1
|
Nascimento IRSD, Silva LDR, Rodrigues ENS, Cruz JMFL, Araújo DB, Pereira CDS, Silva LMF, Pereira WE, Silva MC, Santos JPO, Farias OR. Effect of calcium-enriched microalgae extract on mitigating saline stress in papaya seedlings. BRAZ J BIOL 2024; 84:e283432. [PMID: 39319979 DOI: 10.1590/1519-6984.283432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 07/15/2024] [Indexed: 09/26/2024] Open
Abstract
The papaya (Carica papaya L.) is among the mainly fruit species produced in tropical and subtropical climate. The salinity of water in agricultural areas is considered a limiting factor for the expansion of papaya. This study aimed to evaluate calcium-enriched microalgae extract (EMa-Ca) as an attenuator of saline stress in irrigation water on the growth and physiology of Formosa papaya seedlings, hybrid Tainung. The experiment was conducted in a protected environment, with treatments distributed in a 5 × 2 factorial scheme, comprising five electrical conductivities of irrigation water (0.50; 1.10; 2.50; 3.90 and 4.50 dSm-1) with the presence and absence of EMa-Ca in the substrate. Evaluated characteristics were: plant height, number of leaves, stem diameter, leaf area, dry masses weight of roots, aboveground parts and total. Gas exchanges and chlorophyll indices (a, b and total) were also evaluated. The application of EMa-Ca resulted in an increase of 6.05% in height and 6.33% in trunk diameter. The number of leaves decreased with an increase in electrical conductivity, and the leaf area was reduced by 33%. All seedling dry masses showed greater declines in the absence of EM-Ca. The EMa-Ca increased net photosynthesis, CO2 concentration, transpiration and stomatal conductance by 39.13%, 30.43%, 38.88% and 42.85%, respectively. For chlorophyll without the use of EMa-Ca, a decrease rate of 1.21%, 0.41% and 1.62% was observed for Chla, Chlb and Chlt, respectively. Therefore, the EMa-Ca application (1.0 ml/L) significantly enhance the vegetative development, gas exchanges, and chlorophyll indices of papaya seedlings under saline stress conditions.
Collapse
Affiliation(s)
- I R S do Nascimento
- Universidade Federal da Paraíba - UFPB, Departamento de Fitotecnia e Ciências Ambientais, Programa de Pós-graduação em Agronomia, Areia, PB, Brasil
| | - L D R Silva
- Universidade Federal de Lavras - UFLA, Departamento de Agronomia, Programa de Pós-graduação em Agronomia, Lavras, MG, Brasil
| | - E N S Rodrigues
- Universidade Federal da Paraíba - UFPB, Departamento de Fitotecnia e Ciências Ambientais, Programa de Pós-graduação em Agronomia, Areia, PB, Brasil
| | - J M F L Cruz
- Universidade Federal de Lavras - UFLA, Departamento de Fitopatologia, Programa de Pós-Graduação em Fitopatologia, Lavras, MG, Brasil
| | - D B Araújo
- Universidade Federal da Paraíba - UFPB, Departamento de Fitotecnia e Ciências Ambientais, Programa de Pós-graduação em Agronomia, Areia, PB, Brasil
| | - C D S Pereira
- Universidade Federal de Lavras - UFLA, Departamento de Agronomia, Programa de Pós-graduação em Agronomia, Lavras, MG, Brasil
| | - L M F Silva
- Universidade Federal da Paraíba - UFPB, Departamento de Solos e Engenharia Rural, Areia, PB, Brasil
| | - W E Pereira
- Universidade Federal da Paraíba - UFPB, Departamento de Ciências Fundamentais e Sociais, Areia, PB, Brasil
| | - M C Silva
- Universidade Federal da Paraíba - UFPB, Departamento de Biociência, Programa de Pós-graduação em Biodiversidade, Areia, PB, Brasil
| | - J P O Santos
- Instituto Federal do Tocantis - IFTO, Campus Avançado Lagoa da Confusão, Lagoa da Confusão, TO, Brasil
| | - O R Farias
- Universidade Federal da Paraíba - UFPB, Programa de Pós-doutorado em Agronomia, Areia, PB, Brasil
| |
Collapse
|
2
|
Oliveira AFR, Silva MPD, Santos CC, Oliveira Júnior ECD, Novaes LS, Martins LOM, Santos HLD, Silverio JM, Scalon SPQ. Seed priming with Ascophyllum nodosum (L.) Le Jolis extract macroalgae in soybean. BRAZ J BIOL 2024; 84:e286941. [PMID: 39230086 DOI: 10.1590/1519-6984.286941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 06/27/2024] [Indexed: 09/05/2024] Open
Abstract
Seed priming with biostimulant for soybean is a promising practice contributing positively to the physiological quality and vigor of seedlings, but there are little studies regarding protocols of bioinputs, such as Ascophyllum nodosum L. seaweed extract. We aimed to evaluate the effect of doses of A. nodosum macroalgae in seed priming and its impact on germination and seedling vigor of soybean. Seeds were subjected to priming with A. nodosum extract (ANE) at doses of 0, 1, 2, 3, 4, and 5 mL kg seed-1 during 15 min. Priming with ANE did not influence the first count and seed germination. Soybean seedlings from priming with 5 mL kg-1 ANE showed higher growth and shoot and root dry biomass. We observed increase 18% for shoot dry matter with priming of 5 mL kg-1 ANE compared to untreated seeds. The responses were variable for the emergence speed index in function ANE and did not influence the photochemical processes in photosystem II. Seed priming with ANE contributed in higher chlorophyll index. ANE showed a biostimulant effect on soybean seedlings, providing better growth and biomass characteristics, being promising in seed priming, but further studies are suggested in order to increase information regarding its use protocol for soybean.
Collapse
Affiliation(s)
- A F R Oliveira
- Universidade Federal da Grande Dourados - UFGD, Faculdade de Ciências Agrárias, Dourados, MS, Brasil
| | - M P da Silva
- Universidade Federal da Grande Dourados - UFGD, Faculdade de Ciências Agrárias, Dourados, MS, Brasil
| | - C C Santos
- Universidade Federal da Grande Dourados - UFGD, Faculdade de Ciências Agrárias, Dourados, MS, Brasil
| | - E C de Oliveira Júnior
- Serviço Nacional de Aprendizagem Industrial - SENAI, Laboratório de Tecnologia de Sementes, Dourados, MS, Brasil
| | - L S Novaes
- Centro Universitário da Grande Dourados - UNIGRAN, Departamento de Ciências Agrárias, Dourados, MS, Brasil
| | - L O M Martins
- Universidade Federal da Grande Dourados - UFGD, Faculdade de Ciências Agrárias, Dourados, MS, Brasil
| | - H L Dos Santos
- Universidade Federal da Grande Dourados - UFGD, Faculdade de Ciências Agrárias, Dourados, MS, Brasil
| | - J M Silverio
- Universidade Federal da Grande Dourados - UFGD, Faculdade de Ciências Agrárias, Dourados, MS, Brasil
| | - S P Q Scalon
- Universidade Federal da Grande Dourados - UFGD, Faculdade de Ciências Agrárias, Dourados, MS, Brasil
| |
Collapse
|
3
|
Ancín M, Soba D, Picazo PJ, Gámez AL, Le Page JF, Houdusse D, Aranjuelo I. Optimizing oilseed rape growth: Exploring the effect of foliar biostimulants on the interplay among metabolism, phenology, and yield. PHYSIOLOGIA PLANTARUM 2024; 176:e14561. [PMID: 39363578 DOI: 10.1111/ppl.14561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024]
Abstract
The current agricultural system is in search of new strategies to achieve a more sustainable production while keeping or even increasing crop yield and quality. In this scenario, the application of biostimulants constitutes a potent solution. In the current study, the impact of a blue-green microalgal extract (MB) and a pig tissue hydrolysate (PTH) on rapeseed plants' development was characterized. Obtained results revealed a positive effect on yield parameters of plants treated with MB and, especially, PTH; this was associated to an improvement on the photosynthetic performance. Moreover, this study remarked the effects of biostimulants on plant phenology through their pivotal role in modulating developmental processes. More specifically, proteomic, metabolomic, and hormone content analyses revealed distinct alterations associated with the acceleration of phenology induced by biostimulant application. Additionally, some antioxidant enzymes and stress-related compounds were up-regulated upon MB and PTH treatments, indicating enhanced plant defense mechanisms in response to accelerated phenological transitions. Such findings highlight the intricate interplay between biostimulants and plant physiology, wherein biostimulants orchestrate rapid developmental changes, ultimately influencing growth dynamics. Altogether, the current study reveals that the application of both MB and PTH biostimulants promoted rapeseed plant phenology and productivity associated with an improvement in the photosynthetic machinery while boosting other physiological and molecular mechanisms.
Collapse
Affiliation(s)
- María Ancín
- Instituto de Agrobiotecnología (IdAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Aranguren, Spain
| | - David Soba
- Instituto de Agrobiotecnología (IdAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Aranguren, Spain
| | - Pedro J Picazo
- Instituto de Agrobiotecnología (IdAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Aranguren, Spain
| | - Angie L Gámez
- Instituto de Agrobiotecnología (IdAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Aranguren, Spain
| | | | | | - Iker Aranjuelo
- Instituto de Agrobiotecnología (IdAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Aranguren, Spain
| |
Collapse
|
4
|
Ruales E, Gómez-Serrano C, Morillas-España A, González-López C, Escolà Casas M, Matamoros V, Garfí M, Ferrer I. Resource recovery and contaminants of emerging concern mitigation by microalgae treating wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:121950. [PMID: 39068780 DOI: 10.1016/j.jenvman.2024.121950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
This study aimed to investigate the recovery of agricultural biostimulants and biogas from microalgae treating wastewater, in the framework of a circular bioeconomy. To this end, municipal wastewater was treated in demonstrative raceway ponds, and microalgal biomass (Scenedesmus sp.) was then harvested and downstream processed to recover biostimulants and biogas in a biorefinery approach. The effect of microalgal biostimulants on plants was evaluated by means of bioassays, while the biogas produced was quantified in biochemical methane potential (BMP) tests. Furthermore, the fate of contaminants of emerging concern (CECs) over the process was also assessed. Bioassays confirmed the biostimulant effect of microalgae, which showed gibberellin-, auxin- and cytokinin-like activity in watercress seed germination, mung bean rooting, and wheat leaf chlorophyll retention. In addition, the downstream process applied to raw biomass acted as a pre-treatment to enhance anaerobic digestion performance. After biostimulant extraction, the residual biomass represented 91% of the methane yield from the raw biomass (276 mLCH4·g-1VS). The kinetic profile of the residual biomass was 43% higher than that of the unprocessed biomass. Co-digestion with primary sludge further increased biogas production by 24%. Finally, the concentration of CECs in wastewater was reduced by more than 80%, and only 6 out of 22 CECs analyzed were present in the biostimulant obtained. Most importantly, the concentration of those contaminants was lower than in biosolids that are commonly used in agriculture, ensuring environmental safety.
Collapse
Affiliation(s)
- Evelyn Ruales
- GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya - BarcelonaTech, c/ Jordi Girona 1-3, Building D1, E-08034 Barcelona, Spain
| | - Cintia Gómez-Serrano
- UAL - Chemical Engineering Department, Universidad de Almería, Carretera Sacramento s/n, E-04120, Almería, Spain
| | - Ainoa Morillas-España
- UAL - Chemical Engineering Department, Universidad de Almería, Carretera Sacramento s/n, E-04120, Almería, Spain
| | - Cynthia González-López
- UAL - Chemical Engineering Department, Universidad de Almería, Carretera Sacramento s/n, E-04120, Almería, Spain
| | - Mònica Escolà Casas
- Department of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona, 18-26, E-08034 Barcelona, Spain
| | - Víctor Matamoros
- Department of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona, 18-26, E-08034 Barcelona, Spain
| | - Marianna Garfí
- GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya - BarcelonaTech, c/ Jordi Girona 1-3, Building D1, E-08034 Barcelona, Spain
| | - Ivet Ferrer
- GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya - BarcelonaTech, c/ Jordi Girona 1-3, Building D1, E-08034 Barcelona, Spain.
| |
Collapse
|
5
|
Şirin PA, Serdar S. Effects of nitrogen starvation on growth and biochemical composition of some microalgae species. Folia Microbiol (Praha) 2024; 69:889-902. [PMID: 38285280 DOI: 10.1007/s12223-024-01136-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 01/12/2024] [Indexed: 01/30/2024]
Abstract
Nitrogen is one of the most important nutrient sources for the growth of microalgae. We studied the effects of nitrogen starvation on the growth responses, biochemical composition, and fatty acid profile of Dunaliella tertiolecta, Phaeodactylum tricornutum, and Nannochloropsis oculata. The lack of nitrogen caused changes in carbohydrate, protein, lipid, and fatty acid composition in all examined microalgae. The carbohydrate content increased 59% in D. tertiolecta, while the lipid level increased 139% in P. tricornutum under nitrogen stress conditions compared to the control groups. Nitrogen starvation increased the oligosaccharide and polysaccharide contents of D. tertiolecta 4.1-fold and 3.6-fold, respectively. Furthermore, triacylglycerol (TAG) levels in N. oculata and P. tricornutum increased 2.3-fold and 7.4-fold, respectively. The dramatic increase in the amount of TAG is important for the use of these microalgae as raw materials in biodiesel. Nitrogen starvation increased the amounts of oligosaccharides and polysaccharides of D. tertiolecta, while increased eicosapentaenoic acid (EPA) in N. oculata and docosahexaenoic acid (DHA) content in P. tricornutum. The amount of polyunsaturated fatty acids (PUFAs), EPA, DHA, oligosaccharides, and polysaccharides in microalgal species can be increased without using the too costly nitrogen source in the culture conditions, which can reduce the most costly of living feeding.
Collapse
Affiliation(s)
- Pınar Akdoğan Şirin
- Fatsa Faculty of Marine Science, Department of Fisheries Technology Engineering, Ordu University, 52400, Fatsa, Ordu, Turkey.
| | - Serpil Serdar
- Faculty of Fisheries, Department of Aquaculture, Ege University, 35030, Bornova, Izmir, Turkey
| |
Collapse
|
6
|
Ren Y, Wang G, Su Y, Li J, Zhang H, Han J. Response of antioxidant activity, active constituent and rhizosphere microorganisms of Salvia miltiorrhiza to combined application of microbial inoculant, microalgae and biochar under Cu stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171812. [PMID: 38508267 DOI: 10.1016/j.scitotenv.2024.171812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/15/2024] [Accepted: 03/16/2024] [Indexed: 03/22/2024]
Abstract
Salvia miltiorrhiza, a widely used medicinal herb renowned for its properties in promoting blood circulation, removing blood stasis and alleviating pain, is currently facing quality degradation due to excessive heavy metal levels, posing a threat to medication safety. In order to investigate the effects of microbial inoculant, microalgae and biochar on the growth of Salvia miltiorrhiza under copper (Cu) stress, as well as its Cu absorption, antioxidant activity, active component contents and rhizosphere microbial community, a pot experiment was conducted. Salvia miltiorrhiza plants were cultivated in the soil containing 400 mg/kg of Cu for six months and treated with microbial inoculant, microalgae and biochar, either individually or in combination. Almost all soil amendment treatments led to an increase in root biomass. Notably, co-application of microbial inoculant and microalgae had the optimal effect with a 63.07 % increase compared to the group treated solely with Cu. Moreover, when microbial inoculant was applied alone or in combination with microalgae, the Cu content in plant roots was reduced by 19.29 % and 25.37 %, respectively, whereas other treatments failed to show a decreasing trend. Intriguingly, Cu stress increased the active component contents in plant roots, and they could also be enhanced beyond non-stress levels when microbial inoculant and microalgae were applied together or in combination with biochar. Analyses of plant antioxidant activity, soil properties and rhizosphere microorganisms indicated that these amendments may alleviate Cu stress by enhancing peroxidase activity, facilitating plant nutrient absorption, and enriching beneficial microorganisms capable of promoting plant growth and mitigating heavy metal-induced damage. This study suggests that the combined application of microbial inoculant and microalgae can reduce Cu levels in Salvia miltiorrhiza while enhancing its quality under Cu stress.
Collapse
Affiliation(s)
- Ying Ren
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Gang Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yuying Su
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jinfeng Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Hui Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jianping Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
7
|
Occhipinti PS, Russo N, Foti P, Zingale IM, Pino A, Romeo FV, Randazzo CL, Caggia C. Current challenges of microalgae applications: exploiting the potential of non-conventional microalgae species. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3823-3833. [PMID: 37971887 DOI: 10.1002/jsfa.13136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/06/2023] [Accepted: 11/16/2023] [Indexed: 11/19/2023]
Abstract
The intensified attention to health, the growth of an elderly population, the changing lifestyles, and the medical discoveries have increased demand for natural and nutrient-rich foods, shaping the popularity of microalgae products. Microalgae thanks to their metabolic versatility represent a promising solution for a 'green' economy, exploiting non-arable land, non-potable water, capturing carbon dioxide (CO2) and solar energy. The interest in microalgae is justified by their high content of bioactive molecules, such as amino acids, peptides, proteins, carbohydrates, polysaccharides, polyunsaturated fatty acids (as ω-3 fatty acids), pigments (as β-carotene, astaxanthin, fucoxanthin, phycocyanin, zeaxanthin and lutein), or mineral elements. Such molecules are of interest for human and animal nutrition, cosmetic and biofuel production, for which microalgae are potential renewable sources. Microalgae, also, represent effective biological systems for treating a variety of wastewaters and can be used as a CO2 mitigation approach, helping to combat greenhouse gases and global warming emergencies. Recently a growing interest has focused on extremophilic microalgae species, which are easier to cultivate axenically and represent good candidates for open pond cultivation. In some cases, the cultivation and/or harvesting systems are still immature, but novel techniques appear as promising solutions to overcome such barriers. This review provides an overview on the actual microalgae cultivation systems and the current state of their biotechnological applications to obtain high value compounds or ingredients. Moreover, potential and future research opportunities for environment, human and animal benefits are pointed out. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Nunziatina Russo
- Department of Agriculture, Food and Environment, University of Catania, Catania, Italy
- ProBioEtna srl, Spin off University of Catania, Catania, Italy
| | - Paola Foti
- Department of Agriculture, Food and Environment, University of Catania, Catania, Italy
| | - Irene Maria Zingale
- Department of Agriculture, Food and Environment, University of Catania, Catania, Italy
| | - Alessandra Pino
- Department of Agriculture, Food and Environment, University of Catania, Catania, Italy
- ProBioEtna srl, Spin off University of Catania, Catania, Italy
| | - Flora Valeria Romeo
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Centro di Ricerca Olivicoltura, Frutticoltura e Agrumicoltura, Acireale, Italy
| | - Cinzia L Randazzo
- Department of Agriculture, Food and Environment, University of Catania, Catania, Italy
- ProBioEtna srl, Spin off University of Catania, Catania, Italy
- CERNUT, Interdepartmental Research Center in Nutraceuticals and Health Products, University of Catania, Catania, Italy
| | - Cinzia Caggia
- Department of Agriculture, Food and Environment, University of Catania, Catania, Italy
- ProBioEtna srl, Spin off University of Catania, Catania, Italy
- CERNUT, Interdepartmental Research Center in Nutraceuticals and Health Products, University of Catania, Catania, Italy
| |
Collapse
|
8
|
Zheng X, Cong W, Gultom SO, Wang M, Zhou H, Zhang J. Manipulation of co-pelletization for Chlorela vulgaris harvest by treatment of Aspergillus niger spore. World J Microbiol Biotechnol 2024; 40:83. [PMID: 38286963 DOI: 10.1007/s11274-023-03878-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 12/18/2023] [Indexed: 01/31/2024]
Abstract
The co-pelletization of microalgae with filamentous fungi was a promising approach for microalgae harvest. However, the real conditions of microalgae growth limited the arbitrary optimization of co-pellets formation with filamentous fungi. Therefore, it is urgent to develop an approach to manipulate the co-pelletization through treatment of A. niger spores. In this study, Aspergillus niger and Chlorella vulgaris were used as the model species of filamentous fungi and microalgae to investigate co-pellets formation using A. niger spores after by different pH solutions treatment, swelling, snailase treatment. The importance of spore treatments on C. vulgaris harvest in sequence was claimed based on response surface methodology analysis. The pH solutions treatment, swelling, snailase treatment of A. niger spore contributed 21.0%, 10.5%, 40.7% of harvest ratio of C. vulgaris respectively, which guided the application of spore treatment into co-pelletization. Treatment of spore was showed as an efficient approach to manipulate co-pelletization for microalgae harvest in diverse microalgae condition. This results promoted the application of co-pelletization technology in microalgae harvest of various conditions.
Collapse
Affiliation(s)
- Xiao Zheng
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Wenjie Cong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | | | - Mingxuan Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Hualan Zhou
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Jianguo Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China.
| |
Collapse
|
9
|
Rojo EM, Rossi S, Bolado S, Stampino PG, Ficara E, Dotelli G. Life cycle assessment of biostimulant production from algal biomass grown on piggery wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168083. [PMID: 37879487 DOI: 10.1016/j.scitotenv.2023.168083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 10/27/2023]
Abstract
Piggery wastewater has become a large source of pollution with high concentrations of nutrients, that must be managed and properly treated to increase its environmental viability. Currently, the use of microalgae for treating this type of wastewater has emerged as a sustainable process with several benefits, including nutrient recovery to produce valuable products such as biostimulants, and CO2 capture from flue gases. However, the biostimulant production from biomass grown on piggery wastewater also has environmental impacts that need to be studied to identify possible hotspots. This work presents the life cycle assessment by IMPACT 2002+ method of the production of microalgae-based biostimulants, comparing two different harvesting technologies (membrane in scenario 1 and centrifuge in scenario 2) and two different technologies for on-site CO2 capture from flue gases (chemical absorption and membrane separation). The use of membranes for harvesting (scenario 1) reduced the environmental impact in all categories (human health, ecosystem quality, climate change, and resources) by 30 % on average, compared to centrifuge (scenario 2). Also, membranes for CO2 capture allowed to decrease environmental impacts by 16 %, with the largest reduction in the resource category (∼33 %). Thus, the process with the best environmental viability was achieved in scenario 1 using membranes for CO2 capture, with a value of 217 kg CO2 eq/FU. In scenario 2 with centrifugation, the high contribution of the cultivation sub-unit in all impacts was highlighted (>75 %), while in scenario 1 the production sub-unit also had moderate contribution in the human health (∼35 %) and climate change (∼30 %) categories due to the lower concentration and high flow rates. These results were obtained under a worst-case situation with pilot scale optimized parameters, with limited data which would have to be further optimized at industrial-scale implementation. The sensitivity analysis showed a little influence of the parameters that contribute the most to the impacts, except for the transportation of the piggery wastewater to the processing plant in scenario 2. Because of the relevant impact of biostimulant transportation in scenario 1, centrifugation becomes more favourable when transportation distance is longer than 321 km.
Collapse
Affiliation(s)
- Elena M Rojo
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain.
| | - Simone Rossi
- Department of Civil and Environmental Engineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Silvia Bolado
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain
| | - Paola Gallo Stampino
- Department of Chemistry, Materials and Chemical Engineering, "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Elena Ficara
- Department of Civil and Environmental Engineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Giovanni Dotelli
- Department of Chemistry, Materials and Chemical Engineering, "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
10
|
Chabili A, Minaoui F, Hakkoum Z, Douma M, Meddich A, Loudiki M. A Comprehensive Review of Microalgae and Cyanobacteria-Based Biostimulants for Agriculture Uses. PLANTS (BASEL, SWITZERLAND) 2024; 13:159. [PMID: 38256713 PMCID: PMC10820584 DOI: 10.3390/plants13020159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 01/24/2024]
Abstract
Significant progress has been achieved in the use of biostimulants in sustainable agricultural practices. These new products can improve plant growth, nutrient uptake, crop yield and quality, stress adaptation and soil fertility, while reducing agriculture's environmental footprint. Although it is an emerging market, the biostimulant sector is very promising, hence the increasing attention of the scientific community and agro-industry stakeholders in finding new sources of plant biostimulants. Recently, pro- and eucaryotic microalgae have gained prominence and can be exploited as biostimulants due to their ability to produce high-value-added metabolites. Several works revealed the potential of microalgae- and cyanobacteria-based biostimulants (MCBs) as plant growth promoters and stress alleviators, as well as encouraging results pointing out that their use can address current and future agricultural challenges. In contrast to macroalgae biostimulants, the targeted applications of MBs in agriculture are still in their earlier stages and their commercial implementation is constrained by the lack of research and cost of production. The purpose of this paper is to provide a comprehensive overview on the use of this promising new category of plant biostimulants in agriculture and to highlight the current knowledge on their application prospects. Based on the prevailing state of the art, we aimed to roadmap MCB formulations from microalgae and cyanobacteria strain selection, algal biomass production, extraction techniques and application type to product commercialization and farmer and consumer acceptance. Moreover, we provide examples of successful trials demonstrating the beneficial applications of microalgal biostimulants as well as point out bottlenecks and constraints regarding their successful commercialization and input in sustainable agricultural practices.
Collapse
Affiliation(s)
- Amer Chabili
- Water, Biodiversity, and Climate Change Laboratory, Department of Biology, Faculty of Sciences Semlalia, Cadi Ayyad University, Bd Prince Moulay Abdellah, Marrakesh 40000, Morocco; (A.C.); (F.M.); (Z.H.)
| | - Farah Minaoui
- Water, Biodiversity, and Climate Change Laboratory, Department of Biology, Faculty of Sciences Semlalia, Cadi Ayyad University, Bd Prince Moulay Abdellah, Marrakesh 40000, Morocco; (A.C.); (F.M.); (Z.H.)
| | - Zineb Hakkoum
- Water, Biodiversity, and Climate Change Laboratory, Department of Biology, Faculty of Sciences Semlalia, Cadi Ayyad University, Bd Prince Moulay Abdellah, Marrakesh 40000, Morocco; (A.C.); (F.M.); (Z.H.)
| | - Mountasser Douma
- Polydisciplinary Faculty of Khouribga (FPK), Sultan Moulay Slimane University, Khouribga 25000, Morocco;
| | - Abdelilah Meddich
- Laboratory of Agro-Food, Biotechnologies, and Valorization of Plant Bioresources, Department of Biology, Faculty of Sciences Semlalia, Cadi Ayyad University, Bd Prince Moulay Abdellah, Marrakesh 40000, Morocco;
| | - Mohammed Loudiki
- Water, Biodiversity, and Climate Change Laboratory, Department of Biology, Faculty of Sciences Semlalia, Cadi Ayyad University, Bd Prince Moulay Abdellah, Marrakesh 40000, Morocco; (A.C.); (F.M.); (Z.H.)
| |
Collapse
|
11
|
Makam SN, Setamou M, Alabi OJ, Day W, Cromey D, Nwugo C. Mitigation of Huanglongbing: Implications of a Biologically Enhanced Nutritional Program on Yield, Pathogen Localization, and Host Gene Expression Profiles. PLANT DISEASE 2023; 107:3996-4009. [PMID: 37415358 DOI: 10.1094/pdis-10-22-2336-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Huanglongbing (HLB, citrus greening disease), the most destructive disease affecting citrus production, is primarily linked to the gram-negative, insect-vectored, phloem-inhabiting α-proteobacterium 'Candidatus Liberibacter asiaticus' (CLas). With no effective treatment available, management strategies have largely focused on the use of insecticides in addition to the destruction of infected trees, which are environmentally hazardous and cost-prohibitive for growers, respectively. A major limitation to combating HLB is the inability to isolate CLas in axenic culture, which hinders in vitro studies and creates a need for robust in situ CLas detection and visualization methods. The aim of this study was to investigate the efficacy of a nutritional program-based approach for HLB treatment, and to explore the effectiveness of an enhanced immunodetection method to detect CLas-infected tissues. To achieve this, four different biologically enhanced nutritional programs (bENPs; P1, P2, P3, and P4) were tested on CLas-infected citrus trees. Structured illumination microscopy preceded by a modified immunolabeling process and transmission electron microscopy were used to show treatment-dependent reduction of CLas cells in phloem tissues. No sieve pore plugging was seen in the leaves of P2 trees. This was accompanied by an 80% annual increase in fruit number per tree and 1,503 (611 upregulated and 892 downregulated) differentially expressed genes. These included an MLRQ subunit gene, UDP-glucose transferase, and genes associated with the alpha-amino linolenic acid metabolism pathway in P2 trees. Taken together, the results highlight a major role for bENPs as a viable, sustainable, and cost effective option for HLB management.
Collapse
Affiliation(s)
- Srinivas N Makam
- Integrated Life Science Research Center (ILSRC), Goodyear, AZ 85338
| | - Mamoudou Setamou
- Texas A&M University-Kingsville Citrus Center, Weslaco, TX 78599
| | - Olufemi J Alabi
- Plant Pathology and Microbiology, Texas A&M AgriLife Research and Extension Center, Weslaco, TX 78596
| | - William Day
- The Imaging Cores Life Sciences North, Research, Innovation and Impact Department, University of Arizona, Tucson, AZ 85719
| | - Douglas Cromey
- The Imaging Cores Life Sciences North, Research, Innovation and Impact Department, University of Arizona, Tucson, AZ 85719
| | - Chika Nwugo
- Integrated Life Science Research Center (ILSRC), Goodyear, AZ 85338
| |
Collapse
|
12
|
Su M, Bastiaens L, Verspreet J, Hayes M. Applications of Microalgae in Foods, Pharma and Feeds and Their Use as Fertilizers and Biostimulants: Legislation and Regulatory Aspects for Consideration. Foods 2023; 12:3878. [PMID: 37893770 PMCID: PMC10606004 DOI: 10.3390/foods12203878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/24/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Microalgae are a rich resource of lipids, proteins, carbohydrates and pigments with nutritional and health benefits. They increasingly find use as ingredients in functional foods and feeds as well as in cosmetics and agricultural products including biostimulants. One of their distinct advantages is their ability to grow on wastewaters and other waste streams, and they are considered an environmentally friendly and cheap method to recover nutrients and remove pollutants from the environment. However, there are limits concerning their applications if grown on certain waste streams. Within, we collate an overview of existing algal applications and current market scenarios for microalgal products as foods and feeds along with relevant legislative requirements concerning their use in Europe and the United States. Microalgal compounds of interest and their extraction and processing methodologies are summarized, and the benefits and caveats of microalgae cultivated in various waste streams and their applications are discussed.
Collapse
Affiliation(s)
- Min Su
- The Food BioSciences Department Ashtown, Teagasc Food Research Centre, 15D05 Dublin, Ireland;
| | - Leen Bastiaens
- Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Joran Verspreet
- Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Maria Hayes
- The Food BioSciences Department Ashtown, Teagasc Food Research Centre, 15D05 Dublin, Ireland;
| |
Collapse
|
13
|
Cuyas L, Schwarzenberg A. Editorial: Metabolomics: a tool to understand plant protection against biotic and abiotic stresses. FRONTIERS IN PLANT SCIENCE 2023; 14:1274405. [PMID: 37692415 PMCID: PMC10484605 DOI: 10.3389/fpls.2023.1274405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 08/18/2023] [Indexed: 09/12/2023]
Affiliation(s)
| | - Adrián Schwarzenberg
- Analytical Chemistry Core Lab (ACL), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
14
|
Abreu AP, Martins R, Nunes J. Emerging Applications of Chlorella sp. and Spirulina ( Arthrospira) sp. Bioengineering (Basel) 2023; 10:955. [PMID: 37627840 PMCID: PMC10451540 DOI: 10.3390/bioengineering10080955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Chlorella sp. and Spirulina (Arthrospira) sp. account for over 90% of the global microalgal biomass production and represent one of the most promising aquiculture bioeconomy systems. These microorganisms have been widely recognized for their nutritional and therapeutic properties; therefore, a significant growth of their market is expected, especially in the nutraceutical, food, and beverage segments. However, recent advancements in biotechnology and environmental science have led to the emergence of new applications for these microorganisms. This paper aims to explore these innovative applications, while shedding light on their roles in sustainable development, health, and industry. From this state-of-the art review, it was possible to give an in-depth outlook on the environmental sustainability of Chlorella sp. and Spirulina (Arthrospira) sp. For instance, there have been a variety of studies reported on the use of these two microorganisms for wastewater treatment and biofuel production, contributing to climate change mitigation efforts. Moreover, in the health sector, the richness of these microalgae in photosynthetic pigments and bioactive compounds, along with their oxygen-releasing capacity, are being harnessed in the development of new drugs, wound-healing dressings, photosensitizers for photodynamic therapy, tissue engineering, and anticancer treatments. Furthermore, in the industrial sector, Chlorella sp. and Spirulina (Arthrospira) sp. are being used in the production of biopolymers, fuel cells, and photovoltaic technologies. These innovative applications might bring different outlets for microalgae valorization, enhancing their potential, since the microalgae sector presents issues such as the high production costs. Thus, further research is highly needed to fully explore their benefits and potential applications in various sectors.
Collapse
Affiliation(s)
- Ana P. Abreu
- Association BLC3—Technology and Innovation Campus, Centre Bio R&D Unit, 3405-155 Oliveira do Hospital, Portugal; (R.M.); (J.N.)
| | - Rodrigo Martins
- Association BLC3—Technology and Innovation Campus, Centre Bio R&D Unit, 3405-155 Oliveira do Hospital, Portugal; (R.M.); (J.N.)
| | - João Nunes
- Association BLC3—Technology and Innovation Campus, Centre Bio R&D Unit, 3405-155 Oliveira do Hospital, Portugal; (R.M.); (J.N.)
- BLC3 Evolution Lda, 3405-155 Oliveira do Hospital, Portugal
| |
Collapse
|
15
|
Gil MF, Azzara N, Fassolari M, Berón CM, Battaglia ME. Hormone released by the microalgae Neochlorisaquatica and alkalinization influence growth of terrestrial and floating aquatic plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 197:107635. [PMID: 36933508 DOI: 10.1016/j.plaphy.2023.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/09/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
The microalgae Neochloris aquatica were previously evaluated as a potential biological control agent and source of bioactive compounds against immature stages of Culex quinquefasciatus. Larvae reared on microalgae suspension showed mortality or drastic effects with morphological alterations and damage in the midgut. N. aquatica have nutritional and toxic effects, resulting in delayed life cycle and incomplete adult development. Given the possibility of its use as a biological control agent, in this work we evaluate the effect of microalgae on other organisms of the environment, such as plants. Arabidopsis thaliana, a terrestrial plant, and Lemna sp., a floating aquatic plant, were selected as examples. Interaction assays and compound evaluations showed that the microalgae release auxins causing root inhibition, smaller epidermal cells and hairy root development. In Lemna sp., a slight decrease in growth rate was observed, with no deleterious effects on the fronds. On the other hand, we detected a detrimental effect on plants when interactions were performed in a closed environment, in a medium containing soluble carbonate, in which microalgae culture rapidly modifies the pH. The experiments showed that alkalinization of the medium inhibits plant growth, causing bleaching of leaves or fronds. This negative effect in plants was not observed when plants and microalgae were cultured in carbonate-free media. In conclusion, the results showed that N. aquatica can modify plant growth without being harmful, but the rapid alkalinization produced by carbon metabolism of microalgae under CO2-limiting conditions, could regulate the number of plants.
Collapse
Affiliation(s)
- M Florencia Gil
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), Fundación para Investigaciones Biológicas Aplicadas (FIBA), Vieytes, 3103, (7600) Mar del Plata, Argentina
| | - Nayla Azzara
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), Fundación para Investigaciones Biológicas Aplicadas (FIBA), Vieytes, 3103, (7600) Mar del Plata, Argentina
| | - Marisol Fassolari
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), Fundación para Investigaciones Biológicas Aplicadas (FIBA), Vieytes, 3103, (7600) Mar del Plata, Argentina
| | - Corina M Berón
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), Fundación para Investigaciones Biológicas Aplicadas (FIBA), Vieytes, 3103, (7600) Mar del Plata, Argentina.
| | - Marina E Battaglia
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), Fundación para Investigaciones Biológicas Aplicadas (FIBA), Vieytes, 3103, (7600) Mar del Plata, Argentina.
| |
Collapse
|
16
|
Parmar P, Kumar R, Neha Y, Srivatsan V. Microalgae as next generation plant growth additives: Functions, applications, challenges and circular bioeconomy based solutions. FRONTIERS IN PLANT SCIENCE 2023; 14:1073546. [PMID: 37063190 PMCID: PMC10101342 DOI: 10.3389/fpls.2023.1073546] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/05/2023] [Indexed: 06/19/2023]
Abstract
Sustainable agriculture practices involve the application of environment-friendly plant growth promoters and additives that do not negatively impact the health of the ecosystem. Stringent regulatory frameworks restricting the use of synthetic agrochemicals and the increase in demand for organically grown crops have paved the way for the development of novel bio-based plant growth promoters. In this context, microalgae biomass and derived agrochemicals offer novel sources of plant growth promotors that enhance crop productivity and impart disease resistance. These beneficial effects could be attributed to the presence of wide range of biomolecules such as soluble amino acid (AA), micronutrients, polysaccharides, phytohormones and other signaling molecules in microalgae biomass. In addition, their phototrophic nature, high photosynthetic efficiency, and wide environmental adaptability make them an attractive source of biostimulants, biofertilizers and biopesticides. The present review aims to describe the various plant growth promoting metabolites produced by microalgae and their effects on plant growth and productivity. Further, the effects elicited by microalgae biostimulants with respect to different modes of applications such as seed treatments, foliar spray and soil/root drenching is reviewed in detail. In addition, the ability of microalgae metabolites to impart tolerance against various abiotic and biotic stressors along with the mechanism of action is discussed in this paper. Although the use of microalgae based biofertilizers and biostimulants is gaining popularity, the high nutrient and water requirements and energy intensive downstream processes makes microalgae based technology commercially unsustainable. Addressing this challenge, we propose a circular economy model of microalgae mediated bioremediation coupled with biorefinery approaches of generating high value metabolites along with biofertilizer applications. We discuss and review new trends in enhancing the sustainability of microalgae biomass production by co-cultivation of algae with hydroponics and utilization of agriculture effluents.
Collapse
Affiliation(s)
- Priyanka Parmar
- Applied Phycology and Food Technology Laboratory, Council of Scientific and Industrial Research (CSIR)- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research -Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh, India
| | - Raman Kumar
- Applied Phycology and Food Technology Laboratory, Council of Scientific and Industrial Research (CSIR)- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research -Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh, India
| | - Yograj Neha
- Applied Phycology and Food Technology Laboratory, Council of Scientific and Industrial Research (CSIR)- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Vidyashankar Srivatsan
- Applied Phycology and Food Technology Laboratory, Council of Scientific and Industrial Research (CSIR)- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research -Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
17
|
Chovanček E, Salazar J, Şirin S, Allahverdiyeva Y. Microalgae from Nordic collections demonstrate biostimulant effect by enhancing plant growth and photosynthetic performance. PHYSIOLOGIA PLANTARUM 2023; 175:e13911. [PMID: 37043258 DOI: 10.1111/ppl.13911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
We investigated the biostimulant potential of six microalgal species from Nordic collections extracted with two different procedures: thermal hydrolysis with a weak solution of sulfuric acid accompanied by ultrasonication and bead-milling with aqueous extraction followed by centrifugation. To this aim, we designed a phenotyping pipeline consisting of a root growth assay in the model plant Arabidopsis thaliana, complemented with greenhouse experiments to evaluate lettuce yield (Lactuca sativa L. cv. Finstar) and photosynthetic performance. The best-performing hydrolyzed extracts stimulated Arabidopsis root elongation by 8%-13% and lettuce yield by 12%-15%. The in situ measured photosynthetic performance of lettuce was upregulated in the efficient extracts: PSII quantum yield increased by 26%-34%, and thylakoid proton flux increase was in the range of 34%-60%. In contrast, aqueous extracts acquired by bead-milling showed high dependence on biomass concentration in the extract and an overall plant growth enhancement was not attained in any of the applied dosages. Our results indicate that hydrolysis of the biomass can be a decisive factor for rendering effective plant biostimulants from microalgae.
Collapse
Affiliation(s)
- Erik Chovanček
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| | - João Salazar
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| | - Sema Şirin
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| | - Yagut Allahverdiyeva
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| |
Collapse
|
18
|
Yuan X, Gao X, Zheng T, Wang J, Dong Y, Xue H. Carbon nanomaterial-treated cell cultures of Nostoc flagelliforme produce exopolysaccharides with ameliorative physio-chemical properties. Int J Biol Macromol 2023; 227:726-735. [PMID: 36565826 DOI: 10.1016/j.ijbiomac.2022.12.209] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/15/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
The feasibility and efficiency of carbon nanomaterials (CNMs) in algal biotechnology are less known. In this study, the influences of four CNMs, graphene (G), graphene oxide (GO), multiwalled carbon nanotube (MWCNT), and aminated multiwalled carbon nanotube (MWCNT-NH2), on cell growth and exopolysaccharide (EPS) production, as well as the physiochemical properties of EPS, were investigated in cell culture of Nostoc flagelliforme. A proper concentration (15 mg L-1) of four CNMs was chosen for use after a preliminary test. Upon GO treatment, the biomass was improved by 11.1 % and the EPS production was increased by 36.1 % on day 16 compared to the nontreated control. Four CNM treatments significantly improved cellular O2·- and H2O2 levels as well as superoxide dismutase and catalase activities. The monosaccharide compositions and functional groups of the EPSs were obviously altered by the CNM treatments. Particularly, the GO treatment-resulting EPS showed obviously improved flocculating ability, water absorption ability, and reactive oxygen species scavenging ability. In general, four CNMs exerted distinct influences on the production and physio-chemical property alteration of the EPS in N. flagelliforme culture. This work expands our understanding of the application of CNMs in the induced production and functional modification of polysaccharides during algal cultivation.
Collapse
Affiliation(s)
- Xiaolong Yuan
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi Province, China
| | - Xiang Gao
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi Province, China.
| | - Tao Zheng
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi Province, China
| | - Jing Wang
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi Province, China
| | - Yibei Dong
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi Province, China
| | - Huidan Xue
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi Province, China
| |
Collapse
|
19
|
Clagnan E, D'Imporzano G, Dell'Orto M, Bani A, Dumbrell AJ, Parati K, Acién-Fernández FG, Portillo-Hahnefeld A, Martel-Quintana A, Gómez-Pinchetti JL, Adani F. Centrate as a sustainable growth medium: Impact on microalgal inocula and bacterial communities in tubular photobioreactor cultivation systems. BIORESOURCE TECHNOLOGY 2022; 363:127979. [PMID: 36126844 DOI: 10.1016/j.biortech.2022.127979] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
Centrate is a low-cost alternative to synthetic fertilizers for microalgal cultivation, reducing environmental burdens and remediation costs. Adapted microalgae need to be selected and characterised to maximise biomass production and depuration efficiency. Here, the performance and composition of six microalgal communities cultivated both on synthetic media and centrate within semi-open tubular photobioreactors were investigated through Illumina sequencing. Biomass grown on centrate, exposed to a high concentration of ammonium, showed a higher quantity of nitrogen (5.6% dry weight) than the biomass grown on the synthetic media nitrate (3.9% dry weight). Eukaryotic inocula were replaced by other microalgae while cyanobacterial inocula were maintained. Communities were generally similar for the same inoculum between media, however, inoculation with cyanobacteria led to variability within the eukaryotic community. Where communities differed, centrate resulted in a higher richness and diversity. The higher nitrogen of centrate possibly led to higher abundance of genes coding for N metabolism enzymes.
Collapse
Affiliation(s)
- Elisa Clagnan
- Gruppo Ricicla labs., Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia (DiSAA), Università degli studi di Milano, Via Celoria 2, 20133, Italy
| | - Giuliana D'Imporzano
- Gruppo Ricicla labs., Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia (DiSAA), Università degli studi di Milano, Via Celoria 2, 20133, Italy.
| | - Marta Dell'Orto
- Gruppo Ricicla labs., Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia (DiSAA), Università degli studi di Milano, Via Celoria 2, 20133, Italy
| | - Alessia Bani
- Gruppo Ricicla labs., Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia (DiSAA), Università degli studi di Milano, Via Celoria 2, 20133, Italy; School of Life Science, University of Essex, Wivenhoe Park, Colchester, Essex CO3 4SQ, UK; Istituto Sperimentale Lazzaro Spallanzani, loc La Quercia, 2602 Rivolta d'Adda, CR, Italy
| | - Alex J Dumbrell
- School of Life Science, University of Essex, Wivenhoe Park, Colchester, Essex CO3 4SQ, UK
| | - Katia Parati
- Istituto Sperimentale Lazzaro Spallanzani, loc La Quercia, 2602 Rivolta d'Adda, CR, Italy
| | - Francisco Gabriel Acién-Fernández
- Department of Chemical Engineering, CIESOL Solar Energy Research Centre, University of Almeria, Cañada San Urbano, s/n, 04120 Almeria, Spain
| | - Agustín Portillo-Hahnefeld
- Spanish Bank of Algae (BEA), Institute of Oceanography and Global Change (IOCAG), University of Las Palmas de Gran Canaria, Muelle de Taliarte s/n, 35214 Telde, Canary Islands, Spain
| | - Antera Martel-Quintana
- Spanish Bank of Algae (BEA), Institute of Oceanography and Global Change (IOCAG), University of Las Palmas de Gran Canaria, Muelle de Taliarte s/n, 35214 Telde, Canary Islands, Spain
| | - Juan Luis Gómez-Pinchetti
- Spanish Bank of Algae (BEA), Institute of Oceanography and Global Change (IOCAG), University of Las Palmas de Gran Canaria, Muelle de Taliarte s/n, 35214 Telde, Canary Islands, Spain
| | - Fabrizio Adani
- Gruppo Ricicla labs., Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia (DiSAA), Università degli studi di Milano, Via Celoria 2, 20133, Italy
| |
Collapse
|
20
|
Fungal Contamination in Microalgal Cultivation: Biological and Biotechnological Aspects of Fungi-Microalgae Interaction. J Fungi (Basel) 2022; 8:jof8101099. [PMID: 36294664 PMCID: PMC9605242 DOI: 10.3390/jof8101099] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/12/2022] [Accepted: 10/15/2022] [Indexed: 11/17/2022] Open
Abstract
In the last few decades, the increasing interest in microalgae as sources of new biomolecules and environmental remediators stimulated scientists’ investigations and industrial applications. Nowadays, microalgae are exploited in different fields such as cosmeceuticals, nutraceuticals and as human and animal food supplements. Microalgae can be grown using various cultivation systems depending on their final application. One of the main problems in microalgae cultivations is the possible presence of biological contaminants. Fungi, among the main contaminants in microalgal cultures, are able to influence the production and quality of biomass significantly. Here, we describe fungal contamination considering both shortcomings and benefits of fungi-microalgae interactions, highlighting the biological aspects of this interaction and the possible biotechnological applications.
Collapse
|
21
|
Qu Y, Chen X, Ma B, Zhu H, Zheng X, Yu J, Wu Q, Li R, Wang Z, Xiao Y. Extracellular Metabolites of Heterotrophic Auxenochlorella protothecoides: A New Source of Bio-Stimulants for Higher Plants. Mar Drugs 2022; 20:md20090569. [PMID: 36135758 PMCID: PMC9505405 DOI: 10.3390/md20090569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
The biodiversity of microalgal species is enormous, and their versatile metabolism produces a wide diversity of compounds that can be used in food, healthcare, and other applications. Microalgae are also a potential source of bio-stimulants that enhance nutrition efficiency, abiotic stress tolerance, and/or crop quality traits. In this study, the extracellular metabolites of Auxenochlorella protothecoides (EAp) were prepared using three different culture strategies, and their effects on plant growth were examined. Furthermore, the composition of EAp was analyzed by GC-MS. The elongation of lateral roots and the cold-tolerance of Arabidopsis thaliana and Nicotiana benthamiana were promoted by EAp. Moreover, EAp from high-cell-density fermentation stimulated the growth of the leafy vegetables Brassica rapa and Lactuca sativa at dilutions as high as 500- and 1000-fold. Three major groups of compounds were identified by GC-MS, including organic acids or organic acid esters, phenols, and saccharides. Some of these compounds have known plant–stimulating effects, while the rest requires further investigation in the future. Our study demonstrates that EAp is a potential bio-stimulant, while also providing an environmentally friendly and economical microalgae fermentation process.
Collapse
Affiliation(s)
- Yujiao Qu
- Protoga Biotechnology Co., Ltd., Zhuhai 519000, China
- Microalgae Biosynthesis R&D Center, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China
| | - Xinxiang Chen
- Sinochem Fertilizer Co., Ltd., Beijing 100069, China
| | - Beibei Ma
- Protoga Biotechnology Co., Ltd., Zhuhai 519000, China
| | - Huachang Zhu
- Protoga Biotechnology Co., Ltd., Zhuhai 519000, China
| | - Xuan Zheng
- Sinochem Fertilizer Co., Ltd., Beijing 100069, China
| | - Jiazhen Yu
- Protoga Biotechnology Co., Ltd., Zhuhai 519000, China
| | - Qinghui Wu
- Sinochem Fertilizer Co., Ltd., Beijing 100069, China
| | - Rong Li
- Sinochem Fertilizer Co., Ltd., Beijing 100069, China
| | - Ziqiang Wang
- Sinochem Fertilizer Co., Ltd., Beijing 100069, China
- Correspondence: (Z.W.); (Y.X.)
| | - Yibo Xiao
- Protoga Biotechnology Co., Ltd., Zhuhai 519000, China
- Microalgae Biosynthesis R&D Center, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China
- Correspondence: (Z.W.); (Y.X.)
| |
Collapse
|
22
|
Lanzotti V, Anzano A, Grauso L, Zotti M, Sacco A, Senatore M, Moreno M, Diano M, Parente M, Esposito S, Termolino P, Palomba E, Zoina A, Mazzoleni S. NMR Metabolomics and Chemometrics of Lettuce, Lactuca sativa L., under Different Foliar Organic Fertilization Treatments. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11162164. [PMID: 36015467 PMCID: PMC9413100 DOI: 10.3390/plants11162164] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 06/12/2023]
Abstract
Lettuce plants were grown in a greenhouse affected by the fungal pathogen Fusarium oxysporum to test the effects on plant metabolomics by different organic treatments. Three foliar application treatments were applied: a commercial compost tea made of aerobically fermented plant organic matter, a pure lyophilized microalga Artrospira platensis, commonly named spirulina, and the same microalga previously exposed during its culture to a natural uptake from medium enriched with F. oxysporum fragmented DNA (NAT). The experiment is the first attempt to observe in field conditions, the use and effects of a natural microbial library as a carrier of pathogenic fungal DNA for disease control. Untargeted NMR metabolomics and chemometrics showed that foliar organic application significantly reduced fumaric and formic acids, aromatic amino acids, and nucleosides, while increasing ethanolamine. A strong decrease in phenolic acids and an increase in citric acid and glutamine were specifically observed in the NAT treatment. It is noteworthy that the exposure of a known biostimulant microalga to fungal DNA in its culture medium was sufficient to induce detectable changes in the metabolomic profiles of the fertilized plants. These findings deserve further investigation to assess the potential relevance of the presented approach in the field of crop biostimulation and biocontrol of plant pathogens.
Collapse
Affiliation(s)
- Virginia Lanzotti
- Dipartimento di Agraria, Università di Napoli Federico II, Via Università 100, 80055 Portici, Italy
| | - Attilio Anzano
- Dipartimento di Agraria, Università di Napoli Federico II, Via Università 100, 80055 Portici, Italy
| | - Laura Grauso
- Dipartimento di Agraria, Università di Napoli Federico II, Via Università 100, 80055 Portici, Italy
| | - Maurizio Zotti
- Dipartimento di Agraria, Università di Napoli Federico II, Via Università 100, 80055 Portici, Italy
| | - Adriana Sacco
- Institute for Sustainable Plant Protection (IPSP), National Research Council of Italy (CNR), 80055 Portici, Italy
| | - Mauro Senatore
- Institute for Sustainable Plant Protection (IPSP), National Research Council of Italy (CNR), 80055 Portici, Italy
| | - Mauro Moreno
- Dipartimento di Agraria, Università di Napoli Federico II, Via Università 100, 80055 Portici, Italy
| | - Marcello Diano
- M2M Engineering sas, Business Innovation Center, Science Center, Via Coroglio, 80124 Naples, Italy
| | - Maddalena Parente
- M2M Engineering sas, Business Innovation Center, Science Center, Via Coroglio, 80124 Naples, Italy
| | - Serena Esposito
- M2M Engineering sas, Business Innovation Center, Science Center, Via Coroglio, 80124 Naples, Italy
| | - Pasquale Termolino
- Institute of Biosciences and Bioresources (IBBR), National Research Council of Italy (CNR), 80055 Portici, Italy
| | - Emanuela Palomba
- Institute of Biosciences and Bioresources (IBBR), National Research Council of Italy (CNR), 80055 Portici, Italy
| | - Astolfo Zoina
- Dipartimento di Agraria, Università di Napoli Federico II, Via Università 100, 80055 Portici, Italy
| | - Stefano Mazzoleni
- Dipartimento di Agraria, Università di Napoli Federico II, Via Università 100, 80055 Portici, Italy
| |
Collapse
|
23
|
Popa DG, Lupu C, Constantinescu-Aruxandei D, Oancea F. Humic Substances as Microalgal Biostimulants—Implications for Microalgal Biotechnology. Mar Drugs 2022; 20:md20050327. [PMID: 35621978 PMCID: PMC9143693 DOI: 10.3390/md20050327] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 02/01/2023] Open
Abstract
Humic substances (HS) act as biostimulants for terrestrial photosynthetic organisms. Their effects on plants are related to specific HS features: pH and redox buffering activities, (pseudo)emulsifying and surfactant characteristics, capacity to bind metallic ions and to encapsulate labile hydrophobic molecules, ability to adsorb to the wall structures of cells. The specific properties of HS result from the complexity of their supramolecular structure. This structure is more dynamic in aqueous solutions/suspensions than in soil, which enhances the specific characteristics of HS. Therefore, HS effects on microalgae are more pronounced than on terrestrial plants. The reported HS effects on microalgae include increased ionic nutrient availability, improved protection against abiotic stress, including against various chemical pollutants and ionic species of potentially toxic elements, higher accumulation of value-added ingredients, and enhanced bio-flocculation. These HS effects are similar to those on terrestrial plants and could be considered microalgal biostimulant effects. Such biostimulant effects are underutilized in current microalgal biotechnology. This review presents knowledge related to interactions between microalgae and humic substances and analyzes the potential of HS to enhance the productivity and profitability of microalgal biotechnology.
Collapse
Affiliation(s)
- Daria Gabriela Popa
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Mărăști Blv, No. 59, Sector 1, 011464 Bucharest, Romania;
- Bioproducts Team, Bioresources Department, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței No. 202, Sector 6, 060021 Bucharest, Romania;
| | - Carmen Lupu
- Bioproducts Team, Bioresources Department, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței No. 202, Sector 6, 060021 Bucharest, Romania;
| | - Diana Constantinescu-Aruxandei
- Bioproducts Team, Bioresources Department, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței No. 202, Sector 6, 060021 Bucharest, Romania;
- Correspondence: (D.C.-A.); (F.O.)
| | - Florin Oancea
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Mărăști Blv, No. 59, Sector 1, 011464 Bucharest, Romania;
- Bioproducts Team, Bioresources Department, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței No. 202, Sector 6, 060021 Bucharest, Romania;
- Correspondence: (D.C.-A.); (F.O.)
| |
Collapse
|
24
|
Kollmen J, Strieth D. The Beneficial Effects of Cyanobacterial Co-Culture on Plant Growth. Life (Basel) 2022; 12:life12020223. [PMID: 35207509 PMCID: PMC8879750 DOI: 10.3390/life12020223] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/21/2022] [Accepted: 01/30/2022] [Indexed: 11/16/2022] Open
Abstract
Cyanobacteria are ubiquitous phototrophic prokaryotes that find a wide range of applications in industry due to their broad product spectrum. In this context, the application of cyanobacteria as biofertilizers and thus as an alternative to artificial fertilizers has emerged in recent decades. The benefit is mostly based on the ability of cyanobacteria to fix elemental nitrogen and make it available to the plants in a usable form. However, the positive effects of co-cultivating plants with cyanobacteria are not limited to the provision of nitrogen. Cyanobacteria produce numerous secondary metabolites that can be useful for plants, for example, they can have growth-promoting effects or increase resistance to plant diseases. The effects of biotic and abiotic stress can as well be reduced by many secondary metabolites. Furthermore, the biofilms formed by the cyanobacteria can lead to improved soil conditions, such as increased water retention capacity. To exchange the substances mentioned, cyanobacteria form symbioses with plants, whereby the strength of the symbiosis depends on both partners, and not every plant can form symbiosis with every cyanobacterium. Not only the plants in symbiosis benefit from the cyanobacteria, but also vice versa. This review summarizes the beneficial effects of cyanobacterial co-cultivation on plants, highlighting the substances exchanged and the strength of cyanobacterial symbioses with plants. A detailed explanation of the mechanism of nitrogen fixation in cyanobacterial heterocysts is given. Finally, a summary of possible applications of co-cultivation in the (agrar-)industry is given.
Collapse
|