1
|
Ryan CD, Henggeler E, Gilbert S, Schaul AJ, Swarthout JT. Exploring the GMO narrative through labeling: strategies, products, and politics. GM CROPS & FOOD 2024; 15:51-66. [PMID: 38402595 PMCID: PMC10896172 DOI: 10.1080/21645698.2024.2318027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/08/2024] [Indexed: 02/27/2024]
Abstract
Labels are influential signals in the marketplace intended to inform and to eliminate buyer confusion. Despite this, food labels continue to be the subject of debate. None more so than non-GMO (genetically modified organisms) labels. This manuscript provides a timeline of the evolution of GMO labels beginning with the early history of the anti-GMO movement to the current National Bioengineered Food Disclosure Standard in the United States. Using media and market intelligence data collected through Buzzsumo™ and Mintel™, public discourse of GMOs is analyzed in relation to sociopolitical events and the number of new food products with anti-GMO labels, respectively. Policy document and publication data is collected with Overton™ to illustrate the policy landscape for the GMO topic and how it has changed over time. Analysis of the collective data illustrates that while social media and policy engagement around the topic of GMOs has diminished over time, the number of new products with a GMO-free designation continues to grow. While discourse peaked at one point, and has since declined, our results suggest that the legacy of an anti-GMO narrative remains firmly embedded in the social psyche, evidenced by the continuing rise of products with GMO-free designation. Campaigns for GMO food labels to satisfy consumers' right to know were successful and the perceived need for this information now appears to be self-sustaining.
Collapse
Affiliation(s)
- Camille D Ryan
- Strategic Insights, Bayer Crop Science Canada,Calgary, Canada
| | | | - Samantha Gilbert
- E-Commerce Search and Catalog Analysis, Millipore Sigma, St. Louis, MO, USA
| | | | - John T Swarthout
- Regulatory Scientific Affairs, Bayer Crop Science, Chesterfield, MO, USA
| |
Collapse
|
2
|
Sadikiel Mmbando G. The Adoption of Genetically Modified Crops in Africa: the Public's Current Perception, the Regulatory Obstacles, and Ethical Challenges. GM CROPS & FOOD 2024; 15:1-15. [PMID: 38651587 PMCID: PMC11042066 DOI: 10.1080/21645698.2024.2345401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Genetically modified (GM) crops are the most important agricultural commodities that can improve the yield of African smallholder farmers. The intricate circumstances surrounding the introduction of GM agriculture in Africa, however, underscore the importance of comprehending the moral conundrums, regulatory environments, and public sentiment that exist today. This review examines the current situation surrounding the use of GM crops in Africa, focusing on moral conundrums, regulatory frameworks, and public opinion. Only eleven of the fifty-four African countries currently cultivate GM crops due to the wide range of opinions resulting from the disparities in cultural, socioeconomic, and environmental factors. This review proposed that addressing public concerns, harmonizing regulations, and upholding ethical standards will improve the adoption of GM crops in Africa. This study offers ways to enhance the acceptability of GM crops for boosting nutrition and food security globally.
Collapse
Affiliation(s)
- Gideon Sadikiel Mmbando
- Department of Biology, College of Natural and Mathematical Sciences, University of Dodoma, Dodoma, Tanzania
| |
Collapse
|
3
|
Veremeichik GN, Solomatina TO, Khopta AA, Brodovskaya EV, Gorpenchenko TY, Grigorchuk VP, Bulgakov DV, Bulgakov VP. Agropine-type rolA modulates ROS homeostasis in an auxin-dependent manner in rolA-expressing cell cultures of Rubia cordifolia L. PLANTA 2024; 261:20. [PMID: 39714533 DOI: 10.1007/s00425-024-04597-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
MAIN CONCLUSION Long-term cultured calli may experience a biosynthetic shift due to the IAA-dependent expression of the rolA gene, which also affects ROS metabolism. The "hairy root" syndrome is caused by the root-inducing Ri-plasmid of Rhizobium rhizogenes, also known as Agrobacterium rhizogenes. The Ri-plasmid contains genes known as rol genes or root oncogenic loci, which promote root development. The important implications of the rolA gene from the T-DNA include reduced plant size, resistance to infections, and the activation of specialised metabolism. Nevertheless, rolA does not belong to the plast gene group because its function is still uncertain. Recent investigations have shown two important effects of the rolA gene. First, the production of secondary metabolites has changed in long-term cultivated rolA-transgenic calli of Rubia cordifolia L. Second, the expression of both the rolA and rolB genes has a strong auxin-dependent antagonistic effect on reactive oxygen species (ROS) homeostasis. In this work, we attempted to elucidate two rolA gene phenomena: what caused the secondary metabolism of long-term cultured calli to change? How does the individual expression of the rolA gene affect ROS homeostasis? We analysed SNPs in the 5' untranslated region and coding region of the rolA gene. These mutations do not affect the known essential amino acids of the RolA proteins. Notably, in the promoter of the rolA gene, an ACTTTA motif for auxin-mediated transcription factors was identified. Using two separate cell cultures, we demonstrated the strong auxin dependence of rolA gene expression. The expression of genes involved in ROS metabolism decreased in response to an auxin-mediated increase in rolA gene expression. Two assumptions can be made. The long-term cultivation of calli may cause changes in the hormonal state of the culture over time, which may modulate the action of the RolA protein. Moreover, auxin-dependent expression of the rolA gene led to a decrease in ROS metabolism. It can be assumed that the antagonistic interaction between rolA and rolB prevents strong rolB-induced auxin sensitivity and oxidative bursts to balance the cell state.
Collapse
Affiliation(s)
- Galina N Veremeichik
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Russian Academy of Sciences Far Eastern Branch, FGBUN FNC Bioraznoobrazia Nazemnoj Bioty Vostocnoj Azii Dal'nevostocnogo Otdelenia Rossijskoj Akademii Nauk, Vladivostok, 690022, Russia.
| | - Taisia O Solomatina
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Russian Academy of Sciences Far Eastern Branch, FGBUN FNC Bioraznoobrazia Nazemnoj Bioty Vostocnoj Azii Dal'nevostocnogo Otdelenia Rossijskoj Akademii Nauk, Vladivostok, 690022, Russia
| | - Anastasia A Khopta
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Russian Academy of Sciences Far Eastern Branch, FGBUN FNC Bioraznoobrazia Nazemnoj Bioty Vostocnoj Azii Dal'nevostocnogo Otdelenia Rossijskoj Akademii Nauk, Vladivostok, 690022, Russia
| | - Evgenia V Brodovskaya
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Russian Academy of Sciences Far Eastern Branch, FGBUN FNC Bioraznoobrazia Nazemnoj Bioty Vostocnoj Azii Dal'nevostocnogo Otdelenia Rossijskoj Akademii Nauk, Vladivostok, 690022, Russia
| | - Tatiana Yu Gorpenchenko
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Russian Academy of Sciences Far Eastern Branch, FGBUN FNC Bioraznoobrazia Nazemnoj Bioty Vostocnoj Azii Dal'nevostocnogo Otdelenia Rossijskoj Akademii Nauk, Vladivostok, 690022, Russia
| | - Valeria P Grigorchuk
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Russian Academy of Sciences Far Eastern Branch, FGBUN FNC Bioraznoobrazia Nazemnoj Bioty Vostocnoj Azii Dal'nevostocnogo Otdelenia Rossijskoj Akademii Nauk, Vladivostok, 690022, Russia
| | - Dmitrii V Bulgakov
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Russian Academy of Sciences Far Eastern Branch, FGBUN FNC Bioraznoobrazia Nazemnoj Bioty Vostocnoj Azii Dal'nevostocnogo Otdelenia Rossijskoj Akademii Nauk, Vladivostok, 690022, Russia
| | - Victor P Bulgakov
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Russian Academy of Sciences Far Eastern Branch, FGBUN FNC Bioraznoobrazia Nazemnoj Bioty Vostocnoj Azii Dal'nevostocnogo Otdelenia Rossijskoj Akademii Nauk, Vladivostok, 690022, Russia
| |
Collapse
|
4
|
Isah A, Ndana RW, Malann YD, Nwankwo OF, Ibrahim AB, Gidado RS. Biodiversity assessment and environmental risk analysis of the single line transgenic pod borer resistant cowpea. PeerJ 2024; 12:e18094. [PMID: 39434787 PMCID: PMC11493023 DOI: 10.7717/peerj.18094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 08/23/2024] [Indexed: 10/23/2024] Open
Abstract
Background The discussion surrounding biological diversity has reached a critical point with the introduction of Nigeria's first transgenic food crop, the pod borer-resistant (PBR) cowpea. Questions have been raised about the potential risks of the transgenic Maruca vitrata-resistant cowpea to human health and beneficial insects. Public apprehension, coupled with social activists' calling for the removal of this crop from the nation's food market, persists. However, there is a lack of data to counter the assertion that cultivating PBR cowpea may have adverse effects on biodiversity and the overall ecological system. This research, with its multifaceted objective of examining the environmental safety of PBR cowpea and assessing its impact on biodiversity compared to its non-transgenic counterpart, IT97KN, is of utmost importance in providing the necessary data to address these concerns. Methods Seeds for both the transgenic PBR cowpea and its isoline were obtained from the Institute for Agricultural Research (IAR) Zaria before planting at various farm sites (Addae et al., 2020). Throughout the experiment, local cultural practices were strictly followed to cultivate both transgenic and non-transgenic cowpeas. Elaborate taxonomic keys were used to identify arthropods and other non-targeted organisms. Principal component analysis (PCA) was used to evaluate potential modifications in all ecological niches of the crops. The lmer function of the R package lme4 was used to analyze diversity indices, including Shannon, Pielou, and Simpson. The Bray-Curtis index was used to analyzed potential modifications in the dissimilarities of non-targeted organisms' communities. Results Examination of ecological species abundance per counting week (CW) revealed no disruption in the biological properties of non-targeted species due to the cultivation of transgenic PBR cowpea. Analysis of species evenness and diversity indices indicated no significant difference between the fields of transgenic PBR cowpea and its isoline. Principal component analysis results demonstrated that planting PBR cowpea did not create an imbalance in the distribution of ecological species. All species and families observed during this study were more abundant in transgenic PBR cowpea fields than in non-transgenic cowpea fields, suggesting that the transformation of cowpea does not negatively impact non-targeted organisms and their communities. Evolution dynamics of the species community between transgenic and non-transgenic cowpea fields showed a similar trend throughout the study period, with no significant divergence induced in the community structure because of PBR cowpea planting. This study concludes that planting transgenic PBR cowpea positively influences biodiversity and the environment.
Collapse
Affiliation(s)
- Abraham Isah
- Department of Biological Sciences, Faculty of Science, University of Abuja, Abuja, FCT, Nigeria
- Open Forum on Agricultural Biotechnology in Africa, Nigeria Chapter, National Biotechnology Development Agency, Abuja, FCT, Nigeria
| | - Rebeccah Wusa Ndana
- Department of Biological Sciences, Faculty of Science, University of Abuja, Abuja, FCT, Nigeria
| | - Yoila David Malann
- Department of Biological Sciences, Faculty of Science, University of Abuja, Abuja, FCT, Nigeria
| | | | | | - Rose Suniso Gidado
- Open Forum on Agricultural Biotechnology in Africa, Nigeria Chapter, National Biotechnology Development Agency, Abuja, FCT, Nigeria
- Department of Agricultural Biotechnology, National Biotechnology Development Agency, Abuja, FCT, Nigeria
| |
Collapse
|
5
|
Cabelkova I, Sanova P, Hlavacek M, Broz D, Smutka L, Prochazka P. The moderating role of perceived health risks on the acceptance of genetically modified food. Front Public Health 2024; 11:1275287. [PMID: 38332939 PMCID: PMC10851272 DOI: 10.3389/fpubh.2023.1275287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/20/2023] [Indexed: 02/10/2024] Open
Abstract
The public perspective on genetically modified foods (GMFs) has been intensely debated and scrutinized. Often, discussions surrounding GMF tend to revolve solely around the potential health risks associated with their consumption. However, it is essential to acknowledge that public perceptions of genetically modified foods are multifaceted, encompassing environmental concerns, ethical considerations, and economic implications. This paper studies the factors predicting GMF acceptance employing the representative sample of the Czech population (N = 884, aged 18-90 years, M ± SD: 48.17 ± 17.72; 53.40% women, 18.04% with higher education). The research relies on the Behavioral Change Model and the Health Belief Model. We employ hierarchical ordinal regressions to study the effects of information, environmental concerns, perceived health risks, food habits, purchasing habits, and socio-demographics on GMF acceptance. The results suggest that the (un)willingness to purchase GMF is primarily driven by the health risks - the environmental concerns were largely unimportant. The impact of information provision on GMF acceptance proved positive, suggesting information and education to be the main channels of creating public acceptance. The intrinsic interest regarding information related to GMF had an adverse impact on the perception of GMF morality. The benefits of the GMF proved unrelated to the GMF acceptance, indicating the gap in the information campaign. The research provides valuable insights for policymakers, public health professionals, and market researchers to communicate the GMF agenda effectively to the general public.
Collapse
Affiliation(s)
- Inna Cabelkova
- Czech University of Life Sciences Prague, Prague, Czechia
| | | | | | | | | | | |
Collapse
|
6
|
Veremeichik GN, Bulgakov DV, Solomatina TO, Makhazen DS. In the interkingdom horizontal gene transfer, the small rolA gene is a big mystery. Appl Microbiol Biotechnol 2023; 107:2097-2109. [PMID: 36881118 DOI: 10.1007/s00253-023-12454-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/08/2023]
Abstract
The biological function of the agrobacterial oncogene rolA is very poorly understood compared to other components of the mechanism of horizontal gene transfer during agrobacterial colonization of plants. Research groups around the world have worked on this problem, and available information is reviewed in this review, but other rol oncogenes have been studied much more thoroughly. Having one unexplored element makes it impossible to form a complete picture. However, the limited data suggest that the rolA oncogene and its regulatory apparatus have great potential in plant biotechnology and genetic engineering. Here, we collect and discuss available experimental data about the function and structure of rolA. There is still no clear understanding of the mechanism of RolA and its structure and localization. We believe this is because of the nucleotide structure of a frameshift in the most well-studied rolA gene of the agropine type pRi. In fact, interest in the genes of agrobacteria as natural tools for the phenotypic or biochemical engineering of plants increased. We believe that a detailed understanding of the molecular mechanisms will be forthcoming. KEY POINTS: • Among pRi T-DNA oncogenes, rolA is the least understood in spite of many studies. • Frameshift may be the reason for the failure to elucidate the role of agropine rolA. • Understanding of rolA is promising for the phenotypic and biochemical engineering of plants.
Collapse
Affiliation(s)
- Galina N Veremeichik
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Russian Academy of Sciences Far Eastern Branch, FGBUN FNC Bioraznoobrazia nazemnoj bioty Vostocnoj Azii Dal'nevostocnogo otdelenia Rossijskoj akademii nauk, 690022, Vladivostok, Russia.
| | - Dmitrii V Bulgakov
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Russian Academy of Sciences Far Eastern Branch, FGBUN FNC Bioraznoobrazia nazemnoj bioty Vostocnoj Azii Dal'nevostocnogo otdelenia Rossijskoj akademii nauk, 690022, Vladivostok, Russia
| | - Taisia O Solomatina
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Russian Academy of Sciences Far Eastern Branch, FGBUN FNC Bioraznoobrazia nazemnoj bioty Vostocnoj Azii Dal'nevostocnogo otdelenia Rossijskoj akademii nauk, 690022, Vladivostok, Russia
| | - Dmitrii S Makhazen
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Russian Academy of Sciences Far Eastern Branch, FGBUN FNC Bioraznoobrazia nazemnoj bioty Vostocnoj Azii Dal'nevostocnogo otdelenia Rossijskoj akademii nauk, 690022, Vladivostok, Russia
| |
Collapse
|
7
|
Mbaya H, Lillico S, Kemp S, Simm G, Raybould A. Regulatory frameworks can facilitate or hinder the potential for genome editing to contribute to sustainable agricultural development. Front Bioeng Biotechnol 2022; 10:959236. [PMID: 36246373 PMCID: PMC9562833 DOI: 10.3389/fbioe.2022.959236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/31/2022] [Indexed: 12/01/2022] Open
Abstract
The advent of new breeding techniques (NBTs), in particular genome editing (GEd), has provided more accurate and precise ways to introduce targeted changes in the genome of both plants and animals. This has resulted in the use of the technology by a wider variety of stakeholders for different applications in comparison to transgenesis. Regulators in different parts of the world are now examining their current frameworks to assess their applicability to these NBTs and their products. We looked at how countries selected from a sample of geographical regions globally are currently handling applications involving GEd organisms and what they foresee as opportunities and potential challenges to acceptance of the technology in their jurisdictions. In addition to regulatory frameworks that create an enabling environment for these NBTs, acceptance of the products by the public is vitally important. We, therefore, suggest that early stakeholder engagement and communication to the public be emphasized to foster public acceptance even before products are ready for market. Furthermore, global cooperation and consensus on issues cutting across regions will be crucial in avoiding regulatory-related bottlenecks that affect global trade and agriculture.
Collapse
Affiliation(s)
- Hellen Mbaya
- Global Academy of Agriculture and Food Systems, The Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
- Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
- *Correspondence: Hellen Mbaya,
| | - Simon Lillico
- Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Steve Kemp
- Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI Kenya, Nairobi, Kenya
| | - Geoff Simm
- Global Academy of Agriculture and Food Systems, The Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
| | - Alan Raybould
- Global Academy of Agriculture and Food Systems, The Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
- Innogen Institute, Science Technology and Innovation Studies Department, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
8
|
|
9
|
Garcia‐Alonso M, Novillo C, Kostolaniova P, Martinez Parrilla M, Alcalde E, Podevin N. The EU's GM crop conundrum: Did the EU policy strategy to convert EFSA GMO guidance into legislation deliver on its promises?: Did the EU policy strategy to convert EFSA GMO guidance into legislation deliver on its promises? EMBO Rep 2022; 23:e54529. [PMID: 35441479 PMCID: PMC9066057 DOI: 10.15252/embr.202154529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 12/22/2021] [Indexed: 01/30/2023] Open
Abstract
Efforts by the EU to improve its regulatory framework for importing GM food and feed have done nothing to make the process easier and more predictable for applicants.
Collapse
|
10
|
Rodriguez-Concepcion M, Daròs JA. Transient expression systems to rewire plant carotenoid metabolism. CURRENT OPINION IN PLANT BIOLOGY 2022; 66:102190. [PMID: 35183926 DOI: 10.1016/j.pbi.2022.102190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Enrichment of foodstuffs with health-promoting metabolites such as carotenoids is a powerful tool to fight against unhealthy eating habits. Dietary carotenoids are vitamin A precursors and reduce risk of several chronical diseases. Additionally, carotenoids and their cleavage products (apocarotenoids) are used as natural pigments and flavors by the agrofood industry. In the last few years, major advances have been made in our understanding of how plants make and store carotenoids in their natural compartments, the plastids. In part, this knowledge has been acquired by using transient expression systems, notably agroinfiltration and viral vectors. These techniques allow profound changes in the carotenoid profile of plant tissues at the desired developmental stage, hence preventing interference with normal plant growth and development. Here we review how transient expression approaches have contributed to learn about the structure and regulation of plant carotenoid biosynthesis and to rewire carotenoid metabolism and storage for efficient biofortification of plant tissues.
Collapse
Affiliation(s)
- Manuel Rodriguez-Concepcion
- Institute for Plant Molecular and Cell Biology (IBMCP), Agencia Estatal Consejo Superior de Investigaciones Cientificas - Universitat Politècnica de València, 46022 Valencia, Spain.
| | - José-Antonio Daròs
- Institute for Plant Molecular and Cell Biology (IBMCP), Agencia Estatal Consejo Superior de Investigaciones Cientificas - Universitat Politècnica de València, 46022 Valencia, Spain
| |
Collapse
|
11
|
Raybould A. Improving the politics of biotechnological innovations in food security and other sustainable development goals. Transgenic Res 2021; 30:613-618. [PMID: 34351560 PMCID: PMC8340810 DOI: 10.1007/s11248-021-00277-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/29/2021] [Indexed: 11/20/2022]
Abstract
The unwarranted interference of some environmental non-governmental organisations (ENGOs) in decision-making over genetically modified (GM) crops has prompted calls for politics to be removed from the regulatory governance of these products. However, regulatory systems are inevitably political because their purpose is to decide whether the use of particular products will help or hinder the delivery of public policy objectives. ENGOs are most able to interfere in regulatory decision-making when policy objectives and decision-making criteria are vague, making the process vulnerable to disruption by organisations that have a distinct agenda. Making regulatory decision-making about GM crops and other green biotechnology more resistant to interference therefore requires better politics not the removal of politics. Better politics begins with political leadership making a case for green biotechnology in achieving food security and other sustainable development goals. Such a policy must involve making political choices and cannot be outsourced to science. Other aspects of better politics include regulatory reform to set policy aims and decision-making criteria that encourage innovation as well as control risk, and engagement with civil society that discusses the values behind attitudes to the application of green biotechnology. In short, green biotechnology for sustainable development needs better politics to counter well-organised opposition, to encourage innovation, and to build the trust of civil society for these policies. Removing politics from regulatory governance would be a gift to ENGOs that are opposed to the use of biotechnology.
Collapse
Affiliation(s)
- Alan Raybould
- Innogen Institute, School of Social and Political Science, The University of Edinburgh, Old Surgeons' Hall, Edinburgh, EH1 1LZ, UK.
- Global Academy of Agriculture and Food Security, Easter Bush Campus, The University of Edinburgh, Midlothian, EH25 9RG, UK.
| |
Collapse
|
12
|
Preface: Genome editing in plants. Transgenic Res 2021; 30:317-320. [PMID: 34313953 DOI: 10.1007/s11248-021-00268-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2021] [Indexed: 10/20/2022]
|