, as well as the cleavage of polycistronic transcripts. Editing converts specific C residues to U and often changes the amino acid that is specified by the edited codon. Chloroplasts feature introns of groups I and II, which undergo protein-facilitated cis- or trans-splicing in vivo. Each of these RNA-based processes involves proteins of the pentatricopeptide motif-containing family, which does not occur in prokaryotes. Plant-specific RNA-binding proteins may underpin the adaptation of the chloroplast to the eukaryotic context.
Collapse
Affiliation(s)
- David B Stern
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, USA.
| | | | | |
Collapse
|
47
|
Marchive C, Yehudai-Resheff S, Germain A, Fei Z, Jiang X, Judkins J, Wu H, Fernie AR, Fait A, Stern DB. Abnormal physiological and molecular mutant phenotypes link chloroplast polynucleotide phosphorylase to the phosphorus deprivation response in Arabidopsis. PLANT PHYSIOLOGY 2009; 151:905-24. [PMID: 19710229 PMCID: PMC2754633 DOI: 10.1104/pp.109.145144] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Accepted: 08/19/2009] [Indexed: 05/18/2023]
Abstract
A prominent enzyme in organellar RNA metabolism is the exoribonuclease polynucleotide phosphorylase (PNPase), whose reversible activity is governed by the nucleotide diphosphate-inorganic phosphate ratio. In Chlamydomonas reinhardtii, PNPase regulates chloroplast transcript accumulation in response to phosphorus (P) starvation, and PNPase expression is repressed by the response regulator PSR1 (for PHOSPHORUS STARVATION RESPONSE1) under these conditions. Here, we investigated the role of PNPase in the Arabidopsis (Arabidopsis thaliana) P deprivation response by comparing wild-type and pnp mutant plants with respect to their morphology, metabolite profiles, and transcriptomes. We found that P-deprived pnp mutants develop aborted clusters of lateral roots, which are characterized by decreased auxin responsiveness and cell division, and exhibit cell death at the root tips. Electron microscopy revealed that the collapse of root organelles is enhanced in the pnp mutant under P deprivation and occurred with low frequency under P-replete conditions. Global analyses of metabolites and transcripts were carried out to understand the molecular bases of these altered P deprivation responses. We found that the pnp mutant expresses some elements of the deprivation response even when grown on a full nutrient medium, including altered transcript accumulation, although its total and inorganic P contents are not reduced. The pnp mutation also confers P status-independent responses, including but not limited to stress responses. Taken together, our data support the hypothesis that the activity of the chloroplast PNPase is involved in plant acclimation to P availability and that it may help maintain an appropriate balance of P metabolites even under normal growth conditions.
Collapse
Affiliation(s)
- Chloe Marchive
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|