1
|
Boccaccini A, Cimini S, Kazmi H, Lepri A, Longo C, Lorrai R, Vittorioso P. When Size Matters: New Insights on How Seed Size Can Contribute to the Early Stages of Plant Development. PLANTS (BASEL, SWITZERLAND) 2024; 13:1793. [PMID: 38999633 PMCID: PMC11244240 DOI: 10.3390/plants13131793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024]
Abstract
The seed habit is the most complex and successful method of sexual reproduction in vascular plants. It represents a remarkable moment in the evolution of plants that afterward spread on land. In particular, seed size had a pivotal role in evolutionary success and agronomic traits, especially in the field of crop domestication. Given that crop seeds constitute one of the primary products for consumption, it follows that seed size represents a fundamental determinant of crop yield. This adaptative feature is strictly controlled by genetic traits from both maternal and zygotic tissues, although seed development and growth are also affected by environmental cues. Despite being a highly exploited topic for both basic and applied research, there are still many issues to be elucidated for developmental biology as well as for agronomic science. This review addresses a number of open questions related to cues that influence seed growth and size and how they influence seed germination. Moreover, new insights on the genetic-molecular control of this adaptive trait are presented.
Collapse
Affiliation(s)
- Alessandra Boccaccini
- Department of Science and Technology for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, via Álvaro del Portillo, 21, 00128 Rome, Italy; (A.B.); (S.C.)
| | - Sara Cimini
- Department of Science and Technology for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, via Álvaro del Portillo, 21, 00128 Rome, Italy; (A.B.); (S.C.)
| | - Hira Kazmi
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (H.K.); (A.L.); (C.L.); (R.L.)
| | - Andrea Lepri
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (H.K.); (A.L.); (C.L.); (R.L.)
| | - Chiara Longo
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (H.K.); (A.L.); (C.L.); (R.L.)
| | - Riccardo Lorrai
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (H.K.); (A.L.); (C.L.); (R.L.)
| | - Paola Vittorioso
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (H.K.); (A.L.); (C.L.); (R.L.)
| |
Collapse
|
2
|
Wen Y, Hu P, Fang Y, Tan Y, Wang Y, Wu H, Wang J, Wu K, Chai B, Zhu L, Zhang G, Gao Z, Ren D, Zeng D, Shen L, Dong G, Zhang Q, Li Q, Xiong G, Xue D, Qian Q, Hu J. GW9 determines grain size and floral organ identity in rice. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:915-928. [PMID: 37983630 PMCID: PMC10955487 DOI: 10.1111/pbi.14234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 09/22/2023] [Accepted: 11/04/2023] [Indexed: 11/22/2023]
Abstract
Grain weight is an important determinant of grain yield. However, the underlying regulatory mechanisms for grain size remain to be fully elucidated. Here, we identify a rice mutant grain weight 9 (gw9), which exhibits larger and heavier grains due to excessive cell proliferation and expansion in spikelet hull. GW9 encodes a nucleus-localized protein containing both C2H2 zinc finger (C2H2-ZnF) and VRN2-EMF2-FIS2-SUZ12 (VEFS) domains, serving as a negative regulator of grain size and weight. Interestingly, the non-frameshift mutations in C2H2-ZnF domain result in increased plant height and larger grain size, whereas frameshift mutations in both C2H2-ZnF and VEFS domains lead to dwarf and malformed spikelet. These observations indicated the dual functions of GW9 in regulating grain size and floral organ identity through the C2H2-ZnF and VEFS domains, respectively. Further investigation revealed the interaction between GW9 and the E3 ubiquitin ligase protein GW2, with GW9 being the target of ubiquitination by GW2. Genetic analyses suggest that GW9 and GW2 function in a coordinated pathway controlling grain size and weight. Our findings provide a novel insight into the functional role of GW9 in the regulation of grain size and weight, offering potential molecular strategies for improving rice yield.
Collapse
Affiliation(s)
- Yi Wen
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhouChina
| | - Peng Hu
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhouChina
| | - Yunxia Fang
- College of Life and Environmental SciencesHangzhou Normal UniversityHangzhouChina
| | - Yiqing Tan
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhouChina
- Plant Phenomics Research CenterNanjing Agricultural UniversityNanjingChina
| | - Yueying Wang
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhouChina
| | - Hao Wu
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhouChina
| | - Junge Wang
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhouChina
| | - Kaixiong Wu
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhouChina
| | - Bingze Chai
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhouChina
| | - Li Zhu
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhouChina
| | - Guangheng Zhang
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhouChina
| | - Zhenyu Gao
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhouChina
| | - Deyong Ren
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhouChina
| | - Dali Zeng
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhouChina
| | - Lan Shen
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhouChina
| | - Guojun Dong
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhouChina
| | - Qiang Zhang
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhouChina
| | - Qing Li
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhouChina
| | - Guosheng Xiong
- Plant Phenomics Research CenterNanjing Agricultural UniversityNanjingChina
| | - Dawei Xue
- College of Life and Environmental SciencesHangzhou Normal UniversityHangzhouChina
| | - Qian Qian
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhouChina
| | - Jiang Hu
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhouChina
| |
Collapse
|
3
|
Liu C, Zhao H, Li J, Cao Z, Deng B, Liu X, Qin G. Identification of Candidate Expansin Genes Associated with Seed Weight in Pomegranate ( Punica granatum L.). Genes (Basel) 2024; 15:212. [PMID: 38397202 PMCID: PMC10888256 DOI: 10.3390/genes15020212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Seed weight is an important target trait in pomegranate breeding and culture. Expansins act by loosening plant cell walls and cellulosic materials, permitting turgor-driven cell enlargement. However, the role of expansin genes (EXPs) in pomegranate seed weight remains elusive. A total of 29 PgrEXPs were identified in the 'Dabenzi' genome. These genes were classified into four subfamilies and 14 subgroups, including 22 PgrEXPAs, 5 PgrEXPBs, 1 PgrEXPLA, and 1 PgrEXPLB. Transcriptome analysis of PgrEXPs in different tissues (root, leaf, flower, peel, and seed testa) in 'Dabenzi', and the seed testa of the hard-seeded pomegranate cultivar 'Dabenzi' and soft-seeded cultivar 'Tunisia' at three development stages showed that three PgrEXPs (PgrEXPA11, PgrEXPA22, PgrEXPA6) were highly expressed throughout seed development, especially in the sarcotesta. SNP/Indel markers of these PgrEXPs were developed and used to genotype 101 pomegranate accessions. The association of polymorphic PgrEXPs with seed weight-related traits (100-seed weight, 100-kernel weight, 100-sarcotesta weight, and the percentage of 100-sarcotesta to 100-seed weight) were analyzed. PgrEXP22 was significantly associated with 100-seed weight and 100-sarcotesta weight and is a likely candidate for regulating seed weight and sarcotesta development in particular. This study provides an effective tool for the genetic improvement of seed weight in pomegranate breeding programs.
Collapse
Affiliation(s)
- Chunyan Liu
- Key Laboratory of Horticultural Crop Germplasma Innovation and Utilisation (Co-Construction by Ministry and Province), Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, China; (C.L.); (H.Z.); (J.L.); (Z.C.); (X.L.)
- Key Laboratory of Genetic Improvement and Eco-Physiology of Horticultural Crops, Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Haoyu Zhao
- Key Laboratory of Horticultural Crop Germplasma Innovation and Utilisation (Co-Construction by Ministry and Province), Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, China; (C.L.); (H.Z.); (J.L.); (Z.C.); (X.L.)
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China;
| | - Jiyu Li
- Key Laboratory of Horticultural Crop Germplasma Innovation and Utilisation (Co-Construction by Ministry and Province), Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, China; (C.L.); (H.Z.); (J.L.); (Z.C.); (X.L.)
- Key Laboratory of Genetic Improvement and Eco-Physiology of Horticultural Crops, Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Zhen Cao
- Key Laboratory of Horticultural Crop Germplasma Innovation and Utilisation (Co-Construction by Ministry and Province), Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, China; (C.L.); (H.Z.); (J.L.); (Z.C.); (X.L.)
- Key Laboratory of Genetic Improvement and Eco-Physiology of Horticultural Crops, Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Bo Deng
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China;
| | - Xin Liu
- Key Laboratory of Horticultural Crop Germplasma Innovation and Utilisation (Co-Construction by Ministry and Province), Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, China; (C.L.); (H.Z.); (J.L.); (Z.C.); (X.L.)
- Key Laboratory of Genetic Improvement and Eco-Physiology of Horticultural Crops, Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Gaihua Qin
- Key Laboratory of Horticultural Crop Germplasma Innovation and Utilisation (Co-Construction by Ministry and Province), Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, China; (C.L.); (H.Z.); (J.L.); (Z.C.); (X.L.)
- Key Laboratory of Genetic Improvement and Eco-Physiology of Horticultural Crops, Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| |
Collapse
|
4
|
Li M, Liu T, Cao R, Cao Q, Tong W, Song W. Evolution and Expression of the Expansin Genes in Emmer Wheat. Int J Mol Sci 2023; 24:14120. [PMID: 37762423 PMCID: PMC10531347 DOI: 10.3390/ijms241814120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Expansin proteins, a crucial class of intracellular proteins, are known to play a vital role in facilitating processes like cell wall relaxation and cell growth. Recent discoveries have revealed that expansin proteins also have significant functions in plant growth, development, and response to resistance. However, the expansin gene family, particularly in emmer wheat, has not been thoroughly studied, particularly in terms of evolution. In this study, we identified 63 TdEXPs and 49 TtEXPs from the latest genome versions of wild emmer wheat (WEW) and durum wheat (DW), respectively. The physicochemical properties of the encoded expansin proteins exhibited minimal differences, and the gene structures remained relatively conserved. Phylogenetic analysis categorized the proteins into three subfamilies, namely EXPA, EXPB, and EXLA, in addition to the EXLB subfamily. Furthermore, codon preference analysis revealed an increased usage frequency of the nucleotide "T" in expansin proteins throughout the evolution of WEW and DW. Collinearity analysis demonstrated higher orthology between the expansin proteins of WEW and DW, with a Ka/Ks ratio ranging from 0.4173 to 0.9494, indicating purifying selection during the evolution from WEW to DW. Haplotype analysis of the expansin gene family identified five genes in which certain haplotypes gradually became dominant over the course of evolution, enabling adaptation for survival and improvement. Expression pattern analysis indicated tissue-specific expression of expansin genes in emmer wheat, and some of these genes were quantified through qRT-PCR to assess their response to salt stress. These comprehensive findings present the first systematic analysis of the expansin protein gene family during the evolution from WEW to DW, providing a foundation for further understanding the functions and biological roles of expansin protein genes in emmer wheat.
Collapse
Affiliation(s)
| | | | | | | | - Wei Tong
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712100, China; (M.L.); (T.L.); (R.C.); (Q.C.)
| | - Weining Song
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712100, China; (M.L.); (T.L.); (R.C.); (Q.C.)
| |
Collapse
|
5
|
Varshney V, Majee M. Emerging roles of the ubiquitin-proteasome pathway in enhancing crop yield by optimizing seed agronomic traits. PLANT CELL REPORTS 2022; 41:1805-1826. [PMID: 35678849 DOI: 10.1007/s00299-022-02884-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Ubiquitin-proteasome pathway has the potential to modulate crop productivity by influencing agronomic traits. Being sessile, the plant often uses the ubiquitin-proteasome pathway to maintain the stability of different regulatory proteins to survive in an ever-changing environment. The ubiquitin system influences plant reproduction, growth, development, responses to the environment, and processes that control critical agronomic traits. E3 ligases are the major players in this pathway, and they are responsible for recognizing and tagging the targets/substrates. Plants have a variety of E3 ubiquitin ligases, whose functions have been studied extensively, ranging from plant growth to defense strategies. Here we summarize three agronomic traits influenced by ubiquitination: seed size and weight, seed germination, and accessory plant agronomic traits particularly panicle architecture, tillering in rice, and tassels branch number in maize. This review article highlights some recent progress on how the ubiquitin system influences the stability/modification of proteins that determine seed agronomic properties like size, weight, germination and filling, and ultimately agricultural productivity and quality. Further research into the molecular basis of the aforementioned processes might lead to the identification of genes that could be modified or selected for crop development. Likewise, we also propose advances and future perspectives in this regard.
Collapse
Affiliation(s)
- Vishal Varshney
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Manoj Majee
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
6
|
Das AK, Hao L. Functional characterization of ZmbHLH121, a bHLH transcription factor, focusing on Zea mays kernel development. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
7
|
Jiang L, Liu C, Fan Y, Wu Q, Ye X, Li Q, Wan Y, Sun Y, Zou L, Xiang D, Lv Z. Dynamic transcriptome analysis suggests the key genes regulating seed development and filling in Tartary buckwheat (Fagopyrum tataricum Garetn.). Front Genet 2022; 13:990412. [PMID: 36072657 PMCID: PMC9441574 DOI: 10.3389/fgene.2022.990412] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Tartary buckwheat is highly attractive for the richness of nutrients and quality, yet post-embryonic seed abortion greatly halts the yield. Seed development is crucial for determining grain yield, whereas the molecular basis and regulatory network of Tartary buckwheat seed development and filling is not well understood at present. Here, we assessed the transcriptional dynamics of filling stage Tartary buckwheat seeds at three developmental stages by RNA sequencing. Among the 4249 differentially expressed genes (DEGs), genes related to seed development were identified. Specifically, 88 phytohormone biosynthesis signaling genes, 309 TFs, and 16 expansin genes participating in cell enlargement, 37 structural genes involved in starch biosynthesis represented significant variation and were candidate key seed development genes. Cis-element enrichment analysis indicated that the promoters of differentially expressed expansin genes and starch biosynthesis genes are rich of hormone-responsive (ABA-, AUX-, ET-, and JA-), and seed growth-related (MYB, MYC and WRKY) binding sites. The expansin DEGs showed strong correlations with DEGs in phytohormone pathways and transcription factors (TFs). In total, phytohormone ABA, AUX, ET, BR and CTK, and related TFs could substantially regulate seed development in Tartary buckwheat through targeting downstream expansin genes and structural starch biosynthetic genes. This transcriptome data could provide a theoretical basis for improving yield of Tartary buckwheat.
Collapse
Affiliation(s)
- Liangzhen Jiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Changying Liu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yu Fan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Qi Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Xueling Ye
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yan Wan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yanxia Sun
- College of Tourism and Culture Industry, Chengdu University, Chengdu, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Dabing Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, Chengdu, China
- *Correspondence: Dabing Xiang, ; Zhibin Lv,
| | - Zhibin Lv
- Department of Medical Instruments and Information, College of Biomedical Engineering, Sichuan University, Chengdu, China
- *Correspondence: Dabing Xiang, ; Zhibin Lv,
| |
Collapse
|
8
|
Overexpression of AcEXPA23 Promotes Lateral Root Development in Kiwifruit. Int J Mol Sci 2022; 23:ijms23148026. [PMID: 35887372 PMCID: PMC9317778 DOI: 10.3390/ijms23148026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/15/2022] [Accepted: 07/15/2022] [Indexed: 12/12/2022] Open
Abstract
Kiwifruit is loved by consumers for its unique taste and rich vitamin C content. Kiwifruit are very sensitive to adverse soil environments owing to fleshy and shallow roots, which limits the uptake of water and nutrients into the root system, resulting in low yield and poor fruit quality. Lateral roots are the key organs for plants to absorb water and nutrients. Improving water and fertilizer use efficiency by promoting lateral root development is a feasible method to improve yield and quality. Expansin proteins plays a major role in lateral root growth; hence, it is important to identify expansin protein family members, screen key genes, and explore gene function in root development. In this study, 41 expansin genes were identified based on the genome of kiwifruit (‘Hongyang’, Actinidia chinensis). By clustering with the Arabidopsis thaliana expansin protein family, the 41 AcExpansin proteins were divided into four subfamilies. The AcExpansin protein family was further analysed by bioinformatics methods and was shown to be evolutionarily diverse and conserved at the DNA and protein levels. Based on previous transcriptome data and quantitative real-time PCR assays, we screened the candidate gene AcEXPA23. Overexpression of AcEXPA23 in kiwifruit increased the number of kiwifruit lateral roots.
Collapse
|
9
|
Verma SK, Mittal S, Gayacharan, Wankhede DP, Parida SK, Chattopadhyay D, Prasad G, Mishra DC, Joshi DC, Singh M, Singh K, Singh AK. Transcriptome Analysis Reveals Key Pathways and Candidate Genes Controlling Seed Development and Size in Ricebean ( Vigna umbellata). Front Genet 2022; 12:791355. [PMID: 35126460 PMCID: PMC8815620 DOI: 10.3389/fgene.2021.791355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/23/2021] [Indexed: 11/27/2022] Open
Abstract
Ricebean (Vigna umbellata) is a lesser known pulse with well-recognized potential. Recently, it has emerged as a legume with endowed nutritional potential because of high concentration of quality protein and other vital nutrients in its seeds. However, the genes and pathways involved in regulating seed development and size are not understood in this crop. In our study, we analyzed the transcriptome of two genotypes with contrasting grain size (IC426787: large seeded and IC552985: small seeded) at two different time points, namely, 5 and 10 days post-anthesis (DPA). The bold seeded genotype across the time points (B5_B10) revealed 6,928 differentially expressed genes (DEGs), whereas the small seeded genotype across the time point (S5_S10) contributed to 14,544 DEGs. We have also identified several candidate genes for seed development-related traits like seed size and 100-seed weight. On the basis of similarity search and domain analysis, some candidate genes (PHO1, cytokinin dehydrogenase, A-type cytokinin, and ARR response negative regulator) related to 100-seed weight and seed size showed downregulation in the small seeded genotype. The MapMan and KEGG analysis confirmed that auxin and cytokinin pathways varied in both the contrasting genotypes and can therefore be the regulators of the seed size and other seed development-related traits in ricebeans. A total of 51 genes encoding SCF TIR1/AFB , Aux/IAA, ARFs, E3 ubiquitin transferase enzyme, and 26S proteasome showing distinct expression dynamics in bold and small genotypes were also identified. We have also validated randomly selected SSR markers in eight accessions of the Vigna species (V. umbellata: 6; Vigna radiata: 1; and Vigna mungo: 1). Cross-species transferability pattern of ricebean-derived SSR markers was higher in V. radiata (73.08%) than V. mungo (50%). To the best of our knowledge, this is the first transcriptomic study conducted in this crop to understand the molecular basis of any trait. It would provide us a comprehensive understanding of the complex transcriptome dynamics during the seed development and gene regulatory mechanism of the seed size determination in ricebeans.
Collapse
Affiliation(s)
| | - Shikha Mittal
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Gayacharan
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | | | | | | | - Geeta Prasad
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | | | | | - Mohar Singh
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Kuldeep Singh
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Amit Kumar Singh
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| |
Collapse
|
10
|
Calderini DF, Castillo FM, Arenas‐M A, Molero G, Reynolds MP, Craze M, Bowden S, Milner MJ, Wallington EJ, Dowle A, Gomez LD, McQueen‐Mason SJ. Overcoming the trade-off between grain weight and number in wheat by the ectopic expression of expansin in developing seeds leads to increased yield potential. THE NEW PHYTOLOGIST 2021; 230:629-640. [PMID: 33124693 PMCID: PMC8048851 DOI: 10.1111/nph.17048] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/21/2020] [Indexed: 05/19/2023]
Abstract
Wheat is the most widely grown crop globally, providing 20% of all human calories and protein. Achieving step changes in genetic yield potential is crucial to ensure food security, but efforts are thwarted by an apparent trade-off between grain size and number. Expansins are proteins that play important roles in plant growth by enhancing stress relaxation in the cell wall, which constrains cell expansion. Here, we describe how targeted overexpression of an α-expansin in early developing wheat seeds leads to a significant increase in grain size without a negative effect on grain number, resulting in a yield boost under field conditions. The best-performing transgenic line yielded 12.3% higher average grain weight than the control, and this translated to an increase in grain yield of 11.3% in field experiments using an agronomically appropriate plant density. This targeted transgenic approach provides an opportunity to overcome a common bottleneck to yield improvement across many crops.
Collapse
Affiliation(s)
- Daniel F. Calderini
- Institute of Plant Production and ProtectionUniversidad Austral de ChileCampus Isla TejaValdivia5090000Chile
| | - Francisca M. Castillo
- Institute of Plant Production and ProtectionUniversidad Austral de ChileCampus Isla TejaValdivia5090000Chile
- Institute of Biochemistry and MicrobiologyFaculty of SciencesUniversidad Austral de ChileValdivia5090000Chile
| | - Anita Arenas‐M
- Institute of Plant Production and ProtectionUniversidad Austral de ChileCampus Isla TejaValdivia5090000Chile
- Institute of Biochemistry and MicrobiologyFaculty of SciencesUniversidad Austral de ChileValdivia5090000Chile
| | - Gemma Molero
- International Maize and Wheat Improvement Center (CIMMYT)El BatánTexcocoCP 56237Mexico
| | - Matthew P. Reynolds
- International Maize and Wheat Improvement Center (CIMMYT)El BatánTexcocoCP 56237Mexico
| | | | | | | | | | - Adam Dowle
- CNAPBiology DepartmentUniversity of YorkWentworth Way, HeslingtonYorkYO10 5YWUK
| | - Leonardo D. Gomez
- CNAPBiology DepartmentUniversity of YorkWentworth Way, HeslingtonYorkYO10 5YWUK
| | | |
Collapse
|
11
|
Ding Y, Jin Y, He K, Yi Z, Tan L, Liu L, Tang M, Du A, Fang Y, Zhao H. Low Nitrogen Fertilization Alter Rhizosphere Microorganism Community and Improve Sweetpotato Yield in a Nitrogen-Deficient Rocky Soil. Front Microbiol 2020; 11:678. [PMID: 32351491 PMCID: PMC7174733 DOI: 10.3389/fmicb.2020.00678] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/24/2020] [Indexed: 12/22/2022] Open
Abstract
Sweetpotato can be cultivated in the reclaimed rocky soil in Sichuan Basin, China, which benefits from the release of mineral nutrients in the rocky soil by microorganisms. Shortage of nitrogen (N) in the rocky soil limits sweetpotato yield, which can be compensated through N fertilization. Whereas high N fertilization inhibits biological N fixation and induces unintended environmental consequences. However, the effect of low N fertilization on microorganism community and sweetpotato yield in the N-deficient rocky soil is still unclear. We added a low level of 1.5 g urea/m2 to a rocky soil cultivated with sweetpotato, and measured rocky soil physiological and biochemical properties, rhizosphere microbial diversity, sweetpotato physiological properties and transcriptome. When cultivating sweetpotato in the rocky soil, low N fertilization (1.5 g urea/m2) not only improved total N (TN) and available N (AN) in the rocky soil, but also increased available phosphorus (AP), available potassium (AK), and nitrogenase and urease activity. Interestingly, although low N fertilization could reduce bacterial diversity through affecting sweetpotato root exudates and rocky soil properties, the relative abundance of P and K-solubilizing bacteria, N-fixing and urease-producing bacteria increased under low N fertilization, and the relative abundance of plant pathogens decreased. Furthermore, low N fertilization increased the phytohormones, such as zeatin riboside, abscisic acid, and methyl jasmonate contents in sweetpotato root. Those increases were consistent with our transcriptome findings: the inhibition of the lignin synthesis, the promotion of the starch synthesis, and the upregulated expression of Expansin, thus resulting in promoting the formation of tuberous roots and further increasing the sweetpotato yield by half, up to 3.3 kg/m2. This study indicated that low N fertilization in the N-deficient rocky soil improved this soil quality through affecting microorganism community, and further increased sweetpotato yield under regulation of phytohormones pathway.
Collapse
Affiliation(s)
- Yanqiang Ding
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China.,Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yanling Jin
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Kaize He
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Zhuolin Yi
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Li Tan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Lisha Liu
- Sweetpotato Institute, Nanchong Academy of Agricultural Sciences, Nanchong, China
| | - Mingshuang Tang
- Sweetpotato Institute, Nanchong Academy of Agricultural Sciences, Nanchong, China
| | - Anping Du
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Yang Fang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Hai Zhao
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| |
Collapse
|
12
|
Jadamba C, Kang K, Paek NC, Lee SI, Yoo SC. Overexpression of Rice Expansin7 ( Osexpa7) Confers Enhanced Tolerance to Salt Stress in Rice. Int J Mol Sci 2020; 21:ijms21020454. [PMID: 31936829 PMCID: PMC7013816 DOI: 10.3390/ijms21020454] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 01/03/2023] Open
Abstract
Expansins are key regulators of cell-wall extension and are also involved in the abiotic stress response. In this study, we evaluated the function of OsEXPA7 involved in salt stress tolerance. Phenotypic analysis showed that OsEXPA7 overexpression remarkably enhanced tolerance to salt stress. OsEXPA7 was highly expressed in the shoot apical meristem, root, and the leaf sheath. Promoter activity of OsEXPA7:GUS was mainly observed in vascular tissues of roots and leaves. Morphological analysis revealed structural alterations in the root and leaf vasculature of OsEXPA7 overexpressing (OX) lines. OsEXPA7 overexpression resulted in decreased sodium ion (Na+) and accumulated potassium ion (K+) in the leaves and roots. Under salt stress, higher antioxidant activity was also observed in the OsEXPA7-OX lines, as indicated by lower reactive oxygen species (ROS) accumulation and increased antioxidant activity, when compared with the wild-type (WT) plants. In addition, transcriptional analysis using RNA-seq and RT-PCR revealed that genes involved in cation exchange, auxin signaling, cell-wall modification, and transcription were differentially expressed between the OX and WT lines. Notably, salt overly sensitive 1, which is a sodium transporter, was highly upregulated in the OX lines. These results suggest that OsEXPA7 plays an important role in increasing salt stress tolerance by coordinating sodium transport, ROS scavenging, and cell-wall loosening.
Collapse
Affiliation(s)
- Chuluuntsetseg Jadamba
- Crop Molecular Breeding Laboratory, Department of Plant Life and Environmental Science, Hankyong National University, Jungangro, Anseong-si, Gyeonggi-do 17579, Korea;
| | - Kiyoon Kang
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea; (K.K.); (N.-C.P.)
| | - Nam-Chon Paek
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea; (K.K.); (N.-C.P.)
| | - Soo In Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences (NAS), RDA, Jeonju 54874, Korea
- Correspondence: (S.I.L.); (S.-C.Y.)
| | - Soo-Cheul Yoo
- Crop Molecular Breeding Laboratory, Department of Plant Life and Environmental Science, Hankyong National University, Jungangro, Anseong-si, Gyeonggi-do 17579, Korea;
- Correspondence: (S.I.L.); (S.-C.Y.)
| |
Collapse
|
13
|
Feng X, Xu Y, Peng L, Yu X, Zhao Q, Feng S, Zhao Z, Li F, Hu B. TaEXPB7-B, a β-expansin gene involved in low-temperature stress and abscisic acid responses, promotes growth and cold resistance in Arabidopsis thaliana. JOURNAL OF PLANT PHYSIOLOGY 2019; 240:153004. [PMID: 31279220 DOI: 10.1016/j.jplph.2019.153004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 05/15/2023]
Abstract
Low temperature is one of the primary causes of economic loss in agricultural production, and in this regard, expansin proteins are known to play important roles in plant growth and responses to various abiotic stresses and plant hormones. In order to elucidate the roles of expansin genes in the response of Dongnongdongmai 2 (D2), a highly cold-resistant winter wheat variety, to low-temperature stress, we exposed plants to a temperature of 4℃ and analysed the transcriptome of tillering nodes. Expression levels of TaEXPB7-B were significantly increased in response to both low-temperature stress and abscisic acid (ABA) treatment. To further confirm these observations, we transformed Arabidopsis plants with the β-glucuronidase (GUS) gene driven by the TaEXPB7-B promoter. GUS staining results revealed that TaEXPB7-B showed similar responses to low-temperature and ABA treatments. Our transcriptome data indicated that the AREB/ABF transcription factor gene TaWABI5 was also induced by low temperature in D2. Yeast one-hybrid experiments demonstrated that TaWABI5 binds to an ABRE cis-element in the TaEXPB7-B promoter, and overexpression of TaWABI5 in wheat protoplasts enhanced the expression of endogenous TaEXPB7-B by 7.7-fold, implying that TaWABI5 plays important roles in regulating the expression of TaEXPB7-B. Cytological data obtained from the transient expression of 35S::TaEXPB7-B-eYFP in onion epidermal cells indicated that TaEXPB7-B is cell wall localised. Overexpression of TaEXPB7-B in Arabidopsis promoted a significant increase in plant growth and increased lignin and cellulose contents. Moreover, TaEXPB7-B conferred enhanced antioxidant and osmotic regulation in transgenic Arabidopsis, thereby increasing the tolerance and survival of plants under conditions of low-temperature stress.
Collapse
Affiliation(s)
- Xu Feng
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yongqing Xu
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, PR China
| | - Lina Peng
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xingyu Yu
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, PR China
| | - Qiaoqin Zhao
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shanshan Feng
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ziyi Zhao
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, PR China
| | - Fenglan Li
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Baozhong Hu
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, PR China; Harbin University, Harbin, 150086, PR China.
| |
Collapse
|
14
|
Zhang H, Liu H, Yang R, Xu X, Liu X, Xu J. Over-expression of PttEXPA8 gene showed various resistances to diverse stresses. Int J Biol Macromol 2019; 130:50-57. [PMID: 30797010 DOI: 10.1016/j.ijbiomac.2019.02.115] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 02/20/2019] [Accepted: 02/20/2019] [Indexed: 01/19/2023]
Abstract
Expansins play a pivotal role in plant adaptation to environmental stress via cell wall loosening. To evaluate the roles of expansin in response to different environmental stress conditions, the expansin gene PttEXPA8 from Populus tomentosa was transformed into tobacco. Analysis of physiological indices demonstrated the transgenic plants with improved resistance to heat, drought, salt, cold, and cadmium stress but to different extents. In mature plants, PttEXPA8 exerted the greatest effect on heat stress, with a response index value of 137.46%, followed by drought, cadmium, cold, and salt stress with response index values of 101.04%, 70.61%, 69.95%, and 54.68%, respectively. Over-expression of PttEXPA8 resulted in differential responses in physiological indices to the stresses. Soluble sugar content showed the highest response to the stresses, with an average response index value of 29.29%, whereas the absolute response index value for malondialdehyde content, relative electrolyte leakage, chlorophyll content, and superoxide dismutase activity ranged from 11.01% to 19.21%. The present results provide insight into the roles of expansin in stress resistance in Populus.
Collapse
Affiliation(s)
- Hao Zhang
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, China
| | - Huabo Liu
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, China
| | - Ruixia Yang
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, China
| | - Xiao Xu
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, China
| | - Xiao Liu
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, China
| | - Jichen Xu
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
15
|
Zheng L, Zhang X, Zhang H, Gu Y, Huang X, Huang H, Liu H, Zhang J, Hu Y, Li Y, Yu G, Liu Y, Lawson SS, Huang Y. The miR164-dependent regulatory pathway in developing maize seed. Mol Genet Genomics 2019; 294:501-517. [DOI: 10.1007/s00438-018-1524-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/17/2018] [Indexed: 02/06/2023]
|
16
|
Castillo FM, Canales J, Claude A, Calderini DF. Expansin genes expression in growing ovaries and grains of sunflower are tissue-specific and associate with final grain weight. BMC PLANT BIOLOGY 2018; 18:327. [PMID: 30514222 PMCID: PMC6280438 DOI: 10.1186/s12870-018-1535-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 11/19/2018] [Indexed: 05/07/2023]
Abstract
BACKGROUND Grain weight (GW) is a key component of sunflower yield and quality, but may be limited by maternal tissues. Cell growth is influenced by expansin proteins that loosen the plant cell wall. This study aimed to identify spatio-temporal expression of EXPN genes in sunflower reproductive organ tissues (ovary, pericarp, and embryo) and evaluate correlations between reproductive organ growth and expansin genes expression. Evaluations involved eight different developmental stages, two genotypes, two source-sink treatments and two experiments. The genotypes evaluated are contrasting in GW (Alybro and confection variety RHA280) under two source-sink treatments (control and shaded) to study the interactions between grain growth and expansin genes expression. RESULTS Ovaries and grains were sampled at pre- and post-anthesis, respectively. Final GW differed between genotypes and shading treatments. Shading treatment decreased final GW by 16.4 and 19.5% in RHA280 and Alybro, respectively. Relative expression of eight expansin genes were evaluated in grain tissues. EXPN4 was the most abundant expansin in the ovary tissue, while EXPN10 and EXPN7 act predominantly in ovary and pericarp tissues, and EXPN1 and EXPN15 in the embryo tissues. CONCLUSIONS Specific expansin genes were expressed in ovary, pericarp and embryo in a tissue-specific manner. Differential expression among grain tissues was consistent between genotypes, source-sink treatments and experiments. The correlation analysis suggests that EXPN genes could be specifically involved in grain tissue extension, and their expression could be linked to grain size in sunflower.
Collapse
Affiliation(s)
- Francisca M. Castillo
- Graduate School, Faculty of Agricultural Sciences, Universidad Austral de Chile, Valdivia, Chile
- Plant Production and Plant Protection Institute, Faculty of Agricultural Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Javier Canales
- Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia, Chile
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Alejandro Claude
- Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Daniel F. Calderini
- Plant Production and Plant Protection Institute, Faculty of Agricultural Sciences, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
17
|
Tan J, Wang M, Shi Z, Miao X. OsEXPA10 mediates the balance between growth and resistance to biotic stress in rice. PLANT CELL REPORTS 2018; 37:993-1002. [PMID: 29619515 DOI: 10.1007/s00299-018-2284-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/30/2018] [Indexed: 06/08/2023]
Abstract
OsEXPA10 gene coordinates the balance between rice development and biotic resistance. Expansins are proteins that can loosen the cell wall. Previous studies have indicated that expansin-encoding genes were involved in defense against abiotic stress, but little is known about the involvement of expansins in biotic stress. Brown planthopper (BPH) is one of the worst insect pests of rice in the Asia-Pacific planting area, and many efforts have been made to identify and clone BPH-resistance genes for use in breeding resistant cultivars. At the same time, rice blast caused by Magnaporthe grisea is one of the three major diseases that severely affect rice production worldwide. Here, we demonstrated that one rice expansin-encoding gene, OsEXPA10, functions in both rice growth and biotic resistance. Over expression of OsEXPA10 improved rice growth but also increased susceptibility to BPH infestation and blast attack, while knock-down OsEXPA10 gene expression resulted in reduced plant height and grain size, but also increased resistance to BPH and the blast pathogen. These results imply that OsEXPA10 mediates the balance between rice development and biotic resistance.
Collapse
Affiliation(s)
- Jiang Tan
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Meiling Wang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Zhenying Shi
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xuexia Miao
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
18
|
Choi BS, Kim YJ, Markkandan K, Koo YJ, Song JT, Seo HS. GW2 Functions as an E3 Ubiquitin Ligase for Rice Expansin-Like 1. Int J Mol Sci 2018; 19:E1904. [PMID: 29958473 PMCID: PMC6073362 DOI: 10.3390/ijms19071904] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 06/18/2018] [Accepted: 06/25/2018] [Indexed: 01/30/2023] Open
Abstract
Seed size is one of the most important traits determining the yield of cereal crops. Many studies have been performed to uncover the mechanism of seed development. However, much remains to be understood, especially at the molecular level, although several genes involved in seed size have been identified. Here, we show that rice Grain Width 2 (GW2), a RING-type E3 ubiquitin ligase, can control seed development by catalyzing the ubiquitination of expansin-like 1 (EXPLA1), a cell wall-loosening protein that increases cell growth. Microscopic examination revealed that a GW2 mutant had a chalky endosperm due to the presence of loosely packed, spherical starch granules, although the grain shape was normal. Yeast two-hybrid and in vitro pull-down assays showed a strong interaction between GW2 and EXPLA1. In vitro ubiquitination analysis demonstrated that EXPLA1 was ubiquitinated by GW2 at lysine 279 (K279). GW2 and EXPLA1 colocalized to the nucleus when expressed simultaneously. These results suggest that GW2 negatively regulates seed size by targeting EXPLA1 for degradation through its E3 ubiquitin ligase activity.
Collapse
Affiliation(s)
- Beom Seok Choi
- Department of Plant Science, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea.
| | - Yeon Jeong Kim
- Department of Plant Science, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea.
| | - Kesavan Markkandan
- Department of Plant Science, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea.
| | - Yeon Jong Koo
- Department of Biological Chemistry, Chonnam National University, Gwangju 61186, Korea.
| | - Jong Tae Song
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea.
| | - Hak Soo Seo
- Department of Plant Science, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea.
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-921, Korea.
- Bio-MAX Institute, Seoul National University, Seoul 151-818, Korea.
| |
Collapse
|
19
|
Zhang JF, Xu YQ, Dong JM, Peng LN, Feng X, Wang X, Li F, Miao Y, Yao SK, Zhao QQ, Feng SS, Hu BZ, Li FL. Genome-wide identification of wheat (Triticum aestivum) expansins and expansin expression analysis in cold-tolerant and cold-sensitive wheat cultivars. PLoS One 2018; 13:e0195138. [PMID: 29596529 PMCID: PMC5875846 DOI: 10.1371/journal.pone.0195138] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 03/16/2018] [Indexed: 12/20/2022] Open
Abstract
Plant expansins are proteins involved in cell wall loosening, plant growth, and development, as well as in response to plant diseases and other stresses. In this study, we identified 128 expansin coding sequences from the wheat (Triticum aestivum) genome. These sequences belong to 45 homoeologous copies of TaEXPs, including 26 TaEXPAs, 15 TaEXPBs and four TaEXLAs. No TaEXLB was identified. Gene expression and sub-expression profiles revealed that most of the TaEXPs were expressed either only in root tissues or in multiple organs. Real-time qPCR analysis showed that many TaEXPs were differentially expressed in four different tissues of the two wheat cultivars—the cold-sensitive ‘Chinese Spring (CS)’ and the cold-tolerant ‘Dongnongdongmai 1 (D1)’ cultivars. Our results suggest that the differential expression of TaEXPs could be related to low-temperature tolerance or sensitivity of different wheat cultivars. Our study expands our knowledge on wheat expansins and sheds new light on the functions of expansins in plant development and stress response.
Collapse
Affiliation(s)
- Jun-Feng Zhang
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yong-Qing Xu
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Jia-Min Dong
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Li-Na Peng
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xu Feng
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xu Wang
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Fei Li
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yu Miao
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Shu-Kuan Yao
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Qiao-Qin Zhao
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Shan-Shan Feng
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Bao-Zhong Hu
- Harbin University, Harbin, Heilongjiang, China
- * E-mail: (BZH); (FLL)
| | - Feng-Lan Li
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
- * E-mail: (BZH); (FLL)
| |
Collapse
|
20
|
Santiago TR, Pereira VM, de Souza WR, Steindorff AS, Cunha BADB, Gaspar M, Fávaro LCL, Formighieri EF, Kobayashi AK, C. Molinari HB. Genome-wide identification, characterization and expression profile analysis of expansins gene family in sugarcane (Saccharum spp.). PLoS One 2018; 13:e0191081. [PMID: 29324804 PMCID: PMC5764346 DOI: 10.1371/journal.pone.0191081] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 12/26/2017] [Indexed: 01/03/2023] Open
Abstract
Expansins refer to a family of closely related non-enzymatic proteins found in the plant cell wall that are involved in the cell wall loosening. In addition, expansins appear to be involved in different physiological and environmental responses in plants such as leaf and stem initiation and growth, stomata opening and closing, reproduction, ripening and stress tolerance. Sugarcane (Saccharum spp.) is one of the main crops grown worldwide. Lignocellulosic biomass from sugarcane is one of the most promising raw materials for the ethanol industry. However, the efficient use of lignocellulosic biomass requires the optimization of several steps, including the access of some enzymes to the hemicellulosic matrix. The addition of expansins in an enzymatic cocktail or their genetic manipulation could drastically improve the saccharification process of feedstock biomass by weakening the hydrogen bonds between polysaccharides present in plant cell walls. In this study, the expansin gene family in sugarcane was identified and characterized by in silico analysis. Ninety two putative expansins in sugarcane (SacEXPs) were categorized in three subfamilies after phylogenetic analysis. The expression profile of some expansin genes in leaves of sugarcane in different developmental stages was also investigated. This study intended to provide suitable expansin targets for genetic manipulation of sugarcane aiming at biomass and yield improvement.
Collapse
Affiliation(s)
- Thaís R. Santiago
- Embrapa Agroenergia. Parque Estação Biológica, Av. W3 Norte (final), Asa Norte, Brasília, DF, Brazil
| | - Valquiria M. Pereira
- Embrapa Agroenergia. Parque Estação Biológica, Av. W3 Norte (final), Asa Norte, Brasília, DF, Brazil
| | - Wagner R. de Souza
- Embrapa Agroenergia. Parque Estação Biológica, Av. W3 Norte (final), Asa Norte, Brasília, DF, Brazil
| | - Andrei S. Steindorff
- Embrapa Agroenergia. Parque Estação Biológica, Av. W3 Norte (final), Asa Norte, Brasília, DF, Brazil
| | - Bárbara A. D. B. Cunha
- Embrapa Agroenergia. Parque Estação Biológica, Av. W3 Norte (final), Asa Norte, Brasília, DF, Brazil
| | - Marília Gaspar
- Instituto de Botânica, Núcleo de Pesquisa em Fisiologia e Bioquímica, São Paulo, SP, Brazil
| | - Léia C. L. Fávaro
- Embrapa Agroenergia. Parque Estação Biológica, Av. W3 Norte (final), Asa Norte, Brasília, DF, Brazil
| | - Eduardo F. Formighieri
- Embrapa Agroenergia. Parque Estação Biológica, Av. W3 Norte (final), Asa Norte, Brasília, DF, Brazil
| | - Adilson K. Kobayashi
- Embrapa Agroenergia. Parque Estação Biológica, Av. W3 Norte (final), Asa Norte, Brasília, DF, Brazil
| | - Hugo B. C. Molinari
- Embrapa Agroenergia. Parque Estação Biológica, Av. W3 Norte (final), Asa Norte, Brasília, DF, Brazil
- * E-mail:
| |
Collapse
|
21
|
Li N, Pu Y, Gong Y, Yu Y, Ding H. Genomic location and expression analysis of expansin gene family reveals the evolutionary and functional significance in Triticum aestivum. Genes Genomics 2016. [DOI: 10.1007/s13258-016-0446-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Marowa P, Ding A, Kong Y. Expansins: roles in plant growth and potential applications in crop improvement. PLANT CELL REPORTS 2016; 35:949-65. [PMID: 26888755 PMCID: PMC4833835 DOI: 10.1007/s00299-016-1948-4] [Citation(s) in RCA: 226] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 02/02/2016] [Indexed: 05/18/2023]
Abstract
KEY MESSAGE Results from various expansin related studies have demonstrated that expansins present an opportunity to improve various crops in many different aspects ranging from yield and fruit ripening to improved stress tolerance. The recent advances in expansin studies were reviewed. Besides producing the strength that is needed by the plants, cell walls define cell shape, cell size and cell function. Expansins are cell wall proteins which consist of four sub families; α-expansin, β-expansin, expansin-like A and expansin-like B. These proteins mediate cell wall loosening and they are present in all plants and in some microbial organisms and other organisms like snails. Decades after their initial discovery in cucumber, it is now clear that these small proteins have diverse biological roles in plants. Through their ability to enable the local sliding of wall polymers by reducing adhesion between adjacent wall polysaccharides and the part they play in cell wall remodeling after cytokinesis, it is now clear that expansins are required in almost all plant physiological development aspects from germination to fruiting. This is shown by the various reports from different studies using various molecular biology approaches such as gene achieve these many roles through their non-enzymatic wall loosening ability. This paper reviews and summarizes some of the reported functions of expansins and outlines the potential uses of expansins in crop improvement programs.
Collapse
Affiliation(s)
- Prince Marowa
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, People's Republic of China
| | - Anming Ding
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, People's Republic of China
| | - Yingzhen Kong
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, People's Republic of China.
| |
Collapse
|
23
|
Chen Y, Han Y, Zhang M, Zhou S, Kong X, Wang W. Overexpression of the Wheat Expansin Gene TaEXPA2 Improved Seed Production and Drought Tolerance in Transgenic Tobacco Plants. PLoS One 2016; 11:e0153494. [PMID: 27073898 PMCID: PMC4830583 DOI: 10.1371/journal.pone.0153494] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 03/30/2016] [Indexed: 11/19/2022] Open
Abstract
Expansins are cell wall proteins that are grouped into two main families, α-expansins and β-expansins, and they are implicated in the control of cell extension via the disruption of hydrogen bonds between cellulose and matrix glucans. TaEXPA2 is an α-expansin gene identified in wheat. Based on putative cis-regulatory elements in the TaEXPA2 promoter sequence and the expression pattern induced when polyethylene glycol (PEG) is used to mimic water stress, we hypothesized that TaEXPA2 is involved in plant drought tolerance and plant development. Through transient expression of 35S::TaEXPA2-GFP in onion epidermal cells, TaEXPA2 was localized to the cell wall. Constitutive expression of TaEXPA2 in tobacco improved seed production by increasing capsule number, not seed size, without having any effect on plant growth patterns. The transgenic tobacco exhibited a significantly greater tolerance to water-deficiency stress than did wild-type (WT) plants. We found that under drought stress, the transgenic plants maintained a better water status. The accumulated content of osmotic adjustment substances, such as proline, in TaEXPA2 transgenic plants was greater than that in WT plants. Transgenic plants also displayed greater antioxidative competence as indicated by their lower malondialdehyde (MDA) content, relative electrical conductivity, and reactive oxygen species (ROS) accumulation than did WT plants. This result suggests that the transgenic plants suffer less damage from ROS under drought conditions. The activities of some antioxidant enzymes as well as expression levels of several genes encoding key antioxidant enzymes were higher in the transgenic plants than in the WT plants under drought stress. Collectively, our results suggest that ectopic expression of the wheat expansin gene TaEXPA2 improves seed production and drought tolerance in transgenic tobacco plants.
Collapse
Affiliation(s)
- Yanhui Chen
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong, 271018, P. R. China
| | - Yangyang Han
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong, 271018, P. R. China
- Plastic Surgery Institute of Weifang Medical University, Weifang, Shandong, 261041, P. R. China
| | - Meng Zhang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong, 271018, P. R. China
| | - Shan Zhou
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong, 271018, P. R. China
| | - Xiangzhu Kong
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong, 271018, P. R. China
| | - Wei Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong, 271018, P. R. China
| |
Collapse
|
24
|
Seader VH, Thornsberry JM, Carey RE. Utility of the Amborella trichopoda expansin superfamily in elucidating the history of angiosperm expansins. JOURNAL OF PLANT RESEARCH 2016; 129:199-207. [PMID: 26646380 DOI: 10.1007/s10265-015-0772-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/29/2015] [Indexed: 05/15/2023]
Abstract
Expansins form a superfamily of plant proteins that assist in cell wall loosening during growth and development. The superfamily is divided into four families: EXPA, EXPB, EXLA, and EXLB (Sampedro and Cosgrove in Genome Biol 6:242, 2005. doi: 10.1186/gb-2005-6-12-242 ). Previous studies on Arabidopsis, rice, and Populus trichocarpa have clarified the evolutionary history of expansins in angiosperms (Sampedro et al. in Plant J 44:409-419, 2005. doi: 10.1111/j.1365-313X.2005.02540.x ). Amborella trichopoda is a flowering plant that diverged very early. Thus, it is a sister lineage to all other extant angiosperms (Amborella Genome Project in 342:1241089, 2013. doi: 10.1126/science.1241089 ). Because of this relationship, comparing the A. trichopoda expansin superfamily with those of other flowering plants may indicate which expansin genes were present in the last common ancestor of all angiosperms. The A. trichopoda expansin superfamily was assembled using BLAST searches with angiosperm expansin queries. The search results were analyzed and annotated to isolate the complete A. trichopoda expansin superfamily. This superfamily is similar to other angiosperm expansin superfamilies, but is somewhat smaller. This is likely because of a lack of genome duplication events (Amborella Genome Project 2013). Phylogenetic and syntenic analyses of A. trichopoda expansins have improved our understanding of the evolutionary history of expansins in angiosperms. Nearly all of the A. trichopoda expansins were placed into an existing Arabidopsis-rice expansin clade. Based on the results of phylogenetic and syntenic analyses, we estimate there were 12-13 EXPA genes, 2 EXPB genes, 1 EXLA gene, and 2 EXLB genes in the last common ancestor of all angiosperms.
Collapse
Affiliation(s)
- Victoria H Seader
- Program in Biochemistry and Molecular Biology, Lebanon Valley College, Annville, PA, 17003-1400, USA
| | - Jennifer M Thornsberry
- Department of Biology, Lebanon Valley College, 101 N. College Ave, Annville, PA, 17003-1400, USA
| | - Robert E Carey
- Department of Biology, Lebanon Valley College, 101 N. College Ave, Annville, PA, 17003-1400, USA.
| |
Collapse
|
25
|
Characterization and expression analysis of the expansin gene NnEXPA1 in lotus Nelumbo nucifera. Biologia (Bratisl) 2016. [DOI: 10.1515/biolog-2016-0015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|