1
|
Goossens E, Deblock L, Caboor L, Eynden DVD, Josipovic I, Isaacura PR, Maksimova E, Van Impe M, Bonnin A, Segers P, Cornillie P, Boone MN, Van Driessche I, De Spiegelaere W, De Roo J, Sips P, De Buysser K. From Corrosion Casting to Virtual Dissection: Contrast-Enhanced Vascular Imaging using Hafnium Oxide Nanocrystals. SMALL METHODS 2024; 8:e2301499. [PMID: 38200600 DOI: 10.1002/smtd.202301499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Indexed: 01/12/2024]
Abstract
Vascular corrosion casting is a method used to visualize the three dimensional (3D) anatomy and branching pattern of blood vessels. A polymer resin is injected in the vascular system and, after curing, the surrounding tissue is removed. The latter often deforms or even fractures the fragile cast. Here, a method is proposed that does not require corrosion, and is based on in situ micro computed tomography (micro-CT) scans. To overcome the lack of CT contrast between the polymer cast and the animals' surrounding soft tissue, hafnium oxide nanocrystals (HfO2 NCs) are introduced as CT contrast agents into the resin. The NCs dramatically improve the overall CT contrast of the cast and allow for straightforward segmentation in the CT scans. Careful design of the NC surface chemistry ensures the colloidal stability of the NCs in the casting resin. Using only 5 m% of HfO2 NCs, high-quality cardiovascular casts of both zebrafish and mice can be automatically segmented using CT imaging software. This allows to differentiate even μ $\umu$ m-scale details without having to alter the current resin injection methods. This new method of virtual dissection by visualizing casts in situ using contrast-enhanced CT imaging greatly expands the application potential of the technique.
Collapse
Affiliation(s)
- Eline Goossens
- Department of Chemistry, Ghent University, Ghent, 9000, Belgium
- Department of Chemistry, University of Basel, Basel, 4058, Switzerland
| | - Loren Deblock
- Department of Chemistry, Ghent University, Ghent, 9000, Belgium
| | - Lisa Caboor
- Department of Biomolecular Medicine, Ghent University, Ghent, 9000, Belgium
| | - Dietger Van den Eynden
- Department of Chemistry, Ghent University, Ghent, 9000, Belgium
- Department of Chemistry, University of Basel, Basel, 4058, Switzerland
| | - Iván Josipovic
- Center for X-ray Tomography, Ghent University, Ghent, 9000, Belgium
| | - Pablo Reyes Isaacura
- Laboratory of Veterinary Morphology, Ghent University, Merelbeke, 9820, Belgium
- Centre for Polymer Material Technologies, Ghent University, Ghent, 9052, Belgium
- Laboratory for Chemical Technology, Ghent University, Ghent, 9052, Belgium
| | - Elizaveta Maksimova
- Department of Chemistry, University of Basel, Basel, 4058, Switzerland
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
- Swiss Nanoscience Institute, University of Basel, Basel, 4056, Switzerland
| | - Matthias Van Impe
- Institute of Biomedical Engineering and Technology, Ghent University, Ghent, 9000, Belgium
| | - Anne Bonnin
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
| | - Patrick Segers
- Institute of Biomedical Engineering and Technology, Ghent University, Ghent, 9000, Belgium
| | - Pieter Cornillie
- Laboratory of Veterinary Morphology, Ghent University, Merelbeke, 9820, Belgium
| | - Matthieu N Boone
- Center for X-ray Tomography, Ghent University, Ghent, 9000, Belgium
| | | | - Ward De Spiegelaere
- Laboratory of Veterinary Morphology, Ghent University, Merelbeke, 9820, Belgium
| | - Jonathan De Roo
- Department of Chemistry, University of Basel, Basel, 4058, Switzerland
| | - Patrick Sips
- Department of Biomolecular Medicine, Ghent University, Ghent, 9000, Belgium
| | | |
Collapse
|
2
|
Liu P, Li R, Cheng Y, Li B, Wei L, Li W, Guo X, Li H, Wang F. Morphological variation of gubernacular tracts for permanent mandibular canines in eruption: a three-dimensional analysis. Dentomaxillofac Radiol 2024; 53:60-66. [PMID: 38214943 PMCID: PMC11003659 DOI: 10.1093/dmfr/twad008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 01/13/2024] Open
Abstract
OBJECTIVES This study aims to evaluate the morphological features of gubernacular tract (GT) for erupting permanent mandibular canines at different ages from 5 to 9 years old with a three-dimensional (3D) measurement method. METHODS The cone-beam CT images of 50 patients were divided into five age groups. The 3D models of the GT for mandibular canines were reconstructed and analysed. The characteristics of the GT, including length, diameter, ellipticity, tortuosity, superficial area, volume, and the angle between the canine and GT, were evaluated using a centreline fitting algorithm. RESULTS Among the 100 GTs that were examined, the length of the GT for mandibular canines decreased between the ages of 5 and 9 years, while the diameter increased until the age of 7 years. Additionally, the ellipticity and tortuosity of the GT decreased as age advanced. The superficial area and volume exhibited a trend of initially increasing and then decreasing. The morphological variations of the GT displayed heterogeneous changes during different periods. CONCLUSIONS The 3D measurement method effectively portrayed the morphological attributes of the GT for mandibular canines. The morphological characteristics of the GT during the eruption process exhibited significant variations. The variations in morphological changes may indicate different stages of mandibular canine eruption.
Collapse
Affiliation(s)
- Pei Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Renpeng Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Yong Cheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
- Department of Oral Radiology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Bo Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
- Department of Oral Radiology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Lili Wei
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
- Department of Oral Radiology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Wei Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
- Department of Oral Radiology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Xiaolong Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
- Department of Oral Radiology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Hang Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
- Department of Oral Radiology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Fang Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
- Department of Oral Radiology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| |
Collapse
|
3
|
Rastogi V, Stefens SJM, Houwaart J, Verhagen HJM, de Bruin JL, van der Pluijm I, Essers J. Molecular Imaging of Aortic Aneurysm and Its Translational Power for Clinical Risk Assessment. Front Med (Lausanne) 2022; 9:814123. [PMID: 35492343 PMCID: PMC9051391 DOI: 10.3389/fmed.2022.814123] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/21/2022] [Indexed: 01/03/2023] Open
Abstract
Aortic aneurysms (AAs) are dilations of the aorta, that are often fatal upon rupture. Diagnostic radiological techniques such as ultrasound (US), magnetic resonance imaging (MRI), and computed tomography (CT) are currently used in clinical practice for early diagnosis as well as clinical follow-up for preemptive surgery of AA and prevention of rupture. However, the contemporary imaging-based risk prediction of aneurysm enlargement or life-threatening aneurysm-rupture remains limited as these are restricted to visual parameters which fail to provide a personalized risk assessment. Therefore, new insights into early diagnostic approaches to detect AA and therefore to prevent aneurysm-rupture are crucial. Multiple new techniques are developed to obtain a more accurate understanding of the biological processes and pathological alterations at a (micro)structural and molecular level of aortic degeneration. Advanced anatomical imaging combined with molecular imaging, such as molecular MRI, or positron emission tomography (PET)/CT provides novel diagnostic approaches for in vivo visualization of targeted biomarkers. This will aid in the understanding of aortic aneurysm disease pathogenesis and insight into the pathways involved, and will thus facilitate early diagnostic analysis of aneurysmal disease. In this study, we reviewed these molecular imaging modalities and their association with aneurysm growth and/or rupture risk and their limitations. Furthermore, we outline recent pre-clinical and clinical developments in molecular imaging of AA and provide future perspectives based on the advancements made within the field. Within the vastness of pre-clinical markers that have been studied in mice, molecular imaging targets such as elastin/collagen, albumin, matrix metalloproteinases and immune cells demonstrate promising results regarding rupture risk assessment within the pre-clinical setting. Subsequently, these markers hold potential as a future diagnosticum of clinical AA assessment. However currently, clinical translation of molecular imaging is still at the onset. Future human trials are required to assess the effectivity of potentially viable molecular markers with various imaging modalities for clinical rupture risk assessment.
Collapse
Affiliation(s)
- Vinamr Rastogi
- Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Sanne J. M. Stefens
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Judith Houwaart
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Hence J. M. Verhagen
- Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Jorg L. de Bruin
- Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Ingrid van der Pluijm
- Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Jeroen Essers
- Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Radiation Oncology, Erasmus University Medical Center, Rotterdam, Netherlands
- *Correspondence: Jeroen Essers
| |
Collapse
|
4
|
Reyes P, D'hooge DR, Cardon L, Cornillie P. From identifying polymeric resins to corrosion casting applications. J Appl Polym Sci 2022. [DOI: 10.1002/app.52284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Pablo Reyes
- Laboratory of Morphology, Faculty of Veterinary Sciences Ghent University Merelbeke Belgium
- Department of Materials, Textiles and Chemical Engineering Centre for Polymer and Material Technologies (CPMT), Ghent University Ghent Belgium
- Department of Materials, Textiles and Chemical Engineering Laboratory for Chemical Technology (LCT), Ghent University Ghent Belgium
| | - Dagmar R. D'hooge
- Department of Materials, Textiles and Chemical Engineering Laboratory for Chemical Technology (LCT), Ghent University Ghent Belgium
- Department of Materials, Textiles and Chemical Engineering Centre for Textiles Science and Engineering (CTSE), Ghent University Ghent Belgium
| | - Ludwig Cardon
- Department of Materials, Textiles and Chemical Engineering Centre for Polymer and Material Technologies (CPMT), Ghent University Ghent Belgium
| | - Pieter Cornillie
- Laboratory of Morphology, Faculty of Veterinary Sciences Ghent University Merelbeke Belgium
| |
Collapse
|
5
|
Reyes P, Edeleva M, D’hooge DR, Cardon L, Cornillie P. Combining Chromatographic, Rheological, and Mechanical Analysis to Study the Manufacturing Potential of Acrylic Blends into Polyacrylic Casts. MATERIALS 2021; 14:ma14226939. [PMID: 34832341 PMCID: PMC8621424 DOI: 10.3390/ma14226939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 12/24/2022]
Abstract
Polyacrylics have been considered for a broad range of material applications, including coatings, dental applications, and adhesives. In this experimental study, the casting potential of a group of (co)monomers belonging to the acrylic family has been explored to enable a more sustainable use of these polymer materials in the medical and veterinary science field. The individual contributions of each comonomer have been analyzed, the reaction conversion has been studied via gas chromatography (GC), the rheological behavior has been characterized via stress-controlled measurements, and the final mechanical properties have been obtained from tensile, flexure, and impact tests. The GC results allow assessing the pot life and thus the working window of the casting process. For the rheological measurements, which start from low-viscous mixtures, a novel protocol has been introduced to obtain accurate absolute data. The rheological data reflect the time dependencies of the GC data but facilitate a more direct link with the macroscopic material data. Specifically, the steep increase in the viscosity with increasing reaction time for the methyl methacrylate (MMA)/ethylene glycol dimethyl methacrylate (EGDMA) case (2% crosslinker) allows maximizing several mechanical properties: the tensile/flexure modulus, the tensile/flexure stress at break, and the impact strength. This opens the pathway to more dedicated chemistry design for corrosion casting and polyacrylic material design in general.
Collapse
Affiliation(s)
- Pablo Reyes
- Laboratory of Morphology, Faculty of Veterinary Sciences, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium;
- Centre for Polymer and Material Technologies (CPMT), Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark 130, Zwijnaarde, 9052 Ghent, Belgium;
- Laboratory for Chemical Technology (LCT), Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark 125, Zwijnaarde, 9052 Ghent, Belgium;
| | - Mariya Edeleva
- Laboratory for Chemical Technology (LCT), Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark 125, Zwijnaarde, 9052 Ghent, Belgium;
| | - Dagmar R. D’hooge
- Laboratory for Chemical Technology (LCT), Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark 125, Zwijnaarde, 9052 Ghent, Belgium;
- Centre for Textiles Science and Engineering (CTSE), Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark 70A, Zwijnaarde, 9052 Ghent, Belgium
- Correspondence: (D.R.D.); (P.C.)
| | - Ludwig Cardon
- Centre for Polymer and Material Technologies (CPMT), Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark 130, Zwijnaarde, 9052 Ghent, Belgium;
| | - Pieter Cornillie
- Laboratory of Morphology, Faculty of Veterinary Sciences, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium;
- Correspondence: (D.R.D.); (P.C.)
| |
Collapse
|
6
|
Busch A, Bleichert S, Ibrahim N, Wortmann M, Eckstein HH, Brostjan C, Wagenhäuser MU, Goergen CJ, Maegdefessel L. Translating mouse models of abdominal aortic aneurysm to the translational needs of vascular surgery. JVS Vasc Sci 2021; 2:219-234. [PMID: 34778850 PMCID: PMC8577080 DOI: 10.1016/j.jvssci.2021.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 01/04/2021] [Indexed: 01/03/2023] Open
Abstract
Introduction Abdominal aortic aneurysm (AAA) is a condition that has considerable socioeconomic impact and an eventual rupture is associated with high mortality and morbidity. Despite decades of research, surgical repair remains the treatment of choice and no medical therapy is currently available. Animal models and, in particular, murine models, of AAA are a vital tool for experimental in vivo research. However, each of the different models has individual limitations and provide only partial mimicry of human disease. This narrative review addresses the translational potential of the available mouse models, highlighting unanswered questions from a clinical perspective. It is based on a thorough presentation of the available literature and more than a decade of personal experience, with most of the available models in experimental and translational AAA research. Results From all the models published, only the four inducible models, namely the angiotensin II model (AngII), the porcine pancreatic elastase perfusion model (PPE), the external periadventitial elastase application (ePPE), and the CaCl2 model have been widely used by different independent research groups. Although the angiotensin II model provides features of dissection and aneurysm formation, the PPE model shows reliable features of human AAA, especially beyond day 7 after induction, but remains technically challenging. The translational value of ePPE as a model and the combination with β-aminopropionitrile to induce rupture and intraluminal thrombus formation is promising, but warrants further mechanistic insights. Finally, the external CaCl2 application is known to produce inflammatory vascular wall thickening. Unmet translational research questions include the origin of AAA development, monitoring aneurysm growth, gender issues, and novel surgical therapies as well as novel nonsurgical therapies. Conclusion New imaging techniques, experimental therapeutic alternatives, and endovascular treatment options provide a plethora of research topics to strengthen the individual features of currently available mouse models, creating the possibility of shedding new light on translational research questions.
Collapse
Affiliation(s)
- Albert Busch
- Department for Vascular and Endovascular Surgery, Technical University Munich, Munich, Germany.,Deutsches Zentrum für Herz-Kreislaufforschung (DZHK), Berlin, Germany
| | - Sonja Bleichert
- Division of Vascular Surgery and Surgical Research Laboratories, Department of Surgery, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Nahla Ibrahim
- Division of Vascular Surgery and Surgical Research Laboratories, Department of Surgery, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Markus Wortmann
- Department of Vascular and Endovascular Surgery, Universitaetsklinik Heidelberg, Heidelberg, Germany
| | - Hans-Henning Eckstein
- Department for Vascular and Endovascular Surgery, Technical University Munich, Munich, Germany
| | - Christine Brostjan
- Division of Vascular Surgery and Surgical Research Laboratories, Department of Surgery, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Markus U Wagenhäuser
- Department of Vascular and Endovascular Surgery, Heinrich-Heine-University Medical Center Düsseldorf, Düsseldorf, Germany
| | - Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Ind
| | - Lars Maegdefessel
- Department for Vascular and Endovascular Surgery, Technical University Munich, Munich, Germany.,Deutsches Zentrum für Herz-Kreislaufforschung (DZHK), Berlin, Germany
| |
Collapse
|
7
|
PEG-modified gadolinium nanoparticles as contrast agents for in vivo micro-CT. Sci Rep 2021; 11:16603. [PMID: 34400681 PMCID: PMC8367985 DOI: 10.1038/s41598-021-95716-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/09/2021] [Indexed: 12/30/2022] Open
Abstract
Vascular research is largely performed in rodents with the goal of developing treatments for human disease. Micro-computed tomography (micro-CT) provides non-destructive three-dimensional imaging that can be used to study the vasculature of rodents. However, to distinguish vasculature from other soft tissues, long-circulating contrast agents are required. In this study, we demonstrated that poly(ethylene glycol) (PEG)-coated gadolinium nanoparticles can be used as a vascular contrast agent in micro-CT. The coated particles could be lyophilized and then redispersed in an aqueous solution to achieve 100 mg/mL of gadolinium. After an intravenous injection of the contrast agent into mice, micro-CT scans showed blood pool contrast enhancements of at least 200 HU for 30 min. Imaging and quantitative analysis of gadolinium in tissues showed the presence of contrast agent in clearance organs including the liver and spleen and very low amounts in other organs. In vitro cell culture experiments, subcutaneous injections, and analysis of mouse body weight suggested that the agents exhibited low toxicity. Histological analysis of tissues 5 days after injection of the contrast agent showed cytotoxicity in the spleen, but no abnormalities were observed in the liver, lungs, kidneys, and bladder.
Collapse
|
8
|
Palladino A, Pizzoleo C, Mavaro I, Lucini C, D'Angelo L, de Girolamo P, Attanasio C. A combined morphometric approach to feature mouse kidney vasculature. Ann Anat 2021; 237:151727. [PMID: 33798690 DOI: 10.1016/j.aanat.2021.151727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 10/21/2022]
Abstract
Physiological kidney function is closely related to the state of the vascular network. Disorders, such as capillary rarefaction, predispose to chronic kidney disease (CKD). In this context, deepening of the methodologies for studying the renal vascular network can be of basic importance. To meet this need, numerous animal models and, in parallel, several methods have been developed. In this work we propose a protocol to accurately feature kidney vasculature in mouse, however, the same protocol is suitable to be applied also to other animal models. The approach is multiparametric and mainly based on micro-computed tomography (μCT) technique. Micro-ct allows to study in detail the vascular network of any organ by exploiting the possibility to perfuse the sample with a contrast agent. The proposed protocol provides a fast and reliable method to extract quantitative information from the μCT scan by using only the basic functions of the software supplied by the scanner without any additional analysis. Through iterative cropping of the scanned ROI and calculation of a sample-specific threshold we calculated that the average volume of a female BALB/c kidney of eighth weeks is 147.8 mm3 (5.4%). We also pointed out that the average volume of the vascular network is 4.9% (0.3%). In parallel we performed traditional histological and immunofluorescence techniques to integrate the information gained via μCT and to frame them in the tissue context. Vessel count on histological sections showed a different density in the different regions of the organ parenchyma, in detail, vessel density in the cortex was 19.03 ± 2.51 vessels/ROI while in the medulla it was 10.6 ± 1.7 vessels/ROI and 5.4 ± 1.3 vessels/ROI in the outer and inner medulla, respectively. We then studied vessel distribution in the renal parenchyma which showed that the 55% of vascular component is included in the cortex, the 30% in the outer medulla and the 15% in the inner medulla. Collectively, we propose an integrated approach that can be particularly useful in the preclinical setting to characterize the vasculature of any organ accurately and rapidly.
Collapse
Affiliation(s)
- Antonio Palladino
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy
| | - Carmela Pizzoleo
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy; Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, 80125 Naples, Italy
| | - Isabella Mavaro
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy; Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, 80125 Naples, Italy
| | - Carla Lucini
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy
| | - Livia D'Angelo
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy
| | - Paolo de Girolamo
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy
| | - Chiara Attanasio
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy; Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, 80125 Naples, Italy.
| |
Collapse
|
9
|
Yasukagawa M, Shimada A, Shiozaki S, Tobita S, Yoshihara T. Phosphorescent Ir(III) complexes conjugated with oligoarginine peptides serve as optical probes for in vivo microvascular imaging. Sci Rep 2021; 11:4733. [PMID: 33637825 PMCID: PMC7910296 DOI: 10.1038/s41598-021-84115-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/27/2021] [Indexed: 02/06/2023] Open
Abstract
Imaging the vascular structures of organ and tumor tissues is extremely important for assessing various pathological conditions. Herein we present the new vascular imaging probe BTQ-Rn (n = 8, 12, 16), a phosphorescent Ir(III) complex containing an oligoarginine peptide as a ligand. This microvasculature staining probe can be chemically synthesized, unlike the commonly used tomato lectins labeled with a fluorophore such as fluorescein isothiocyanate (FITC). Intravenous administration of BTQ-R12 to mice and subsequent confocal luminescence microscope measurements enabled in vivo vascular imaging of tumors and various organs, including kidney, liver and pancreas. Dual color imaging of hepatic tissues of living mice fed a high-fat diet using BTQ-R12 and the lipid droplet-specific probe PC6S revealed small and large lipid droplets in the hepatocytes, causing distortion of the sinusoidal structure. BTQ-R12 selectively stains vascular endothelium and thus allows longer-term vascular network imaging compared to fluorescent dextran with a molecular weight of 70 kDa that circulate in the bloodstream. Furthermore, time-gated measurements using this phosphorescent vascular probe enabled imaging of blood vessel structures without interference from autofluorescence.
Collapse
Affiliation(s)
- Mami Yasukagawa
- grid.256642.10000 0000 9269 4097Department of Chemistry and Chemical Biology, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515 Japan
| | - Aya Shimada
- grid.256642.10000 0000 9269 4097Department of Chemistry and Chemical Biology, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515 Japan
| | - Shuichi Shiozaki
- grid.256642.10000 0000 9269 4097Department of Chemistry and Chemical Biology, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515 Japan
| | - Seiji Tobita
- grid.256642.10000 0000 9269 4097Department of Chemistry and Chemical Biology, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515 Japan
| | - Toshitada Yoshihara
- grid.256642.10000 0000 9269 4097Department of Chemistry and Chemical Biology, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515 Japan
| |
Collapse
|
10
|
Badea CT. Principles of Micro X-ray Computed Tomography. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00006-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
11
|
Hong SH, Herman AM, Stephenson JM, Wu T, Bahadur AN, Burns AR, Marrelli SP, Wythe JD. Development of barium-based low viscosity contrast agents for micro CT vascular casting: Application to 3D visualization of the adult mouse cerebrovasculature. J Neurosci Res 2019; 98:312-324. [PMID: 31630455 DOI: 10.1002/jnr.24539] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/09/2019] [Accepted: 09/23/2019] [Indexed: 11/07/2022]
Abstract
Recent advances in three-dimensional (3D) fluorescence microscopy offer the ability to image the entire vascular network in entire organs, or even whole animals. However, these imaging modalities rely on either endogenous fluorescent reporters or involved immunohistochemistry protocols, as well as optical clearing of the tissue and refractive index matching. Conversely, X-ray-based 3D imaging modalities, such as micro CT, can image non-transparent samples, at high resolution, without requiring complicated or expensive immunolabeling and clearing protocols, or fluorescent reporters. Here, we compared two "homemade" barium-based contrast agents to the field standard, lead-containing Microfil, for micro-computed tomography (micro CT) imaging of the adult mouse cerebrovasculature. The perfusion pressure required for uniform vessel filling was significantly lower with the barium-based contrast agents compared to the polymer-based Microfil. Accordingly, the barium agents showed no evidence of vascular distension or rupture, common problems associated with Microfil. Compellingly, perfusion of an aqueous BaCl2 /gelatin mixture yielded equal or superior visualization of the cerebrovasculature by micro CT compared to Microfil. However, phosphate-containing buffers and fixatives were incompatible with BaCl2 due to the formation of unwanted precipitates. X-ray attenuation of the vessels also decreased overtime, as the BaCl2 appeared to gradually diffuse into surrounding tissues. A second, unique formulation composed of BaSO4 microparticles, generated in-house by mixing BaCl2 and MgSO4 , suffered none of these drawbacks. These microparticles, however, were unable to pass small diameter capillary vessels, conveniently labeling only the arterial cerebrovasculature. In summary, we present an affordable, robust, low pressure, non-toxic, and straightforward methodology for 3D visualization of the cerebrovasculature.
Collapse
Affiliation(s)
- Sung-Ha Hong
- Department of Neurology, McGovern Medical School at UT Health, Houston, TX, USA
| | - Alexander M Herman
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | | | - Ting Wu
- Department of Neurology, McGovern Medical School at UT Health, Houston, TX, USA
| | | | - Alan R Burns
- College of Optometry, University of Houston, Houston, TX, USA
| | - Sean P Marrelli
- Department of Neurology, McGovern Medical School at UT Health, Houston, TX, USA
| | - Joshua D Wythe
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
12
|
Acuna A, Berman AG, Damen FW, Meyers BA, Adelsperger AR, Bayer KC, Brindise MC, Bungart B, Kiel AM, Morrison RA, Muskat JC, Wasilczuk KM, Wen Y, Zhang J, Zito P, Goergen CJ. Computational Fluid Dynamics of Vascular Disease in Animal Models. J Biomech Eng 2019; 140:2676341. [PMID: 29570754 DOI: 10.1115/1.4039678] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Indexed: 12/19/2022]
Abstract
Recent applications of computational fluid dynamics (CFD) applied to the cardiovascular system have demonstrated its power in investigating the impact of hemodynamics on disease initiation, progression, and treatment outcomes. Flow metrics such as pressure distributions, wall shear stresses (WSS), and blood velocity profiles can be quantified to provide insight into observed pathologies, assist with surgical planning, or even predict disease progression. While numerous studies have performed simulations on clinical human patient data, it often lacks prediagnosis information and can be subject to large intersubject variability, limiting the generalizability of findings. Thus, animal models are often used to identify and manipulate specific factors contributing to vascular disease because they provide a more controlled environment. In this review, we explore the use of CFD in animal models in recent studies to investigate the initiating mechanisms, progression, and intervention effects of various vascular diseases. The first section provides a brief overview of the CFD theory and tools that are commonly used to study blood flow. The following sections are separated by anatomical region, with the abdominal, thoracic, and cerebral areas specifically highlighted. We discuss the associated benefits and obstacles to performing CFD modeling in each location. Finally, we highlight animal CFD studies focusing on common surgical treatments, including arteriovenous fistulas (AVF) and pulmonary artery grafts. The studies included in this review demonstrate the value of combining CFD with animal imaging and should encourage further research to optimize and expand upon these techniques for the study of vascular disease.
Collapse
Affiliation(s)
- Andrea Acuna
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907 e-mail:
| | - Alycia G Berman
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907 e-mail:
| | - Frederick W Damen
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907 e-mail:
| | - Brett A Meyers
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907 e-mail:
| | - Amelia R Adelsperger
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907 e-mail:
| | - Kelsey C Bayer
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907 e-mail:
| | - Melissa C Brindise
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907 e-mail:
| | - Brittani Bungart
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907 e-mail:
| | - Alexander M Kiel
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907 e-mail:
| | - Rachel A Morrison
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907 e-mail:
| | - Joseph C Muskat
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907 e-mail:
| | - Kelsey M Wasilczuk
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907 e-mail:
| | - Yi Wen
- Department of Agricultural and Biological Engineering, Purdue University, 225 South University Street, West Lafayette, IN 47907 e-mail:
| | - Jiacheng Zhang
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907 e-mail:
| | - Patrick Zito
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907 e-mail:
| | - Craig J Goergen
- ASME Membership Bioengineering Division, Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907 e-mail:
| |
Collapse
|
13
|
Rucher G, Cameliere L, Fendri J, Abbas A, Dupont K, Kamel S, Delcroix N, Dupont A, Berger L, Manrique A. Performance Evaluation of a Dedicated Preclinical PET/CT System for the Assessment of Mineralization Process in a Mouse Model of Atherosclerosis. Mol Imaging Biol 2019; 20:984-992. [PMID: 29713959 DOI: 10.1007/s11307-018-1202-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
PURPOSE The purpose of this study was to assess the impact of positron emission tomography/X-ray computed tomography (PET/CT) acquisition and reconstruction parameters on the assessment of mineralization process in a mouse model of atherosclerosis. PROCEDURES All experiments were performed on a dedicated preclinical PET/CT system. CT was evaluated using five acquisition configurations using both a tungsten wire phantom for in-plane resolution assessment and a bar pattern phantom for cross-plane resolution. Furthermore, the radiation dose of these acquisition configurations was calculated. The PET system was assessed using longitudinal line sources to determine the optimal reconstruction parameters by measuring central resolution and its coefficient of variation. An in vivo PET study was performed using uremic ApoE-/-, non-uremic ApoE-/-, and control mice to evaluate optimal PET reconstruction parameters for the detection of sodium [18F]fluoride (Na[18F]F) aortic uptake and for quantitative measurement of Na[18F]F bone influx (Ki) with a Patlak analysis. RESULTS For CT, the use of 1 × 1 and 2 × 2 binning detector mode increased both in-plane and cross-plane resolution. However, resolution improvement (163 to 62 μm for in-plane resolution) was associated with an important radiation dose increase (1.67 to 32.78 Gy). With PET, 3D-ordered subset expectation maximization (3D-OSEM) algorithm increased the central resolution compared to filtered back projection (1.42 ± 0.35 mm vs. 1.91 ± 0.08, p < 0.001). The use of 3D-OSEM with eight iterations and a zoom factor 2 yielded optimal PET resolution for preclinical study (FWHM = 0.98 mm). These PET reconstruction parameters allowed the detection of Na[18F]F aortic uptake in 3/14 ApoE-/- mice and demonstrated a decreased Ki in uremic ApoE-/- compared to non-uremic ApoE-/- and control mice (p < 0.006). CONCLUSIONS Optimizing reconstruction parameters significantly impacted on the assessment of mineralization process in a preclinical model of accelerated atherosclerosis using Na[18F]F PET. In addition, improving the CT resolution was associated with a dramatic radiation dose increase.
Collapse
Affiliation(s)
| | - Lucie Cameliere
- Normandie Univ, UNICAEN, EA 4650, Cyceron, 14000, Caen, France
- Chirurgie Vasculaire, CHU de Caen, Avenue de la Côte de Nacre, 14000, Caen, France
| | - Jihene Fendri
- Normandie Univ, UNICAEN, EA 4650, Cyceron, 14000, Caen, France
- Chirurgie Vasculaire, CHU de Caen, Avenue de la Côte de Nacre, 14000, Caen, France
| | - Ahmed Abbas
- Normandie Univ, UNICAEN, EPHE, INSERM, U1077, Neuropsychologie et Imagerie de la Mémoire Humaine, 14000, Caen, France
| | - Kevin Dupont
- Normandie Univ, UNICAEN, EA 4650, Cyceron, 14000, Caen, France
| | - Said Kamel
- Inserm UMR-1088, Université de Picardie Jules Verne, Centre Universitaire de Recherche en Santé (CURS), 80025, Amiens, France
| | - Nicolas Delcroix
- CNRS, UMS-3048, GIP Cyceron, Campus Jules Horowitz, 14000, Caen, France
| | - Axel Dupont
- Esprimed SAS, 1 Mail du professeur Georges Mathé, 94800, Villejuif, France
| | - Ludovic Berger
- Normandie Univ, UNICAEN, EA 4650, Cyceron, 14000, Caen, France
- Chirurgie Vasculaire, CHU de Caen, Avenue de la Côte de Nacre, 14000, Caen, France
| | - Alain Manrique
- Normandie Univ, UNICAEN, EA 4650, Cyceron, 14000, Caen, France.
- Médecine Nucléaire, CHU de Caen, Avenue de la Côte de Nacre, 14000, Caen, France.
- GIP Cyceron, Campus Jules Horowitz, Boulevard Henri Becquerel, BP 5229, 14074, Caen, France.
| |
Collapse
|
14
|
Xing R, De Wilde D, McCann G, Ridwan Y, Schrauwen JTC, van der Steen AFW, Gijsen FJH, Van der Heiden K. Contrast-enhanced micro-CT imaging in murine carotid arteries: a new protocol for computing wall shear stress. Biomed Eng Online 2016; 15:156. [PMID: 28155699 PMCID: PMC5259814 DOI: 10.1186/s12938-016-0270-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Wall shear stress (WSS) is involved in the pathophysiology of atherosclerosis. The correlation between WSS and atherosclerosis can be investigated over time using a WSS-manipulated atherosclerotic mouse model. To determine WSS in vivo, detailed 3D geometry of the vessel network is required. However, a protocol to reconstruct 3D murine vasculature using this animal model is lacking. In this project, we evaluated the adequacy of eXIA 160, a small animal contrast agent, for assessing murine vascular network on micro-CT. Also, a protocol was established for vessel geometry segmentation and WSS analysis. METHODS A tapering cast was placed around the right common carotid artery (RCCA) of ApoE-/- mice (n = 8). Contrast-enhanced micro-CT was performed using eXIA 160. An innovative local threshold-based segmentation procedure was implemented to reconstruct 3D geometry of the RCCA. The reconstructed RCCA was compared to the vessel geometry using a global threshold-based segmentation method. Computational fluid dynamics was applied to compute the velocity field and WSS distribution along the RCCA. RESULTS eXIA 160-enhanced micro-CT allowed clear visualization and assessment of the RCCA in all eight animals. No adverse biological effects were observed from the use of eXIA 160. Segmentation using local threshold values generated more accurate RCCA geometry than the global threshold-based approach. Mouse-specific velocity data and the RCCA geometry generated 3D WSS maps with high resolution, enabling quantitative analysis of WSS. In all animals, we observed low WSS upstream of the cast. Downstream of the cast, asymmetric WSS patterns were revealed with variation in size and location between animals. CONCLUSIONS eXIA 160 provided good contrast to reconstruct 3D vessel geometry and determine WSS patterns in the RCCA of the atherosclerotic mouse model. We established a novel local threshold-based segmentation protocol for RCCA reconstruction and WSS computation. The observed differences between animals indicate the necessity to use mouse-specific data for WSS analysis. For our future work, our protocol makes it possible to study in vivo WSS longitudinally over a growing plaque.
Collapse
Affiliation(s)
- Ruoyu Xing
- Department of Biomedical Engineering, Thorax Center, Erasmus MC, Wytemaweg 80, Ee2338, 3015CN, Rotterdam, The Netherlands
| | - David De Wilde
- IBiTech-bioMMeda, iMinds Medical IT, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium
| | - Gayle McCann
- Department of Biomedical Engineering, Thorax Center, Erasmus MC, Wytemaweg 80, Ee2338, 3015CN, Rotterdam, The Netherlands
| | - Yanto Ridwan
- Department of Genetics, Erasmus MC, Wytemaweg 80, Ee720, 3015CN, Rotterdam, The Netherlands
| | - Jelle T. C. Schrauwen
- Department of Biomedical Engineering, Thorax Center, Erasmus MC, Wytemaweg 80, Ee2338, 3015CN, Rotterdam, The Netherlands
| | - Anton F. W. van der Steen
- Department of Biomedical Engineering, Thorax Center, Erasmus MC, Wytemaweg 80, Ee2338, 3015CN, Rotterdam, The Netherlands
| | - Frank J. H. Gijsen
- Department of Biomedical Engineering, Thorax Center, Erasmus MC, Wytemaweg 80, Ee2338, 3015CN, Rotterdam, The Netherlands
| | - Kim Van der Heiden
- Department of Biomedical Engineering, Thorax Center, Erasmus MC, Wytemaweg 80, Ee2338, 3015CN, Rotterdam, The Netherlands
| |
Collapse
|
15
|
Lee W, Choi GJ, Cho SW. Numerical study to indicate the vulnerability of plaques using an idealized 2D plaque model based on plaque classification in the human coronary artery. Med Biol Eng Comput 2016; 55:1379-1387. [PMID: 27943103 DOI: 10.1007/s11517-016-1602-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 11/28/2016] [Indexed: 11/25/2022]
Abstract
Atherosclerosis is one of the leading causes of death in the world. In this study, an idealized 2D plaque model based on plaque classification in the coronary artery is developed. When creating the idealized 2D model for each plaque type (fibrocalcic, FC; fibrofatty, FT; calcified fibroatheroma, CaFA; fibroatheroma, FA; calcified thin-cap fibroatheroma, CaTCFA; thin-cap fibroatheroma, TCFA), the cap thickness and stenosis by diameter were set as variables. In order to establish the correlation between each plaque type and plaque rupture, a numerical simulation was performed and the stress and stress gradient were reviewed to analyze the mechanical behavior. Results show that both the TCFA and CaTCFA plaque types, which have the smallest cap thicknesses of the different types of plaque, showed relatively high stress values in the thin membrane when compared with the FT type. The FT type is considered to be relatively stable since it does not have necrotic core or a thin membrane. With a stenosis rate of 50% and a cap thickness of 60 μm, the TCFA and CaTCFA types showed approximately 11 and 110% higher stress values, respectively, and 679 and 1568% higher negative stress gradient values, respectively. In other words, the plaque types with thin caps, which have weak load-bearing capacities, showed high stress values and high negative stress gradients in the radial direction. It is understood that this result could indicate the possibility of plaque rupture.
Collapse
Affiliation(s)
- Wookjin Lee
- School of Mechanical Engineering, Chung-Ang University, Seoul, South Korea
| | - Gyu Jin Choi
- School of Mechanical Engineering, Chung-Ang University, Seoul, South Korea
| | - Seong Wook Cho
- School of Mechanical Engineering, Chung-Ang University, Seoul, South Korea.
| |
Collapse
|
16
|
Animal Models Used to Explore Abdominal Aortic Aneurysms: A Systematic Review. Eur J Vasc Endovasc Surg 2016; 52:487-499. [DOI: 10.1016/j.ejvs.2016.07.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 07/01/2016] [Indexed: 01/09/2023]
|
17
|
Assessment of shear stress related parameters in the carotid bifurcation using mouse-specific FSI simulations. J Biomech 2016; 49:2135-2142. [DOI: 10.1016/j.jbiomech.2015.11.048] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 11/07/2015] [Indexed: 01/07/2023]
|
18
|
Ashton JR, West JL, Badea CT. In vivo small animal micro-CT using nanoparticle contrast agents. Front Pharmacol 2015; 6:256. [PMID: 26581654 PMCID: PMC4631946 DOI: 10.3389/fphar.2015.00256] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 10/19/2015] [Indexed: 12/12/2022] Open
Abstract
Computed tomography (CT) is one of the most valuable modalities for in vivo imaging because it is fast, high-resolution, cost-effective, and non-invasive. Moreover, CT is heavily used not only in the clinic (for both diagnostics and treatment planning) but also in preclinical research as micro-CT. Although CT is inherently effective for lung and bone imaging, soft tissue imaging requires the use of contrast agents. For small animal micro-CT, nanoparticle contrast agents are used in order to avoid rapid renal clearance. A variety of nanoparticles have been used for micro-CT imaging, but the majority of research has focused on the use of iodine-containing nanoparticles and gold nanoparticles. Both nanoparticle types can act as highly effective blood pool contrast agents or can be targeted using a wide variety of targeting mechanisms. CT imaging can be further enhanced by adding spectral capabilities to separate multiple co-injected nanoparticles in vivo. Spectral CT, using both energy-integrating and energy-resolving detectors, has been used with multiple contrast agents to enable functional and molecular imaging. This review focuses on new developments for in vivo small animal micro-CT using novel nanoparticle probes applied in preclinical research.
Collapse
Affiliation(s)
- Jeffrey R Ashton
- Department of Biomedical Engineering, Duke University, Durham NC, USA ; Department of Radiology, Center for In Vivo Microscopy, Duke University Medical Center, Durham NC, USA
| | - Jennifer L West
- Department of Biomedical Engineering, Duke University, Durham NC, USA
| | - Cristian T Badea
- Department of Radiology, Center for In Vivo Microscopy, Duke University Medical Center, Durham NC, USA
| |
Collapse
|
19
|
Schürmann C, Gremse F, Jo H, Kiessling F, Brandes RP. Micro-CT Technique Is Well Suited for Documentation of Remodeling Processes in Murine Carotid Arteries. PLoS One 2015; 10:e0130374. [PMID: 26086218 PMCID: PMC4472757 DOI: 10.1371/journal.pone.0130374] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 05/20/2015] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The pathomechanisms of atherosclerosis and vascular remodelling are under intense research. Only a few in vivo tools to study these processes longitudinally in animal experiments are available. Here, we evaluated the potential of micro-CT technology. METHODS Lumen areas of the common carotid arteries (CCA) in the ApoE-/- partial carotid artery ligation mouse model were compared between in vivo and ex vivo micro-CT technique and serial histology in a total of 28 animals. AuroVist-15 nm nanoparticles were used as in vivo blood pool contrast agent in a Skyscan 1176 micro-CT at resolution of 18 μmeter voxel size and a mean x-ray dose of 0.5 Gy. For ex vivo imaging, animals were perfused with MicroFil and imaged at 9 μmeter voxel size. Lumen area was evaluated at postoperative days 7, 14, and 28 first by micro-CT followed by histology. RESULTS In vivo micro-CT and histology revealed lumen loss starting at day 14. The lumen profile highly correlated (r = 0.79, P<0.0001) between this two methods but absolute lumen values obtained by histology were lower than those obtained by micro-CT. Comparison of in vivo and ex vivo micro-CT imaging revealed excellent correlation (r = 0.83, P<0.01). Post mortem micro-CT yielded a higher resolution than in vivo micro-CT but there was no statistical difference of lumen measurements in the partial carotid artery ligation model. CONCLUSION These data demonstrate that in vivo micro-CT is a feasible and accurate technique with low animal stress to image remodeling processes in the murine carotid artery.
Collapse
Affiliation(s)
- Christoph Schürmann
- Institut für Kardiovaskuläre Physiologie, Fachbereich Medizin der Goethe-Universität, Theodor-Stern-Kai 7, Frankfurt am Main, Germany; German Center for Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt, Germany
| | - Felix Gremse
- Experimental Molecular Imaging, University Clinic Aachen, RWTH Aachen University, Aachen, Germany
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
| | - Fabian Kiessling
- Experimental Molecular Imaging, University Clinic Aachen, RWTH Aachen University, Aachen, Germany
| | - Ralf P Brandes
- Institut für Kardiovaskuläre Physiologie, Fachbereich Medizin der Goethe-Universität, Theodor-Stern-Kai 7, Frankfurt am Main, Germany; German Center for Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt, Germany
| |
Collapse
|
20
|
Hu J, Cao Y, Wu T, Li D, Lu H. High-resolution three-dimensional visualization of the rat spinal cord microvasculature by synchrotron radiation micro-CT. Med Phys 2015; 41:101904. [PMID: 25281956 DOI: 10.1118/1.4894704] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Understanding the three-dimensional (3D) morphology of the spinal cord microvasculature has been limited by the lack of an effective high-resolution imaging technique. In this study, synchrotron radiation microcomputed tomography (SRµCT), a novel imaging technique based on absorption imaging, was evaluated with regard to the detection of the 3D morphology of the rat spinal cord microvasculature. METHODS Ten Sprague-Dawley rats were used in this ex vivo study. After contrast agent perfusion, their spinal cords were isolated and scanned using conventional x-rays, conventional micro-CT (CµCT), and SRµCT. RESULTS Based on contrast agent perfusion, the microvasculature of the rat spinal cord was clearly visualized for the first time ex vivo in 3D by means of SRµCT scanning. Compared to conventional imaging techniques, SRµCT achieved higher resolution 3D vascular imaging, with the smallest vessel that could be distinguished approximately 7.4 μm in diameter. Additionally, a 3D pseudocolored image of the spinal cord microvasculature was generated in a single session of SRµCT imaging, which was conducive to detailed observation of the vessel morphology. CONCLUSIONS The results of this study indicated that SRµCT scanning could provide higher resolution images of the vascular network of the spinal cord. This modality also has the potential to serve as a powerful imaging tool for the investigation of morphology changes in the 3D angioarchitecture of the neurovasculature in preclinical research.
Collapse
Affiliation(s)
- Jianzhong Hu
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yong Cao
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Tianding Wu
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Dongzhe Li
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Hongbin Lu
- Department of Sports Medicine, Research Centre of Sports Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
21
|
Kersemans V, Kannan P, Beech JS, Bates R, Irving B, Gilchrist S, Allen PD, Thompson J, Kinchesh P, Casteleyn C, Schnabel J, Partridge M, Muschel RJ, Smart SC. Improving In Vivo High-Resolution CT Imaging of the Tumour Vasculature in Xenograft Mouse Models through Reduction of Motion and Bone-Streak Artefacts. PLoS One 2015; 10:e0128537. [PMID: 26046526 PMCID: PMC4457787 DOI: 10.1371/journal.pone.0128537] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 04/28/2015] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Preclinical in vivo CT is commonly used to visualise vessels at a macroscopic scale. However, it is prone to many artefacts which can degrade the quality of CT images significantly. Although some artefacts can be partially corrected for during image processing, they are best avoided during acquisition. Here, a novel imaging cradle and tumour holder was designed to maximise CT resolution. This approach was used to improve preclinical in vivo imaging of the tumour vasculature. PROCEDURES A custom built cradle containing a tumour holder was developed and fix-mounted to the CT system gantry to avoid artefacts arising from scanner vibrations and out-of-field sample positioning. The tumour holder separated the tumour from bones along the axis of rotation of the CT scanner to avoid bone-streaking. It also kept the tumour stationary and insensitive to respiratory motion. System performance was evaluated in terms of tumour immobilisation and reduction of motion and bone artefacts. Pre- and post-contrast CT followed by sequential DCE-MRI of the tumour vasculature in xenograft transplanted mice was performed to confirm vessel patency and demonstrate the multimodal capacity of the new cradle. Vessel characteristics such as diameter, and branching were quantified. RESULTS Image artefacts originating from bones and out-of-field sample positioning were avoided whilst those resulting from motions were reduced significantly, thereby maximising the resolution that can be achieved with CT imaging in vivo. Tumour vessels ≥ 77 μm could be resolved and blood flow to the tumour remained functional. The diameter of each tumour vessel was determined and plotted as histograms and vessel branching maps were created. Multimodal imaging using this cradle assembly was preserved and demonstrated. CONCLUSIONS The presented imaging workflow minimised image artefacts arising from scanner induced vibrations, respiratory motion and radiopaque structures and enabled in vivo CT imaging and quantitative analysis of the tumour vasculature at higher resolution than was possible before. Moreover, it can be applied in a multimodal setting, therefore combining anatomical and dynamic information.
Collapse
Affiliation(s)
- Veerle Kersemans
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Pavitra Kannan
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - John S. Beech
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Russell Bates
- The Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Benjamin Irving
- The Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Stuart Gilchrist
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Philip D. Allen
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - James Thompson
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Paul Kinchesh
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Christophe Casteleyn
- Laboratory for Applied Veterinary Morphology, Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Julia Schnabel
- The Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Mike Partridge
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Ruth J. Muschel
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Sean C. Smart
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
22
|
Trachet B, Fraga-Silva RA, Londono FJ, Swillens A, Stergiopulos N, Segers P. Performance comparison of ultrasound-based methods to assess aortic diameter and stiffness in normal and aneurysmal mice. PLoS One 2015; 10:e0129007. [PMID: 26023786 PMCID: PMC4449181 DOI: 10.1371/journal.pone.0129007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 05/03/2015] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVE Several ultrasound-based methods are currently used to assess aortic diameter, circumferential strain and stiffness in mice, but none of them is flawless and a gold standard is lacking. We aimed to assess the validity and sensitivity of these methods in control animals and animals developing dissecting abdominal aortic aneurysm. METHODS AND RESULTS We first compared systolic and diastolic diameters as well as local circumferential strains obtained in 47 Angiotensin II-infused ApoE(-/-) mice with three different techniques (BMode, short axis MMode, long axis MMode), at two different abdominal aortic locations (supraceliac and paravisceral), and at three different time points of abdominal aneurysm formation (baseline, 14 days and 28 days). We found that short axis BMode was preferred to assess diameters, but should be avoided for strains. Short axis MMode gave good results for diameters but high standard deviations for strains. Long axis MMode should be avoided for diameters, and was comparable to short axis MMode for strains. We then compared pulse wave velocity measurements using global, ultrasound-based transit time or regional, pressure-based transit time in 10 control and 20 angiotensin II-infused, anti-TGF-Beta injected C57BL/6 mice. Both transit-time methods poorly correlated and were not able to detect a significant difference in PWV between controls and aneurysms. However, a combination of invasive pressure and MMode diameter, based on radio-frequency data, detected a highly significant difference in local aortic stiffness between controls and aneurysms, with low standard deviation. CONCLUSIONS In small animal ultrasound the short axis view is preferred over the long axis view to measure aortic diameters, local methods are preferred over transit-time methods to measure aortic stiffness, invasive pressure-diameter data are preferred over non-invasive strains to measure local aortic stiffness, and the use of radiofrequency data improves the accuracy of diameter, strain as well as stiffness measurements.
Collapse
Affiliation(s)
- Bram Trachet
- IBiTech-bioMMeda, Ghent University-IMinds Medical IT, Ghent, Belgium
- Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Rodrigo A. Fraga-Silva
- Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | | | - Abigaïl Swillens
- IBiTech-bioMMeda, Ghent University-IMinds Medical IT, Ghent, Belgium
| | - Nikolaos Stergiopulos
- Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Patrick Segers
- IBiTech-bioMMeda, Ghent University-IMinds Medical IT, Ghent, Belgium
| |
Collapse
|
23
|
Lin JB, Phillips EH, Riggins TE, Sangha GS, Chakraborty S, Lee JY, Lycke RJ, Hernandez CL, Soepriatna AH, Thorne BRH, Yrineo AA, Goergen CJ. Imaging of small animal peripheral artery disease models: recent advancements and translational potential. Int J Mol Sci 2015; 16:11131-77. [PMID: 25993289 PMCID: PMC4463694 DOI: 10.3390/ijms160511131] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 03/10/2015] [Indexed: 12/11/2022] Open
Abstract
Peripheral artery disease (PAD) is a broad disorder encompassing multiple forms of arterial disease outside of the heart. As such, PAD development is a multifactorial process with a variety of manifestations. For example, aneurysms are pathological expansions of an artery that can lead to rupture, while ischemic atherosclerosis reduces blood flow, increasing the risk of claudication, poor wound healing, limb amputation, and stroke. Current PAD treatment is often ineffective or associated with serious risks, largely because these disorders are commonly undiagnosed or misdiagnosed. Active areas of research are focused on detecting and characterizing deleterious arterial changes at early stages using non-invasive imaging strategies, such as ultrasound, as well as emerging technologies like photoacoustic imaging. Earlier disease detection and characterization could improve interventional strategies, leading to better prognosis in PAD patients. While rodents are being used to investigate PAD pathophysiology, imaging of these animal models has been underutilized. This review focuses on structural and molecular information and disease progression revealed by recent imaging efforts of aortic, cerebral, and peripheral vascular disease models in mice, rats, and rabbits. Effective translation to humans involves better understanding of underlying PAD pathophysiology to develop novel therapeutics and apply non-invasive imaging techniques in the clinic.
Collapse
Affiliation(s)
- Jenny B Lin
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, Room 3025, West Lafayette, IN 47907, USA.
| | - Evan H Phillips
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, Room 3025, West Lafayette, IN 47907, USA.
| | - Ti'Air E Riggins
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, Room 3025, West Lafayette, IN 47907, USA.
| | - Gurneet S Sangha
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, Room 3025, West Lafayette, IN 47907, USA.
| | - Sreyashi Chakraborty
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | - Janice Y Lee
- Psychological Sciences, Purdue University, West Lafayette, IN 47907, USA.
| | - Roy J Lycke
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, Room 3025, West Lafayette, IN 47907, USA.
| | - Clarissa L Hernandez
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, Room 3025, West Lafayette, IN 47907, USA.
| | - Arvin H Soepriatna
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, Room 3025, West Lafayette, IN 47907, USA.
| | - Bradford R H Thorne
- School of Sciences, Neuroscience, Purdue University, West Lafayette, IN 47907, USA.
| | - Alexa A Yrineo
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, Room 3025, West Lafayette, IN 47907, USA.
| | - Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, Room 3025, West Lafayette, IN 47907, USA.
| |
Collapse
|
24
|
Van Doormaal M, Zhou YQ, Zhang X, Steinman DA, Mark Henkelman R. Inputs for Subject-Specific Computational Fluid Dynamics Simulation of Blood Flow in the Mouse Aorta. J Biomech Eng 2014; 136:101008. [DOI: 10.1115/1.4028104] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 07/30/2014] [Indexed: 11/08/2022]
Abstract
Mouse models are an important way for exploring relationships between blood hemodynamics and eventual plaque formation. We have developed a mouse model of aortic regurgitation (AR) that produces large changes in plaque burden with charges in hemodynamics [Zhou et al., 2010, "Aortic Regurgitation Dramatically Alters the Distribution of Atherosclerotic Lesions and Enhances Atherogenesis in Mice," Arterioscler. Thromb. Vasc. Biol., 30(6), pp. 1181–1188]. In this paper, we explore the amount of detail needed for realistic computational fluid dynamics (CFD) calculations in this experimental model. The CFD calculations use inputs based on experimental measurements from ultrasound (US), micro computed tomography (CT), and both anatomical magnetic resonance imaging (MRI) and phase contrast MRI (PC-MRI). The adequacy of five different levels of model complexity (a) subject-specific CT data from a single mouse; (b) subject-specific CT centerlines with radii from US; (c) same as (b) but with MRI derived centerlines; (d) average CT centerlines and averaged vessel radius and branching vessels; and (e) same as (d) but with averaged MRI centerlines) is evaluated by demonstrating their impact on relative residence time (RRT) outputs. The paper concludes by demonstrating the necessity of subject-specific geometry and recommends for inputs the use of CT or anatomical MRI for establishing the aortic centerlines, M-mode US for scaling the aortic diameters, and a combination of PC-MRI and Doppler US for estimating the spatial and temporal characteristics of the input wave forms.
Collapse
Affiliation(s)
- Mark Van Doormaal
- Mouse Imaging Centre, Hospital for Sick Children, 25 Orde Street, Toronto, ON M5T 3H7, Canada
| | - Yu-Qing Zhou
- Mouse Imaging Centre, Hospital for Sick Children, 25 Orde Street, Toronto, ON M5T 3H7, Canada e-mail:
| | - Xiaoli Zhang
- Mouse Imaging Centre, Hospital for Sick Children, 25 Orde Street, Toronto, ON M5T 3H7, Canada e-mail:
| | - David A. Steinman
- Mechanic and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON M5S 3G8, Canada e-mail:
| | - R. Mark Henkelman
- Mem. ASME Mouse Imaging Centre, Hospital for Sick Children, 25 Orde Street, Toronto, ON M5T 3H7, Canada e-mail:
| |
Collapse
|
25
|
Haenssgen K, Makanya AN, Djonov V. Casting materials and their application in research and teaching. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2014; 20:493-513. [PMID: 24564951 DOI: 10.1017/s1431927613014050] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
From a biological point of view, casting refers to filling of anatomical and/or pathological spaces with extraneous material that reproduces a three-dimensional replica of the space. Casting may be accompanied by additional procedures such as corrosion, in which the soft tissue is digested out, leaving a clean cast, or the material may be mixed with radiopaque substances to allow x-ray photography or micro computed topography (µCT) scanning. Alternatively, clearing of the surrounding soft tissue increases transparency and allows visualization of the casted cavities. Combination of casting with tissue fixation allows anatomical dissection and didactic surgical procedures on the tissue. Casting materials fall into three categories namely, aqueous substances (India ink, Prussian blue ink), pliable materials (gelatins, latex, and silicone rubber), or hard materials (methyl methacrylates, polyurethanes, polyesters, and epoxy resins). Casting has proved invaluable in both teaching and research and many phenomenal biological processes have been discovered through casting. The choice of a particular material depends inter alia on the targeted use and the intended subsequent investigative procedures, such as dissection, microscopy, or µCT. The casting material needs to be pliable where anatomical and surgical manipulations are intended, and capillary-passable for ultrastructural investigations.
Collapse
Affiliation(s)
- Kati Haenssgen
- 1 Institute of Anatomy, University of Bern, Baltzerstrasse 2, Ch-3000 Bern 9, Switzerland
| | - Andrew N Makanya
- 1 Institute of Anatomy, University of Bern, Baltzerstrasse 2, Ch-3000 Bern 9, Switzerland
| | - Valentin Djonov
- 1 Institute of Anatomy, University of Bern, Baltzerstrasse 2, Ch-3000 Bern 9, Switzerland
| |
Collapse
|
26
|
Mondy WL, Casteleyn C, Loo DV, Raja M, Singleton C, Jacot JG. Osmium tetroxide labeling of (poly)methyl methacrylate corrosion casts for enhancement of micro-CT microvascular imaging. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2013; 19:1416-1427. [PMID: 24103507 DOI: 10.1017/s1431927613013421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In order to enhance micro-computer tomography (micro-CT) imaging of corrosion casts of fine vasculature, metals can be added to the casting resin before perfusion. However, perfused metals lead to vasoconstriction or vessel damage resulting in nonphysiologic vascular casts. A novel method for coating methyl methacrylate vascular casts with osmium tetroxide has been developed in order to increase micro-CT contrast without affecting the vascular structure. This technique was verified using corrosion casts of the lung vasculature of New Zealand white rabbits. Osmium tetroxide coating of methyl methacrylate vascular corrosion casts resulted in an increase in overall sample contrast that translated into an increase in the resolution of the vasculature. This method can therefore lead to increased resolution in the characterization of fine vascular structures.
Collapse
Affiliation(s)
- William L Mondy
- Division of Congenital Heart Surgery, Texas Children's Hospital, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
27
|
Willekens I, Buls N, Maeseneer MD, Lahoutte T, de Mey J. Use of eXIA 160 XL for Contrast Studies in Micro–Computed Tomography: Experimental Observations. Mol Imaging 2013. [DOI: 10.2310/7290.2013.00050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Inneke Willekens
- From In Vivo Cellular and Molecular Imaging, Vrije Universiteit Brussel, and Departments of Radiology and Nuclear Medicine, UZ Brussel, Brussels, Belgium
| | - Nico Buls
- From In Vivo Cellular and Molecular Imaging, Vrije Universiteit Brussel, and Departments of Radiology and Nuclear Medicine, UZ Brussel, Brussels, Belgium
| | - Michel De Maeseneer
- From In Vivo Cellular and Molecular Imaging, Vrije Universiteit Brussel, and Departments of Radiology and Nuclear Medicine, UZ Brussel, Brussels, Belgium
| | - Tony Lahoutte
- From In Vivo Cellular and Molecular Imaging, Vrije Universiteit Brussel, and Departments of Radiology and Nuclear Medicine, UZ Brussel, Brussels, Belgium
| | - Johan de Mey
- From In Vivo Cellular and Molecular Imaging, Vrije Universiteit Brussel, and Departments of Radiology and Nuclear Medicine, UZ Brussel, Brussels, Belgium
| |
Collapse
|
28
|
Vandeghinste B, Vandenberghe S, Vanhove C, Staelens S, Van Holen R. Low-dose micro-CT imaging for vascular segmentation and analysis using sparse-view acquisitions. PLoS One 2013; 8:e68449. [PMID: 23840893 PMCID: PMC3698127 DOI: 10.1371/journal.pone.0068449] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 05/29/2013] [Indexed: 11/19/2022] Open
Abstract
The aim of this study is to investigate whether reliable and accurate 3D geometrical models of the murine aortic arch can be constructed from sparse-view data in vivo micro-CT acquisitions. This would considerably reduce acquisition time and X-ray dose. In vivo contrast-enhanced micro-CT datasets were reconstructed using a conventional filtered back projection algorithm (FDK), the image space reconstruction algorithm (ISRA) and total variation regularized ISRA (ISRA-TV). The reconstructed images were then semi-automatically segmented. Segmentations of high- and low-dose protocols were compared and evaluated based on voxel classification, 3D model diameters and centerline differences. FDK reconstruction does not lead to accurate segmentation in the case of low-view acquisitions. ISRA manages accurate segmentation with 1024 or more projection views. ISRA-TV needs a minimum of 256 views. These results indicate that accurate vascular models can be obtained from micro-CT scans with 8 times less X-ray dose and acquisition time, as long as regularized iterative reconstruction is used.
Collapse
Affiliation(s)
- Bert Vandeghinste
- Institute Biomedical Technology, MEDISIP, Ghent University-iMinds, Ghent, Belgium.
| | | | | | | | | |
Collapse
|
29
|
Wathen CA, Foje N, van Avermaete T, Miramontes B, Chapaman SE, Sasser TA, Kannan R, Gerstler S, Leevy WM. In vivo X-ray computed tomographic imaging of soft tissue with native, intravenous, or oral contrast. SENSORS (BASEL, SWITZERLAND) 2013; 13:6957-80. [PMID: 23711461 PMCID: PMC3715264 DOI: 10.3390/s130606957] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 05/16/2013] [Accepted: 05/23/2013] [Indexed: 02/07/2023]
Abstract
X-ray Computed Tomography (CT) is one of the most commonly utilized anatomical imaging modalities for both research and clinical purposes. CT combines high-resolution, three-dimensional data with relatively fast acquisition to provide a solid platform for non-invasive human or specimen imaging. The primary limitation of CT is its inability to distinguish many soft tissues based on native contrast. While bone has high contrast within a CT image due to its material density from calcium phosphate, soft tissue is less dense and many are homogenous in density. This presents a challenge in distinguishing one type of soft tissue from another. A couple exceptions include the lungs as well as fat, both of which have unique densities owing to the presence of air or bulk hydrocarbons, respectively. In order to facilitate X-ray CT imaging of other structures, a range of contrast agents have been developed to selectively identify and visualize the anatomical properties of individual tissues. Most agents incorporate atoms like iodine, gold, or barium because of their ability to absorb X-rays, and thus impart contrast to a given organ system. Here we review the strategies available to visualize lung, fat, brain, kidney, liver, spleen, vasculature, gastrointestinal tract, and liver tissues of living mice using either innate contrast, or commercial injectable or ingestible agents with selective perfusion. Further, we demonstrate how each of these approaches will facilitate the non-invasive, longitudinal, in vivo imaging of pre-clinical disease models at each anatomical site.
Collapse
Affiliation(s)
- Connor A. Wathen
- Department of Biological Sciences, 100 Galvin Life Sciences Center, University of Notre Dame, Notre Dame, IN 46556, USA; E-Mail:
| | - Nathan Foje
- Department of Chemistry and Biochemistry, 236 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA; E-Mails: (N.F.); (T.V.A.); (B.M.); (T.A.S.)
| | - Tony van Avermaete
- Department of Chemistry and Biochemistry, 236 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA; E-Mails: (N.F.); (T.V.A.); (B.M.); (T.A.S.)
- Penn High School, 55900 Bittersweet Road, Mishawaka, IN 46545, USA
| | - Bernadette Miramontes
- Department of Chemistry and Biochemistry, 236 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA; E-Mails: (N.F.); (T.V.A.); (B.M.); (T.A.S.)
- Penn High School, 55900 Bittersweet Road, Mishawaka, IN 46545, USA
| | - Sarah E. Chapaman
- Notre Dame Integrated Imaging Facility, Notre Dame, IN 46556, USA; E-Mail:
| | - Todd A. Sasser
- Department of Chemistry and Biochemistry, 236 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA; E-Mails: (N.F.); (T.V.A.); (B.M.); (T.A.S.)
- Bruker-Biospin Corporation, 4 Research Drive, Woodbridge, CT 06525, USA
| | - Raghuraman Kannan
- Department of Radiology, University of Missouri, Columbia, MO 65212, USA; E-Mail:
| | - Steven Gerstler
- Saint Joseph Regional Medical Center, Mishawaka, IN 46545, USA; E-Mail:
| | - W. Matthew Leevy
- Department of Biological Sciences, 100 Galvin Life Sciences Center, University of Notre Dame, Notre Dame, IN 46556, USA; E-Mail:
- Notre Dame Integrated Imaging Facility, Notre Dame, IN 46556, USA; E-Mail:
- Harper Cancer Research Institute, A200 Harper Hall, Notre Dame, IN 46530, USA
| |
Collapse
|
30
|
Molecular imaging of experimental abdominal aortic aneurysms. ScientificWorldJournal 2013; 2013:973150. [PMID: 23737735 PMCID: PMC3655677 DOI: 10.1155/2013/973150] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 03/19/2013] [Indexed: 11/18/2022] Open
Abstract
Current laboratory research in the field of abdominal aortic aneurysm (AAA) disease often utilizes small animal experimental models induced by genetic manipulation or chemical application. This has led to the use and development of multiple high-resolution molecular imaging modalities capable of tracking disease progression, quantifying the role of inflammation, and evaluating the effects of potential therapeutics. In vivo imaging reduces the number of research animals used, provides molecular and cellular information, and allows for longitudinal studies, a necessity when tracking vessel expansion in a single animal. This review outlines developments of both established and emerging molecular imaging techniques used to study AAA disease. Beyond the typical modalities used for anatomical imaging, which include ultrasound (US) and computed tomography (CT), previous molecular imaging efforts have used magnetic resonance (MR), near-infrared fluorescence (NIRF), bioluminescence, single-photon emission computed tomography (SPECT), and positron emission tomography (PET). Mouse and rat AAA models will hopefully provide insight into potential disease mechanisms, and the development of advanced molecular imaging techniques, if clinically useful, may have translational potential. These efforts could help improve the management of aneurysms and better evaluate the therapeutic potential of new treatments for human AAA disease.
Collapse
|
31
|
Cardiac Micro-PET-CT. CURRENT CARDIOVASCULAR IMAGING REPORTS 2013. [DOI: 10.1007/s12410-012-9188-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
32
|
Li J, Nie L, Li Z, Lin L, Tang L, Ouyang J. Maximizing modern distribution of complex anatomical spatial information: 3D reconstruction and rapid prototype production of anatomical corrosion casts of human specimens. ANATOMICAL SCIENCES EDUCATION 2012; 5:330-339. [PMID: 22653786 DOI: 10.1002/ase.1287] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Revised: 02/12/2012] [Accepted: 04/04/2012] [Indexed: 06/01/2023]
Abstract
Anatomical corrosion casts of human specimens are useful teaching aids. However, their use is limited due to ethical dilemmas associated with their production, their lack of perfect reproducibility, and their consumption of original specimens in the process of casting. In this study, new approaches with modern distribution of complex anatomical spatial information were explored to overcome these limitations through the digitalization of anatomical casts of human specimens through three-dimensional (3D) reconstruction, rapid prototype production, and Web-based 3D atlas construction. The corrosion cast of a lung, along with its associated arteries, veins, trachea, and bronchial tree was CT-scanned, and the data was then processed by Mimics software. Data from the lung casts were then reconstructed into 3D models using a hybrid method, utilizing both "image threshold" and "region growing." The fine structures of the bronchial tree, arterial, and venous network of the lung were clearly displayed and demonstrated their distinct relationships. The multiple divisions of bronchi and bronchopulmonary segments were identified. The 3D models were then uploaded into a rapid prototype 3D printer to physically duplicate the cast. The physically duplicated model of the lung was rescanned by CT and reconstructed to detect its production accuracy. Gross observation and accuracy detection were used to evaluate the duplication and few differences were found. Finally, Virtual Reality Modeling Language (VRML) was used to edit the 3D casting models to construct a Web-based 3D atlas accessible through Internet Explorer with 3D display and annotation functions.
Collapse
Affiliation(s)
- Jianyi Li
- Department of Anatomy, Guangdong Provincial Key Laboratory of Medical Biomechanics, Southern Medical University, Guangzhou, People's Republic of China
| | | | | | | | | | | |
Collapse
|
33
|
Van Doormaal MA, Kazakidi A, Wylezinska M, Hunt A, Tremoleda JL, Protti A, Bohraus Y, Gsell W, Weinberg PD, Ethier CR. Haemodynamics in the mouse aortic arch computed from MRI-derived velocities at the aortic root. J R Soc Interface 2012; 9:2834-44. [PMID: 22764131 PMCID: PMC3479906 DOI: 10.1098/rsif.2012.0295] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mice are widely used to investigate atherogenesis, which is known to be influenced by stresses related to blood flow. However, numerical characterization of the haemodynamic environment in the commonly studied aortic arch has hitherto been based on idealizations of inflow into the aorta. Our purpose in this work was to numerically characterize the haemodynamic environment in the mouse aortic arch using measured inflow velocities, and to relate the resulting shear stress patterns to known locations of high- and low-lesion prevalence. Blood flow velocities were measured in the aortic root of C57/BL6 mice using phase-contrast MRI. Arterial geometries were obtained by micro-CT of corrosion casts. These data were used to compute blood flow and wall shear stress (WSS) patterns in the arch. WSS profiles computed using realistic and idealized aortic root velocities differed significantly. An unexpected finding was that average WSS in the high-lesion-probability region on the inner wall was actually higher than the WSS in the low-probability region on the outer wall. Future studies of mouse aortic arch haemodynamics should avoid the use of idealized inflow velocity profiles. Lesion formation does not seem to uniquely associate with low or oscillating WSS in this segment, suggesting that other factors may also play a role in lesion localization.
Collapse
Affiliation(s)
- Mark A Van Doormaal
- Department of Bioengineering, MRC Clinical Sciences Centre, Imperial College London, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ryou HS, Kim S, Kim SW, Cho SW. Construction of healthy arteries using computed tomography and virtual histology intravascular ultrasound. J Biomech 2012; 45:1612-8. [DOI: 10.1016/j.jbiomech.2012.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 04/02/2012] [Accepted: 04/04/2012] [Indexed: 11/27/2022]
|
35
|
Trachet B, Bols J, De Santis G, Vandenberghe S, Loeys B, Segers P. The impact of simplified boundary conditions and aortic arch inclusion on CFD simulations in the mouse aorta: a comparison with mouse-specific reference data. J Biomech Eng 2012; 133:121006. [PMID: 22206423 DOI: 10.1115/1.4005479] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Computational fluid dynamics (CFD) simulations allow for calculation of a detailed flow field in the mouse aorta and can thus be used to investigate a potential link between local hemodynamics and disease development. To perform these simulations in a murine setting, one often needs to make assumptions (e.g. when mouse-specific boundary conditions are not available), but many of these assumptions have not been validated due to a lack of reference data. In this study, we present such a reference data set by combining high-frequency ultrasound and contrast-enhanced micro-CT to measure (in vivo) the time-dependent volumetric flow waveforms in the complete aorta (including seven major side branches) of 10 male ApoE -/- deficient mice on a C57Bl/6 background. In order to assess the influence of some assumptions that are commonly applied in literature, four different CFD simulations were set up for each animal: (i) imposing the measured volumetric flow waveforms, (ii) imposing the average flow fractions over all 10 animals, presented as a reference data set, (iii) imposing flow fractions calculated by Murray's law, and (iv) restricting the geometrical model to the abdominal aorta (imposing measured flows). We found that - even if there is sometimes significant variation in the flow fractions going to a particular branch - the influence of using average flow fractions on the CFD simulations is limited and often restricted to the side branches. On the other hand, Murray's law underestimates the fraction going to the brachiocephalic trunk and strongly overestimates the fraction going to the distal aorta, influencing the outcome of the CFD results significantly. Changing the exponential factor in Murray's law equation from 3 to 2 (as suggested by several authors in literature) yields results that correspond much better to those obtained imposing the average flow fractions. Restricting the geometrical model to the abdominal aorta did not influence the outcome of the CFD simulations. In conclusion, the presented reference dataset can be used to impose boundary conditions in the mouse aorta in future studies, keeping in mind that they represent a subsample of the total population, i.e., relatively old, non-diseased, male C57Bl/6 ApoE -/- mice.
Collapse
Affiliation(s)
- Bram Trachet
- IBiTech - bioMMeda, Ghent University, BE-9000 Ghent, Belgium.
| | | | | | | | | | | |
Collapse
|
36
|
Trachet B, Renard M, De Santis G, Staelens S, De Backer J, Antiga L, Loeys B, Segers P. An Integrated Framework to Quantitatively Link Mouse-Specific Hemodynamics to Aneurysm Formation in Angiotensin II-infused ApoE −/− mice. Ann Biomed Eng 2011; 39:2430-44. [PMID: 21614649 DOI: 10.1007/s10439-011-0330-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 05/14/2011] [Indexed: 10/18/2022]
|