1
|
Chaiyasak S, Piewbang C, Ratthanophart J, Techakriengkrai N, Rattanaporn K, Techangamsuwan S. Detection of Antibodies against Feline Morbillivirus by Recombinant Matrix Enzyme-Linked Immunosorbent Assay. Viruses 2024; 16:1339. [PMID: 39205313 PMCID: PMC11358928 DOI: 10.3390/v16081339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Feline morbillivirus (FeMV) has been associated with feline health, although its exact role in pathogenesis is still debated. In this study, an indirect enzyme-linked immunosorbent assay (i-ELISA) targeting a recombinant matrix protein of FeMV (rFeMV-M) was developed and assessed in comparison to a Western blotting (WB) assay. The i-ELISA was evaluated using blood samples from 136 cats that were additionally tested with real-time reverse-transcription PCR (RT-qPCR). The i-ELISA exhibited a sensitivity of 90.1%, specificity of 75.6%, positive predictive value of 88.2%, and negative predictive value of 79.1%. The agreement between i-ELISA and WB analyses was substantial (a κ coefficient of 0.664 with a 95% confidence interval of 0.529 to 0.799). Within the study group, 68.4% (93/136) of the cats were serologically positive in the i-ELISA and 66.9% (91/136) in the WB assay, with 11.8% (11/93) of false positivity with the i-ELISA. However, only 8.1% (11/136) of the cats tested positive for FeMV using RT-qPCR (p < 0.001). The developed i-ELISA proved effective in identifying FeMV-infected cats and indicated the prevalence of FeMV exposure. Combining FeMV antibody detection through i-ELISA with FeMV RT-qPCR could offer a comprehensive method to determine and monitor FeMV infection status. Nevertheless, this assay still requires refinement due to a significant number of false positive results, which can lead to the misdiagnosis of cats without antibodies as having antibodies. This study also provided the first evidence of seroprevalence against FeMV among cat populations in Thailand, contributing valuable insights into the geographic distribution and prevalence of this virus.
Collapse
Affiliation(s)
- Surangkanang Chaiyasak
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (S.C.); (C.P.)
- Veterinary Infectious Diseases Research Unit, Faculty of Veterinary Science, Mahasarakham University, Maha Sarakham 44000, Thailand
| | - Chutchai Piewbang
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (S.C.); (C.P.)
- Animal Virome and Diagnostic Development Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jadsada Ratthanophart
- National Institute of Animal Health, Department of Livestock Development, Bangkok 10900, Thailand;
| | - Navapon Techakriengkrai
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Kittipong Rattanaporn
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand;
| | - Somporn Techangamsuwan
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (S.C.); (C.P.)
- Animal Virome and Diagnostic Development Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
2
|
Xu JL, Chen JT, Hu B, Guo WW, Guo JJ, Xiong CR, Qin LX, Yu XN, Chen XM, Cai K, Li YR, Liu MQ, Chen LJ, Hou W. Discovery and genetic characterization of novel paramyxoviruses from small mammals in Hubei Province, Central China. Microb Genom 2024; 10:001229. [PMID: 38700925 PMCID: PMC11145887 DOI: 10.1099/mgen.0.001229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 03/26/2024] [Indexed: 05/05/2024] Open
Abstract
Paramyxoviruses are a group of single-stranded, negative-sense RNA viruses, some of which are responsible for acute human disease, including parainfluenza virus, measles virus, Nipah virus and Hendra virus. In recent years, a large number of novel paramyxoviruses, particularly members of the genus Jeilongvirus, have been discovered in wild mammals, suggesting that the diversity of paramyxoviruses may be underestimated. Here we used hemi-nested reverse transcription PCR to obtain 190 paramyxovirus sequences from 969 small mammals in Hubei Province, Central China. These newly identified paramyxoviruses were classified into four clades: genera Jeilongvirus, Morbillivirus, Henipavirus and Narmovirus, with most of them belonging to the genus Jeilongvirus. Using Illumina sequencing and Sanger sequencing, we successfully recovered six near-full-length genomes with different genomic organizations, revealing the more complex genome content of paramyxoviruses. Co-divergence analysis of jeilongviruses and their known hosts indicates that host-switching occurred more frequently in the evolutionary histories of the genus Jeilongvirus. Together, our findings demonstrate the high prevalence of paramyxoviruses in small mammals, especially jeilongviruses, and highlight the diversity of paramyxoviruses and their genome content, as well as the evolution of jeilongviruses.
Collapse
Affiliation(s)
- Jia-le Xu
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Provincial Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences/Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan, Hubei, 430071, PR China
| | - Jin-tao Chen
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Provincial Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences/Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan, Hubei, 430071, PR China
| | - Bing Hu
- Institute of Health Inspection and Testing, Hubei Provincial Center for Disease Control & Prevention, 6 Zhuodaoquan Road, Wuhan, Hubei, 430079, PR China
| | - Wei-wei Guo
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Provincial Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences/Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan, Hubei, 430071, PR China
| | - Jing-jing Guo
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Provincial Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences/Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan, Hubei, 430071, PR China
| | - Chao-rui Xiong
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Provincial Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences/Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan, Hubei, 430071, PR China
| | - Ling-xin Qin
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Provincial Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences/Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan, Hubei, 430071, PR China
| | - Xin-nai Yu
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Provincial Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences/Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan, Hubei, 430071, PR China
| | - Xiao-min Chen
- Division of Virology, Wuhan Center for Disease Control & Prevention, 288 Machang Road, Wuhan, Hubei, 430015, PR China
| | - Kun Cai
- Institute of Health Inspection and Testing, Hubei Provincial Center for Disease Control & Prevention, 6 Zhuodaoquan Road, Wuhan, Hubei, 430079, PR China
| | - Yi-rong Li
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Provincial Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences/Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan, Hubei, 430071, PR China
| | - Man-qing Liu
- Division of Virology, Wuhan Center for Disease Control & Prevention, 288 Machang Road, Wuhan, Hubei, 430015, PR China
| | - Liang-jun Chen
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Provincial Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences/Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan, Hubei, 430071, PR China
| | - Wei Hou
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Provincial Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences/Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan, Hubei, 430071, PR China
- School of Public Health, Wuhan University, 185 Donghu Road, Wuhan, Hubei, 430071, PR China
| |
Collapse
|
3
|
Ito G, Tabata S, Matsuu A, Hatai H, Goto-Koshino Y, Kuramoto T, Doi S, Momoi Y. Detection of feline morbillivirus in cats with symptoms of acute febrile infection. Vet Res Commun 2024; 48:569-578. [PMID: 37672171 PMCID: PMC10811173 DOI: 10.1007/s11259-023-10214-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/31/2023] [Indexed: 09/07/2023]
Abstract
Feline morbillivirus (FeMV) was identified for the first time in cats in 2012 in Hong Kong. Although its association with chronic kidney disease in cats has attracted the attention of researchers, its clinical significance as an acute infection has not been reported. Previously, we reported FeMV detection using next-generation sequence-based comprehensive genomic analysis of plasma samples from cats with suspected acute febrile infections. Here, we conducted an epidemiological survey to detect FeMV by quantitative reverse transcription polymerase chain reaction (qRT-PCR) using blood samples from cats in Japan. FeMV was detected in 32/102 blood samples (31.4%) from cats with suspected acute viral infections. Most of the FeMV-positive cats had clinical findings consistent with acute viral infections, including fever, leukopenia, thrombocytopenia and jaundice. No FeMV was detected in healthy cats or clinically ill cats that visited veterinary hospitals. Phylogenetic analysis classified FeMV L genes into various FeMV subtypes. We also necropsied a FeMV-positive cat that died of a suspected acute infection. On necropsy, FeMV was detected in systemic organs, including the kidneys, lymph nodes and spleen by qRT-PCR and immunohistochemical staining. These results suggest that FeMV infections may cause acute symptomatic febrile infections in cats. A limitation of this study was that the involvement of other pathogens that cause febrile illnesses could not be ruled out and this prevented a definitive conclusion that FeMV causes febrile disease in infected cats. Further studies that include experimental infections are warranted to determine the pathogenicity of FeMV in cats.
Collapse
Affiliation(s)
- Genta Ito
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Shoichi Tabata
- Laboratory of Veterinary Diagnostic Imaging, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan
| | - Aya Matsuu
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan
| | - Hitoshi Hatai
- Laboratory of Veterinary Histopathology, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan
- Farm Animal Clinical Skills and Disease Control Center, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate, 020-8550, Japan
| | - Yuko Goto-Koshino
- Veterinary Medical Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Tomohide Kuramoto
- Kagoshima University Veterinary Teaching Hospital, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan
| | - Sakiko Doi
- Sanritsu Zelkova Co., Ltd., 3-5-5 Ogibashi, Koto-ku, Tokyo, 113-0011, Japan
| | - Yasuyuki Momoi
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
4
|
Sieg M, Busch J, Böttcher D, Vahlenkamp TW. In Vitro Modeling of Feline Morbillivirus Infections Using Primary Feline Kidney Cells. Methods Mol Biol 2024; 2808:153-165. [PMID: 38743369 DOI: 10.1007/978-1-0716-3870-5_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Domestic cats are the natural host of feline morbilliviruses (FeMV). Although other species can also be infected (such as dogs and opossums), no laboratory animal infection model is established so far. In vitro models for studying the molecular pathogenesis are therefore needed. For this purpose, propagation and titration of FeMV are key techniques. Unlike other morbilliviruses, such as canine distemper virus (CDV) or measles virus (MV), FeMV is a slow growing virus in cell culture and is difficult to titrate using classical plaque techniques. Here we describe methods for the efficient isolation of FeMV from natural sources (e.g., urine), the propagation of viral stocks, and their titration. In addition, we establish the generation of a three-dimensional infection model mimicking the feline tubular epithelium.
Collapse
Affiliation(s)
- Michael Sieg
- Faculty of Veterinary Medicine, Institute of Virology, Leipzig University, Leipzig, Germany.
| | - Johannes Busch
- Faculty of Veterinary Medicine, Institute of Virology, Leipzig University, Leipzig, Germany
| | - Denny Böttcher
- Faculty of Veterinary Medicine, Institute of Veterinary Pathology, Leipzig University, Leipzig, Germany
| | - Thomas W Vahlenkamp
- Faculty of Veterinary Medicine, Institute of Virology, Leipzig University, Leipzig, Germany
| |
Collapse
|
5
|
Randall RE, Young DF, Hughes DJ, Goodbourn S. Persistent paramyxovirus infections: in co-infections the parainfluenza virus type 5 persistent phenotype is dominant over the lytic phenotype. J Gen Virol 2023; 104:001916. [PMID: 37962188 PMCID: PMC10768688 DOI: 10.1099/jgv.0.001916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Parainfluenza virus type 5 (PIV5) can either have a persistent or a lytic phenotype in cultured cells. We have previously shown that the phenotype is determined by the phosphorylation status of the phosphoprotein (P). Single amino acid substitutions at critical residues, including a serine-to-phenylalanine substitution at position 157 on P, result in a switch between persistent and lytic phenotypes. Here, using PIV5 vectors expressing either mCherry or GFP with persistent or lytic phenotypes, we show that in co-infections the persistent phenotype is dominant. Thus, in contrast to the cell death observed with cells infected solely with the lytic variant, in co-infected cells persistence is immediately established and both lytic and persistent genotypes persist. Furthermore, 10-20 % of virus released from dually infected cells contains both genotypes, indicating that PIV5 particles can package more than one genome. Co-infected cells continue to maintain both genotypes/phenotypes during cell passage, as do individual colonies of cells derived from a culture of persistently infected cells. A refinement of our model on how the dynamics of virus selection may occur in vivo is presented.
Collapse
Affiliation(s)
- Richard E. Randall
- School of Biology, Centre for Biomolecular Sciences, BMS Building, North Haugh, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Dan F. Young
- School of Biology, Centre for Biomolecular Sciences, BMS Building, North Haugh, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - David J. Hughes
- School of Biology, Centre for Biomolecular Sciences, BMS Building, North Haugh, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Steve Goodbourn
- Section for Pathogen Research, Institute for Infection and Immunity, St George’s, University of London, London SW17 0RE, UK
| |
Collapse
|
6
|
Pennisi MG, Belák S, Tasker S, Addie DD, Boucraut-Baralon C, Egberink H, Frymus T, Hartmann K, Hofmann-Lehmann R, Lloret A, Marsilio F, Thiry E, Truyen U, Möstl K, Hosie MJ. Feline Morbillivirus: Clinical Relevance of a Widespread Endemic Viral Infection of Cats. Viruses 2023; 15:2087. [PMID: 37896864 PMCID: PMC10611265 DOI: 10.3390/v15102087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Feline morbillivirus (FeMV) was first isolated in 2012 from stray cats in Hong Kong. It has been found in association with tubulointerstitial nephritis (TIN), the most common cause of feline chronic kidney disease (CKD). However, viral host spectrum and virus tropism go beyond the domestic cat and kidney tissues. The viral genetic diversity of FeMV is extensive, but it is not known if this is clinically relevant. Urine and kidney tissues have been widely tested in attempts to confirm associations between FeMV infection and renal disease, but samples from both healthy and sick cats can test positive and some cross-sectional studies have not found associations between FeMV infection and CKD. There is also evidence for acute kidney injury following infection with FeMV. The results of prevalence studies differ greatly depending on the population tested and methodologies used for detection, but worldwide distribution of FeMV has been shown. Experimental studies have confirmed previous field observations that higher viral loads are present in the urine compared to other tissues, and renal TIN lesions associated with FeMV antigen have been demonstrated, alongside virus lymphotropism and viraemia-associated lymphopenia. Longitudinal field studies have revealed persistent viral shedding in urine, although infection can be cleared spontaneously.
Collapse
Affiliation(s)
| | - Sándor Belák
- Department of Biomedical Sciences and Veterinary Public Health (BVF), Swedish University of Agricultural Sciences (SLU), P.O. Box 7036, 750 07 Uppsala, Sweden;
| | - Séverine Tasker
- Bristol Veterinary School, University of Bristol, Bristol BS40 5DU, UK;
- Linnaeus Veterinary Limited, Shirley, Solihull B90 4BN, UK
| | - Diane D. Addie
- Independent Researcher, 64000 Pyrénées Aquitaine, France;
| | | | - Herman Egberink
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, University of Utrecht, 3584 CL Utrecht, The Netherlands;
| | - Tadeusz Frymus
- Department of Small Animal Diseases with Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGWW, 02-787 Warsaw, Poland;
| | - Katrin Hartmann
- LMU Small Animal Clinic, Centre for Clinical Veterinary Medicine, LMU Munich, 80539 Munich, Germany;
| | - Regina Hofmann-Lehmann
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland;
| | - Albert Lloret
- Fundació Hospital Clínic Veterinari, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain;
| | - Fulvio Marsilio
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, 64100 Teramo, Italy;
| | - Etienne Thiry
- Veterinary Virology and Animal Viral Diseases, Department of Infectious and Parasitic Diseases, FARAH Research Centre, Faculty of Veterinary Medicine, Liège University, B-4000 Liège, Belgium;
| | - Uwe Truyen
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, 04103 Leipzig, Germany;
| | - Karin Möstl
- Institute of Virology, Department for Pathobiology, University of Veterinary Medicine, 1210 Vienna, Austria;
| | - Margaret J. Hosie
- MRC-University of Glasgow Centre for Virus Research, Garscube Estate, Glasgow G61 1QH, UK;
| |
Collapse
|
7
|
Su H, Wang Y, Han Y, Jin Q, Yang F, Wu Z. Discovery and characterization of novel paramyxoviruses from bat samples in China. Virol Sin 2023; 38:198-207. [PMID: 36649817 PMCID: PMC10176441 DOI: 10.1016/j.virs.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 11/14/2022] [Indexed: 01/15/2023] Open
Abstract
Many paramyxoviruses are responsible for a variety of mild to severe human and animal diseases. Based on the novel discoveries over the past several decades, the family Paramyxoviridae infecting various hosts across the world includes 4 subfamilies, 17 classified genera and 78 species now. However, no systematic surveys of bat paramyxoviruses are available from the Chinese mainland. In this study, 13,064 samples from 54 bat species were collected and a comprehensive paramyxovirus survey was conducted. We obtained 94 new genome sequences distributed across paramyxoviruses from 22 bat species in seven provinces. Bayesian phylodynamic and phylogenetic analyses showed that there were four different lineages in the Jeilongvirus genus. Based on available data, results of host and region switches showed that the bat colony was partial to interior, whereas the rodent colony was exported, and the felines and hedgehogs were most likely the intermediate hosts from Scotophilus spp. rather than rodents. Based on the evolutionary trend, genus Jeilongvirus may have originated from Mus spp. in Australia, then transmitted to bats and rodents in Africa, Asia and Europe, and finally to bats and rodents in America.
Collapse
Affiliation(s)
- Haoxiang Su
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Yuyang Wang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Yelin Han
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Qi Jin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
| | - Fan Yang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
| | - Zhiqiang Wu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China; Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
8
|
Kuhn JH, Adkins S, Alkhovsky SV, Avšič-Županc T, Ayllón MA, Bahl J, Balkema-Buschmann A, Ballinger MJ, Bandte M, Beer M, Bejerman N, Bergeron É, Biedenkopf N, Bigarré L, Blair CD, Blasdell KR, Bradfute SB, Briese T, Brown PA, Bruggmann R, Buchholz UJ, Buchmeier MJ, Bukreyev A, Burt F, Büttner C, Calisher CH, Candresse T, Carson J, Casas I, Chandran K, Charrel RN, Chiaki Y, Crane A, Crane M, Dacheux L, Bó ED, de la Torre JC, de Lamballerie X, de Souza WM, de Swart RL, Dheilly NM, Di Paola N, Di Serio F, Dietzgen RG, Digiaro M, Drexler JF, Duprex WP, Dürrwald R, Easton AJ, Elbeaino T, Ergünay K, Feng G, Feuvrier C, Firth AE, Fooks AR, Formenty PBH, Freitas-Astúa J, Gago-Zachert S, García ML, García-Sastre A, Garrison AR, Godwin SE, Gonzalez JPJ, de Bellocq JG, Griffiths A, Groschup MH, Günther S, Hammond J, Hepojoki J, Hierweger MM, Hongō S, Horie M, Horikawa H, Hughes HR, Hume AJ, Hyndman TH, Jiāng D, Jonson GB, Junglen S, Kadono F, Karlin DG, Klempa B, Klingström J, Koch MC, Kondō H, Koonin EV, Krásová J, Krupovic M, Kubota K, Kuzmin IV, Laenen L, Lambert AJ, Lǐ J, Li JM, Lieffrig F, Lukashevich IS, Luo D, Maes P, Marklewitz M, Marshall SH, Marzano SYL, McCauley JW, Mirazimi A, Mohr PG, Moody NJG, Morita Y, Morrison RN, Mühlberger E, Naidu R, Natsuaki T, Navarro JA, Neriya Y, Netesov SV, Neumann G, Nowotny N, Ochoa-Corona FM, Palacios G, Pallandre L, Pallás V, Papa A, Paraskevopoulou S, Parrish CR, Pauvolid-Corrêa A, Pawęska JT, Pérez DR, Pfaff F, Plemper RK, Postler TS, Pozet F, Radoshitzky SR, Ramos-González PL, Rehanek M, Resende RO, Reyes CA, Romanowski V, Rubbenstroth D, Rubino L, Rumbou A, Runstadler JA, Rupp M, Sabanadzovic S, Sasaya T, Schmidt-Posthaus H, Schwemmle M, Seuberlich T, Sharpe SR, Shi M, Sironi M, Smither S, Song JW, Spann KM, Spengler JR, Stenglein MD, Takada A, Tesh RB, Těšíková J, Thornburg NJ, Tischler ND, Tomitaka Y, Tomonaga K, Tordo N, Tsunekawa K, Turina M, Tzanetakis IE, Vaira AM, van den Hoogen B, Vanmechelen B, Vasilakis N, Verbeek M, von Bargen S, Wada J, Wahl V, Walker PJ, Whitfield AE, Williams JV, Wolf YI, Yamasaki J, Yanagisawa H, Ye G, Zhang YZ, Økland AL. 2022 taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Arch Virol 2022; 167:2857-2906. [PMID: 36437428 PMCID: PMC9847503 DOI: 10.1007/s00705-022-05546-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In March 2022, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by two new families (bunyaviral Discoviridae and Tulasviridae), 41 new genera, and 98 new species. Three hundred forty-nine species were renamed and/or moved. The accidentally misspelled names of seven species were corrected. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV.
Collapse
Affiliation(s)
- Jens H Kuhn
- Integrated Research Facility at Fort Detrick (IRF-Frederick), National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Fort Detrick, Frederick, MD, USA.
| | - Scott Adkins
- United States Department of Agriculture, Agricultural Research Service, US Horticultural Research Laboratory, Fort Pierce, FL, USA
| | - Sergey V Alkhovsky
- D.I. Ivanovsky Institute of Virology of N.F. Gamaleya National Center on Epidemiology and Microbiology of Ministry of Health of Russian Federation, Moscow, Russia
| | - Tatjana Avšič-Županc
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - María A Ayllón
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Justin Bahl
- Center for Ecology of Infectious Diseases, Department of Infectious Diseases, Department of Epidemiology and Biostatistics, Insitute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Anne Balkema-Buschmann
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Greifswald, Germany
| | - Matthew J Ballinger
- Department of Biological Sciences, Mississippi State University, Mississippi State, Starkville, MS, USA
| | - Martina Bandte
- Division Phytomedicine, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | | | - Éric Bergeron
- Division of High-Consequence Pathogens and Pathology, Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Nadine Biedenkopf
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| | - Laurent Bigarré
- French Agency for Food, Environmental and Occupational Heath Safety ANSES, Laboratory of Ploufragan-Plouzané-Niort, Ploufragan, France
| | - Carol D Blair
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Kim R Blasdell
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Steven B Bradfute
- University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Thomas Briese
- Center for Infection and Immunity, and Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Paul A Brown
- French Agency for Food, Environmental and Occupational Heath Safety ANSES, Laboratory of Ploufragan-Plouzané-Niort, Ploufragan, France
| | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit, University of Bern, Bern, Switzerland
| | - Ursula J Buchholz
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michael J Buchmeier
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
| | - Alexander Bukreyev
- Galveston National Laboratory, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
- The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Felicity Burt
- Division of Virology, National Health Laboratory Service and Division of Virology, University of the Free State, Bloemfontein, Republic of South Africa
| | - Carmen Büttner
- Division Phytomedicine, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | | | - Jeremy Carson
- Centre for Aquatic Animal Health and Vaccines, Department of Natural Resources and Environment Tasmania, Launceston, TAS, Australia
| | - Inmaculada Casas
- Respiratory Virus and Influenza Unit, National Microbiology Center, Instituto de Salud Carlos III, Madrid, Spain
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Rémi N Charrel
- Unité des Virus Emergents (Aix-Marseille Univ-IRD 190-Inserm 1207-IHU Méditerranée Infection), Marseille, France
| | - Yuya Chiaki
- Division of Fruit Tree and Tea Pest Control Research, Institute for Plant Protection, NARO, Tsukuba, Ibaraki, Japan
| | - Anya Crane
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, USA
| | - Mark Crane
- CSIRO Australian Centre for Disease Preparedness, East Geelong, VIC, Australia
| | - Laurent Dacheux
- Institut Pasteur, Université Paris Cité, Unit Lyssavirus Epidemiology and Neuropathology, National Reference Center for Rabies, WHO Collaborating Center for Reference and Research on Rabies, Paris, France
| | - Elena Dal Bó
- CIDEFI. Facultad de Ciencias Agrarias y Forestales, Universidad de La Plata, La Plata, Argentina
| | - Juan Carlos de la Torre
- Department of Immunology and Microbiology IMM-6, The Scripps Research Institute, La Jolla, CA, USA
| | - Xavier de Lamballerie
- Unité des Virus Emergents (Aix-Marseille Univ-IRD 190-Inserm 1207-IHU Méditerranée Infection), Marseille, France
| | - William M de Souza
- World Reference Center for Emerging Viruses and Arboviruses and Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Rik L de Swart
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Nolwenn M Dheilly
- UMR 1161 Virology ANSES/INRAE/ENVA, ANSES Animal Health Laboratory, Maisons-Alfort, France
| | - Nicholas Di Paola
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Francesco Di Serio
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Ralf G Dietzgen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
| | - Michele Digiaro
- CIHEAM, Istituto Agronomico Mediterraneo di Bari, Valenzano, Italy
| | - J Felix Drexler
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - W Paul Duprex
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Andrew J Easton
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Toufic Elbeaino
- CIHEAM, Istituto Agronomico Mediterraneo di Bari, Valenzano, Italy
| | - Koray Ergünay
- Department of Medical Microbiology, Virology Unit, Hacettepe University Faculty of Medicine, Ankara, Turkey
- Walter Reed Biosystematics Unit (WRBU), Smithsonian Institution, Museum Support Center, Suitland, MD, USA
- One Health Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, USA
- Department of Entomology, Smithsonian Institution-National Museum of Natural History (NMNH), Washington, DC, USA
| | - Guozhong Feng
- China National Rice Research Institute, Hangzhou, China
| | | | - Andrew E Firth
- Department of Pathology, University of Cambridge, Cambridge, UK
| | | | | | | | - Selma Gago-Zachert
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - María Laura García
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, CONICET UNLP, La Plata, Argentina
| | | | - Aura R Garrison
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Scott E Godwin
- Centre for Aquatic Animal Health and Vaccines, Department of Natural Resources and Environment Tasmania, Launceston, TAS, Australia
| | - Jean-Paul J Gonzalez
- Department of Microbiology and Immunology, Division of Biomedical Graduate Research Organization, School of Medicine, Georgetown University, Washington, DC, USA
| | | | - Anthony Griffiths
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, MA, USA
| | - Martin H Groschup
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Stephan Günther
- Department of Virology, WHO Collaborating Centre for Arboviruses and Hemorrhagic Fever Reference and Research, Bernhard-Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - John Hammond
- United States Department of Agriculture, Agricultural Research Service, USNA, Floral and Nursery Plants Research Unit, Beltsville, MD, USA
| | - Jussi Hepojoki
- Department of Virology, University of Helsinki, Medicum, Helsinki, Finland
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Melanie M Hierweger
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Seiji Hongō
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Masayuki Horie
- Graduate School of Veterinary Science, Osaka Metropolitan University, Izumisano, Osaka, Japan
- Osaka International Research Center for Infectious Diseases, Osaka Metropolitan University, Izumisano, Osaka, Japan
| | | | - Holly R Hughes
- Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - Adam J Hume
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, MA, USA
- Center for Emerging Infectious Diseases Policy and Research, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Timothy H Hyndman
- School of Veterinary Medicine, Murdoch University, Murdoch, WA, Australia
| | - Dàohóng Jiāng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Gilda B Jonson
- International Rice Research Institute, College, Los Baños, 4032, Laguna, Philippines
| | - Sandra Junglen
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Fujio Kadono
- Clinical Plant Science Center, Hosei University, Tokyo, Japan
| | - David G Karlin
- Division Phytomedicine, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Boris Klempa
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jonas Klingström
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Michel C Koch
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Hideki Kondō
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Jarmila Krásová
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris, France
| | - Kenji Kubota
- Institute for Plant Protection, NARO, Tsukuba, Ibaraki, Japan
| | - Ivan V Kuzmin
- The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Lies Laenen
- KU Leuven, Rega Institute, Zoonotic Infectious Diseases unit, Leuven, Belgium
- Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Amy J Lambert
- Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - Jiànróng Lǐ
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Jun-Min Li
- Institute of Plant Virology, Ningbo University, Ningbo, China
| | | | - Igor S Lukashevich
- Department of Pharmacology and Toxicology, School of Medicine, and the Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, KY, USA
| | - Dongsheng Luo
- Institut Pasteur, Université Paris Cité, Unit Lyssavirus Epidemiology and Neuropathology, Paris, France
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Piet Maes
- KU Leuven, Rega Institute, Zoonotic Infectious Diseases unit, Leuven, Belgium
| | | | - Sergio H Marshall
- Instituto de Biología-Laboratorio de Genética Molecular-Campus Curauma, Valparaíso, Chile
| | - Shin-Yi L Marzano
- United States Department of Agriculture, Agricultural Research Service, Toledo, OH, USA
| | - John W McCauley
- Worldwide Influenza Centre, Francis Crick Institute, London, UK
| | | | - Peter G Mohr
- CSIRO Australian Centre for Disease Preparedness, East Geelong, VIC, Australia
| | - Nick J G Moody
- CSIRO Australian Centre for Disease Preparedness, East Geelong, VIC, Australia
| | | | - Richard N Morrison
- Centre for Aquatic Animal Health and Vaccines, Department of Natural Resources and Environment Tasmania, Launceston, TAS, Australia
| | - Elke Mühlberger
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, MA, USA
| | - Rayapati Naidu
- Department of Plant Pathology, Irrigated Agricultural Research and Extension Center, Washington State University, Prosser, WA, USA
| | | | - José A Navarro
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Yutaro Neriya
- School of Agriculture, Utsunomiya University, Utsunomiya, Japan
| | - Sergey V Netesov
- Novosibirsk State University, Novosibirsk, Novosibirsk Oblast, Russia
| | - Gabriele Neumann
- Department of Pathobiological Sciences, Influenza Research Institute, University of Wisconsin-Madison, Madison, USA
| | - Norbert Nowotny
- Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Francisco M Ochoa-Corona
- Institute for Biosecurity and Microbial Forensics. Stillwater, Oklahoma State University, Oklahoma, USA
| | - Gustavo Palacios
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Laurane Pallandre
- French Agency for Food, Environmental and Occupational Heath Safety ANSES, Laboratory of Ploufragan-Plouzané-Niort, Ploufragan, France
| | - Vicente Pallás
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Cientificas-Universidat Politècnica de Valencia, Valencia, Spain
| | - Anna Papa
- National Reference Centre for Arboviruses and Haemorrhagic Fever viruses, Department of Microbiology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Sofia Paraskevopoulou
- Methods Development and Research Infrastructure, Bioinformatics and Systems Biology, Robert Koch Institute, Berlin, Germany
| | - Colin R Parrish
- College of Veterinary Medicine, Baker Institute for Animal Health, Cornell University, Ithaca, NY, USA
| | | | - Janusz T Pawęska
- Center for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham-Johannesburg, Gauteng, South Africa
| | - Daniel R Pérez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | | | - Richard K Plemper
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Thomas S Postler
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Sheli R Radoshitzky
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, USA
| | | | - Marius Rehanek
- Division Phytomedicine, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Renato O Resende
- Departamento de Biologia Celular, Universidade de Brasília, Brasília, Brazil
| | - Carina A Reyes
- Instituto de Biotecnología y Biología Molecular, CONICET-UNLP, Facultad de Ciencias Exactas, Unversidad Nacional de La Plata, Buenos Aires, Argentina
| | - Víctor Romanowski
- Instituto de Biotecnología y Biología Molecular, CONICET-UNLP, Facultad de Ciencias Exactas, Unversidad Nacional de La Plata, Buenos Aires, Argentina
| | - Dennis Rubbenstroth
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Luisa Rubino
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Artemis Rumbou
- Division Phytomedicine, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jonathan A Runstadler
- Department of Infectious Disease & Global Health, Tufts University Cummings School of Veterinary Medicine, North Grafton, MA, USA
| | - Melanie Rupp
- Institute for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Sead Sabanadzovic
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS, USA
| | - Takahide Sasaya
- Institute for Plant Protection, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Heike Schmidt-Posthaus
- Institute for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Martin Schwemmle
- Faculty of Medicine, University Medical Center-University Freiburg, Freiburg, Germany
| | - Torsten Seuberlich
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Stephen R Sharpe
- Hawkesbury Institute for the Environment, Western Sydney University, Sydney, NSW, Australia
| | - Mang Shi
- Sun Yat-sen University, Shenzhen, China
| | - Manuela Sironi
- Bioinformatics Unit, Scientific Institute IRCCS "E. Medea", Bosisio Parini, Italy
| | - Sophie Smither
- CBR Division, Dstl, Porton Down, Salisbury, Wiltshire, UK
| | - Jin-Won Song
- Department of Microbiology, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Kirsten M Spann
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Jessica R Spengler
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Mark D Stenglein
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Ayato Takada
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Robert B Tesh
- The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Jana Těšíková
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | - Nicole D Tischler
- Laboratorio de Virología Molecular, Centro Ciencia & Vida, Fundación Ciencia & Vida and Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Yasuhiro Tomitaka
- Institute for Plant Protection, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Keizō Tomonaga
- Institute for Life and Medical Sciences (LiMe), Kyoto University, Kyoto, Japan
| | - Noël Tordo
- Institut Pasteur de Guinée, BP 4416, Conakry, Guinea
| | | | - Massimo Turina
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), Torino, Italy
| | - Ioannis E Tzanetakis
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR, USA
| | - Anna Maria Vaira
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), Torino, Italy
| | - Bernadette van den Hoogen
- Department of Viroscience, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Bert Vanmechelen
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Nikos Vasilakis
- The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Martin Verbeek
- Wageningen University and Research, Biointeractions and Plant Health, Wageningen, The Netherlands
| | - Susanne von Bargen
- Division Phytomedicine, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jiro Wada
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, USA
| | - Victoria Wahl
- National Biodefense Analysis and Countermeasures Center, Fort Detrick, Frederick, MD, USA
| | - Peter J Walker
- School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, QLD, Australia
| | - Anna E Whitfield
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - John V Williams
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Junki Yamasaki
- Environmental Agriculture Promotion Division, Department of Agricultural Development, Kochi Prefectural Government, Kochi, Kochi, Japan
| | | | - Gongyin Ye
- Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Yong-Zhen Zhang
- National Institute for Communicable Disease Control and Prevention, China Center for Disease Control and Prevention, Beijing, China
| | | |
Collapse
|
9
|
FeMV is a cathepsin-dependent unique morbillivirus infecting the kidneys of domestic cats. Proc Natl Acad Sci U S A 2022; 119:e2209405119. [PMID: 36251995 PMCID: PMC9618091 DOI: 10.1073/pnas.2209405119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Feline morbillivirus (FeMV) is a recently discovered pathogen of domestic cats and has been classified as a morbillivirus in the Paramyxovirus family. We determined the complete sequence of FeMVUS5 directly from an FeMV-positive urine sample without virus isolation or cell passage. Sequence analysis of the viral genome revealed potential divergence from characteristics of archetypal morbilliviruses. First, the virus lacks the canonical polybasic furin cleavage signal in the fusion (F) glycoprotein. Second, conserved amino acids in the hemagglutinin (H) glycoprotein used by all other morbilliviruses for binding and/or fusion activation with the cellular receptor CD150 (signaling lymphocyte activation molecule [SLAM]/F1) are absent. We show that, despite this sequence divergence, FeMV H glycoprotein uses feline CD150 as a receptor and cannot use human CD150. We demonstrate that the protease responsible for cleaving the FeMV F glycoprotein is a cathepsin, making FeMV a unique morbillivirus and more similar to the closely related zoonotic Nipah and Hendra viruses. We developed a reverse genetics system for FeMVUS5 and generated recombinant viruses expressing Venus fluorescent protein from an additional transcription unit located either between the phospho-protein (P) and matrix (M) genes or the H and large (L) genes of the genome. We used these recombinant FeMVs to establish a natural infection and demonstrate that FeMV causes an acute morbillivirus-like disease in the cat. Virus was shed in the urine and detectable in the kidneys at later time points. This opens the door for long-term studies to address the postulated role of this morbillivirus in the development of chronic kidney disease.
Collapse
|
10
|
In Vitro Growth, Receptor Usage and Pathogenesis of Feline Morbillivirus in the Natural Host. Viruses 2022; 14:v14071503. [PMID: 35891483 PMCID: PMC9320283 DOI: 10.3390/v14071503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 01/25/2023] Open
Abstract
Feline morbillivirus (FeMV) is a recently discovered virus belonging to the genus Morbillivirus of the virus family Paramyxoviridae. Often, the virus has been detected in urine of cats with a history of urinary disease and has a worldwide distribution. Currently, it is unclear which receptor the virus uses to enter the target cells. Furthermore, many aspects of FeMV biology in vivo, including tissue tropism, pathogenesis, and virus excretion in the natural host remain unclear. In this study we analyzed the replication of FeMV in various cell lines. Secondly, we tested if the presence of feline SLAMF1 (Signaling Lymphocytic Activation Molecule family 1/CD150, principal entry receptor for other members of the Morbillivirus genus) improved FeMV replication efficiency in vitro. Finally, to elucidate in vivo biology in cats, as a natural host for FeMV, we experimentally infected a group of cats and monitored clinical symptoms, viremia, and excretion of the virus during the course of 56 days. Our study showed that FeMV shares some features with other morbilliviruses like the use of the SLAMF1 receptor. For the first time, experimental infection of SPF cats showed that FeMV does not induce an acute clinical disease like other morbilliviruses but can induce lesions in the kidneys, including tubulointerstitial nephritis. Further investigations are needed to confirm the site and dynamics of replication of FeMV in the urinary tract and the longer-term impact of FeMV-induced lesions on the renal function. Whether FeMV infection can result in chronic kidney disease will require the monitoring of cats over a longer period.
Collapse
|
11
|
Zhu W, Huang Y, Yu X, Chen H, Li D, Zhou L, Huang Q, Liu L, Yang J, Lu S. Discovery and Evolutionary Analysis of a Novel Bat-Borne Paramyxovirus. Viruses 2022; 14:288. [PMID: 35215881 PMCID: PMC8879077 DOI: 10.3390/v14020288] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 12/04/2022] Open
Abstract
Paramyxoviruses are a group of RNA viruses, such as mumps virus, measles virus, Nipah virus, Hendra virus, Newcastle disease virus, and parainfluenza virus, usually transmitted by airborne droplets that are predominantly responsible for acute respiratory diseases. In this paper, we identified a novel paramyxovirus belonging to genus Jeilongvirus infecting 4/112 (3.6%) bats from two trapping sites of Hainan Province of China. In these animals, the viral RNA was detected exclusively in kidney tissues. This is the first full-length Jeilongvirus genome (18,095 nucleotides) from bats of genus Hipposideros, which exhibits a canonical genome organization and encodes SH and TM proteins. Results, based on phylogenic analysis and genetic distances, indicate that the novel paramyxovirus formed an independent lineage belonging to genus Jeilongvirus, representing, thus, a novel species. In addition, the virus-host macro-evolutionary analysis revealed that host-switching was not only a common co-phylogenetic event, but also a potential mechanism by which rats are infected by bat-origin Jeilongvirus through cross-species virus transmission, indicating a bat origin of the genus Jeilongvirus. Overall, our study broadens the viral diversity, geographical distribution, host range, and evolution of genus Jeilongvirus.
Collapse
Affiliation(s)
- Wentao Zhu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (W.Z.); (Y.H.); (Q.H.); (L.L.)
| | - Yuyuan Huang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (W.Z.); (Y.H.); (Q.H.); (L.L.)
| | - Xiaojie Yu
- Hainan Provincial Center for Disease Control and Prevention, Haikou 570203, China; (X.Y.); (H.C.); (D.L.); (L.Z.)
| | - Haiyun Chen
- Hainan Provincial Center for Disease Control and Prevention, Haikou 570203, China; (X.Y.); (H.C.); (D.L.); (L.Z.)
| | - Dandan Li
- Hainan Provincial Center for Disease Control and Prevention, Haikou 570203, China; (X.Y.); (H.C.); (D.L.); (L.Z.)
| | - Libo Zhou
- Hainan Provincial Center for Disease Control and Prevention, Haikou 570203, China; (X.Y.); (H.C.); (D.L.); (L.Z.)
| | - Qianni Huang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (W.Z.); (Y.H.); (Q.H.); (L.L.)
| | - Liyun Liu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (W.Z.); (Y.H.); (Q.H.); (L.L.)
| | - Jing Yang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (W.Z.); (Y.H.); (Q.H.); (L.L.)
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Shan Lu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (W.Z.); (Y.H.); (Q.H.); (L.L.)
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
12
|
Michel AO, Donovan TA, Roediger B, Lee Q, Jolly CJ, Monette S. Chaphamaparvovirus antigen and nucleic acids are not detected in kidney tissues from cats with chronic renal disease or immunocompromised cats. Vet Pathol 2022; 59:120-126. [PMID: 34601998 PMCID: PMC9393070 DOI: 10.1177/03009858211045439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Chronic kidney disease (CKD) is a common cause of morbidity and mortality in domestic cats, but the cause is still largely elusive. While some viruses have been associated with this disease, none have been definitively implicated as causative. Recently, Rodent chaphamaparvovirus 1 was recognized as the cause of murine inclusion body nephropathy, a disease reported for over 40 years in laboratory mice. A novel virus belonging to the same genus, Carnivore chaphamaparvovirus 2, was recently identified in the feces of cats with diarrhea. The goal of this study was to investigate the possible role of chaphamaparvoviruses including members of Rodent chaphamaparvovirus 1 and Carnivore chaphamaparvovirus 2 in the development of feline CKD. The presence of these viruses was retrospectively investigated in formalin-fixed paraffin-embedded feline kidney samples using polymerase chain reaction, in situ hybridization, and immunohistochemistry. Cats were divided into 3 groups: normal (N = 24), CKD (N = 26), and immunocompromised (N = 25). None of the kidney tissues from any of the 75 cats revealed the presence of chaphamaparvovirus DNA, RNA, or antigen. We conclude that viruses belonging to the chaphamaparvovirus genus are unlikely to contribute to the occurrence of feline CKD.
Collapse
Affiliation(s)
- Adam O Michel
- Laboratory of Comparative Pathology, Center of Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center, The Rockefeller University, Weill Cornell Medicine, New York, NY 10065, USA
- Drug Safety and Pharmacometrics, Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | - Taryn A Donovan
- Department of Anatomic Pathology, The Animal Medical Center, New York, NY 10065, USA
| | - Ben Roediger
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
- Autoimmunity, Transplantation, Inflammation (ATI) Disease Area, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Quintin Lee
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
| | - Christopher J Jolly
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
- Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Sebastien Monette
- Laboratory of Comparative Pathology, Center of Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center, The Rockefeller University, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
13
|
Chaiyasak S, Piewbang C, Yostawonkul J, Boonrungsiman S, Kasantikul T, Rungsipipat A, Techangamsuwan S. Renal epitheliotropism of feline morbillivirus in two cats. Vet Pathol 2021; 59:127-131. [PMID: 34521287 DOI: 10.1177/03009858211045441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The association of feline morbillivirus (FeMV) with kidney disease in cats is controversial. Two cats with a history of severe hematuria had eosinophilic inclusion-like bodies in the renal tubular epithelial cells, without any inflammatory cellular reaction. Ultrastructurally, aggregations of electron-dense viral-like particles were found where the inclusion-like bodies were located. Immunohistochemistry (IHC) using antibodies against FeMV matrix protein labeled these inclusion-like bodies, and also labeled the cytoplasm of tracheal and bronchiolar epithelial cells, and lymphocytes and macrophages in spleen and mesenteric lymph node. Using double IHC, FeMV antigen was detected in astroglia and oligodendroglia but not in microglia. Phylogenetic characterization of the fusion and hemagglutinin gene sequences revealed FeMV-1A genotypes in both cats. These findings indicated an active viral infection with FeMV. We propose that FeMV is a renal epitheliotropic virus and also localizes in various other tissues.
Collapse
Affiliation(s)
| | | | - Jakarwan Yostawonkul
- Chulalongkorn University, Bangkok, Thailand.,National Nanotechnology Center, National Science and Technology Development Agency, Pathumthani, Thailand
| | - Suwimon Boonrungsiman
- National Nanotechnology Center, National Science and Technology Development Agency, Pathumthani, Thailand
| | | | | | | |
Collapse
|
14
|
Piewbang C, Wardhani SW, Dankaona W, Yostawonkul J, Boonrungsiman S, Surachetpong W, Kasantikul T, Techangamsuwan S. Feline morbillivirus-1 in dogs with respiratory diseases. Transbound Emerg Dis 2021; 69:e175-e184. [PMID: 34355534 DOI: 10.1111/tbed.14278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/29/2021] [Accepted: 08/04/2021] [Indexed: 01/04/2023]
Abstract
Feline morbillivirus-1 (FeMV-1) is a viral pathogen associated with kidney disease in domestic cats and wild felids. We initially identified the FeMV-1 from the lung of a necropsied dog with severe pulmonary disease by the reverse transcription polymerase chain reaction (RT-PCR). Thereafter, we investigated FeMV-1 in nasal and oral swab samples from 73 healthy and 113 dogs with respiratory illnesses. We found polymerase chain reaction (PCR)-positive FeMV-1 from only 14/113 (12.39%) dogs with respiratory disease (p = .001). Of these 14 dogs, six were co-infected with other canine respiratory viruses (6/14; 42.86%). Two independent immunohistochemistry procedures, using antibodies against matrix and phosphoprotein of FeMV-1, confirmed the presence of FeMV-1 in lung tissues of two necropsied dogs (out of a total of 22 dogs, 9.09%) that died from respiratory disease. This finding corresponded to transmission electron microscopy findings that paramyxoviral particles exist in lung epithelia. FeMV-1 antigen localization was also evident in the kidney, lymphoid and brain tissues of two deceased dogs. FeMV-1 was successfully isolated from a necropsied dog and from two living dogs, all with respiratory illnesses, which supports FeMV infection in dogs. The detection of FeMV-1 in dog tissues expands the known tropism of this virus to a non-felid host. Our findings indicate that FeMV-1, alone or in co-infection with other viral pathogens, might contribute to respiratory illness and death in dogs.
Collapse
Affiliation(s)
- Chutchai Piewbang
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Animal Virome and Diagnostic Development Research Group, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Sabrina Wahyu Wardhani
- Animal Virome and Diagnostic Development Research Group, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,The International Graduate Program of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Wichan Dankaona
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Animal Virome and Diagnostic Development Research Group, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Jakarwan Yostawonkul
- The International Graduate Program of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Suwimon Boonrungsiman
- National Nanotechnology Center, National Science and Technology Development Agency, Thailand Science Park, Pathumthani, Thailand
| | - Win Surachetpong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Tanit Kasantikul
- Clemson Veterinary Diagnostic Center, Clemson University, Columbia, South Carolina, USA
| | - Somporn Techangamsuwan
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Animal Virome and Diagnostic Development Research Group, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
15
|
Donato G, Masucci M, De Luca E, Alibrandi A, De Majo M, Berjaoui S, Martino C, Mangano C, Lorusso A, Pennisi MG. Feline Morbillivirus in Southern Italy: Epidemiology, Clinico-Pathological Features and Phylogenetic Analysis in Cats. Viruses 2021; 13:v13081449. [PMID: 34452315 PMCID: PMC8402783 DOI: 10.3390/v13081449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 01/23/2023] Open
Abstract
Feline morbillivirus (FeMV) was isolated for the first time in 2012 with an association with chronic kidney disease (CKD) suggested. This study aimed at investigating in cats from southern Italy FeMV prevalence and risk factors for exposure to FeMV, including the relationship with CKD; sequencing amplicons and analyzing phylogeny of PCR positive samples. Blood serum, K3EDTA blood and urine samples from 223 cats were investigated. Ten carcasses were also evaluated. FeMV RNA was detected in 2.4% (5/211) blood and 16.1% (36/223) urine samples. One carcass tested positive by qPCRFeMV from kidney, urinary bladder, and submandibular lymph nodes. Antibodies against FeMV were detected in 14.5% (28/193) cats. We followed up 27 cats (13 FeMV positive cats) and documented in some cases urine shedding after up to 360 days. Older and foundling cats and cats living in rescue catteries, were more frequently infected with FeMV. A significant correlation between FeMV and higher serum creatinine values or low urine specific gravity was found. FeMV positivity was significantly associated with retroviral infection, and the presence of some clinical signs apart from CKD clinicopathological markers. Our study highlights the possibility of a link between FeMV exposure and CKD and a general impairment of feline health.
Collapse
Affiliation(s)
- Giulia Donato
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.M.); (M.D.M.); (C.M.); (M.G.P.)
- Correspondence:
| | - Marisa Masucci
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.M.); (M.D.M.); (C.M.); (M.G.P.)
| | - Eliana De Luca
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise (IZSAM), 64100 Teramo, Italy; (E.D.L.); (S.B.); (C.M.); (A.L.)
| | - Angela Alibrandi
- Department of Economy, University of Messina, 98168 Messina, Italy;
| | - Massimo De Majo
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.M.); (M.D.M.); (C.M.); (M.G.P.)
| | - Shadia Berjaoui
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise (IZSAM), 64100 Teramo, Italy; (E.D.L.); (S.B.); (C.M.); (A.L.)
| | - Camillo Martino
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise (IZSAM), 64100 Teramo, Italy; (E.D.L.); (S.B.); (C.M.); (A.L.)
| | - Cyndi Mangano
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.M.); (M.D.M.); (C.M.); (M.G.P.)
| | - Alessio Lorusso
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise (IZSAM), 64100 Teramo, Italy; (E.D.L.); (S.B.); (C.M.); (A.L.)
| | - Maria Grazia Pennisi
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.M.); (M.D.M.); (C.M.); (M.G.P.)
| |
Collapse
|
16
|
Lee SH, No JS, Kim K, Budhathoki S, Park K, Lee GY, Cho S, Kim BH, Cho S, Kim J, Lee J, Cho SH, Kim HC, Klein TA, Uhm CS, Kim WK, Song JW. Novel Paju Apodemus paramyxovirus 1 and 2, harbored by Apodemus agrarius in the Republic of Korea. Virology 2021; 562:40-49. [PMID: 34256243 DOI: 10.1016/j.virol.2021.06.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 01/19/2023]
Abstract
Paramyxoviruses harbored by multiple natural reservoirs pose a potential threat to public health. Jeilongvirus has been proposed as a novel paramyxovirus genus found in rodents, bats, and cats. Paramyxovirus RNA was detected in 108/824 (13.1%) Apodemus agrarius captured at 14 trapping sites in the Republic of Korea. We first present two genetically distinct novel paramyxoviruses, Paju Apodemus paramyxovirus 1 (PAPV-1) and 2 (PAPV-2). The disparity between PAPV-1 (19,716 nucleotides) and -2 (17,475 nucleotides) revealed the presence of the SH gene and length of the G gene in the genome organization. The phylogeny of PAPV-1 and -2 belonged to distinct genetic lineages of Jeilongvirus, respectively, even though these viruses were originated from A. agrarius. PAPV-1 infected human epithelial and endothelial cells, facilitating the induction of type I/III interferons, interferon-stimulated genes, and pro-inflammatory cytokines. Therefore, this study provides insights into the molecular epidemiology, genetic diversity, and virus-host interactions of novel rodent-borne paramyxoviruses.
Collapse
Affiliation(s)
- Seung-Ho Lee
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jin Sun No
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kijin Kim
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Shailesh Budhathoki
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Kyungmin Park
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea; BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Geum-Young Lee
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Seungchan Cho
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
| | | | | | - Jongwoo Kim
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jingyeong Lee
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Seung Hye Cho
- Department of Biomedical Science, College of Natural Sciences, Hallym University, Chuncheon, Republic of Korea
| | - Heung-Chul Kim
- Force Health Protection and Preventive Medicine, Medical Department Activity-Korea/65th, Medical Brigade, Unit 15281, APO AP, 96271-5281, USA
| | - Terry A Klein
- Force Health Protection and Preventive Medicine, Medical Department Activity-Korea/65th, Medical Brigade, Unit 15281, APO AP, 96271-5281, USA
| | - Chang-Sub Uhm
- Department of Anatomy, Korea University College of Medicine, Seoul, Republic of Korea
| | - Won-Keun Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea; Institute of Medical Science, College of Medicine, Hallym University, Chuncheon, Republic of Korea.
| | - Jin-Won Song
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea; BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
17
|
Muratore E, Cerutti F, Colombino E, Biasibetti E, Caruso C, Brovida C, Cavana P, Poncino L, Caputo MP, Peletto S, Masoero L, Capucchio MT. Feline morbillivirus in northwestern Italy: first detection of genotype 1-B. J Feline Med Surg 2021; 23:584-591. [PMID: 33140998 PMCID: PMC10741291 DOI: 10.1177/1098612x20969360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVES A novel morbillivirus was recently described in stray and domestic cats in Asia, the USA and Europe. Most cats infected with feline morbillivirus (FeMV) showed lower urinary tract or kidney disease. Although the association of FeMV infection and kidney diseases has been suggested, the virus pathogenicity remains unclear. The present study aimed to investigate the distribution of FeMV infection, as well as the relationship between FeMV infection and kidney diseases in cats from northwestern Italy. METHODS A total of 153 urine samples (150 individuals and three pools) and 50 kidney samples were collected and included in the study; total RNA was extracted and a reverse transcription quantitative PCR (RT-qPCR) was performed in order to identify FeMV. Kidneys were also submitted to anatomopathological examination. Phylogenetic analysis and isolation attempts were carried out on positive samples. In FeMV-positive cats, urinalysis and blood analysis were performed. RESULTS FeMV RNA was detected in 7.3% of urine samples and in 8% of kidney samples, both in healthy cats and in cats with clinical signs/post-mortem lesions compatible with kidney disease. At histopathological examination, tubulointerstitial nephritis (TIN) was shown in 3/4 positive kidney samples, but a clear relationship between FeMV and TIN was not observed. Isolation attempts were unsuccessful, although the urine sample of one castrated male cat hosted in a cattery showed a positive signal in RT-qPCR until the fourth cell passage. Phylogenetic analysis revealed that this FeMV strain belonged to genotype 1-B. In the same cattery, a second genotype 1-B variant was detected from a urine pool. Urinalysis showed proteinuria in three cats, while at blood analysis three cats presented altered creatinine levels. CONCLUSIONS AND RELEVANCE Data reported suggest the presence of a FeMV sub-cluster distinct from the strain previously isolated in Italy, whose role in renal disorders remains uncertain.
Collapse
Affiliation(s)
- Elvira Muratore
- Experimental Zooprophylactic Institute
of Piedmont, Liguria and Aosta Valley, Turin, Italy
| | - Francesco Cerutti
- Experimental Zooprophylactic Institute
of Piedmont, Liguria and Aosta Valley, Turin, Italy
| | - Elena Colombino
- Department of Veterinary Sciences,
University of Turin, Grugliasco, Italy
| | - Elena Biasibetti
- Experimental Zooprophylactic Institute
of Piedmont, Liguria and Aosta Valley, Turin, Italy
| | - Claudio Caruso
- ASL CN1 – Animal Health, Racconigi
District, Turin, Italy
| | | | - Paola Cavana
- Department of Veterinary Sciences,
University of Turin, Grugliasco, Italy
| | - Laura Poncino
- Department of Veterinary Sciences,
University of Turin, Grugliasco, Italy
| | | | - Simone Peletto
- Experimental Zooprophylactic Institute
of Piedmont, Liguria and Aosta Valley, Turin, Italy
| | - Loretta Masoero
- Experimental Zooprophylactic Institute
of Piedmont, Liguria and Aosta Valley, Turin, Italy
| | - Maria Teresa Capucchio
- Department of Veterinary Sciences,
University of Turin, Grugliasco, Italy
- Institute of Science of Food Production,
National Research Council, Grugliasco, Italy
| |
Collapse
|
18
|
Lavorente FLP, de Matos AMRN, Lorenzetti E, Oliveira MV, Pinto-Ferreira F, Michelazzo MDMZ, Viana NE, Lunardi M, Headley SA, Alfieri AA, Alfieri AF. First detection of Feline morbillivirus infection in white-eared opossums (Didelphis albiventris, Lund, 1840), a non-feline host. Transbound Emerg Dis 2021; 69:1426-1437. [PMID: 33872470 DOI: 10.1111/tbed.14109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 03/16/2021] [Accepted: 04/12/2021] [Indexed: 12/17/2022]
Abstract
Feline Morbillivirus (FeMV) was first detected in 2012 in domestic cats from Hong Kong and was found to be associated with tubulointerstitial nephritis and chronic kidney disease. In subsequent studies in other countries, FeMV was detected in asymptomatic cats. However, it is not clear whether FeMV plays a role as a pathogen in the kidney diseases of cats, and other epidemiological data are still unknown. To date, studies have reported the presence of FeMV exclusively in domestic cats. This study is the first molecular detection of the FeMV RNA associated with pathological and immunohistochemical findings in a synanthropic marsupial, the white-eared opossum (Didelphis albiventris), inhabiting peri-urban areas of north-central Parana, Southern Brazil. Molecular techniques identified the viral RNA in the lungs and kidneys. Histopathologic evaluation of these tissues revealed interstitial pneumonia in the lungs with lymphocytic nephritis and tubular necrosis in the kidneys. Immunohistochemistry assays detected positive intralesional immunoreactivity to N protein of FeMV within the lungs and kidneys. A FeMV opossum strain was isolated in Crandell Rees feline kidney lineage cells, resulting in syncytia formation and cell death. Therefore, these results support the ability of FeMV to infect other mammal species and reinforce the possibility of the opossum to be a disseminator of this virus among domestic and wild animals.
Collapse
Affiliation(s)
- Fernanda Louise Pereira Lavorente
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | | | - Elis Lorenzetti
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Paraná, Brazil.,Multi-User Animal Health Laboratory, Molecular Biology Unit, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Paraná, Brazil.,Post Graduate Program in Animal Health and Production, Universidade Pitágoras Unopar, Arapongas, Paraná, Brazil
| | - Marcos Vinicius Oliveira
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Fernanda Pinto-Ferreira
- Laboratory of Zoonoses and Public Health, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Mariana de Mello Zanin Michelazzo
- Laboratory of Animal Pathology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Nayara Emily Viana
- Laboratory of Animal Pathology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Michele Lunardi
- Laboratory of Veterinary Microbiology, Universidade de Cuiabá, Cuiabá, Mato Grosso, Brazil
| | - Selwyn Arlington Headley
- Laboratory of Animal Pathology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Paraná, Brazil.,Post Graduate Program in Animal Health and Production, Universidade Pitágoras Unopar, Arapongas, Paraná, Brazil
| | - Amauri Alcindo Alfieri
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Paraná, Brazil.,Multi-User Animal Health Laboratory, Molecular Biology Unit, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Alice Fernandes Alfieri
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Paraná, Brazil.,Multi-User Animal Health Laboratory, Molecular Biology Unit, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| |
Collapse
|
19
|
De Luca E, Sautto GA, Crisi PE, Lorusso A. Feline Morbillivirus Infection in Domestic Cats: What Have We Learned So Far? Viruses 2021; 13:v13040683. [PMID: 33921104 PMCID: PMC8071394 DOI: 10.3390/v13040683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/13/2021] [Accepted: 04/13/2021] [Indexed: 11/16/2022] Open
Abstract
Feline morbillivirus (FeMV) was identified for the first time in stray cats in 2012 in Hong Kong and, since its discovery, it was reported in domestic cats worldwide. Although a potential association between FeMV infection and tubulointerstitial nephritis (TIN) has been suggested, this has not been proven, and the subject remains controversial. TIN is the most frequent histopathological finding in the context of feline chronic kidney disease (CKD), which is one of the major clinical pathologies in feline medicine. FeMV research has mainly focused on defining the epidemiology, the role of FeMV in the development of CKD, and its in vitro tropism, but the pathogenicity of FeMV is still not clear, partly due to its distinctive biological characteristics, as well as to a lack of a cell culture system for its rapid isolation. In this review, we summarize the current knowledge of FeMV infection, including genetic diversity of FeMV strains, epidemiology, pathogenicity, and clinicopathological findings observed in naturally infected cats.
Collapse
Affiliation(s)
- Eliana De Luca
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise (IZSAM), 64100 Teramo, Italy;
| | | | - Paolo Emidio Crisi
- Faculty of Veterinary Medicine, Veterinary University Hospital, University of Teramo, 64100 Teramo, Italy;
| | - Alessio Lorusso
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise (IZSAM), 64100 Teramo, Italy;
- Correspondence: ; Tel.: +39-0861332440
| |
Collapse
|
20
|
Seroprevalence of Infection with Feline Morbilliviruses Is Associated with FLUTD and Increased Blood Creatinine Concentrations in Domestic Cats. Viruses 2021; 13:v13040578. [PMID: 33808115 PMCID: PMC8065871 DOI: 10.3390/v13040578] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/15/2021] [Accepted: 03/26/2021] [Indexed: 12/30/2022] Open
Abstract
Feline morbilliviruses (FeMV) are fairly newly discovered paramyxoviruses found in cats. The first description indicated an association with widely distributed chronic kidney disease (CKD) in the host species. In various studies, a global prevalence and a further genotype, designated FeMV-2, and the involvement of other organ systems in infected individuals were shown. Using an immunofluorescence assay, we detected an overall seroprevalence of FeMV in almost half of the cats investigated (n = 380), with a significantly increased proportion in younger animals. In comparison to European Shorthair cats, the rate of seropositivity is higher in pedigree cats. Regardless of the breed, FeMV infection was associated with increased blood creatinine concentrations, suggesting an association with CKD. Further analysis indicated that this association was the strongest in animals having high IFA titers against FeMV-2. In addition, a significant association between FeMV-positive status and the prevalence of feline lower urinary tract disease (FLUTD, or idiopathic cystitis) was detected. This association was dominated by cats having antibodies against FeMV-1 only. To further evaluate the positive correlation between FeMV seroprevalence and CKD as well as FLUTD, consideration of additional clinical characteristics and laboratory parameters is warranted, and controlled infection studies with both FeMV genotypes are necessary. Clinicians should, however, be aware of a possible link between renal and lower urinary tract disease and FeMV infections.
Collapse
|
21
|
Makhtar ST, Tan SW, Nasruddin NA, Abdul Aziz NA, Omar AR, Mustaffa-Kamal F. Development of TaqMan-based real-time RT-PCR assay based on N gene for the quantitative detection of feline morbillivirus. BMC Vet Res 2021; 17:128. [PMID: 33757494 PMCID: PMC7987112 DOI: 10.1186/s12917-021-02837-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/09/2021] [Indexed: 11/10/2022] Open
Abstract
Background Morbilliviruses are categorized under the family of Paramyxoviridae and have been associated with severe diseases, such as Peste des petits ruminants, canine distemper and measles with evidence of high morbidity and/or could cause major economic loss in production of livestock animals, such as goats and sheep. Feline morbillivirus (FeMV) is one of the members of Morbilliviruses that has been speculated to cause chronic kidney disease in cats even though a definite relationship is still unclear. To date, FeMV has been detected in several continents, such as Asia (Japan, China, Thailand, Malaysia), Europe (Italy, German, Turkey), Africa (South Africa), and South and North America (Brazil, Unites States). This study aims to develop a TaqMan real-time RT-PCR (qRT-PCR) assay targeting the N gene of FeMV in clinical samples to detect early phase of FeMV infection. Results A specific assay was developed, since no amplification was observed in viral strains from the same family of Paramyxoviridae, such as canine distemper virus (CDV), Newcastle disease virus (NDV), and measles virus (MeV), and other feline viruses, such as feline coronavirus (FCoV) and feline leukemia virus (FeLV). The lower detection limit of the assay was 1.74 × 104 copies/μL with Cq value of 34.32 ± 0.5 based on the cRNA copy number. The coefficient of variations (CV) values calculated for both intra- and inter-assay were low, ranging from 0.34–0.53% and 1.38–2.03%, respectively. In addition, the clinical sample evaluation using this assay showed a higher detection rate, with 25 (35.2%) clinical samples being FeMV-positive compared to 11 (15.5%) using conventional RT-PCR, proving a more sensitive assay compared to the conventional RT-PCR. Conclusions The TaqMan-based real-time RT-PCR assay targeting the N gene described in this study is more sensitive, specific, rapid, and reproducible compared to the conventional RT-PCR assay targeting the N gene, which could be used to detect early infection in cats.
Collapse
Affiliation(s)
- Siti Tasnim Makhtar
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Sheau Wei Tan
- Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Nur Amalina Nasruddin
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Nor Azlina Abdul Aziz
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Abdul Rahman Omar
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia.,Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Farina Mustaffa-Kamal
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia. .,Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
22
|
Balbo LC, Fritzen JTT, Lorenzetti E, Medeiros TNS, Jardim AM, Alfieri AA, Alfieri AF. Molecular characterization of Feline paramyxovirus and Feline morbillivirus in cats from Brazil. Braz J Microbiol 2021; 52:961-965. [PMID: 33483894 DOI: 10.1007/s42770-021-00434-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 01/11/2021] [Indexed: 12/11/2022] Open
Abstract
This study is aimed at detecting Feline paramyxovirus (FPaV) and Feline morbillivirus (FeMV) in 35 urine samples from domestic cats, collected in 2019, with or without clinical signs of uropathies using a reverse transcription-polymerase chain reaction (RT-PCR) followed by semi-nested polymerase chain reaction (SN-PCR) assays to amplify a partial paramyxovirus L gene. Eight (22.9%) out of the 35 urine samples were positive for paramyxoviruses. Sequencing and phylogenetic analyses revealed that three samples were positive for FPaV, four samples were positive for FeMV, and it was not possible to determine which virus was present in one RT-SN-PCR positive urine sample. FPaV strains showed 100% nucleotide (nt) identity with each other and 97% nt identity with a Japanese 163 FPaV strain. The FeMV strains showed 85.9% nt identity with each other; three strains were similar to previously described Brazilian FeMV strains, and one strain clustered in a different branch of the phylogenetic tree together with the first described Chinese FeMV strain. This study provides the first description of FPaV strains in cats from Brazil and provides new information about the molecular characteristics of FPaV and FeMV strains circulating in domestic cats in Brazil.
Collapse
Affiliation(s)
- Luciana C Balbo
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Celso Garcia Cid Road, PR455 Km 380, PO Box 10011, Londrina, Paraná, 86057-970, Brazil
| | - Juliana T T Fritzen
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Celso Garcia Cid Road, PR455 Km 380, PO Box 10011, Londrina, Paraná, 86057-970, Brazil
| | - Elis Lorenzetti
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Celso Garcia Cid Road, PR455 Km 380, PO Box 10011, Londrina, Paraná, 86057-970, Brazil.,Multi-User Animal Health Laboratory, Molecular Biology Unit, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Paraná, Brazil.,Post Graduate Program in Animal Health and Production, Universidade Pitágoras Unopar, Arapongas, Paraná, Brazil
| | | | - Andressa M Jardim
- Post Graduate Program in Animal Health and Production, Universidade Pitágoras Unopar, Arapongas, Paraná, Brazil
| | - Amauri A Alfieri
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Celso Garcia Cid Road, PR455 Km 380, PO Box 10011, Londrina, Paraná, 86057-970, Brazil.,Multi-User Animal Health Laboratory, Molecular Biology Unit, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Alice F Alfieri
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Celso Garcia Cid Road, PR455 Km 380, PO Box 10011, Londrina, Paraná, 86057-970, Brazil. .,Multi-User Animal Health Laboratory, Molecular Biology Unit, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Paraná, Brazil.
| |
Collapse
|
23
|
Darold GM, Alfieri AA, Araújo JP, da Cruz TF, Bertti KMDLB, da Silva GCP, Amude AM, Muraro LS, Lavorente FLP, Lunardi M. High genetic diversity of paramyxoviruses infecting domestic cats in Western Brazil. Transbound Emerg Dis 2020; 68:3453-3462. [PMID: 33295141 DOI: 10.1111/tbed.13950] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/09/2020] [Accepted: 12/04/2020] [Indexed: 12/21/2022]
Abstract
Feline morbillivirus was discovered in 2012 in cats from Hong Kong, and it was initially found to be associated with chronic kidney disease. Although subsequent molecular surveys showed a common occurrence in cat populations from distinct countries, there were controversial results regarding the relationship between viral shedding through urine and reduced kidney function. In this study, 276 domestic cats of diverse origins from Western Brazil had their urine evaluated for the presence of paramyxoviral RNA by reverse transcription seminested PCR and direct sequencing. Additionally, a selected Brazilian feline morbillivirus strain was isolated in Crandell Rees feline kidney cells, and a nearly complete genome sequence was obtained. To assess the kidney function of all cats, serum biochemistry screening and standard urinalysis were performed. Our results revealed a relatively high paramyxovirus-positive rate (34.7%) in the evaluated cats although there was not a statistical association between the shedding of viral RNA through urine and kidney disease. Direct sequencing of partial fragments of the L gene demonstrated high genetic diversity among strains detected in cats in this study, since both feline morbillivirus RNA and feline paramyxovirus RNA were frequently shed in urine. Phylogenetic reconstruction based on partial amino acid sequences of the L gene showed that Brazilian feline paramyxovirus strains were genetically diverse since they grouped into two distinct subclusters; one subcluster contained three strains identified in Germany, while the second contained Japanese strain 163, which was recently classified in the Jeilongvirus genus of the Paramyxoviridae family. In contrast, the Brazilian feline morbillivirus strain FeMV/BR_Boni, herein characterized by nearly complete genome sequencing, was classified in the Morbillivirus genus with other strains previously identified as genotype 1. In conclusion, urinary excretion of diverse paramyxoviral RNA is frequent in cats of different origins from Western Brazil, but viral infection is not related to altered kidney function.
Collapse
Affiliation(s)
| | - Amauri Alcindo Alfieri
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina (UEL), Londrina, Brazil
| | - João Pessoa Araújo
- Institute of Biotechnology (IBTEC), Universidade Estadual Paulista (UNESP), Botucatu, Brazil
| | - Taís Fukuta da Cruz
- Institute of Biotechnology (IBTEC), Universidade Estadual Paulista (UNESP), Botucatu, Brazil
| | | | | | - Alexandre Mendes Amude
- Department of Small Animal Medicine, Veterinary Teaching Hospital, Universidade de Cuiabá, Cuiabá, Brazil
| | - Lívia Saab Muraro
- Veterinary Clinical Pathology, Universidade de Cuiabá, Cuiabá, Brazil
| | - Fernanda Louise Pereira Lavorente
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina (UEL), Londrina, Brazil
| | - Michele Lunardi
- Laboratory of Veterinary Microbiology, Universidade de Cuiabá (UNIC), Cuiabá, Brazil
| |
Collapse
|
24
|
Identification of Novel Feline Paramyxoviruses in Guignas ( Leopardus guigna) from Chile. Viruses 2020; 12:v12121397. [PMID: 33291219 PMCID: PMC7762136 DOI: 10.3390/v12121397] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 12/31/2022] Open
Abstract
The family of paramyxoviruses has received growing attention as several new species have been identified recently, notably two different clusters in domestic cats, designated as feline morbillivirus (FeMV) and feline paramyxovirus (FPaV). Their phylogenetic origin and whether wild felids also harbor these viruses are currently unknown. Kidney samples from 35 guignas (Leopardus guigna), a wild felid from Chile, were investigated for paramyxoviruses using consensus-RT-PCR. In addition, thirteen serum samples of guignas were screened for the presence of FeMV-specific antibodies by an immunofluorescence assay (IFA). Viral RNA was detected in 31% of the kidney samples. Phylogenetic analyses revealed two well-supported clusters, related to isolates from domestic cats, rodents and bats. No significant histopathology changes were recorded in infected guignas. Serology identified two samples which were positive for FeMV-specific antibodies. Our study highlights the diversity of paramyxovirus infections in felids with special emphasis on guignas from Chile.
Collapse
|
25
|
Busch J, Sacristán I, Cevidanes A, Millán J, Vahlenkamp TW, Napolitano C, Sieg M. High seroprevalence of feline morbilliviruses in free-roaming domestic cats in Chile. Arch Virol 2020; 166:281-285. [PMID: 33216214 PMCID: PMC7815546 DOI: 10.1007/s00705-020-04882-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/30/2020] [Indexed: 01/06/2023]
Abstract
Feline morbillivirus infections have gained increased attention due to repeated reports of their association with urinary tract disease in cats. In the present study, 112 serum samples from free-roaming domestic cats in Chile were tested for antibodies against feline morbillivirus genotypes 1 and 2 (FeMV-1 and FeMV-2) using an indirect immunofluorescence assay. In total, 63% of the animals showed antibodies against one or both FeMV genotypes. Antibodies directed exclusively against FeMV-2 were significantly more prevalent in male cats. The correlation of sex and FeMV-2 infection might give insight into potential routes of transmission. We provide, for the first time, serological data on FeMV in Chile.
Collapse
Affiliation(s)
- Johannes Busch
- Institute of Virology, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 29, 04103, Leipzig, Germany
| | - Irene Sacristán
- PhD Program in Conservation Medicine, Facultad de Ciencias de la Vida, Universidad Andres Bello, República 252, Santiago, Chile
| | - Aitor Cevidanes
- PhD Program in Conservation Medicine, Facultad de Ciencias de la Vida, Universidad Andres Bello, República 252, Santiago, Chile
| | - Javier Millán
- Facultad de Ciencias de la Vida, Universidad Andres Bello, República 252, Santiago, Chile.,Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Miguel Servet 177, 50013, Zaragoza, Spain.,Fundación ARAID, Avda. de Ranillas, 50018, Zaragoza, Spain
| | - Thomas W Vahlenkamp
- Institute of Virology, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 29, 04103, Leipzig, Germany
| | - Constanza Napolitano
- Departamento de Ciencias Biológicas y Biodiversidad, Universidad de Los Lagos, Av. Fuchslocher 1305, Osorno, Chile. .,Instituto de Ecología y Biodiversidad (IEB), Santiago, Chile.
| | - Michael Sieg
- Institute of Virology, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 29, 04103, Leipzig, Germany.
| |
Collapse
|
26
|
Sutummaporn K, Suzuki K, Machida N, Mizutani T, Park ES, Morikawa S, Furuya T. Increased proportion of apoptotic cells in cat kidney tissues infected with feline morbillivirus. Arch Virol 2020; 165:2647-2651. [PMID: 32844234 DOI: 10.1007/s00705-020-04782-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/20/2020] [Indexed: 10/23/2022]
Abstract
In order to study potential pathogenic mechanisms of feline morbillivirus (FeMV) in infected kidney cells, we performed a terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay and an immunofluorescence assay (IFA) with an anti-FeMV P protein antibody on a total of 38 cat kidney tissues, 12 of which were positive for FeMV. Among these samples, we detected significantly larger numbers of apoptotic cells in FeMV-positive tissues than in FeMV-negative tissues, and in these tissues, a substantial percentage of TUNEL-positive (TUNEL+) cells contained the FeMV P protein (mean, 37.4; range, 17.4-82.9), suggesting that induction of apoptosis may be an important mechanism for pathological changes associated with FeMV infection in cat kidney tissues.
Collapse
Affiliation(s)
- Kripitch Sutummaporn
- Laboratory of Veterinary Microbiology, Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan.,The United Graduate School of Veterinary Science, Gifu University, 1-1, Yanagido, Gifu, 501-1193, Japan.,Department of Pre-Clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 731170, Thailand
| | - Kazuhiko Suzuki
- Laboratory of Toxicology, Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
| | - Noboru Machida
- Laboratory of Clinical Oncology, Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
| | - Tetsuya Mizutani
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Eun-Sil Park
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Shigeru Morikawa
- Department of Microbiology, Faculty of Veterinary Medicine, Okayama University of Science, Ehime, 794-8555, Japan
| | - Tetsuya Furuya
- Laboratory of Veterinary Microbiology, Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan.
| |
Collapse
|
27
|
Chaiyasak S, Piewbang C, Rungsipipat A, Techangamsuwan S. Molecular epidemiology and genome analysis of feline morbillivirus in household and shelter cats in Thailand. BMC Vet Res 2020; 16:240. [PMID: 32660481 PMCID: PMC7359279 DOI: 10.1186/s12917-020-02467-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/07/2020] [Indexed: 12/17/2022] Open
Abstract
Background Feline morbillivirus (FeMV) has been discovered in domestic cats associated with tubulointerstitial nephritis, but FeMV is also detected in healthy cats. This research aimed to identify and characterize the FeMV strains detected in a Thai cat population. Results Two-hundred and ninety-two samples (131 urine and 161 blood) derived from 261 cats (61 sheltered and 200 household cats) were included for investigating the FeMV prevalence using real-time reverse transcription PCR. The overall prevalence of FeMV detection was 11.9% (31/261) among both samples, which accounted for 14.5% (19/131) and 7.5% (12/161) of the urine and blood samples, respectively. Among the FeMV-PCR positive cats, the FeMV-detected prevalence was insignificantly associated with healthy cats (58.1%; 18/31) or urologic cats (41.9%; 13/31). Full-length genome analysis of these FeMV-Thai strains revealed that their genomes clustered together in the FeMV-1A clade with up to 98.5% nucleotide identity. Selective pressure analysis showed that overall FeMV-1 has undergone negative selection, while positive selection sites were more frequently observed in the phosphoprotein gene. Conclusions The detected FeMV infections in the Thai cat population were not correlated with urologic disorders, although the virus was more detectable in urine samples. The genetic patterns among the FeMV-1 Thai strains were more consistent. A large-scale study of FeMV in Thai cat samples is needed for further elucidation.
Collapse
Affiliation(s)
- Surangkanang Chaiyasak
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.,Animal Virome and Diagnostic Development Research Group, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chutchai Piewbang
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.,Animal Virome and Diagnostic Development Research Group, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Anudep Rungsipipat
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Somporn Techangamsuwan
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand. .,Animal Virome and Diagnostic Development Research Group, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
28
|
Crisi PE, Dondi F, De Luca E, Di Tommaso M, Vasylyeva K, Ferlizza E, Savini G, Luciani A, Malatesta D, Lorusso A, Boari A. Early Renal Involvement in Cats with Natural Feline Morbillivirus Infection. Animals (Basel) 2020; 10:ani10050828. [PMID: 32397661 PMCID: PMC7278479 DOI: 10.3390/ani10050828] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/27/2020] [Accepted: 05/08/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Feline morbillivirus is a newly discovered paramyxovirus infecting domestic cats. Its pathogenetic role in domestic cats is still debated, however some evidences suggest a potential involvement of this novel feline virus in the pathogenesis of feline chronic kidney disease. In this study, clinical data of cats infected by morbillivirus were retrospectively reviewed and compared with data obtained from healthy cats and cats affected by chronic kidney disease. The results of the present study suggest that this infection can be associated with the presence of a sub-clinical kidney damage and with different grades of renal dysfunction in cats younger than those typically affected by chronic kidney disease. Abstract Feline morbillivirus (FeMV) is a newly discovered paramyxovirus infecting domestic cats and its role in the pathogenesis of feline chronic kidney disease (CKD) has been suggested, however not confirmed. The primary aim of the study was to evaluate the renal damage associated with FeMV infection in cats. In this retrospective study, clinical and clinicopathological data were compared among 14 FeMV naturally infected, 21 CKD and 22 healthy cats. FeMV positive cats had serum chemistry analytes and main urine chemistry results similar to the healthy subjects. FeMV positive cats had significantly decreased urine specific gravity (median 1054, range 1022–1065) and urine creatinine (median 227.23 mg/dL, range 83.02–489.75) when compared with healthy cats (median 1067, range 1040–1080, p < 0.001; median 406.50 mg/dL, range 195.32–575.58; p < 0.001, respectively). Urine protein:creatinine ratio (UPC) results of FeMV and CKD were not different (median 0.20, range 0.08–1.03; median 0.23, range 0.10–0.80, respectively), however UPC results were significantly increased in both groups, if compared with healthy cats (median 0.1, range 0.04–0.250, p < 0.01). Based on clinical data, serum creatinine concentration, urine specific gravity and UPC results, CKD was suspected by clinicians in 3/14 FeMV cats. Urine protein sodium-dodecyl-sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) in 10/13 (77%) FeMV cats indicated a tubular pattern, with a decrease of uromodulin and an increase in the number and intensity of low molecular weight proteins. FeMV infection can be associated with different grades of renal dysfunction ranging from mild tubular proteinuria with less concentrated urine to azotemia in cats younger than those typically affected by CKD.
Collapse
Affiliation(s)
- Paolo Emidio Crisi
- Faculty of Veterinary Medicine, Veterinary University Hospital, University of Teramo, Località Piano d’Accio, 64100 Teramo, Italy; (E.D.L.); (M.D.T.); (A.L.); (A.B.)
- Correspondence:
| | - Francesco Dondi
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano dell’Emilia (BO), Italy; (F.D); (K.V.); (E.F.)
| | - Eliana De Luca
- Faculty of Veterinary Medicine, Veterinary University Hospital, University of Teramo, Località Piano d’Accio, 64100 Teramo, Italy; (E.D.L.); (M.D.T.); (A.L.); (A.B.)
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise (IZSAM), Campo Boario, 64100 Teramo, Italy; (G.S.); (D.M.); (A.L.)
| | - Morena Di Tommaso
- Faculty of Veterinary Medicine, Veterinary University Hospital, University of Teramo, Località Piano d’Accio, 64100 Teramo, Italy; (E.D.L.); (M.D.T.); (A.L.); (A.B.)
| | - Kateryna Vasylyeva
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano dell’Emilia (BO), Italy; (F.D); (K.V.); (E.F.)
| | - Enea Ferlizza
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano dell’Emilia (BO), Italy; (F.D); (K.V.); (E.F.)
| | - Giovanni Savini
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise (IZSAM), Campo Boario, 64100 Teramo, Italy; (G.S.); (D.M.); (A.L.)
| | - Alessia Luciani
- Faculty of Veterinary Medicine, Veterinary University Hospital, University of Teramo, Località Piano d’Accio, 64100 Teramo, Italy; (E.D.L.); (M.D.T.); (A.L.); (A.B.)
| | - Daniela Malatesta
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise (IZSAM), Campo Boario, 64100 Teramo, Italy; (G.S.); (D.M.); (A.L.)
| | - Alessio Lorusso
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise (IZSAM), Campo Boario, 64100 Teramo, Italy; (G.S.); (D.M.); (A.L.)
| | - Andrea Boari
- Faculty of Veterinary Medicine, Veterinary University Hospital, University of Teramo, Località Piano d’Accio, 64100 Teramo, Italy; (E.D.L.); (M.D.T.); (A.L.); (A.B.)
| |
Collapse
|
29
|
Kaszab E, Doszpoly A, Lanave G, Verma A, Bányai K, Malik YS, Marton S. Metagenomics revealing new virus species in farm and pet animals and aquaculture. GENOMICS AND BIOTECHNOLOGICAL ADVANCES IN VETERINARY, POULTRY, AND FISHERIES 2020. [PMCID: PMC7149329 DOI: 10.1016/b978-0-12-816352-8.00002-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Viral metagenomics is slowly taking over the traditional and widely used molecular techniques for the investigation of pathogenic viruses responsible for illness and inflicting great economic burden on the farm animal industry. Owing to the continued improvements in sequencing technologies and the dramatic reduction of per base costs of sequencing the use of next generation sequencing have been key factors in this progress. Discoveries linked to viral metagenomics are expected to be beneficial to the field of veterinary medicine starting from the development of better diagnostic assays to the design of new subunit vaccines with minimal investments. With these achievements the research has taken a giant leap even toward the better healthcare of animals and, as a result, the animal sector could be growing at an unprecedented pace.
Collapse
|
30
|
De Luca E, Crisi PE, Marcacci M, Malatesta D, Di Sabatino D, Cito F, D'Alterio N, Puglia I, Berjaoui S, Colaianni ML, Tinelli A, Ripà P, Vincifori G, Di Teodoro G, Dondi F, Savini G, Boari A, Lorusso A. Epidemiology, pathological aspects and genome heterogeneity of feline morbillivirus in Italy. Vet Microbiol 2020; 240:108484. [PMID: 31902482 PMCID: PMC7127367 DOI: 10.1016/j.vetmic.2019.108484] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022]
Abstract
Feline morbillivirus (FeMV) is an emerging morbillivirus first described in cats less than a decade ago. FeMV has been associated with chronic kidney disease of cats characterized by tubulointerstitial nephritis (TIN), although this aspect is still controversial and not demonstrated with certainty. To investigate FeMV prevalence and genomic characteristics, an epidemiological survey was conducted in a total number of 127 household cats originating from two Italian regions, Abruzzi and Emilia-Romagna. A total number of 69 cats originating from three feline colonies were also enrolled for the study. Correlation with TIN was investigated by employing a total number of 35 carcasses. Prevalence of FeMV RNA was higher in urine samples collected from cats of colonies (P = 31.8%, CI 95% 22.1-43.6) compared to household cats (P = 8.66%, CI 95% 4.9-14.9) and in young and middle-aged cats while prevalence of FeMV Abs was higher in old cats. Sequences obtained straight from infected biological samples, either partial or complete, cluster into two clades within FeMV genotype 1, distantly related to FeMV genotype 2. Immunohistochemistry analysis of kidney sections of FeMV RNA positive cats revealed immunoreactivity within epithelial cells of renal tubuli and inflammatory cells. However, statistically significant association between FeMV and renal damages, including TIN, was not demonstrated (p= 0.0695, Fisher exact test). By virus histochemistry performed with FeMV-negative feline tissues and a FeMV isolate, tropism for different cellular types such as inflammatory cells residing in blood vessels of kidney and brain, airway epithelial cells, alveolar macrophages and to a lesser extent, the central nervous system, was demonstrated. Additional studies are warranted in order to establish viral tropism and immune response during the early phases of infection and to disentangle the role of FeMV in co-infection processes.
Collapse
Affiliation(s)
- Eliana De Luca
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo, Italy; Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | | | - Maurilia Marcacci
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo, Italy
| | - Daniela Malatesta
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo, Italy
| | - Daria Di Sabatino
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo, Italy
| | - Francesca Cito
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo, Italy
| | - Nicola D'Alterio
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo, Italy
| | - Ilaria Puglia
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo, Italy
| | - Shadia Berjaoui
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo, Italy
| | | | - Antonella Tinelli
- Department of Veterinary Medicine, University of Bari, Valenzano, Bari, Italy
| | - Paola Ripà
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo, Italy
| | - Giacomo Vincifori
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo, Italy
| | - Giovanni Di Teodoro
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo, Italy
| | - Francesco Dondi
- Department of Veterinary Medical Sciences, University of Bologna, Italy
| | - Giovanni Savini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo, Italy
| | - Andrea Boari
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Alessio Lorusso
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo, Italy.
| |
Collapse
|
31
|
Molecular characterization of feline paramyxovirus in Japanese cat populations. Arch Virol 2019; 165:413-418. [PMID: 31823012 DOI: 10.1007/s00705-019-04480-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/25/2019] [Indexed: 12/22/2022]
Abstract
Feline paramyxovirus (FPaV) is a member of the family Paramyxoviridae that has been reported only in Germany and the United Kingdom. We detected FPaV for the first time in Japan by transcriptome sequencing of cat urine samples. We determined the genome structure of FPaV and conducted a phylogenetic analysis. It was found that FPaV belongs to the genus Jeilongvirus and forms a clade with Mount Mabu Lophuromys virus 1 (MMLV-1). FPaV lacks a small hydrophobic (SH) gene that is found in members of the genus Jeilongvirus; however, some jeilongviruses also do not have this gene. These results provide information about the diversity and evolution of paramyxoviruses.
Collapse
|
32
|
Mohd Isa NH, Selvarajah GT, Khor KH, Tan SW, Manoraj H, Omar NH, Omar AR, Mustaffa-Kamal F. Molecular detection and characterisation of feline morbillivirus in domestic cats in Malaysia. Vet Microbiol 2019; 236:108382. [PMID: 31500720 PMCID: PMC7117105 DOI: 10.1016/j.vetmic.2019.08.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/01/2019] [Accepted: 08/06/2019] [Indexed: 01/08/2023]
Abstract
Feline morbillivirus (FeMV), a novel virus from the family of Paramyxoviridae, was first identified in stray cat populations. The objectives of the current study were to (i) determine the molecular prevalence of FeMV in Malaysia; (ii) identify risk factors associated with FeMV infection; and (iii) characterise any FeMV isolates by phylogenetic analyses. Molecular analysis utilising nested RT-PCR assay targeting the L gene of FeMV performed on either urine, blood and/or kidney samples collected from 208 cats in this study revealed 82 (39.4%) positive cats. FeMV-positive samples were obtained from 63/124 (50.8%) urine and 20/25 (80.0%) kidneys while all blood samples were negative for FeMV. In addition, from the 35 cats that had more than one type of samples collected (blood and urine; blood and kidney; blood, urine and kidney), only one cat had FeMV RNA in the urine and kidney samples. Risk factors such as gender, presence of kidney-associated symptoms and cat source were also investigated. Male cats had a higher risk (p = 0.031) of FeMV infection than females. In addition, no significant association (p = 0.083) was observed between the presence of kidney-associated symptoms with FeMV status. From the 82 positive samples, FeMV RNA was detected from 48/82 (58.5%) pet cats and 34/126 (27.0%) shelter cats (p < 0.0001). Partial L and N gene sequencing of the RT-PCR-positive samples showed 85-99% identity to the published FeMV sequences and it was significantly different from all other morbilliviruses. A phylogenetic analysis of the identified Malaysian FeMVs was performed with isolates from Japan, Thailand and China. Molecular characterisation revealed high relatedness of the Malaysian isolates with other Asian FeMVs, indicating that the virus had been circulating only within the region. Therefore, this study confirmed the existence of FeMV among domestic cats in Malaysia. The findings suggest further characterisation of the local isolates, including the whole genome sequencing and that studies at determining the direct consequences of FeMV infection in domestic cats are needed.
Collapse
Affiliation(s)
- Nur Hidayah Mohd Isa
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | | | - Kuan Hua Khor
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Sheau Wei Tan
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Hemadevy Manoraj
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Nurul Husna Omar
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Abdul Rahman Omar
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia; Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Farina Mustaffa-Kamal
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
| |
Collapse
|
33
|
Feline morbillivirus in Northern Italy: prevalence in urine and kidneys with and without renal disease. Vet Microbiol 2019; 233:133-139. [PMID: 31176399 PMCID: PMC7127068 DOI: 10.1016/j.vetmic.2019.04.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 04/23/2019] [Accepted: 04/23/2019] [Indexed: 01/02/2023]
Abstract
Feline morbillivirus (FeMV) is an emerging virus that was first described in Hong Kong in 2012. Several reports suggested the epidemiological association of FeMV infection with chronic kidney disease (CKD) in cats. The aim of this study was to investigate the presence and the genetic diversity of FeMV as well as the relationship between FeMV infection and CKD in cats from Northern Italy. Urine (n = 81) and kidney samples (n = 27) from 92 cats admitted to the Veterinary Teaching Hospital of the University of Milan between 2014 and 2017 were investigated for FeMV infection. FeMV RNA was detected in one urine sample (1.23%; 95% CI: 0.03-6.68%) and in two kidneys (7.40%; 95% CI: 0.91-24.28%). FeMV RNA was revealed only in urine or kidneys of cats without evidence of CKD. Phylogenetic analysis showed that the three strains clustered with FeMV strains retrieved from public database, forming a distinct sub-cluster of FeMV. The presence of distinct genotypes of FeMV found in this study is in accordance with previous studies demonstrating that FeMV strains are genetically diverse. A clear relationship between the presence of FeMV infection and CKD in the cats from Northern Italy was not observed, confirming recent reports that do not support the hypothesis that FeMV infection is associated with the development of CKD.
Collapse
|
34
|
A New Genotype of Feline Morbillivirus Infects Primary Cells of the Lung, Kidney, Brain and Peripheral Blood. Viruses 2019; 11:v11020146. [PMID: 30744110 PMCID: PMC6410220 DOI: 10.3390/v11020146] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/05/2019] [Accepted: 02/07/2019] [Indexed: 12/12/2022] Open
Abstract
Paramyxoviruses comprise a large number of diverse viruses which in part give rise to severe diseases in affected hosts. A new genotype of feline morbillivirus, tentatively named feline morbillivirus genotype 2 (FeMV-GT2), was isolated from urine of cats with urinary tract diseases. Whole genome sequencing showed about 78% nucleotide homology to known feline morbilliviruses. The virus was isolated in permanent cell lines of feline and simian origin. To investigate the cell tropism of FeMV-GT2 feline primary epithelial cells from the kidney, the urinary bladder and the lung, peripheral blood mononuclear cells (PBMC), as well as organotypic brain slice cultures were used for infection experiments. We demonstrate that FeMV-GT2 is able to infect renal and pulmonary epithelial cells, primary cells from the cerebrum and cerebellum, as well as immune cells in the blood, especially CD4⁺ T cells, CD20⁺ B cells and monocytes. The cats used for virus isolation shed FeMV-GT2 continuously for several months despite the presence of neutralizing antibodies in the blood. Our results point towards the necessity of increased awareness for this virus when clinical signs of the aforementioned organs are encountered in cats which cannot be explained by other etiologies.
Collapse
|
35
|
Young DF, Wignall-Fleming EB, Busse DC, Pickin MJ, Hankinson J, Randall EM, Tavendale A, Davison AJ, Lamont D, Tregoning JS, Goodbourn S, Randall RE. The switch between acute and persistent paramyxovirus infection caused by single amino acid substitutions in the RNA polymerase P subunit. PLoS Pathog 2019; 15:e1007561. [PMID: 30742688 PMCID: PMC6386407 DOI: 10.1371/journal.ppat.1007561] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/22/2019] [Accepted: 01/04/2019] [Indexed: 12/24/2022] Open
Abstract
Paramyxoviruses can establish persistent infections both in vitro and in vivo, some of which lead to chronic disease. However, little is known about the molecular events that contribute to the establishment of persistent infections by RNA viruses. Using parainfluenza virus type 5 (PIV5) as a model we show that phosphorylation of the P protein, which is a key component of the viral RNA polymerase complex, determines whether or not viral transcription and replication becomes repressed at late times after infection. If the virus becomes repressed, persistence is established, but if not, the infected cells die. We found that single amino acid changes at various positions within the P protein switched the infection phenotype from lytic to persistent. Lytic variants replicated to higher titres in mice than persistent variants and caused greater infiltration of immune cells into infected lungs but were cleared more rapidly. We propose that during the acute phases of viral infection in vivo, lytic variants of PIV5 will be selected but, as the adaptive immune response develops, variants in which viral replication can be repressed will be selected, leading to the establishment of prolonged, persistent infections. We suggest that similar selection processes may operate for other RNA viruses.
Collapse
Affiliation(s)
- Dan F. Young
- School of Biology, Centre for Biomolecular Sciences, BMS Building, North Haugh, University of St. Andrews, St. Andrews, Fife, United Kingdom
| | - Elizabeth B. Wignall-Fleming
- School of Biology, Centre for Biomolecular Sciences, BMS Building, North Haugh, University of St. Andrews, St. Andrews, Fife, United Kingdom
- MRC–University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - David C. Busse
- Mucosal Infection and Immunity Group, Section of Virology, Imperial College London, London, United Kingdom
| | - Matthew J. Pickin
- Institute for Infection and Immunity, St. George's, University of London, London, United Kingdom
| | - Jack Hankinson
- Institute for Infection and Immunity, St. George's, University of London, London, United Kingdom
| | - Elizabeth M. Randall
- School of Biology, Centre for Biomolecular Sciences, BMS Building, North Haugh, University of St. Andrews, St. Andrews, Fife, United Kingdom
| | - Amy Tavendale
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Andrew J. Davison
- MRC–University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Douglas Lamont
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - John S. Tregoning
- Mucosal Infection and Immunity Group, Section of Virology, Imperial College London, London, United Kingdom
| | - Steve Goodbourn
- Institute for Infection and Immunity, St. George's, University of London, London, United Kingdom
| | - Richard E. Randall
- School of Biology, Centre for Biomolecular Sciences, BMS Building, North Haugh, University of St. Andrews, St. Andrews, Fife, United Kingdom
| |
Collapse
|
36
|
Beatty JA, Sharp CR, Duprex WP, Munday JS. Novel feline viruses: Emerging significance of gammaherpesvirus and morbillivirus infections. J Feline Med Surg 2019; 21:5-11. [PMID: 30472918 PMCID: PMC10814182 DOI: 10.1177/1098612x18808102] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PRACTICAL RELEVANCE New technologies capable of sequencing the genetic material in any given biological sample, combined with computer-based algorithms for sequence assembly and analysis, have revolutionised infectious disease research. The rate at which novel viruses are being discovered now exceeds our understanding of their clinical relevance. Novel viruses may contribute to diseases that are major causes of feline morbidity and mortality, including cancer and chronic kidney disease. The identification of new viral pathogens raises the prospect of not only improved patient outcomes through specific treatment but even disease prevention through viral control measures. CLINICAL CHALLENGES It can be difficult to determine the role of a novel virus in disease development. Disease may be an occasional outcome, often years after infection. A high prevalence of infection in the general population can make disease associations harder to identify and almost impossible to rule out. Host cofactors such as immune dysfunction, genetic background or coinfections may be required for manifestation of disease, and one virus species may be linked to a range of pathological sequelae. Establishing causality relies on evaluating accumulating evidence from multiple investigations, which is often hard to access by practitioners. GLOBAL IMPORTANCE The worldwide distribution of gammaherpesvirus and morbillivirus infections in domestic cats underlines the potential of these viruses to negatively impact feline health and welfare globally. EVIDENCE BASE This review relies on grade la-III evidence.
Collapse
Affiliation(s)
- Julia A Beatty
- University of Sydney, Faculty of Science, Sydney School of Veterinary Science, NSW 2006, Australia
| | - Claire R Sharp
- College of Veterinary Medicine, School of Veterinary and Life Sciences, Murdoch University, Australia
| | - W Paul Duprex
- Department of Microbiology, Boston University School of Medicine, National Emerging Infectious Diseases Laboratories, Boston University, 620 Albany Street, Boston, Massachusetts, 02118, USA
| | - John S Munday
- School of Veterinary Science, Massey University, Palmerston North, 4410, New Zealand
| |
Collapse
|
37
|
Sutummaporn K, Suzuki K, Machida N, Mizutani T, Park ES, Morikawa S, Furuya T. Association of feline morbillivirus infection with defined pathological changes in cat kidney tissues. Vet Microbiol 2018; 228:12-19. [PMID: 30593357 DOI: 10.1016/j.vetmic.2018.11.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/16/2018] [Accepted: 11/13/2018] [Indexed: 01/17/2023]
Abstract
Feline morbillivirus (FeMV) is an emerging member of morbillivirus discovered in 2012. Although association of FeMV infection with kidney diseases in cats has been suggested, the pathogenicity of the virus has not been clear to date. To study the association between FeMV infection and pathological changes in kidney tissues of infected cats, we performed immunohistochemistry and immunofluorescent assays to detect FeMV antigens and analyzed the effect of FeMV infection on the pathological changes in the kidney tissues. In 38 kidney tissue samples from cats, some tissue injury scores were significantly higher when the FeMV antigens were detected, especially those for the tubular tissues in which the FeMV antigens were mostly localized. Pathological changes associated with the FeMV antigens included the ones typically found in chronic kidney diseases, such as interstitial cell infiltration, glomerulosclerosis, tubular atrophy and fibrosis. We also detected some feline IgG localizations in glomerular tissues, though co-localization or significant association with the FeMV antigens were not found. Our study confirms the association of FeMV infection with some kidney tissue injuries and provides additional information about roles of FeMV infection in chronic kidney diseases.
Collapse
Affiliation(s)
- Kripitch Sutummaporn
- Laboratory of Veterinary Microbiology, Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan; The United Graduate School of Veterinary Science, Gifu University, 1-1, Yanagido, Gifu, 501-1193, Japan; Department of Pre-Clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 731170, Thailand
| | - Kazuhiko Suzuki
- Laboratory of Toxicology, Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
| | - Noboru Machida
- Laboratory of Clinical Oncology, Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
| | - Tetsuya Mizutani
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Eun-Sil Park
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Shigeru Morikawa
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Tetsuya Furuya
- Laboratory of Veterinary Microbiology, Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan.
| |
Collapse
|
38
|
De Luca E, Crisi PE, Di Domenico M, Malatesta D, Vincifori G, Di Tommaso M, Di Guardo G, Di Francesco G, Petrini A, Savini G, Boari A, Lorusso A. A real-time RT-PCR assay for molecular identification and quantitation of feline morbillivirus RNA from biological specimens. J Virol Methods 2018; 258:24-28. [PMID: 29730392 DOI: 10.1016/j.jviromet.2018.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/09/2018] [Accepted: 05/02/2018] [Indexed: 01/03/2023]
Abstract
The aim of this study was to develop a real-time RT-PCR to detect and quantitate feline morbillivirus (FeMV) RNA in biological samples. Primers and probe were targeted on a conserved region of FeMV P/V/C gene. To validate the assay with field samples, a total number of specimens of cats have been recruited including 264 urine and blood samples and compared with a generic RT-PCR targeting the L protein encoding gene of morbilliviruses. In addition, 385 tissue samples from 35 carcasses of cats have been also employed. RNA titres were low in all tested samples. Results also indicated the absence of cross-reaction with related morbilliviruses and existing pathogens of cats. In tissues with low levels of FeMV RNA, the presence of viral antigen was also evidenced by immunohistochemistry targeting the N viral protein. This newly described assay allows for a rapid, accurate and reliable quantitative detection of FeMV RNA that can be applied for diagnostics and research studies.
Collapse
Affiliation(s)
- Eliana De Luca
- Faculty of Veterinary Medicine, University of Teramo, Italy; Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo, Italy
| | | | - Marco Di Domenico
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo, Italy
| | - Daniela Malatesta
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo, Italy
| | - Giacomo Vincifori
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo, Italy
| | | | | | | | - Antonio Petrini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo, Italy
| | - Giovanni Savini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo, Italy
| | - Andrea Boari
- Faculty of Veterinary Medicine, University of Teramo, Italy
| | - Alessio Lorusso
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo, Italy.
| |
Collapse
|
39
|
McCallum KE, Stubbs S, Hope N, Mickleburgh I, Dight D, Tiley L, Williams TL. Detection and seroprevalence of morbillivirus and other paramyxoviruses in geriatric cats with and without evidence of azotemic chronic kidney disease. J Vet Intern Med 2018; 32:1100-1108. [PMID: 29572949 PMCID: PMC5980326 DOI: 10.1111/jvim.15097] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 01/30/2018] [Accepted: 02/13/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Feline morbillivirus (FeMV) is associated with the presence of tubulo-interstitial nephritis (TIN) in cats, however the seroprevalence of FeMV in the UK and the association between the presence of FeMV and renal azotemia is unknown HYPOTHESIS/OBJECTIVES: To identify whether paramyxoviruses are present in urine samples of geriatric cats and to develop an assay to assess FeMV seroprevalence. To investigate the relationship between both urinary paramyxovirus (including FeMV) excretion and FeMV seroprevalence and azotemic chronic kidney disease (CKD). ANIMALS Seventy-nine cats (40 for FeMV detection; 72 for seroprevalence). METHODS Retrospective cross-sectional, case control study. Viral RNA was extracted from urine for RT-PCR. PCR products were sequenced for virus identification and comparison. The FeMV N protein gene was cloned and partially purified for use as an antigen to screen cat sera for anti-FeMV antibodies by Western Blot. RESULTS Feline morbillivirus RNA from five distinct morbilliviruses were identified. Detection was not significantly different between azotemic CKD (1/16) and nonazotemic groups (4/24; P = .36). Three distinct, non-FeMV paramyxoviruses were present in the nonazotemic group but their absence from the azotemic group was not statistically significant (P = .15). 6/14 (43%) azotemic cats and 40/55 (73%) nonazotemic cats were seropositive (P = .06). CONCLUSIONS AND CLINICAL IMPORTANCE Feline morbillivirus was detected in cats in the UK for the First time. However, there was no association between virus prevalence or seropositivity and azotemic CKD. These data do not support the hypothesis that FeMV infection is associated with the development of azotemic CKD in cats in the UK.
Collapse
Affiliation(s)
| | - Sam Stubbs
- Department of Veterinary MedicineUniversity of CambridgeCambridgeUnited Kingdom
| | - Nicholas Hope
- Department of Veterinary MedicineUniversity of CambridgeCambridgeUnited Kingdom
| | - Ian Mickleburgh
- Department of Veterinary MedicineUniversity of CambridgeCambridgeUnited Kingdom
| | - Dave Dight
- Department of Veterinary MedicineUniversity of CambridgeCambridgeUnited Kingdom
- Institute of Science and Environment, University of Worcester, St. John's Campus, Henwick Grove, St. John'sWorcesterUnited Kingdom
| | - Laurence Tiley
- Department of Veterinary MedicineUniversity of CambridgeCambridgeUnited Kingdom
| | - Tim L. Williams
- Department of Veterinary MedicineUniversity of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
40
|
First Complete Genome Sequence of a Feline Morbillivirus Isolate from Germany. GENOME ANNOUNCEMENTS 2018; 6:6/16/e00244-18. [PMID: 29674538 PMCID: PMC5908939 DOI: 10.1128/genomea.00244-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The first cell culture isolation and whole-genome sequence of a feline morbillivirus from Germany are described here. Phylogenetic analysis revealed highest similarity to isolates from Japan and a more distant relationship to strains from Italy, Hong Kong, and the United States. Therefore, feline morbilliviruses should be divided into two different genotypes.
Collapse
|
41
|
Yilmaz H, Tekelioglu BK, Gurel A, Bamac OE, Ozturk GY, Cizmecigil UY, Altan E, Aydin O, Yilmaz A, Berriatua E, Helps CR, Richt JA, Turan N. Frequency, clinicopathological features and phylogenetic analysis of feline morbillivirus in cats in Istanbul, Turkey. J Feline Med Surg 2017; 19:1206-1214. [PMID: 28112564 PMCID: PMC11104173 DOI: 10.1177/1098612x16686728] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Objectives The aim of the study was to investigate feline morbillivirus (FmoPV) frequency, phylogeny and associated pathology in cats in Istanbul, Turkey. Methods Samples from sick (n = 96) and dead ( n = 15) cats were analysed using reverse transcription PCR. Blood and urine analyses and histopathology were also performed. Results FmoPV RNA was detected in six cats (5.4%), including three sick (in the urine) and three dead cats (tissues). A significantly greater proportion of FmoPV RNA-positive cats had street access compared with non-infected cats. Blood samples from the morbillivirus-positive cats were negative for morbillivirus RNA. Tubular parenchymal cells, lymphoid and plasma cells in kidney and hepatocytes, lymphoid and plasma cells in liver from dead cats were also positive by immunohistochemistry for the viral N protein. Two FmoPV-positive cats were also positive for feline coronavirus RNA and one cat for feline immunodeficiency virus RNA and feline leukaemia virus proviral DNA. Phylogenetic analysis of the six FmoPV-positive cats showed that the strains were grouped into cluster D and had high similarity (98.5-100%) with strains from Japan and Germany. In the three FmoPV RNA-positive sick cats, respiratory, urinary and digestive system signs were observed as well as weight loss, fever and depression in some cats. Similar clinical signs were also seen in the morbillivirus RNA-negative sick cats. FmoPV RNA-positive cats had lower median red blood cell count, haemoglobin, albumin, albumin/globulin and urobilinogen and higher alanine transaminase, alkaline phosphatase and bilirubin compared with non-infected cats. Significant histopathology of FmoPV RNA-positive dead cats included tubulointerstitial nephritis characterised by severe granular and vacuolar degeneration of the epithelial cells of the cortical and medullary tubules as well as mononuclear cell infiltrates. Widespread lymphoid cell infiltrates were detected in the renal cortex and medullary regions of the kidneys. Cellular infiltration, cholangiohepatitis and focal necrosis in the liver were also found. Although virus-infected cells were found in the kidney and liver of FmoRV RNA-positive cats, tubulointerstitial nephritis, cholangiohepatitis and focal necrosis seen in FmoRV RNA-positive cats were similar to those observed in FmoRV RNA-negative cats. Conclusions and relevance This is the first study to show the presence of FmoPV infection in cats in Turkey. Sick cats, particularly those with kidney disease, should be tested for this virus. The genotypes found in this study were similar to previously reported strains, indicating that circulating morbilliviruses in Turkey are conserved.
Collapse
Affiliation(s)
- Huseyin Yilmaz
- Department of Virology, University of Istanbul, Veterinary Faculty, Avcilar, Istanbul, Turkey
| | - Bilge K Tekelioglu
- Department of Pathology, University of Istanbul, Veterinary Faculty, Avcilar, Istanbul, Turkey
| | - Aydin Gurel
- Department of Virology, University of Cukurova, Veterinary Faculty, Ceyhan, Adana, Turkey
| | - Ozge E Bamac
- Department of Virology, University of Cukurova, Veterinary Faculty, Ceyhan, Adana, Turkey
| | - Gulay Y Ozturk
- Department of Virology, University of Cukurova, Veterinary Faculty, Ceyhan, Adana, Turkey
| | - Utku Y Cizmecigil
- Department of Virology, University of Istanbul, Veterinary Faculty, Avcilar, Istanbul, Turkey
| | - Eda Altan
- Department of Virology, University of Istanbul, Veterinary Faculty, Avcilar, Istanbul, Turkey
| | - Ozge Aydin
- Department of Virology, University of Istanbul, Veterinary Faculty, Avcilar, Istanbul, Turkey
| | | | - Eduardo Berriatua
- Animal Health Department, Regional Campus of International Excellence ‘Campus Mare Nostrum’, Universidad de Murcia, Murcia, Spain
| | - Chris R Helps
- University of Bristol, Langford Veterinary Services, Bristol, UK
| | - Juergen A Richt
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Nuri Turan
- Department of Virology, University of Istanbul, Veterinary Faculty, Avcilar, Istanbul, Turkey
| |
Collapse
|
42
|
Development of an ELISA for serological detection of feline morbillivirus infection. Arch Virol 2017; 162:2421-2425. [PMID: 28470418 DOI: 10.1007/s00705-017-3386-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 04/11/2017] [Indexed: 12/20/2022]
Abstract
Feline morbillivirus (FeMV), a member of the family Paramyxoviridae, is an emerging virus that was discovered in 2012. Despite the importance of FeMV infection in cats because of its postulated involvement in kidney diseases, no simple serological assay has been reported in its detection. Here, FeMV phosphoprotein (P protein) was expressed and purified as a glutathione-S-transferase (GST)-fusion protein and used for an enzyme-linked immunosorbent assay (ELISA) to detect FeMV-specific antibodies. With a cutoff value determined by immunoblotting, anti-FeMV P protein was detected with this assay in 22 (22%) of the 100 cat plasma samples collected from various regions of Japan. This ELISA is useful for epidemiological and immunological studies, as well as for diagnosis of FeMV infection.
Collapse
|
43
|
First report of feline morbillivirus in South America. Arch Virol 2016; 162:469-475. [DOI: 10.1007/s00705-016-3124-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/17/2016] [Indexed: 01/19/2023]
|
44
|
Park ES, Suzuki M, Kimura M, Mizutani H, Saito R, Kubota N, Hasuike Y, Okajima J, Kasai H, Sato Y, Nakajima N, Maruyama K, Imaoka K, Morikawa S. Epidemiological and pathological study of feline morbillivirus infection in domestic cats in Japan. BMC Vet Res 2016; 12:228. [PMID: 27724851 PMCID: PMC5057488 DOI: 10.1186/s12917-016-0853-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 10/01/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Feline morbillivirus (FmoPV) is a novel paramyxovirus found to infect domestic cats. FmoPV has been isolated in several countries in Asia and Europe and is considered to have genetic diversity. Also, it is suspected to be associated with feline renal diseases including tubulointerstitial nephritis (TIN), which affects domestic cats with a high incidence rate. RESULTS To clarify the state of FmoPV infection among domestic cats in Japan, an epidemiological survey was conducted. Twenty-one out of 100 cats were found to have serum antibodies (Ab) against FmoPV-N protein by indirect immunofluorescence assay (IF) using FmoPV-N protein-expressing HeLa cells. Twenty-two of the cats were positive for FmoPV RNA in the urine and/or renal tissues. In total, 29 cats were positive for Ab and/or viral RNA. These FmoPV-infected cats were classified into three different phases of infection: RNA+/Ab + (14 cats), RNA+/Ab- (8 cats) and RNA-/Ab + (7 cats). In immunohistochemistry (IHC), 19 out of 29 cats were positive for FmoPV-N protein in kidney tissues; however, the FmoPV-N protein was located in the inflammatory lesions with severe grade in only four out of the 19 cats. Since 15 out of 29 infected cats were positive for viral RNA and Ab, approximately half of the infected cats were persistently infected with FmoPV. CONCLUSIONS A statistically significant difference was observed between infection of FmoPV and the presence of inflammatory changes in renal lesions, indicating a relationship between FmoPV infection and feline renal diseases. However, we could not obtain histopathological evidence of a relationship between FmoPV infection and TIN.
Collapse
Affiliation(s)
- Eun-Sil Park
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Michio Suzuki
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Masanobu Kimura
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Hiroshi Mizutani
- Tokyo Metropolitan Animal Care and Consultation Center, Jounanjima Branch Office, Tokyo, 143-0002, Japan
| | - Ryuichi Saito
- Tokyo Metropolitan Animal Care and Consultation Center, Jounanjima Branch Office, Tokyo, 143-0002, Japan
| | - Nami Kubota
- Tokyo Metropolitan Animal Care and Consultation Center, Jounanjima Branch Office, Tokyo, 143-0002, Japan
| | - Youko Hasuike
- Tokyo Metropolitan Animal Care and Consultation Center, Jounanjima Branch Office, Tokyo, 143-0002, Japan
| | - Jungo Okajima
- Tokyo Metropolitan Animal Care and Consultation Center, Jounanjima Branch Office, Tokyo, 143-0002, Japan
| | - Hidemi Kasai
- Tokyo Metropolitan Animal Care and Consultation Center, Jounanjima Branch Office, Tokyo, 143-0002, Japan
| | - Yuko Sato
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Noriko Nakajima
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Keiji Maruyama
- Tokyo Metropolitan Animal Care and Consultation Center, Jounanjima Branch Office, Tokyo, 143-0002, Japan
| | - Koichi Imaoka
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Shigeru Morikawa
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan.
| |
Collapse
|
45
|
Current Understanding of the Pathogenesis of Progressive Chronic Kidney Disease in Cats. Vet Clin North Am Small Anim Pract 2016; 46:1015-48. [PMID: 27461408 DOI: 10.1016/j.cvsm.2016.06.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In cats with chronic kidney disease (CKD), the most common histopathologic finding is tubulointerstitial inflammation and fibrosis. However, these changes reflect a nonspecific response of the kidney to any inciting injury. The risk of developing CKD is likely to reflect the composite effects of genetic predisposition, aging, and environmental and individual factors that affect renal function over the course of a cat's life. However, there is still little information available to determine exactly which individual risk factors predispose a cat to develop CKD. Although many cats diagnosed with CKD have stable disease for years, some cats show overtly progressive disease.
Collapse
|
46
|
Marcacci M, De Luca E, Zaccaria G, Di Tommaso M, Mangone I, Aste G, Savini G, Boari A, Lorusso A. Genome characterization of feline morbillivirus from Italy. J Virol Methods 2016; 234:160-3. [PMID: 27155238 PMCID: PMC7172958 DOI: 10.1016/j.jviromet.2016.05.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 04/04/2016] [Accepted: 05/03/2016] [Indexed: 12/21/2022]
Abstract
The whole genome sequence of feline morbillivirus (FeMV) Piuma/2015 has been obtained by the combination of SISPA and NGS starting from the infected urine sample of a cat suffering of chronic kidney disease. The highest sequence identity was detected with early FeMVs from Hong Kong. Sequence heterogeneity exists within European FeMVs as for the existence of FeMVs in Germany and Turkey divergent from Piuma/2015.
Feline morbillivirus (FeMV) has been recently identified by RT-PCR in the urine sample of a nephropathic cat in Italy. In this report, we describe the whole genome sequence of strain Piuma/2015 obtained by combination of sequence independent single primer amplification method (SISPA) and next generation sequencing (NGS) starting from RNA purified from the infected urine sample. The existence in Germany and Turkey of FeMVs from cats divergent from Piuma/2015, suggests the presence of FeMV heterogeneity in Europe as it has been described previously in Japan and China.
Collapse
Affiliation(s)
- Maurilia Marcacci
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo, Italy
| | - Eliana De Luca
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo, Italy
| | - Guendalina Zaccaria
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo, Italy
| | | | - Iolanda Mangone
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo, Italy
| | - Giovanni Aste
- Faculty of Veterinary Medicine, University of Teramo, Italy
| | - Giovanni Savini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo, Italy
| | - Andrea Boari
- Faculty of Veterinary Medicine, University of Teramo, Italy
| | - Alessio Lorusso
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo, Italy.
| |
Collapse
|
47
|
Abstract
Feline morbillivirus (FeMV) is an emerging virus that was first discovered in Hong Kong in 2012. FeMV is epidemiologically associated with kidney and other lower urinary tract diseases in cats. Phylogenetic analysis of its genome sequence indicates that FeMV is the most closely related to the members of genus morbillivirus, although FeMV is relatively distant in the phylogenetic analysis, and its target tissues and pathogenicity are different from the other members of the genus. The origin and routes of dissemination of FeMV are not clear since genetic types are not always correlated to the geographical distribution of the isolates. Since the discovery of the virus, several reports showed the epidemiological association of FeMV infection with kidney and lower urinary tract diseases in cats. However, the pathogenicity of FeMV is not clear yet due to paucity of the isolated virus strains and chronic nature of the subjected diseases. Diagnosis of FeMV infection has been performed using both nucleic acid and serological methods. However, there are no standard diagnostic methods to detect antibodies against FeMV, which will be useful to study epidemiology and pathogenicity of FeMV. Besides FeMV is an interesting subject as an additional member to the morbilliviruses possessing unusual characteristics comparing to the other morbilliviruses, further studies of FeMV is important in the veterinary field since it may lead to new therapies or prevention of chronic kidney diseases of cats.
Collapse
|