1
|
Guo SY, Hu YT, Rao Y, Jiang Z, Li C, Lin YW, Xu SM, Zhao DD, Wei LY, Huang SL, Li QJ, Tan JH, Chen SB, Huang ZS. L-aspartate ameliorates diet-induced obesity by increasing adipocyte energy expenditure. Diabetes Obes Metab 2025; 27:606-618. [PMID: 39529440 DOI: 10.1111/dom.16053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/07/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
AIMS Obesity always leads to profound perturbation of metabolome. Metabolome studies enrich the knowledge on associations between endogenous metabolites and obesity, potentially providing innovative strategies for the development of novel anti-obesity pharmacotherapy. This study aims to identify an endogenous metabolite that regulates energy expenditure and to explore its application for obesity treatment. MATERIALS AND METHODS C57BL/6 mice were fed with a high-fat and high-cholesterol (HFC) diet, comprising 60% fat and 1.2% cholesterol, for 12 weeks to induce obesity. Significant metabolites were identified in the livers of both health and obese mice through comparative hepatic metabolomics analysis. Correlation between serum or adipose L-aspartate level and body weight in obese mice, as well as human body mass index (BMI), was evaluated. In addition, saline or 200 mg/kg L-aspartate was orally administrated to HFC diet mice and HFC diet-induced obese mice for 6-7 weeks. Body weight, adipose tissue weight, glucose tolerance and liver damage were assessed to evaluate the effect on obesity prevention and treatment. Comprehensive lab animal monitoring system (CLAMS) and seahorse assay were employed to investigate the regulatory effect of L-aspartate on energy metabolism in vivo and in vitro, respectively. 3T3-L1 preadipocytes and murine white adipose tissue (WAT) were utilized to examine the impact of L-aspartate on adipocyte adipogenesis and lipogenesis and cellular signalling pathway in vitro and in vivo. RESULTS L-aspartate, an approved drug for liver injury and chronic fatigue, was identified as an endogenous inducer of energy expenditure. Serum or adipose L-aspartate levels were found to be negatively correlated with the severity of obesity in both humans and mice. Administration of L-aspartate to HFC diet mice led to a significant reduction in body weight, with decreases of 14.5% in HFC diet mice and 8.5% in HFC diet-induced obese mice, respectively. In addition, the treatment improved related metabolic syndrome (Figure 2 and Figure S3). These therapeutics were associated with enhancements in whole-body energy expenditure and suppression of adipocyte adipogenesis along with activation of Adenosine 5'-monophosphate-activated protein kinase (AMPK) signalling pathway. CONCLUSION L-aspartate may serve as a novel endogenous inducer of energy expenditure and suppressor of adipogenesis and lipogenesis along with activation of AMPK, thereby offering a promising therapeutic strategy for obesity prevention and treatment.
Collapse
Affiliation(s)
- Shi-Yao Guo
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, China
| | - Yu-Tao Hu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, China
| | - Yong Rao
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Zhi Jiang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, China
| | - Chan Li
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, China
| | - Yu-Wei Lin
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, China
| | - Shu-Min Xu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, China
| | - Dan-Dan Zhao
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, China
| | - Li-Yuan Wei
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, China
| | - Shi-Liang Huang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, China
| | - Qing-Jiang Li
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, China
| | - Jia-Heng Tan
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, China
| | - Shuo-Bin Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, China
| | - Zhi-Shu Huang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
2
|
Yu T, Zhang J, Ma X, Cao S, Li W, Yang G. A Multi-Omics View of Maize's ( Zea mays L.) Response to Low Temperatures During the Seedling Stage. Int J Mol Sci 2024; 25:12273. [PMID: 39596336 PMCID: PMC11595045 DOI: 10.3390/ijms252212273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Maize (Zea mays L.) is highly sensitive to temperature during its growth and development stage. A 1 °C drop in temperature can delay maturity by 10 days, resulting in a yield reduction of over 10%. Low-temperature tolerance in maize is a complex quantitative trait, and different germplasms exhibit significant differences in their responses to low-temperature stress. To explore the differences in gene expression and metabolites between B144 (tolerant) and Q319 (susceptible) during germination under low-temperature stress and to identify key genes and metabolites that respond to this stress, high-throughput transcriptome sequencing was performed on the leaves of B144 and Q319 subjected to low-temperature stress for 24 h and their respective controls using Illumina HiSeqTM 4000 high-throughput sequencing technology. Additionally, high-throughput metabolite sequencing was conducted on the samples using widely targeted metabolome sequencing technology. The results indicated that low-temperature stress triggered the accumulation of stress-related metabolites such as amino acids and their derivatives, lipids, phenolic acids, organic acids, flavonoids, lignin, coumarins, and alkaloids, suggesting their significant roles in the response to low temperature. This stress also promoted gene expression and metabolite accumulation involved in the flavonoid biosynthesis pathway. Notably, there were marked differences in gene expression and metabolites related to the glyoxylate and dicarboxylate metabolism pathways between B144 and Q319. This study, through multi-omics integrated analysis, provides valuable insights into the identification of metabolites, elucidation of metabolic pathways, and the biochemical and genetic basis of plant responses to stress, particularly under low-temperature conditions.
Collapse
Affiliation(s)
- Tao Yu
- Maize Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
- Key Laboratory of Biology and Genetics Improvement of Maize in Northern Northeast Region, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
- Key Laboratory of Germplasm Resources Creation and Utilization of Maize, Harbin 150086, China
| | - Jianguo Zhang
- Maize Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
- Key Laboratory of Biology and Genetics Improvement of Maize in Northern Northeast Region, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
- Key Laboratory of Germplasm Resources Creation and Utilization of Maize, Harbin 150086, China
| | - Xuena Ma
- Maize Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Shiliang Cao
- Maize Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
- Key Laboratory of Biology and Genetics Improvement of Maize in Northern Northeast Region, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
- Key Laboratory of Germplasm Resources Creation and Utilization of Maize, Harbin 150086, China
| | - Wenyue Li
- Maize Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Gengbin Yang
- Maize Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| |
Collapse
|
3
|
Amlashi MA, Jafarpour A, Eirdmousa MH, Homayounfar R, Farjam M, Askari A. Association between diet protein score comprising plants to animal protein ratio and body composition in an Iranian population. Sci Rep 2024; 14:28092. [PMID: 39543353 PMCID: PMC11564702 DOI: 10.1038/s41598-024-79982-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 11/13/2024] [Indexed: 11/17/2024] Open
Abstract
Obesity is increasingly recognized as a leading cause of death and is associated with various comorbidities. This study evaluates the relationship between protein score, characterized by the plant-to-animal protein ratio (PAR) and total protein per calorie (Pro%), and body composition: fat percentage (FATP), fat mass (FATM), and fat-free mass (FFM). We categorized 4512 individuals (55.2% female) into tertiles based on their protein score and its components. Male participants in the highest and middle protein score tertiles exhibited significantly greater FFM in both adjusted and crude models, and lower FATP and FATM in adjusted model 2. FFM was elevated in the top (P < 0.001) and middle (P = 0.002) Pro% tertiles in males in both adjusted models and only in the top tertile of all models in females (P = 0.003). The analysis of male participants revealed significantly lower FATP and FATM in the highest tertiles of Pro% in adjusted models. Among female participants, only the highest PAR tertile was associated with significantly lower FATM in adjusted model 1 (P = 0.042). Our findings indicate that protein score and its components are associated with favorable body composition differences. Health administrators may leverage these insights to refine dietary guidelines.
Collapse
Affiliation(s)
- Manoochehr Amin Amlashi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Amirhosein Jafarpour
- Department of Community Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marzieh Hafezi Eirdmousa
- Department of Physical Education and Sport Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Reza Homayounfar
- Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran.
| | - Mojtaba Farjam
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Alireza Askari
- Bone and Joint Reconstruction Research Center, Shafa Yahyaeian Orthopedics Hospital, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Bett GDS, Schuelter-Trevisol F, Trevisol DJ. Response to "Nutritional considerations with antiobesity medications". Obesity (Silver Spring) 2024; 32:1981. [PMID: 39370393 DOI: 10.1002/oby.24139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 06/27/2024] [Indexed: 10/08/2024]
|
5
|
Santiago S, Ochoa Díaz ME, Zazpe I, Hershey MS, Bes-Rastrollo M, Martínez González MÁ. Association between overall quality of macronutrients and incidence of overweight and obesity in the SUN (Seguimiento Universidad de Navarra) cohort. NUTR HOSP 2024; 41:1071-1081. [PMID: 39054857 DOI: 10.20960/nh.05181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024] Open
Abstract
Introduction Introduction: no previous large prospective studies have assessed the global quality of macronutrients in association with the risk of overweight/obesity. Objective: to prospectively assess the association of an overall macronutrient quality index (MQI) with weight change and the incidence of overweight/obesity in the Seguimiento Universidad de Navarra (SUN) cohort. Methods: the diet of 9,344 Spanish university graduates free of overweight/obesity (mean age: 36.5 [SD, 11.1]) was assessed through a validated 136-item food frequency questionnaire. The MQI was calculated as the sum of the Carbohydrate Quality Index, the Fat Quality Index, and the Healthy Plate Protein Quality Index. Participants were classified into groups (G) according to MQI. Incident overweight/obesity was defined if follow-up questionnaires indicated BMI was ≥ 25 kg/m2. Multiple linear regression models and Cox proportional hazard models were used to assess the average yearly weight change and the risk of overweight/obesity over follow-up time. Results: 2,465 cases of incident overweight/obesity were identified (median follow-up: 10.7 years). Increasing MQI was significantly associated with lower annual weight gain (g): ß coefficient: -99.0, (95 % CI: -173.6 to -24.5) in the G4 vs G1, p for trend = 0.007. In the fully adjusted model the incidences of overweight/obesity in G4 and G1 were 21.7 % (431 cases) and 29.3 % (954 cases), respectively. The adjusted HR was 0.87 (95 % CI, 0.77-0.98, p for trend = 0.036). When we used repeated analyses updating the MQI after 10 years of follow-up, results remained similar. Conclusions: a significant inverse association between a multidimensional MQI and the risk of overweight/obesity was found in this Mediterranean cohort of adults.
Collapse
Affiliation(s)
- Susana Santiago
- Department of Nutrition and Food Sciences and Physiology. Universidad de Navarra. Instituto de Investigación Sanitaria de Navarra (IdiSNA)
| | | | - Itziar Zazpe
- Department of Nutrition and Food Sciences and Physiology. Universidad de Navarra. Instituto de Investigación Sanitaria de Navarra (IdiSNA). CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn). Instituto de Salud Carlos III
| | | | - Maira Bes-Rastrollo
- Instituto de Investigación Sanitaria de Navarra (IdiSNA). CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn). Instituto de Salud Carlos III. Department of Preventive Medicine and Public Health. Facultad de Medicina. Clínica Universidad de Navarra
| | - Miguel Ángel Martínez González
- Instituto de Investigación Sanitaria de Navarra (IdiSNA). CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn). Instituto de Salud Carlos III. Department of Preventive Medicine and Public Health. Facultad de Medicina. Clínica Universidad de Navarra
| |
Collapse
|
6
|
Suder A, Makiel K, Targosz A, Kosowski P, Malina RM. Positive Effects of Aerobic-Resistance Exercise and an Ad Libitum High-Protein, Low-Glycemic Index Diet on Irisin, Omentin, and Dyslipidemia in Men with Abdominal Obesity: A Randomized Controlled Trial. Nutrients 2024; 16:3480. [PMID: 39458475 PMCID: PMC11510197 DOI: 10.3390/nu16203480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
OBJECTIVES The aim of this research was to evaluate changes in body composition, adipokine levels, and dyslipidemia parameters in males with abdominal obesity following two distinct interventions: exercise alone and exercise combined with an ad libitum diet. METHODS This study included 44 males with abdominal obesity (mean age 34.7 ± 5.5 years, waist circumference [WC] 110.3 ± 8.5, BMI 32.0 ± 3.9), who were randomly assigned to three groups: an experimental group engaging in aerobic-resistance exercise (II, n = 16), an experimental group engaging in aerobic-resistance exercise combined with an ad libitum high-protein, low-glycemic index carbohydrate diet (III, n = 16), both interventions lasting 6 weeks, and a control group without interventions (I, n = 12). Body composition metrics (body mass index [BMI], waist circumference [WC], body fat [BF], abdominal fat [ABD]) and fat-free mass [FFM], along with biochemical blood analyses (irisin [IR], omentin [OMEN], glucose [GLU], insulin [INS], LDL- and HDL-cholesterol), were measured at baseline and after the 6-week intervention. The effects of the interventions on the analyzed variables across groups were assessed using mixed ANOVA tests with post-hoc comparisons. Effect size (ES) was also calculated using partial eta squared (ηp2). RESULTS The intervention in group III resulted in a significant decrease in IR (p < 0.01, ηp2 = 0.03) by 41% and LDL-C (p < 0.01, ηp2 = 0.02) by 14%. These effects were associated with a reduction in BF (p < 0.01, ηp2 = 0.02) by 14%, ABD (p < 0.01, ηp2 = 0.03) by 31%, and WC (p < 0.01, ηp2 = 0.01) by 3%. In group II, decreases after 6 weeks of intervention were noted only in WC (p = 0.02, ηp2 = 0.01) by 1% and in INS (p < 0.01, ηp2 = 0.04) by 47%. No differences were found between groups. The use of low-glycemic index carbohydrates (p < 0.01, ηp2 = 0.06) and increased protein intake (p < 0.01, ηp2 = 0.30) led to changes in the fiber-to-energy value of the diet ratio (p < 0.01, ηp2 = 0.18) and a reduction in dietary energy value (p < 0.01, ηp2 = 0.13) by 23%, resulting in a greater energy deficit than in the II group. CONCLUSIONS These findings highlight the effect of combining dietary and exercise interventions to achieve significant changes in body composition and metabolic parameters, even over a short period of intervention.
Collapse
Affiliation(s)
- Agnieszka Suder
- Department of Anatomy, Faculty of Physical Rehabilitation, University of Physical Education, 31-571 Cracow, Poland
| | - Karol Makiel
- Department of Anatomy, Faculty of Physical Rehabilitation, University of Physical Education, 31-571 Cracow, Poland
| | - Aneta Targosz
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland
| | - Piotr Kosowski
- Department of Petroleum Engineering, AGH University, 30-059 Cracow, Poland
| | - Robert M. Malina
- Department of Kinesiology and Health Education, University of Texas at Austin, Austin, TX 78712, USA
- School of Public Health and Information Sciences, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
7
|
Tain YL, Hsu CN. Maternal Dietary Strategies for Improving Offspring Cardiovascular-Kidney-Metabolic Health: A Scoping Review. Int J Mol Sci 2024; 25:9788. [PMID: 39337276 PMCID: PMC11432268 DOI: 10.3390/ijms25189788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Dietary regulation has been recognized for its profound impact on human health. The convergence of cardiovascular, kidney, and metabolic disorders at the pathophysiological level has given rise to cardiovascular-kidney-metabolic (CKM) syndrome, which constitutes a significant global health burden. Maternal dietary nutrients play a crucial role in fetal development, influencing various programmed processes. This review emphasizes the effects of different types of dietary interventions on each component of CKM syndrome in both preclinical and clinical settings. We also provide an overview of potential maternal dietary strategies, including amino acid supplementation, lipid-associated diets, micronutrients, gut microbiota-targeted diets, and plant polyphenols, aimed at preventing CKM syndrome in offspring. Additionally, we discuss the mechanisms mediated by nutrient-sensing signals that contribute to CKM programming. Altogether, we underscore the interaction between maternal dietary interventions and the risk of CKM syndrome in offspring, emphasizing the need for continued research to facilitate their clinical translation.
Collapse
Affiliation(s)
- You-Lin Tain
- Division of Pediatric Nephrology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
8
|
Zhang H, Liang S, Yin K, Mo Y, Li Y, Lv Y, Zhan H, Zhang Z, Shan Z, Guo Z, Yin S, Yang W. Urinary Equol and Equol-Predicting Microbial Genera Are Favorably Associated with Body Fat Measures among Chinese Adults. J Nutr 2024; 154:2843-2851. [PMID: 39033820 DOI: 10.1016/j.tjnut.2024.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/04/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Many studies have investigated the intake of dietary isoflavones in relation to obesity risk, whereas the association using objective biomarkers of isoflavones, particularly equol (a gut-derived metabolite of daidzein with greater bioavailability than other isoflavones) has been less studied. In addition, the associations between equol and gut microbiota profile at the population level remain to be fully characterized. OBJECTIVES We aimed to identify equol-predicting microbial species and to investigate the associations of equol-predicting microbial species and urinary excretion of isoflavones including glycitein, genistein, daidzein, and equol with diverse obesity markers in free living-individuals. METHODS In this 1-y longitudinal study of 754 community-dwelling adults, urinary isoflavones, fecal microbiota, height, weight, and circumferences of waist and hip were measured at baseline and again after 1 y. Liver fat [indicated by the controlled attenuation parameter (CAP)] and other body composition were also measured after 1 y. Linear models and linear mixed-effects models were used to analyze the associations for single measure and repeated measures, respectively. RESULTS Among 305 participants (median age: 50 y, IQR, 37-59 y) including 138 males and 167 females, higher urinary excretion of equol was associated with lower CAP (β = -0.013, P < 0.001) and body fat mass (β= -0.014, P = 0.046). No association was found between any other urinary isoflavones and obesity markers (all P > 0.05). We identified 21 bacterial genera whose relative abundance were positively associated with urinary equol concentrations (all Pfalsediscovery rate < 0.05), and constructed an equol-predicting microbial score to reflect the overall equol-producing potential of host gut microbiota. This score was inversely associated with CAP (β = -0.040, P = 0.011). CONCLUSIONS High urinary equol concentrations and equol-predicting microbial species could be favorably associated with liver fat and other obesity markers.
Collapse
Affiliation(s)
- Honghua Zhang
- Department of Nutrition, Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Anhui, China; NHC Key Laboratory of study on abnormal gametes and reproductive tract, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, Anhui, China
| | - Shaoxian Liang
- Department of Nutrition, Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Kewan Yin
- Department of Nutrition, Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yufeng Mo
- Department of Nutrition, Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yamin Li
- Department of Nutrition, Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yaning Lv
- Technology Center of Hefei Customs and Anhui Province Key Laboratory of Analysis and Detection for Food Safety, Hefei, Anhui, China
| | - Hao Zhan
- Technology Center of Hefei Customs and Anhui Province Key Laboratory of Analysis and Detection for Food Safety, Hefei, Anhui, China
| | - Zhuang Zhang
- Department of Nutrition, Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Zhilei Shan
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiguo Guo
- Department of Gastroenterology, Suzhou Hospital of Anhui Medical University, Anhui, China
| | - Shi Yin
- Department of Geriatrics, Affiliated Provincial Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China.
| | - Wanshui Yang
- Department of Nutrition, Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Anhui, China; NHC Key Laboratory of study on abnormal gametes and reproductive tract, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
9
|
Vaz DSS, Rumiato AC, Monteiro I. Food consumption of workers in an information technology company: randomized clinical study. Rev Bras Med Trab 2024; 22:e20231187. [PMID: 39606766 PMCID: PMC11595394 DOI: 10.47626/1679-4435-2023-1187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 11/21/2023] [Indexed: 11/29/2024] Open
Abstract
Introduction The structure of the workplace, work relationships, accessibility and quality of food and time for meals reflect on individuals' eating habits. Objectives Analyze the changes in the diet of workers in relation to the consumption of calories, macronutrients and micronutrients. Methods Longitudinal study, lasting 8 months, randomized and descriptive clinical trial, with 95 information technology workers in the city of Campinas, state of São Paulo. The workers were divided into two groups based on a draw, the intervention group participated in monthly meetings and received messages via WhatsApp® forwarded weekly, and the control group participated in two meetings. In the nutritional evaluation, the measurements of weight, height, waist circumference and skin folds were bicipital, tricipital, suprailiac and subscapular; they also responded to the 24-hour recall in which the consumption of macronutrients (protein, carbohydrates and lipids), micronutrients (vitamins A and C, calcium and selenium), calories and fiber was measured. Results It was observed that there was a significant difference between the final and start consumption of protein (p = 0.0008), carbohydrate (p = 0.0053) and calcium (p = 0.0197) in the control and selenium group (p = 0.0049) of the intervention group. Conclusions There were no significant changes in diet and in the reduction of body measures. The environment, time of intervention and frequency of individual consultations need to be reviewed for future studies, in order to improve commitment, make participation more active, for interventions to be effective.
Collapse
Affiliation(s)
| | | | - Inês Monteiro
- Enfermagem, Universidade Estadual de Campinas, Campinas, SP, Brazil
| |
Collapse
|
10
|
Zhou Y, Zhang X, Li X, Zhu G, Gao T, Deng Y, Huang L, Liu Z. Anthropometric indicators may explain the high incidence of follicular lymphoma in Europeans: Results from a bidirectional two-sample two-step Mendelian randomisation. Gene 2024; 911:148320. [PMID: 38452876 DOI: 10.1016/j.gene.2024.148320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/18/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND Non-Hodgkin's lymphoma incidence rates vary between European and Asian populations. The reasons remain unclear. This two-sample two-step Mendelian randomisation (MR) study aimed to investigate the causal relationship between anthropometric indicators (AIs) and diffuse large B-cell lymphoma (DLBCL) and follicular lymphoma (FL) and the possible mediating role of basal metabolic rate (BMR) in Europe. METHODS We used the following AIs as exposures: body mass index (BMI), whole-body fat mass (WBFM), whole-body fat-free mass (WBFFM), waist circumference(WC), hip circumference(HC), standing height (SH), and weight(Wt). DLBCL and FL represented the outcomes, and BMR was a mediator. A two-sample MR analysis was performed to examine the association between AIs and DLBCL and FL onset. We performed reverse-MR analysis to determine whether DLBCL and FL interfered with the AIs. A two-step MR analysis was performed to determine whether BMR mediated the causality. FINDINGS WBFFM and SH had causal relationships with FL. A causal association between AIs and DLBCL was not observed. Reverse-MR analysis indicated the causal relationships were not bidirectional. Two-step MR suggested BMR may mediate the causal effect of WBFFM and SH on FL. CONCLUSIONS We observed a causal relationship between WBFFM and SH and the onset of FL in Europeans, Which may explain the high incidence of follicular lymphoma in Europeans.
Collapse
Affiliation(s)
- Yanqun Zhou
- The Second Clinical Medical School of Guizhou University of Chinese Medicine, Guiyang, China; Department of Hematology, the Second Affiliated Hospital of Guizhou University of Chinese Medicine, Guiyang, China
| | - Xiongfeng Zhang
- The Second Clinical Medical School of Guizhou University of Chinese Medicine, Guiyang, China; Department of Hematology, the Second Affiliated Hospital of Guizhou University of Chinese Medicine, Guiyang, China
| | - Xiaozhen Li
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guoqing Zhu
- The Second Clinical Medical School of Guizhou University of Chinese Medicine, Guiyang, China; Department of Hematology, the Second Affiliated Hospital of Guizhou University of Chinese Medicine, Guiyang, China
| | - Tianqi Gao
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yingying Deng
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Liming Huang
- The Second Clinical Medical School of Guizhou University of Chinese Medicine, Guiyang, China; Department of Hematology, the Second Affiliated Hospital of Guizhou University of Chinese Medicine, Guiyang, China.
| | - Zenghui Liu
- Department of Hematology, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
11
|
Braden ML, Gwin JA, Leidy HJ. Examining the Direct and Indirect Effects of Postprandial Amino Acid Responses on Markers of Satiety following the Acute Consumption of Lean Beef-Rich Meals in Healthy Women with Overweight. Nutrients 2024; 16:1718. [PMID: 38892651 PMCID: PMC11174850 DOI: 10.3390/nu16111718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/25/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
The consumption of protein-rich foods stimulates satiety more than other macronutrient-rich foods; however, the underlying mechanisms-of-action are not well-characterized. The objective of this study was to identify the direct and indirect effects of postprandial amino acid (AA) responses on satiety. Seventeen women (mean ± SEM, age: 33 ± 1 year; BMI: 27.8 ± 0.1 kg/m2) consumed a eucaloric, plant-based diet containing two servings of lean beef/day (i.e., 7.5 oz (207 g)) for 7 days. During day 6, the participants completed a 12 h controlled-feeding, clinical testing day including repeated satiety questionnaires and blood sampling to assess pre- and postprandial plasma AAs, PYY, and GLP-1. Regression and mediation analyses were completed to assess AA predictors and hormonal mediators. Total plasma AAs explained 41.1% of the variance in perceived daily fullness (p < 0.001), 61.0% in PYY (p < 0.001), and 66.1% in GLP-1 (p < 0.001) concentrations, respectively. Several individual AAs significantly predicted fluctuations in daily fullness, PYY, and GLP-1. In completing mediation analyses, the effect of plasma leucine on daily fullness was fully mediated by circulating PYY concentrations (indirect effect = B: 0.09 [Boot 95% CI: 0.032, 0.17]) as no leucine-fullness direct effect was observed. No other mediators were identified. Although a number of circulating AAs predict satiety, leucine was found to do so through changes in PYY concentrations in middle-aged women.
Collapse
Affiliation(s)
- Morgan L. Braden
- Department of Nutritional Sciences, University of Texas at Austin, Austin, TX 78723, USA;
- Department of Pediatrics, Dell Medical School, University of Texas at Austin, Austin, TX 78723, USA
| | - Jess A. Gwin
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA 01760, USA;
| | - Heather J. Leidy
- Department of Nutritional Sciences, University of Texas at Austin, Austin, TX 78723, USA;
- Department of Pediatrics, Dell Medical School, University of Texas at Austin, Austin, TX 78723, USA
| |
Collapse
|
12
|
Hassan NE, El-Masry SA, El Shebini SM, Ahmed NH, Mehanna NS, Abdel Wahed MM, Amine D, Hashish A, Selim M, Afify MAS, Alian K. Effect of weight loss program using prebiotics and probiotics on body composition, physique, and metabolic products: longitudinal intervention study. Sci Rep 2024; 14:10960. [PMID: 38744950 PMCID: PMC11094057 DOI: 10.1038/s41598-024-61130-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/02/2024] [Indexed: 05/16/2024] Open
Abstract
The relationship between gut microbiota and obesity has recently been an important subject for research as the gut microbiota is thought to affect body homeostasis including body weight and composition, intervening with pro and prebiotics is an intelligent possible way for obesity management. To evaluate the effect of hypo caloric adequate fiber regimen with probiotic supplementation and physical exercise, whether it will have a good impact on health, body composition, and physique among obese Egyptian women or has no significant effect. The enrolled 58 women, in this longitudinal follow-up intervention study; followed a weight loss eating regimen (prebiotic), including a low-carbohydrate adequate-fiber adequate-protein dietary pattern with decreased energy intake. They additionally received daily probiotic supplements in the form of yogurt and were instructed to exercise regularly for 3 months. Anthropometric measurements, body composition, laboratory investigations, and microbiota analysis were obtained before and after the 3 months weight loss program. Statistically highly significant differences in the anthropometry, body composition parameters: and obesity-related biomarkers (Leptin, ALT, and AST) between the pre and post-follow-up measurements at the end of the study as they were all decreased. The prebiotic and probiotic supplementation induced statistically highly significant alterations in the composition of the gut microbiota with increased relative abundance of Lactobacillus, Bifidobacteria, and Bacteroidetes and decreased relative abundance of Firmicutes and Firmicutes/Bacteroidetes Ratio. Hypo caloric adequate fiber regimen diet with probiotics positively impacts body composition and is effective for weight loss normalizing serum Leptin and AST.
Collapse
Affiliation(s)
- Nayera E Hassan
- Biological Anthropology Department, Medical Research and Clinical Studies Institute, National Research Centre, 33 El-Buhouth St., Dokki, Giza, 12622, Egypt
| | - Sahar A El-Masry
- Biological Anthropology Department, Medical Research and Clinical Studies Institute, National Research Centre, 33 El-Buhouth St., Dokki, Giza, 12622, Egypt.
| | - Salwa M El Shebini
- Nutrition and Food Science Department, Nutrition and Food Science Institute, National Research Centre, Giza, Egypt
| | - Nihad H Ahmed
- Nutrition and Food Science Department, Nutrition and Food Science Institute, National Research Centre, Giza, Egypt
| | - Nayra Sh Mehanna
- Dairy Science Department, Nutrition and Food Science Institute, National Research Centre, Giza, Egypt
| | - Mai Magdy Abdel Wahed
- Clinical and Chemical Pathology Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Darine Amine
- Biological Anthropology Department, Medical Research and Clinical Studies Institute, National Research Centre, 33 El-Buhouth St., Dokki, Giza, 12622, Egypt
| | - Adel Hashish
- Children with Special Needs Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Mohamed Selim
- Researches and Applications of Complementary Medicine Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Mahmoud A S Afify
- Biological Anthropology Department, Medical Research and Clinical Studies Institute, National Research Centre, 33 El-Buhouth St., Dokki, Giza, 12622, Egypt
| | - Khadija Alian
- Biological Anthropology Department, Medical Research and Clinical Studies Institute, National Research Centre, 33 El-Buhouth St., Dokki, Giza, 12622, Egypt
| |
Collapse
|
13
|
Salehi Z, Rahbarinejad P, Ghosn B, Azadbakht L. Association of quality and quantity of macronutrients intake with obesity, new anthropometric indices, lipid accumulation, and blood lipid risk index in Tehranian women. Food Sci Nutr 2024; 12:3237-3250. [PMID: 38726395 PMCID: PMC11077202 DOI: 10.1002/fsn3.3991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 01/07/2024] [Accepted: 01/17/2024] [Indexed: 05/12/2024] Open
Abstract
Background This study examines the association between micronutrient intake, anthropometric indices, lipid accumulation, and blood lipid risk index among Tehranian women. Methods A cross-sectional study was conducted on 556 Tehranian women. Dietary intake was measured using a Food Frequency Questionnaire. Biochemical assessment and anthropometric indices were measured, and demographic information and physical activity were collected. Results Participants with the highest intake of carbohydrates were more prone to obesity. Conversely, those in the top tertile for protein intake had a lower likelihood of obesity and higher levels of lipid accumulation product (LAP). The highest fat consumers had a 63% decreased chance of having a high Castelli's Risk Index 1 (CRI-1). A higher glycemic index (GI) and glycemic load (GL) were linked to an increased probability of a high atherogenic coefficient (AC). Women in the top tertile of GL were significantly more likely to be obese and had lower odds for high LAP. Participants in the top tertile of aromatic amino acids/branched chain amino acids (AAA/BCAA) had significantly lower chances of high CRI-1 and a high atherogenic index of plasma (AIP). Those in the highest tertile of monounsaturated fatty acids/polyunsaturated fatty acids (MUFA/PUFA) had lower odds of obesity and high AIP. Conclusions The amount of carbohydrate (g) and protein intake (%), dietary GL, and the ratio of MUFA to PUFA were associated with obesity. The amount of fat intake (g) and AAA/BCAA indices were associated with CRI-1. LAP decreased with an increase in GL. AC increased with an increase in GI and GL. AAA/BCAA and MUFA/PUFA were associated with AIP.
Collapse
Affiliation(s)
- Zahra Salehi
- Department of Community NutritionSchool of Nutritional Sciences and Dietetics, Tehran University of Medical SciencesTehranIran
| | - Pegah Rahbarinejad
- Department of Community NutritionSchool of Nutritional Sciences and Dietetics, Tehran University of Medical SciencesTehranIran
| | - Batoul Ghosn
- Department of Community NutritionSchool of Nutritional Sciences and Dietetics, Tehran University of Medical SciencesTehranIran
| | - Leila Azadbakht
- Department of Community NutritionSchool of Nutritional Sciences and Dietetics, Tehran University of Medical SciencesTehranIran
- Diabetes Research CenterEndocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical SciencesTehranIran
- Department of Community NutritionSchool of Nutrition and Food Science, Isfahan University of Medical SciencesIsfahanIran
| |
Collapse
|
14
|
Bankole T, Ma T, Arora I, Lei Z, Raju M, Li Z, Li Y. The Effect of Broccoli Glucoraphanin Supplementation on Ameliorating High-Fat-Diet-Induced Obesity through the Gut Microbiome and Metabolome Interface. Mol Nutr Food Res 2024; 68:e2300856. [PMID: 38676466 DOI: 10.1002/mnfr.202300856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/22/2024] [Indexed: 04/29/2024]
Abstract
SCOPE Obesity and its metabolic comorbidities pose a major global challenge for public health. Glucoraphanin (GRN) is a natural bioactive compound enriched in broccoli that is known to have potential health benefits against various human chronic diseases. METHODS AND RESULTS This study investigats the effects of broccoli GRN supplementation on body weight, metabolic parameters, gut microbiome and metabolome associated with obesity. The study is conducted on an obese-related C57BL/6J mouse model through the treatment of normal control diet, high-fat diet (HFD)and GRN-supplemented HFD (HFD-GRN) to determine the metabolic protection of GRN. The results shows that GRN treatment alleviates obesity-related traits leading to improved glucose metabolism in HFD-fed animals. Mechanically, the study noticed that GRN significantly shifts the gut microbial diversity and composition to an eubiosis status. GRN supplement also significantly alters plasma metabolite profiles. Further integrated analysis reveal a complex interaction between the gut microbes and host metabolism that may contribute to GRN-induced beneficial effects against HFD. CONCLUSION These results indicate that beneficial effects of broccoli GRN on reversing HFD-induced adverse metabolic parameters may be attributed to its impacts on reprogramming microbial community and metabolites. Identification of the mechanistic functions of GRN further warrants it as a dietary candidate for obesity prevention.
Collapse
Affiliation(s)
- Taiwo Bankole
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, 20742, USA
| | - Tianzhou Ma
- Department of Epidemiology and Biostatistics, University of Maryland, College Park, MD, 20742, USA
| | - Itika Arora
- Department of Microbiology and Immunology, University of Miami, Miami, FL, 33136, USA
| | - Zhentian Lei
- Metabolomics Center, University of Missouri at Columbia, Columbia, MO, 65211, USA
| | - Murugesan Raju
- Bioinformatics and Analytics Core, University of Missouri at Columbia, Columbia, MO, 65211, USA
| | - Zhenhai Li
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, 20742, USA
| | - Yuanyuan Li
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
15
|
Tain YL, Hsu CN. Amino Acids during Pregnancy and Offspring Cardiovascular-Kidney-Metabolic Health. Nutrients 2024; 16:1263. [PMID: 38732510 PMCID: PMC11085482 DOI: 10.3390/nu16091263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Amino acids are essential for normal pregnancy and fetal development. Disruptions in maternal amino acid metabolism have been associated with various adult diseases later in life, a phenomenon referred to as the developmental origins of health and disease (DOHaD). In this review, we examine the recent evidence highlighting the significant impact of amino acids on fetal programming, their influence on the modulation of gut microbiota, and their repercussions on offspring outcomes, particularly in the context of cardiovascular-kidney-metabolic (CKM) syndrome. Furthermore, we delve into experimental studies that have unveiled the protective effects of therapies targeting amino acids. These interventions have demonstrated the potential to reprogram traits associated with CKM in offspring. The discussion encompasses the challenges of translating the findings from animal studies to clinical applications, emphasizing the complexity of this process. Additionally, we propose potential solutions to overcome these challenges. Ultimately, as we move forward, future research endeavors should aim to pinpoint the most effective amino-acid-targeted therapies, determining the optimal dosage and mode of administration. This exploration is essential for maximizing the reprogramming effects, ultimately contributing to the enhancement of cardiovascular-kidney-metabolic health in offspring.
Collapse
Affiliation(s)
- You-Lin Tain
- Division of Pediatric Nephrology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
16
|
Zhang Q, Zeng R, Tang J, Jiang X, Zhu C. The "crosstalk" between microbiota and metabolomic profile in high-fat-diet-induced obese mice supplemented with Bletilla striata polysaccharides and composite polysaccharides. Int J Biol Macromol 2024; 262:130018. [PMID: 38331057 DOI: 10.1016/j.ijbiomac.2024.130018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/27/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
The potential prebiotic feature of Bletilla striata polysaccharides (BSP) has been widely accepted, while the beneficial effect of BSP on high-fat-diet-induced obesity is unclear. Moreover, the "crosstalk" between microbiota and metabolomic profile in high-fat-diet-induced obese mice supplemented with BSP still need to be further explored. The present study attempted to illustrate the effect of BSP and/or composite polysaccharides on high-fat-diet-induced obese mice by combining multi-matrix (feces, urine, liver) metabolomics and gut microbiome. The results showed that BSP and/or composite polysaccharides were able to reduce the abnormal weight gain induced by high-fat diet. A total of 175 molecules were characterized by proton nuclear magnetic resonance (1H NMR) in feces, urine and liver, suggesting that multi-matrix metabolomics could provide a comprehensive view of metabolic regulatory mechanism of BSP in high-fat-diet-induced obese mice. Several pathways were altered in response to BSP supplementation, mainly pertaining to amino acid, purine, pyrimidine, ascorbate and aldarate metabolisms. In addition, BSP ameliorated high-fat-diet-induced imbalanced gut microbiome, by lowering the ratio of Firmicutes/Bacteroidetes. Significant correlations were illustrated between particular microbiota's features and specific metabolites. Overall, the anti-obesity effect of BSP could be attributed to the amelioration of the disorders of gut microbiota and to the regulation of the "gut-liver axis" metabolism.
Collapse
Affiliation(s)
- Qian Zhang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Rui Zeng
- College of Pharmacy, Southwest Minzu University, Chengdu 610041, China
| | - Junni Tang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Xiaole Jiang
- College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Chenglin Zhu
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China.
| |
Collapse
|
17
|
Wen Y, Luo Y, Qiu H, Chen B, Huang J, Lv S, Wang Y, Li J, Tao L, Yang B, Li K, He L, He M, Yang Q, Yu Z, Xiao W, Zhao M, Zou X, Lu R, Gu C. Gut microbiota affects obesity susceptibility in mice through gut metabolites. Front Microbiol 2024; 15:1343511. [PMID: 38450171 PMCID: PMC10916699 DOI: 10.3389/fmicb.2024.1343511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/29/2024] [Indexed: 03/08/2024] Open
Abstract
Introduction It is well-known that different populations and animals, even experimental animals with the same rearing conditions, differ in their susceptibility to obesity. The disparity in gut microbiota could potentially account for the variation in susceptibility to obesity. However, the precise impact of gut microbiota on gut metabolites and its subsequent influence on susceptibility to obesity remains uncertain. Methods In this study, we established obesity-prone (OP) and obesity-resistant (OR) mouse models by High Fat Diet (HFD). Fecal contents of cecum were examined using 16S rDNA sequencing and untargeted metabolomics. Correlation analysis and MIMOSA2 analysis were used to explore the association between gut microbiota and intestinal metabolites. Results After a HFD, gut microbiota and gut metabolic profiles were significantly different between OP and OR mice. Gut microbiota after a HFD may lead to changes in eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), a variety of branched fatty acid esters of hydroxy fatty acids (FAHFAs) and a variety of phospholipids to promote obesity. The bacteria g_Akkermansia (Greengene ID: 175696) may contribute to the difference in obesity susceptibility through the synthesis of glycerophosphoryl diester phosphodiesterase (glpQ) to promote choline production and the synthesis of valyl-tRNA synthetase (VARS) which promotes L-Valine degradation. In addition, gut microbiota may affect obesity and obesity susceptibility through histidine metabolism, linoleic acid metabolism and protein digestion and absorption pathways.
Collapse
Affiliation(s)
- Yuhang Wen
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Yadan Luo
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Hao Qiu
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Baoting Chen
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Jingrong Huang
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Shuya Lv
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Yan Wang
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Jiabi Li
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Lingling Tao
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Bailin Yang
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Ke Li
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Lvqin He
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Manli He
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Qian Yang
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Zehui Yu
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Wudian Xiao
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Mingde Zhao
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Xiaoxia Zou
- Suining First People's Hospital, Suining, China
| | - Ruilin Lu
- Suining First People's Hospital, Suining, China
| | - Congwei Gu
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| |
Collapse
|
18
|
Abdi F, Mohammadzadeh M, Abbasalizad-Farhangi M. Dietary amino acid patterns and cardiometabolic risk factors among subjects with obesity; a cross-sectional study. BMC Endocr Disord 2024; 24:21. [PMID: 38355488 PMCID: PMC10865612 DOI: 10.1186/s12902-024-01549-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND The prevalence of obesity is a growing global public health concern. Certain dietary amino acids have been shown to have a potential therapeutic role in improving metabolic syndrome parameters and body composition in individuals with obesity. However, some amino acids have been linked to an increased risk of cardiometabolic disorders. This cross-sectional study aims to investigate the association between dietary amino acid patterns and cardiometabolic risk factors in individuals with obesity. METHODS This cross-sectional study included 335 participants with obesity (57.9% males and 41.5% females) from Tabriz and Tehran, Iran. The participants were between the ages of 20-50, with a body mass index (BMI) of 30 kg/m2 or higher, and free from certain medical conditions. The study examined participants' general characteristics, conducted anthropometric assessments, dietary assessments, and biochemical assessments. The study also used principal component analysis to identify amino acid intake patterns and determined the association between these patterns and cardiometabolic risk factors in individuals with obesity. RESULTS Upon adjusting for potential confounders, the study found that individuals in the third tertiles of pattern 1 and 2 were more likely to have lower LDL levels (OR = 0.99 and 95% CI (0.98-0.99)) for both. Additionally, a significant decrease in total cholesterol was observed in the third tertiles of pattern 2 in model II (OR = 0.99, 95% CI (0.98-0.99)). These findings suggest a potential cardioprotective effect of these amino acid patterns in managing cardiometabolic risk factors in individuals with obesity. CONCLUSIONS This study found that two identified amino acid patterns were associated with lower serum LDL and total cholesterol levels, while a third pattern was associated with higher serum triglycerides. The specific amino acids contributing to these patterns highlight the importance of targeted dietary interventions in managing cardiometabolic risk factors in individuals with obesity.
Collapse
Affiliation(s)
- Fatemeh Abdi
- Department of Community Nutrition, Faculty of Nutrition, Tabriz University of Medical Sciences, Attar Neyshabouri, Daneshgah Blv, Tabriz, Iran
| | - Milad Mohammadzadeh
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdieh Abbasalizad-Farhangi
- Department of Community Nutrition, Faculty of Nutrition, Tabriz University of Medical Sciences, Attar Neyshabouri, Daneshgah Blv, Tabriz, Iran.
| |
Collapse
|
19
|
Ellinger S, Amini AM, Haardt J, Lehmann A, Schmidt A, Bischoff-Ferrari HA, Buyken AE, Kroke A, Kühn T, Louis S, Lorkowski S, Nimptsch K, Schulze MB, Schwingshackl L, Siener R, Stangl GI, Volkert D, Zittermann A, Watzl B, Egert S. Protein intake and body weight, fat mass and waist circumference: an umbrella review of systematic reviews for the evidence-based guideline on protein intake of the German Nutrition Society. Eur J Nutr 2024; 63:3-32. [PMID: 37794213 PMCID: PMC10799103 DOI: 10.1007/s00394-023-03220-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/18/2023] [Indexed: 10/06/2023]
Abstract
PURPOSE This umbrella review aimed to assess whether dietary protein intake with regard to quantitative (higher vs. lower dietary protein intake) and qualitative considerations (total, plant-based or animal-based protein intake) affects body weight (BW), fat mass (FM) and waist circumference (WC). METHODS A systematic literature search was conducted in PubMed, Embase and Cochrane Database of Systematic Reviews for systematic reviews (SRs) with and without meta-analyses of prospective studies published between 04 October 2007 and 04 January 2022. Methodological quality and outcome-specific certainty of evidence of the retrieved SRs were assessed by using AMSTAR 2 and NutriGrade, respectively, in order to rate the overall certainty of evidence using predefined criteria. RESULTS Thirty-three SRs were included in this umbrella review; 29 were based on randomised controlled trials, a few included cohort studies. In studies without energy restriction, a high-protein diet did not modulate BW, FM and WC in adults in general (all "possible" evidence); for older adults, overall certainty of evidence was "insufficient" for all parameters. Under hypoenergetic diets, a high-protein diet mostly decreased BW and FM, but evidence was "insufficient" due to low methodological quality. Evidence regarding an influence of the protein type on BW, FM and WC was "insufficient". CONCLUSION "Possible" evidence exists that the amount of protein does not affect BW, FM and WC in adults under isoenergetic conditions. Its impact on the reduction in BW and FM under hypoenergetic conditions remains unclear; evidence for an influence of protein type on BW, FM and WC is "insufficient".
Collapse
Affiliation(s)
- Sabine Ellinger
- Institute of Nutritional and Food Science, Human Nutrition, University of Bonn, Meckenheimer Allee 166a, 53115, Bonn, Germany.
| | | | | | | | | | - Heike A Bischoff-Ferrari
- Department of Aging Medicine and Aging Research, University Hospital and University of Zurich, Zurich, Switzerland
- City Hospital Zurich, Zurich, Switzerland
| | - Anette E Buyken
- Institute of Nutrition, Consumption and Health, Faculty of Natural Sciences, Paderborn University, Paderborn, Germany
| | - Anja Kroke
- Department of Nutritional, Food and Consumer Sciences, Fulda University of Applied Sciences, Fulda, Germany
| | - Tilman Kühn
- The Institute for Global Food Security, Queen's University Belfast, Belfast, Northern Ireland, UK
- Faculty of Medicine and University Hospital, Heidelberg Institute of Global Health (HIGH), Heidelberg, Germany
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria
- Center for Public Health, Medical University of Vienna, Vienna, Austria
| | - Sandrine Louis
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Karlsruhe, Germany
| | - Stefan Lorkowski
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
- Competence Cluster for Nutrition, Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Jena, Germany
| | - Katharina Nimptsch
- Molecular Epidemiology Research Group, Max Delbrück Center for Molecular Medicine (MDC), Helmholtz Association, Berlin, Germany
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
| | - Lukas Schwingshackl
- Institute for Evidence in Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Roswitha Siener
- Department of Urology, University Stone Center, University Hospital Bonn, Bonn, Germany
| | - Gabriele I Stangl
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Dorothee Volkert
- Institute for Biomedicine of Aging, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nuremberg, Germany
| | - Armin Zittermann
- Clinic for Thoracic and Cardiovascular Surgery, Herz- und Diabeteszentrum Nordrhein-Westfalen, Ruhr University Bochum, Bad Oeynhausen, Germany
| | - Bernhard Watzl
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Karlsruhe, Germany
| | - Sarah Egert
- Institute of Nutritional and Food Science, Nutritional Physiology, University of Bonn, Bonn, Germany
| |
Collapse
|
20
|
Yang JM, Long Y, Ye H, Wu YL, Zhu Q, Zhang JH, Huang H, Zhong YB, Luo Y, Wang MY. Effects of rapeseed oil on body composition and glucolipid metabolism in people with obesity and overweight: a systematic review and meta-analysis. Eur J Clin Nutr 2024; 78:6-18. [PMID: 37740067 DOI: 10.1038/s41430-023-01344-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/24/2023]
Abstract
To investigate the effects of rapeseed oil on body composition, blood glucose and lipid metabolism in people with overweight and obesity compared to other cooking oils. We searched eight databases for randomized controlled studies (including randomized crossover trials). The risk of bias for the included studies was assessed using the Cochrane Risk of Bias 2.0 tool. The Grading of Recommendations Assessment Development and Evaluation (GRADE) criteria were used to evaluate the quality of the outcomes. The methodological quality of the included studies was assessed using the Physiotherapy Evidence Database (PEDro) scale. Sensitivity analysis was used to check the stability of the pooled results. Statistical analysis was carried out using Review Manager 5.3 software. As a result, fifteen randomized controlled studies (including six parallel studies and nine crossover studies) were included in this study. Compared to other edible oils, rapeseed oil significantly reduced low density lipoprotein cholesterol (LDL-C) (MD = -0.14 mmol/L, 95% CI: -0.21, -0.08, I2 = 0%, P < 0.0001), apolipoprotein B (ApoB) (MD = -0.03 g/L, 95% CI: -0.05, -0.01, I2 = 0%, P = 0.0003), ApoB/ApoA1 (MD = -0.02, 95% CI: -0.04, -0.00, I2 = 0%, P = 0.02) and insulin (MD = -12.45 pmol/L, 95% CI: -19.61, -5.29, I2 = 37%, P = 0.0007) levels, and increased fasting glucose (MD = 0.16 mmol/L, 95% CI: 0.05, 0.27, I2 = 27%, P = 0.003) levels. However, the differences in body weight and body composition between rapeseed oil and control oils were not significant. In a word, rapeseed oil is effective in reducing LDL-C, ApoB and ApoB/ApoA1 levels in people with overweight and obesity, which is helpful in preventing and reducing the risk of atherosclerosis. PROSPERO registration number: CRD42022333436.
Collapse
Affiliation(s)
- Jia-Ming Yang
- Department of Rehabilitation Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Gannan Medical University, Ganzhou, China
| | - Yi Long
- Gannan Medical University, Ganzhou, China
| | - Hua Ye
- Gannan Medical University, Ganzhou, China
| | - Yan-Lin Wu
- Gannan Medical University, Ganzhou, China
| | - Qiang Zhu
- Department of Rehabilitation Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jia-Hong Zhang
- Department of Rehabilitation Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Hui Huang
- Department of Rehabilitation Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yan-Biao Zhong
- Department of Rehabilitation Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Intelligent Rehabilitation Technology Innovation Center, Ganzhou, China
| | - Yun Luo
- Department of Rehabilitation Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Laboratory of Rehabilitation Medicine, Ganzhou, China
| | - Mao-Yuan Wang
- Department of Rehabilitation Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China.
- Ganzhou Key Laboratory of Rehabilitation Medicine, Ganzhou, China.
| |
Collapse
|
21
|
Chen S, Lin X, Ma J, Li M, Chen Y, Fang AP, Zhu HL. Dietary protein intake and changes in muscle mass measurements in community-dwelling middle-aged and older adults: A prospective cohort study. Clin Nutr 2023; 42:2503-2511. [PMID: 37922694 DOI: 10.1016/j.clnu.2023.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 10/12/2023] [Accepted: 10/20/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND & AIMS Increasing dietary protein intake can be an efficient strategy to prevent sarcopenia. Nevertheless, due to the discrepancy in the population and their dietary pattern, evidence suggested the effects of dietary protein amount or source on sarcopenia prevention varies. This prospective cohort study investigated the correlation between dietary protein intakes or sources and changes in muscle mass measurements. Additionally, the study explored the link between dietary protein and the prevalence of sarcopenia. METHODS Participants aged 40 to 75 were from Guangzhou Nutrition and Health Study (GNHS) 2011-2013 and returned in 2014-2017. Validated 79-item food frequency questionnaires were applied to calculate the amount of total, animal, and plant protein intakes and animal-to-plant protein ratio (APR). The body composition was examined by dual-energy x-ray absorptiometry (DXA) to calculate the appendicular lean mass (ALM) and its index (ASMI). Sarcopenia was diagnosed based on the 2019 Asia Working Group of Sarcopenia's criteria. ANCOVA was utilized to compare the differences of Δ ALM and Δ ASMI across the quartiles of the dietary protein, and linear regression was employed to examine dose-response associations. Multilinear mixed-effect models were employed to evaluate whether protein intake relates to annual changes in ALM and ASMI. Multivariable logistic regressions were performed to analyze the associations between dietary protein and sarcopenia. RESULTS In total, 2709 participants during the 3.2-year follow-up period were considered eligible for analysis. Higher dietary protein intakes (total, animal, plant) in both sexes could preserve more ALM and ASMI in a dose-response manner (all P-trend < 0.05). The annual estimated preservations of ASMI were greater in the highest dietary protein intakes (total, animal, plant) quartile than the lowest (0.05-0.13 kg/m2/y, all P < 0.05). In women, the risk of sarcopenia was reduced by 35%-50 % in the highest protein intake (total, animal, plant) quartile than the lowest. The APR did not display any significant associations. CONCLUSIONS Higher dietary protein intake, regardless of animal or plant sources, is associated with less muscle loss and a lower prevalence of sarcopenia in middle-aged and older Chinese, particularly women. CLINICALTRIALS GOV IDENTIFIER NCT03179657.
Collapse
Affiliation(s)
- Si Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xinlei Lin
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jingfei Ma
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Mengchu Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yuming Chen
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ai-Ping Fang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Hui-Lian Zhu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW Nutritional interventions using protein and amino acids in obesity are popular therapeutical strategies to limit obesity development. However, the effects of dietary protein intake and amino acid metabolic alterations involved in obesity pathophysiology have not been completely unravelled. Significant recent studies have brought to light new findings in these areas, which are the primary focus of this review. RECENT FINDINGS We describe the effects of protein intake on weight regain prevention, the influence on gut microbiota, the response to low-protein highly processed foods, and the contrasting impacts of a high-protein diet on adults and children. We also explore newly discovered correlations between amino acids, liver fat accumulation, and the dysregulation of the liver-pancreas axis due to alterations in amino acid levels in the context of obesity. Lastly, we consider branched-chain amino acids, along with glycine and tryptophan, as significant biomarkers during periods of positive or negative energy balance. SUMMARY Interventions using dietary protein in obesity may be useful, especially during energy restriction but also in sarcopenic obesity. Furthermore, metabolic profiles that encompass alterations in certain amino acids can provide valuable insights into the metabolic condition of patients with obesity, particularly in relation to insulin resistance and the risk of developing type 2 diabetes.
Collapse
Affiliation(s)
- Yves Boirie
- Human Nutrition Unit, University of Clermont Auvergne, INRAE, CRNH Auvergne
- Clinical Nutrition Department, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Alexandre Pinel
- Human Nutrition Unit, University of Clermont Auvergne, INRAE, CRNH Auvergne
| | - Christelle Guillet
- Human Nutrition Unit, University of Clermont Auvergne, INRAE, CRNH Auvergne
| |
Collapse
|
23
|
Yu S, Wang H, Cui L, Wang J, Zhang Z, Wu Z, Lin X, He N, Zou Y, Li S. Pectic oligosaccharides ameliorate high-fat diet-induced obesity and hepatic steatosis in association with modulating gut microbiota in mice. Food Funct 2023; 14:9892-9906. [PMID: 37853813 DOI: 10.1039/d3fo02168h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Accumulating evidence has shown that gut microbiota and its metabolites have important significance in the etiology of obesity and related disorders. Prebiotics prevent and alleviate obesity by modulating the gut microbiota. However, how pectin oligosaccharides (POS) derived from pectin degradation affect gut microbiota and obesity remains unclear. To investigate the potential anti-obesity effects of POS, mice were fed a high-fat diet (HFD) for 12 weeks and a POS supplement with drinking water during the last 8 weeks. The outcomes demonstrated that POS supplementation in HFD-fed mice decreased body weight (P < 0.01), improved glucose tolerance (P < 0.001), reduced fat accumulation (P < 0.0001) and hepatic steatosis, protected intestinal barrier, and reduced pro-inflammatory cytokine levels. After fecal metagenomic sequencing, the POS corrected the gut microbiota dysbiosis caused by the HFD, as shown by the increased populations of Bifidobacterium, Lactobacillus taiwanensis, and Bifidobacterium animalis, and decreased populations of Alistipes and Erysipelatoclostridium, which were previously considered harmful bacteria. Notably, the changed gut microbiota was associated with the obesity prevention of POS. These findings demonstrate that POS regulates particular gut microbiota, which is essential owing to its ability to prevent disorders associated with obesity.
Collapse
Affiliation(s)
- Shengnan Yu
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China.
| | - Haoyu Wang
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China.
- BGI-Shenzhen, Shenzhen 518083, China.
- Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao 266555, China
| | - Luwen Cui
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China.
| | - Jingyi Wang
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China.
| | - Zixuan Zhang
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China.
| | - Zhinan Wu
- BGI-Shenzhen, Shenzhen 518083, China.
| | | | - Ningning He
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China.
| | - Yuanqiang Zou
- BGI-Shenzhen, Shenzhen 518083, China.
- Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao 266555, China
- Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, BGI-Shenzhen, Shenzhen, 518083, China
| | - Shangyong Li
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China.
- Department of Abdominal Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| |
Collapse
|
24
|
Sistia F, Khusun H, Februhartanty J. Plant protein consumption is associated with body mass index among women of reproductive age in Indonesia. Front Nutr 2023; 10:1243635. [PMID: 37927495 PMCID: PMC10622764 DOI: 10.3389/fnut.2023.1243635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/29/2023] [Indexed: 11/07/2023] Open
Abstract
Introduction One of the known determinants of obesity in Southeast Asia countries, including Indonesia, is the nutritional transition, which is indicated by fast changes in food production, dietary habits, and physical activity. With rising incomes, plant protein from grains, tubers, and legumes is gradually being replaced by animal protein from poultry, eggs, dairy, and red meat. This change is identified as a protein transition. Different choices of protein sources in the diet have varying health effects. However, there is limited information on the Asian population on the role of protein consumption on the increasing obesity prevalence. Therefore, this study aimed to investigate the association of protein sources consumption with body mass index (BMI) among women of reproductive age in Indonesia. Methods This study used secondary data from the 2018 Indonesia Food Barometer (IFB) conducted using a quantitative cross-sectional survey. A total of 467 Indonesian reproductive-aged women (20-49 years) were included in this study. Dietary intake, including protein consumption, was obtained using 24-h dietary recall. Multiple linear regression was applied to find the association of protein consumption with BMI with a p-value <0.05 considered as a significant outcome variable. Results The Mean BMI was 25.02 kg/m2, median of animal and plant protein was 28.01 g/day and 25.37 g/day, respectively. Consumption of plant protein was significantly associated with BMI after adjusting for marital status and age (p-value = 0.043; R2 = 0.080). The quality of plant protein should be considered to prevent obesity problems among women of reproductive age.
Collapse
Affiliation(s)
- Fitra Sistia
- Department of Nutrition, Faculty of Medicine, Universitas Indonesia – Dr. Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
- SEAMEO Regional Centre for Food and Nutrition (RECFON)—Pusat Kajian Gizi Regional Universitas Indonesia, Jakarta, Indonesia
| | - Helda Khusun
- SEAMEO Regional Centre for Food and Nutrition (RECFON)—Pusat Kajian Gizi Regional Universitas Indonesia, Jakarta, Indonesia
- Faculty of Health Sciences, Universitas Muhammadiyah Prof Dr. HAMKA (UHAMKA), Jakarta, Indonesia
| | - Judhiastuty Februhartanty
- Department of Nutrition, Faculty of Medicine, Universitas Indonesia – Dr. Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
- SEAMEO Regional Centre for Food and Nutrition (RECFON)—Pusat Kajian Gizi Regional Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
25
|
Gómez CB, Contreras Vargas Y, Serrano Sánchez A, Camacho Castillo LDC, Centurión Pacheco D, Carvajal Aguilera K. [Diet as a source of hydrogen sulfide and its effects on health and disease]. NUTR HOSP 2023; 40:1088-1095. [PMID: 37522463 DOI: 10.20960/nh.04471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023] Open
Abstract
Introduction Initially known for its deleterious health effects, hydrogen sulfide (H2S) has recently been recognized as a biologically important gas carrier, like nitric oxide and carbon monoxide. H2S is produced endogenously in mammalian cells by enzymatic and non-enzymatic pathways. When it is produced by the enzymatic pathway, its synthesis is carried out from the amino acid L-cysteine through the transsulfuration pathway. It can also be produced endogenously from exogenous compounds that function as H2S donors as, for example, the naturally occurring organic donors found in some plants. Currently, the role of S2H is well known as brain and cardiac protector, and its research as a therapeutic adjuvant in metabolic diseases such as obesity and type-2 diabetes is becoming increasingly important. The objective of this review is to examine how the contribution of donors and precursors of hydrogen sulfide by the diet impacts health and disease.
Collapse
Affiliation(s)
- Carolina Belem Gómez
- Laboratorio de Nutrición Experimental. Instituto Nacional de Pediatría. Departamento de Farmacobiología. Cinvestav-Unidad Coapa
| | | | - Arturo Serrano Sánchez
- Laboratorio de Nutrición Experimental. Instituto Nacional de Pediatría. Departamento de Farmacobiología. Cinvestav-Unidad Coapa
| | | | - David Centurión Pacheco
- Laboratorio de Nutrición Experimental. Instituto Nacional de Pediatría. Departamento de Farmacobiología. Cinvestav-Unidad Coapa
| | | |
Collapse
|
26
|
Soleimani E, Rashnoo F, Farhangi MA, Hosseini B, Jafarzadeh F, Shakarami A, Sadabadi Y. Dietary branched-chain amino acids intake, glycemic markers, metabolic profile, and anthropometric features in a community-based sample of overweight and obese adults. BMC Endocr Disord 2023; 23:205. [PMID: 37749544 PMCID: PMC10518913 DOI: 10.1186/s12902-023-01459-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 09/14/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND Existing research provides conflicting evidence regarding the relationship between estimated branched-chain amino acid (BCAA) intake and metabolic, glycemic markers, and anthropometric characteristics. This research seeks to examine the association between estimated dietary BCAA consumption and glycemic, and metabolic markers, as well as anthropometric parameters in adults classified as overweight or obese. METHODS In this cross-sectional analysis, we gathered data from 465 overweight and obese individuals aged between 18 and 37 years. To evaluate dietary data, we employed the food frequency questionnaire, and the BCAA content in foods was determined via the United States Department of Agriculture website. We utilized ELISA kits to measure fasting blood glucose (FBS) and lipid profile markers, and additionally calculated low-density lipoprotein (LDL) and insulin sensitivity markers. We assessed sociodemographic status, physical activity (PA), and anthropometric attributes through a method recognized as both valid and reliable. For statistical analysis, we conducted analyses of covariance (ANCOVA), making adjustments for variables including sex, PA, age, energy, and body mass index (BMI). RESULTS Upon adjusting for confounders, those in the highest tertiles of BCAA intake exhibited an increase in weight, BMI, waist circumference (WC), waist-to-hip ratio (WHR), and fat-free mass (FFM). Conversely, they demonstrated reduced fat mass (FM) (%) and FM (kg) compared to their counterparts in the lowest tertiles (P < 0.05). Additionally, there was a noted association between greater estimated BCAA intake and reduced LDL levels. Nonetheless, our findings did not reveal a significant relationship between dietary BCAA and glycemic indices. CONCLUSIONS From our findings, an increased estimated intake of BCAA seems to correlate with diminished serum LDL concentrations. To gain a more comprehensive understanding of this association, it is imperative that further experimental and longitudinal studies be conducted.
Collapse
Affiliation(s)
- Ensiye Soleimani
- Tabriz Health Services Management Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fariborz Rashnoo
- Department of General and Minimally Invasive surgery, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Babak Hosseini
- Department of Surgery, School of Medicine, Laparoscopy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Faria Jafarzadeh
- Assistant Professor of Endocrinology & Metabolism, Department of Internal Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnourd, Iran.
| | - Amir Shakarami
- Department of Cardiovascular Medicine, Assistant Professor of Cardiology, Lorestan University of Medical Sciences, Khorramabad, Iran
| | | |
Collapse
|
27
|
Wang S, Wang J, Zhang J, Liu W, Jing W, Lyu B, Yu H, Zhang Z. Insoluble Dietary Fiber from Okara Combined with Intermittent Fasting Treatment Synergistically Confers Antiobesity Effects by Regulating Gut Microbiota and Its Metabolites. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13346-13362. [PMID: 37651598 DOI: 10.1021/acs.jafc.3c03948] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Insoluble dietary fiber (IDF) was recently revealed to have an antiobesity impact. However, the impact and potential mechanism of high-purity IDF derived from okara (HPSIDF) on obesity caused by a high-fat diet (HFD) remain unclear. Except for dietary supplementation, intermittent fasting (IF) has attracted extensive interest as a new dietary strategy against obesity. Thus, we hypothesize that HPSIDF combined with IF treatment may be more effective in preventing obesity. In this study, HPSIDF combined with IF treatment synergistically alleviated HFD-induced dyslipidemia, impaired glucose homeostasis, systemic inflammation, and fat accumulation. Furthermore, gut microbiota dysbiosis and lowered short-chain fatty acid synthesis were recovered by HPSIDF combined with IF treatment. Meanwhile, metabolomic analysis of feces revealed that HPSIDF combined with IF treatment obviously reversed the alterations of metabolic pathways and differential metabolites induced by HFD, which were linked to the modulations of the gut microbiota. Collectively, our findings indicated that HPSIDF combined with IF treatment has great potential to substantially enhance antiobesity efficacy by modulating the gut microbiota and its metabolites.
Collapse
Affiliation(s)
- Sainan Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Junyao Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Jiarui Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Wenhao Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Wendan Jing
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Bo Lyu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Hansong Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Zhao Zhang
- Shandong Sinoglory Health Food Co., Ltd., Liaocheng 252000, China
| |
Collapse
|
28
|
Hettiarachchi H, Gunathilake K. Physicochemical and functional properties of seed flours obtained from germinated and non-germinated Canavalia gladiata and Mucuna pruriens. Heliyon 2023; 9:e19653. [PMID: 37809811 PMCID: PMC10558910 DOI: 10.1016/j.heliyon.2023.e19653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/18/2023] [Accepted: 08/29/2023] [Indexed: 10/10/2023] Open
Abstract
C. gladiata and M. pruriens are underutilized legumes available in Sri Lanka. The physicochemical and functional properties of germinated and non-germinated flours from these two legumes were investigated. Protein contents of the flours of C. gladiata and M. pruriens increased by 17.04% and 14.69% respectively while fat and carbohydrate contents decreased due to germination. Higher Fe, Cu, Zn, Mn, and Se content was observed in both germinated flour types. Glutamic acid is the highest non-essential amino acid whereas leucine is the highest essential amino acid found in both flour types. The majority of amino acids in 100 g of seed flour of both legumes increased due to germination. Moreover, some of the functional properties of legume flours were changed such as swelling power, water and oil holding capacities because of the germination. In conclusion, the functional and nutritional properties of flour can be altered by the germination process making them ideal for utilization as ingredients for functional food formulations.
Collapse
Affiliation(s)
- H.A.C.O. Hettiarachchi
- Department of Food Science and Technology, Faculty of Livestock, Fisheries & Nutrition, Wayamba University of Sri Lanka, Makandura, Gonawila, Sri Lanka
| | - K.D.P.P. Gunathilake
- Department of Food Science and Technology, Faculty of Livestock, Fisheries & Nutrition, Wayamba University of Sri Lanka, Makandura, Gonawila, Sri Lanka
| |
Collapse
|
29
|
Synan L, Ghazvini S, Uthaman S, Cutshaw G, Lee CY, Waite J, Wen X, Sarkar S, Lin E, Santillan M, Santillan D, Bardhan R. First Trimester Prediction of Preterm Birth in Patient Plasma with Machine-Learning-Guided Raman Spectroscopy and Metabolomics. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38185-38200. [PMID: 37549133 PMCID: PMC10625673 DOI: 10.1021/acsami.3c04260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Preterm birth (PTB) is the leading cause of infant deaths globally. Current clinical measures often fail to identify women who may deliver preterm. Therefore, accurate screening tools are imperative for early prediction of PTB. Here, we show that Raman spectroscopy is a promising tool for studying biological interfaces, and we examine differences in the maternal metabolome of the first trimester plasma of PTB patients and those that delivered at term (healthy). We identified fifteen statistically significant metabolites that are predictive of the onset of PTB. Mass spectrometry metabolomics validates the Raman findings identifying key metabolic pathways that are enriched in PTB. We also show that patient clinical information alone and protein quantification of standard inflammatory cytokines both fail to identify PTB patients. We show for the first time that synergistic integration of Raman and clinical data guided with machine learning results in an unprecedented 85.1% accuracy of risk stratification of PTB in the first trimester that is currently not possible clinically. Correlations between metabolites and clinical features highlight the body mass index and maternal age as contributors of metabolic rewiring. Our findings show that Raman spectral screening may complement current prenatal care for early prediction of PTB, and our approach can be translated to other patient-specific biological interfaces.
Collapse
Affiliation(s)
- Lilly Synan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50012, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Saman Ghazvini
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50012, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Saji Uthaman
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50012, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Gabriel Cutshaw
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50012, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Che-Yu Lee
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 62106, Taiwan
| | - Joshua Waite
- Department of Mechanical Engineering, Iowa state University, Ames, IA 50012, USA
| | - Xiaona Wen
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Soumik Sarkar
- Department of Mechanical Engineering, Iowa state University, Ames, IA 50012, USA
| | - Eugene Lin
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 62106, Taiwan
| | - Mark Santillan
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Hospitals & Clinics, Iowa City, IA 52242, USA
| | - Donna Santillan
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Hospitals & Clinics, Iowa City, IA 52242, USA
| | - Rizia Bardhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50012, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| |
Collapse
|
30
|
Olga L, Vervoort J, van Diepen JA, Gross G, Petry CJ, Prentice PM, Chichlowski M, van Tol EAF, Hughes IA, Dunger DB, Ong KK. Associations between breast milk intake volume, macronutrient intake and infant growth in a longitudinal birth cohort: the Cambridge Baby Growth and Breastfeeding Study (CBGS-BF). Br J Nutr 2023; 130:56-64. [PMID: 36259139 PMCID: PMC10244014 DOI: 10.1017/s0007114522003178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/14/2022] [Accepted: 09/27/2022] [Indexed: 02/16/2023]
Abstract
Growth patterns of breastfed infants show substantial inter-individual differences, partly influenced by breast milk (BM) nutritional composition. However, BM nutritional composition does not accurately indicate BM nutrient intakes. This study aimed to examine the associations between both BM intake volumes and macronutrient intakes with infant growth. Mother-infant dyads (n 94) were recruited into the Cambridge Baby Growth and Breastfeeding Study (CBGS-BF) from a single maternity hospital at birth; all infants received exclusive breast-feeding (EBF) for at least 6 weeks. Infant weight, length and skinfolds thicknesses (adiposity) were repeatedly measured from birth to 12 months. Post-feed BM samples were collected at 6 weeks to measure TAG (fat), lactose (carbohydrate) (both by 1H-NMR) and protein concentrations (Dumas method). BM intake volume was estimated from seventy infants between 4 and 6 weeks using dose-to-the-mother deuterium oxide (2H2O) turnover. In the full cohort and among sixty infants who received EBF for 3+ months, higher BM intake at 6 weeks was associated with initial faster growth between 0 and 6 weeks (β + se 3·58 + 0·47 for weight and 4·53 + 0·6 for adiposity gains, both P < 0·0001) but subsequent slower growth between 3 and 12 months (β + se - 2·27 + 0·7 for weight and -2·65 + 0·69 for adiposity gains, both P < 0·005). BM carbohydrate and protein intakes at 4-6 weeks were positively associated with early (0-6 weeks) but tended to be negatively related with later (3-12 months) adiposity gains, while BM fat intake showed no association, suggesting that carbohydrate and protein intakes may have more functional relevance to later infant growth and adiposity.
Collapse
Affiliation(s)
- Laurentya Olga
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Jacques Vervoort
- Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, the Netherlands
| | - Janna A. van Diepen
- Medical and Scientific Affairs, Reckitt/Mead Johnson Nutrition Institute, Nijmegen, the Netherlands; Evansville, IN, USA
| | - Gabriele Gross
- Medical and Scientific Affairs, Reckitt/Mead Johnson Nutrition Institute, Nijmegen, the Netherlands; Evansville, IN, USA
| | - Clive J. Petry
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | | | - Maciej Chichlowski
- Medical and Scientific Affairs, Reckitt/Mead Johnson Nutrition Institute, Nijmegen, the Netherlands; Evansville, IN, USA
| | - Eric A. F. van Tol
- Medical and Scientific Affairs, Reckitt/Mead Johnson Nutrition Institute, Nijmegen, the Netherlands; Evansville, IN, USA
| | - Ieuan A. Hughes
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - David B. Dunger
- Department of Paediatrics, University of Cambridge, Cambridge, UK
- Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Ken K. Ong
- Department of Paediatrics, University of Cambridge, Cambridge, UK
- Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- MRC Epidemiology Unit, Wellcome Trust-MRC Institute of Metabolic Science, NIHR Cambridge Comprehensive Biomedical Research Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0QQ, UK
| |
Collapse
|
31
|
Soleimani E, Abbasalizad Farhangi M. Protein Quality, Glycemic and Metabolic Indices and Anthropometric Features Among Overweight and Obese Adults. Nutr Metab Insights 2023; 16:11786388231181038. [PMID: 37435042 PMCID: PMC10331230 DOI: 10.1177/11786388231181038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/22/2023] [Indexed: 07/13/2023] Open
Abstract
Background Various studies have shown an inverse relationship between the quality of protein intake based on essential amino acids (EAAs) with obesity and its complications. We assumed that increasing EAAs-based protein intake quality improves glycemic and metabolic markers and anthropometric measurements in obese and overweight people. Methods This cross-sectional study included 180 obese and overweight participants aged 18 to 35. Dietary information was obtained using an 80-item food frequency questionnaire. The total intake of EAAs was calculated using the United States department of agriculture (USDA) database. Quality protein was defined as the ratio of EAAs (gr) to total dietary protein (gr). Sociodemographic status, physical activity (PA), and anthropometric characteristics were evaluated using a valid and reliable method. Analysis of covariance (ANCOVA) tests adjusted for sex, PA, age, energy, and body mass index (BMI) were used to measure this association. Results Protein quality intake was highest among the group with the lowest weight, body mass index (BMI), waist circumference (WC), hip circumference (HC), waist-to-hip ratio (WHR), and fat mass (FM); and on the other hand, the fat-free mass (FFM) has increased; also Increasing the quality of protein intake improved the lipid profile and some glycemic indices and insulin sensitivity, although this association was not significant. Conclusions Increasing the quality of protein intake significantly improved anthropometric measurements, and also improved some glycemic and metabolic indices although, their relationship was not significant.
Collapse
Affiliation(s)
- Ensiye Soleimani
- Tabriz Health Services Management Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
32
|
Tian C, Li J, Bao Y, Gao L, Song L, Li K, Sun M. Ursolic acid ameliorates obesity of mice fed with high-fat diet via alteration of gut microbiota and amino acid metabolism. Front Microbiol 2023; 14:1183598. [PMID: 37485499 PMCID: PMC10359042 DOI: 10.3389/fmicb.2023.1183598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/12/2023] [Indexed: 07/25/2023] Open
Abstract
Obesity has been regarded as one of the major health problems worldwide. Studies demonstrated that ursolic acid (UA) can significantly ameliorate the progress of obesity. However, whether the effect of UA on obesity depends on the regulation of gut microbiota and metabolism is uncertain. To investigate the regulatory role of UA in obese mice from the perspective of intestinal microbiome and metabolomics analyses, an obese mice model was established with a high-fat diet, and the effect of UA on obesity was evaluated. The alterations of gut microbiota and metabolism related to obesity were evaluated by bioinformatic analysis. The results of the gut microbiota analysis showed that UA intervention could shift the Firmicutes to Bacteroidetes ratio at the phylum level and increase in the genera of Lactobacillus, Bacteroides, and Akkermansia. Additionally, metabolomics analysis showed that the beneficial influence of UA on obesity partly depended on amino acid metabolism. The current study demonstrated the roles of UA in the anti-obesity process, which depends in part on alterations in the gut microbiota and metabolism. Therefore, our findings highlight the potential therapeutic effect of UA on the improvement of diet-induced obesity in humans.
Collapse
Affiliation(s)
- Chunfeng Tian
- School of Public Health, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Jie Li
- School of Public Health, Jiamusi University, Jiamusi, China
| | - Yan Bao
- School of Public Health, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
- Institute of Nutrition and Food Health, Baotou Medical College, Baotou, China
| | - Long Gao
- School of Public Health, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Lixin Song
- Baotou Disease Prevention Control Center, Baotou, China
| | - Kai Li
- School of Public Health, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Ming Sun
- School of Public Health, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| |
Collapse
|
33
|
Lesgards JF. Benefits of Whey Proteins on Type 2 Diabetes Mellitus Parameters and Prevention of Cardiovascular Diseases. Nutrients 2023; 15:nu15051294. [PMID: 36904293 PMCID: PMC10005124 DOI: 10.3390/nu15051294] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a major cause of morbidity and mortality, and it is a major risk factor for the early onset of cardiovascular diseases (CVDs). More than genetics, food, physical activity, walkability, and air pollution are lifestyle factors, which have the greatest impact on T2DM. Certain diets have been shown to be associated with lower T2DM and cardiovascular risk. Diminishing added sugar and processed fats and increasing antioxidant-rich vegetable and fruit intake has often been highlighted, as in the Mediterranean diet. However, less is known about the interest of proteins in low-fat dairy and whey in particular, which have great potential to improve T2DM and could be used safely as a part of a multi-target strategy. This review discusses all the biochemical and clinical aspects of the benefits of high-quality whey, which is now considered a functional food, for prevention and improvement of T2DM and CVDs by insulin- and non-insulin-dependent mechanisms.
Collapse
Affiliation(s)
- Jean-François Lesgards
- Ingénierie des Peptides Thérapeutiques, Ambrilia-Cellpep, Faculté de Médecine Nord, Aix-Marseille University, Boulevard Pierre Dramard, 13015 Marseille, France
| |
Collapse
|
34
|
Gueugneau M, Capel F, Monfoulet LE, Polakof S. Metabolomics signatures of plant protein intake: effects of amino acids and compounds associated with plant protein on cardiometabolic health. Curr Opin Clin Nutr Metab Care 2023; 26:189-194. [PMID: 36892966 DOI: 10.1097/mco.0000000000000908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
PURPOSE OF REVIEW An increase in the plant-based characteristics of the diet is now recommended for human and planetary health. There is growing evidence that plant protein (PP) intake has beneficial effects on cardiometabolic risk. However, proteins are not consumed isolated and the protein package (lipid species, fiber, vitamins, phytochemicals, etc) may contribute, besides the protein effects per se, to explain the beneficial effects associated with PP-rich diets. RECENT FINDINGS Recent studies have shown the potential of nutrimetabolomics to apprehend the complexity of both the human metabolism and the dietary habits, by providing signatures associated to the consumption of PP-rich diets. Those signatures comprised an important proportion of metabolites that were representative of the protein package, including specific amino acids (branched-chain amino acids and their derivates, glycine, lysine), but also lipid species (lysophosphatidylcholine, phosphatidylcholine, plasmalogens) and polyphenol metabolites (catechin sulfate, conjugated valerolactones and phenolic acids). SUMMARY Further studies are needed to go deeper in the identification of all metabolites making part of the specific metabolomic signatures, associated to the large range of protein package constituents and their effects on the endogenous metabolism, rather than to the protein fraction itself. The objective is to determine the bioactive metabolites, as well as the modulated metabolic pathways and the mechanisms responsible for the observed effects on cardiometabolic health.
Collapse
Affiliation(s)
- Marine Gueugneau
- Université Clermont-Auvergne, INRAE, UMR1019, Unité Nutrition Humaine, Clermont-Ferrand, France
| | | | | | | |
Collapse
|
35
|
Heath H, Degreef K, Rosario R, Smith M, Mitchell I, Pilolla K, Phelan S, Brito A, La Frano MR. Identification of potential biomarkers and metabolic insights for gestational diabetes prevention: A review of evidence contrasting gestational diabetes versus weight loss studies that may direct future nutritional metabolomics studies. Nutrition 2023; 107:111898. [PMID: 36525799 DOI: 10.1016/j.nut.2022.111898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/22/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Abstract
Gestational diabetes mellitus (GDM) significantly increases maternal health risks and adverse effects for the offspring. Observational studies suggest that weight loss before pregnancy may be a promising GDM prevention method. Still, biochemical pathways linking preconception weight changes with subsequent development of GDM among women who are overweight or obese remain unclear. Metabolomic assessment is a powerful approach for understanding the global biochemical pathways linking preconception weight changes and subsequent GDM. We hypothesize that many of the alterations of metabolite levels associated with GDM will change in one direction in GDM studies but will change in the opposite direction in studies focusing on lifestyle interventions for weight loss. The present review summarizes available evidence from 21 studies comparing women with GDM with healthy participants and 12 intervention studies that investigated metabolite changes that occurred during weight loss using caloric restriction and behavioral interventions. We discuss 15 metabolites, including amino acids, lipids, amines, carbohydrates, and carbohydrate derivatives. Of particular note are the altered levels of branched-chain amino acids, alanine, palmitoleic acid, lysophosphatidylcholine 18:1, and hypoxanthine because of their mechanistic links to insulin resistance and weight change. Mechanisms that may explain how these metabolite modifications contribute to GDM development in those who are overweight or obese are proposed, including insulin resistance pathways. Future nutritional metabolomics preconception intervention studies in overweight or obese are necessary to investigate whether weight loss through lifestyle intervention can reduce GDM occurrence in association with these metabolite alterations and to test the value of these metabolites as potential diagnostic biomarkers of GDM development.
Collapse
Affiliation(s)
- Hannah Heath
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, California
| | - Kelsey Degreef
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, California
| | - Rodrigo Rosario
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, California
| | - MaryKate Smith
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, California
| | - Isabel Mitchell
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, California
| | - Kari Pilolla
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, California; Center for Health Research, California Polytechnic State University, San Luis Obispo, California
| | - Suzanne Phelan
- Center for Health Research, California Polytechnic State University, San Luis Obispo, California; Department of Kinesiology and Public Health, California Polytechnic State University, San Luis Obispo, California
| | - Alex Brito
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia; World-Class Research Center "Digital Biodesign and Personalized Health Care," I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Michael R La Frano
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, California; Center for Health Research, California Polytechnic State University, San Luis Obispo, California; Cal Poly Metabolomics Service Center, California Polytechnic State University, San Luis Obispo, California
| |
Collapse
|
36
|
Yuan Y, He J, Tang M, Chen H, Wei T, Zhang B, Liang D, Nie X. Preventive effect of Ya'an Tibetan tea on obesity in rats fed with a hypercaloric high-fat diet revealed by gut microbiology and metabolomics studies. Food Res Int 2023; 165:112520. [PMID: 36869524 DOI: 10.1016/j.foodres.2023.112520] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/03/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023]
Abstract
Ya'an Tibetan Tea (YATT) is a classic dark tea variety fermented with a unique geographical environment and traditional craftsmanship. Previous research indicates that it is beneficial for obesity and related metabolic disorders, but no systematic research currently reveals its precise mechanisms. This work investigated the preventive effect of YATT on obesity and the corresponding potential mechanisms by performing 16S rRNA gene sequencing and metabolomics studies. Our results demonstrated that YATT could significantly improve the body weight and fat deposition in hypercaloric high-fat diet (HFD)-induced obese rats, enhance antioxidant enzymes activity and reduce inflammation, and reverse the liver damage caused by an HFD. Moreover, 16S rRNA analysis showed that YATT could improve the intestinal microbial disorders caused by the HFD by significantly reversing the increase in Firmicutes/Bacteroidetes(F/B)ratio and the relative abundance of flora associated with the HFD, such as unclassified_Lachnospiraceae and Romboutsia flora. In addition, metabolomic analysis of cecum contents identified 121 differential metabolites, of which 19 were common to all experimental rats fed with and without a high-fat diet. Strikingly, 17 of the most prevalent 19 differential metabolites, including Theobromine, L-Valine, and Diisobutyl phthalate, were considerably reversed by YATT. Enrichment analysis of the metabolic pathways of these differential metabolites indicated that Caffeine metabolism, Phenylalanine metabolism, and Lysine degradation are the potential metabolic pathways responsible for the obesity prevention effect of YATT. Collectively, this work revealed that YATT has good potential for obesity prevention and the improvement of intestinal microbial communities, potentially due to the YATT-induced alterations in the metabolic pathways and functional metabolite levels of caffeine and amino acids. These results inform the material basis of YATT for obesity prevention and its mechanisms and provide essential insights for developing YATT as a healthy beverage for obesity prevention.
Collapse
Affiliation(s)
- Ye Yuan
- Department of Pharmacy & Medical Laboratory, Ya'an Polytechnic College, Ya'an 625000, Sichuan, China; College of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Jingliu He
- Department of Pharmacy & Medical Laboratory, Ya'an Polytechnic College, Ya'an 625000, Sichuan, China
| | - Ming Tang
- Queensland University of Technology (QUT), School of Biomedical Sciences, Centre for Genomics and Personalised Health at the Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Ya'an 625000, Sichuan, China
| | - Ting Wei
- Department of Pharmacy & Medical Laboratory, Ya'an Polytechnic College, Ya'an 625000, Sichuan, China
| | - Bin Zhang
- Department of Pharmacy & Medical Laboratory, Ya'an Polytechnic College, Ya'an 625000, Sichuan, China
| | - Dawei Liang
- Department of Pharmacy & Medical Laboratory, Ya'an Polytechnic College, Ya'an 625000, Sichuan, China
| | - Xuqiang Nie
- College of Pharmacy, Zunyi Medical University, Zunyi 563000, China; Queensland University of Technology (QUT), School of Biomedical Sciences, Centre for Genomics and Personalised Health at the Translational Research Institute, Brisbane, QLD 4102, Australia; Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
37
|
Magalhães P, Pereira B, Garcia F, Vilas C, Moreira T, Rosário P. Changes in Student's Breakfast and Snack Consumption during the Second COVID-19 Lockdown in Portugal: A Five-Wave Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3034. [PMID: 36833732 PMCID: PMC9960398 DOI: 10.3390/ijerph20043034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
The circumstances of the COVID-19 lockdown affected many students' life spheres, including their feeding patterns and snack intake. The main goals of the present study were to: (a) analyze the changes in students' breakfast and snacking consumption during lockdown, and (b) analyze changes in the content of the students' snacks using the Healthy Eating Index. This study analyzed data from a sample of 726 students from 36 classes from the late elementary (i.e., fifth grade) through high school (i.e., twelfth grade) from two public schools in the north of Portugal. Data were collected in five moments during the 2020/2021 school year, pre-, during, and post-second lockdown moments. Throughout the five moments, almost 90% of the students ate breakfast, and the majority brought snacks from home to eat in school. Surprisingly, there was an increase in the quality of the snacks consumed during lockdown compared to the pre-lockdown moments (e.g., consumption of more whole and total fruits and less consumption of food with added sugar, saturated fats, refined grains, and fatty acids). Suggestions for healthy behavior promotion will be discussed, such as improving the school food environment and teaching children to prepare healthy lunch boxes.
Collapse
Affiliation(s)
- Paula Magalhães
- School of Psychology, University of Minho, 4710-052 Braga, Portugal
| | | | | | | | | | | |
Collapse
|
38
|
The ‘Whey’ to good health: Whey protein and its beneficial effect on metabolism, gut microbiota and mental health. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2022.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
39
|
Cai J, Shao L, Zhao S, Liu W, Liu P. The effects of three weight management methods on body composition and serum lipids of overweight and obese people. Front Nutr 2022; 9:1073576. [PMID: 36570146 PMCID: PMC9773195 DOI: 10.3389/fnut.2022.1073576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/16/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction Obesity has become a major health problem worldwide. Diet management is an important means of weight loss. The aim of this study was to explore the improvement effect of a calorie-restricted diet (CRD), 5 + 2 intermittent fasting (5 + 2 IF), and high protein diet (HPD) on weight composition and serum lipid level of overweight and obese people in a short period (3 months). Methods Fifty-three participants aged 18-60 years and with body mass index (BMI) ranging from 24 to 35 kg/m2 were screened for inclusion and exclusion criteria and were randomly divided into three groups, i.e., CRD, 5 + 2 IF, and HPD. Basic information, body composition, and venous blood samples were collected at baseline and after 3 months of intervention. Body composition was measured using a body composition analyzer (SK-V9), and serum lipids were assayed using the Roche Cobas e702 automatic biochemistry analysis system. The generalized estimating equation (GEE) was used to analyze and compare the repeated measurements of body composition and levels of serum lipids. Results The results showed that total weight, BMI, body fat mass, muscle mass, visceral fat index, and waist and hip circumferences had significantly decreased in all three groups after 3 months of intervention, and the average weight loss was 3.3 ± 1.14, 4.12 ± 0.05, and 2.62 ± 0.13 kg in CRD, 5 + 2 IF, and HPD groups, respectively. The results of the GEE model indicated that compared with the CRD group, the 5 + 2 IF group showed a more significant decrease in weight (β = -0.272, P < 0.001), BMI (β = -0.091, P < 0.001), body fat mass (β = -0.172, P < 0.001), muscle (β = -0.043, P < 0.001), and visceral fat index (β = -0.019, P < 0.001), however, HPD has more advantages in visceral fat index loss (β = -0.011, P < 0.001) and lean body mass preserve (β = 0.229, P < 0.001). Conclusion Our findings showed that the 5 + 2 IF may be more effective in reducing total weight and body fat, and HPD may be more helpful in preventing lean body mass loss during a short-term weight loss intervention.
Collapse
Affiliation(s)
- Jingjing Cai
- Department of Nutrition, Peking University People’s Hospital, Beijing, China
| | - Lin Shao
- Department of Nutrition, Peking University People’s Hospital, Beijing, China
| | - Shilong Zhao
- Department of Nutrition, Peking University People’s Hospital, Beijing, China
| | - Wen Liu
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, China,*Correspondence: Wen Liu,
| | - Peng Liu
- Department of Nutrition, Peking University People’s Hospital, Beijing, China,Peng Liu,
| |
Collapse
|
40
|
Westmark CJ, Brower J, Held PK. Improving Reproducibility to Enhance Scientific Rigor through Consideration of Mouse Diet. Animals (Basel) 2022; 12:ani12243448. [PMID: 36552368 PMCID: PMC9774320 DOI: 10.3390/ani12243448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Animal husbandry conditions, including rodent diet, constitute an example highlighting the importance of reporting experimental variables to enhance scientific rigor. In the present study, we examine the effects of three common rodent diets including two chows (Purina 5015 and Teklad 2019) and one purified ingredient diet (AIN-76A) on growth anthropometrics (body weight), behavior (nest building, actigraphy, passive avoidance) and blood biomarkers (ketones, glucose, amino acid profiles) in male and female C57BL/6J mice. We find increased body weight in response to the chows compared to purified ingredient diet albeit selectively in male mice. We did not find significantly altered behavior in female or male wild type C57BL/6J mice. However, amino acid profiles changed as an effect of sex and diet. These data contribute to a growing body of knowledge indicating that rodent diet impacts experimental outcomes and needs to be considered in study design and reporting.
Collapse
Affiliation(s)
- Cara J. Westmark
- Department of Neurology, University of Wisconsin, Madison, WI 53706, USA
- Molecular Environmental Toxicology Center, University of Wisconsin, Madison, WI 53706, USA
- Correspondence: ; Tel.: +1-608-262-9730
| | - James Brower
- Wisconsin State Laboratory of Hygiene, University of Wisconsin, Madison, WI 53706, USA
| | - Patrice K. Held
- Wisconsin State Laboratory of Hygiene, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
41
|
Kuwahara M, Tahara Y, Suiko T, Nagamori Y, Shibata S. Effects of Differences of Breakfast Styles, Such as Japanese and Western Breakfasts, on Eating Habits. Nutrients 2022; 14:5143. [PMID: 36501172 PMCID: PMC9740526 DOI: 10.3390/nu14235143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/09/2022] Open
Abstract
A balanced diet and protein source intake are reportedly good for health. However, many people skip breakfast or have a light breakfast. Thus, this study aimed to examine the influence of breakfast styles on eating habits among Japanese workers, including traditional Japanese-style breakfast (JB), a pattern in which Japanese foods are eaten; Japanese-Western-style breakfast (J-W B), a pattern in which Japanese and Western foods are eaten alternately; Western-style breakfast (WB), a pattern in which Western foods are eaten; and cereal-style breakfast (CB), a pattern in which cereal is eaten. We hypothesized that breakfast style may be related to good eating habits. Data from 4274 respondents (67.97% male, 33.03% female, age 48.12 ± 0.19 years), excluding night shift workers and breakfast absentees out of a total of 5535 respondents, were analyzed. The results suggest that Japanese food is linked to the intake of protein sources such as fish, eggs, and soy. Furthermore, it was suggested that Japanese food breakfast is effective for good eating habits, such as not eating irregular amounts of food, not eating snacks, not drinking sweet juices, and having a balanced diet.
Collapse
Affiliation(s)
- Mai Kuwahara
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Yu Tahara
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-0037, Japan
| | - Takahiko Suiko
- Research and Development Headquarters, Lion Corporation, Edogawa, Tokyo 132-0035, Japan
| | - Yuki Nagamori
- Research and Development Headquarters, Lion Corporation, Edogawa, Tokyo 132-0035, Japan
| | - Shigenobu Shibata
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| |
Collapse
|
42
|
Tain YL, Hsu CN. Metabolic Syndrome Programming and Reprogramming: Mechanistic Aspects of Oxidative Stress. Antioxidants (Basel) 2022; 11:2108. [PMID: 36358480 PMCID: PMC9686950 DOI: 10.3390/antiox11112108] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/06/2022] [Accepted: 10/21/2022] [Indexed: 11/22/2023] Open
Abstract
Metabolic syndrome (MetS) is a worldwide public health issue characterized by a set of risk factors for cardiovascular disease. MetS can originate in early life by developmental programming. Increasing evidence suggests that oxidative stress, which is characterized as an imbalance between reactive oxygen species (ROS), nitric oxide (NO), and antioxidant systems, plays a decisive role in MetS programming. Results from human and animal studies indicate that maternal-derived insults induce MetS later in life, accompanied by oxidative stress programming of various organ systems. On the contrary, perinatal use of antioxidants can offset oxidative stress and thereby prevent MetS traits in adult offspring. This review provides an overview of current knowledge about the core mechanisms behind MetS programming, with particular focus on the occurrence of oxidative-stress-related pathogenesis as well as the use of potential oxidative-stress-targeted interventions as a reprogramming strategy to avert MetS of developmental origins. Future clinical studies should provide important proof of concept for the effectiveness of these reprogramming interventions to prevent a MetS epidemic.
Collapse
Affiliation(s)
- You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
43
|
Jian T, Zhou L, Chen Y, Tian Y, Wu R, Tong B, Niu G, Gai Y, Li W, Chen J. Total Sesquiterpenoids of Loquat Leaves Alleviated High-Fat Diet-Induced Obesity by Targeting Fecal Metabolic Profiling and Gut Microbiota Composition. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13279-13288. [PMID: 36198678 DOI: 10.1021/acs.jafc.2c04900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In the present study, we demonstrated that whether the gut microbiota and related metabolites contribute to the therapeutic effect of total sesquiterpenoids (TSs) from loquat leaves on obesity. A 4-week high fat diet was used to induce obesity which was then treated with TSs for another 4 weeks. TSs remarkedly reduced the weight of body and white adipose and the levels of total cholesterol (TC) and triglyceride (TG) in serum. We also found that TSs restored the diversity and richness of gut microbiota. In addition, TSs administration affected the relative abundance of seven key genera. Meanwhile, TSs were determined to affect the metabolism of the host through detecting the metabolites in feces. By applying KEGG and the correlation analysis with gut microbiota, 10 differential metabolites were identified to be the key. The results in this work proved that TSs inhibited obesity by remodeling gut microbiota and related metabolites.
Collapse
Affiliation(s)
- Tunyu Jian
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Lina Zhou
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
- Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yan Chen
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
- Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuwen Tian
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
- Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ruoyun Wu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Bei Tong
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Guanting Niu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Yanan Gai
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Weilin Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Forestry College, Nanjing Forestry University, Nanjing 210037, China
| | - Jian Chen
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
- Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
44
|
Ling CJ, Chen XF, Xu JY, Wang GP, Wang Y, Sun Y, Li YL, Wan ZX, Tong X, Hidayat K, Zhu WZ, Qin LQ, Yang J. Whey protein hydrolysates alleviated weight gain and improved muscle in middle-aged obese mice induced by a high-fat diet. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
45
|
Wu Q, Gao ZJ, Yu X, Wang P. Dietary regulation in health and disease. Signal Transduct Target Ther 2022; 7:252. [PMID: 35871218 PMCID: PMC9308782 DOI: 10.1038/s41392-022-01104-w] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/21/2022] [Accepted: 07/04/2022] [Indexed: 02/08/2023] Open
Abstract
Nutriments have been deemed to impact all physiopathologic processes. Recent evidences in molecular medicine and clinical trials have demonstrated that adequate nutrition treatments are the golden criterion for extending healthspan and delaying ageing in various species such as yeast, drosophila, rodent, primate and human. It emerges to develop the precision-nutrition therapeutics to slow age-related biological processes and treat diverse diseases. However, the nutritive advantages frequently diversify among individuals as well as organs and tissues, which brings challenges in this field. In this review, we summarize the different forms of dietary interventions extensively prescribed for healthspan improvement and disease treatment in pre-clinical or clinical. We discuss the nutrient-mediated mechanisms including metabolic regulators, nutritive metabolism pathways, epigenetic mechanisms and circadian clocks. Comparably, we describe diet-responsive effectors by which dietary interventions influence the endocrinic, immunological, microbial and neural states responsible for improving health and preventing multiple diseases in humans. Furthermore, we expatiate diverse patterns of dietotheroapies, including different fasting, calorie-restricted diet, ketogenic diet, high-fibre diet, plants-based diet, protein restriction diet or diet with specific reduction in amino acids or microelements, potentially affecting the health and morbid states. Altogether, we emphasize the profound nutritional therapy, and highlight the crosstalk among explored mechanisms and critical factors to develop individualized therapeutic approaches and predictors.
Collapse
Affiliation(s)
- Qi Wu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Zhi-Jie Gao
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Xin Yu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Ping Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
46
|
Azzini E, Peluso I, Intorre F, Barnaba L, Venneria E, Foddai MS, Ciarapica D, Maiani F, Raguzzini A, Polito A. Total and Plant Protein Consumption: The Role of Inflammation and Risk of Non-Communicable Disease. Int J Mol Sci 2022; 23:ijms23148008. [PMID: 35887363 PMCID: PMC9318066 DOI: 10.3390/ijms23148008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Inflammatory cytokine levels are associated with Non-Communicable Diseases (NCDs) and can be influenced by a person’s macronutrient profile. This work aims to evaluate the relationship between the compliance with the age-specific recommended protein intake and the levels of inflammatory markers related to the risk of NCDs. Methods: The study participants included 347 participants (119 men and 228 women), ages 18 to 86 years. Cardio-metabolic risk evaluations, including an assessment of the prevalence of Metabolic Syndrome, were performed. Leptin, IL-15, IL-6, and TNF-α levels were measured. Results: The adequacy of the total protein (TP) intake was lower in old people compared to individuals aged <60 years, and only few volunteers consumed the suggested 50% plant protein (PP) for a healthy and sustainable diet. A lower risk of NCDs with a PP consumption above at least 40% was observed only in old individuals. A differential effect on TNF-α and IL-6 was observed for both TP and PP intake by gender and age class, whereas for leptin and IL-15 only significant interactions among sex and the class of age were found. Conclusion: Although our data suggest that consuming more than 40% of PP can reduce the risk of NCDs, the effect of gender differences on cytokine levels should be considered in larger studies.
Collapse
|
47
|
Metabolic Syndrome: Lessons from Rodent and Drosophila Models. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5850507. [PMID: 35782067 PMCID: PMC9242782 DOI: 10.1155/2022/5850507] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 05/20/2022] [Accepted: 06/08/2022] [Indexed: 11/18/2022]
Abstract
Overweight and obesity are health conditions tightly related to a number of metabolic complications collectively called “metabolic syndrome” (MetS). Clinical diagnosis of MetS includes the presence of the increased waist circumference or so-called abdominal obesity, reduced high density lipoprotein level, elevated blood pressure, and increased blood glucose and triacylglyceride levels. Different approaches, including diet-induced and genetically induced animal models, have been developed to study MetS pathogenesis and underlying mechanisms. Studies of metabolic disturbances in the fruit fly Drosophila and mammalian models along with humans have demonstrated that fruit flies and small mammalian models like rats and mice have many similarities with humans in basic metabolic functions and share many molecular mechanisms which regulate these metabolic processes. In this paper, we describe diet-induced, chemically and genetically induced animal models of the MetS. The advantages and limitations of rodent and Drosophila models of MetS and obesity are also analyzed.
Collapse
|
48
|
Chailurkit LO, Chanprasertyothin S, Thongmung N, Sritara P, Ongphiphadhanakul B. Targeted metabolomics suggests a probable role of the FTO gene in the kynurenine pathway in prediabetes. PeerJ 2022; 10:e13612. [PMID: 35757166 PMCID: PMC9231341 DOI: 10.7717/peerj.13612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/29/2022] [Indexed: 01/17/2023] Open
Abstract
Background Genome-wide association studies have identified the alpha-ketoglutarate dependent dioxygenase gene (FTO) as the first susceptibility gene of obesity. In the present study, we utilized targeted metabolomics in an attempt to further elucidate mechanisms underlying the action of the FTO gene. Methods This study was part of a health survey of employees of the Electricity Generating Authority of Thailand (n = 79, 10 female and 69 male). Targeted metabolomics was performed by liquid chromatography-mass spectrometry using Biocrates AbsoluteIDQ-p180 kit. Genotyping of FTO rs9939609 was performed by real-time PCR (TaqMan™ MGB probes). Results Using OPLS-DA variable importance in projection (VIP), tryptophan was found to be among the metabolites with the 10 highest VIP scores. Pearson's correlation analysis showed that kynurenine and tryptophan were positively correlated only in subjects with the rs9939609 A allele (n = 32, r = 0.56, p < 0.001) and the correlation coefficients were significantly higher in subjects having the A allele than in those without the A allele (p < 0.05). Moreover, the kynurenine/tryptophan ratio was significantly associated with the presence of the A allele, independently of body mass index and sex. Conclusions The FTO gene is likely to influences the conversion of tryptophan to kynurenine.
Collapse
|
49
|
Binou P, Yanni AE, Kartsioti K, Barmpagianni A, Konstantopoulos P, Karathanos VT, Kokkinos A. Wheat Biscuits Enriched with Plant-Based Protein Contribute to Weight Loss and Beneficial Metabolic Effects in Subjects with Overweight/Obesity. Nutrients 2022; 14:nu14122516. [PMID: 35745249 PMCID: PMC9231350 DOI: 10.3390/nu14122516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/08/2022] [Accepted: 06/14/2022] [Indexed: 12/23/2022] Open
Abstract
The present study aimed to assess the impact of daily consumption of a snack fortified with plant proteins with high content in amino acids with appetite regulating properties (BCAAs and L-arginine), as part of a dietary intervention, on weight loss. Seventy adults without diabetes (26 male, 44 female) and with overweight/obesity participated in a 12-week restricted dietary intervention and were randomized to either a control or an intervention group, consuming daily 70 g of conventional wheat biscuits (CB) or an isocaloric amount of wheat biscuits enriched with plant proteins (PB) originating from legumes and seeds, respectively. Anthropometric characteristics were measured and venous blood samples were collected at baseline and at the end of the intervention. Decreases in body weight, body fat mass and waist circumference were observed in both groups. Participants in the intervention group experienced greater weight loss (7.6 ± 2.7 vs. 6.2 ± 2.7%, p = 0.025) and marginally significant larger decrease in body fat mass (4.9 ± 2.2 vs. 3.9 ± 2.4 kg, p = 0.059). A moderate reduction in IL-1β levels (p = 0.081), a significantly higher decrease in TNF-α levels (p < 0.001) and a marginally significant greater leptin decrease (p = 0.066) in subjects of the PB group were noticed. Greater reductions in caloric and carbohydrate intake and a trend towards a higher decrease in fat intake were also observed in participants of this group. Incorporation of plant-based proteins with high content in amino acids with appetite-regulating properties in wheat biscuits may contribute to greater weight loss and improvement of metabolic parameters in subjects who are overweight or obese. Protein enrichment of snacks offers a beneficial qualitative manipulation that could be successfully incorporated in a diet plan.
Collapse
Affiliation(s)
- Panagiota Binou
- Laboratory of Chemistry-Biochemistry-Physical Chemistry of Foods, Department of Nutrition and Dietetics, Harokopio University of Athens, 17671 Athens, Greece; (P.B.); (K.K.); (V.T.K.)
| | - Amalia E. Yanni
- Laboratory of Chemistry-Biochemistry-Physical Chemistry of Foods, Department of Nutrition and Dietetics, Harokopio University of Athens, 17671 Athens, Greece; (P.B.); (K.K.); (V.T.K.)
- Correspondence: ; Tel.: +30-2109549174
| | - Klio Kartsioti
- Laboratory of Chemistry-Biochemistry-Physical Chemistry of Foods, Department of Nutrition and Dietetics, Harokopio University of Athens, 17671 Athens, Greece; (P.B.); (K.K.); (V.T.K.)
| | - Aikaterini Barmpagianni
- 1st Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.B.); (A.K.)
| | - Panagiotis Konstantopoulos
- Laboratory of Experimental Surgery and Surgery Research, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Vaios T. Karathanos
- Laboratory of Chemistry-Biochemistry-Physical Chemistry of Foods, Department of Nutrition and Dietetics, Harokopio University of Athens, 17671 Athens, Greece; (P.B.); (K.K.); (V.T.K.)
| | - Alexander Kokkinos
- 1st Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.B.); (A.K.)
| |
Collapse
|
50
|
Zhang F, Yang M, Xu J, Hu Y, Gao R, Huang K, He X. Coreopsis tinctoria and Its Flavonoids Ameliorate Hyperglycemia in Obese Mice Induced by High-Fat Diet. Nutrients 2022; 14:nu14061160. [PMID: 35334817 PMCID: PMC8953923 DOI: 10.3390/nu14061160] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 02/05/2023] Open
Abstract
With the prevalence of obesity all over the world, human health has been seriously affected. In particular, the number of diabetic and cardiovascular diseases has increased dramatically. The herb Coreopsis tinctoria (C. tinctoria) shows diverse biological and pharmacological activities, which are mainly attributed to its flavonoids. However, the specific functional substances that play an active role in C. tinctoria remain unclear, and its mechanism has not been deeply explored. In this study, we established a diet-induced obesity (DIO) mice model and treated mice with C. tinctoria or kaempferol for 8 weeks. The results showed that both C. tinctoria and kaempferol lowered body weight, reduced fasting blood glucose, and improved glucose tolerance and insulin resistance to alleviate obesity in DIO mice. The level of hemoglobin A1c also decreased significantly after treatment with C. tinctoria and kaempferol. Moreover, the administration of C. tinctoria and kaempferol also restored gut microbiota imbalance and significantly increased Desulfovibrio and Butyricimonas levels, which have been reported to improve glucose metabolism and intestinal health. In general, our study shows that C. tinctoria is a potential hypoglycemic substance for obesity and may reduce blood glucose by regulating gut microbiota, and that kaempferol is one of the effective substances of C. tinctoria.
Collapse
Affiliation(s)
- Feng Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (F.Z.); (M.Y.); (J.X.); (Y.H.); (R.G.); (K.H.)
| | - Minglan Yang
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (F.Z.); (M.Y.); (J.X.); (Y.H.); (R.G.); (K.H.)
- Department of Clinical Nutrition, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jia Xu
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (F.Z.); (M.Y.); (J.X.); (Y.H.); (R.G.); (K.H.)
| | - Yanzhou Hu
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (F.Z.); (M.Y.); (J.X.); (Y.H.); (R.G.); (K.H.)
| | - Ruxin Gao
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (F.Z.); (M.Y.); (J.X.); (Y.H.); (R.G.); (K.H.)
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (F.Z.); (M.Y.); (J.X.); (Y.H.); (R.G.); (K.H.)
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing 100083, China
| | - Xiaoyun He
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (F.Z.); (M.Y.); (J.X.); (Y.H.); (R.G.); (K.H.)
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing 100083, China
- Correspondence:
| |
Collapse
|