1
|
Moustaka J, Sperdouli I, İşgören S, Şaş B, Moustakas M. Deciphering the Mechanism of Melatonin-Induced Enhancement of Photosystem II Function in Moderate Drought-Stressed Oregano Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:2590. [PMID: 39339565 PMCID: PMC11434670 DOI: 10.3390/plants13182590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024]
Abstract
Melatonin (MT) is considered as an antistress molecule that plays a constructive role in the acclimation of plants to both biotic and abiotic stress conditions. In the present study, we assessed the impact of 10 and 100 μM MT foliar spray, on chlorophyll content, and photosystem II (PSII) function, under moderate drought stress, on oregano (Origanum vulgare L.) plants. Our aim was to elucidate the molecular mechanism of MT action on the photosynthetic electron transport process. Foliar spray with 100 μM MT was more effective in mitigating the negative impact of moderate drought stress on PSII function, compared to 10 μM MT. MT foliar spray significantly improved the reduced efficiency of the oxygen-evolving complex (OEC), and PSII photoinhibition (Fv/Fm), which were caused by drought stress. Under moderate drought stress, foliar spray with 100 μM MT, compared with the water sprayed (WA) leaves, increased the non-photochemical quenching (NPQ) by 31%, at the growth irradiance (GI, 205 μmol photons m-2 s-1), and by 13% at a high irradiance (HI, 1000 μmol photons m-2 s-1). However, the lower NPQ increase at HI was demonstrated to be more effective in decreasing the singlet-excited oxygen (1O2) production at HI (-38%), in drought-stressed oregano plants sprayed with 100 μM MT, than the corresponding decrease in 1O2 production at the GI (-20%), both compared with the respective WA-sprayed leaves under moderate drought. The reduced 1O2 production resulted in a significant increase in the quantum yield of PSII photochemistry (ΦPSII), and the electron transport rate (ETR), in moderate drought-stressed plants sprayed with 100 μM MT, compared with WA-sprayed plants, but only at the HI (+27%). Our results suggest that the enhancement of PSII functionality, with 100 μM MT under moderate drought stress, was initiated by the NPQ mechanism, which decreased the 1O2 production and increased the fraction of open PSII reaction centers (qp), resulting in an increased ETR.
Collapse
Affiliation(s)
- Julietta Moustaka
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organisation-Demeter (ELGO-Demeter), 57001 Thessaloniki, Greece
| | - Sumrunaz İşgören
- Department of Molecular Biology and Genetics, Istanbul Kültür University, Ataköy 7-8-9-10, 34158 Bakırköy, Turkey
| | - Begüm Şaş
- School of Life Sciences, Faculty of Biotechnology, ITMO University, Kronverkskiy Prospekt 49, 197101 Saint-Petersburg, Russia
| | - Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
2
|
Hüner NPA, Ivanov AG, Szyszka-Mroz B, Savitch LV, Smith DR, Kata V. Photostasis and photosynthetic adaptation to polar life. PHOTOSYNTHESIS RESEARCH 2024; 161:51-64. [PMID: 38865029 DOI: 10.1007/s11120-024-01104-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/29/2024] [Indexed: 06/13/2024]
Abstract
Photostasis is the light-dependent maintenance of energy balance associated with cellular homeostasis in photoautotrophs. We review evidence that illustrates how photosynthetic adaptation in polar photoautrophs such as aquatic green algae, cyanobacteria, boreal conifers as well as terrestrial angiosperms exhibit an astonishing plasticity in structure and function of the photosynthetic apparatus. This plasticity contributes to the maintenance of photostasis, which is essential for the long-term survival in the seemingly inhospitable Antarctic and Arctic habitats. However, evidence indicates that polar photoautrophic species exhibit different functional solutions for the maintenance of photostasis. We suggest that this reflects, in part, the genetic diversity symbolized by inherent genetic redundancy characteristic of polar photoautotrophs which enhances their survival in a thermodynamically challenging environment.
Collapse
Affiliation(s)
- Norman P A Hüner
- Department of Biology, University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada.
| | - Alexander G Ivanov
- Department of Biology, University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, Sofia, 1113, Bulgaria
| | - Beth Szyszka-Mroz
- Department of Biology, University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada
| | - Leonid V Savitch
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON, K1A OC6, Canada
| | - David R Smith
- Department of Biology, University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada
| | - Victoria Kata
- Department of Biology, University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada
| |
Collapse
|
3
|
Qiao M, Hong C, Jiao Y, Hou S, Gao H. Impacts of Drought on Photosynthesis in Major Food Crops and the Related Mechanisms of Plant Responses to Drought. PLANTS (BASEL, SWITZERLAND) 2024; 13:1808. [PMID: 38999648 PMCID: PMC11243883 DOI: 10.3390/plants13131808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 07/14/2024]
Abstract
Drought stress is one of the most critical threats to crop productivity and global food security. This review addresses the multiple effects of drought on the process of photosynthesis in major food crops. Affecting both light-dependent and light-independent reactions, drought leads to severe damage to photosystems and blocks the electron transport chain. Plants face a CO2 shortage provoked by stomatal closure, which triggers photorespiration; not only does it reduce carbon fixation efficiency, but it also causes lower overall photosynthetic output. Drought-induced oxidative stress generates reactive oxygen species (ROS) that damage cellular structures, including chloroplasts, further impairing photosynthetic productivity. Plants have evolved a variety of adaptive strategies to alleviate these effects. Non-photochemical quenching (NPQ) mechanisms help dissipate excess light energy as heat, protecting the photosynthetic apparatus under drought conditions. Alternative electron pathways, such as cyclical electron transmission and chloroplast respiration, maintain energy balance and prevent over-reduction of the electron transport chain. Hormones, especially abscisic acid (ABA), ethylene, and cytokinin, modulate stomatal conductance, chlorophyll content, and osmotic adjustment, further increasing the tolerance to drought. Structural adjustments, such as leaf reordering and altered root architecture, also strengthen tolerance. Understanding these complex interactions and adaptive strategies is essential for developing drought-resistant crop varieties and ensuring agricultural sustainability.
Collapse
Affiliation(s)
| | | | | | | | - Hongbo Gao
- National Engineering Research Center for Tree Breeding and Ecological Restoration, State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (M.Q.)
| |
Collapse
|
4
|
Cruz-Balladares V, Avalos V, Vera-Villalobos H, Cameron H, Gonzalez L, Leyton Y, Riquelme C. Identification of a Shewanella halifaxensis Strain with Algicidal Effects on Red Tide Dinoflagellate Prorocentrum triestinum in Culture. Mar Drugs 2023; 21:501. [PMID: 37755114 PMCID: PMC10532897 DOI: 10.3390/md21090501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/16/2023] [Accepted: 09/17/2023] [Indexed: 09/28/2023] Open
Abstract
The dinoflagellate Prorocentrum triestinum forms high biomass blooms that discolor the water (red tides), which may pose a serious threat to marine fauna and aquaculture exploitations. In this study, the algicidal effect of a bacterial strain (0YLH) belonging to the genus Shewanella was identified and evaluated against P. triestinum. The algicidal effects on the dinoflagellate were observed when P. triestinum was exposed to cell-free supernatant (CFS) from stationary-phase cultures of the 0YLH strain. After 24 h exposure, a remarkable reduction in the photosynthetic efficiency of P. triestinum was achieved (55.9%), suggesting the presence of extracellular bioactive compounds produced by the bacteria with algicidal activity. Furthermore, the CFS exhibited stability and maintained its activity across a wide range of temperatures (20-120 °C) and pH values (3-11). These findings highlight the algicidal potential of the bacterium Shewanella halifaxensis 0YLH as a promising tool for the environmentally friendly biological control of P. triestinum blooms.
Collapse
Affiliation(s)
- Victoria Cruz-Balladares
- Centro de Bioinnovación de Antofagasta, Universidad de Antofagasta, Antofagasta 1240000, Chile (H.V.-V.); (H.C.); (C.R.)
| | - Vladimir Avalos
- Centro de Bioinnovación de Antofagasta, Universidad de Antofagasta, Antofagasta 1240000, Chile (H.V.-V.); (H.C.); (C.R.)
| | - Hernán Vera-Villalobos
- Centro de Bioinnovación de Antofagasta, Universidad de Antofagasta, Antofagasta 1240000, Chile (H.V.-V.); (H.C.); (C.R.)
| | - Henry Cameron
- Centro de Bioinnovación de Antofagasta, Universidad de Antofagasta, Antofagasta 1240000, Chile (H.V.-V.); (H.C.); (C.R.)
| | - Leonel Gonzalez
- Centro de Bioinnovación de Antofagasta, Universidad de Antofagasta, Antofagasta 1240000, Chile (H.V.-V.); (H.C.); (C.R.)
| | - Yanett Leyton
- Centro de Bioinnovación de Antofagasta, Universidad de Antofagasta, Antofagasta 1240000, Chile (H.V.-V.); (H.C.); (C.R.)
| | - Carlos Riquelme
- Centro de Bioinnovación de Antofagasta, Universidad de Antofagasta, Antofagasta 1240000, Chile (H.V.-V.); (H.C.); (C.R.)
- Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta 1240000, Chile
| |
Collapse
|
5
|
Tilney CL, Hubbard KA. Expression of nuclear-encoded, haptophyte-derived ftsH genes support extremely rapid PSII repair and high-light photoacclimation in Karenia brevis (Dinophyceae). HARMFUL ALGAE 2022; 118:102295. [PMID: 36195421 DOI: 10.1016/j.hal.2022.102295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 06/16/2023]
Abstract
Karenia brevis, a neurotoxic dinoflagellate that produces brevetoxins, is endemic to the Gulf of Mexico and can grow at high irradiances typical of surface waters found there. To build upon a growing number of studies addressing high-light tolerance in K. brevis, specific photobiology and molecular mechanisms underlying this capacity were evaluated in culture. Since photosystem II (PSII) repair cycle activity can be crucial to high light tolerance in plants and algae, the present study assessed this capacity in K. brevis and characterized the ftsH-like genes which are fundamental to this process. Compared with cultures grown in low-light, cultures grown in high-light showed a 65-fold increase in PSII photoinactivation, a ∼50-fold increase in PSII repair, enhanced nonphotochemical quenching (NPQ), and depressed Fv/Fm. Repair rates were among the fastest reported in phytoplankton. Publicly available K. brevis transcriptomes (MMETSP) were queried for ftsH-like sequences and refined with additional sequencing from two K. brevis strains. The genes were phylogenetically related to haptophyte orthologs, implicating acquisition during tertiary endosymbiosis. RT-qPCR of three of the four ftsH-like homologs revealed that poly-A tails predominated in all homologs, and that the most highly expressed homolog had a 5' splice leader and amino-acid motifs characteristic of chloroplast targeting, indicating nuclear encoding for this plastid-targeted gene. High-light cultures showed a ∼1.5-fold upregulation in mRNA expression of the thylakoid-associated genes. Overall, in conjunction with NPQ mechanisms, rapid PSII repair mediated by a haptophyte-derived ftsH prevents chronic photoinhibition in K. brevis. Our findings continue to build the case that high-light photobiology-supported by the acquisition and maintenance of tertiary endosymbiotic genes-is critical to the success of K. brevis in the Gulf of Mexico.
Collapse
Affiliation(s)
- Charles L Tilney
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, St. Petersburg, FL, 33701, USA; Institut des Sciences de la Mer de Rimouski, Université du Québec à Rimouski, Rimouski, Québec, G5M 1L7, Canada.
| | - Katherine A Hubbard
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, St. Petersburg, FL, 33701, USA
| |
Collapse
|
6
|
Popova AV, Stefanov M, Ivanov AG, Velitchkova M. The Role of Alternative Electron Pathways for Effectiveness of Photosynthetic Performance of Arabidopsis thaliana, Wt and Lut2, under Low Temperature and High Light Intensity. PLANTS (BASEL, SWITZERLAND) 2022; 11:2318. [PMID: 36079699 PMCID: PMC9460638 DOI: 10.3390/plants11172318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/22/2022] [Accepted: 09/01/2022] [Indexed: 12/02/2022]
Abstract
A recent investigation has suggested that the enhanced capacity for PSI-dependent cyclic electron flow (CEF) and PSI-dependent energy quenching that is related to chloroplast structural changes may explain the lower susceptibility of lut2 to combined stresses-a low temperature and a high light intensity. The possible involvement of alternative electron transport pathways, proton gradient regulator 5 (PGR5)-dependent CEF and plastid terminal oxidase (PTOX)-mediated electron transfer to oxygen in the response of Arabidopsis plants-wild type (wt) and lut2-to treatment with these two stressors was assessed by using specific electron transport inhibitors. Re-reduction kinetics of P700+ indicated that the capacity for CEF was higher in lut2 when this was compared to wt. Exposure of wt plants to the stress conditions caused increased CEF and was accompanied by a substantial raise in PGR5 and PTOX quantities. In contrast, both PGR5 and PTOX levels decreased under the same stress conditions in lut2, and inhibiting PGR5-dependent pathway by AntA did not exhibit any significant effects on CEF during the stress treatment and recovery period. Electron microscopy observations demonstrated that under control conditions the degree of grana stacking was much lower in lut2, and it almost disappeared under the combined stresses, compared to wt. The role of differential responses of alternative electron transport pathways in the acclimation to the stress conditions that are studied is discussed.
Collapse
Affiliation(s)
- Antoaneta V. Popova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Martin Stefanov
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Alexander G. Ivanov
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
- Department of Biology, University of Western Ontario, 1151 Richmond Str. N., London, ON N6A 5B7, Canada
| | - Maya Velitchkova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| |
Collapse
|
7
|
Osmond CB, Chow WS, Robinson SA. Inhibition of non-photochemical quenching increases functional absorption cross-section of photosystem II as excitation from closed reaction centres is transferred to open centres, facilitating earlier light saturation of photosynthetic electron transport. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:463-482. [PMID: 33705686 DOI: 10.1071/fp20347] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
Induction of non-photochemical quenching (NPQ) of chlorophyll fluorescence in leaves affords photoprotection to the photosynthetic apparatus when, for whatever reason, photon capture in the antennae of photosystems exceeds their capacity to utilise this excitation in photochemistry and ultimately in CO2 assimilation. Here we augment traditional monitoring of NPQ using the fast time resolution, remote and relatively non-intrusive light induced fluorescence transient (LIFT) technique (Kolber et al . 2005 ; Osmond et al . 2017 ) that allows direct measurement of functional (σ'PSII ) and optical cross-sections (a 'PSII ) of PSII in situ , and calculates the half saturation light intensity for ETR (E k ). These parameters are obtained from the saturation and relaxation phases of fluorescence transients elicited by a sequence of 270, high intensity 1 μs flashlets at controlled time intervals over a period of 30 ms in the QA flash at intervals of a few seconds. We report that although σ'PSII undergoes large transient increases after transfer from dark to strong white light (WL) it declines little in steady-state as NPQ is induced in shade- and sun-grown spinach and Arabidopsis genotypes Col , OEpsbs , pgr 5bkg , stn 7 and stn 7/8. In contrast, σ'PSII increases by ~30% when induction of NPQ in spinach is inhibited by dithiothreitol and by inhibition of NPQ in Arabidopsis npq 1, npq 4 and pgr 5. We propose this increase in σ'PSII arises as some excitation from closed PSII reaction centres is transferred to open centres when excitation partitioning to photochemistry (Y II ) and NPQ (Y NP ) declines, and is indicated by an increased excitation dissipation from closed PSII centres (Y NO , including fluorescence emission). Although E k increases following dissipation of excitation as heat when NPQ is engaged, it declines when NPQ is inhibited. Evidently photochemistry becomes more easily light saturated when excitation is transferred from closed RCIIs to open centres with larger σ'PSII . The NPQ mutant pgr 5 is an exception; E k increases markedly in strong light as electron transport QA → PQ and PQ → PSI accelerate and the PQ pool becomes strongly reduced. These novel in situ observations are discussed in the context of contemporary evidence for functional and structural changes in the photosynthetic apparatus during induction of NPQ.
Collapse
Affiliation(s)
- Charles Barry Osmond
- Centre for Sustainable Ecosystem Solutions, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia; and Division of Plant Sciences, Research School of Biology, Australian National University, Acton, ACT 2601, Australia; and Corresponding author
| | - Wah Soon Chow
- Division of Plant Sciences, Research School of Biology, Australian National University, Acton, ACT 2601, Australia
| | - Sharon A Robinson
- Centre for Sustainable Ecosystem Solutions, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia
| |
Collapse
|
8
|
Akhtar P, Sipka G, Han W, Li X, Han G, Shen JR, Garab G, Tan HS, Lambrev PH. Ultrafast excitation quenching by the oxidized photosystem II reaction center. J Chem Phys 2022; 156:145101. [DOI: 10.1063/5.0086046] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Photosystem II (PSII) is the pigment–protein complex driving the photoinduced oxidation of water and reduction of plastoquinone in all oxygenic photosynthetic organisms. Excitations in the antenna chlorophylls are photochemically trapped in the reaction center (RC) producing the chlorophyll–pheophytin radical ion pair P+ Pheo−. When electron donation from water is inhibited, the oxidized RC chlorophyll P+ acts as an excitation quencher, but knowledge on the kinetics of quenching is limited. Here, we used femtosecond transient absorption spectroscopy to compare the excitation dynamics of PSII with neutral and oxidized RC (P+). We find that equilibration in the core antenna has a major lifetime of about 300 fs, irrespective of the RC redox state. Two-dimensional electronic spectroscopy revealed additional slower energy equilibration occurring on timescales of 3–5 ps, concurrent with excitation trapping. The kinetics of PSII with open RC can be described well with previously proposed models according to which the radical pair P+ Pheo− is populated with a main lifetime of about 40 ps, which is primarily determined by energy transfer between the core antenna and the RC chlorophylls. Yet, in PSII with oxidized RC (P+), fast excitation quenching was observed with decay lifetimes as short as 3 ps and an average decay lifetime of about 90 ps, which is shorter than the excited-state lifetime of PSII with open RC. The underlying mechanism of this extremely fast quenching prompts further investigation.
Collapse
Affiliation(s)
- Parveen Akhtar
- School of Physical and Mathematical Sciences, Nanyang Technological University, Nanyang Link 21, 637371, Singapore
- Biological Research Centre, Szeged, Temesvári krt. 62, Szeged 6726, Hungary
- ELI-ALPS, ELI-HU Non-profit Ltd., Wolfgang Sandner u. 3, Szeged 6728, Hungary
| | - Gábor Sipka
- Biological Research Centre, Szeged, Temesvári krt. 62, Szeged 6726, Hungary
| | - Wenhui Han
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xingyue Li
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Guangye Han
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Jian-Ren Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Research Institute for Interdisciplinary Science, and Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Győző Garab
- Biological Research Centre, Szeged, Temesvári krt. 62, Szeged 6726, Hungary
| | - Howe-Siang Tan
- School of Physical and Mathematical Sciences, Nanyang Technological University, Nanyang Link 21, 637371, Singapore
| | - Petar H. Lambrev
- Biological Research Centre, Szeged, Temesvári krt. 62, Szeged 6726, Hungary
| |
Collapse
|
9
|
Ivanov AG, Krol M, Savitch LV, Szyszka-Mroz B, Roche J, Sprott DP, Selstam E, Wilson KW, Gardiner R, Öquist G, Hurry VM, Hüner NPA. The decreased PG content of pgp1 inhibits PSI photochemistry and limits reaction center and light-harvesting polypeptide accumulation in response to cold acclimation. PLANTA 2022; 255:36. [PMID: 35015152 DOI: 10.1007/s00425-022-03819-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Decreased PG constrains PSI activity due to inhibition of transcript and polypeptide abundance of light-harvesting and reaction center polypeptides generating a reversible, yellow phenotype during cold acclimation of pgp1. Cold acclimation of the Arabidopsis pgp1 mutant at 5 °C resulted in a pale-yellow phenotype with abnormal chloroplast ultrastructure compared to its green phenotype upon growth at 20 °C despite a normal cold-acclimation response at the transcript level. In contrast, wild type maintained its normal green phenotype and chloroplast ultrastructure irrespective of growth temperature. In contrast to cold acclimation of WT, growth of pgp1 at 5 °C limited the accumulation of Lhcbs and Lhcas assessed by immunoblotting. However, a novel 43 kD polypeptide of Lhcb1 as well as a 29 kD polypeptide of Lhcb3 accumulated in the soluble fraction which was absent in the thylakoid membrane fraction of cold-acclimated pgp1 which was not observed in WT. Cold acclimation of pgp1 destabilized the Chl-protein complexes associated with PSI and predisposed energy distribution in favor of PSII rather than PSI compared to the WT. Functionally, in vivo PSI versus PSII photochemistry was inhibited in cold-acclimated pgp1 to a greater extent than in WT relative to controls. Greening of the pale-yellow pgp1 was induced when cold-acclimated pgp1 was shifted from 5 to 20 °C which resulted in a marked decrease in excitation pressure to a level comparable to WT. Concomitantly, Lhcbs and Lhcas accumulated with a simultaneous decrease in the novel 43 and 29kD polypeptides. We conclude that the reduced levels of phosphatidyldiacylglycerol in the pgp1 limit the capacity of the mutant to maintain the structure and function of its photosynthetic apparatus during cold acclimation. Thus, maintenance of normal thylakoid phosphatidyldiacylglycerol levels is essential to stabilize the photosynthetic apparatus during cold acclimation.
Collapse
Affiliation(s)
- Alexander G Ivanov
- Department of Biology and the Biotron Centre for Experimental Climate Change Research, University of Western Ontario, London, ON, N6A 5B7, Canada
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. bl. 21, 1113, Sofia, Bulgaria
| | - Marianna Krol
- Department of Biology and the Biotron Centre for Experimental Climate Change Research, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Leonid V Savitch
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON, K1A OC6, Canada
| | - Beth Szyszka-Mroz
- Department of Biology and the Biotron Centre for Experimental Climate Change Research, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Jessica Roche
- Department of Biology and the Biotron Centre for Experimental Climate Change Research, University of Western Ontario, London, ON, N6A 5B7, Canada
- , 6/136 Austin St, Mt. Victoria, Wellington, 6011, New Zealand
| | - D P Sprott
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON, K1A OC6, Canada
| | - Eva Selstam
- Department of Plant Physiology, Umeå Plant Science Centre, University of Umeå, 90187, Umeå, Sweden
| | - Kenneth W Wilson
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Richard Gardiner
- Department of Biology and the Biotron Centre for Experimental Climate Change Research, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Gunnar Öquist
- Department of Plant Physiology, Umeå Plant Science Centre, University of Umeå, 90187, Umeå, Sweden
| | - Vaughan M Hurry
- Department of Plant Physiology, Umeå Plant Science Centre, University of Umeå, 90187, Umeå, Sweden
| | - Norman P A Hüner
- Department of Biology and the Biotron Centre for Experimental Climate Change Research, University of Western Ontario, London, ON, N6A 5B7, Canada.
| |
Collapse
|
10
|
Yoshikawa K, Ogawa K, Toya Y, Akimoto S, Matsuda F, Shimizu H. Mutations in hik26 and slr1916 lead to high-light stress tolerance in Synechocystis sp. PCC6803. Commun Biol 2021; 4:343. [PMID: 33727624 PMCID: PMC7966805 DOI: 10.1038/s42003-021-01875-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 02/19/2021] [Indexed: 01/31/2023] Open
Abstract
Increased tolerance to light stress in cyanobacteria is a desirable feature for their applications. Here, we obtained a high light tolerant (Tol) strain of Synechocystis sp. PCC6803 through an adaptive laboratory evolution, in which the cells were repeatedly sub-cultured for 52 days under high light stress conditions (7000 to 9000 μmol m-2 s-1). Although the growth of the parental strain almost stopped when exposed to 9000 μmol m-2 s-1, no growth inhibition was observed in the Tol strain. Excitation-energy flow was affected because of photosystem II damage in the parental strain under high light conditions, whereas the damage was alleviated and normal energy flow was maintained in the Tol strain. The transcriptome data indicated an increase in isiA expression in the Tol strain under high light conditions. Whole genome sequence analysis and reverse engineering revealed two mutations in hik26 and slr1916 involved in high light stress tolerance in the Tol strain.
Collapse
Affiliation(s)
- Katsunori Yoshikawa
- grid.136593.b0000 0004 0373 3971Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Suita, Osaka Japan
| | - Kenichi Ogawa
- grid.136593.b0000 0004 0373 3971Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Suita, Osaka Japan
| | - Yoshihiro Toya
- grid.136593.b0000 0004 0373 3971Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Suita, Osaka Japan
| | - Seiji Akimoto
- grid.31432.370000 0001 1092 3077Department of Chemistry, Graduate School of Science, Kobe University, Kobe, Hyogo Japan
| | - Fumio Matsuda
- grid.136593.b0000 0004 0373 3971Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Suita, Osaka Japan
| | - Hiroshi Shimizu
- grid.136593.b0000 0004 0373 3971Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Suita, Osaka Japan
| |
Collapse
|
11
|
Jamali Jaghdani S, Jahns P, Tränkner M. Mg deficiency induces photo-oxidative stress primarily by limiting CO 2 assimilation and not by limiting photosynthetic light utilization. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 302:110751. [PMID: 33287999 DOI: 10.1016/j.plantsci.2020.110751] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 05/27/2023]
Abstract
Photosynthetic processes within chloroplasts require substantial amounts of magnesium (Mg). It is suggested that the minimum Mg concentration for yield and dry matter (DM) formation is 1.5 mg g-1 DM. Yet, it was never clarified whether this amount is required for photosynthetic processes as well. The aim of this study was to determine how varying Mg concentrations affect the photosynthetic efficiency and photoprotective responses. Barley (Hordeum vulgare L.) was grown under four different Mg supplies (1, 0.05, 0.025 and 0.015 mM Mg) for 21 days to investigate the photosynthetic and photoprotective responses to Mg deficiency. Leaf Mg concentrations, CO2 assimilation, photosystem II efficiency, electron transport rate, photochemical and non-photochemical quenching, expression of reactive oxygen species (ROS) scavengers, and the pigment composition were analyzed. Our data indicate that CO2 assimilation is more sensitive to the reduction of tissue Mg concentrations than photosynthetic light reactions. Moreover, supply with the two lowest Mg concentrations induced photo-oxidative stress, as could be derived from increased expression of ROS scavengers and an increased pool size of the xanthophyll cycle pigments. We hypothesize, that the reduction of CO2 assimilation is a critical determinant for the increase of photo-oxidative stress under Mg deficiency.
Collapse
Affiliation(s)
- Setareh Jamali Jaghdani
- Institute of Applied Plant Nutrition (IAPN), Georg-August University Goettingen, 37075, Goettingen, Germany.
| | - Peter Jahns
- Institute of Plant Biochemistry, Heinrich-Heine-University Duesseldorf, D-40225, Duesseldorf, Germany
| | - Merle Tränkner
- Institute of Applied Plant Nutrition (IAPN), Georg-August University Goettingen, 37075, Goettingen, Germany
| |
Collapse
|
12
|
Yanykin D, Sundyreva M, Khorobrykh A, Semenova G, Savchenko T. Functional characterization of the corticular photosynthetic apparatus in grapevine. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148260. [PMID: 32679044 DOI: 10.1016/j.bbabio.2020.148260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/21/2020] [Accepted: 07/06/2020] [Indexed: 11/13/2022]
Abstract
A comparative analysis of functional characteristics of the grapevine leaf photosynthetic apparatus (LPA) and corticular photosynthetic apparatus (CPA) in chlorenchyma tissues of first-year lignified vine was performed. Obtained results demonstrate significant differences between the functional properties of the CPA and the LPA. CPA contains an increased proportion (about 2/3) of QB-non-reducing centers of photosystem II (PSII) that is confirmed by elevated O-J phase in fluorescence kinetics, high PSIIβ content, and slower QA-• reoxidation. CPA and LPA use different strategies to utilize absorbed light energy and to protect itself against excessive light. CPA dissipates a significant proportion of absorbed light energy as heat (regulated and non-regulated dissipation), and only a smaller part of the excitation energy is used in the dark stages of photosynthesis. The rate constant of photoinhibition and fluorescence quenching due to photoinhibition in CPA is almost three times higher than in LPA, while high-energy state fluorescence quenching value is twice lower. The saturation of vine chlorenchyma tissue with water increases the CPA tolerance to photoinhibition and promotes the ability to restore the photosynthetic activity after photoinhibition. The electron microscopy analysis confirmed the presence of intact plastids in vine chlorenchyma tissue, the interior space of plastids is filled with large starch grains while bands of stacked thylakoid membranes are mainly localized on the periphery. Analyzes showed that corticular plastids are specialized organelles combining features of chloroplasts, amyloplasts and gerontoplasts. Distinct structural organization of photosynthetic membranes and microenvironment predetermine distinctive functional properties of CPA.
Collapse
Affiliation(s)
- D Yanykin
- Institute of Basic Biological Problems, FRC PSCBR RAS, Pushchino, Moscow Region 142290, Russia
| | - M Sundyreva
- Federal State Budgetary Scientific Institution North Caucasian Regional Research Institute of Horticulture and Viticulture, Krasnodar 350072, Russia
| | - A Khorobrykh
- Institute of Basic Biological Problems, FRC PSCBR RAS, Pushchino, Moscow Region 142290, Russia
| | - G Semenova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Moscow Region, 142290, Russia
| | - T Savchenko
- Institute of Basic Biological Problems, FRC PSCBR RAS, Pushchino, Moscow Region 142290, Russia.
| |
Collapse
|
13
|
Velitchkova M, Popova AV, Faik A, Gerganova M, Ivanov AG. Low temperature and high light dependent dynamic photoprotective strategies in Arabidopsis thaliana. PHYSIOLOGIA PLANTARUM 2020; 170:93-108. [PMID: 32315446 DOI: 10.1111/ppl.13111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
Arabidopsis thaliana has been recognized as a chilling tolerant species based on analysis of resistance to low temperature stress, however, the mechanisms involved in this tolerance are not yet clarified. The low temperature-induced effects are exacerbated when plants are exposed to low temperatures in the presence of high light irradiance but the experimental data on the impact of light intensity during cold stress and its influence during recovery from stress are rather limited. The main objective of this study was to re-examine the photosynthetic responses of A. thaliana plants to short term (6 days) low temperature stress (12/10°C) under optimal (150 μmol m-2 s-1 ) and high light (500 μmol m-2 s-1 ) intensity and the subsequent recovery from the stress. Simultaneous measurements of the in vivo and in vitro functional performance of both photosystem II (PSII) and photosystem I (PSI), as well as, net photosynthesis, low temperature (77 K) chlorophyll fluorescence and immunoblot analysis of the relative abundance of PSII and PSI reaction center proteins were used to evaluate the role of light in the development of possible protective mechanisms during low temperature stress and the consequent recovery from exposure to low temperature and different light intensities. The results presented clearly suggest that Arabidopsis plants can employ a number of highly dynamic photoprotective strategies depending on the light intensity. These strategies include one based on LHCII quenching and two other quenching mechanisms localized within the PSII and PSI reaction centers, which are all expressed to different extent depending on the severity of the photoinhibitory treatments under low temperature stress conditions.
Collapse
Affiliation(s)
- Maya Velitchkova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev str. Bl. 21, 1113, Sofia, Bulgaria
| | - Antoaneta V Popova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev str. Bl. 21, 1113, Sofia, Bulgaria
| | - Aygyun Faik
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev str. Bl. 21, 1113, Sofia, Bulgaria
| | - Milena Gerganova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev str. Bl. 21, 1113, Sofia, Bulgaria
| | - Alexander G Ivanov
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev str. Bl. 21, 1113, Sofia, Bulgaria
- Department of Biology, University of Western Ontario, 1151 Richmond Str. N, London, Ontario, N6A 5B7, Canada
| |
Collapse
|
14
|
Mattila H, Mishra KB, Kuusisto I, Mishra A, Novotná K, Šebela D, Tyystjärvi E. Effects of low temperature on photoinhibition and singlet oxygen production in four natural accessions of Arabidopsis. PLANTA 2020; 252:19. [PMID: 32671474 PMCID: PMC7363673 DOI: 10.1007/s00425-020-03423-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 07/08/2020] [Indexed: 05/27/2023]
Abstract
Low temperature decreases PSII damage in vivo, confirming earlier in vitro results. Susceptibility to photoinhibition differs among Arabidopsis accessions and moderately decreases after 2-week cold-treatment. Flavonols may alleviate photoinhibition. The rate of light-induced inactivation of photosystem II (PSII) at 22 and 4 °C was measured from natural accessions of Arabidopsis thaliana (Rschew, Tenela, Columbia-0, Coimbra) grown under optimal conditions (21 °C), and at 4 °C from plants shifted to 4 °C for 2 weeks. Measurements were done in the absence and presence of lincomycin (to block repair). PSII activity was assayed with the chlorophyll a fluorescence parameter Fv/Fm and with light-saturated rate of oxygen evolution using a quinone acceptor. When grown at 21 °C, Rschew was the most tolerant to photoinhibition and Coimbra the least. Damage to PSII, judged from fitting the decrease in oxygen evolution or Fv/Fm to a first-order equation, proceeded more slowly or equally at 4 than at 22 °C. The 2-week cold-treatment decreased photoinhibition at 4 °C consistently in Columbia-0 and Coimbra, whereas in Rschew and Tenela the results depended on the method used to assay photoinhibition. The rate of singlet oxygen production by isolated thylakoid membranes, measured with histidine, stayed the same or slightly decreased with decreasing temperature. On the other hand, measurements of singlet oxygen from leaves with Singlet Oxygen Sensor Green suggest that in vivo more singlet oxygen is produced at 4 °C. Under high light, the PSII electron acceptor QA was more reduced at 4 than at 22 °C. Singlet oxygen production, in vitro or in vivo, did not decrease due to the cold-treatment. Epidermal flavonols increased during the cold-treatment and, in Columbia-0 and Coimbra, the amount correlated with photoinhibition tolerance.
Collapse
Affiliation(s)
- Heta Mattila
- Department of Biochemistry, Molecular Plant Biology, University of Turku, 20014, Turku, Finland
| | - Kumud B Mishra
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986, 4a, Brno, 603 00, Czech Republic
| | - Iiris Kuusisto
- Department of Biochemistry, Molecular Plant Biology, University of Turku, 20014, Turku, Finland
| | - Anamika Mishra
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986, 4a, Brno, 603 00, Czech Republic
| | - Kateřina Novotná
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986, 4a, Brno, 603 00, Czech Republic
| | - David Šebela
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986, 4a, Brno, 603 00, Czech Republic
| | - Esa Tyystjärvi
- Department of Biochemistry, Molecular Plant Biology, University of Turku, 20014, Turku, Finland.
| |
Collapse
|
15
|
Bhatti AF, Choubeh RR, Kirilovsky D, Wientjes E, van Amerongen H. State transitions in cyanobacteria studied with picosecond fluorescence at room temperature. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148255. [PMID: 32619427 DOI: 10.1016/j.bbabio.2020.148255] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 11/30/2022]
Abstract
Cyanobacteria can rapidly regulate the relative activity of their photosynthetic complexes photosystem I and II (PSI and PSII) in response to changes in the illumination conditions. This process is known as state transitions. If PSI is preferentially excited, they go to state I whereas state II is induced either after preferential excitation of PSII or after dark adaptation. Different underlying mechanisms have been proposed in literature, in particular i) reversible shuttling of the external antenna complexes, the phycobilisomes, between PSI and PSII, ii) reversible spillover of excitation energy from PSII to PSI, iii) a combination of both and, iv) increased excited-state quenching of the PSII core in state II. Here we investigated wild-type and mutant strains of Synechococcus sp. PCC 7942 and Synechocystis sp. PCC 6803 using time-resolved fluorescence spectroscopy at room temperature. Our observations support model iv, meaning that increased excited-state quenching of the PSII core occurs in state II thereby balancing the photochemistry of photosystems I and II.
Collapse
Affiliation(s)
- Ahmad Farhan Bhatti
- Laboratory of Biophysics, Wageningen University, Wageningen, the Netherlands
| | | | - Diana Kirilovsky
- Institute for Integrative Biology of the Cell (12BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Emilie Wientjes
- Laboratory of Biophysics, Wageningen University, Wageningen, the Netherlands
| | - Herbert van Amerongen
- Laboratory of Biophysics, Wageningen University, Wageningen, the Netherlands; MicroSpectroscopy Research Facility, Wageningen University, Wageningen, the Netherlands.
| |
Collapse
|
16
|
|
17
|
Kvernvik AC, Rokitta SD, Leu E, Harms L, Gabrielsen TM, Rost B, Hoppe CJM. Higher sensitivity towards light stress and ocean acidification in an Arctic sea-ice-associated diatom compared to a pelagic diatom. THE NEW PHYTOLOGIST 2020; 226:1708-1724. [PMID: 32086953 DOI: 10.1111/nph.16501] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/15/2020] [Indexed: 06/10/2023]
Abstract
Thalassiosira hyalina and Nitzschia frigida are important members of Arctic pelagic and sympagic (sea-ice-associated) diatom communities. We investigated the effects of light stress (shift from 20 to 380 µmol photons m-2 s-1 , resembling upwelling or ice break-up) under contemporary and future pCO2 (400 vs 1000 µatm). The responses in growth, elemental composition, pigmentation and photophysiology were followed over 120 h and are discussed together with underlying gene expression patterns. Stress response and subsequent re-acclimation were efficiently facilitated by T. hyalina, which showed only moderate changes in photophysiology and elemental composition, and thrived under high light after 120 h. In N. frigida, photochemical damage and oxidative stress appeared to outweigh cellular defenses, causing dysfunctional photophysiology and reduced growth. pCO2 alone did not specifically influence gene expression, but amplified the transcriptomic reactions to light stress, indicating that pCO2 affects metabolic equilibria rather than sensitive genes. Large differences in acclimation capacities towards high light and high pCO2 between T. hyalina and N. frigida indicate species-specific mechanisms in coping with the two stressors, which may reflect their respective ecological niches. This could potentially alter the balance between sympagic and pelagic primary production in a future Arctic.
Collapse
Affiliation(s)
- Ane C Kvernvik
- The Department of Arctic Biology, Svalbard Science Centre, University Centre in Svalbard, PO Box 156, N-9171, Longyearbyen, Norway
| | - Sebastian D Rokitta
- Marine Biogeosciences, Alfred-Wegener-Institut - Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570, Bremerhaven, Germany
| | - Eva Leu
- Arctic R&D, Akvaplan-Niva AS, CIENS, Gaustadalleen 21, 0349, Oslo, Norway
| | - Lars Harms
- Marine Biogeosciences, Alfred-Wegener-Institut - Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570, Bremerhaven, Germany
| | - Tove M Gabrielsen
- The Department of Arctic Biology, Svalbard Science Centre, University Centre in Svalbard, PO Box 156, N-9171, Longyearbyen, Norway
- Faculty of Engineering and Science, University of Agder, PO Box 422, N-4604, Kristiansand, Norway
| | - Björn Rost
- Marine Biogeosciences, Alfred-Wegener-Institut - Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570, Bremerhaven, Germany
- FB2, University of Bremen, Leobener Strasse, 28359, Bremen, Germany
| | - Clara J M Hoppe
- Marine Biogeosciences, Alfred-Wegener-Institut - Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570, Bremerhaven, Germany
| |
Collapse
|
18
|
Dmitrieva VA, Tyutereva EV, Voitsekhovskaja OV. Singlet Oxygen in Plants: Generation, Detection, and Signaling Roles. Int J Mol Sci 2020; 21:E3237. [PMID: 32375245 PMCID: PMC7247340 DOI: 10.3390/ijms21093237] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 01/17/2023] Open
Abstract
Singlet oxygen (1O2) refers to the lowest excited electronic state of molecular oxygen. It easily oxidizes biological molecules and, therefore, is cytotoxic. In plant cells, 1O2 is formed mostly in the light in thylakoid membranes by reaction centers of photosystem II. In high concentrations, 1O2 destroys membranes, proteins and DNA, inhibits protein synthesis in chloroplasts leading to photoinhibition of photosynthesis, and can result in cell death. However, 1O2 also acts as a signal relaying information from chloroplasts to the nucleus, regulating expression of nuclear genes. In spite of its extremely short lifetime, 1O2 can diffuse from the chloroplasts into the cytoplasm and the apoplast. As shown by recent studies, 1O2-activated signaling pathways depend not only on the levels but also on the sites of 1O2 production in chloroplasts, and can activate two types of responses, either acclimation to high light or programmed cell death. 1O2 can be produced in high amounts also in root cells during drought stress. This review summarizes recent advances in research on mechanisms and sites of 1O2 generation in plants, on 1O2-activated pathways of retrograde- and cellular signaling, and on the methods to study 1O2 production in plants.
Collapse
Affiliation(s)
| | | | - Olga V. Voitsekhovskaja
- Laboratory of Molecular and Ecological Physiology, Komarov Botanical Institute, Russian Academy of Sciences, Saint Petersburg 197376, Russia; (V.A.D.); (E.V.T.)
| |
Collapse
|
19
|
Barbato R, Tadini L, Cannata R, Peracchio C, Jeran N, Alboresi A, Morosinotto T, Bajwa AA, Paakkarinen V, Suorsa M, Aro EM, Pesaresi P. Higher order photoprotection mutants reveal the importance of ΔpH-dependent photosynthesis-control in preventing light induced damage to both photosystem II and photosystem I. Sci Rep 2020; 10:6770. [PMID: 32317747 PMCID: PMC7174426 DOI: 10.1038/s41598-020-62717-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 03/12/2020] [Indexed: 11/27/2022] Open
Abstract
Although light is essential for photosynthesis, when in excess, it may damage the photosynthetic apparatus, leading to a phenomenon known as photoinhibition. Photoinhibition was thought as a light-induced damage to photosystem II; however, it is now clear that even photosystem I may become very vulnerable to light. One main characteristic of light induced damage to photosystem II (PSII) is the increased turnover of the reaction center protein, D1: when rate of degradation exceeds the rate of synthesis, loss of PSII activity is observed. With respect to photosystem I (PSI), an excess of electrons, instead of an excess of light, may be very dangerous. Plants possess a number of mechanisms able to prevent, or limit, such damages by safe thermal dissipation of light energy (non-photochemical quenching, NPQ), slowing-down of electron transfer through the intersystem transport chain (photosynthesis-control, PSC) in co-operation with the Proton Gradient Regulation (PGR) proteins, PGR5 and PGRL1, collectively called as short-term photoprotection mechanisms, and the redistribution of light between photosystems, called state transitions (responsible of fluorescence quenching at PSII, qT), is superimposed to these short term photoprotective mechanisms. In this manuscript we have generated a number of higher order mutants by crossing genotypes carrying defects in each of the short-term photoprotection mechanisms, with the final aim to obtain a direct comparison of their role and efficiency in photoprotection. We found that mutants carrying a defect in the ΔpH-dependent photosynthesis-control are characterized by photoinhibition of both photosystems, irrespectively of whether PSBS-dependent NPQ or state transitions defects were present or not in the same individual, demonstrating the primary role of PSC in photoprotection. Moreover, mutants with a limited capability to develop a strong PSBS-dependent NPQ, were characterized by a high turnover of the D1 protein and high values of Y(NO), which might reflect energy quenching processes occurring within the PSII reaction center.
Collapse
Affiliation(s)
- Roberto Barbato
- Department of Sciences and Innovation Technology, University of Eastern Piedmont Amadeo Avogadro, I-15121, Alessandria, Italy.
| | - Luca Tadini
- Department of Biosciences, University of Milan, I-20133, Milan, Italy
| | - Romina Cannata
- Department of Sciences and Innovation Technology, University of Eastern Piedmont Amadeo Avogadro, I-15121, Alessandria, Italy
| | | | - Nicolaj Jeran
- Department of Biosciences, University of Milan, I-20133, Milan, Italy
| | | | | | - Azfar Ali Bajwa
- Molecular Plant Biology, Department of Biochemistry, University of Turku, SF-20520, Turku, Finland
| | - Virpi Paakkarinen
- Molecular Plant Biology, Department of Biochemistry, University of Turku, SF-20520, Turku, Finland
| | - Marjaana Suorsa
- Molecular Plant Biology, Department of Biochemistry, University of Turku, SF-20520, Turku, Finland
| | - Eva-Mari Aro
- Molecular Plant Biology, Department of Biochemistry, University of Turku, SF-20520, Turku, Finland
| | - Paolo Pesaresi
- Department of Biosciences, University of Milan, I-20133, Milan, Italy
| |
Collapse
|
20
|
Müh F, Zouni A. Structural basis of light-harvesting in the photosystem II core complex. Protein Sci 2020; 29:1090-1119. [PMID: 32067287 PMCID: PMC7184784 DOI: 10.1002/pro.3841] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 02/06/2020] [Accepted: 02/06/2020] [Indexed: 12/20/2022]
Abstract
Photosystem II (PSII) is a membrane-spanning, multi-subunit pigment-protein complex responsible for the oxidation of water and the reduction of plastoquinone in oxygenic photosynthesis. In the present review, the recent explosive increase in available structural information about the PSII core complex based on X-ray crystallography and cryo-electron microscopy is described at a level of detail that is suitable for a future structure-based analysis of light-harvesting processes. This description includes a proposal for a consistent numbering scheme of protein-bound pigment cofactors across species. The structural survey is complemented by an overview of the state of affairs in structure-based modeling of excitation energy transfer in the PSII core complex with emphasis on electrostatic computations, optical properties of the reaction center, the assignment of long-wavelength chlorophylls, and energy trapping mechanisms.
Collapse
Affiliation(s)
- Frank Müh
- Department of Theoretical Biophysics, Institute for Theoretical Physics, Johannes Kepler University Linz, Linz, Austria
| | - Athina Zouni
- Humboldt-Universität zu Berlin, Institute for Biology, Biophysics of Photosynthesis, Berlin, Germany
| |
Collapse
|
21
|
Ranjbar Choubeh R, Bar-Eyal L, Paltiel Y, Keren N, Struik PC, van Amerongen H. Photosystem II core quenching in desiccated Leptolyngbya ohadii. PHOTOSYNTHESIS RESEARCH 2020; 143:13-18. [PMID: 31535258 PMCID: PMC6930311 DOI: 10.1007/s11120-019-00675-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 09/10/2019] [Indexed: 05/28/2023]
Abstract
Cyanobacteria living in the harsh environment of the desert have to protect themselves against high light intensity and prevent photodamage. These cyanobacteria are in a desiccated state during the largest part of the day when both temperature and light intensity are high. In the desiccated state, their photosynthetic activity is stopped, whereas upon rehydration the ability to perform photosynthesis is regained. Earlier reports indicate that light-induced excitations in Leptolyngbya ohadii are heavily quenched in the desiccated state, because of a loss of structural order of the light-harvesting phycobilisome structures (Bar Eyal et al. in Proc Natl Acad Sci 114:9481, 2017) and via the stably oxidized primary electron donor in photosystem I, namely P700+ (Bar Eyal et al. in Biochim Biophys Acta Bioenergy 1847:1267-1273, 2015). In this study, we use picosecond fluorescence experiments to demonstrate that a third protection mechanism exists, in which the core of photosystem II is quenched independently.
Collapse
Affiliation(s)
| | - Leeat Bar-Eyal
- Department of Plant & Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yossi Paltiel
- Applied Physics Department, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nir Keren
- Department of Plant & Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Paul C Struik
- Centre for Crop Systems Analysis, Wageningen University, Wageningen, The Netherlands
| | - Herbert van Amerongen
- Laboratory of Biophysics, Wageningen University, Wageningen, The Netherlands.
- MicroSpectroscopy Research Facility, Wageningen University, Wageningen, The Netherlands.
| |
Collapse
|
22
|
Tilney CL, Shankar S, Hubbard KA, Corcoran AA. Is Karenia brevis really a low-light-adapted species? HARMFUL ALGAE 2019; 90:101709. [PMID: 31806165 DOI: 10.1016/j.hal.2019.101709] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 10/03/2019] [Accepted: 11/08/2019] [Indexed: 06/10/2023]
Abstract
Despite nearly annual blooms of the neurotoxic dinoflagellate Karenia brevis (Davis) G. Hansen and Moestrup in the Gulf of Mexico, defining the suite of biological traits that explain its proliferation has remained challenging. Studies have described K. brevis as a low-light-adapted species, incapable of sustaining growth under high light, which is at odds with observed surface aggregations sometimes within centimeters of the sea surface and also with short-term experiments showing photosynthetic machinery accommodating high irradiances. Here, growth and photophysiology of three K. brevis isolates were evaluated under a range of environmentally relevant irradiances (10-1500 μmol photons m-2 s-1) in the laboratory. No differences in growth-irradiance curves were observed among isolates; all sustained maximum growth rates at the highest irradiances examined, even in exposures as long as three weeks. The growth efficiency α of K. brevis under light-limiting conditions appeared mediocre among dinoflagellates, and poorer than that of other phytoplankton (e.g., diatoms, cyanobacteria), implying that K. brevis is not a low-light specialist. This finding substantially alters earlier parameterizations of K. brevis growth-irradiance curves. Therefore, a model was developed to contextualize how these new growth-irradiance curves might affect bottom growth rates. This model was subsequently applied to a case study comparing seasonal light forcing offshore of Pinellas County, FL, USA, with a single empirical value for light attenuation, and seasonal bottom water temperatures. Predictions suggested that light may limit bottom growth as close as 1 km from shore in winter, but would only begin limiting growth 20 km from shore in summer. Population maintenance (no net growth) was possible as far offshore as 90 km in summer and 68 km in winter. These ranges intercept areas thought to be important for bloom initiation.
Collapse
Affiliation(s)
- Charles L Tilney
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, St. Petersburg, FL, 33701, USA.
| | - Sugandha Shankar
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, St. Petersburg, FL, 33701, USA
| | - Katherine A Hubbard
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, St. Petersburg, FL, 33701, USA
| | - Alina A Corcoran
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, St. Petersburg, FL, 33701, USA
| |
Collapse
|
23
|
Kaňa R, Kotabová E, Šedivá B, Kuthanová Trsková E. Photoprotective strategies in the motile cryptophyte alga Rhodomonas salina-role of non-photochemical quenching, ions, photoinhibition, and cell motility. Folia Microbiol (Praha) 2019; 64:691-703. [PMID: 31352667 DOI: 10.1007/s12223-019-00742-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 07/15/2019] [Indexed: 12/20/2022]
Abstract
We explored photoprotective strategies in a cryptophyte alga Rhodomonas salina. This cryptophytic alga represents phototrophs where chlorophyll a/c antennas in thylakoids are combined with additional light-harvesting system formed by phycobiliproteins in the chloroplast lumen. The fastest response to excessive irradiation is induction of non-photochemical quenching (NPQ). The maximal NPQ appears already after 20 s of excessive irradiation. This initial phase of NPQ is sensitive to Ca2+ channel inhibitor (diltiazem) and disappears, also, in the presence of non-actin, an ionophore for monovalent cations. The prolonged exposure to high light of R. salina cells causes photoinhibition of photosystem II (PSII) that can be further enhanced when Ca2+ fluxes are inhibited by diltiazem. The light-induced reduction in PSII photochemical activity is smaller when compared with immotile diatom Phaeodactylum tricornutum. We explain this as a result of their different photoprotective strategies. Besides the protective role of NPQ, the motile R. salina also minimizes high light exposure by increased cell velocity by almost 25% percent (25% from 82 to 104 μm/s). We suggest that motility of algal cells might have a photoprotective role at high light because algal cell rotation around longitudinal axes changes continual irradiation to periodically fluctuating light.
Collapse
Affiliation(s)
- Radek Kaňa
- Institute of Microbiology, Centre ALGATECH, Czech Academy of Sciences, Třeboň, Czech Republic.
| | - Eva Kotabová
- Institute of Microbiology, Centre ALGATECH, Czech Academy of Sciences, Třeboň, Czech Republic
| | - Barbora Šedivá
- Institute of Microbiology, Centre ALGATECH, Czech Academy of Sciences, Třeboň, Czech Republic
| | - Eliška Kuthanová Trsková
- Institute of Microbiology, Centre ALGATECH, Czech Academy of Sciences, Třeboň, Czech Republic.,Student of Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, Ceske Budejovice, Czech Republic
| |
Collapse
|
24
|
Popova AV, Dobrev K, Velitchkova M, Ivanov AG. Differential temperature effects on dissipation of excess light energy and energy partitioning in lut2 mutant of Arabidopsis thaliana under photoinhibitory conditions. PHOTOSYNTHESIS RESEARCH 2019; 139:367-385. [PMID: 29725995 DOI: 10.1007/s11120-018-0511-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/22/2018] [Indexed: 06/08/2023]
Abstract
The high-light-induced alterations in photosynthetic performance of photosystem II (PSII) and photosystem I (PSI) as well as effectiveness of dissipation of excessive absorbed light during illumination for different periods of time at room (22 °C) and low (8-10 °C) temperature of leaves of Arabidopsis thaliana, wt and lut2, were followed with the aim of unraveling the role of lutein in the process of photoinhibition. Photosynthetic parameters of PSII and PSI were determined on whole leaves by PAM fluorometer and oxygen evolving activity-by a Clark-type electrode. In thylakoid membranes, isolated from non-illuminated and illuminated for 4.5 h leaves of wt and lut2 the photochemical activity of PSII and PSI and energy interaction between the main pigment-protein complexes was determined. Results indicate that in non-illuminated leaves of lut2 the maximum rate of oxygen evolution and energy utilization in PSII is lower, excitation pressure of PSII is higher and cyclic electron transport around PSI is faster than in wt leaves. Under high-light illumination, lut2 leaves are more sensitive in respect to PSII performance and the extent of increase of excitation pressure of PSII, ΦNO, and cyclic electron transport around PSI are higher than in wt leaves, especially when illumination is performed at low temperature. Significant part of the excessive light energy is dissipated via mechanism, not dependent on ∆pH and to functioning of xanthophyll cycle in LHCII, operating more intensively in lut2 leaves.
Collapse
Affiliation(s)
- Antoaneta V Popova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. bl. 21, 1113, Sofia, Bulgaria.
| | - Konstantin Dobrev
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. bl. 21, 1113, Sofia, Bulgaria
| | - Maya Velitchkova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. bl. 21, 1113, Sofia, Bulgaria
| | - Alexander G Ivanov
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. bl. 21, 1113, Sofia, Bulgaria
- Department of Biology, University of Western Ontario, 1151 Richmond Str. N., London, ON, N6A 5B7, Canada
| |
Collapse
|
25
|
Solanki T, Aphalo PJ, Neimane S, Hartikainen SM, Pieristè M, Shapiguzov A, Porcar-Castell A, Atherton J, Heikkilä A, Robson TM. UV-screening and springtime recovery of photosynthetic capacity in leaves of Vaccinium vitis-idaea above and below the snow pack. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 134:40-52. [PMID: 30219502 DOI: 10.1016/j.plaphy.2018.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 05/22/2023]
Abstract
Evergreen plants in boreal biomes undergo seasonal hardening and dehardening adjusting their photosynthetic capacity and photoprotection; acclimating to seasonal changes in temperature and irradiance. Leaf epidermal ultraviolet (UV)-screening by flavonols responds to solar radiation, perceived in part through increased ultraviolet-B (UV-B) radiation, and is a candidate trait to provide cross-photoprotection. At Hyytiälä Forestry Station, central Finland, we examined whether the accumulation of flavonols was higher in leaves of Vaccinium vitis-idaea L. growing above the snowpack compared with those below the snowpack. We found that leaves exposed to colder temperatures and higher solar radiation towards the top of hummocks suffered greater photoinhibition than those at the base of hummocks. Epidermal UV-screening was highest in upper-hummock leaves, particularly during winter when lower leaves were beneath the snowpack. There was also a negative relationship between indices of flavonols and anthocyanins across all leaves suggesting fine-tuning of flavonoid composition for screening vs. antioxidant activity in response to temperature and irradiance. However, the positive correlation between the maximum quantum yield of photosystem II photochemistry (Fv/Fm) and flavonol accumulation in upper hummock leaves during dehardening did not confer on them any greater cross-protection than would be expected from the general relationship of Fv/Fm with temperature and irradiance (throughout the hummocks). Irrespective of timing of snow-melt, photosynthesis fully recovered in all leaves, suggesting that V. vitis-idaea has the potential to exploit the continuing trend for longer growing seasons in central Finland without incurring significant impairment from reduced duration of snow cover.
Collapse
Affiliation(s)
- Twinkle Solanki
- Organismal and Evolutionary Biology, Viikki Plant Science Centre (ViPS), Faculty of Biological and Environmental Science, 00014, University of Helsinki, Finland
| | - Pedro J Aphalo
- Organismal and Evolutionary Biology, Viikki Plant Science Centre (ViPS), Faculty of Biological and Environmental Science, 00014, University of Helsinki, Finland
| | - Santa Neimane
- Organismal and Evolutionary Biology, Viikki Plant Science Centre (ViPS), Faculty of Biological and Environmental Science, 00014, University of Helsinki, Finland; Dept. Plant Physiology, University of Latvia, Jelgavas Street 1, LV, 1004, Riga, Latvia
| | - Saara M Hartikainen
- Organismal and Evolutionary Biology, Viikki Plant Science Centre (ViPS), Faculty of Biological and Environmental Science, 00014, University of Helsinki, Finland
| | - Marta Pieristè
- Organismal and Evolutionary Biology, Viikki Plant Science Centre (ViPS), Faculty of Biological and Environmental Science, 00014, University of Helsinki, Finland; Normandie Université, UNIROUEN, Ecodiv URA/EA1293, IRSTEA, FR Scale CNRS, 3730, Rouen, France
| | - Alexey Shapiguzov
- Organismal and Evolutionary Biology, Viikki Plant Science Centre (ViPS), Faculty of Biological and Environmental Science, 00014, University of Helsinki, Finland; Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street, 35, 127276 Moscow, Russia
| | - Albert Porcar-Castell
- Optics of Photosynthesis Laboratory, Institute for Atmospheric and Earth System Research, Department of Forest Sciences, 00014, University of Helsinki, Finland
| | - Jon Atherton
- Optics of Photosynthesis Laboratory, Institute for Atmospheric and Earth System Research, Department of Forest Sciences, 00014, University of Helsinki, Finland
| | - Anu Heikkilä
- Finnish Meteorological Institute (FMI), POB 503, 00101, Helsinki, Finland
| | - Thomas Matthew Robson
- Organismal and Evolutionary Biology, Viikki Plant Science Centre (ViPS), Faculty of Biological and Environmental Science, 00014, University of Helsinki, Finland.
| |
Collapse
|
26
|
Ogawa K, Yoshikawa K, Matsuda F, Toya Y, Shimizu H. Transcriptome analysis of the cyanobacterium Synechocystis sp. PCC 6803 and mechanisms of photoinhibition tolerance under extreme high light conditions. J Biosci Bioeng 2018; 126:596-602. [PMID: 29907527 DOI: 10.1016/j.jbiosc.2018.05.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/08/2018] [Accepted: 05/21/2018] [Indexed: 11/16/2022]
Abstract
Photoinhibition, or cell damage caused by excessively intense light is a major issue for the industrial use of cyanobacteria. To investigate the mechanism of responses to extreme high light intensity, gene expression analysis was performed using the model cyanobacterium Synechocystis sp. PCC 6803 (PCC 6803) cultured under various light intensities. The culture profile data demonstrated that, in contrast to the slow cell growth observed under low light intensities (30 and 50 μmol m-2 s-1), maximal cell growth was observed under mid light conditions (300 and 1000 μmol m-2 s-1). PCC 6803 cells exhibited photoinhibition when cultured under excessive high light intensities of 1100 and 1300 μmol m-2 s-1. From the low to the mid light conditions, the expression of genes related to light harvesting systems was repressed, whereas that of CO2 fixation and of D1 protein turnover-related genes was induced. Gene expression data also revealed that the down-regulation of genes related to flagellum synthesis (pilA2), pyridine nucleotide transhydrogenase (pntA and pntB), and sigma factor (sigA and sigF) represents the key responses of PCC 6803 under excessive high light conditions. The results obtained in this study provide further understanding of high light tolerance mechanisms and should help to improve the productivity of bioprocess using cyanobacteria.
Collapse
Affiliation(s)
- Kenichi Ogawa
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5-Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Katsunori Yoshikawa
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5-Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Fumio Matsuda
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5-Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Yoshihiro Toya
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5-Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Hiroshi Shimizu
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5-Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
27
|
Elkhouni A, Rabhi M, Ivanov AG, Krol M, Zorrig W, Smaoui A, Abdelly C, Huner NPA. Structural and functional integrity of Sulla carnosa photosynthetic apparatus under iron deficiency conditions. PLANT BIOLOGY (STUTTGART, GERMANY) 2018; 20:415-425. [PMID: 29274120 DOI: 10.1111/plb.12684] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 12/15/2017] [Indexed: 06/07/2023]
Abstract
The abundance of calcareous soils makes bicarbonate-induced iron (Fe) deficiency a major problem for plant growth and crop yield. Therefore, Fe-efficient plants may constitute a solution for use on calcareous soils. We investigated the ability of the forage legume Sulla carnosa (Desf.) to maintain integrity of its photosynthetic apparatus under Fe deficiency conditions. Three treatments were applied: control, direct Fe deficiency and bicarbonate-induced Fe deficiency. At harvest, all organs of deficient plants showed severe growth inhibition, the effect being less pronounced under indirect Fe deficiency. Pigment analysis of fully expanded leaves revealed a reduction in concentrations of chlorophyll a, chlorophyll b and carotenoids under Fe deficiency. Electron transport rate, maximum and effective quantum yield of photosystem II (PSII), photochemical quenching (qP), non-photochemical quenching (qN) as well as P700 activity also decreased significantly in plants exposed to direct Fe deficiency, while qN was not affected. The effects of indirect Fe deficiency on the same parameters were less pronounced in bicarbonate-treated plants. The relative abundances of thylakoid proteins related to PSI (PsaA, Lhca1, Lhca2) and PSII (PsbA, Lhcb1) were also more affected under direct than indirect Fe deficiency. We conclude that S. carnosa can maintain the integrity of its photosynthetic apparatus under bicarbonate-induced Fe deficiency, preventing harmful effects to both photosystems under direct Fe deficiency. This suggests a high capacity of this species not only to take up Fe in the presence of bicarbonate (HCO3- ) but also to preferentially translocate absorbed Fe towards leaves and prevent its inactivation.
Collapse
Affiliation(s)
- A Elkhouni
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, Hammam-Lif, Tunisia
| | - M Rabhi
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, Hammam-Lif, Tunisia
| | - A G Ivanov
- Department of Biology, University of Western Ontario, London, Canada
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - M Krol
- Department of Biology, University of Western Ontario, London, Canada
| | - W Zorrig
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, Hammam-Lif, Tunisia
| | - A Smaoui
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, Hammam-Lif, Tunisia
| | - C Abdelly
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, Hammam-Lif, Tunisia
| | - N P A Huner
- Department of Biology, University of Western Ontario, London, Canada
| |
Collapse
|
28
|
Khanal N, Bray GE, Grisnich A, Moffatt BA, Gray GR. Differential Mechanisms of Photosynthetic Acclimation to Light and Low Temperature in Arabidopsis and the Extremophile Eutrema salsugineum. PLANTS (BASEL, SWITZERLAND) 2017; 6:E32. [PMID: 28792470 PMCID: PMC5620588 DOI: 10.3390/plants6030032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/19/2017] [Accepted: 08/01/2017] [Indexed: 12/21/2022]
Abstract
Photosynthetic organisms are able to sense energy imbalances brought about by the overexcitation of photosystem II (PSII) through the redox state of the photosynthetic electron transport chain, estimated as the chlorophyll fluorescence parameter 1-qL, also known as PSII excitation pressure. Plants employ a wide array of photoprotective processes that modulate photosynthesis to correct these energy imbalances. Low temperature and light are well established in their ability to modulate PSII excitation pressure. The acquisition of freezing tolerance requires growth and development a low temperature (cold acclimation) which predisposes the plant to photoinhibition. Thus, photosynthetic acclimation is essential for proper energy balancing during the cold acclimation process. Eutrema salsugineum (Thellungiella salsuginea) is an extremophile, a close relative of Arabidopsis thaliana, but possessing much higher constitutive levels of tolerance to abiotic stress. This comparative study aimed to characterize the photosynthetic properties of Arabidopsis (Columbia accession) and two accessions of Eutrema (Yukon and Shandong) isolated from contrasting geographical locations at cold acclimating and non-acclimating conditions. In addition, three different growth regimes were utilized that varied in temperature, photoperiod and irradiance which resulted in different levels of PSII excitation pressure. This study has shown that these accessions interact differentially to instantaneous (measuring) and long-term (acclimation) changes in PSII excitation pressure with regard to their photosynthetic behaviour. Eutrema accessions contained a higher amount of photosynthetic pigments, showed higher oxidation of P700 and possessed more resilient photoprotective mechanisms than that of Arabidopsis, perhaps through the prevention of PSI acceptor-limitation. Upon comparison of the two Eutrema accessions, Shandong demonstrated the greatest PSII operating efficiency (ΦPSII) and P700 oxidizing capacity, while Yukon showed greater growth plasticity to irradiance. Both of these Eutrema accessions are able to photosynthetically acclimate but do so by different mechanisms. The Shandong accessions demonstrate a stable response, favouring energy partitioning to photochemistry while the Yukon accession shows a more rapid response with partitioning to other (non-photochemical) strategies.
Collapse
Affiliation(s)
- Nityananda Khanal
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada.
| | - Geoffrey E Bray
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.
| | - Anna Grisnich
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada.
| | - Barbara A Moffatt
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| | - Gordon R Gray
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada.
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.
| |
Collapse
|
29
|
Kaňa R, Govindjee. Role of Ions in the Regulation of Light-Harvesting. FRONTIERS IN PLANT SCIENCE 2016; 7:1849. [PMID: 28018387 PMCID: PMC5160696 DOI: 10.3389/fpls.2016.01849] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/23/2016] [Indexed: 03/03/2024]
Abstract
Regulation of photosynthetic light harvesting in the thylakoids is one of the major key factors affecting the efficiency of photosynthesis. Thylakoid membrane is negatively charged and influences both the structure and the function of the primarily photosynthetic reactions through its electrical double layer (EDL). Further, there is a heterogeneous organization of soluble ions (K+, Mg2+, Cl-) attached to the thylakoid membrane that, together with fixed charges (negatively charged amino acids, lipids), provides an electrical field. The EDL is affected by the valence of the ions and interferes with the regulation of "state transitions," protein interactions, and excitation energy "spillover" from Photosystem II to Photosystem I. These effects are reflected in changes in the intensity of chlorophyll a fluorescence, which is also a measure of photoprotective non-photochemical quenching (NPQ) of the excited state of chlorophyll a. A triggering of NPQ proceeds via lumen acidification that is coupled to the export of positive counter-ions (Mg2+, K+) to the stroma or/and negative ions (e.g., Cl-) into the lumen. The effect of protons and anions in the lumen and of the cations (Mg2+, K+) in the stroma are, thus, functionally tightly interconnected. In this review, we discuss the consequences of the model of EDL, proposed by Barber (1980b) Biochim Biophys Acta 594:253-308) in light of light-harvesting regulation. Further, we explain differences between electrostatic screening and neutralization, and we emphasize the opposite effect of monovalent (K+) and divalent (Mg2+) ions on light-harvesting and on "screening" of the negative charges on the thylakoid membrane; this effect needs to be incorporated in all future models of photosynthetic regulation by ion channels and transporters.
Collapse
Affiliation(s)
- Radek Kaňa
- Institute of Microbiology, Academy of Sciences of the CzechiaTřeboň, Czechia
- Faculty of Science, Institute of Chemistry and Biochemistry, University of South BohemiaČeské Budějovice, Czechia
| | - Govindjee
- Center of Biophysics and Quantitative Biology, Department of Biochemistry, Department of Plant Biology, University of Illinois at Urbana-ChampaignUrbana, IL, USA
| |
Collapse
|
30
|
Voloshina OV, Bolychevtseva YV, Kuzminov FI, Gorbunov MY, Elanskaya IV, Fadeev VV. Photosystem II Activity of Wild Type Synechocystis PCC 6803 and Its Mutants with Different Plastoquinone Pool Redox States. BIOCHEMISTRY (MOSCOW) 2016; 81:858-70. [PMID: 27677553 DOI: 10.1134/s000629791608006x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To assess the role of redox state of photosystem II (PSII) acceptor side electron carriers in PSII photochemical activity, we studied sub-millisecond fluorescence kinetics of the wild type Synechocystis PCC 6803 and its mutants with natural variability in the redox state of the plastoquinone (PQ) pool. In cyanobacteria, dark adaptation tends to reduce PQ pool and induce a shift of the cyanobacterial photosynthetic apparatus to State 2, whereas illumination oxidizes PQ pool, leading to State 1 (Mullineaux, C. W., and Holzwarth, A. R. (1990) FEBS Lett., 260, 245-248). We show here that dark-adapted Ox(-) mutant with naturally reduced PQ is characterized by slower QA(-) reoxidation and O2 evolution rates, as well as lower quantum yield of PSII primary photochemical reactions (Fv/Fm) as compared to the wild type and SDH(-) mutant, in which the PQ pool remains oxidized in the dark. These results indicate a large portion of photochemically inactive PSII reaction centers in the Ox(-) mutant after dark adaptation. While light adaptation increases Fv/Fm in all tested strains, indicating PSII activation, by far the greatest increase in Fv/Fm and O2 evolution rates is observed in the Ox(-) mutant. Continuous illumination of Ox(-) mutant cells with low-intensity blue light, that accelerates QA(-) reoxidation, also increases Fv/Fm and PSII functional absorption cross-section (590 nm); this effect is almost absent in the wild type and SDH(-) mutant. We believe that these changes are caused by the reorganization of the photosynthetic apparatus during transition from State 2 to State 1. We propose that two processes affect the PSII activity during changes of light conditions: 1) reversible inactivation of PSII, which is associated with the reduction of electron carriers on the PSII acceptor side in the dark, and 2) PSII activation under low light related to the increase in functional absorption cross-section at 590 nm.
Collapse
Affiliation(s)
- O V Voloshina
- Lomonosov Moscow State University, International Laser Center, Moscow, 119991, Russia.
| | | | | | | | | | | |
Collapse
|
31
|
Guéra A, Gasulla F, Barreno E. Formation of photosystem II reaction centers that work as energy sinks in lichen symbiotic Trebouxiophyceae microalgae. PHOTOSYNTHESIS RESEARCH 2016; 128:15-33. [PMID: 26482588 DOI: 10.1007/s11120-015-0196-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 10/08/2015] [Indexed: 06/05/2023]
Abstract
Lichens are poikilohydric symbiotic organisms that can survive in the absence of water. Photosynthesis must be highly regulated in these organisms, which live under continuous desiccation-rehydration cycles, to avoid photooxidative damage. Analysis of chlorophyll a fluorescence induction curves in the lichen microalgae of the Trebouxiophyceae Asterochloris erici and in Trebouxia jamesii (TR1) and Trebouxia sp. (TR9) phycobionts, isolated from the lichen Ramalina farinacea, shows differences with higher plants. In the presence of the photosynthetic electron transport inhibitor DCMU, the kinetics of Q(A) reduction is related to variable fluorescence by a sigmoidal function that approaches a horizontal asymptote. An excellent fit to these curves was obtained by applying a model based on the following assumptions: (1) after closure, the reaction centers (RCs) can be converted into "energy sink" centers (sRCs); (2) the probability of energy leaving the sRCs is very low or zero and (3) energy is not transferred from the antenna of PSII units with sRCs to other PSII units. The formation of sRCs units is also induced by repetitive light saturating pulses or at the transition from dark to light and probably requires the accumulation of reduced Q(A), as well as structural changes in the reaction centers of PSII. This type of energy sink would provide a very efficient way to protect symbiotic microalgae against abrupt changes in light intensity.
Collapse
Affiliation(s)
- Alfredo Guéra
- Departamento de Ciencias de la Vida, Universidad de Alcalá, Edificio de Ciencias, Campus externo, 28871, Alcalá de Henares, Madrid, Spain.
| | - Francisco Gasulla
- Departamento de Ciencias de la Vida, Universidad de Alcalá, Edificio de Ciencias, Campus externo, 28871, Alcalá de Henares, Madrid, Spain
- Botánica, ICBIBE, Facultad de Ciencias Biológicas, Universitat de València, C/Dr. Moliner 50, 46100, Burjassot, Valencia, Spain
| | - Eva Barreno
- Botánica, ICBIBE, Facultad de Ciencias Biológicas, Universitat de València, C/Dr. Moliner 50, 46100, Burjassot, Valencia, Spain
| |
Collapse
|
32
|
Kuzminov FI, Gorbunov MY. Energy dissipation pathways in Photosystem 2 of the diatom, Phaeodactylum tricornutum, under high-light conditions. PHOTOSYNTHESIS RESEARCH 2016; 127:219-235. [PMID: 26220363 DOI: 10.1007/s11120-015-0180-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 07/17/2015] [Indexed: 05/24/2023]
Abstract
To prevent photooxidative damage under supraoptimal light, photosynthetic organisms evolved mechanisms to thermally dissipate excess absorbed energy, known as non-photochemical quenching (NPQ). Here we quantify NPQ-induced alterations in light-harvesting processes and photochemical reactions in Photosystem 2 (PS2) in the pennate diatom Phaeodactylum tricornutum. Using a combination of picosecond lifetime analysis and variable fluorescence technique, we examined the dynamics of NPQ activation upon transition from dark to high light. Our analysis revealed that NPQ activation starts with a 2-3-fold increase in the rate constant of non-radiative charge recombination in the reaction center (RC); however, this increase is compensated with a proportional increase in the rate constant of back reactions. The resulting alterations in photochemical processes in PS2 RC do not contribute directly to quenching of antenna excitons by the RC, but favor non-radiative dissipation pathways within the RC, reducing the yields of spin conversion of the RC chlorophyll to the triplet state. The NPQ-induced changes in the RC are followed by a gradual ~ 2.5-fold increase in the yields of thermal dissipation in light-harvesting complexes. Our data suggest that thermal dissipation in light-harvesting complexes is the major sink for NPQ; RCs are not directly involved in the NPQ process, but could contribute to photoprotection via reduction in the probability of (3)Chl formation.
Collapse
Affiliation(s)
- Fedor I Kuzminov
- Environmental Biophysics and Molecular Biology Program, Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, 08901, USA.
- International Laser Center, M.V. Lomonosov Moscow State University, 119991, Moscow, Russia.
| | - Maxim Y Gorbunov
- Environmental Biophysics and Molecular Biology Program, Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, 08901, USA
| |
Collapse
|
33
|
Fox KF, Bricker WP, Lo C, Duffy CDP. Distortions of the Xanthophylls Caused by Interactions with Neighboring Pigments and the LHCII Protein Are Crucial for Studying Energy Transfer Pathways within the Complex. J Phys Chem B 2015; 119:15550-60. [DOI: 10.1021/acs.jpcb.5b08941] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- K. F. Fox
- The
School of Biological and Chemical Sciences, Queen Mary’s University of London, Mile End Road, London E1 4NS, England
| | - William P. Bricker
- Department
of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, 1 Brookings Drive, Saint Louis, Missouri 63130-4899, United States
| | - Cynthia Lo
- Department
of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, 1 Brookings Drive, Saint Louis, Missouri 63130-4899, United States
| | - C. D. P. Duffy
- The
School of Biological and Chemical Sciences, Queen Mary’s University of London, Mile End Road, London E1 4NS, England
| |
Collapse
|
34
|
Ivanov AG, Morgan-Kiss RM, Krol M, Allakhverdiev SI, Zanev Y, Sane PV, Huner NPA. Photoinhibition of photosystem I in a pea mutant with altered LHCII organization. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2015; 152:335-46. [PMID: 26321219 DOI: 10.1016/j.jphotobiol.2015.08.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 08/10/2015] [Accepted: 08/13/2015] [Indexed: 11/18/2022]
Abstract
Comparative analysis of in vivo chlorophyll fluorescence imaging revealed that photosystem II (PSII) photochemical efficiency (Fv/Fm) of leaves of the Costata 2/133 pea mutant with altered pigment composition and decreased level of oligomerization of the light harvesting chlorophyll a/b-protein complexes (LHCII) of PSII (Dobrikova et al., 2000; Ivanov et al., 2005) did not differ from that of WT. In contrast, photosystem I (PSI) activity of the Costata 2/133 mutant measured by the far-red (FR) light inducible P700 (P700(+)) signal exhibited 39% lower steady state level of P700(+), a 2.2-fold higher intersystem electron pool size (e(-)/P700) and higher rate of P700(+) re-reduction, which indicate an increased capacity for PSI cyclic electron transfer (CET) in the Costata 2/133 mutant than WT. The mutant also exhibited a limited capacity for state transitions. The lower level of oxidizable P700 (P700(+)) is consistent with a lower amount of PSI related chlorophyll protein complexes and lower abundance of the PsaA/PsaB heterodimer, PsaD and Lhca1 polypeptides in Costata 2/133 mutant. Exposure of WT and the Costata 2/133 mutant to high light stress resulted in a comparable photoinhibition of PSII measured in vivo, although the decrease of Fv/Fm was modestly higher in the mutant plants. However, under the same photoinhibitory conditions PSI photochemistry (P700(+)) measured as ΔA820-860 was inhibited to a greater extent (50%) in the Costata 2/133 mutant than in the WT (22%). This was accompanied by a 50% faster re-reduction rate of P700(+) in the dark indicating a higher capacity for CET around PSI in high light treated mutant leaves. The role of chloroplast thylakoid organization on the stability of the PSI complex and its susceptibility to high light stress is discussed.
Collapse
Affiliation(s)
- A G Ivanov
- Department of Biology and the Biotron Centre for Experimental Climate Change Research, University of Western Ontario, 1151 Richmond Street, N., London, Ontario N6A 5B7, Canada.
| | - R M Morgan-Kiss
- Department of Microbiology, Miami University, 700 E. High Street, Oxford, OH 45045, USA
| | - M Krol
- Department of Biology and the Biotron Centre for Experimental Climate Change Research, University of Western Ontario, 1151 Richmond Street, N., London, Ontario N6A 5B7, Canada
| | - S I Allakhverdiev
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia; Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia; Department of Plant Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Yu Zanev
- Institute of Biophysics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - P V Sane
- Jain Irrigation Systems Limited, Jain Hills, Jalgaon 425001, India
| | - N P A Huner
- Department of Biology and the Biotron Centre for Experimental Climate Change Research, University of Western Ontario, 1151 Richmond Street, N., London, Ontario N6A 5B7, Canada.
| |
Collapse
|
35
|
Duffy CD, Ruban AV. Dissipative pathways in the photosystem-II antenna in plants. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 152:215-26. [DOI: 10.1016/j.jphotobiol.2015.09.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 09/07/2015] [Accepted: 09/11/2015] [Indexed: 10/23/2022]
|
36
|
Bolychevtseva YV, Kuzminov FI, Elanskaya IV, Gorbunov MY, Karapetyan NV. Photosystem activity and state transitions of the photosynthetic apparatus in cyanobacterium Synechocystis PCC 6803 mutants with different redox state of the plastoquinone pool. BIOCHEMISTRY (MOSCOW) 2015; 80:50-60. [PMID: 25754039 DOI: 10.1134/s000629791501006x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To better understand how photosystem (PS) activity is regulated during state transitions in cyanobacteria, we studied photosynthetic parameters of photosystem II (PSII) and photosystem I (PSI) in Synechocystis PCC 6803 wild type (WT) and its mutants deficient in oxidases (Ox(-)) or succinate dehydrogenase (SDH(-)). Dark-adapted Ox(-) mutant, lacking the oxidation agents, is expected to have a reduced PQ pool, while in SDH(-) mutant the PQ pool after dark adaptation will be more oxidized due to partial inhibition of the respiratory chain electron carriers. In this work, we tested the hypothesis that control of balance between linear and cyclic electron transport by the redox state of the PQ pool will affect PSII photosynthetic activity during state transition. We found that the PQ pool was reduced in Ox(-) mutant, but oxidized in SDH(-) mutant after prolonged dark adaptation, indicating different states of the photosynthetic apparatus in these mutants. Analysis of variable fluorescence and 77K fluorescence spectra revealed that the WT and SDH(-) mutant were in State 1 after dark adaptation, while the Ox(-) mutant was in State 2. State 2 was characterized by ~1.5 time lower photochemical activity of PSII, as well as high rate of P700 reduction and the low level of P700 oxidation, indicating high activity of cyclic electron transfer around PSI. Illumination with continuous light 1 (440 nm) along with flashes of light 2 (620 nm) allowed oxidation of the PQ pool in the Ox(-) mutant, thus promoting it to State 1, but it did not affect PSII activity in dark adapted WT and SDH(-) mutant. State 1 in the Ox(-) mutant was characterized by high variable fluorescence and P700(+) levels typical for WT and the SDH(-) mutant, indicating acceleration of linear electron transport. Thus, we show that PSII of cyanobacteria has a higher photosynthetic activity in State 1, while it is partially inactivated in State 2. This process is controlled by the redox state of PQ in cyanobacteria through enhancement/inhibition of electron transport on the acceptor side of PSII.
Collapse
Affiliation(s)
- Y V Bolychevtseva
- Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, 119071, Russia.
| | | | | | | | | |
Collapse
|
37
|
Antal TK, Krendeleva TE, Tyystjärvi E. Multiple regulatory mechanisms in the chloroplast of green algae: relation to hydrogen production. PHOTOSYNTHESIS RESEARCH 2015; 125:357-81. [PMID: 25986411 DOI: 10.1007/s11120-015-0157-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Accepted: 05/11/2015] [Indexed: 05/10/2023]
Abstract
A complex regulatory network in the chloroplast of green algae provides an efficient tool for maintenance of energy and redox balance in the cell under aerobic and anaerobic conditions. In this review, we discuss the structural and functional organizations of electron transport pathways in the chloroplast, and regulation of photosynthesis in the green microalga Chlamydomonas reinhardtii. The focus is on the regulatory mechanisms induced in response to nutrient deficiency stress and anoxia and especially on the role of a hydrogenase-mediated reaction in adaptation to highly reducing conditions and ATP deficiency in the cell.
Collapse
Affiliation(s)
- Taras K Antal
- Faculty of Biology, Moscow State University, Vorobyevi Gory, Moscow, 119992, Russia,
| | | | | |
Collapse
|
38
|
Interacting Effects of Light and Iron Availability on the Coupling of Photosynthetic Electron Transport and CO2-Assimilation in Marine Phytoplankton. PLoS One 2015; 10:e0133235. [PMID: 26171963 PMCID: PMC4501554 DOI: 10.1371/journal.pone.0133235] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 06/25/2015] [Indexed: 12/30/2022] Open
Abstract
Iron availability directly affects photosynthesis and limits phytoplankton growth over vast oceanic regions. For this reason, the availability of iron is a crucial variable to consider in the development of active chlorophyll a fluorescence based estimates of phytoplankton primary productivity. These bio-optical approaches require a conversion factor to derive ecologically-relevant rates of CO2-assimilation from estimates of electron transport in photosystem II. The required conversion factor varies significantly across phytoplankton taxa and environmental conditions, but little information is available on its response to iron limitation. In this study, we examine the role of iron limitation, and the interacting effects of iron and light availability, on the coupling of photosynthetic electron transport and CO2-assimilation in marine phytoplankton. Our results show that excess irradiance causes increased decoupling of carbon fixation and electron transport, particularly under iron limiting conditions. We observed that reaction center II specific rates of electron transport (ETRRCII, mol e- mol RCII-1 s-1) increased under iron limitation, and we propose a simple conceptual model for this observation. We also observed a strong correlation between the derived conversion factor and the expression of non-photochemical quenching. Utilizing a dataset from in situ phytoplankton assemblages across a coastal – oceanic transect in the Northeast subarctic Pacific, this relationship was used to predict ETRRCII: CO2-assimilation conversion factors and carbon-based primary productivity from FRRF data, without the need for any additional measurements.
Collapse
|
39
|
Farhat N, Ivanov AG, Krol M, Rabhi M, Smaoui A, Abdelly C, Hüner NPA. Preferential damaging effects of limited magnesium bioavailability on photosystem I in Sulla carnosa plants. PLANTA 2015; 241:1189-206. [PMID: 25637102 DOI: 10.1007/s00425-015-2248-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 01/17/2015] [Indexed: 05/03/2023]
Abstract
Magnesium deficiency preferentially inhibits photosystem I rather than photosystem II in Sulla carnosa plants. The effects of magnesium (Mg(2+)) deficiency on growth, photosynthetic performance, pigment and polypeptide composition of chloroplast membranes were studied in the halophyte Sulla carnosa (Desf.), an annual legume endemic to Tunisia and Algeria. The results demonstrate a gradual decrease in biomass production with decreasing Mg(2+) availability in the growth medium. The increase of Mg(2+) deficiency was also associated with a decline of the net CO2 assimilation (Pn) in fully expanded leaves, a decrease in the amount of photosynthetic pigments, and an increase in the lipid peroxidation in plants exposed to decreased Mg(2+) concentrations. Interestingly, while CO2 assimilation already was affected at Mg(2+) concentrations below 1.5 mM, the photochemical efficiency of photosystem II (PSII) declined only in the absence of Mg(2+). In contrast, plants of S. carnosa grown in Mg(2+)-deficient conditions exhibited a significant decrease in photosystem I (PSI) photochemistry in vivo at much higher Mg(2+) levels compared to PSII photochemical activity. The inhibitory effect of Mg(2+) deficiency on PSI photochemistry strongly correlated with significantly lower relative abundance of PSI-related chlorophyll-protein complexes and lower amounts of PSI-associated polypeptides, PsaA, PsaB, and Lhca proteins within the same range of Mg(2+) concentrations. These observations were associated with a higher intersystem electron pool size, restricted linear electron transport and a lower rate of reduction of P700(+) in the dark indicating restricted capacity for PSI cyclic electron transfer in plants exposed to Mg(2+)-deficient conditions compared to controls. These results clearly indicate that PSI, rather than PSII is preferentially targeted and damaged under Mg(2+)-deficiency conditions.
Collapse
Affiliation(s)
- Nèjia Farhat
- Laboratory of Extremophile Plants, Biotechnology Centre of Borj-Cedria, P. O. Box 901, 2050, Hammam-Lif, Tunisia
| | | | | | | | | | | | | |
Collapse
|
40
|
Vredenberg W. A simple routine for quantitative analysis of light and dark kinetics of photochemical and non-photochemical quenching of chlorophyll fluorescence in intact leaves. PHOTOSYNTHESIS RESEARCH 2015; 124:87-106. [PMID: 25739901 PMCID: PMC4368846 DOI: 10.1007/s11120-015-0097-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/10/2015] [Indexed: 05/09/2023]
Abstract
Paper describes principles and application of a novel routine that enables the quantitative analysis of the photochemical O-J phase of the variable fluorescence F v associated with the reversible photo-reduction of the secondary electron acceptor QA of photosystem II (PSII) in algae and intact leaves. The kinetic parameters that determine the variable fluorescence F (PP)(t) associated with the release of photochemical quenching are estimated from 10 µs time-resolved light-on and light-off responses of F v induced by two subsequent light pulses of 0.25 (default) and 1000 ms duration, respectively. Application of these pulses allows estimations of (i) the actual value of the rate constants k L and k AB of the light excitation (photoreduction of QA) and of the dark re-oxidation of photoreduced QA ([Formula: see text]), respectively, (ii) the actual maximal normalized variable fluorescence [nF v] associated with 100 % photoreduction of QA of open RCs, and (iii) the actual size β of RCs in which the re-oxidation of [Formula: see text] is largely suppressed (QB-nonreducing RC with k AB ~ 0). The rate constants of the dark reversion of Fv associated with the release of photo-electrochemical quenching F (PE) and photo-electric stimulation F (CET) in the successive J-I and I-P parts of the thermal phase are in the range of (100 ms)(-1) and (1 s)(-1), respectively. The kinetics of fluorescence changes during and after the I-P phase are given special attention in relation to the hypothesis on the involvement of a Δµ H+-dependent effect during this phase and thereafter. Paper closes with author's personal view on the demands that should be fulfilled for chlorophyll fluorescence methods being a correct and unchallenged signature of photosynthesis in algae and plants.
Collapse
Affiliation(s)
- Wim Vredenberg
- Department of Plant Physiology, Wageningen University and Research, Wageningen, The Netherlands,
| |
Collapse
|
41
|
Comparing the diel vertical migration of Karlodinium veneficum (dinophyceae) and Chattonella subsalsa (Raphidophyceae): PSII photochemistry, circadian control, and carbon assimilation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 143:107-19. [PMID: 25618815 DOI: 10.1016/j.jphotobiol.2014.12.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 12/06/2014] [Accepted: 12/18/2014] [Indexed: 11/23/2022]
Abstract
Diel vertical migration (DVM) is thought to provide an adaptive advantage to some phytoplankton, and may help determine the ecological niche of certain harmful algae. Here we separately compared DVM patterns between two species of harmful algae isolated from the Delaware Inland Bays, Karlodinium veneficum and Chattonella subsalsa, in laboratory columns. We interpreted the DVM patterns of each species with Photosystem II (PSII) photochemistry, rates of carbon assimilation, and specific growth rates. Each species migrated differently, wherein K. veneficum migrated closer to the surface each day with high population synchrony, while C. subsalsa migrated near to the surface from the first day of measurements with low population synchrony. Both species appeared to downregulate PSII in high light at the surface, but by different mechanisms. C. subsalsa grew slower than K. veneficum in low light intensities (≈bottom of columns), and exhibited maximal rates of C-assimilation (Pmax) at surface light intensities, suggesting this species may prefer high light, potentially explaining this species' rapid surface migration. Contrastingly, K. veneficum showed declines in carbon assimilation at surface light intensities, and exhibited a smaller reduction in growth at low (bottom) light intensities (compared to C. subsalsa), suggesting that this species' step-wise migration was photoacclimative and determined daily migration depth. DVM was found to be under circadian control in C. subsalsa, but not in K. veneficum. However, there was little evidence for circadian regulation of PSII photochemistry in either species. Migration conformed to each species' physiology, and the results contribute to our understanding each alga's realized environmental niche.
Collapse
|
42
|
Porcar-Castell A, Tyystjärvi E, Atherton J, van der Tol C, Flexas J, Pfündel EE, Moreno J, Frankenberg C, Berry JA. Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: mechanisms and challenges. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:4065-95. [PMID: 24868038 DOI: 10.1093/jxb/eru191] [Citation(s) in RCA: 286] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Chlorophyll a fluorescence (ChlF) has been used for decades to study the organization, functioning, and physiology of photosynthesis at the leaf and subcellular levels. ChlF is now measurable from remote sensing platforms. This provides a new optical means to track photosynthesis and gross primary productivity of terrestrial ecosystems. Importantly, the spatiotemporal and methodological context of the new applications is dramatically different compared with most of the available ChlF literature, which raises a number of important considerations. Although we have a good mechanistic understanding of the processes that control the ChlF signal over the short term, the seasonal link between ChlF and photosynthesis remains obscure. Additionally, while the current understanding of in vivo ChlF is based on pulse amplitude-modulated (PAM) measurements, remote sensing applications are based on the measurement of the passive solar-induced chlorophyll fluorescence (SIF), which entails important differences and new challenges that remain to be solved. In this review we introduce and revisit the physical, physiological, and methodological factors that control the leaf-level ChlF signal in the context of the new remote sensing applications. Specifically, we present the basis of photosynthetic acclimation and its optical signals, we introduce the physical and physiological basis of ChlF from the molecular to the leaf level and beyond, and we introduce and compare PAM and SIF methodology. Finally, we evaluate and identify the challenges that still remain to be answered in order to consolidate our mechanistic understanding of the remotely sensed SIF signal.
Collapse
Affiliation(s)
- Albert Porcar-Castell
- Department of Forest Sciences, University of Helsinki, PO Box 27, 00014 Helsinki, Finland
| | - Esa Tyystjärvi
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| | - Jon Atherton
- Department of Forest Sciences, University of Helsinki, PO Box 27, 00014 Helsinki, Finland
| | | | - Jaume Flexas
- Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears, Ctra. de Valldemossa Km. 7.5, 07122 Palma, Spain
| | | | - Jose Moreno
- Department of Earth Physics and Thermodynamics, Faculty of Physics, University of Valencia, C/ Dr. Moliner, 50, 46100 Burjassot, Valencia, Spain
| | - Christian Frankenberg
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - Joseph A Berry
- Department of Global Ecology, Carnegie Institution of Washington, Stanford, CA 94305, USA
| |
Collapse
|
43
|
Kataria S, Jajoo A, Guruprasad KN. Impact of increasing Ultraviolet-B (UV-B) radiation on photosynthetic processes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 137:55-66. [PMID: 24725638 DOI: 10.1016/j.jphotobiol.2014.02.004] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 02/01/2014] [Accepted: 02/07/2014] [Indexed: 12/14/2022]
Abstract
Increased UV-B radiation on the earth's surface due to depletion of stratospheric ozone layer is one of the changes of current climate-change pattern. The deleterious effects of UV-B radiation on photosynthesis and photosynthetic productivity of plants are reviewed. Perusal of relevant literature reveals that UV-B radiation inflicts damage to the photosynthetic apparatus of green plants at multiple sites. The sites of damage include oxygen evolving complex, D1/D2 reaction center proteins and other components on the donor and acceptor sides of PS II. The radiation inactivates light harvesting complex II and alters gene expression for synthesis of PS II reaction center proteins. Mn cluster of water oxidation complex is the most important primary target of UV-B stress whereas D1 and D2 proteins, quinone molecules and cytochrome b are the subsequent targets of UV-B. In addition, photosynthetic carbon reduction is also sensitive to UV-B radiation which has a direct effect on the activity and content of Rubisco. Some indirect effects of UV-B radiation include changes in photosynthetic pigments, stomatal conductance and leaf and canopy morphology. The failure of protective mechanisms makes PS II further vulnerable to the UV-B radiation. Reactive oxygen species are involved in UV-B induced responses in plants, both as signaling and damaging agents. Exclusion of ambient UV components under field conditions results in the enhancement of the rate of photosynthesis, PS II efficiency and subsequently increases the biomass accumulation and crop yield. It is concluded that predicted future increase in UV-B irradiation will have significant impact on the photosynthetic efficiency and the productivity of higher plants.
Collapse
Affiliation(s)
- Sunita Kataria
- School of Life Science, Devi Ahilya University, Khandwa Road, Indore 452001, India.
| | - Anjana Jajoo
- School of Life Science, Devi Ahilya University, Khandwa Road, Indore 452001, India
| | - Kadur N Guruprasad
- School of Life Science, Devi Ahilya University, Khandwa Road, Indore 452001, India
| |
Collapse
|
44
|
Zivcak M, Kalaji HM, Shao HB, Olsovska K, Brestic M. Photosynthetic proton and electron transport in wheat leaves under prolonged moderate drought stress. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 137:107-15. [PMID: 24508481 DOI: 10.1016/j.jphotobiol.2014.01.007] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/03/2014] [Accepted: 01/08/2014] [Indexed: 01/16/2023]
Abstract
In conditions of long-lasting moderate drought stress, we have studied the photoprotective responses in leaves of wheat (Triticum aestivum L., cv. Katya) related to the photosynthetic electron and proton transport. The dark-interval relaxation kinetics of electrochromic bandshift (ECS) indicated a decrease of electric and an increase of osmotic component of the proton motive force in drought stressed leaves, but neither the total proton motive force (pmf) nor the thylakoid proton conductance (gH(+)) were affected. We observed the enhanced protection against overreduction of PSI acceptor side in leaves of drought stressed plants. This was obviously achieved by the rapid buildup of transthylakoid pH gradient at relatively low light intensities, directly associated to the steep increase of NPQ and the down-regulation of linear electron transport. It was further accompanied by the steep increase of redox poise at PSII acceptor side and PSI donor side. The early responses related to thylakoid lumen acidification in drought-stressed leaves could be associated with the activity of an enhanced fraction of PSI not involved in linear electron flow, which may have led to enhanced cyclic electron pathway even in relatively low light intensities, as well as to the drought-induced decrease of IP-amplitude in fast chlorophyll fluorescence kinetics.
Collapse
Affiliation(s)
- Marek Zivcak
- Department of Plant Physiology, Slovak Agricultural University, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic.
| | - Hazem M Kalaji
- Department of Plant Physiology, Faculty of Agriculture and Biology, Warsaw Agricultural University SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Hong-Bo Shao
- Key Laboratory of Coastal Biology & Bioresources Utilization, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai 264003, PR China; Institute of Life Sciences, Qingdao University of Science & Technology, Qingdao 266042, PR China.
| | - Katarina Olsovska
- Department of Plant Physiology, Slovak Agricultural University, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic.
| | - Marian Brestic
- Department of Plant Physiology, Slovak Agricultural University, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic.
| |
Collapse
|
45
|
Zivcak M, Brestic M, Balatova Z, Drevenakova P, Olsovska K, Kalaji HM, Yang X, Allakhverdiev SI. Photosynthetic electron transport and specific photoprotective responses in wheat leaves under drought stress. PHOTOSYNTHESIS RESEARCH 2013; 117:529-46. [PMID: 23860828 DOI: 10.1007/s11120-013-9885-3] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 07/03/2013] [Indexed: 05/19/2023]
Abstract
The photosynthetic responses of wheat (Triticum aestivum L.) leaves to different levels of drought stress were analyzed in potted plants cultivated in growth chamber under moderate light. Low-to-medium drought stress was induced by limiting irrigation, maintaining 20 % of soil water holding capacity for 14 days followed by 3 days without water supply to induce severe stress. Measurements of CO2 exchange and photosystem II (PSII) yield (by chlorophyll fluorescence) were followed by simultaneous measurements of yield of PSI (by P700 absorbance changes) and that of PSII. Drought stress gradually decreased PSII electron transport, but the capacity for nonphotochemical quenching increased more slowly until there was a large decrease in leaf relative water content (where the photosynthetic rate had decreased by half or more). We identified a substantial part of PSII electron transport, which was not used by carbon assimilation or by photorespiration, which clearly indicates activities of alternative electron sinks. Decreasing the fraction of light absorbed by PSII and increasing the fraction absorbed by PSI with increasing drought stress (rather than assuming equal absorption by the two photosystems) support a proposed function of PSI cyclic electron flow to generate a proton-motive force to activate nonphotochemical dissipation of energy, and it is consistent with the observed accumulation of oxidized P700 which causes a decrease in PSI electron acceptors. Our results support the roles of alternative electron sinks (either from PSII or PSI) and cyclic electron flow in photoprotection of PSII and PSI in drought stress conditions. In future studies on plant stress, analyses of the partitioning of absorbed energy between photosystems are needed for interpreting flux through linear electron flow, PSI cyclic electron flow, along with alternative electron sinks.
Collapse
Affiliation(s)
- Marek Zivcak
- Department of Plant Physiology, Slovak Agricultural University, Tr. A. Hlinku 2, 949 76, Nitra, Slovak Republic,
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Krupnik T, Kotabová E, van Bezouwen LS, Mazur R, Garstka M, Nixon PJ, Barber J, Kaňa R, Boekema EJ, Kargul J. A reaction center-dependent photoprotection mechanism in a highly robust photosystem II from an extremophilic red alga, Cyanidioschyzon merolae. J Biol Chem 2013; 288:23529-42. [PMID: 23775073 DOI: 10.1074/jbc.m113.484659] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Members of the rhodophytan order Cyanidiales are unique among phototrophs in their ability to live in extremely low pH levels and moderately high temperatures. The photosynthetic apparatus of the red alga Cyanidioschyzon merolae represents an intermediate type between cyanobacteria and higher plants, suggesting that this alga may provide the evolutionary link between prokaryotic and eukaryotic phototrophs. Although we now have a detailed structural model of photosystem II (PSII) from cyanobacteria at an atomic resolution, no corresponding structure of the eukaryotic PSII complex has been published to date. Here we report the isolation and characterization of a highly active and robust dimeric PSII complex from C. merolae. We show that this complex is highly stable across a range of extreme light, temperature, and pH conditions. By measuring fluorescence quenching properties of the isolated C. merolae PSII complex, we provide the first direct evidence of pH-dependent non-photochemical quenching in the red algal PSII reaction center. This type of quenching, together with high zeaxanthin content, appears to underlie photoprotection mechanisms that are efficiently employed by this robust natural water-splitting complex under excess irradiance. In order to provide structural details of this eukaryotic form of PSII, we have employed electron microscopy and single particle analyses to obtain a 17 Å map of the C. merolae PSII dimer in which we locate the position of the protein mass corresponding to the additional extrinsic protein stabilizing the oxygen-evolving complex, PsbQ'. We conclude that this lumenal subunit is present in the vicinity of the CP43 protein, close to the membrane plane.
Collapse
Affiliation(s)
- Tomasz Krupnik
- Department of Plant Molecular Physiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Collakova E, Klumas C, Suren H, Myers E, Heath LS, Holliday JA, Grene R. Evidence for extensive heterotrophic metabolism, antioxidant action, and associated regulatory events during winter hardening in Sitka spruce. BMC PLANT BIOLOGY 2013; 13:72. [PMID: 23631437 PMCID: PMC3651351 DOI: 10.1186/1471-2229-13-72] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 03/19/2013] [Indexed: 05/06/2023]
Abstract
BACKGROUND Cold acclimation in woody perennials is a metabolically intensive process, but coincides with environmental conditions that are not conducive to the generation of energy through photosynthesis. While the negative effects of low temperatures on the photosynthetic apparatus during winter have been well studied, less is known about how this is reflected at the level of gene and metabolite expression, nor how the plant generates primary metabolites needed for adaptive processes during autumn. RESULTS The MapMan tool revealed enrichment of the expression of genes related to mitochondrial function, antioxidant and associated regulatory activity, while changes in metabolite levels over the time course were consistent with the gene expression patterns observed. Genes related to thylakoid function were down-regulated as expected, with the exception of plastid targeted specific antioxidant gene products such as thylakoid-bound ascorbate peroxidase, components of the reactive oxygen species scavenging cycle, and the plastid terminal oxidase. In contrast, the conventional and alternative mitochondrial electron transport chains, the tricarboxylic acid cycle, and redox-associated proteins providing reactive oxygen species scavenging generated by electron transport chains functioning at low temperatures were all active. CONCLUSIONS A regulatory mechanism linking thylakoid-bound ascorbate peroxidase action with "chloroplast dormancy" is proposed. Most importantly, the energy and substrates required for the substantial metabolic remodeling that is a hallmark of freezing acclimation could be provided by heterotrophic metabolism.
Collapse
Affiliation(s)
- Eva Collakova
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Curtis Klumas
- Genetics, Bioinformatics and Computational Biology Program, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Haktan Suren
- Genetics, Bioinformatics and Computational Biology Program, Virginia Tech, Blacksburg, VA, 24061, USA
- Department of Forest Resources and Environmental Conservation, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Elijah Myers
- Genetics, Bioinformatics and Computational Biology Program, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Lenwood S Heath
- Department of Computer Science, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Jason A Holliday
- Department of Forest Resources and Environmental Conservation, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Ruth Grene
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA, 24061, USA
| |
Collapse
|
48
|
Miura K, Furumoto T. Cold signaling and cold response in plants. Int J Mol Sci 2013; 14:5312-37. [PMID: 23466881 PMCID: PMC3634503 DOI: 10.3390/ijms14035312] [Citation(s) in RCA: 233] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 02/26/2013] [Accepted: 02/26/2013] [Indexed: 11/16/2022] Open
Abstract
Plants are constantly exposed to a variety of environmental stresses. Freezing or extremely low temperature constitutes a key factor influencing plant growth, development and crop productivity. Plants have evolved a mechanism to enhance tolerance to freezing during exposure to periods of low, but non-freezing temperatures. This phenomenon is called cold acclimation. During cold acclimation, plants develop several mechanisms to minimize potential damages caused by low temperature. Cold response is highly complex process that involves an array of physiological and biochemical modifications. Furthermore, alterations of the expression patterns of many genes, proteins and metabolites in response to cold stress have been reported. Recent studies demonstrate that post-transcriptional and post-translational regulations play a role in the regulation of cold signaling. In this review article, recent advances in cold stress signaling and tolerance are highlighted.
Collapse
Affiliation(s)
- Kenji Miura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Tsuyoshi Furumoto
- Department of Agriculture, Ryukoku University, Kyoto 610-8577, Japan; E-Mail:
| |
Collapse
|
49
|
Ivanov AG, Rosso D, Savitch LV, Stachula P, Rosembert M, Oquist G, Hurry V, Hüner NPA. Implications of alternative electron sinks in increased resistance of PSII and PSI photochemistry to high light stress in cold-acclimated Arabidopsis thaliana. PHOTOSYNTHESIS RESEARCH 2012; 113:191-206. [PMID: 22843101 DOI: 10.1007/s11120-012-9769-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 07/11/2012] [Indexed: 05/06/2023]
Abstract
Exposure of control (non-hardened) Arabidopsis leaves to high light stress at 5 °C resulted in a decrease of both photosystem II (PSII) (45 %) and Photosystem I (PSI) (35 %) photochemical efficiencies compared to non-treated plants. In contrast, cold-acclimated (CA) leaves exhibited only 35 and 22 % decrease of PSII and PSI photochemistry, respectively, under the same conditions. This was accompanied by an accelerated rate of P700(+) re-reduction, indicating an up-regulation of PSI-dependent cyclic electron transport (CET). Interestingly, the expression of the NDH-H gene and the relative abundance of the Ndh-H polypeptide, representing the NDH-complex, decreased as a result of exposure to low temperatures. This indicates that the NDH-dependent CET pathway cannot be involved and the overall stimulation of CET in CA plants is due to up-regulation of the ferredoxin-plastoquinone reductase, antimycin A-sensitive CET pathway. The lower abundance of NDH complex also implies lower activity of the chlororespiratory pathway in CA plants, although the expression level and overall abundance of the other well-characterized component involved in chlororespiration, the plastid terminal oxidase (PTOX), was up-regulated at low temperatures. This suggests increased PTOX-mediated alternative electron flow to oxygen in plants exposed to low temperatures. Indeed, the estimated proportion of O(2)-dependent linear electron transport not utilized in carbon assimilation and not directed to photorespiration was twofold higher in CA Arabidopsis. The possible involvement of alternative electron transport pathways in inducing greater resistance of both PSII and PSI to high light stress in CA plants is discussed.
Collapse
Affiliation(s)
- A G Ivanov
- Department of Biology, Western University, 1151 Richmond Street N., London, ON, N6A 5B7, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Demmig-Adams B, Cohu CM, Muller O, Adams WW. Modulation of photosynthetic energy conversion efficiency in nature: from seconds to seasons. PHOTOSYNTHESIS RESEARCH 2012; 113:75-88. [PMID: 22790560 DOI: 10.1007/s11120-012-9761-6] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 06/18/2012] [Indexed: 05/08/2023]
Abstract
Modulation of the efficiency with which leaves convert absorbed light to photochemical energy [intrinsic efficiency of open photosystem II (PSII) centers, as the ratio of variable to maximal chlorophyll fluorescence] as well as leaf xanthophyll composition (interconversions of the xanthophyll cycle pigments violaxanthin and zeaxanthin) were characterized throughout single days and nights to entire seasons in plants growing naturally in contrasting light and temperature environments. All pronounced decreases of intrinsic PSII efficiency took place in the presence of zeaxanthin. The reversibility of these PSII efficiency changes varied widely, ranging from reversible-within-seconds (in a vine experiencing multiple sunflecks under a eucalypt canopy) to apparently permanently locked-in for entire seasons (throughout the whole winter in a subalpine conifer forest at 3,000 m). While close association between low intrinsic PSII efficiency and zeaxanthin accumulation was ubiquitous, accompanying features (such as trans-thylakoid pH gradient, thylakoid protein composition, and phosphorylation) differed among contrasting conditions. The strongest and longest-lasting depressions in intrinsic PSII efficiency were seen in the most stress-tolerant species. Evergreens, in particular, showed the most pronounced modulation of PSII efficiency and thermal dissipation, and are therefore suggested as model species for the study of photoprotection. Implications of the responses of field-grown plants in nature for mechanistic models are discussed.
Collapse
Affiliation(s)
- Barbara Demmig-Adams
- Department of Ecology & Evolutionary Biology, University of Colorado, Boulder, CO 80309-0334, USA.
| | | | | | | |
Collapse
|