1
|
Kim SA, Choi T, Kim J, Park H, Rhee JS. Acute and chronic effects of the antifouling booster biocide Irgarol 1051 on the water flea Moina macrocopa revealed by multi-biomarker determination. Comp Biochem Physiol C Toxicol Pharmacol 2024; 285:109994. [PMID: 39111514 DOI: 10.1016/j.cbpc.2024.109994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/17/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
Irgarol 1051 is an herbicide extensively utilized in antifouling paint due to its ability to inhibit photosynthesis. Irgarol and its photodegradation products are highly persistent in waters and sediments, although they are present in low concentrations. However, our understanding of the harmful effects of Irgarol on non-target organisms remains limited. In this study, we assessed the effects of acute (24 h) and chronic (14 days across three generations) exposure to different concentrations (including the 1/10 NOEC, NOEC, and 1/10 LC50 calculated from the 24-h acute toxicity test) of Irgarol using the water flea Moina macrocopa. Acute exposure to 1/10 LC50 significantly decreased survival, feeding rate, thoracic limb activity, heart rate, and acetylcholinesterase activity. Elevated levels of intracellular reactive oxygen species and malondialdehyde, along with a significant increase in catalase and superoxide dismutase activity, suggested the induction of oxidative stress in response to 1/10 LC50. An initial boost in glutathione level and the enzymatic activities of glutathione peroxidase and glutathione reductase, followed by a plunge, implies some compromise in the antioxidant defense system. Upon chronic exposure to the NOEC value, both generations F1 and F2 displayed a significant decrease in survival rate, body length, number of neonates per brood, and delayed sexual maturation, suggesting maternal transfer of potential damage through generations. Taken together, Irgarol induced acute toxicity through physiological and cholinergic damage, accompanied by the induction of oxidative stress, in the water flea. Even its sub-lethal concentrations can induce detrimental effects across generations when consistently exposed.
Collapse
Affiliation(s)
- Sung-Ah Kim
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, Republic of Korea
| | - Thine Choi
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, Republic of Korea
| | - Jaehee Kim
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, Republic of Korea
| | - Hyun Park
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Jae-Sung Rhee
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, Republic of Korea; Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Republic of Korea; Yellow Sea Research Institute, Incheon 22012, Republic of Korea.
| |
Collapse
|
2
|
Laurent J, Le Berre I, Armengaud J, Waeles M, Sturbois A, Durand G, Le Floch S, Laroche J, Pichereau V. Environmental signatures and fish proteomics: A multidisciplinary study to identify the major stressors in estuaries located in French agricultural watersheds. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:124876. [PMID: 39383988 DOI: 10.1016/j.envpol.2024.124876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 08/22/2024] [Accepted: 08/31/2024] [Indexed: 10/11/2024]
Abstract
Watersheds and estuaries are impacted by multiple anthropogenic stressors that affect their biodiversity and functioning. Assessing their ecological quality has consequently remained challenging for scientists and stakeholders. In this paper, we propose a multidisciplinary approach to identify the stressors in seven small French estuaries located in agricultural watersheds. We collected data from landscape (geography, hydrobiology) to estuary (pollutant chemistry) and fish individual scales (environmental signatures, proteomics). This integrative approach focused on the whole hydrosystems, from river basins to estuaries. To characterize each watershed, we attempted to determine the land use considering geographic indicators (agricultural and urbanised surfaces) and landscape patterns (hedges density and riparian vegetation). Juveniles of European flounder (Platichthys flesus) were captured in September, after an average residence of five summer months in the estuary. Analyses of water, sediments and biota allowed to determine the concentrations of dissolved inorganic nitrogen species, pesticides and trace elements in the systems. Environmental signatures were also measured in flounder tissues. These environmental parameters were used to establish a typology of the watersheds. Furthermore, data from proteomics on fish liver were combined with environmental signatures to determine the responses of fish to stressors in their environments. Differential protein abundances highlighted a dysregulation related to the detoxification of xenobiotics (mainly pesticides) in agricultural watersheds, characterized by intensive cereal and vegetable crops and high livestock. Omics also revealed a dysregulation of proteins associated with the response to hypoxia and heat stress in some estuaries. Furthermore, we highlighted a dysregulation of proteins involved in urea cycle, immunity and metabolism of fatty acids in several systems. Finally, the combination of environmental and molecular signatures appears to be a relevant method to identify the major stressors operating within hydrosystems.
Collapse
Affiliation(s)
- Jennifer Laurent
- Univ Brest - CNRS - IRD - Ifremer, UMR 6539 LEMAR, IUEM-Université de Bretagne Occidentale, Rue Dumont D'Urville, 29280, Plouzané, France; CEDRE, 715 rue Alain Colas, 29200, Brest, France.
| | - Iwan Le Berre
- Univ Brest - CNRS, UMR 6554 LETG-Brest GEOMER, IUEM-Université de Bretagne Occidentale, Rue Dumont D'Urville, 29280, Plouzané, France
| | - Jean Armengaud
- Laboratoire Innovations Technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRAe, F-30207, Bagnols-sur-Cèze, France
| | - Matthieu Waeles
- Univ Brest - CNRS - IRD - Ifremer, UMR 6539 LEMAR, IUEM-Université de Bretagne Occidentale, Rue Dumont D'Urville, 29280, Plouzané, France
| | - Anthony Sturbois
- Univ Brest - CNRS - IRD - Ifremer, UMR 6539 LEMAR, IUEM-Université de Bretagne Occidentale, Rue Dumont D'Urville, 29280, Plouzané, France; Vivarmor Nature, Réserve Naturelle Nationale de la Baie de Saint-Brieuc, Ploufragan, France
| | - Gaël Durand
- LABOCEA, 120 Avenue Alexis de Rochon, 29280, Plouzané, France
| | | | - Jean Laroche
- Univ Brest - CNRS - IRD - Ifremer, UMR 6539 LEMAR, IUEM-Université de Bretagne Occidentale, Rue Dumont D'Urville, 29280, Plouzané, France
| | - Vianney Pichereau
- Univ Brest - CNRS - IRD - Ifremer, UMR 6539 LEMAR, IUEM-Université de Bretagne Occidentale, Rue Dumont D'Urville, 29280, Plouzané, France
| |
Collapse
|
3
|
Zhang Z, Feng Y, Wang W, Ru S, Zhao L, Ma Y, Song X, Liu L, Wang J. Pollution level and ecological risk assessment of triazine herbicides in Laizhou Bay and derivation of seawater quality criteria. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135270. [PMID: 39053056 DOI: 10.1016/j.jhazmat.2024.135270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
Triazine herbicides are widely used in agriculture and have become common pollutants in marine environments. However, the spatiotemporal distribution characteristics and water quality criteria (WQC) of triazine herbicides are still unclear. This study found that triazine herbicides had a high detection rate of 100 % in surface seawater of Laizhou Bay, China, with average concentrations of 217.61, 225.13, 21.97, and 1296.72 ng/L in March, May, August, and October, respectively. Moreover, estuaries were important sources, and especially the Yellow River estuary exhibited the highest concentrations of 16,115.86 ng/L in October. The 10 triazine herbicides were detected in the sediments of Laizhou Bay, with a concentration ranging from 0.14-1.68 μg/kg. Atrazine and prometryn accounted for 33.41 %-59.10 % and 28.93 %-50.06 % of the total triazine herbicides in the seawater, and prometryn had the highest proportion (63.50 %) in the sediments. Correlation analysis revealed that triazine herbicides led to the loss of plankton biodiversity, which further decreased the dissolved oxygen. In addition, this study collected 45 acute toxicity data and 22 chronic toxicity data of atrazine, 16 acute toxicity data of prometryn, and supplemented with toxicity experiments of prometryn on marine organisms. Based on the toxicity database, the WQCs of atrazine and prometryn were derived using species sensitivity distribution. The overall risk probability of atrazine and prometryn were both less than 1.75 % in the Laizhou Bay, indicating an acceptable risk. This study not only clarified the pollution status and ecological risk of triazine herbicides, but also provided scientific basis for their environmental management standards.
Collapse
Affiliation(s)
- Zhenzhong Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yongliang Feng
- Department of Basic Courses, Tangshan University, Tangshan 063000, China
| | - Weizhong Wang
- Shandong Blue Ocean Technology Co., Ltd, Yantai 264006, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Lingchao Zhao
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yuanqing Ma
- Shandong Marine Resource and Environment Research Institute, Shandong Key Laboratory of Marine Ecological Restoration, Yantai 264006, China
| | - Xiukai Song
- Shandong Marine Resource and Environment Research Institute, Shandong Key Laboratory of Marine Ecological Restoration, Yantai 264006, China
| | - Lijuan Liu
- Shandong Marine Resource and Environment Research Institute, Shandong Key Laboratory of Marine Ecological Restoration, Yantai 264006, China
| | - Jun Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
4
|
Chen WJ, Chen SF, Song H, Li Z, Luo X, Zhang X, Zhou X. Current insights into environmental acetochlor toxicity and remediation strategies. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:356. [PMID: 39083106 DOI: 10.1007/s10653-024-02136-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/16/2024] [Indexed: 09/07/2024]
Abstract
Acetochlor is a selective pre-emergent herbicide that is widely used to control annual grass and broadleaf weeds. However, due to its stable chemical structure, only a small portion of acetochlor exerts herbicidal activity in agricultural applications, while most of the excess remains on the surfaces of plants or enters ecosystems, such as soil and water bodies, causing harm to the environment and human health. In recent years, researchers have become increasingly focused on the repair of acetochlor residues. Compared with traditional physical and chemical remediation methods, microorganisms are the most effective way to remediate chemical pesticide pollution, such as acetochlor, because of their rich species, wide distribution, and diverse metabolic pathways. To date, researchers have isolated and identified many high-efficiency acetochlor-degrading strains, such as Pseudomonas oleovorans, Klebsiella variicola, Bacillus subtilus, Rhodococcus, and Methylobacillus, among others. The microbial degradation pathways of acetochlor include dechlorination, hydroxylation, N-dealkylation, C-dealkylation, and dehydrogenation. In addition, the microbial enzymes, including hydrolase (ChlH), debutoxylase (Dbo), and monooxygenase (MeaXY), responsible for acetochlor biodegradation are also being investigated. In this paper, we review the migration law of acetochlor in the environment, its toxicity to nontarget organisms, and the main metabolic methods. Moreover, we summarize the latest progress in the research on the microbial catabolism of acetochlor, including the efficient degradation of microbial resources, biodegradation metabolic pathways, and key enzymes for acetochlor degradation. At the end of the article, we highlight the existing problems in the current research on acetochlor biodegradation, provide new ideas for the remediation of acetochlor pollution in the environment, and propose future research directions.
Collapse
Affiliation(s)
- Wen-Juan Chen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Shao-Fang Chen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Haoran Song
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Zeren Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaofang Luo
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Xidong Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaofan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
5
|
Mane MK, Raffy G, Glorennec P, Bonvallot N, Bonnet P, Dumas O, Nchama AE, Saramito G, Duguépéroux C, Mandin C, Le Moual N, Le Bot B. Biocide and other semi-volatile organic compound concentrations in settled indoor dust of CRESPI daycare centers and implication for public health. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134277. [PMID: 38657505 DOI: 10.1016/j.jhazmat.2024.134277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/26/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024]
Abstract
This study investigates the presence of biocides and other semi-volatile organic compounds (SVOCs) in cleaning products used in daycare centers and health impact through ingestion of settled dust by young children. In Paris metropolitan area, 106 daycares area were investigated between 2019-2022. Fifteen substances were analyzed in settled indoor dust by gas chromatography-tandem mass spectrometry. Detection rates and concentrations ranged from 5 to 100%, and
Collapse
Affiliation(s)
- Mayoro Kebe Mane
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France.
| | - Gaëlle Raffy
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France.
| | - Philippe Glorennec
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France.
| | - Nathalie Bonvallot
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France.
| | - Pierre Bonnet
- Scientific and Technical Center for Building (CSTB), Indoor Environment Quality Unit, 77420 Champs-sur-Marne, France.
| | - Orianne Dumas
- Université Paris-Saclay, UVSQ, Univ. Paris-Sud, Inserm, Équipe d'Épidémiologie Respiratoire Intégrative, CESP, 94807 Villejuif, France.
| | - Anastasie Eworo Nchama
- Université Paris-Saclay, UVSQ, Univ. Paris-Sud, Inserm, Équipe d'Épidémiologie Respiratoire Intégrative, CESP, 94807 Villejuif, France.
| | - Gaëlle Saramito
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France.
| | - Camille Duguépéroux
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France.
| | - Corinne Mandin
- Scientific and Technical Center for Building (CSTB), Indoor Environment Quality Unit, 77420 Champs-sur-Marne, France.
| | - Nicole Le Moual
- Université Paris-Saclay, UVSQ, Univ. Paris-Sud, Inserm, Équipe d'Épidémiologie Respiratoire Intégrative, CESP, 94807 Villejuif, France.
| | - Barbara Le Bot
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France.
| |
Collapse
|
6
|
Yang M, Zhao L, Yu X, Shu W, Cao F, Liu Q, Liu M, Wang J, Jiang Y. Microbial community structure and co-occurrence network stability in seawater and microplastic biofilms under prometryn pollution in marine ecosystems. MARINE POLLUTION BULLETIN 2024; 199:115960. [PMID: 38159383 DOI: 10.1016/j.marpolbul.2023.115960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/20/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Prometryn has been extensively detected in marine environment because of its widespread usage in agriculture and aquaculture and has been concerns since its serious effects on aquatic organisms. However, its impact on the microbial community in the marine ecosystem including seawater and biofilm is still unclear. Therefore, a short-term indoor microcosm experiment of prometryn exposure was conducted. This study found that prometryn had a more significant impact on the structure and stability of the microbial community in seawater compared to microplastic biofilms. Additionally, we observed that the assembly of the microbial community in biofilms was more affected by stochastic processes than in seawater under the exposure of prometryn. Our study provided evidence for the increasing impact of the microbial communities under the stress of prometryn and microplastics.
Collapse
Affiliation(s)
- Mengyao Yang
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Lingchao Zhao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xiaowen Yu
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Wangxinze Shu
- Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Furong Cao
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Qian Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Mingjian Liu
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; MoE Key Laboratory of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Jun Wang
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Yong Jiang
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; MoE Key Laboratory of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
7
|
Li L, Wang Y, Liu L, Gao C, Ru S, Yang L. Occurrence, ecological risk, and advanced removal methods of herbicides in waters: a timely review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:3297-3319. [PMID: 38095790 DOI: 10.1007/s11356-023-31067-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/12/2023] [Indexed: 01/19/2024]
Abstract
Coastal pollution caused by the importation of agricultural herbicides is one of the main environmental problems that directly affect the coastal primary productivity and even the safety of human seafood. It is urgent to evaluate the ecological risk objectively and explore feasible removal strategies. However, existing studies focus on the runoff distribution and risk assessment of specific herbicides in specific areas, and compared with soil environment, there are few studies on remediation methods for water environment. Therefore, we systematically reviewed the current situation of herbicide pollution in global coastal waters and the dose-response relationships of various herbicides on phytoplankton and higher trophic organisms from the perspective of ecological risks. In addition, we believe that compared with the traditional single physical and chemical remediation methods, biological remediation and its combined technology are the most promising methods for herbicide pollution remediation currently. Therefore, we focus on the application prospects, challenges, and management strategies of new bioremediation systems related to biology, such as constructed wetlands, membrane bioreactor processes, and microbial co-metabolism, in order to provide more advanced methods for reducing herbicide pollution in the water environment.
Collapse
Affiliation(s)
- Lingxiao Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yunsheng Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Lijuan Liu
- Shandong Marine Resource and Environment Research Institute, Shandong Key Laboratory of Marine Ecological Restoration, Yantai, Shandong, China
| | - Chen Gao
- Shandong Marine Resource and Environment Research Institute, Shandong Key Laboratory of Marine Ecological Restoration, Yantai, Shandong, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Liqiang Yang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
8
|
Grott SC, Israel NG, Bitschinski D, Abel G, Carneiro F, Alves TC, Alves de Almeida E. Influence of temperature on biomarker responses of bullfrog tadpoles (Lithobates catesbeianus) exposed to the herbicide ametryn. CHEMOSPHERE 2022; 308:136327. [PMID: 36087723 DOI: 10.1016/j.chemosphere.2022.136327] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/23/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
The S-triazine herbicide ametryn (AMT) is relatively low adsorbed in soils and has high solubility in water, thus believed to affect non-target aquatic organisms such as amphibians. Temperature increases can intensify the effects of herbicides, possibly increasing the susceptibility of amphibians to these compounds. The aim of this study was to evaluate the influence of temperature (25 and 32 °C) on the responses of biochemical biomarkers in bullfrog tadpoles (Lithobates catesbeianus) exposed to different concentrations of AMT (0, 10, 50 and 200 ng.L-1) for a period of 16 days. The antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD) and the biotransformation enzyme glutathione S-transferase (GST) had their activity decreased at the highest temperature (32 °C). SOD activity was reduced at 200 ng.L-1 and 32 °C compared to the control at the same temperature. AMT exposure also decreased the activities of alanine aminotransferase and gamma glutamyl transferase. On the other hand, the activities of acetylcholinesterase, carboxylesterase, alkaline phosphatase, levels of lipid peroxidation and protein carbonyl, as well genotoxic markers (micronucleus and nuclear abnormalities frequencies) were unchanged. The evaluation of integrated biomarker response index (IBR) indicated highest variations at the concentration of 200 ng.L-1 at 32 °C, suggesting that the combination of high AMT concentrations and temperatures generate more pronounced negative effects to tadpoles.
Collapse
Affiliation(s)
- Suelen Cristina Grott
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil.
| | - Nicole Grasmuk Israel
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil.
| | - Daiane Bitschinski
- Biodiversity Post-graduate Program, University of Blumenau, Blumenau, SC, Brazil.
| | - Gustavo Abel
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil
| | - Francisco Carneiro
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil.
| | - Thiago Caique Alves
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil.
| | - Eduardo Alves de Almeida
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil.
| |
Collapse
|
9
|
Diallo T, Makni Y, Lerebours A, Thomas H, Guérin T, Parinet J. Development and validation according to the SANTE guidelines of a QuEChERS-UHPLC-QTOF-MS method for the screening of 204 pesticides in bivalves. Food Chem 2022; 386:132871. [PMID: 35381542 DOI: 10.1016/j.foodchem.2022.132871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 11/28/2022]
Abstract
A qualitative screening high resolution mass spectrometry method was developed and validated according to the EU SANTE/12682/2019 guidelines for the analysis of 204 pesticides in seven commercial bivalve species spiked at three concentrations (0.01, 0.05 and, 0.1 mg.kg-1). Samples were extracted using QuEChERS and analysed using ultra-high-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. The QuEChERS method was optimised by the Taguchi Orthogonal Array approach. The best conditions were obtained with pure ACN, MgSO4/NaCl as extraction salts, MgSO4/PSA/C18 as clean-up, and the non-dilution of extracts. The impact of different HRMS acquisition modes on detection and identification rates were also evaluated. The screening detection limits were determined to be 0.01 mg.kg-1 and 0.1 for 66% and 87% of pesticides, respectively. These screening procedure was finally applied to different bivalve samples using target and suspect analysis. This allowed the identification of diuron and its metabolite 1-(3,4-dichlorophenyl)-3-methylurea in the investigated samples.
Collapse
Affiliation(s)
- Thierno Diallo
- ANSES, Laboratory for Food Safety, F-94701 Maisons-Alfort, France; Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-Université de La Rochelle, 2 rue Olympe de Gouges, F-17042 La Rochelle Cedex 01, France
| | - Yassine Makni
- ANSES, Laboratory for Food Safety, F-94701 Maisons-Alfort, France
| | - Adélaïde Lerebours
- Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-Université de La Rochelle, 2 rue Olympe de Gouges, F-17042 La Rochelle Cedex 01, France
| | - Hélène Thomas
- Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-Université de La Rochelle, 2 rue Olympe de Gouges, F-17042 La Rochelle Cedex 01, France
| | - Thierry Guérin
- ANSES, Strategy and Programmes Department, F-94701 Maisons-Alfort, France
| | - Julien Parinet
- ANSES, Laboratory for Food Safety, F-94701 Maisons-Alfort, France.
| |
Collapse
|
10
|
Santos VS, Anjos JSX, de Medeiros JF, Montagner CC. Impact of agricultural runoff and domestic sewage discharge on the spatial-temporal occurrence of emerging contaminants in an urban stream in São Paulo, Brazil. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:637. [PMID: 35922699 DOI: 10.1007/s10661-022-10288-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Ribeirão das Pedras, a 10-km-long stream from the source to mouth, is part of a predominantly urban catchment located in Campinas metropolitan area in the state of São Paulo, Brazil, and it is also surrounded by sugarcane farms. Monthly sampling of 31 selected emerging contaminants (ECs) was conducted for 1 year (October 2018 to October 2019) in five points, including the spring, agricultural, and urban areas, to assess the dynamics and impact of ECs on the stream. The ECs were quantified using LC-MS/MS analysis. Out of the 31 ECs monitored in this study, 13 were detected in the Ribeirão das Pedras catchment, which were mainly pesticides and caffeine. Eight ECs (hexazinone, malathion, desethylatrazine (DEA), desisopropylatrazine (DIA), fipronil, ametryn, 2-hidroxyatrazine, and diuron) were detected with risk quotients higher than 1, indicating some level of environmental concern. Statistical analyses showed that caffeine, hexazinone, atrazine, DEA, and DIA were the most statistically important contaminants in temporal analysis, with caffeine concentrations varying randomly. Hexazinone, atrazine, DIA, and DEA concentrations increased from November 2018 to January 2019, and atrazine, hexazinone, and DEA concentrations increased from June 2019 to September 2019. Spatial analysis indicates that the spring of Ribeirão das Pedras is the only statistically different sampling point, with lower concentrations of EC. Points 3 and 5, both located in urban areas next to the stream's mouth, differ from each other due to the possible dilution of caffeine downstream of point 3 and domestic sewage discharge upstream of point 5.
Collapse
Affiliation(s)
- Vinicius S Santos
- Institute of Chemistry, University of Campinas, Campinas, São Paulo, CP, 6154, 13083-970, Brazil
| | - Juliana S X Anjos
- Institute of Chemistry, University of Campinas, Campinas, São Paulo, CP, 6154, 13083-970, Brazil
| | - Jéssyca F de Medeiros
- Institute of Chemistry, University of Campinas, Campinas, São Paulo, CP, 6154, 13083-970, Brazil
| | - Cassiana C Montagner
- Institute of Chemistry, University of Campinas, Campinas, São Paulo, CP, 6154, 13083-970, Brazil.
| |
Collapse
|
11
|
Ünver B, Evingür GA, Çavaş L. Effects of currently used marine antifouling paint biocides on green fluorescent proteins in Anemonia viridis. J Fluoresc 2022; 32:2087-2096. [PMID: 35917050 DOI: 10.1007/s10895-022-02986-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 05/31/2022] [Indexed: 10/16/2022]
Abstract
Some of the antifouling booster biocides affects the marine ecosystem negatively. The booster biocides that are resistant to degradation are accumulated in the sediment of the oceans. One of the sedentary organisms in the Mediterranean Sea is Anemonia viridis. This study aims at showing the toxicities of common biocides such as irgarol, seanine-211, zinc omadine, and acticide on the fluorescence by GFPs of A. viridis. The decreases in the fluorescence intensities of the GFP were measured within different booster biocide concentrations. The results show that fluorescent intensities of GFP proteins decrease more than 50% when they are exposed to different concentrations of irgarol, zinc omadine, acticide. In conclusion, ecosystem health should be prioritized when new antifouling paint compositions are proposed. From the results, it seems that A. viridis can be considered as a vulnerable organism and it is sensitive to booster biocides within self-polishing antifouling paint formulations.
Collapse
Affiliation(s)
- Batuhan Ünver
- Faculty of Engineering, Department of Naval Architecture and Mechanical Engineering, Piri Reis University, Tuzla, İstanbul, Turkey
| | - Gülşen Akın Evingür
- Faculty of Engineering, Department of Industrial Engineering, Piri Reis University, Tuzla, İstanbul, Turkey
| | - Levent Çavaş
- Faculty of Science, Department of Chemistry, Dokuz Eylül University, Kaynaklar Campus, İzmir, Turkey.
| |
Collapse
|
12
|
Conformation and structural features of diuron and irgarol: insights from quantum chemistry calculations. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Zhang X, Wang J, Li Y, Li X, Zheng Y, Arif M, Ru S. Environmental relevant herbicide prometryn induces developmental toxicity in the early life stages of marine medaka (Oryzias melastigma) and its potential mechanism. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 243:106079. [PMID: 35065453 DOI: 10.1016/j.aquatox.2022.106079] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/21/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Triazine herbicides have been widely detected in marine environments because of their extensive usage in agriculture, but their impact on marine organisms is unclear. In this study, marine medaka (Oryzias melastigma) embryos were exposed to 0, 1, 10, 100, and 1000 μg/L prometryn, one of the most detected triazine herbicides, to investigate its potential effects. The results showed that 1, 10, 100, and 1000 µg/L prometryn not only induced yolk sac shrinkage and heart malformations, but also significantly delayed the hatching time and increased the heart rate and hatching failure rate of embryos. Moreover, 1, 10, 100, and 1000 μg/L prometryn caused obvious malformations and decreased the body length of the newly hatched larvae. After 21 d of exposure, increased larval death rate, decreased body length and width, and higher lipid accumulation were observed in the larvae from all prometryn groups. Furthermore, prometryn exposure upregulated the expression levels of cardiac development-related genes GATA, COX, ATPase, SmyD1, EPO, FGF8, NKX2, and BMP4 in the larvae. Transcriptome analysis revealed that 10 μg/L prometryn upregulated 604 genes, and the topmost pathways of differentially expressed genes were the complement and coagulation cascades and AMPK signaling pathways. qPCR results confirmed that prometryn exposure significantly increased the expression levels of the complement and coagulation cascade genes f2, f5, c3, and c5. This study demonstrated that environmentally relevant concentrations of prometryn induced significant toxicity in the early life stages of marine medaka. Therefore, the health risks of herbicides to marine organisms are of great concern.
Collapse
Affiliation(s)
- Xiaona Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jun Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Yuejiao Li
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xuan Li
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yuqi Zheng
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Muhammad Arif
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
14
|
Triassi M, Montuori P, Provvisiero DP, De Rosa E, Di Duca F, Sarnacchiaro P, Díez S. Occurrence and spatial-temporal distribution of atrazine and its metabolites in the aquatic environment of the Volturno River estuary, southern Italy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:149972. [PMID: 34482142 DOI: 10.1016/j.scitotenv.2021.149972] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/16/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
The present study assesses the spatial distribution and temporal trends of the water dissolved phase (WDP), suspended particulate matter (SPM) and sediment partitioning of atrazine (ATR) and its metabolites in the Volturno River estuary. The load contribution of ATR and its metabolites in this river to the Central Mediterranean Sea was estimated. Samples were collected in 10 sampling sites during the four seasons. The total concentrations of ATR and DPs detected ranged from 18.1 to 105.5 ng L-1 in WDP, from 4.5 to 63.2 ng L-1 in SPM, and from 4.6 to 18.6 ng g-1 in sediment samples, indicating high levels of these pollutants. Structural equation model and the ratio study indicated that the relationship between sediment and WDP pollutants occurred through the SPM. The pollutants load at the Volturno River in its mouth was evaluated in about 30.4 kg year-1, showing that this river is an important source of these analytes through discharge into Central Mediterranean Sea. Principal component analysis indicated that ATR and its metabolites pollution moves from Volturno River mouth southward and increased in the rainy season. The desethylatrazine-to-atrazine ratio was higher than 0.5 for all samples analyzed, indicating an historical discharge and a long residence time of ATR in sediment about two decades after its ban, and classifying ATR as a nonpoint source contaminant. This study makes up the first record of ATR and its metabolites in superficial water of Southern Italy and provides helpful data as starting point for future studies.
Collapse
Affiliation(s)
- Maria Triassi
- Department of Public Health, University "Federico II", Via Sergio Pansini n° 5, 80131 Naples, Italy
| | - Paolo Montuori
- Department of Public Health, University "Federico II", Via Sergio Pansini n° 5, 80131 Naples, Italy.
| | | | - Elvira De Rosa
- Department of Public Health, University "Federico II", Via Sergio Pansini n° 5, 80131 Naples, Italy
| | - Fabiana Di Duca
- Department of Public Health, University "Federico II", Via Sergio Pansini n° 5, 80131 Naples, Italy
| | - Pasquale Sarnacchiaro
- Department of Law and Economics, University "Federico II", Complesso Universitario di Monte S. Angelo, via Cinthia n° 26, 80126 Naples, Italy
| | - Sergi Díez
- Environmental Chemistry Department, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona E-08034, Spain
| |
Collapse
|
15
|
Rizzi C, Villa S, Cuzzeri AS, Finizio A. Use of the Species Sensitivity Distribution Approach to Derive Ecological Threshold of Toxicological Concern (eco-TTC) for Pesticides. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:12078. [PMID: 34831835 PMCID: PMC8623465 DOI: 10.3390/ijerph182212078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022]
Abstract
The species sensitivity distribution (SSD) calculates the hazardous concentration at which 5% of species (HC5) will be potentially affected. For many compounds, HC5 values are unavailable impeding the derivation of SSD curves. Through a detailed bibliographic survey, we selected HC5 values (from acute toxicity tests) for freshwater aquatic species and 129 pesticides. The statistical distribution and variability of the HC5 values within the chemical classes were evaluated. Insecticides are the most toxic compounds in the aquatic communities (HC5 = 1.4 × 10-3 µmol L-1), followed by herbicides (HC5 = 3.3 × 10-2 µmol L-1) and fungicides (HC5 = 7.8 µmol L-1). Subsequently, the specificity of the mode of action (MoA) of pesticides on freshwater aquatic communities was investigated by calculating the ratio between the estimated baseline toxicity for aquatic communities and the HC5 experimental values gathered from the literature. Moreover, we proposed and validated a scheme to derive the ecological thresholds of toxicological concern (eco-TTC) of pesticides for which data on their effects on aquatic communities are not available. We proposed eco-TTCs for different classes of insecticides, herbicides, and fungicides with a specific MoA, and three eco-TTCs for those chemicals with unavailable MoA. We consider the proposed approach and eco-TTC values useful for risk management purposes.
Collapse
Affiliation(s)
| | - Sara Villa
- Department of Earth and Environmental Sciences DISAT, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy; (C.R.); (A.S.C.); (A.F.)
| | | | | |
Collapse
|
16
|
Lerebours A, Bathie M, Receveur J, Jézéquel R, Dubillot E, Brunello P, Barbier P, Le Floch S, Thomas H. Pesticides, nonylphenols and polybrominated diphenyl ethers in marine bivalves from France: A pilot study. MARINE POLLUTION BULLETIN 2021; 172:112956. [PMID: 34706477 DOI: 10.1016/j.marpolbul.2021.112956] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
The present pilot study aimed to provide an overview of organic contaminant concentration levels in the littoral ecosystems of the Pertuis seas. The study determined the concentrations of twenty-nine pesticides, six nonylphenols and seven polybrominated diphenyl ethers (PBDEs) in sediments, seawater, Pacific oysters and blue mussels. Oysters accumulated a higher number of pesticides than blue mussels. Indeed, alpha BHC (0.60-0.72 ng/g, ww), chlorfenvinphos (1.65-2.12 ng/g, ww), chlorpyrifos (0.79-0.93 ng/g, ww), chlortoluron (2.50-4.31 ng/g, ww), metolachlor (up to 0.38 ng/g, ww) and parathion (0.56-0.69 ng/g, ww) were quantified in oysters whereas only alpha BHC (0.24-0.31 ng/g, ww), was quantified in mussels. The present results also revealed that the POPs detected in water or sediments were not ultimately found accumulated in bivalves. Other molecules such as methylparathion and BDE47 were quantified in sediments. These molecules, BDE99 and one nonylphenol (OP2OE) were quantified in seawater. Finally, the comparison with the available environmental guidelines showed that the values measured were at concentrations not considered to cause adverse effects at the populations' level except for chlortoluron in seawater (15-50 ng/L).
Collapse
Affiliation(s)
- Adélaïde Lerebours
- UMR CNRS LIENSs, Université de La Rochelle, Littoral Environnement et Sociétés, 2 rue Olympe de Gouges, La Rochelle 17 000, France.
| | - Marguerite Bathie
- UMR CNRS LIENSs, Université de La Rochelle, Littoral Environnement et Sociétés, 2 rue Olympe de Gouges, La Rochelle 17 000, France
| | - Justine Receveur
- Centre de Documentation, de Recherche et d'Expérimentations sur les Pollutions Accidentelles des Eaux (CEDRE), 715 rue Alain Colas, Brest 29 218, France
| | - Ronan Jézéquel
- Centre de Documentation, de Recherche et d'Expérimentations sur les Pollutions Accidentelles des Eaux (CEDRE), 715 rue Alain Colas, Brest 29 218, France
| | - Emmanuel Dubillot
- UMR CNRS LIENSs, Université de La Rochelle, Littoral Environnement et Sociétés, 2 rue Olympe de Gouges, La Rochelle 17 000, France
| | - Pascal Brunello
- Centre de Traitement de l'Information Géoréférencée (CTIG), 23 avenue Albert Einstein, La Rochelle 17031, France
| | - Pierrick Barbier
- Centre pour l'Aquaculture, la Pêche et l'Environnement de Nouvelle-Aquitaine (CAPENA), Prise de Terdoux, 17480 Le Château-d'Oléron, France
| | - Stéphane Le Floch
- Centre de Documentation, de Recherche et d'Expérimentations sur les Pollutions Accidentelles des Eaux (CEDRE), 715 rue Alain Colas, Brest 29 218, France
| | - Hélène Thomas
- UMR CNRS LIENSs, Université de La Rochelle, Littoral Environnement et Sociétés, 2 rue Olympe de Gouges, La Rochelle 17 000, France
| |
Collapse
|
17
|
Ali HR, Ariffin MM, Omar TFT, Ghazali A, Sheikh MA, Shazili NAM, Bachok Z. Antifouling paint biocides (Irgarol 1051 and diuron) in the selected ports of Peninsular Malaysia: occurrence, seasonal variation, and ecological risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:52247-52257. [PMID: 34002317 DOI: 10.1007/s11356-021-14424-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
Irgarol 1051 and diuron are photosystem II inhibitors in agricultural activities and antifouling paints in the shipping sector. This study focused on three major ports (western, southern, and eastern) surrounding Peninsular Malaysia to construct the distribution of both biocides on the basis of the seasonal and geographical changes. Surface seawater samples were collected from November 2011 to April 2012 and pretreated using the solid-phase extraction technique followed by quantification with GC-MS and LC-MS-MS for Irgarol 1051 and diuron, respectively. Generally, the distribution of Irgarol 1051 was lowest during November 2011 and highest during April 2012, and similar patterns were observed at all ports, whereas the distribution of diuron was rather vague. The increasing pattern of Irgarol 1051 from time to time is probably related to its accumulation in the seawater as a result of its half-life and consistent utilization. On the basis of the discriminant analysis, the temporal distribution of Irgarol 1051 varied at Klang North Port, Klang South Port, and Pasir Gudang Port, whereas diuron was temporally varied only at Kemaman Port. Furthermore, Irgarol 1051 was spatially varied during November 2011, whereas diuron did not show any significant changes throughout all sampling periods. Ecological risk assessment exhibited a high risk for diuron and Irgarol 1051, but Irgarol 1051 should be of greater concern because of its higher risk compared to that of diuron. Thus, it is recommended that the current Malaysian guidelines and regulations of biocide application should be reevaluated and improved to protect the ecosystem, as well as to prevent ecological risks to the aquatic environment.
Collapse
Affiliation(s)
- Hassan Rashid Ali
- Tropical Research Centre for Oceanography, Environment and Natural Resources, The State University of Zanzibar, P.O Box 146, Zanzibar, Tanzania
| | - Marinah Mohd Ariffin
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
| | - Tuan Fauzan Tuan Omar
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
- Ocean Pollution and Ecotoxicology Research Interest Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Adiana Ghazali
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
- Ocean Pollution and Ecotoxicology Research Interest Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Mohammed Ali Sheikh
- Tropical Research Centre for Oceanography, Environment and Natural Resources, The State University of Zanzibar, P.O Box 146, Zanzibar, Tanzania
| | - Noor Azhar Mohamed Shazili
- Institute of Oceanography and Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Zainudin Bachok
- Institute of Oceanography and Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
18
|
Akcha F, Barranger A, Bachère E. Genotoxic and epigenetic effects of diuron in the Pacific oyster: in vitro evidence of interaction between DNA damage and DNA methylation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:8266-8280. [PMID: 33052562 DOI: 10.1007/s11356-020-11021-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/27/2020] [Indexed: 06/11/2023]
Abstract
Recently, research has contributed to better knowledge on the occurrence of pesticides in coastal water by identifying frequently detected substances, their concentration range and their acute and chronic toxicity for organisms. Pesticide pollution is of particular concern in France due to important agricultural activities and presence of several exoreic catchment areas that vehicle pesticides up to coastal waters, impacting non-target marine species. Several ecotoxicology questions remain to be addressed concerning the long-term effects of chronic pesticide exposure and the mechanisms involved in adaptation to chemical stress. In the present study, we brought new insights on the genetic and epigenetic effects of the herbicide diuron in oyster genitors. During gametogenesis, we exposed Crassostrea gigas to environmentally realistic herbicide concentrations (0.2-0.3 μg L-1 during two 7-day periods at half-course and end of gametogenesis). Diuron exposure was shown to decrease global DNA methylation and total methyltransferase activity in whole oyster tissue; this is consistent with the previous observation of a significant decrease in DNMT1 gene expression. Diuron effect seemed to be tissue-specific; hypermethylation was detected in the digestive gland, whereas diuron exposure had no effect on gill and gonad tissue. The genotoxicity of diuron was confirmed by the detection of one adduct in gonad DNA. By using in vitro approaches and human DNMT1 (DNMT1 has not been purified yet in bivalves), the presence of DNA lesions (adduct, 8-oxodGuo) was shown to interfere with DNMT1 activity, indicating a complex interaction between DNA damage and DNA methylation. Based on our results, we propose mechanisms to explain the effect of diuron exposure on DNA methylation, a widespread epigenetic mark.
Collapse
Affiliation(s)
- Farida Akcha
- Ifremer, Ecotoxicology Laboratory, Rue de l'Ile d'Yeu, BP21105, 44311, Nantes Cedex 03, France.
| | - Audrey Barranger
- Ifremer, Ecotoxicology Laboratory, Rue de l'Ile d'Yeu, BP21105, 44311, Nantes Cedex 03, France
| | - Evelyne Bachère
- Ifremer, UMR 5244, IHPE Interactions Hosts Pathogens Environment, UPVD, CNRS, University of Montpellier, CC 80, 34095, Montpellier, France
| |
Collapse
|
19
|
Olguín-Jacobson C, Pitt KA, Carroll AR, Melvin SD. Polyps of the Jellyfish Aurelia aurita Are Unaffected by Chronic Exposure to a Combination of Pesticides. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:1685-1692. [PMID: 32418248 DOI: 10.1002/etc.4750] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/17/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
Pesticides are a major contaminant in coastal waters and can cause adverse effects in marine invertebrates such as jellyfish. Most studies have investigated short-term responses of organisms to unrealistically high concentrations of pesticides; however, chronic exposure to persistent low concentrations, which are more likely to occur in the environment, are rarely analyzed. We tested the response of polyps of the moon jellyfish Aurelia aurita to environmental concentrations of the herbicide atrazine and the insecticide chlorpyrifos, individually and in combination, over 9 wk. We hypothesized that exposure to individual pesticides would reduce rates of asexual reproduction and alter polyps' metabolite profiles, and that the results would be more severe when polyps were exposed to the combined pesticides. Polyps survived and reproduced (through budding) in all treatments, and no differences among treatments were observed. Proton nuclear magnetic resonance spectroscopy revealed no difference in profiles of polar metabolites of polyps exposed to the individual or combined pesticides. Our results suggest that A. aurita polyps are unaffected by chronic exposure to atrazine and chlorpyrifos at concentrations recommended as being protective by current Australian water quality guidelines. Environ Toxicol Chem 2020;39:1685-1692. © 2020 SETAC.
Collapse
Affiliation(s)
- Carolina Olguín-Jacobson
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Queensland, Australia
| | - Kylie A Pitt
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Queensland, Australia
| | - Anthony R Carroll
- Environmental Futures Research Institute, Griffith University, Southport, Queensland, Australia
| | - Steve D Melvin
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Queensland, Australia
| |
Collapse
|
20
|
Zhang Y, Calabrese EJ, Zhang J, Gao D, Qin M, Lin Z. A trigger mechanism of herbicides to phytoplankton blooms: From the standpoint of hormesis involving cytochrome b 559, reactive oxygen species and nitric oxide. WATER RESEARCH 2020; 173:115584. [PMID: 32062224 DOI: 10.1016/j.watres.2020.115584] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 01/28/2020] [Accepted: 02/01/2020] [Indexed: 06/10/2023]
Abstract
The cause of phytoplankton blooms has been extensively discussed and largely attributed to favorable external conditions such as nitrogen/phosphorus resources, pH and temperature. Here from the standpoint of hormesis response, we propose that phytoplankton blooms are initiated by stimulatory effects of low concentrations of herbicides as environmental contaminants spread over estuaries and lakes. The experimental results revealed general stimulations by herbicides on Microcystis aeruginosa and Selenastrum capricornutum, with the maximum stimulation in the 30-60% range, depending on the agent and experiment. In parallel with enhancing stimulation, the ratio of HP (high-potential) form to LP (low-potential) form of cytochrome b559 (RHL) was observed decreasing, while intracellular reactive oxygen species (ROS) were observed increasing. We propose that the ROS originated from the thermodynamic transformation of cytochrome b559, enhancing the stimulatory response. Furthermore, the results also proved that thermodynamic states of cytochrome b559 could be modulated by nitric oxide, thus affecting cellular equilibrium of oxidative stress (OS) and correspondingly causing the inhibitory effect of higher concentrations of herbicides on phytoplankton. This suggests that hormesis substantially derives from equilibrium shifting of OS. Moreover, it is reasonable to infer that phytoplankton blooms would be motivated by herbicides or other environmental pollutants. This study provides a new thought into global phytoplankton blooms from a contaminant perspective.
Collapse
Affiliation(s)
- Yueheng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Edward J Calabrese
- Department of Public Health, Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA, 01003, USA
| | - Junyi Zhang
- Wuxi Environmental Monitoring Centre, Jiangsu, China
| | - Dan Gao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Mengnan Qin
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Zhifen Lin
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China; Shanghai Key Lab of Chemical Assessment and Sustainability, Shanghai, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China.
| |
Collapse
|
21
|
An integrated strategy for rapid on-site screening and determination of prometryn residues in herbs. Anal Bioanal Chem 2020; 412:621-633. [PMID: 31907590 DOI: 10.1007/s00216-019-02224-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/11/2019] [Accepted: 10/17/2019] [Indexed: 10/25/2022]
Abstract
We produced a prometryn-specific monoclonal antibody and propose a strategy for convenient on-site detection of prometryn residues in herbs for the first time. This strategy has perfect applicability in a complex herbal medicine matrix. The strategy combines a semiquantitative immunochromatographic strip assay with a heterologous indirect competitive ELISA. When there was no matrix interference, the ELISA had a half-maximal inhibitory concentration of 2.6 ng·mL-1 and a limit of detection of 0.2 ng·mL-1. The immunochromatographic strip assay can be completed within 5 min with a visual limit of detection of 1 ng·mL-1. Although the sample matrix had different effects on the sensitivity of the antibody, excellent repeatability and accuracy were achieved. The method was successfully applied for the screening and determination of prometryn residue in multiple complex herb samples for the first time, and the results were in good agreement with those obtained by liquid chromatography-tandem mass spectrometry. The proposed strategy is rapid, of high-throughput, and of low cost, and may be a promising choice for on-site detection of prometryn in different kinds of herbs. Graphical abstract.
Collapse
|
22
|
Yang L, Li H, Zhang Y, Jiao N. Environmental risk assessment of triazine herbicides in the Bohai Sea and the Yellow Sea and their toxicity to phytoplankton at environmental concentrations. ENVIRONMENT INTERNATIONAL 2019; 133:105175. [PMID: 31629173 DOI: 10.1016/j.envint.2019.105175] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 09/04/2019] [Accepted: 09/08/2019] [Indexed: 06/10/2023]
Abstract
Herbicides have been increasingly used worldwide and a large amount of herbicide residue eventually enters the ocean via groundwater or surface run-off every year. However, the global coastal pollution status of herbicides and their negative impact on marine life (especially phytoplankton) in natural environmental concentrations are poorly understood except for few special environments (e.g. the Great Barrier Reef, Australia). Our field investigation of the distribution of ten triazine herbicides in the Bohai Sea and the Yellow Sea of China revealed that the concentrations of triazine herbicides exceeded the "No Observed Effect Concentrations" for phytoplankton. Their total concentrations could be as high as 6.61 nmol L-1. Based on the concentration addition model, the toxicity of herbicide homologues is usually cumulative, and the combined toxicity of these ten triazine herbicides could cause 13.2% inhibition on the chlorophyll a fluorescence intensity of a representative diatom species Phaeodactylum tricornutum Pt-1, which corresponds roughly to the toxicity of atrazine in an equivalent concentration of 14.08 nmol L-1. Atrazine in this equivalent-effect concentration could greatly inhibit the growth of cells, the maximum quantum efficiency of photosystem II (Fv/Fm), and nutrient absorption of Phaeodactylum tricornutum Pt-1. Transcriptome analysis revealed that multiple metabolic pathways (Calvin cycle, tricarboxylic acid (TCA) cycle, glycolysis/gluconeogenesis, etc.) related with photosynthesis and carbon metabolism were greatly disturbed, which might ultimately influence the primary productivity of coastal waters. Moreover, with the values of its bioaccumulation factor ranging from 69.6 to 118.9, atrazine was found to be accumulated in algal cells, which indicates that herbicide pollution might eventually affect the marine food web and even threaten the seafood safety of human beings.
Collapse
Affiliation(s)
- Liqiang Yang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Hongmei Li
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Yongyu Zhang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361101, China
| |
Collapse
|
23
|
Rodrigues ET, Alpendurada MF, Guimarães A, Avó R, Ferreira B, Pardal MA. The environmental condition of an estuarine ecosystem disturbed by pesticides. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:24075-24087. [PMID: 31228061 DOI: 10.1007/s11356-019-05751-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 06/12/2019] [Indexed: 06/09/2023]
Abstract
Knowledge regarding the concentration levels resulting from the use of agricultural pesticides may indicate the nature of the controls necessary to reduce environmental and human health risks to an acceptable level. Therefore, the main goal of the present work was to assess the spatial and temporal occurrence of 35 pesticides in the River Sado estuary (Portugal) in 2017 and evaluate its environmental condition, as data for estuarine ecosystems is scarce. Since pesticides are very susceptible to matrix effects promoted by environmental samples, to attain the main goal, we developed a fast and almost solvent-free environmentally friendly method with a good performance for both estuarine surface water and sediment samples. Quantified residues were determined mostly during summer, in line with the pesticide application period. Five herbicides (alachlor, bentazon, metobromuron, metribuzin and triclopyr) were measured in the water before and after the production season, suggesting a long-term aquatic exposure. Sediment samples were less contaminated, since a lower number of quantified pesticides were found in the study area, in lower frequencies and lower concentrations. No potential high adverse effects of the use of agricultural pesticides were expected on the aquatic organisms of the Sado estuary, even considering the potential combination effect of pesticide mixtures.
Collapse
Affiliation(s)
- Elsa T Rodrigues
- Centre for Functional Ecology (CFE), Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal.
| | - Maria Fátima Alpendurada
- IAREN - Water Institute of the Northern Region, Rua Dr. Eduardo Torres 229, 4450-113, Matosinhos, Portugal
| | - Ana Guimarães
- IAREN - Water Institute of the Northern Region, Rua Dr. Eduardo Torres 229, 4450-113, Matosinhos, Portugal
| | - Romeu Avó
- IAREN - Water Institute of the Northern Region, Rua Dr. Eduardo Torres 229, 4450-113, Matosinhos, Portugal
| | - Bárbara Ferreira
- IAREN - Water Institute of the Northern Region, Rua Dr. Eduardo Torres 229, 4450-113, Matosinhos, Portugal
| | - Miguel A Pardal
- Centre for Functional Ecology (CFE), Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| |
Collapse
|
24
|
Montiel-León JM, Vo Duy S, Munoz G, Bouchard MF, Amyot M, Sauvé S. Quality survey and spatiotemporal variations of atrazine and desethylatrazine in drinking water in Quebec, Canada. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 671:578-585. [PMID: 30933813 DOI: 10.1016/j.scitotenv.2019.03.228] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/08/2019] [Accepted: 03/15/2019] [Indexed: 06/09/2023]
Abstract
The herbicide atrazine remains in use in Canada, the United States, and several other countries, while being banned since 2003 in the European Union. A comprehensive quality survey of atrazine (ATZ) and one of its metabolites, desethylatrazine (DEA), was conducted in 2015-2018 in drinking water available to consumers in Quebec, Canada. Temporal variations of ATZ and DEA were monitored in tap water from the Montreal area for 18 consecutive months (Temporal survey 2015-2016). Within this time window, the sum of ATZ and DEA in tap water samples (n = 450) varied from 40 to 250 ng L-1 (median: 98 ng L-1). ATZ was systematically detected (100%), with a concentration range of 30-195 ng L-1 (median: 49 ng L-1) while DEA was in the range of 10-187 ng L-1 (median: 36 ng L-1). Maximum ATZ concentrations remained about 25× lower than the Canadian drinking water quality guideline (5000 ng L-1), but 48% of the samples were above that of the European Union (100 ng L-1) regarding the sum of ATZ and DEA. Trends of ATZ and DEA in drinking water were also examined across southwestern Quebec (Spatial survey 2017-2018). The sum of the two triazines in this second set of samples varied from below the method detection limit (for 33 out of the 52 surveyed municipalities) to 104 ng L-1. Apart from Montreal, locations in the southern shore of the St. Lawrence showed generally higher levels of atrazine and DEA. The highest concentrations clustered in the Montérégie region, along the St. Lawrence River (e.g., Brossard, Longueuil, Saint-Constant) and/or downstream from agricultural areas. The ATZ concentrations are suggested to have decreased compared to previous surveys, which is consistent with the decrease in the sales of active ingredients in Ontario (upstream sources) and Quebec.
Collapse
Affiliation(s)
| | - Sung Vo Duy
- Département de chimie, Université de Montréal, Québec, Canada
| | - Gabriel Munoz
- Département de chimie, Université de Montréal, Québec, Canada
| | - Maryse F Bouchard
- École de santé publique, Département de santé environnementale et santé au travail, Université de Montréal, Québec, Canada
| | - Marc Amyot
- GRIL, Département de sciences biologiques, Université de Montréal, Québec, Canada
| | - Sébastien Sauvé
- Département de chimie, Université de Montréal, Québec, Canada.
| |
Collapse
|
25
|
Dupraz V, Ménard D, Akcha F, Budzinski H, Stachowski-Haberkorn S. Toxicity of binary mixtures of pesticides to the marine microalgae Tisochrysis lutea and Skeletonema marinoi: Substance interactions and physiological impacts. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 211:148-162. [PMID: 30981038 DOI: 10.1016/j.aquatox.2019.03.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/21/2019] [Accepted: 03/21/2019] [Indexed: 06/09/2023]
Abstract
This study screened binary mixtures of pesticides for potential synergistic interaction effects on growth of the marine microalgae Tisochrysis lutea and Skeletonema marinoi. It also examined the single and combined effects of three of the most toxic substances on microalgal physiology. Single substances were first tested on each microalgal species to determine their respective EC50 and concentration-response relationships. The toxicity of six and seven binary mixtures was then evaluated in microplate experiments on the growth of T. lutea and S. marinoi, respectively, using two mixture modelling approaches: isobolograms and the MIXTOX tool, based on Concentration Addition (CA) or Independent Action (IA) models. Significant cases of antagonism (for both species) and synergism (for S. marinoi) were observed for the mixtures of isoproturon and spiroxamine, and isoproturon and metazachlor, respectively. These two mixtures, together with that of isoproturon and diuron, for which additivity was observed, were further studied for their impacts on the physiology of each species. Exposures were thus made in culture flasks at three concentrations, or concentration combinations for mixtures, selected to cause 25%, 50% and 75% growth rate inhibition. The effects of the selected pesticides singly and in combination were evaluated at three perceived effect concentrations on esterase metabolic activity, relative lipid content, cytoplasmic membrane potential and reactive oxygen species (ROS) content by flow cytometry, and on photosynthetic quantum yield (ϕ'M) by PAM-fluorescence. Isoproturon and diuron singly and in mixtures induced 20-40% decreases in ϕ'M which was in turn responsible for a significant decrease in relative lipid content for both species. Spiroxamine and metazachlor were individually responsible for an increase in relative lipid content (up to nearly 300% for metazachlor on S. marinoi), as well as cell depolarization and increased ROS content. The mixture of isoproturon and metazachlor tested on S. marinoi caused a 28-34% decrease in ϕ'M that was significantly higher than levels induced by each of substances when tested alone. This strong decrease in ϕ'M could be due to a combined effect of these substances on the photosynthetic apparatus, which is likely the cause of the synergy found for this mixture.
Collapse
Affiliation(s)
- Valentin Dupraz
- Ifremer, Laboratoire d'Écotoxicologie, rue de l'île d'Yeu, BP 21105, F-44311, Nantes cedex 03, France; Université de Nantes, UFR Sciences et Techniques, 2, rue de la Houssinière, BP 92208, 44322, Nantes Cedex 03, France.
| | - Dominique Ménard
- Ifremer, Laboratoire d'Écotoxicologie, rue de l'île d'Yeu, BP 21105, F-44311, Nantes cedex 03, France
| | - Farida Akcha
- Ifremer, Laboratoire d'Écotoxicologie, rue de l'île d'Yeu, BP 21105, F-44311, Nantes cedex 03, France
| | - Hélène Budzinski
- Université de Bordeaux, UMR 5805, EPOC, Laboratoire de Physico Toxico Chimie de l'environnement, 351 Cours de la Libération, CS 10004, F-33405, Talence Cedex, France; CNRS, UMR 5805, EPOC, Laboratoire de Physico Toxico Chimie de l'environnement, 351 Cours de la Libération, CS 10004, F-33405, Talence Cedex, France
| | | |
Collapse
|
26
|
Dupraz V, Stachowski-Haberkorn S, Wicquart J, Tapie N, Budzinski H, Akcha F. Demonstrating the need for chemical exposure characterisation in a microplate test system: toxicity screening of sixteen pesticides on two marine microalgae. CHEMOSPHERE 2019; 221:278-291. [PMID: 30640011 DOI: 10.1016/j.chemosphere.2019.01.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/03/2019] [Accepted: 01/05/2019] [Indexed: 06/09/2023]
Abstract
Pesticides used in viticulture create a potential risk for the aquatic environment due to drift during application, runoff and soil leaching. The toxicity of sixteen pesticides and one metabolite were evaluated on the growth of two marine microalgae, Tisochrysis lutea and Skeletonema marinoi, in 96-h exposure assays conducted in microplates. For each substance, concentrations of stock solutions were analytically measured and abiotic assays were performed to evaluate the chemical stability of pesticides in microplates. For two chemicals, microalgae exposures were run simultaneously in microplates and culture flasks to compare EC50 calculated from the two exposure systems. Results from chemical analyses demonstrated the low stability of hydrophobic pesticides (log KOW > 3). For such chemicals, EC50 values calculated using measured pesticide concentrations were two-fold lower than those first estimated using nominal concentrations. Photosystem II inhibitors were the most toxic herbicides, with EC50 values below 10 μg L-1 for diuron and around double this for isoproturon. Chlorpyrifos-methyl was the only insecticide to significantly affect the growth of T. lutea, with an EC50 around 400 μg L-1. All fungicides tested were significantly toxic to both species: strobilurins showed low overall toxicity, with EC50 values around 400 μg L-1, whereas quinoxyfen, and spiroxamine, showed high toxicity to both species, especially to T. lutea, with an EC50 below 1 μg L-1 measured for spiroxamine in culture flasks. This study highlights the need to perform chemical analyses for reliable toxicity assessment and discusses the advantages and disadvantages of using microplates as a toxicity screening tool.
Collapse
Affiliation(s)
- Valentin Dupraz
- Ifremer, Laboratoire d'Écotoxicologie, rue de l'île d'Yeu, BP 21105, F-44311 Nantes Cedex 03, France; Université de Nantes, UFR Sciences et Techniques, 2, rue de la Houssinière, BP 92208, 44322 Nantes Cedex 03, France.
| | | | - Jérémy Wicquart
- Ifremer, Laboratoire d'Écotoxicologie, rue de l'île d'Yeu, BP 21105, F-44311 Nantes Cedex 03, France
| | - Nathalie Tapie
- Université de Bordeaux, UMR 5805, EPOC, Laboratoire de Physico Toxico Chimie de l'environnement, 351 Cours de la Libération, CS 10004, F-33405 Talence Cedex, France; CNRS, UMR 5805, EPOC, Laboratoire de Physico Toxico Chimie de l'environnement, 351 Cours de la Libération, CS 10004, F-33405 Talence Cedex, France
| | - Hélène Budzinski
- Université de Bordeaux, UMR 5805, EPOC, Laboratoire de Physico Toxico Chimie de l'environnement, 351 Cours de la Libération, CS 10004, F-33405 Talence Cedex, France; CNRS, UMR 5805, EPOC, Laboratoire de Physico Toxico Chimie de l'environnement, 351 Cours de la Libération, CS 10004, F-33405 Talence Cedex, France
| | - Farida Akcha
- Ifremer, Laboratoire d'Écotoxicologie, rue de l'île d'Yeu, BP 21105, F-44311 Nantes Cedex 03, France
| |
Collapse
|
27
|
Dupraz V, Stachowski-Haberkorn S, Ménard D, Limon G, Akcha F, Budzinski H, Cedergreen N. Combined effects of antifouling biocides on the growth of three marine microalgal species. CHEMOSPHERE 2018; 209:801-814. [PMID: 29960947 DOI: 10.1016/j.chemosphere.2018.06.139] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/18/2018] [Accepted: 06/22/2018] [Indexed: 05/22/2023]
Abstract
The toxicity of the antifouling compounds diuron, irgarol, zinc pyrithione (ZnPT), copper pyrithione (CuPT) and copper was tested on the three marine microalgae Tisochrysis lutea, Skeletonema marinoi and Tetraselmis suecica. Toxicity tests based on the inhibition of growth rate after 96-h exposure were run using microplates. Chemical analyses were performed to validate the exposure concentrations and the stability of the compounds under test conditions. Single chemicals exhibited varying toxicity depending on the species, irgarol being the most toxic chemical and Cu the least toxic. Selected binary mixtures were tested and the resulting interactions were analyzed using two distinct concentration-response surface models: one using the concentration addition (CA) model as reference and two deviating isobole models implemented in R software; the other implementing concentration-response surface models in Excel®, using both CA and independent action (IA) models as reference and three deviating models. Most mixtures of chemicals sharing the same mode of action (MoA) were correctly predicted by the CA model. For mixtures of dissimilarly acting chemicals, neither of the reference models provided better predictions than the other. Mixture of ZnPT together with Cu induced a strong synergistic effect on T. suecica while strong antagonism was observed on the two other species. The synergy was due to the transchelation of ZnPT into CuPT in the presence of Cu, CuPT being 14-fold more toxic than ZnPT for this species. The two modelling approaches are compared and the differences observed among the interaction patterns resulting from the mixtures are discussed.
Collapse
Affiliation(s)
- Valentin Dupraz
- Ifremer, Laboratoire d'Écotoxicologie, rue de l'île d'Yeu, BP 21105, F-44311, Nantes Cedex 03, France; Université de Nantes, UFR Sciences et Techniques, 2, rue de la Houssinière, BP 92208, 44322, Nantes Cedex 03, France.
| | | | - Dominique Ménard
- Ifremer, Laboratoire d'Écotoxicologie, rue de l'île d'Yeu, BP 21105, F-44311, Nantes Cedex 03, France
| | - Gwendolina Limon
- LABOCEA, Unité R&D, 120 Avenue de Rochon, 29280, Plouzané, France
| | - Farida Akcha
- Ifremer, Laboratoire d'Écotoxicologie, rue de l'île d'Yeu, BP 21105, F-44311, Nantes Cedex 03, France
| | - Hélène Budzinski
- Université de Bordeaux, UMR 5805, EPOC, Laboratoire de Physico Toxico Chimie de l'environnement, 351 Cours de la Libération, CS 10004, F-33405, Talence Cedex, France; CNRS, UMR 5805, EPOC, Laboratoire de Physico Toxico Chimie de l'environnement, 351 Cours de la Libération, CS 10004, F-33405, Talence Cedex, France
| | - Nina Cedergreen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
28
|
Amri S, Samar MF, Sellem F, Ouali K. Seasonal antioxidant responses in the sea urchin Paracentrotus lividus (Lamarck 1816) used as a bioindicator of the environmental contamination in the South-East Mediterranean. MARINE POLLUTION BULLETIN 2017; 122:392-402. [PMID: 28705630 DOI: 10.1016/j.marpolbul.2017.06.079] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 06/18/2017] [Accepted: 06/27/2017] [Indexed: 06/07/2023]
Abstract
In this study, sea urchin Paracentrotus lividus were sampled seasonally at three stations during 2012 in the coastal areas of the Gulf of Annaba (southeast Mediterranean). For all sea urchins, the gonad index was calculated to determine sea urchin reproductive status. Moreover, a set of biochemical parameters, including biomarkers and oxidative stress parameters, was measured in gonads. The pesticides and physiochemical parameters were measured and dosed in sea water. The results obtained highlighted that the levels of pesticide were generally low and below those commonly applied by environmental quality standards (EQS), indicating that no alarm state is currently present in the Gulf of Annaba. In addition to pollution, seasonal change is an important factor influencing biomarker activity, and the significant increases in biomarker levels in spring are a major observed trend. This activity may also be related to reproductive status. Seasonal variability was confirmed by the significant results of the Kruskal-Wallis test and by the high degree of divergence between seasons in PCA, with a total of 83.83% of variance explained. These results indicate that environmental factors that vary seasonally may affect the antioxidant status of the sea urchin Paracentrotus lividus.
Collapse
Affiliation(s)
- Sandra Amri
- Laboratory of Environmental Biosurveillance, Department of Biology, Faculty of Natural Sciences and Life and Earth Sciences and the Universe, University 08 Mai 1945, Guelma, Algeria.
| | - Mohamed-Faouzi Samar
- Department of Agronomy, Faculty of Natural Sciences and Life, University of Chadli Benjedid El Tarf, Algeria.
| | - Fériel Sellem
- Laboratoire resources marines vivantes, Institut National des Sciences et Technologies de la Mer Salammbo, Tunisia.
| | - Kheireddine Ouali
- Laboratory of Environmental Biosurveillance, Department of Biology, Faculty of Sciences, Badji Mokhtar University, BP 12, El hadjar, Annaba 23000, Algeria.
| |
Collapse
|
29
|
Rowen DJ, Templeman MA, Kingsford MJ. Herbicide effects on the growth and photosynthetic efficiency of Cassiopea maremetens. CHEMOSPHERE 2017; 182:143-148. [PMID: 28494358 DOI: 10.1016/j.chemosphere.2017.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 04/21/2017] [Accepted: 05/01/2017] [Indexed: 06/07/2023]
Abstract
Herbicides from agricultural run-off have been measured in coastal systems of the Great Barrier Reef over many years. Non-target herbicide exposure, especially photosystem II herbicides has the potential to affect seagrasses and other marine species. The symbiotic benthic jellyfish Cassiopea maremetens is present in tropical/sub-tropical estuarine and marine environments. Jellyfish (n = 8 per treatment) were exposed to four separate concentrations of agricultural formulations of diuron or hexazinone to determine their sensitivity and potential for recovery to pulsed herbicide exposure. Jellyfish growth, symbiont photosynthetic activity and zooxanthellae density were analysed for herbicide-induced changes for 7 days followed by a 7 day recovery period. Both the jellyfish and endosymbiont were more sensitive to diuron than hexazinone. The 7-day EC50 for jellyfish growth was 0.35 μg L-1 for Diuron and 17.5 μg L-1 for Hexazinone respectively. Diuron exposure caused a significant decrease (p < 0.05) in jellyfish growth at 0.1 μg L-1, a level that is below the regional Great Barrier Reef guideline value. Jellyfish recovery was rapid with growth rates similar to control animals following removal from herbicide exposure. Both diuron and hexazinone caused significant decreases in photosynthetic efficiency (effective quantum yield) in all treatment concentrations (0.1 μg L-1 and above) and this effect continued in the post-exposure period. As this species is frequently found in near-shore environments, they may be particularly vulnerable to herbicide run-off.
Collapse
Affiliation(s)
- David J Rowen
- College of Marine & Environmental Sciences, James Cook University, Townsville, QLD 4811, Australia
| | | | - Michael J Kingsford
- College of Marine & Environmental Sciences, James Cook University, Townsville, QLD 4811, Australia; ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
30
|
Bachère E, Barranger A, Bruno R, Rouxel J, Menard D, Piquemal D, Akcha F. Parental diuron-exposure alters offspring transcriptome and fitness in Pacific oyster Crassostrea gigas. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 142:51-58. [PMID: 28388477 DOI: 10.1016/j.ecoenv.2017.03.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/20/2017] [Accepted: 03/21/2017] [Indexed: 06/07/2023]
Abstract
One of the primary challenges in ecotoxicology is to contribute to the assessment of the ecological status of ecosystems. In this study, we used Pacific oyster Crassostrea gigas to explore the effects of a parental exposure to diuron, a herbicide frequently detected in marine coastal environments. The present toxicogenomic study provides evidence that exposure of oyster genitors to diuron during gametogenesis results in changes in offspring, namely, transcriptomic profile alterations, increased global DNA methylation levels and reduced growth and survival within the first year of life. Importantly, we highlighted the limitations to identify particular genes or gene expression signatures that could serve as biomarkers for parental herbicide-exposure and further for multigenerational and transgenerational effects of specific chemical stressors. By analyzing samples from two independent experiments, we demonstrated that, due to complex confounding effects with both tested solvent vehicles, diuron non-specifically affected the offspring transcriptome. These original results question the potential development of predictive genomic tools for detecting specific indirect impacts of contaminants in environmental risk assessments. However, our results indicate that chronic environmental exposure to diuron over several generations may have significant long term impacts on oyster populations with adverse health outcomes.
Collapse
Affiliation(s)
- Evelyne Bachère
- Ifremer, UMR 5244, IHPE Interactions-Hosts-Pathogens-Environments, UPVD, CNRS, Université de Montpellier, CC 80, F-34095 Montpellier, France.
| | - Audrey Barranger
- Ifremer, Laboratoire d'Ecotoxicologie, Rue de l'Ile d'Yeu, BP21105, 44311 Nantes cedex 03, France
| | - Roman Bruno
- Acobiom, 1682 rue de la Valsière, CS 77394 Cap Delta Biopole Euromédecine II, 34184 Montpellier Cedex 04, France
| | - Julien Rouxel
- Ifremer, Laboratoire d'Ecotoxicologie, Rue de l'Ile d'Yeu, BP21105, 44311 Nantes cedex 03, France
| | - Dominique Menard
- Ifremer, Laboratoire d'Ecotoxicologie, Rue de l'Ile d'Yeu, BP21105, 44311 Nantes cedex 03, France
| | - David Piquemal
- Acobiom, 1682 rue de la Valsière, CS 77394 Cap Delta Biopole Euromédecine II, 34184 Montpellier Cedex 04, France; Diag4Zoo, 1 rue des Loutres, 34170 Montpellier, France
| | - Farida Akcha
- Ifremer, Laboratoire d'Ecotoxicologie, Rue de l'Ile d'Yeu, BP21105, 44311 Nantes cedex 03, France
| |
Collapse
|
31
|
Diepens NJ, Buffan-Dubau E, Budzinski H, Kallerhoff J, Merlina G, Silvestre J, Auby I, Elger A. Toxicity effects of an environmental realistic herbicide mixture on the seagrass Zostera noltei. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 222:393-403. [PMID: 28089211 DOI: 10.1016/j.envpol.2016.12.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 11/15/2016] [Accepted: 12/12/2016] [Indexed: 06/06/2023]
Abstract
Worldwide seagrass declines have been observed due to multiple stressors. One of them is the mixture of pesticides used in intensive agriculture and boat antifouling paints in coastal areas. Effects of mixture toxicity are complex and poorly understood. However, consideration of mixture toxicity is more realistic and ecologically relevant for environmental risk assessment (ERA). The first aim of this study was to determine short-term effects of realistic herbicide mixture exposure on physiological endpoints of Zostera noltei. The second aim was to assess the environmental risks of this mixture, by comparing the results to previously published data. Z. noltei was exposed to a mixture of four herbicides: atrazine, diuron, irgarol and S-metolachlor, simulating the composition of typical cocktail of contaminants in the Arcachon bay (Atlantic coast, France). Three stress biomarkers were measured: enzymatic activity of glutathione reductase, effective quantum yield (EQY) and photosynthetic pigment composition after 6, 24 and 96 h. Short term exposure to realistic herbicide mixtures affected EQY, with almost 100% inhibition for the two highest concentrations, and photosynthetic pigments. Effect on pigment composition was detected after 6 h with a no observed effect concentration (NOEC) of 1 μg/L total mixture concentration. The lowest EQY effect concentration at 10% (EC10) (2 μg/L) and pigment composition NOEC with an assessment factor of 10 were above the maximal field concentrations along the French Atlantic coast, suggesting that there are no potential short term adverse effects of this particular mixture on Z. noltei. However, chronic effects on photosynthesis may lead to reduced energy reserves, which could thus lead to effects at whole plant and population level. Understanding the consequences of chemical mixtures could help to improve ERA and enhance management strategies to prevent further declines of seagrass meadows worldwide.
Collapse
Affiliation(s)
- Noël J Diepens
- EcoLab, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France.
| | | | - Hélène Budzinski
- Environnements et Paléoenvironnements Océaniques et Continentaux (EPOC), UMR 5805 CNRS/Univ. Bordeaux 1, Laboratoire de Physico- et Toxico-Chimie de l'environnement (LPTC), 351, cours de la Libération, 33405 Talence, France
| | - Jean Kallerhoff
- EcoLab, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Georges Merlina
- EcoLab, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Jérome Silvestre
- EcoLab, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Isabelle Auby
- IFREMER Arcachon, Laboratoire Environnement Ressources, Quai du Cdt Silhouette, 33120 Arcachon, France
| | - Arnaud Elger
- EcoLab, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| |
Collapse
|
32
|
Barchanska H, Sajdak M, Szczypka K, Swientek A, Tworek M, Kurek M. Atrazine, triketone herbicides, and their degradation products in sediment, soil and surface water samples in Poland. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:644-658. [PMID: 27743329 PMCID: PMC5219039 DOI: 10.1007/s11356-016-7798-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 09/28/2016] [Indexed: 05/12/2023]
Abstract
The aim of this study was to monitor the sediment, soil and surface water contamination with selected popular triketone herbicides (mesotrione (MES) and sulcotrione(SUL)), atrazine (ATR) classified as a possible carcinogen and endocrine disrupting chemical, as well as their degradation products, in Silesia (Poland). Seventeen sediment samples, 24 soil samples, and 64 surface water samples collected in 2014 were studied. After solid-liquid extraction (SLE) and solid phase extraction (SPE), analytes were determined by high-performance liquid chromatography (HPLC) with diode array detection (DAD). Ten years after the withdrawal from the use, ATR was not detected in any of the collected samples; however, its degradation products are still present in 41 % of sediment, 71 % of soil, and 8 % of surface water samples. SUL was determined in 85 % of soil samples; its degradation product (2-chloro-4-(methylosulfonyl) benzoic acid (CMBA)) was present in 43 % of soil samples. In 17 % of sediment samples, CMBA was detected. Triketones were detected occasionally in surface water samples. The chemometric analysis (clustering analysis (CA), single-factor analysis of variance (ANOVA), N-Way ANOVA) was applied to find relations between selected soil and sediment parameters and herbicides concentration. In neither of the studied cases a statistically significant relationship between the concentrations of examined herbicides, their degradation products and soil parameters (organic carbon (OC), pH) was observed.
Collapse
Affiliation(s)
- Hanna Barchanska
- Department of Inorganic, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6 Str, 44-100, Gliwice, Poland.
| | - Marcin Sajdak
- Institute for Chemical Processing of Coal, 1 Zamkowa St, 41-803, Zabrze, Poland
| | - Kornelia Szczypka
- Department of Inorganic, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6 Str, 44-100, Gliwice, Poland
| | - Angelika Swientek
- Department of Inorganic, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6 Str, 44-100, Gliwice, Poland
| | - Martyna Tworek
- Department of Inorganic, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6 Str, 44-100, Gliwice, Poland
| | - Magdalena Kurek
- Department of Inorganic, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6 Str, 44-100, Gliwice, Poland
| |
Collapse
|
33
|
Zhao Q, Shi F, Zhu L. Prometryn and humic acid induce Cytochrome P450 1A expression in Danio rerio (zebrafish). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 135:40-47. [PMID: 27685669 DOI: 10.1016/j.ecoenv.2016.09.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 09/07/2016] [Accepted: 09/13/2016] [Indexed: 06/06/2023]
Abstract
Humic acid (HA) is a major component of dissolved organic matter, is ubiquitous in the aquatic environment and influences the biological toxicity of organic pollutants. In this study, we investigated the cytochrome P450 1A (CYP 1A) mRNA expression and ethoxyresorufin-O-deethylase (EROD) activity in the gills and liver of zebrafish following exposure to the s-triazine herbicide prometryn with or without HA present. Prometryn induced both CYP 1A mRNA expression and EROD activity. The CYP 1A mRNA expression of zebrafish that were exposed to a combination of prometryn and HA was increased compared to those exposed to prometryn alone. A likely cause for CYP 1A induction is the impact of special components of HA, functioning as aryl hydrocarbon receptor (AHR) agonists. In combination with HA, these increase prometryn levels in tissues. Similar results for EROD activity were evident. In our time course study, CYP 1A mRNA expression reached maximum values during 24h. This revealed CYP 1A mRNA transcription as a comparatively sensitive toxicity index. In a recovery experiment, we found a faster decrease of CYP 1A mRNA expression to control levels (CK) in gills compared to liver tissue. Following exposure to HA, CYP 1A mRNA expression in liver tissue displayed a faster decrease to CK levels. HA induced enhanced metabolic rates for prometryn. In contrast, recovery regularity of CYP 1A expression in gills was independent of the presence of HA. This result indicates different detoxification mechanisms for HA in liver and gills.
Collapse
Affiliation(s)
- Qian Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Feng Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Lin Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China.
| |
Collapse
|
34
|
Rondon R, Grunau C, Fallet M, Charlemagne N, Sussarellu R, Chaparro C, Montagnani C, Mitta G, Bachère E, Akcha F, Cosseau C. Effects of a parental exposure to diuron on Pacific oyster spat methylome. ENVIRONMENTAL EPIGENETICS 2017; 3:dvx004. [PMID: 29492306 PMCID: PMC5804544 DOI: 10.1093/eep/dvx004] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/14/2017] [Accepted: 03/07/2017] [Indexed: 05/18/2023]
Abstract
Environmental epigenetic is an emerging field that studies the cause-effect relationship between environmental factors and heritable trait via an alteration in epigenetic marks. This field has received much attentions since the impact of environmental factors on different epigenetic marks have been shown to be associated with a broad range of phenotypic disorders in natural ecosystems. Chemical pollutants have been shown to affect immediate epigenetic information carriers of several aquatic species but the heritability of the chromatin marks and the consequences for long term adaptation remain open questions. In this work, we investigated the impact of the diuron herbicide on the DNA methylation pattern of spat from exposed Crassotrea gigas genitors. This oyster is one of the most important mollusk species produced worldwide and a key coastal economic resource in France. The whole genome bisulfite sequencing (WGBS, BS-Seq) was applied to obtain a methylome at single nucleotide resolution on DNA extracted from spat issued from diuron exposed genitors comparatively to control spat. We showed that the parental diuron exposure has an impact on the DNA methylation pattern of its progeny. Most of the differentially methylated regions occurred within coding sequences and we showed that this change in methylation level correlates with RNA level only in a very small group of genes. Although the DNA methylation profile is variable between individuals, we showed conserved DNA methylation patterns in response to parental diuron exposure. This relevant result opens perspectives for the setting of new markers based on epimutations as early indicators of marine pollutions.
Collapse
Affiliation(s)
- Rodolfo Rondon
- Ifremer, IHPE UMR 5244, Univ. Perpignan Via Domitia, CNRS, Univ. Montpellier, F-34095 Montpellier, France
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860 Perpignan, France
| | - Christoph Grunau
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860 Perpignan, France
| | - Manon Fallet
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860 Perpignan, France
| | - Nicolas Charlemagne
- Ifremer, Department of Biogeochemistry and Ecotoxicology, Laboratory of Ecotoxicology, Rue de l’ile d’Yeu, BP 21105, 44311 Nantes Cedex 03, France
| | - Rossana Sussarellu
- Ifremer, Department of Biogeochemistry and Ecotoxicology, Laboratory of Ecotoxicology, Rue de l’ile d’Yeu, BP 21105, 44311 Nantes Cedex 03, France
| | - Cristian Chaparro
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860 Perpignan, France
| | - Caroline Montagnani
- Ifremer, IHPE UMR 5244, Univ. Perpignan Via Domitia, CNRS, Univ. Montpellier, F-34095 Montpellier, France
| | - Guillaume Mitta
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860 Perpignan, France
| | - Evelyne Bachère
- Ifremer, IHPE UMR 5244, Univ. Perpignan Via Domitia, CNRS, Univ. Montpellier, F-34095 Montpellier, France
| | - Farida Akcha
- Ifremer, Department of Biogeochemistry and Ecotoxicology, Laboratory of Ecotoxicology, Rue de l’ile d’Yeu, BP 21105, 44311 Nantes Cedex 03, France
| | - Céline Cosseau
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860 Perpignan, France
| |
Collapse
|
35
|
Ansanelli G, Parrella L, Di Landa G, Massanisso P, Schiavo S, Manzo S. Risk assessment of selected priority pollutants coming from boating activities. ENVIRONMENTAL MONITORING AND ASSESSMENT 2016; 188:435. [PMID: 27344560 DOI: 10.1007/s10661-016-5419-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 06/12/2016] [Indexed: 06/06/2023]
Abstract
In this work, we evaluated the risk posed to aquatic organisms in the coastal waters of Albania and Apulia (Italy) by two priority pollutants (PPs), Irgarol 1051 and Diuron, used as biocides in antifouling paints on boat hulls. With this aim, we carried out an extensive 3-year monitoring in ports and marinas along the coasts of both countries, which showed a widespread occurrence of both PPs, with Irgarol 1051 concentrations usually being lower than the Diuron ones. The measured concentrations were compared with regulatory Environmental Quality Standards (EQS) (Directive 2008/105/EC) and used to perform a probabilistic Ecological Risk Assessment (ERA), for a thorough evaluation of the potential adverse effects upon marine ecosystem. Irgarol 1051 amounts above the Annual Average Concentration (AA-EQS, 2.5 ng/L) were often detected in Apulia and, less frequently, in Albania. Moreover, in Apulia, sometimes the Maximum Allowable Concentrations (MAC-EQS, 16 ng/L) was exceeded. In Apulia, where levels exceeded MAC/AA-EQS, ERA found not negligible probabilities of exceeding the toxicity level (6-18 %). A less critical situation was observed for Diuron whose levels were always below the MAC-EQS (1800 ng/L) in both countries and, in Albania, also below the AA-EQS (200 ng/L). On the other hand, in Apulia, this limit was exceeded in some locations. Correspondingly, ERA determined a not negligible risk in these sites (probability of exceedance 4-7 %).
Collapse
Affiliation(s)
| | - Luisa Parrella
- Università degli Studi di Napoli "Federico II"-CRIAcq, Naples, Italy
| | | | | | - Simona Schiavo
- ENEA C.R. Portici, P. le E. Fermi, 1, 80055, Portici, Naples, Italy
| | - Sonia Manzo
- ENEA C.R. Portici, P. le E. Fermi, 1, 80055, Portici, Naples, Italy
| |
Collapse
|
36
|
Behrens D, Rouxel J, Burgeot T, Akcha F. Comparative embryotoxicity and genotoxicity of the herbicide diuron and its metabolites in early life stages of Crassostrea gigas: Implication of reactive oxygen species production. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 175:249-259. [PMID: 27078212 DOI: 10.1016/j.aquatox.2016.04.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/30/2016] [Accepted: 04/03/2016] [Indexed: 06/05/2023]
Abstract
Herbicides are one of the major classes of pollutants contaminating coastal waters over the world. Among them, diuron (3-(3,4-dichlorophenyl)-1,1-dimethylurea) is a phenylurea herbicide frequently detected in oyster-producing area, known to be toxic for this important exploited non-target species. With the aim to investigate the mechanisms by which diuron displays its toxicity in oyster, the implication of both biotransformation and oxygen reactive species (ROS) production was studied considering embryotoxicity and genotoxicity as endpoints. Comparative embryotoxicity and genotoxicity of diuron and its main metabolites (DCPMU, DCPU and 3,4-DCA) were thus studied on oyster larvae by the embryo-larval bioassay on D larvae and the comet assay on trochophore larvae, respectively. Exposures were also performed in presence and absence of known ROS scavenger compounds - ascorbic acid and N-acetylcysteine, to evaluate the involvement of oxyradicals in the toxic responses. In the case of diuron, the production of ROS on exposed oyster larvae was also measured using 2',7'-dichlorodihydrofluorescein diacetate as a probe for flow cytometric analysis. The results we obtained showed the embryotoxicity and genotoxicity of diuron and its metabolites in early life stages of the Pacific oyster. For concentrations ranging from 0.05 to 0.5μgL(-1), diuron appeared significantly more embryotoxic than DCPMU and DCPU (p<0.001). Embryotoxicity decreased with diuron metabolism as follows: diuron≥DCPMU=DCPU, highlighting that biotransformation can constitute a true detoxication pathways in oyster larvae by decreasing the toxicity of the parent compound. In the opposite, no difference was observed between diuron and its metabolites concerning larval development when considering a lower and more environmentally realistic range of concentrations (0.002-0.050μgL(-1)). 3,4-DCA was the only compound that did not show any sign of embryotoxicity, even at concentrations up to 5μgL(-1). Concerning genotoxicity, no significant difference was observed between diuron and all of its metabolites including 3, 4 DCA with damages detected from the concentration of 0.05μgL(-1). As for diuron, the toxicity of the metabolites seems to be mediated in some part by ROS production as clearly demonstrated by the decrease in genotoxicity and developmental abnormalities in the presence of the oxidant scavenger, ascorbic acid.
Collapse
Affiliation(s)
- Daphné Behrens
- Ifremer, Laboratoire d'Ecotoxicologie, Rue de l'Ile d'Yeu, BP21105, 44311 Nantes, cedex 03, France
| | - Julien Rouxel
- Ifremer, Laboratoire d'Ecotoxicologie, Rue de l'Ile d'Yeu, BP21105, 44311 Nantes, cedex 03, France
| | - Thierry Burgeot
- Ifremer, Laboratoire d'Ecotoxicologie, Rue de l'Ile d'Yeu, BP21105, 44311 Nantes, cedex 03, France
| | - Farida Akcha
- Ifremer, Laboratoire d'Ecotoxicologie, Rue de l'Ile d'Yeu, BP21105, 44311 Nantes, cedex 03, France.
| |
Collapse
|
37
|
Rondon R, Akcha F, Alonso P, Menard D, Rouxel J, Montagnani C, Mitta G, Cosseau C, Grunau C. Transcriptional changes in Crassostrea gigas oyster spat following a parental exposure to the herbicide diuron. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 175:47-55. [PMID: 26994368 DOI: 10.1016/j.aquatox.2016.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 03/01/2016] [Accepted: 03/06/2016] [Indexed: 06/05/2023]
Abstract
The Pacific oyster Crassostrea gigas is the main oyster species produced in the world, and a key coastal economic resource in France. High mortalities affect Pacific oysters since 2008 in France and Europe. Their origins have been attributed to a combination of biotic and abiotic factors, underlining the importance of environment quality. The impact of water pollution has been pointed out and one of the pollutants, the genotoxic herbicide diuron, occurs at high concentrations all along the French coasts. Previous work has revealed that a parental exposure to diuron had a strong impact on hatching rates and offspring development even if spats were not exposed to diuron themselves. In this study, we explored for the first time the transcriptional changes occurring in oyster spats (non exposed) originating from genitors exposed to an environmentally relevant concentration of diuron during gametogenesis using the RNAseq methodology. We identified a transcriptomic remodeling revealing an effect of the herbicide. Different molecular pathways involved in energy production, translation and cell proliferation are particularly disturbed. This analysis revealed modulated candidate genes putatively involved in response to oxidative stress and mitochondrial damage in offspring of genitors exposed to diuron. Complementary measures of the activity of enzymes involved in these latter processes corroborate the results obtained at the transcriptomic level. In addition, our results suggested an increase in energy production and mitotic activity in 5-month-spats from diuron-exposed genitors. These results could correspond to a "catch-up growth" phenomenon allowing the spats from diuron-exposed genitors, which displayed a growth delay at 3 months, to gain a normal size when they reach the age of 6 months. These results indicate that exposure to a concentration of diuron that is frequently encountered in the field during the oyster's gametogenesis stage can impact the next generation and may result in fitness disturbance.
Collapse
Affiliation(s)
- R Rondon
- Ifremer, IHPE UMR 5244, Univ. Perpignan Via Domitia, CNRS, Univ. Montpellier, F-34095 Montpellier, France; Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860 Perpignan, France
| | - F Akcha
- Ifremer, Department of Biogeochemistry and Ecotoxicology, Laboratory of Ecotoxicology, Rue de l'ile d'Yeu, BP 21105, 44311 Nantes Cedex 03, France
| | - P Alonso
- CNRS, IHPE UMR 5244, Univ. Perpignan Via Domitia, IFREMER, Univ. Montpellier, F-34095 Montpellier, France
| | - D Menard
- Ifremer, Department of Biogeochemistry and Ecotoxicology, Laboratory of Ecotoxicology, Rue de l'ile d'Yeu, BP 21105, 44311 Nantes Cedex 03, France
| | - J Rouxel
- Ifremer, Department of Biogeochemistry and Ecotoxicology, Laboratory of Ecotoxicology, Rue de l'ile d'Yeu, BP 21105, 44311 Nantes Cedex 03, France
| | - C Montagnani
- Ifremer, IHPE UMR 5244, Univ. Perpignan Via Domitia, CNRS, Univ. Montpellier, F-34095 Montpellier, France.
| | - G Mitta
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860 Perpignan, France
| | - C Cosseau
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860 Perpignan, France
| | - C Grunau
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860 Perpignan, France
| |
Collapse
|
38
|
Dupraz V, Coquillé N, Ménard D, Sussarellu R, Haugarreau L, Stachowski-Haberkorn S. Microalgal sensitivity varies between a diuron-resistant strain and two wild strains when exposed to diuron and irgarol, alone and in mixtures. CHEMOSPHERE 2016; 151:241-252. [PMID: 26945240 DOI: 10.1016/j.chemosphere.2016.02.073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 02/12/2016] [Accepted: 02/16/2016] [Indexed: 06/05/2023]
Abstract
A wild strain of Chaetoceros calcitrans and wild and diuron-resistant strains of Tetraselmis suecica, were exposed to the PSII inhibitor herbicides diuron and irgarol, individually and in mixtures. The effects of three concentrations of diuron and irgarol and four binary mixtures were evaluated on doubling time, relative reactive oxygen species and lipid content by flow cytometry, and on photosynthetic efficiency by pulse amplitude modulated fluorescence. In both wild strains, significant effects were observed for each molecule at the highest concentration tested: at irgarol 0.5 μg L(-1), C. calcitrans was shown to be more sensitive than T. suecica (+52% and +19% in doubling time, respectively), whereas at diuron 5 μg L(-1), T. suecica was more affected (+125% in doubling time) than C. calcitrans (+21%). Overall, irgarol had a higher toxicity at a lower concentration than diuron (no effect at diuron 0.5 μg L(-1)) for both wild strains. The strongest mixture (irgarol 0.5 μg L(-1) + diuron 5 μg L(-1)) increased doubling time by 356% for T. suecica, thus showing amplified effects when the two compounds were mixed. Sequencing of the diuron-resistant strain demonstrated a single mutation in the psbA gene coding sequence. Although resistance of this strain to diuron was confirmed with no effect at the highest diuron concentration, no resistance to irgarol was shown. In addition, the mutant strain exposed to the strongest mixture showed a 3.5-fold increase in doubling time compared with irgarol alone, thereby supporting the hypothesis of a biochemical interaction between these two compounds.
Collapse
Affiliation(s)
- Valentin Dupraz
- Ifremer, Laboratoire d'Écotoxicologie, rue de l'île d'Yeu, BP 21105, F-44311 Nantes Cedex 03, France
| | - Nathalie Coquillé
- Ifremer, Laboratoire d'Écotoxicologie, rue de l'île d'Yeu, BP 21105, F-44311 Nantes Cedex 03, France; Irstea, UR EABX, Centre de Bordeaux, 50 avenue de Verdun, F-33612 Cestas Cedex, France; Université de Bordeaux, UMR 5805, EPOC, Laboratoire de Physico Toxico Chimie de l'environnement, 351 Cours de la Libération, CS 10004, F-33405 Talence Cedex, France; CNRS, UMR 5805, EPOC, Laboratoire de Physico Toxico Chimie de l'environnement, 351 Cours de la Libération, CS 10004, F-33405 Talence Cedex, France
| | - Dominique Ménard
- Ifremer, Laboratoire d'Écotoxicologie, rue de l'île d'Yeu, BP 21105, F-44311 Nantes Cedex 03, France
| | - Rossana Sussarellu
- Ifremer, Laboratoire d'Écotoxicologie, rue de l'île d'Yeu, BP 21105, F-44311 Nantes Cedex 03, France
| | - Larissa Haugarreau
- Ifremer, Laboratoire d'Écotoxicologie, rue de l'île d'Yeu, BP 21105, F-44311 Nantes Cedex 03, France
| | | |
Collapse
|
39
|
Saleh A, Molaei S, Sheijooni Fumani N, Abedi E. Antifouling paint booster biocides (Irgarol 1051 and diuron) in marinas and ports of Bushehr, Persian Gulf. MARINE POLLUTION BULLETIN 2016; 105:367-372. [PMID: 26917092 DOI: 10.1016/j.marpolbul.2016.02.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/11/2016] [Accepted: 02/15/2016] [Indexed: 06/05/2023]
Abstract
In the present study, antifouling paint booster biocides, Irgarol 1051 and diuron were measured in ports and marinas of Bushehr, Iran. Results showed that in seawater samples taken from ports and marinas, Irgarol was found at the range of less than LOD to 63.4ngL(-1) and diuron was found to be at the range of less than LOD to 29.1ngL(-1) (in Jalali marina). 3,4-dichloroaniline (3,4-DCA), as a degradation product of diuron, was also analyzed and its maximum concentration was 390ngL(-1). Results for analysis of Irgarol 1051 in sediments showed a maximum concentration of 35.4ngg(-1) dry weight in Bandargah marina. A comparison between the results of this study and those of other published works showed that Irgarol and diuron pollutions in ports and marinas of Bushehr located in the Persian Gulf were less than the average of reports from other parts of the world.
Collapse
Affiliation(s)
- Abolfazl Saleh
- Iranian National Institute for Oceanography and Atmospheric Science, No. 3, Etemadzadeh St., Fatemi Ave., Tehran 1411813389, Iran.
| | - Saeideh Molaei
- Faculty of Chemistry, Kharazmi University, 43Mofateh Ave., Tehran 1571914911, Iran
| | - Neda Sheijooni Fumani
- Iranian National Institute for Oceanography and Atmospheric Science, No. 3, Etemadzadeh St., Fatemi Ave., Tehran 1411813389, Iran
| | - Ehsan Abedi
- Iranian National Institute for Oceanography and Atmospheric Science, No. 3, Etemadzadeh St., Fatemi Ave., Tehran 1411813389, Iran
| |
Collapse
|
40
|
Akcha F, Barranger A, Bachère E, Berthelin CH, Piquemal D, Alonso P, Sallan RR, Dimastrogiovanni G, Porte C, Menard D, Szczybelski A, Benabdelmouna A, Auffret M, Rouxel J, Burgeot T. Effects of an environmentally relevant concentration of diuron on oyster genitors during gametogenesis: responses of early molecular and cellular markers and physiological impacts. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:8008-8020. [PMID: 26780042 DOI: 10.1007/s11356-015-5969-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/10/2015] [Indexed: 06/05/2023]
Abstract
Genitors of the Pacific oyster Crassostrea gigas were submitted during gametogenesis to a short pulse exposure to the herbicide diuron at a realistic environmental concentration. Histological analysis showed no effect of diuron on gametogenesis course, sex ratio and reproductive effort. A non-significant increase in testosterone and progesterone levels was observed in genitors exposed to the herbicide. At cell level, diuron exposure was shown to modulate the phagocytic activity of circulating hemocytes. The results of a transcriptional analysis showed that diuron affected the expression of genes belonging to functions known to play a major role during oyster gametogenesis such as gene transcription regulation, DNA replication and repair, DNA methylation and cytokinesis. Taking into account the results we previously obtained on the same genitors, this study showed a negative effect of diuron on oyster reproduction by inducing both structural and functional modifications of the DNA.
Collapse
Affiliation(s)
- F Akcha
- Laboratoire d'Ecotoxicologie, Ifremer, Rue de l'Ile d'Yeu, BP21105, 44311, Nantes cedex 03, France.
| | - A Barranger
- Laboratoire d'Ecotoxicologie, Ifremer, Rue de l'Ile d'Yeu, BP21105, 44311, Nantes cedex 03, France
| | - E Bachère
- Ifremer, UMR 5244, IHPE Interaction Host Pathogen Environment, UPVD, CNRS, Université de Montpellier, CC 80, F-34095, Montpellier, France
| | - C Heude Berthelin
- Unité Biologie des organismes et écosystèmes aquatiques (BOREA, UMR 7208), Université de Caen Normandie, Sorbonne Universités, Muséum national d'Histoire naturelle, Université Pierre et Marie Curie, CNRS, IRD, 57 rue Cuvier, 75005, Paris, France
| | - D Piquemal
- Acobiom, 1682 rue de la Valsière, CS 77394 Cap Delta Biopole Euromédecine II, 34184, Montpellier Cedex 04, France
| | - P Alonso
- Ifremer, UMR 5244, IHPE Interaction Host Pathogen Environment, UPVD, CNRS, Université de Montpellier, CC 80, F-34095, Montpellier, France
| | - R Rondon Sallan
- Ifremer, UMR 5244, IHPE Interaction Host Pathogen Environment, UPVD, CNRS, Université de Montpellier, CC 80, F-34095, Montpellier, France
| | - G Dimastrogiovanni
- IDAEA-CSIC, Environmental Chemistry Department, C/ Jordi Girona, 1808034, Barcelona, Spain
| | - C Porte
- IDAEA-CSIC, Environmental Chemistry Department, C/ Jordi Girona, 1808034, Barcelona, Spain
| | - D Menard
- Laboratoire d'Ecotoxicologie, Ifremer, Rue de l'Ile d'Yeu, BP21105, 44311, Nantes cedex 03, France
| | - A Szczybelski
- Laboratoire d'Ecotoxicologie, Ifremer, Rue de l'Ile d'Yeu, BP21105, 44311, Nantes cedex 03, France
| | - A Benabdelmouna
- Ifremer, Laboratoire de Génétique et Pathologies, Rue de Mus de Loup, La Tremblade, 17390, France
| | - M Auffret
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), Institut Universitaire Européen de la Mer (IUEM), UBO/CNRS/IRD/IFREMER, rue Dumont d'Urville, technopôle, Brest-Iroise, 29280, Plouzané, France
| | - J Rouxel
- Laboratoire d'Ecotoxicologie, Ifremer, Rue de l'Ile d'Yeu, BP21105, 44311, Nantes cedex 03, France
| | - T Burgeot
- Laboratoire d'Ecotoxicologie, Ifremer, Rue de l'Ile d'Yeu, BP21105, 44311, Nantes cedex 03, France
| |
Collapse
|
41
|
Barranger A, Heude-Berthelin C, Rouxel J, Adeline B, Benabdelmouna A, Burgeot T, Akcha F. Parental exposure to the herbicide diuron results in oxidative DNA damage to germinal cells of the Pacific oyster Crassostrea gigas. Comp Biochem Physiol C Toxicol Pharmacol 2016; 180:23-30. [PMID: 26610786 DOI: 10.1016/j.cbpc.2015.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/16/2015] [Accepted: 11/18/2015] [Indexed: 01/23/2023]
Abstract
Chemical pollution by pesticides has been identified as a possible contributing factor to the massive mortality outbreaks observed in Crassostrea gigas for several years. A previous study demonstrated the vertical transmission of DNA damage by subjecting oyster genitors to the herbicide diuron at environmental concentrations during gametogenesis. This trans-generational effect occurs through damage to genitor-exposed gametes, as measured by the comet-assay. The presence of DNA damage in gametes could be linked to the formation of DNA damage in other germ cells. In order to explore this question, the levels and cell distribution of the oxidized base lesion 8-oxodGuo were studied in the gonads of exposed genitors. High-performance liquid chromatography coupled with UV and electrochemical detection analysis showed an increase in 8-oxodGuo levels in both male and female gonads after exposure to diuron. Immunohistochemistry analysis showed the presence of 8-oxodGuo at all stages of male germ cells, from early to mature stages. Conversely, the oxidized base was only present in early germ cell stages in female gonads. These results indicate that male and female genitors underwent oxidative stress following exposure to diuron, resulting in DNA oxidation in both early germ cells and gametes, such as spermatozoa, which could explain the transmission of diuron-induced DNA damage to offspring. Furthermore, immunostaining of early germ cells seems indicates that damages caused by exposure to diuron on germ line not only affect the current sexual cycle but also could affect future gametogenesis.
Collapse
Affiliation(s)
- Audrey Barranger
- Ifremer, Department of Biogeochemistry and Ecotoxicology, Laboratory of Ecotoxicology, Rue de l'Ile d'Yeu, BP 21105, 44311 Nantes Cedex 03, France; Ifremer, SG2M, Laboratory of Genetics and Pathology of Marine Molluscs, Avenue de Mus du Loup, 17390 La Tremblade, France.
| | - Clothilde Heude-Berthelin
- Unité Biologie des organismes et écosystèmes aquatiques (BOREA, UMR 7208), Université de Caen Basse-Normandie, Sorbonne Universités, Muséum national d'Histoire naturelle, Université Pierre et Marie Curie, CNRS, IRD, 57 Rue Cuvier, 75005 Paris, France
| | - Julien Rouxel
- Ifremer, Department of Biogeochemistry and Ecotoxicology, Laboratory of Ecotoxicology, Rue de l'Ile d'Yeu, BP 21105, 44311 Nantes Cedex 03, France
| | - Béatrice Adeline
- Unité Biologie des organismes et écosystèmes aquatiques (BOREA, UMR 7208), Université de Caen Basse-Normandie, Sorbonne Universités, Muséum national d'Histoire naturelle, Université Pierre et Marie Curie, CNRS, IRD, 57 Rue Cuvier, 75005 Paris, France
| | - Abdellah Benabdelmouna
- Ifremer, SG2M, Laboratory of Genetics and Pathology of Marine Molluscs, Avenue de Mus du Loup, 17390 La Tremblade, France
| | - Thierry Burgeot
- Ifremer, Department of Biogeochemistry and Ecotoxicology, Laboratory of Ecotoxicology, Rue de l'Ile d'Yeu, BP 21105, 44311 Nantes Cedex 03, France
| | - Farida Akcha
- Ifremer, Department of Biogeochemistry and Ecotoxicology, Laboratory of Ecotoxicology, Rue de l'Ile d'Yeu, BP 21105, 44311 Nantes Cedex 03, France.
| |
Collapse
|
42
|
Mosiichuk NM, Husak VV, Maksymiv IV, Hlodan OY, Storey JM, Storey KB, Lushchak VI. Toxicity of environmental Gesagard to goldfish may be connected with induction of low intensity oxidative stress in concentration- and tissue-related manners. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 165:249-258. [PMID: 26133465 DOI: 10.1016/j.aquatox.2015.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 05/27/2015] [Accepted: 06/09/2015] [Indexed: 06/04/2023]
Abstract
Prometryn is a selective herbicide commonly used in agriculture as the commercial preparation, Gesagard. Goldfish (Carassius auratus) exposure for 96h to 0.2, 1, or 5mgL(-1) Gesagard 500FW (corresponding to 0.1, 0.5, and 2.5mgL(-1) of prometryn) on indices of oxidative stress (lipid peroxides, protein carbonyls, and thiol content) and activities of antioxidant and related enzymes in gills, liver, and kidney was studied. Gills appeared to be the most resistant to Gesagard treatment, reacting to only the highest concentration of herbicide with enhanced levels of low molecular mass thiols and activities of glutathione S-transferase (GST) and glutathione reductase. Goldfish exposure to 0.2-5mgL(-1) Gesagard resulted in enhancement of carbonyl protein level and activity of superoxide dismutase (SOD), but reduced the lipid peroxide (LOOH) content and activity of glutathione peroxidase in liver. Kidney appeared to be the main target organ of Gesagard toxicity, showing the greatest number of parameters affected even under low concentrations of herbicide. An increase in the content of L-SH and activity of SOD was accompanied with decreased activities of catalase, GST, and glucose-6-phosphate dehydrogenase and reduced levels of LOOH in kidney of Gesagard treated fish. The treatment also induced various histological changes in goldfish liver and kidney which could be related to their dysfunction. The present study indicates that Gesagard induced oxidative stress of differing intensities in the three goldfish tissues and demonstrated that kidney would be the best target organ to analyze, reveal, and monitor Gesagard effects on fish.
Collapse
Affiliation(s)
- Nadia M Mosiichuk
- Department of Biochemistry and Biotechnology, Precarpathian National University named after Vassyl Stefanyk, 57 Shevchenko Str., Ivano-Frankivsk 76025, Ukraine
| | - Viktor V Husak
- Department of Biochemistry and Biotechnology, Precarpathian National University named after Vassyl Stefanyk, 57 Shevchenko Str., Ivano-Frankivsk 76025, Ukraine
| | - Ivan V Maksymiv
- Department of Biochemistry and Biotechnology, Precarpathian National University named after Vassyl Stefanyk, 57 Shevchenko Str., Ivano-Frankivsk 76025, Ukraine
| | - Oksana Y Hlodan
- Department of Human and Animal Anatomy and Physiology, Precarpathian National University named after Vassyl Stefanyk, 57 Shevchenko Str., Ivano-Frankivsk 76016, Ukraine
| | - Janet M Storey
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Kenneth B Storey
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Volodymyr I Lushchak
- Department of Biochemistry and Biotechnology, Precarpathian National University named after Vassyl Stefanyk, 57 Shevchenko Str., Ivano-Frankivsk 76025, Ukraine.
| |
Collapse
|
43
|
Dantas TA, Cancian G, Neodini DNR, Mano DRS, Capucho C, Predes FS, Pulz RB, Pigoso AA, Dolder H, Severi-Aguiar GDC. Leydig cell number and sperm production decrease induced by chronic ametryn exposure: a negative impact on animal reproductive health. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:8526-8535. [PMID: 25561257 DOI: 10.1007/s11356-014-4010-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 12/15/2014] [Indexed: 06/04/2023]
Abstract
Ametryn is an herbicide used to control broadleaf and grass weeds and its acute and chronic toxicity is expected to be low. Since toxicological data on ametryn is scarce, the aim of this study was to evaluate rat reproductive toxicity. Thirty-six adult male Wistar rats (90 days) were divided into three groups: Co (control) and T1 and T2 exposed to 15 and 30 mg/kg/day of ametryn, respectively, for 56 days. Testicular analysis demonstrated that ametryn decreased sperm number per testis, daily sperm production, and Leydig cell number in both treated groups, although little perceptible morphological change has been observed in seminiferous tubule structure. Lipid peroxidation was higher in group T2, catalase activity decreased in T1 group, superoxide dismutase activity diminished, and a smaller number of sulphydryl groups of total proteins were verified in both exposed groups, suggesting oxidative stress. These results showed negative ametryn influence on the testes and can compromise animal reproductive performance and survival.
Collapse
Affiliation(s)
- T A Dantas
- Programa de Pós-Graduação em Ciências Biomédicas, Centro Universitário Hermínio Ometto UNIARARAS, Avenida Dr. Maximiliano Barutto, n° 500, Jd. Universitário, Araras, SP, CEP 13607-339, Brazil,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Velisek J, Stara A, Koutnik D, Machova J. Effects of prometryne on early life stages of common carp (Cyprinus carpio L.). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2015; 118:58-63. [PMID: 25752431 DOI: 10.1016/j.pestbp.2014.11.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 11/26/2014] [Accepted: 11/26/2014] [Indexed: 06/04/2023]
Abstract
Toxicity of prometryne to early life stages of common carp was assessed. On the basis of accumulated mortality in the experimental groups lowest observed-effect concentration (LOEC) was estimated as 1100 µg/l; and no observed-effect concentration (NOEC) was 850 µg/l. Fulton's condition factor was significantly lower than in controls in fish exposed to 4000 µg/l after 7, 14, and 21 days. By day 14, fish exposed to 4000 µg/l prometryne showed significantly lower mass and total length compared to controls. Fish exposed the 1200 and 4000 µg/l showed delay in development, severe hyperaemia in gill, liver, and caudal and cranial kidney. Subchronic prometryne exposure of early-life stages of common carp at concentrations of 1200 and 4000 µg/l affected their survival, growth rate, early ontogeny, and histology.
Collapse
Affiliation(s)
- Josef Velisek
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25 Vodnany, Czech Republic.
| | - Alzbeta Stara
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25 Vodnany, Czech Republic
| | - Dalibor Koutnik
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25 Vodnany, Czech Republic
| | - Jana Machova
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25 Vodnany, Czech Republic
| |
Collapse
|
45
|
Barranger A, Benabdelmouna A, Dégremont L, Burgeot T, Akcha F. Parental exposure to environmental concentrations of diuron leads to aneuploidy in embryos of the Pacific oyster, as evidenced by fluorescent in situ hybridization. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 159:36-43. [PMID: 25498420 DOI: 10.1016/j.aquatox.2014.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 10/29/2014] [Accepted: 11/13/2014] [Indexed: 06/04/2023]
Abstract
Changes in normal chromosome numbers (i.e. aneuploidy) due to abnormal chromosome segregation may arise either spontaneously or as a result of chemical/radiation exposure, particularly during cell division. Coastal ecosystems are continuously subjected to various contaminants originating from urban, industrial and agricultural activities. Genotoxicity is common to several families of major environmental pollutants, including pesticides, which therefore represent a potential important environmental hazard for marine organisms. A previous study demonstrated the vertical transmission of DNA damage by subjecting oyster genitors to short-term exposure to the herbicide diuron at environmental concentrations during gametogenesis. In this paper, Fluorescent in situ hybridization (FISH) was used to further characterize diuron-induced DNA damage at the chromosomal level. rDNA genes (5S and 18-5.8-28S), previously mapped onto Crassostrea gigas chromosomes 4, 5 and 10, were used as probes on the interphase nuclei of embryo preparations. Our results conclusively show higher aneuploidy (hypo- or hyperdiploidy) level in embryos from diuron-exposed genitors, with damage to the three studied chromosomal regions. This study suggests that sexually developing oysters are vulnerable to diuron exposure, incurring a negative impact on reproductive success and oyster recruitment.
Collapse
Affiliation(s)
- Audrey Barranger
- Ifremer, SG2M, Laboratory of Genetics and Pathology of Marine Molluscs, Avenue de Mus du Loup, 17390 La Tremblade, France; Ifremer, Department of Biogeochemistry and Ecotoxicology, Laboratory of Ecotoxicology, Rue de l'Ile d'Yeu, BP 21105, 44311 Nantes Cedex 03, France.
| | - Abdellah Benabdelmouna
- Ifremer, SG2M, Laboratory of Genetics and Pathology of Marine Molluscs, Avenue de Mus du Loup, 17390 La Tremblade, France.
| | - Lionel Dégremont
- Ifremer, SG2M, Laboratory of Genetics and Pathology of Marine Molluscs, Avenue de Mus du Loup, 17390 La Tremblade, France
| | - Thierry Burgeot
- Ifremer, Department of Biogeochemistry and Ecotoxicology, Laboratory of Ecotoxicology, Rue de l'Ile d'Yeu, BP 21105, 44311 Nantes Cedex 03, France
| | - Farida Akcha
- Ifremer, Department of Biogeochemistry and Ecotoxicology, Laboratory of Ecotoxicology, Rue de l'Ile d'Yeu, BP 21105, 44311 Nantes Cedex 03, France
| |
Collapse
|
46
|
Effect of chronic exposure to prometryne on oxidative stress and antioxidant response in red swamp crayfish (Procambarus clarkii). BIOMED RESEARCH INTERNATIONAL 2014; 2014:680131. [PMID: 24757669 PMCID: PMC3976930 DOI: 10.1155/2014/680131] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 02/14/2014] [Accepted: 02/14/2014] [Indexed: 12/03/2022]
Abstract
The aim of the study was to investigate effects of the triazine herbicide prometryne on red swamp crayfish on the basis of oxidative stress, antioxidant indices in hepatopancreas and muscle, and histopathology of hepatopancreas. Crayfish were exposed to prometryne concentrations of 0.51 μg L−1, 0.144 mg L−1, and 1.144 mg L−1 for 11 and 25 days. Indices of oxidative stress (thiobarbituric acid reactive substances (TBARS)), and antioxidant parameters (superoxide dismutase (SOD), catalase (CAT), and glutathione reductase (GR)) in crayfish muscle and hepatopancreas were measured. Chronic exposure to prometryne did not showed the impact of oxidative damage to cells. Changes activity of the antioxidant enzymes SOD, CAT, and GR were observed in all tested concentrations to prometryne for 11 and 25 days (P < 0.01) as compared with the control group. We did not see any differences in histopatological examination to hepatopancreas. Prolonged exposure of prometryne did not result in oxidative damage to cell lipids and proteins, but it led to changes in antioxidant activity in crayfish tissues. Changes in antioxidant systems were also observed in the environmental prometryne concentration of 0.51 μg L−1. The results suggest that antioxidant responses may have potential as biomarkers for monitoring residual triazine herbicides in aquatic environments.
Collapse
|
47
|
Li Y, Zhang J, Xiong X, Luo K, Guo J, Shen M, Wang J, Song Z. Determination of picogram quantities of chlortoluron in soil samples by luminol-chitosan chemiluminescence system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:7204-7210. [PMID: 24566970 DOI: 10.1007/s11356-014-2646-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 02/10/2014] [Indexed: 06/03/2023]
Abstract
Based on the enhancing effect of chitosan (CS) on luminol-dissolved oxygen chemiluminescence (CL) reaction, a flow injection (FI) luminol-CS CL system was established. It was found that the increase of CL intensity was proportional to the concentrations of CS ranging from 0.7 to 10.0 μmol l(-1). In the presence of chlortoluron (CTU), the CL intensity of luminol-CS system could be obviously inhibited and the decrements of CL intensity were linearly proportional to the logarithm of CTU concentrations ranging from 0.01 to 70.0 ng ml(-1), giving the limit of detection 3.0 pg ml(-1) (3σ). At a flow rate of 2.0 ml min(-1), the whole process including sampling and washing could be accomplished within 36 s, offering a sample throughput of 100 h(-1). The proposed FI-CL method was successfully applied to the determination of CTU in soil samples with recoveries ranging from 95.0 % to 105.3 % and the relative standard deviations (RSDs) of less than 4.0 %.
Collapse
Affiliation(s)
- Yajuan Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710069, Xi'an, China
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Pinto M, Costa PM, Louro H, Costa MH, Lavinha J, Caeiro S, Silva MJ. Human hepatoma cells exposed to estuarine sediment contaminant extracts permitted the differentiation between cytotoxic and pro-mutagenic fractions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 185:141-8. [PMID: 24275312 DOI: 10.1016/j.envpol.2013.10.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 10/15/2013] [Accepted: 10/30/2013] [Indexed: 05/12/2023]
Abstract
Complex toxicant mixtures present in estuarine sediments often render contaminant screening unfeasible and compromise determining causation. HepG2 cells were subjected to bioassays with sediment extracts obtained with a series of progressively polar solvents plus a crude extract. The sediments were collected from an impacted area of an estuary otherwise regarded as pristine, whose stressors result mostly from aquaculture effluents and hydrodynamic shifts that enhance particle deposition. Compared to a reference scenario, the most polar extracts yielded highest cytotoxicity while higher genotoxicity (including oxidative damage) was elicited by non-polar solvents. While the former caused effects similar to those expected from biocides, the latter triggered effects compatible with known pro-mutagens like PAHs, even though the overall levels of toxicants were considered of low risk. The results indicate that the approach may constitute an effective line-of-evidence to infer on the predominant set of hazardous contaminants present in complex environmental mixtures.
Collapse
Affiliation(s)
- M Pinto
- Departamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge, I.P., Av. Padre Cruz, 1649-016 Lisboa, Portugal
| | - P M Costa
- Departamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge, I.P., Av. Padre Cruz, 1649-016 Lisboa, Portugal; IMAR - Instituto do Mar, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| | - H Louro
- Departamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge, I.P., Av. Padre Cruz, 1649-016 Lisboa, Portugal
| | - M H Costa
- IMAR - Instituto do Mar, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - J Lavinha
- Departamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge, I.P., Av. Padre Cruz, 1649-016 Lisboa, Portugal
| | - S Caeiro
- IMAR - Instituto do Mar, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; Departamento de Ciências e Tecnologia, Universidade Aberta, Rua da Escola Politécnica, 141, 1269-001 Lisboa, Portugal; CENSE - Centre for Environmental and Sustainability Research, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - M J Silva
- Departamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge, I.P., Av. Padre Cruz, 1649-016 Lisboa, Portugal
| |
Collapse
|
49
|
Barranger A, Akcha F, Rouxel J, Brizard R, Maurouard E, Pallud M, Menard D, Tapie N, Budzinski H, Burgeot T, Benabdelmouna A. Study of genetic damage in the Japanese oyster induced by an environmentally-relevant exposure to diuron: evidence of vertical transmission of DNA damage. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 146:93-104. [PMID: 24291084 DOI: 10.1016/j.aquatox.2013.10.032] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Revised: 10/17/2013] [Accepted: 10/29/2013] [Indexed: 06/02/2023]
Abstract
Pesticides represent a major proportion of the chemical pollutants detected in French coastal waters and hence a significant environmental risk with regards to marine organisms. Commercially-raised bivalves are particularly exposed to pollutants, among them pesticides, as shellfish farming zones are subject to considerable pressure from agricultural activities on the mainland. The aims of this study were to determine (1) the genotoxic effects of diuron exposure on oyster genitors and (2) the possible transmission of damaged DNA to offspring and its repercussions on oyster fitness. To investigate these points, oysters were exposed to concentrations of diuron close to those detected in the Marennes-Oleron Basin (two 7-day exposure pulses at 0.4 and 0.6 μg L(-1)) during the gametogenesis period. Genomic abnormalities were characterized using two complementary approaches. The Comet assay was applied for the measurement of early and reversible primary DNA damage, whereas flow cytometry was used to assess the clastogenic and aneugenic effect of diuron exposure. Polar Organic Chemical Integrative Samplers (POCIS) were used in exposed and assay tanks to confirm the waterborne concentration of diuron reached during the experiment. The results obtained by the Comet assay clearly showed a higher level of DNA strand breaks in both the hemocytes and spermatozoa of diuron-exposed genitors. The transmission of damaged genetic material to gamete cells could be responsible for the genetic damage measured in offspring. Indeed, flow cytometry analyses showed the presence of DNA breakage and a significant decrease in DNA content in spat from diuron-exposed genitors. The transmission of DNA damage to the offspring could be involved in the negative effects observed on offspring development (decrease in hatching rate, higher level of larval abnormalities, delay in metamorphosis) and growth. In this study, the vertical transmission of DNA damage was so highlighted by subjecting oyster genitors to short exposures to diuron at medium environmental concentrations. The analysis of POCIS showed that oysters were exposed to integrated concentrations as low as 0.2 and 0.3 μg L(-1), emphasizing the relevance of the results obtained and the risk associated to chemical contamination for oyster recruitment and fitness.
Collapse
Affiliation(s)
- A Barranger
- Ifremer, SG2M, Laboratory of Genetics and Pathology of Marine Molluscs, Avenue de Mus du Loup, F-17390 La Tremblade, France; Ifremer, Department of Biogeochemistry and Ecotoxicology, Laboratory of Ecotoxicology, Rue de l'Ile d'Yeu, BP 21105, F-44311 Nantes Cedex 03, France
| | - F Akcha
- Ifremer, Department of Biogeochemistry and Ecotoxicology, Laboratory of Ecotoxicology, Rue de l'Ile d'Yeu, BP 21105, F-44311 Nantes Cedex 03, France.
| | - J Rouxel
- Ifremer, Department of Biogeochemistry and Ecotoxicology, Laboratory of Ecotoxicology, Rue de l'Ile d'Yeu, BP 21105, F-44311 Nantes Cedex 03, France
| | - R Brizard
- Ifremer, SG2M, Laboratory of Genetics and Pathology of Marine Molluscs, Avenue de Mus du Loup, F-17390 La Tremblade, France
| | - E Maurouard
- Ifremer, SG2M, Laboratory of Genetics and Pathology of Marine Molluscs, Avenue de Mus du Loup, F-17390 La Tremblade, France
| | - M Pallud
- Ifremer, Department of Biogeochemistry and Ecotoxicology, Laboratory of Ecotoxicology, Rue de l'Ile d'Yeu, BP 21105, F-44311 Nantes Cedex 03, France
| | - D Menard
- Ifremer, Department of Biogeochemistry and Ecotoxicology, Laboratory of Ecotoxicology, Rue de l'Ile d'Yeu, BP 21105, F-44311 Nantes Cedex 03, France
| | - N Tapie
- University of Bordeaux, EPOC UMR CNRS 5805, F-33400 Talence, France
| | - H Budzinski
- University of Bordeaux, EPOC UMR CNRS 5805, F-33400 Talence, France
| | - T Burgeot
- Ifremer, Department of Biogeochemistry and Ecotoxicology, Laboratory of Ecotoxicology, Rue de l'Ile d'Yeu, BP 21105, F-44311 Nantes Cedex 03, France
| | - A Benabdelmouna
- Ifremer, SG2M, Laboratory of Genetics and Pathology of Marine Molluscs, Avenue de Mus du Loup, F-17390 La Tremblade, France
| |
Collapse
|
50
|
Jesenska S, Nemethova S, Blaha L. Validation of the species sensitivity distribution in retrospective risk assessment of herbicides at the river basin scale-the Scheldt river basin case study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:6070-6084. [PMID: 23532537 DOI: 10.1007/s11356-013-1644-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 03/13/2013] [Indexed: 06/02/2023]
Abstract
Species sensitivity distribution (SSD) is commonly used in prospective risk assessment to derive predicted no-effect concentrations, toxicity exposure ratios, and environmental quality standards for individual chemicals such as pesticides. The application of SSD in the retrospective risk assessment of chemical mixtures at the river basin scale (i.e., the estimation of "multiple substance potentially affected fractions" [msPAFs]) has been suggested, but detailed critical assessment of such an application is missing. The present study investigated the impact of different data validation approaches in a retrospective model case study focused on seven herbicides monitored at the Scheldt river basin (Belgium) between 1998 and 2009. The study demonstrated the successful application of the SSD approach. Relatively high impacts of herbicides on aquatic primary producers were predicted. Often, up to 40 % of the primary producer communities were affected, as predicted by chronic msPAF, and in some cases, the predicted impacts were even more pronounced. The risks posed by the studied herbicides decreased during the 1998-2009 period, along with decreasing concentrations of highly toxic pesticides such as simazine or isoproturon. Various data validation approaches (the removal of duplicate values and outliers, the testing of different exposure durations and purities of studied herbicides, etc.) substantially affected SSD at the level of individual studied compounds. However, the time-consuming validation procedures had only a minor impact on the outcomes of the retrospective risk assessment of herbicide mixtures at the river basin scale. Selection of the appropriate taxonomic group for SSD calculation and selection of the species-specific endpoint (i.e., the most sensitive or average value per species) were the most critical steps affecting the final risk values predicted. The present validation study provides a methodological basis for the practical use of SSD in the retrospective risk assessment of chemical mixtures.
Collapse
Affiliation(s)
- Sona Jesenska
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | | | | |
Collapse
|