1
|
Premchand P, Demichelis F, Galletti C, Chiaramonti D, Bensaid S, Antunes E, Fino D. Enhancing biochar production: A technical analysis of the combined influence of chemical activation (KOH and NaOH) and pyrolysis atmospheres (N 2/CO 2) on yields and properties of rice husk-derived biochar. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:123034. [PMID: 39442397 DOI: 10.1016/j.jenvman.2024.123034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/21/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
The production of biochar from biomass has received considerable interest due to its potential in environmental applications; however, optimizing biochar properties remains a major challenge. The objective of the present study was to investigate the synergistic effects of pyrolysis atmospheres (N2 and CO2) and chemical activation (pre- and post-pyrolysis) with NaOH and KOH on the properties of biochar useful for its environmental applications. In this study rice husk and biochar were impregnated with KOH and NaOH before and after pyrolysis, which was carried out at 600 °C under N₂ and CO₂ atmosphere. The pyrolytic yields (biochar, liquid and gas) and detailed characterization of biochar were performed. The results showed that pre-activation with both alkalis under a CO2 atmosphere slightly decreased the biochar yield and carbon contents while increasing oxygen in biochars compared to N2 atmosphere. Alkali pre-activation in the CO2 atmosphere considerably increased the specific surface area and pore volume of biochars compared to the N2 atmosphere, with KOH being more effective than NaOH. The maximum specific surface area (SSA) and pore volume (PV) of biochar obtained were 178.4 m2/g and 0.60 cm3/g for KOH activated biochar under CO2, which were 3.2 times and 30 times higher than the untreated biochar. The post-activation of biochars with both alkalis resulted in moderate improvements in textural properties. Overall, chemical activation under CO2 pyrolysis facilitated a higher level of chemical activation reactions leading to increased formation of oxygen functional groups and contributed to enhanced SSA and PV of the biochar useful for adsorption.
Collapse
Affiliation(s)
- Premchand Premchand
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129, Turin, TO, Italy; Department of Science, Technology and Society, University School for Advanced Studies IUSS Pavia, 27100, Pavia, PV, Italy
| | - Francesca Demichelis
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129, Turin, TO, Italy.
| | - Camilla Galletti
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129, Turin, TO, Italy
| | - David Chiaramonti
- Department of Energy, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129, Turin, TO, Italy
| | - Samir Bensaid
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129, Turin, TO, Italy
| | - Elsa Antunes
- College of Science and Engineering, James Cook University, Townsville, Australia
| | - Debora Fino
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129, Turin, TO, Italy.
| |
Collapse
|
2
|
Rahim HU, Allevato E, Stazi SR. Sulfur-functionalized biochar: Synthesis, characterization, and utilization for contaminated soil and water remediation-a review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122670. [PMID: 39366224 DOI: 10.1016/j.jenvman.2024.122670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/06/2024]
Abstract
The development of innovative, eco-friendly, and cost-effective adsorbents is crucial for addressing the widespread issue of organic and inorganic pollutants in soil and water. Recent advancements in sulfur reagents-based materials, such as FeS, MoS2, MnS, S0, CS2, Na2S, Na2S2O32-, H2S, S-nZVI, and sulfidated Fe0, have shown potential in enhancing the functional properties and elemental composition of biochar for pollutant removal. This review explores the synthesis and characterization of sulfur reagents/species functionalized biochar (S-biochar), focusing on factors like waste biomass attributes, pyrolysis conditions, reagent adjustments, and experimental parameters. S-biochar is enriched with unique sulfur functional groups (e.g., C-S, -C-S-C, C=S, thiophene, sulfone, sulfate, sulfide, sulfite, elemental S) and various active sites (Fe, Mn, Mo, C, OH, H), which significantly enhance its adsorption efficiency for both organic pollutants (e.g., dyes, antibiotics) and inorganic pollutants (e.g., metal and metalloid ions). The literature analysis reveals that the choice of feedstock, influenced by its lignocellulosic content and xylem structure, critically impacts the effectiveness of pollutant removal in soil and water. Pyrolysis parameters, including temperature (200-600 °C), duration (2-10 h), carbon-to-hydrogen (C:H) and oxygen-to-hydrogen (O:H) ratios in biochar, as well as the biochar-to-sulfur reagent modification ratio, play key roles in determining adsorption performance. Additionally, solution pH (2-8) and temperature (288, 298, and 308 K) affect the efficiency of pollutant removal, though optimal dosages for adsorbents remain inconsistent. The primary removal mechanisms involve physisorption and chemisorption, encompassing adsorption, reduction, degradation, surface complexation, ion exchange, electrostatic interactions, π-π interactions, and hydrogen bonding. This review highlights the need for further research to optimize synthesis protocols and to better understand the long-term stability and optimal dosage of S-biochar for practical environmental applications.
Collapse
Affiliation(s)
- Hafeez Ur Rahim
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DOCPAS), University of Ferrara, 44121 Ferrara, Italy
| | - Enrica Allevato
- Department of Environmental and Prevention Sciences (DiSAP), University of Ferrara, 44121 Ferrara, Italy
| | - Silvia Rita Stazi
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DOCPAS), University of Ferrara, 44121 Ferrara, Italy.
| |
Collapse
|
3
|
Rasheed A, Rasheed F, Kayani WK, Jawad M, Ghous T, Irshad M. EDTA functionalized pine needle biochar (EDTA@BC); a valorized bio-material for removal of Ni(II) from aqueous solution. Microsc Res Tech 2024; 87:2355-2370. [PMID: 38798148 DOI: 10.1002/jemt.24616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/03/2024] [Accepted: 05/12/2024] [Indexed: 05/29/2024]
Abstract
The preparation of ethylenediaminetetraacetic acid (EDTA) functionalized pine needles biochar (EDTA@BC) as a low-cost active adsorbent and its effectiveness in removing Ni(II) from aqueous solution at various conditions is reported in this paper. First, alkali activation was selected to render the pine needle biochar with an excellent porous structure and increased concentration of hydroxyl groups to facilitate grafting. Subsequently, a simple method was utilized to graft EDTA onto the biochar. The prepared EDTA@BC was characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and energy dispersive x-ray spectrometry (EDX). Batch adsorption studies were conducted to assess the impact of various parameters such as solution pH, adsorbent dosage, adsorbate volume, and shaking time on the removal efficiency of Ni(II). At pH 6, 100 mg dosage, 4 mL of adsorbate volume, and 10 min of shaking time, the maximum removal efficiency of Ni(II) was observed to be 89%. EDTA@BC showed reasonable sorption performance still after the third cycle of regeneration. The effect of interfering ions such as Pb, Cr, Cu, and Hg was evaluated, resulting a decrease of 69%, 78%, 76%, and 68%, respectively, in its sorption capacity. The Langmuir model provided a better fit for Ni(II) in the concentration range of 0.1-2000 ppm under optimized conditions, with qmax of 46.69 ± 1.031 mg/g and KL of 0.001, compared with the Freundlich isotherm, which yielded n = 0.234 and χ2 = 2.7899, Temkin isotherm (R2 = 0.9520), and Redlich-Peterson isotherm (R2 = 0.9725). The removal of Ni(II) by EDTA@BC was found to be the pseudo-second-order kinetics. Thermodynamic studies indicated adsorption process to be endothermic and nonspontaneous. Hence, a sustainable valorized bio-material (EDTA@BC) is prepared having better sorption efficiency of Ni(II) from aqueous solution with possible wide applicability. RESEARCH HIGHLIGHTS: New EDTA functionalized indigenous pine needles biochar (EDTA@BC) was prepared. This low-cost active adsorbent found effective in removing Ni(II) from aqueous solution. FTIR, SEM, and EDX proved synthesis and uptake of Ni(II) from aqueous solution. Ni(II) removal, regeneration, interfering and adsorption studies were performed by UV-Vis spectroscopy.
Collapse
Affiliation(s)
- Aamir Rasheed
- Faculty of Basic and Applied Sciences, Chemistry Department, University of Kotli, Kotli, Azad Jammu and Kashmir, Pakistan
| | - Faiza Rasheed
- Department of Biotechnology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Waqas Khan Kayani
- Department of Biotechnology, Faculty of Basic and Applied Sciences, University of Kotli, Kotli, Azad Jammu and Kashmir, Pakistan
| | - Muhammad Jawad
- Faculty of Basic and Applied Sciences, Chemistry Department, University of Kotli, Kotli, Azad Jammu and Kashmir, Pakistan
| | - Tahseen Ghous
- Department of Chemistry, Mirpur University of Science & Technology (MUST), Mirpur, Pakistan
| | - Muhammad Irshad
- Faculty of Basic and Applied Sciences, Chemistry Department, University of Kotli, Kotli, Azad Jammu and Kashmir, Pakistan
| |
Collapse
|
4
|
Li X, Li T, Jeyakumar P, Li J, Bao Y, Jin X, Zhang J, Guo C, Jiang X, Lu G, Dang Z, Wang H. Effect of biochar-derived DOM on contrasting redistribution of chromate during Schwertmannite dissolution and recrystallization. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134988. [PMID: 38908178 DOI: 10.1016/j.jhazmat.2024.134988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Biochar-derived dissolved organic matter (BDOM), is extensively involved in the recrystallization of minerals and the speciation alteration of associated toxic metals. This study investigates how BDOM extracted from tobacco petiole (TP) or tobacco stalk (TS) biochar influences the speciation repartitioning of Cr(VI) in environments impacted by acid mine drainage (AMD), focusing on interactions with secondary minerals during Schwertmannite (Sch) dissolution and recrystallization. TP-BDOM, rich in lignin-like substances, slowed down the Cr-Sch dissolution and Cr release under acidic conditions compared to TS-BDOM. TP-BDOM's higher O/C component exerts a delayed impact on Cr-Sch stability and Cr(VI) reduction. In-situ ATR-FTIR and 2D-COS analysis showed that carboxylic and aromatic N-OH groups in BDOM could interact with Cr-Sch surfaces, affecting sulfate and Cr(VI) release. It was also observed that slight recrystallization occurred from Cr-Sch to goethite, along with increased Cr incorporation into secondary minerals within TS-BDOM. This enhances our understanding of BDOM's role in Cr(VI) speciation changes in AMD-contaminated sites.
Collapse
Affiliation(s)
- Xiaofei Li
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, PR China
| | - Tianfu Li
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, PR China
| | - Paramsothy Jeyakumar
- Environmental Sciences Group, School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand
| | - Jiayi Li
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, PR China; Agronomy College, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Yanping Bao
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, PR China
| | - Xiaohu Jin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Jun Zhang
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, PR China; Agronomy College, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Chuling Guo
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Xueding Jiang
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, PR China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, PR China; Guangdong Provincial Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China.
| |
Collapse
|
5
|
Peng L, Li W, Du J, Zhang M, Zhao L. Efficient removal of p-nitrophenol from water by imidazolium ionic liquids functionalized cellulose microsphere. Int J Biol Macromol 2024; 273:133117. [PMID: 38871098 DOI: 10.1016/j.ijbiomac.2024.133117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/31/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
Removing p-nitrophenol (PNP) from water resources is crucial due to its significant threat to the environment and human health. Herein, imidazolium ionic liquids with short/long alkyl chain ([C2VIm]Br and [C8VIm]Br) modified cellulose microspheres (MCC-[C2VIm]Br and MCC-[C8VIm]Br) were synthesized by radiation method. To examine the impact of adsorbent hydrophilicity on adsorption performance, batch and column experiments were conducted for PNP adsorption. The MCC-[C2VIm]Br and MCC-[C8VIm]Br, with an equivalent molar import amount of ionic liquids, exhibited maximum adsorption capacities of 190.84 mg/g and 191.20 mg/g for PNP, respectively, and the adsorption equilibrium was reached within 30 min. Both adsorbents displayed exceptional reusability. Integrating the findings from XPS and FTIR analyses, and AgNO3 identification, the suggested adsorption mechanism posited that the adsorbents engaged with PNP through ion exchange, hydrogen bonds and π-π stacking. Remarkably, the hydrophobic MCC-[C8VIm]Br exhibited superior selectivity for PNP than the hydrophilic MCC-[C2VIm]Br, while had little effect on adsorption capacity and rate. MCC-[C8VIm]Br-2 with high grafting yield increased the adsorption capacity to 327.87 mg/g. Moreover, MCC-[C8VIm]Br-2 demonstrated efficient PNP removal from various real water samples, and column experiments illustrated its selective capture of PNP from groundwater. The promising adsorption performance indicates that MCC-[C8VIm]Br-2 holds potential for PNP removal from wastewater.
Collapse
Affiliation(s)
- Lifang Peng
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China; State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wenkang Li
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jifu Du
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China.
| | - Manman Zhang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430040, China.
| | - Long Zhao
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
6
|
Tran TK, Huynh L, Nguyen HL, Nguyen MK, Lin C, Hoang TD, Hung NTQ, Nguyen XH, Chang SW, Nguyen DD. Applications of engineered biochar in remediation of heavy metal(loid)s pollution from wastewater: Current perspectives toward sustainable development goals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171859. [PMID: 38518825 DOI: 10.1016/j.scitotenv.2024.171859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Environmental pollution of heavy metal(loid)s (HMs) caused adverse impacts, has become one of the emerging concerns and challenges worldwide. Metal(loid)s can pose significant threats to living organisms even when present in trace levels within environmental matrices. Extended exposure to these substances can lead to adverse health consequences in humans. Removing HM-contaminated water and moving toward sustainable development goals (SDGs) is critical. In this mission, biochar has recently gained attention in the environmental sector as a green and alternative material for wastewater removal. This work provides a comprehensive analysis of the remediation of typical HMs by biochars, associated with an understanding of remediation mechanisms, and gives practical solutions for ecologically sustainable. Applying engineered biochar in various fields, especially with nanoscale biochar-aided wastewater treatment approaches, can eliminate hazardous metal(loid) contaminants, highlighting an environmentally friendly and low-cost method. Surface modification of engineered biochar with nanomaterials is a potential strategy that positively influences its sorption capacity to remove contaminants. The research findings highlighted the biochars' ability to adsorb HM ions based on increased specific surface area (SSA), heightened porosity, and forming inner-sphere complexes with oxygen-rich groups. Utilizing biochar modification emerged as a viable approach for addressing lead (Pb), cadmium (Cd), arsenic (As), mercury (Hg), and chromium (Cr) pollution in aqueous environments. Most biochars investigated demonstrated a removal efficiency >90 % (Cd, As, Hg) and can reach an impressive 99 % (Pb and Cr). Furthermore, biochar and advanced engineered applications are also considered alternative solutions based on the circular economy.
Collapse
Affiliation(s)
- Thien-Khanh Tran
- Advanced Applied Sciences Research Group, Dong Nai Technology University, Bien Hoa City 76100, Viet Nam; Faculty of Technology, Dong Nai Technology University, Bien Hoa City 76100, Viet Nam
| | - Loan Huynh
- Advanced Applied Sciences Research Group, Dong Nai Technology University, Bien Hoa City 76100, Viet Nam; Faculty of Technology, Dong Nai Technology University, Bien Hoa City 76100, Viet Nam
| | - Hoang-Lam Nguyen
- Department of Civil Engineering, McGill University, Montreal, Canada
| | - Minh-Ky Nguyen
- Faculty of Environment and Natural Resources, Nong Lam University, Hamlet 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Viet Nam; Ph.D. Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan.
| | - Chitsan Lin
- Ph.D. Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Tuan-Dung Hoang
- School of Chemistry and Life Science, Hanoi University of Science and Technology, No. 1 Dai Co Viet, Hai Ba Trung, Hanoi 100000, Viet Nam; Vietnam National University, Hanoi - School of Interdisciplinary Sciences and Arts, 144 Xuan Thuy Street, Cau Giay District, Hanoi 100000, Viet Nam
| | - Nguyen Tri Q Hung
- Faculty of Environment and Natural Resources, Nong Lam University, Hamlet 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Viet Nam
| | - X Hoan Nguyen
- Ho Chi Minh City University of Industry and Trade, Ho Chi Minh City, Viet Nam
| | - S Woong Chang
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon 16227, South Korea
| | - D Duc Nguyen
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon 16227, South Korea; Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Viet Nam.
| |
Collapse
|
7
|
Yan C, Cai G. Sodium hydroxide/magnesium chloride multistage activated sludge biochar: interfacial chemical behavior and Cd(II) adsorption performance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:28379-28391. [PMID: 38536573 DOI: 10.1007/s11356-024-32972-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/05/2024] [Indexed: 04/30/2024]
Abstract
To enhance the adsorption performance of municipal sludge biochar on Cd(II), modified sludge biochar was prepared by sodium hydroxide/magnesium chloride (NaOH/MgCl2) graded activation, and the Cd(II) adsorption performance on sludge biochar (BC), NaOH-activated sludge biochar (NBC) and NaOH/MgCl2 activated sludge biochar (NBC-Mg) was investigated. The results showed that NaOH/MgCl2 graded activation upgraded the surface structure and enhanced the graphitization of sludge biochar. The adsorption experiments indicated that the adsorption kinetic and adsorption isotherm for Cd(II) were in accordance with the pseudo second-order kinetic and Langmuir model. The adsorption capacity of NBC-Mg (143.49 mg/g) for Cd(II) was higher than that of BC (50.40 mg/g) and NBC (85.20 mg/g). The mechanism of Cd(II) adsorption included ion exchange, complexation, cation-π interaction, and mineral precipitation. After five regeneration, the removal efficiency of Cd(II) by NBC-Mg remained above 90%. This work indicated that sludge biochar prepared by multistage activation could be an effective material for Cd-containing wastewater treatment.
Collapse
Affiliation(s)
- Chao Yan
- School of Civil Engineering, Anhui Jianzhu University, Hefei, 23061, People's Republic of China.
- Anhui Province Intelligent Underground Exploration and Environmental Geotechnical Engineering Research Center, Anhui Jianzhu University, Hefei, 230601, Anhui, People's Republic of China.
| | - Guojun Cai
- School of Civil Engineering, Anhui Jianzhu University, Hefei, 23061, People's Republic of China
- Anhui Province Intelligent Underground Exploration and Environmental Geotechnical Engineering Research Center, Anhui Jianzhu University, Hefei, 230601, Anhui, People's Republic of China
| |
Collapse
|
8
|
El-Maadawy MM, Elzoghby AA, Masoud AM, El-Deeb ZM, El Naggar AMA, Taha MH. Conversion of carbon black recovered from waste tires into activated carbon via chemical/microwave methods for efficient removal of heavy metal ions from wastewater. RSC Adv 2024; 14:6324-6338. [PMID: 38380235 PMCID: PMC10877484 DOI: 10.1039/d4ra00172a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/01/2024] [Indexed: 02/22/2024] Open
Abstract
In this research study, recovered carbon black (rCB) was obtained via pyrolysis of waste tires. The obtained rCB was then converted into activated carbon species through both chemical treatment and microwave coupled with chemical treatment as a two-step activation process. The activated carbon obtained from chemical activation was denoted as C-AC, while that obtained from exposure to microwave followed by chemical activation was labeled as MC-AC. These two structures were consequently introduced as sorbents for the removal of cadmium ions from an aqueous solution. The structural characteristics of the introduced adsorbents were confirmed using various techniques, namely X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, and energy-dispersive X-ray (EDX) spectroscopy. Additionally, textual features of these adsorbents were acquired via both scanning electron microscopy (SEM) and N2 adsorption-desorption BET surface area analyses. These two structures were then introduced for Cd ion adsorption under different operating conditions. Particularly, the effect of pH, contact time, adsorbent dose, and metal ion concentration on the efficiency of adsorption was investigated. The 1maximum adsorption capacity was detected at a pH value of 5.0, a contact time of 30 min, a sorbent dose of 0.4 g L-1, and an initial metal concentration of 50 mg L-1 using MC-AC, which exhibited nearly double the sorption capacity detected for C-AC. Kinetic studies indicated that the process of Cd(ii) adsorption is perfectly described and fitted by the pseudo-second-order model. However, adsorption isotherms for the two adsorbents were found to match the Langmuir model, referring to the occurrence of uniform monolayer adsorption for the metal ions. Thermodynamic analysis demonstrated that the adsorption process was spontaneous and endothermic.
Collapse
Affiliation(s)
- M M El-Maadawy
- Nuclear Materials Authority PO Box 530, El Maddi Cairo Egypt
| | - Amir A Elzoghby
- Nuclear Materials Authority PO Box 530, El Maddi Cairo Egypt
| | - Ahmed M Masoud
- Nuclear Materials Authority PO Box 530, El Maddi Cairo Egypt
| | - Zahraa M El-Deeb
- Chemistry Department, Faculty of Science, Mansoura University Mansoura Egypt
| | - Ahmed M A El Naggar
- Egyptian Petroleum Research Institute (EPRI) 1 Ahmed El-Zomor St., Nasr City Cairo Egypt
| | - Mohamed H Taha
- Nuclear Materials Authority PO Box 530, El Maddi Cairo Egypt
| |
Collapse
|
9
|
Hu Y, Cao Y, Ma C, Yan W. Nano-biochar as a potential amendment for metal(loid) remediation: Implications for soil quality improvement and stress alleviation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119658. [PMID: 38056332 DOI: 10.1016/j.jenvman.2023.119658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/01/2023] [Accepted: 11/18/2023] [Indexed: 12/08/2023]
Abstract
Metal(loid) contamination of agricultural soils has become an alarming issue due to its detrimental impacts on soil health and global agricultural production. Therefore, environmentally sustainable and cost-effective solutions are urgently required for soil remediation. Biochar, particularly nano-biochar, exhibits superior and high-performance capabilities in the remediation of metal(loid)-contaminated soil, owing to its unique structure and large surface area. Current researches on nano-biochar mainly focus on safety design and property improvement, with limited information available regarding the impact of nano-biochar on soil ecosystems and crop defense mechanisms in metal(loid)-contaminated soils. In this review, we systematically summarized recent progress in the application of nano-biochar for remediation of metal(loid)-contaminated soil, with a focus on possible factors influencing metal(loid) uptake and translocation in soil-crop systems. Additionally, we conducted the potential/related mechanisms by which nano-biochar can mitigate the toxic impacts of metal(loid) on crop production and security. Furthermore, the application of nano-biochar in field trials and existing challenges were also outlined. Future studies should integrate agricultural sustainability and ecosystem health targets into biochar design/selection. This review highlighted the potential of nano-biochar as a promising soil amendment for enhancing the remediation of metal(loid)-contaminated agricultural soils, thereby promoting the synthesis and development of highly efficient nano-biochar towards achieving environmental sustainability.
Collapse
Affiliation(s)
- Yi Hu
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China; Key Laboratory of Urban Forest Ecology of Hunan Province, Changsha, 410004, Hunan, China
| | - Yini Cao
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China; Key Laboratory of Urban Forest Ecology of Hunan Province, Changsha, 410004, Hunan, China.
| | - Chuanxin Ma
- Key Laboratory for City Cluste Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Wende Yan
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China; Key Laboratory of Urban Forest Ecology of Hunan Province, Changsha, 410004, Hunan, China.
| |
Collapse
|
10
|
Ge S, Zhao S, Wang L, Zhao Z, Wang S, Tian C. Exploring adsorption capacity and mechanisms involved in cadmium removal from aqueous solutions by biochar derived from euhalophyte. Sci Rep 2024; 14:450. [PMID: 38172293 PMCID: PMC10764732 DOI: 10.1038/s41598-023-50525-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
Biochar has shown potential as a sorbent for reducing Cd levels in water. Euhalophytes, which thrive in saline-alkali soils containing high concentrations of metal ions and anions, present an intriguing opportunity for producing biochar with inherent metal adsorption properties. This study focused on biochar derived from the euhalophyte Salicornia europaea and aimed to investigate its Cd adsorption capacity through adsorption kinetics and isotherm experiments. The results demonstrated that S. europaea biochar exhibited a high specific surface area, substantial base cation content, and a low negative surface charge, making it a highly effective adsorbent for Cd. The adsorption data fit well with the Langmuir isotherm model, revealing a maximum adsorption capacity of 108.54 mg g-1 at 25 °C. The adsorption process involved both surface adsorption and intraparticle diffusion. The Cd adsorption mechanism on the biochar encompassed precipitation, ion exchange, functional group complexation, and cation-π interactions. Notably, the precipitation of Cd2+ with CO32- in the biochar played a dominant role, accounting for 73.7% of the overall removal mechanism. These findings underscore the potential of euhalophytes such as S. europaea as a promising solution for remediating Cd contamination in aquatic environments.
Collapse
Affiliation(s)
- Shaoqing Ge
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 818 South Beijing Road, Ürümqi, 830011, Xinjiang, China
| | - Shuai Zhao
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 818 South Beijing Road, Ürümqi, 830011, Xinjiang, China.
| | - Lei Wang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 818 South Beijing Road, Ürümqi, 830011, Xinjiang, China
| | - Zhenyong Zhao
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 818 South Beijing Road, Ürümqi, 830011, Xinjiang, China
| | - Shoule Wang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 818 South Beijing Road, Ürümqi, 830011, Xinjiang, China
- Shandong Institute of Pomology, Taian, 271000, China
| | - Changyan Tian
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 818 South Beijing Road, Ürümqi, 830011, Xinjiang, China.
| |
Collapse
|
11
|
Xu W, Liang F, Liu Z, Li S, Li J, Jiang X, Pillai SC, Wu X, Wang H. Rational design of animal-derived biochar composite for peroxymonosulfate activation: Understanding the mechanism of singlet oxygen-mediated degradation of sulfamethoxazole. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122807. [PMID: 37907192 DOI: 10.1016/j.envpol.2023.122807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/09/2023] [Accepted: 10/24/2023] [Indexed: 11/02/2023]
Abstract
Animal-derived biochar are identified as a promising candidate for peroxymonosulfate (PMS) activation due to the abundant aromatics and oxygen-containing functional groups. The current investigation focuses on pig carcass-derived biochar (800-BA-PBC) by ball milling-assisted alkali activation. The results showed that 800-BA-PBC could effectively activate PMS and degraded 94.2% sulfamethoxazole (SMX, 10 mg/L) within 40 min. The reaction rate constant was found to be 47 times higher than that observed with PBC. The enhanced catalytic activity is mainly attributed to the increase in specific surface area, the increase content of oxygen-containing groups on the surface, and the formation of graphitic nitrogen. The quenching tests and electron paramagnetic resonance (EPR) analysis demonstrated that 1O2 is the main active species in the degradation of SMX. Moreover, the 800-BA-PBC + PMS system can maintain excellent degradation rate under different water quality, wide pH range, and the presence of different anions. The degradation pathways of SMX in the optimal system are also evaluated through intermediate identification and DFT calculation. These results indicate that the catalytic system has high anti-interference ability and practical application potential. This investigation provides new insight into the rational design of animal-derived biochar and develops a low-cost technology for the treatment of antibiotic containing wastewater.
Collapse
Affiliation(s)
- Weicheng Xu
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, PR China
| | - Fawen Liang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, PR China
| | - Zhang Liu
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, PR China
| | - Shuai Li
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, PR China
| | - Jiesen Li
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, PR China
| | - Xueding Jiang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, PR China.
| | - Suresh C Pillai
- Nanotechnology and Bio-Engineering Research Group, Department of Environmental Science, Atlantic Technological University, ATU Sligo, Ash Lane, Sligo, F91 YW50, Ireland
| | - Xiaolian Wu
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, PR China
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, PR China
| |
Collapse
|
12
|
Qiao H, Zhang S, Liu X, Wang L, Zhu L, Wang Y. Adsorption characteristics and mechanisms of Cd(II) from wastewater by modified chicken manure biochar. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:3800-3814. [PMID: 38095792 DOI: 10.1007/s11356-023-31341-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/29/2023] [Indexed: 01/19/2024]
Abstract
Due to the threat to food supply and human health posed by cadmium-contaminated wastewater, a highly effective adsorbent is under necessary development to remove cadmium from wastewater. In this study, four new types of modified biochars with different modifier concentrations were prepared from chicken manure using K2FeO4 as a modifier, and the modified biochar KFBC1 with the best adsorption effect was obtained through optimal experiments. Various characterization analyses have shown that KFBC1 has a rough surface structure, abundant pore structure, and a large number of functional groups. Additionally, iron oxides are introduced on the surface of the biochar, which provided a favorable condition for the adsorption of Cd(II) in wastewater. The adsorption performance of Cd(II) on the biochar before and after modification was investigated through batch adsorption experiments. The adsorption kinetic model of KFBC1 to Cd(II) in solution was in accordance with the quasi-secondary kinetic model, and the adsorption isothermal model was in accordance with the Langmuir model, with a maximum adsorption capacity of 330.06 mg/g, which was 5.15 fold of pristine BC. Meanwhile, the adsorption rate of Cd(II) by KFBC1 was positively correlated with dosage and pH. Pore adsorption, ion exchange, surface precipitation, interaction with -π electrons, and complexation of oxygen-containing functional groups on the surface were considered as important mechanisms for the removal of Cd(II) by KFBC1. According to the results, KFBC1 is a novel and efficient adsorbent that can be used as a treatment agent for cadmium-contaminated wastewater.
Collapse
Affiliation(s)
- Hua Qiao
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, People's Republic of China.
| | - Shuhao Zhang
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, People's Republic of China
| | - Xin Liu
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, People's Republic of China
| | - Lei Wang
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, People's Republic of China
| | - Longhui Zhu
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, People's Republic of China
| | - Yongxin Wang
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, People's Republic of China
| |
Collapse
|
13
|
Masud MAA, Shin WS, Sarker A, Septian A, Das K, Deepo DM, Iqbal MA, Islam ARMT, Malafaia G. A critical review of sustainable application of biochar for green remediation: Research uncertainty and future directions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166813. [PMID: 37683867 DOI: 10.1016/j.scitotenv.2023.166813] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/01/2023] [Accepted: 09/02/2023] [Indexed: 09/10/2023]
Abstract
Biochar, a carbon-rich material produced from the pyrolysis of organic biomass, has gained significant attention as a potential solution for sustainable green remediation practices. Several studies analyze biomass-derived biochar techniques and environmental applications, but comprehensive assessments of biochar limitations, uncertainty, and future research directions still need to be improved. This critical review aims to present a comprehensive analysis of biochar's efficacy in environmental applications, including soil, water, and air, by sequentially addressing its preparation, application, and associated challenges. The review begins by delving into the diverse methods of biochar production, highlighting their influence on physical and chemical properties. This review explores the diverse applications of biochar in remediating contaminated soil, water, and air while emphasizing its sustainability and eco-friendly characteristics. The focus is on incorporating biochar as a remediation technique for pollutant removal, sequestration, and soil improvement. The review highlights the promising results obtained from laboratory-scale experiments, field trials, and case studies, showcasing the effectiveness of biochar in mitigating contaminants and restoring ecosystems. The environmental benefits and challenges of biochar production, characterization, and application techniques are critically discussed. The potential synergistic effects of combining biochar with other remediation methods are also explored to enhance its efficacy. A rigorous analysis of the benefits and drawbacks of biochar for diverse environmental applications in terms of technical, environmental, economic, and social issues is required to support the commercialization of biochar for large-scale uses. Finally, future research directions and recommendations are presented to facilitate the development and implementation of biochar-based, sustainable green remediation strategies.
Collapse
Affiliation(s)
- Md Abdullah Al Masud
- School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Won Sik Shin
- School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Aniruddha Sarker
- Residual Chemical Assessment Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeollabuk-do 55365, Republic of Korea.
| | - Ardie Septian
- Research Center for Environmental and Clean Technology, National Research and Innovation Agency (Badan Riset dan Inovasi Nasional, BRIN), Serpong 15314, Indonesia.
| | - Kallol Das
- College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Deen Mohammad Deepo
- Department of Horticultural Science, Kyungpook National University, Daegu 41566, Republic of Korea.
| | | | - Abu Reza Md Towfiqul Islam
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh; Department of Development Studies, Daffodil International University, Dhaka 1216, Bangladesh.
| | - Guilherme Malafaia
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute-Urutaí Campus, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
14
|
Tian S, Gong X, Yu Q, Yao F, Li W, Guo Z, Zhang X, Yuan Y, Fan Y, Bian R, Wang Y, Zhang X, Li L, Pan G. Efficient removal of Cd(II) and Pb(II) from aqueous solution using biochars derived from food waste. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:122364-122380. [PMID: 37966646 DOI: 10.1007/s11356-023-30777-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/27/2023] [Indexed: 11/16/2023]
Abstract
Massive amount of food waste has been generated annually, posing a threat to ecological sustainability and the social economy due to current disposal methods. Urgent action is needed worldwide to convert the traditional pathway for treating food waste into a sustainable bioeconomy, as this will significantly benefit food chain management. This study explores the use of pyrolysis to produce different types of food waste biochars and investigates their adsorption capabilities for removing Cd2+ and Pb2+ in aqueous solution. The results indicated that co-pyrolysis biochar from fresh food waste and rice husk (FWRB) exhibited superior adsorption performance for Cd2+ (61.84 mg·g-1) and Pb2+ (245.52 mg·g-1), respectively. Pseudo-second-order kinetics (0.74 ≤ R2 ≤ 0.98) and Langmuir isotherms (0.87 ≤ R2 ≤ 0.98) indicated that the immobilized Cd2+ and Pb2+ on biochars were mainly attributed to the chemisorption, including precipitation with minerals (e.g., carbonates, silicates, and phosphate), complexation with functional groups (-OH), cation exchange (-COO-), and coordination with π-electrons. Furthermore, FWRB demonstrated reduced EC and Na content in comparison to food waste digestate biochar (FWDB) and food waste digestate co-pyrolysis with sawdust biochar (FWSB), with levels of Cd and Pb falling below China's current guideline thresholds. These findings suggested that co-pyrolysis of fresh food waste with rice husk could be applicable to the recycling of food waste into biochar products for heavy metal stabilization in contaminated water and soils.
Collapse
Affiliation(s)
- Shuai Tian
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Xueliu Gong
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Qiuyu Yu
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Fei Yao
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Wenjian Li
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- Jinhua Biomass Technology Institute, Jinhua Municipality, Zhejiang, 321000, China
| | - Zilin Guo
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Xin Zhang
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Yuan Yuan
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Yuqing Fan
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Rongjun Bian
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China.
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China.
| | - Yan Wang
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Xuhui Zhang
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Lianqing Li
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Genxing Pan
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| |
Collapse
|
15
|
Jam E, Khomari S, Ebadi A, Goli-Kalanpa E, Ghavidel A. Influences of peanut hull-derived biochar, Trichoderma harzianum and supplemental phosphorus on hairy vetch growth in Pb- and Zn-contaminated soil. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:9411-9432. [PMID: 37246205 DOI: 10.1007/s10653-023-01606-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 05/03/2023] [Indexed: 05/30/2023]
Abstract
In the present study, in order to improve the growth performance of hairy vetch (Vicia villosa Roth., Local landrace from Ardabil, Iran) seedlings grown in the soil contaminated with heavy metals Pb and Zn, our attention was directed toward the application of biochar, inoculation with conidial suspension of Trichoderma harzianum Rifai-T22 and management of phosphorus (P) nutrition. Heavy metal toxicity reduced leaf greenness, membrane stability index, maximum quantum yield of PSΙΙ (Fv/Fm), P concentration and uptake in plant tissues and root and shoot biomass, but increased Pb and Zn concentration and uptake in root and leaf, H2O2 and malondialdehyde content and CAT and POX activity in the leaves. The application of biochar, inoculation with Trichoderma fungus and P supplementation increased the shoot P content, which might contribute to the alleviation of P insufficiency and a subsequent elevation in P transfer to aboveground biomass, and eliminated the toxicity of heavy metal on hairy vetch plants, which was revealed in reducing oxidative stress and enhancing plant growth performance. The biochar considerably increased Zn immobilization, while being able to slightly stabilize Pb. Co-application of Trichoderma and 22 mg P/kg soil (22P) increased the concentration and uptake of Zn in the roots and decreased the translocation of this element to the shoots, especially when biochar was not amended. Although the biochar and P inputs could compensate the negative Trichoderma effects, the results suggested that biochar application in combination with fungal inoculation and 22-P supplementation could not only increase hairy vetch growth performance but also decline heavy metal uptake to ensure the production of a forage crop in soils polluted with heavy metals based on the nutritional standards of livestock.
Collapse
Affiliation(s)
- Elham Jam
- Department of Plant Production and Genetics Engineering, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Saeid Khomari
- Department of Plant Production and Genetics Engineering, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran.
| | - Ali Ebadi
- Department of Plant Production and Genetics Engineering, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Esmaiel Goli-Kalanpa
- Department of Soil Science Engineering, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Akbar Ghavidel
- Department of Soil Science Engineering, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| |
Collapse
|
16
|
Kozłowski M, Igwegbe CA, Tarczyńska A, Białowiec A. Revealing the Adverse Impact of Additive Carbon Material on Microorganisms and Its Implications for Biogas Yields: A Critical Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7250. [PMID: 38067995 PMCID: PMC10707503 DOI: 10.3390/ma16237250] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 09/16/2024]
Abstract
Biochar could be a brilliant additive supporting the anaerobic fermentation process. However, it should be taken into account that in some cases it could also be harmful to microorganisms responsible for biogas production. The negative impact of carbon materials could be a result of an overdose of biochar, high biochar pH, increased arsenic mobility in the methane fermentation solution caused by the carbon material, and low porosity of some carbon materials for microorganisms. Moreover, when biochar is affected by an anaerobic digest solution, it could reduce the biodiversity of microorganisms. The purpose of the article is not to reject the idea of biochar additives to increase the efficiency of biogas production, but to draw attention to the properties and ways of adding these materials that could reduce biogas production. These findings have practical relevance for organizations seeking to implement such systems in industrial or local-scale biogas plants and provide valuable insights for future research. Needless to say, this study will also support the implementation of biogas technologies and waste management in implementing the idea of a circular economy, further emphasizing the significance of the research.
Collapse
Affiliation(s)
- Michał Kozłowski
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (M.K.); or (C.A.I.); (A.T.)
| | - Chinenye Adaobi Igwegbe
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (M.K.); or (C.A.I.); (A.T.)
- Department of Chemical Engineering, Nnamdi Azikiwe University, P.M.B. 5025, Awka 420218, Nigeria
| | - Agata Tarczyńska
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (M.K.); or (C.A.I.); (A.T.)
| | - Andrzej Białowiec
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (M.K.); or (C.A.I.); (A.T.)
| |
Collapse
|
17
|
Zhou Q, Mai W, Chen Z, Wang X, Pu M, Tu J, Zhang C, Yi X, Huang M. Thiamethoxam adsorption by ZnCl 2 modified cow manure biochar: Mechanism and quantitative prediction. ENVIRONMENTAL RESEARCH 2023; 237:117004. [PMID: 37643684 DOI: 10.1016/j.envres.2023.117004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/15/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
The overuse of thiamethoxam (THM) has threatened the survival of living organisms and it is necessary to find an environmentally friendly material to remove THM frequently detected in water. Biochar prepared from cow manure modified with ZnCl2 (Zn-CBC) was used to remove THM. Compared to the unmodified cow manure biochar (CBC), the removal ratio of THM by Zn-CBC was enhanced 35 times. In the mechanistic analysis, SEM and BET showed that Zn-CBC had a good pore structure and its specific surface area (166.502 m2 g-1) increased to 17 times that of CBC, indicating that Zn-CBC had good pore adsorption properties. The adsorption kinetic and isotherm implied that the main mechanism was chemisorption including π-π interaction and H-bonding. Furthermore, the stable graphitized structure of Zn-CBC allowed for efficient adsorption and reusability. In addition, this study constructed an intelligent prediction model using batch experiment data, and the high R2 (0.978) and low RMSE (0.057) implied that the model could accurately and quantitatively predict the adsorption efficiency. This paper provides a novel perspective to simultaneously remove the neonicotinoid insecticides and realize the resource utilization of cow manure.
Collapse
Affiliation(s)
- Qiao Zhou
- SCNU (NAN'AN) Green and Low-carbon Innovation Center, Guangdong Provincial Engineering Research Center of Intelligent Low-carbon Pollution Prevention and Digital Technology & Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China
| | - Wenjie Mai
- SCNU (NAN'AN) Green and Low-carbon Innovation Center, Guangdong Provincial Engineering Research Center of Intelligent Low-carbon Pollution Prevention and Digital Technology & Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China
| | - Zhenguo Chen
- SCNU (NAN'AN) Green and Low-carbon Innovation Center, Guangdong Provincial Engineering Research Center of Intelligent Low-carbon Pollution Prevention and Digital Technology & Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China; SCNU Qingyuan Institute of Science and Technology Innovation Co, Ltd, Qingyuan 511517, PR China.
| | - Xinzhi Wang
- SCNU (NAN'AN) Green and Low-carbon Innovation Center, Guangdong Provincial Engineering Research Center of Intelligent Low-carbon Pollution Prevention and Digital Technology & Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China
| | - Mengjie Pu
- SCNU (NAN'AN) Green and Low-carbon Innovation Center, Guangdong Provincial Engineering Research Center of Intelligent Low-carbon Pollution Prevention and Digital Technology & Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China
| | - Jun Tu
- SCNU (NAN'AN) Green and Low-carbon Innovation Center, Guangdong Provincial Engineering Research Center of Intelligent Low-carbon Pollution Prevention and Digital Technology & Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China
| | - Chao Zhang
- SCNU (NAN'AN) Green and Low-carbon Innovation Center, Guangdong Provincial Engineering Research Center of Intelligent Low-carbon Pollution Prevention and Digital Technology & Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China; School of Civil Engineering & Transportation, South China University of Technology, Guangzhou, 510640, PR China
| | - Xiaohui Yi
- SCNU (NAN'AN) Green and Low-carbon Innovation Center, Guangdong Provincial Engineering Research Center of Intelligent Low-carbon Pollution Prevention and Digital Technology & Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China
| | - Mingzhi Huang
- SCNU (NAN'AN) Green and Low-carbon Innovation Center, Guangdong Provincial Engineering Research Center of Intelligent Low-carbon Pollution Prevention and Digital Technology & Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China; Huashi(Fujian) Environment Technology Co.,Ltd, Quanzhou, 362001, PR China; SCNU Qingyuan Institute of Science and Technology Innovation Co, Ltd, Qingyuan 511517, PR China; Econ Technology Co, Ltd, Yantai 265503, PR China.
| |
Collapse
|
18
|
Popoola LT. Taguchi Parametric Optimization and Cost Analysis of Hexavalent Chromium Sequestration From Aqueous Solution by NaOH-Modified Garcinia kola Hull Particles. ENVIRONMENTAL HEALTH INSIGHTS 2023; 17:11786302231200867. [PMID: 37808961 PMCID: PMC10557423 DOI: 10.1177/11786302231200867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 08/25/2023] [Indexed: 10/10/2023]
Abstract
The presence of chromium in industrial wastewater is unavoidable due to its large usage as part of chemical constituents used in many industries. Its removal from wastewater is imperative because it's toxic in nature. This study investigated the application of NaOH-modified Garcinia kola hull particles (cMGK-HP) for Cr(VI) sequestration from aqueous solution. The optimization of process parameters was executed using Taguchi of Design Expert software for optimum point prediction, analysis of variance, parameters interaction and mathematical model development. A proposed model was used for the adsorption cost analysis. The predicted and experimental percentage of Cr(VI) sequestration were recorded at optimum point to be 99.02% and 98.76% with pH, adsorbent dose, contact time, initial concentration, and temperature of 2, 8 g/L, 20 minutes, 10 mg/L, and 20°C respectively. A correlation coefficient of .9937 between experimental and predicted values of percentage Cr(VI) sequestration affirmed high efficacy of the developed model. ANOVA showed the order of parameter contribution to be pH > adsorbent dose > initial concentration > contact time > temperature. A maximum adsorption capacity of 217.39 mg g-1 was obtained for cMGK-HP. Cost analysis revealed using cMGK-HP to be cost effective for Cr(VI) sequestration with a total operational cost of 0.824 $/mole Cr(VI) ions when compared with commercial activated carbon. Adsorbent characterization revealed the presence of active functional groups enhancing the sequestration process. It could be deduced that cMGK-HP is effective to remove Cr(VI) from solution.
Collapse
Affiliation(s)
- Lekan Taofeek Popoola
- Separation Processes Research Laboratory, Department of Chemical and Petroleum Engineering, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| |
Collapse
|
19
|
El-Sabbagh SM, Mira HI, Desouky OA, Hussien SS, Elgohary DM, Ali AO, El Naggar AMA. Synthesis of fungal chitosan-polystyrene modified by nanoparticles of binary metals for the removal of heavy metals from waste aqueous media. RSC Adv 2023; 13:29735-29748. [PMID: 37822657 PMCID: PMC10563796 DOI: 10.1039/d3ra04451c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023] Open
Abstract
The objective of this study was to assess the efficacy of fungal chitosan-polystyrene-Co-nanocomposites (FCPNC) as a material for the adsorptive removal of cadmium (Cd) ions from aqueous solutions. The synthesis and characterization of FCPNC were accomplished using various analytical techniques, including Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) analysis, and dynamic light scattering (DLS). The effectiveness of this adsorbent in removing Cd(ii) species from solution matrices was systematically investigated, resulting in the achievement of a maximum adsorption capacity of approximately 112.36 mg g-1. This high adsorption capacity was detected using the following operational parameters: solution pH equals 5.0, 60 min as a contact time between the adsorbent and Cd(ii) solution, Cd initial concentration of 50 ppm, adsorbent dosage of 0.5 g L-1 and room temperature. The process of cadmium adsorption by FCPNC was found to follow the Langmuir isotherm model, suggesting that a chemical reaction occurs on the biosorbent surface. Kinetic studies have demonstrated that the cadmium removal process aligns well with the pseudo-second-order model. The thermodynamic analysis revealed the following values: ΔH° = 25.89 kJ mol-1, ΔG° = -21.58 kJ mol-1, and ΔS° = 159.30 J mol-1 K-1. These values indicate that the sorption process is endothermic, spontaneous, and feasible. These findings suggest the potential of FCPNC as an exceptionally effective biosorbent for the removal of water contaminants.
Collapse
Affiliation(s)
- Sabha M El-Sabbagh
- Department of Microbiology, Faculty of Science, Menoufia University Menoufia Egypt
| | - Hamed I Mira
- Nuclear Materials Authority P.O. Box 530, El Maddi Cairo Egypt
| | - Osman A Desouky
- Nuclear Materials Authority P.O. Box 530, El Maddi Cairo Egypt
| | | | - Dina M Elgohary
- Department of Microbiology, Faculty of Science, Menoufia University Menoufia Egypt
| | - Anwaar O Ali
- Egyptian Petroleum Research Institute (EPRI) 1 Ahmed El-Zomor St., Nasr City Cairo Egypt
| | - Ahmed M A El Naggar
- Egyptian Petroleum Research Institute (EPRI) 1 Ahmed El-Zomor St., Nasr City Cairo Egypt
| |
Collapse
|
20
|
Zhong M, Li W, Jiang M, Wang J, Shi X, Song J, Zhang W, Wang H, Cui J. Improving the ability of straw biochar to remediate Cd contaminated soil: KOH enhanced the modification of K 3PO 4 and urea on biochar. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115317. [PMID: 37536007 DOI: 10.1016/j.ecoenv.2023.115317] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/25/2023] [Accepted: 07/30/2023] [Indexed: 08/05/2023]
Abstract
In recent years, the improvement of soil cadmium (Cd) contamination remediation effect of biochar by modification has received wide attention. However, the effect of combined modification on biochar performance in soil Cd contamination remediation and the mechanism are still unclear. In this study, cotton straw biochar and maize straw biochar were co-modified by KOH (0, 3, 5 mol L-1), K3PO4, and urea. Then, two modified biochars with high Cd adsorption capacity were selected to test the soil Cd contamination remediation effect through a pot experiment. The results showed that the combined modification by using KOH, K3PO4, and urea significantly increased the specific surface area and nitrogen (N) and phosphorus (P) contents of biochar, providing more adsorption sites for Cd. Among the modified biochar, the cotton straw biochar modified with KOH (3 mol L-1), K3PO4, and urea (m3-CSB) had the highest adsorption capacity (111.25 mg g-1), which was 7.86 times that of cotton straw biochar (CSB). The m3-CSB for adsorption isotherm and kinetics of Cd conformed to the Langmuir model and Pseudo-second-order kinetic equation, respectively. In the pot experiment, under different exogenous Cd levels (0 (Cd0), 4 (Cd4), and 8 (Cd8) mg kg-1), m3-CSB treatment decreased soil available Cd content the most (51.68%-63.4%) compared with other biochar treatments. Besides, m3-CSB treatment significantly promoted the transformation of acid-soluble Cd to reducible, oxidizable, and residual Cd, reducing the bioavailability of Cd. At the Cd4 level, the application of m3-CSB significantly reduced cotton Cd uptake compared to CK, and the maximum reduction of Cd content in cotton fibers was as high as 81.95%. Therefore, cotton straw biochar modified with KOH (3 mol L-1), K3PO4, and urea has great potential in the remediation of soil Cd contamination.
Collapse
Affiliation(s)
- Mingtao Zhong
- Agricultural College, Shihezi University, Shihezi, Xinjiang 832000, People's Republic of China; Key Laboratory of Oasis Ecological Agriculture of Xinjiang Production and Construction Crops, Shihezi University, Shihezi, Xinjiang 832000, People's Republic of China
| | - Weidi Li
- Agricultural College, Shihezi University, Shihezi, Xinjiang 832000, People's Republic of China; Key Laboratory of Oasis Ecological Agriculture of Xinjiang Production and Construction Crops, Shihezi University, Shihezi, Xinjiang 832000, People's Republic of China
| | - Menghao Jiang
- Agricultural College, Shihezi University, Shihezi, Xinjiang 832000, People's Republic of China; Key Laboratory of Oasis Ecological Agriculture of Xinjiang Production and Construction Crops, Shihezi University, Shihezi, Xinjiang 832000, People's Republic of China
| | - Jingang Wang
- Agricultural College, Shihezi University, Shihezi, Xinjiang 832000, People's Republic of China; Key Laboratory of Oasis Ecological Agriculture of Xinjiang Production and Construction Crops, Shihezi University, Shihezi, Xinjiang 832000, People's Republic of China
| | - Xiaoyan Shi
- Agricultural College, Shihezi University, Shihezi, Xinjiang 832000, People's Republic of China; Key Laboratory of Oasis Ecological Agriculture of Xinjiang Production and Construction Crops, Shihezi University, Shihezi, Xinjiang 832000, People's Republic of China
| | - Jianghui Song
- Agricultural College, Shihezi University, Shihezi, Xinjiang 832000, People's Republic of China; Key Laboratory of Oasis Ecological Agriculture of Xinjiang Production and Construction Crops, Shihezi University, Shihezi, Xinjiang 832000, People's Republic of China
| | - Wenxu Zhang
- Agricultural College, Shihezi University, Shihezi, Xinjiang 832000, People's Republic of China; Key Laboratory of Oasis Ecological Agriculture of Xinjiang Production and Construction Crops, Shihezi University, Shihezi, Xinjiang 832000, People's Republic of China
| | - Haijiang Wang
- Agricultural College, Shihezi University, Shihezi, Xinjiang 832000, People's Republic of China; Key Laboratory of Oasis Ecological Agriculture of Xinjiang Production and Construction Crops, Shihezi University, Shihezi, Xinjiang 832000, People's Republic of China.
| | - Jing Cui
- Agricultural College, Shihezi University, Shihezi, Xinjiang 832000, People's Republic of China; Key Laboratory of Oasis Ecological Agriculture of Xinjiang Production and Construction Crops, Shihezi University, Shihezi, Xinjiang 832000, People's Republic of China.
| |
Collapse
|
21
|
Yang T, Zhang Z, Zhu W, Meng LY. Quantitative analysis of the current status and research trends of biochar research - A scientific bibliometric analysis based on global research achievements from 2003 to 2023. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:83071-83092. [PMID: 37338685 DOI: 10.1007/s11356-023-27992-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/25/2023] [Indexed: 06/21/2023]
Abstract
Biochar has excellent physical and chemical properties such as porosity, high carbon content, high cation exchange capacity, and rich surface functional groups and has been widely used in environmental remediation. Over the past 20 years, although various reviews have described the application of biochar as an environmentally friendly multifunctional material in environmental remediation, no comprehensive summary and analysis of the research trends in this field exists. To promote the rapid and stable development of the field of biochar, the current state of research on biochar is clarified using the bibliometric method in this report, and potential development directions and challenges for the future are identified. All relevant biochar literature from 2003-2023 was collected from the Chinese National Knowledge Infrastructure and Web of Science Core Collection. A total of 6,119 published Chinese papers and 25,174 English papers were selected for the quantitative analysis. CiteSpace, VOSviewer, and Scimago graphics software was used to summarize the numbers of papers published over the years, as well as the countries, institutions, and authors that published the most articles. Secondly, using keyword co-occurrence and emergence analysis, the recognized research hotspots in different areas such as adsorbents, soil remediation, catalytic oxidation, supercapacitors, and "biochar-microbial" synergy were analyzed. Finally, the prospects and challenges of biochar were assessed to provide new perspectives for further promoting its development in technological, economic, environmental, and other aspects.
Collapse
Affiliation(s)
- Tianming Yang
- Department of Environmental Science, College of Geography and Ocean Sciences, Yanbian University, Park Road 977, Yanji, 133002, Jilin Province, People's Republic of China
| | - Zixuan Zhang
- Department of Chemistry, College of Science, Yanbian University, Park Road 977, Yanji, 133002, Jilin Province, People's Republic of China
| | - Weihong Zhu
- College of Geography and Ocean Sciences, Yanbian University, Park Road 977, Yanji, 133002, Jilin Province, People's Republic of China
| | - Long-Yue Meng
- Department of Environmental Science, College of Geography and Ocean Sciences, Yanbian University, Park Road 977, Yanji, 133002, Jilin Province, People's Republic of China.
| |
Collapse
|
22
|
Sun M, Ma Y, Yang Y, Zhu X. Effect of iron impregnation ratio on the properties and adsorption of KOH activated biochar for removal of tetracycline and heavy metals. BIORESOURCE TECHNOLOGY 2023; 380:129081. [PMID: 37100302 DOI: 10.1016/j.biortech.2023.129081] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/16/2023] [Accepted: 04/20/2023] [Indexed: 05/14/2023]
Abstract
The effect of iron impregnation ratio on magnetic biochars (MBCs) prepared by biomass pyrolysis accompanied by KOH activation has been less reported. In this study, MBCs were produced by one-step pyrolysis/KOH-activation of walnut shell, rice husk and cornstalk with different impregnation ratios (0.3-0.6). The properties, adsorption capacity and cycling performance for Pb(II), Cd(II) and tetracycline of MBCs were determined. MBCs prepared with low impregnation ratio (0.3) showed stronger adsorption capacity on tetracycline. The adsorption capacity of WS-0.3 toward tetracycline was up to 405.01 mg g-1, while that of WS-0.6 was only 213.81 mg g-1. It is noteworthy that rice husk and cornstalk biochar with an impregnation ratio of 0.6 were more effective in removing Pb(II) and Cd(II), and the content of Fe0 crystals on surface strengthened the ion exchange and chemical precipitation. This work highlights that the impregnation ratio should be changed according to the actual application scenarios of MBC.
Collapse
Affiliation(s)
- Mengchao Sun
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Yakai Ma
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Yaojun Yang
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Xifeng Zhu
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China.
| |
Collapse
|
23
|
Wang Q, Yue Y, Liu W, Liu Q, Song Y, Ge C, Ma H. Removal Performance of KOH-Modified Biochar from Tropical Biomass on Tetracycline and Cr(VI). MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16113994. [PMID: 37297127 DOI: 10.3390/ma16113994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023]
Abstract
Biochar can be used to address the excessive use of tetracycline and micronutrient chromium (Cr) in wastewater that potentially threatens human health. However, there is little information about how the biochar, made from different tropical biomass, facilitates tetracycline and hexavalent chromium (Cr(VI)) removal from aqueous solution. In this study, biochar was prepared from cassava stalk, rubber wood and sugarcane bagasse, then further modified with KOH to remove tetracycline and Cr(VI). Results showed that pore characteristics and redox capacity of biochar were improved after modification. KOH-modified rubber wood biochar had the highest removal of tetracycline and Cr(VI), 1.85 times and 6 times higher than unmodified biochar. Tetracycline and Cr(VI) can be removed by electrostatic adsorption, reduction reaction, π-π stacking interaction, hydrogen bonding, pore filling effect and surface complexation. These observations will improve the understanding of the simultaneous removal of tetracycline and anionic heavy metals from wastewater.
Collapse
Affiliation(s)
- Qingxiang Wang
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yan Yue
- Engineering and Technology Center of Electrochemistry, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Wenfei Liu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Qing Liu
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yu Song
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Chengjun Ge
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China
| | - Hongfang Ma
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
24
|
Sarathchandra SS, Rengel Z, Solaiman ZM. A Review on Remediation of Iron Ore Mine Tailings via Organic Amendments Coupled with Phytoremediation. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091871. [PMID: 37176929 PMCID: PMC10181287 DOI: 10.3390/plants12091871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/08/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023]
Abstract
Mining operations degrade natural ecosystems by generating a large quantity of mine tailings. Mine tailings remain in dams/open ponds without further treatment after valuable metals such as iron ore have been extracted. Therefore, rehabilitation of tailings to mitigate the negative environmental impacts is of the utmost necessity. This review compares existing physical, chemical and amendment-assisted phytoremediation methods in the rehabilitation of mine tailings from the perspective of cost, reliability and durability. After review and discussion, it is concluded that amendment-assisted phytoremediation has received comparatively great attention; however, the selection of an appropriate phytoremediator is the critical step in the process. Moreover, the efficiency of phytoremediation is solely dependent on the amendment type and rate. Further, the application of advanced plant improvement technologies, such as genetically engineered plants produced for this purpose, would be an alternative solution. Further research is needed to determine the suitability of this method for the particular environment.
Collapse
Affiliation(s)
- Sajeevee S Sarathchandra
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| | - Zed Rengel
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| | - Zakaria M Solaiman
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
25
|
Johnson VE, Liao Q, Jallawide BW, Anaman R, Amanze C, Huang P, Cao W, Ding C, Shi Y. Simultaneous removal of As(V) and Pb(II) using highly-efficient modified dehydrated biochar made from banana peel via hydrothermal synthesis. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
26
|
Mo G, Xiao J, Gao X. NaHCO 3 activated sludge-derived biochar by KMnO 4 modification for Cd(II) removal from aqueous solutions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:57771-57787. [PMID: 36971938 DOI: 10.1007/s11356-023-26638-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/21/2023] [Indexed: 05/10/2023]
Abstract
The surface flat pristine biochar provides limited adsorption sites for Cd(II) adsorption. To address this issue, a novel sludge-derived biochar (MNBC) was prepared by NaHCO3 activation and KMnO4 modification. The batch adsorption experiments illustrated that the maximum adsorption capacity of MNBC was twice that of pristine biochar and reached equilibrium more quickly. The pseudo-second order and Langmuir model were more suitable for analyzing the Cd(II) adsorption process on MNBC. Na+, K+, Mg2+, Ca2+, Cl- and NO-3 had no effect on the Cd(II) removal. Cu2+ and Pb2+ inhibited the Cd(II) removal, while PO3-4 and humic acid (HA) promoted it. After 5 repeated experiments, the Cd(II) removal efficiency on MNBC was 90.24%. The Cd(II) removal efficiency of MNBC in different actual water bodies was over 98%. Furthermore, MNBC owned excellent Cd(II) adsorption performance in fixed bed experiments, and the effective treatment capacity was 450 BV. The co-precipitation, complexation, ion exchange and Cd(II)-π interaction were involved in Cd(II) removal mechanism. XPS analysis showed that NaHCO3 activation and KMnO4 modification enhanced the complexation ability of MNBC to Cd(II). The results suggested that MNBC can be used as an effective adsorbent for treating of Cd-contaminated wastewater.
Collapse
Affiliation(s)
- Guanhai Mo
- Department of Water Engineering and Science, School of Civil Engineering, University of South China, Hengyang, 421001, People's Republic of China.
| | - Jiang Xiao
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Xiang Gao
- Powerchina Zhongnan Engineering Corporation Co., Ltd, Changsha, 410000, People's Republic of China
| |
Collapse
|
27
|
Yuan Q, Wang P, Wang X, Hu B, Wang C, Xing X. Nano-chlorapatite modification enhancing cadmium(II) adsorption capacity of crop residue biochars. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161097. [PMID: 36587697 DOI: 10.1016/j.scitotenv.2022.161097] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Cadmium (Cd) contamination in rivers or lakes has attracted worldwide concerns. Biochar pyrolyzed form crop residues (CR) could adsorb Cd(II) from aquatic environments, while the removal capacity of single CR biochar is relatively low. Nano-chlorapatite (nClAP) modification can enhance metal scavenging ability, but little is known about the behaviors and mechanisms of Cd(II) adsorption by nClAP-modified CR biochars. In this study, the influences of feedstock type, pyrolysis temperature, nClAP modification and aquatic environments on Cd(II) adsorption of biochars derived from rice (RB) and wheat (WB) husks were investigated comprehensively. Results showed that the pristine RB and WB showed low and similar Cd(II) adsorption capacities, while the rise of pyrolysis temperatures from 300 to 600 °C significantly improved the adsorption capacities. The Cd(II) adsorption of both RB and WB was regarded as monolayer chemical processes controlled by chemical precipitation, surface complexation and cation exchange mechanisms. Moreover, the nClAP modification notably enhanced Cd(II) adsorption capacities from 13.2 to 39.9 mg·g-1 of pristine biochars to 25.2-60.7 mg·g-1 of modified biochars attributed to the improved contribution of Cd(II)-phosphate precipitation. Among all biochars, the nClAP-modified RB and WB pyrolyzed at 500 °C had the highest Cd(II) adsorption capacities with 60.7 and 48.3 mg·g-1, respectively. These biochars could maintain good adsorption performances under the neutral-alkaline (pH 6-8), low ionic strength, high dissolved organic matter and all oxidation-reduction potential conditions. In conclusion, this study reveals the importance of nClAP modification to optimize Cd(II) adsorption of CR biochars, which provides a promising future for its practical application in aquatic Cd(II) scavenging.
Collapse
Affiliation(s)
- Qiusheng Yuan
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu 210098, PR China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu 210098, PR China.
| | - Xun Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu 210098, PR China
| | - Bin Hu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu 210098, PR China
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu 210098, PR China
| | - Xiaolei Xing
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu 210098, PR China
| |
Collapse
|
28
|
Chen B, Guan H, Zhang Y, Liu S, Zhao B, Zhong C, Zhang H, Ding W, Song A, Zhu D, Liu L, Wulan B, Li H, Liu G, Feng X. Performance and mechanism of Pb2+ and Cd2+ ions’ adsorption via modified antibiotic residue-based hydrochar. Heliyon 2023; 9:e14930. [PMID: 37077678 PMCID: PMC10106921 DOI: 10.1016/j.heliyon.2023.e14930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/22/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
This study investigated the hydrochar-based porous carbon prepared by combining the technical route of hydrothermal carbonization (HTC) + chemical activation. The hydrochar morphology was adjusted by changing the activation reaction conditions and adding metal salts. Experiments showed that the activation of KHCO3 significantly increased the specific surface area and pore size of the hydrochar. Besides, oxygen-rich groups on the surface of the activated hydrochar interacted with heavy metal ions to achieve efficient adsorption. The activated hydrothermal carbon adsorption capacity for Pb2+ and Cd2+ ions reached 289 and 186 mg/g, respectively. The adsorption mechanism study indicated that the adsorption of Pb2+ and Cd2+ was related to electrostatic attraction, ion exchange, and complexation reactions. The "HTC + chemical activation" technology was environmentally friendly and effectively implemented antibiotic residues. Carbon materials with high adsorption capacity can be prepared so that biomass resources can be utilized with excessive value, as a consequence presenting technical assistance for the comprehensive disposal of organic waste in the pharmaceutical industry and establishing a green and clean production system.
Collapse
Affiliation(s)
- Bingtong Chen
- Energy Research Institute, Shandong Key Laboratory of Biomass Gasification Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, Shandong, China
| | - Haibin Guan
- Energy Research Institute, Shandong Key Laboratory of Biomass Gasification Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, Shandong, China
- Corresponding author.
| | - Yue Zhang
- Energy Research Institute, Shandong Key Laboratory of Biomass Gasification Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, Shandong, China
| | - Suxiang Liu
- Energy Research Institute, Shandong Key Laboratory of Biomass Gasification Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, Shandong, China
| | - Baofeng Zhao
- Energy Research Institute, Shandong Key Laboratory of Biomass Gasification Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, Shandong, China
| | - Cunqing Zhong
- Heze Institute of Product Inspection and Testing, Heze, 274000, Shandong, China
| | - Heming Zhang
- Heze Institute of Product Inspection and Testing, Heze, 274000, Shandong, China
| | - Wenran Ding
- Energy Research Institute, Shandong Key Laboratory of Biomass Gasification Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, Shandong, China
| | - Angang Song
- Energy Research Institute, Shandong Key Laboratory of Biomass Gasification Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, Shandong, China
| | - Di Zhu
- Energy Research Institute, Shandong Key Laboratory of Biomass Gasification Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, Shandong, China
- Corresponding author.
| | - Liangbei Liu
- Energy Research Institute, Shandong Key Laboratory of Biomass Gasification Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, Shandong, China
| | - Bari Wulan
- Energy Research Institute, Shandong Key Laboratory of Biomass Gasification Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, Shandong, China
| | - Huan Li
- Energy Research Institute, Shandong Key Laboratory of Biomass Gasification Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, Shandong, China
| | - Guofu Liu
- Energy Research Institute, Shandong Key Laboratory of Biomass Gasification Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, Shandong, China
| | - Xiangyu Feng
- Energy Research Institute, Shandong Key Laboratory of Biomass Gasification Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, Shandong, China
| |
Collapse
|
29
|
Zhang J, Yu S, Wang J, Zhao ZP, Cai W. Advanced water treatment process by simultaneous coupling granular activated carbon (GAC) and powdered carbon with ultrafiltration: Role of GAC particle shape and powdered carbon type. WATER RESEARCH 2023; 231:119606. [PMID: 36680821 DOI: 10.1016/j.watres.2023.119606] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
In current ultrafiltration systems, limited removal for small-sized contaminants and membrane fouling remain longstanding obstacles to overcome. Herein, a novel process by simultaneous coupling powered carbon (PC) and fluidized granular activated carbon (GAC) with ultrafiltration was proposed aiming to achieve high effluent quality and mitigated membrane fouling. This study conducted mechanistic explorations on the performances of different-shaped GAC particles on fouling control and PC release during fluidization, meanwhile comparing the utilizations of powdered activated carbon (PAC) and biochar in terms of their adsorption, deposition and interactions with aquatic contaminants during filtration. The results showed that the effluent COD of biochar-UF was slightly higher than PAC-UF attributed to lower specific surface area and pore volume present on biochar. Compared with PAC-UF, the biochar-UF without fluidized GAC exhibited higher fouling propensity due to more organics attached on membranes via bridging with Ca2+ released by the biochar. Concurrently, distinct morphologies were found for PAC and biochar depositions, where PAC uniformly dispersed on membranes but biochar tended to agglomerate. Interestingly, fluidized spherical GAC (RGAC) with highest particle momentum and least energy consumption appeared highly effective in reducing fouling associated with biochar, and the overall fouling rate of RGAC-biochar-UF was even lower than RGAC-PAC-UF system. More importantly, substantial amount of small-sized PC was released by two cylindrical-shaped GACs, which were determined to be around 12-16 mg/L in contrast to merely 3.4 mg/L produced from RGAC. Consequently, the RGAC-biochar-UF system achieved commensurate effluent quality but better permeability than RGAC-PAC-UF along with a 20% expenditure saved, which might be a promising water treatment system more suitable for large-scale applications.
Collapse
Affiliation(s)
- Jingyu Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Sijia Yu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Jingwei Wang
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Zhi-Ping Zhao
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Weiwei Cai
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China.
| |
Collapse
|
30
|
Na4P2O7-Modified Biochar Derived from Sewage Sludge: Effective Cu(II)-Adsorption Removal from Aqueous Solution. ADSORPT SCI TECHNOL 2023. [DOI: 10.1155/2023/8217910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
With the rapid development of industrialization, the amount of copper-containing wastewater is increasing, thereby posing a threat to the aquatic ecological environment and human health. Sludge biochar has received extensive concern in recent years due to its advantages of low cost and sustainability for the treatment of heavy-metal-containing wastewater. However, the heavy-metal-adsorption capacity of sludge biochar is limited. This study prepared a sodium pyrophosphate- (Na4P2O7-) modified municipal sludge-based biochar (SP-SBC) and evaluated its adsorption performance for Cu(II). Results showed that SP-SBC had higher yield, ash content, pH, Na and P content, and surface roughness than original sewage sludge biochar (SBC). The Cu(II)-adsorption capacity of SP-SBC was 4.55 times than that of SBC at room temperature. For Cu(II) adsorption by SP-SBC, the kinetics and isotherms conformed to the pseudo-second-order model and the Langmuir–Freundlich model, respectively. The maximum adsorption capacity of SP-SBC was 38.49 mg·g−1 at 35°C. Cu(II) adsorption by SP-SBC primarily involved ion exchange, electrostatic attraction, and precipitation. The desired adsorption performance for Cu(II) in the fixed-bed column experiment indicated that SP-SBC can be reused and had good application potential to treat copper-containing wastewater. Overall, this study provided a desirable sorbent (SP-SBC) for Cu(II) removal, as well as a new simple chemical-modification method for SBC to enhance Cu(II)-adsorption capacity.
Collapse
|
31
|
Savitri S, Reguyal F, Sarmah AK. A feasibility study on production, characterisation and application of empty fruit bunch oil palm biochar for Mn 2+ removal from aqueous solution. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120879. [PMID: 36566919 DOI: 10.1016/j.envpol.2022.120879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Empty fruit bunch oil palm (EFBOP) is one of the byproducts after oil palm fruitlet is removed in oil palm processing and is considered as waste. In this study, EFBOP was converted to biochar (BC-EFBOP) at 350-700 °C, with an overarching aim of determining the feasibility of adsorptive removal of manganese (a second dominant element in acid mine drainage) from water. Results showed that with increasing temperature, the BC-EFBOP yield decreased from 44.34% to 26.74%, along with the H/C (0.89%-0.29%) and O/C ratios (0.38%-0.23%), and the carbon content increased (62.7%-73.93%). As evidenced by Fourier Transform InfraRed spectroscopy (FTIR) and X-ray Photoelectron Spectroscopy (XPS), abundant oxygen-containing surface functional groups such as hydroxyl (-OH), carboxyl (-COOH), and ether (C-O-C) were retained, and aromatic CC groups were largely generated in the biochar. Pyrolysed biochar at 350 °C (BC350), with the least surface area (0.5 m2 g-1), exhibited the highest Mn2+ adsorption capacity (8.2 mg g-1), whereas for BC700, with the largest surface area (2.19 m2 g-1), had the lowest capacity for Mn2+ (1.2 mg g-1). Regardless of the temperature, solution pH of 5 was found to be optimal for Mn2+ removal from water. The Langmuir isotherm model best described the equilibrium adsorption data with a maximum adsorption capacity of 1.2-8.2 mg g-1 for initial concentrations of 5-250 mg L-1, whereas the adsorption kinetics followed the pseudo-second-order model. There was nearly four-fold increase in Mn2+ ions removal with increased biochar dosage (0.05-0.5 g), at initial Mn2+ concentration of 100 mg L-1. The study showed that a low-cost, environmentally friendly BC-EFBOP with optimal surface chemistry could potentially remediate Mn2+ ions from aqueous media. However, a proper cost-benefit and techno-economic analysis is needed prior to potential pilot scale studies.
Collapse
Affiliation(s)
- Savitri Savitri
- Department of Civil and Environmental Engineering, The Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand; National Research and Innovation Agency, Research Centre for Chemistry, Puspiptek Area Building 321, South Tangerang, 15314, Indonesia
| | - Febelyn Reguyal
- Department of Civil and Environmental Engineering, The Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Ajit K Sarmah
- Department of Civil and Environmental Engineering, The Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.
| |
Collapse
|
32
|
Enhancement on Removal of Oxytetracycline in Aqueous Solution by Corn Stover Biochar: Comparison of KOH and KMnO4 Modifications. Chem Eng Res Des 2023. [DOI: 10.1016/j.cherd.2022.12.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
33
|
Wang J, Wang Y, Wang J, Du G, Khan KY, Song Y, Cui X, Cheng Z, Yan B, Chen G. Comparison of cadmium adsorption by hydrochar and pyrochar derived from Napier grass. CHEMOSPHERE 2022; 308:136389. [PMID: 36099990 DOI: 10.1016/j.chemosphere.2022.136389] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Biochar (e.g. pyrochar and hydrochar) is considered a promising adsorbent for Cd removal from aqueous solution. Considering the vastly different physicochemical properties between pyrochar and hydrochar, the Cd2+ sorption capacity and mechanisms of pyrochars and hydrochars should be comparatively determined to guide the production and application of biochar. In this study, the hydrochars and pyrochars were prepared from Napier grass by hydrothermal carbonization (200 and 240 °C) and pyrolysis (300 and 500 °C), respectively, and the physicochemical properties and Cd2+ sorption performances of biochars were systematically determined. The pyrochars had higher pH and ash content as well as better stability, while the hydrochars showed more oxygen-containing functional groups (OFGs) and greater energy density. The pseudo second order kinetic model best fitted the Cd2+ sorption kinetics data of biochars, and the isotherm data of pyrochar and hydrochar were well described by Langmuir and Freundlich models, respectively. In comparison with hydrochar, the pyrochar exhibited better Cd2+ sorption capacity (up to 71.47 mg/g). With increasing production temperature, the Cd2+ sorption capacity of pyrochar elevated, while the reduction was found for hydrochar. The mineral interaction, complexation with surface OFGs, and coordination with π electron were considered the main mechanisms of Cd2+ removal by biochars. The minerals interaction and the complexation with OFGs was the dominant mechanism of Cd2+ removal by pyrochars and hydrochars, respectively. Therefore, the preparation technique and temperature have significant impacts on the sorption capacity and mechanisms of biochar, and pyrochar has better potential for Cd2+ removal than the congenetic hydrochar.
Collapse
Affiliation(s)
- Jiangtao Wang
- School of Environmental Science and Engineering/ Tianjin Key lab of Biomass Waste Utilization, Tianjin University, Tianjin, 300072, China
| | - Yuting Wang
- School of Environmental Science and Engineering/ Tianjin Key lab of Biomass Waste Utilization, Tianjin University, Tianjin, 300072, China
| | - Junxia Wang
- School of Environmental Science and Engineering/ Tianjin Key lab of Biomass Waste Utilization, Tianjin University, Tianjin, 300072, China
| | - Guiyue Du
- School of Environmental Science and Engineering/ Tianjin Key lab of Biomass Waste Utilization, Tianjin University, Tianjin, 300072, China
| | - Kiran Yasmin Khan
- Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Yanxing Song
- School of Environmental Science and Engineering/ Tianjin Key lab of Biomass Waste Utilization, Tianjin University, Tianjin, 300072, China
| | - Xiaoqiang Cui
- School of Environmental Science and Engineering/ Tianjin Key lab of Biomass Waste Utilization, Tianjin University, Tianjin, 300072, China.
| | - Zhanjun Cheng
- School of Environmental Science and Engineering/ Tianjin Key lab of Biomass Waste Utilization, Tianjin University, Tianjin, 300072, China
| | - Beibei Yan
- School of Environmental Science and Engineering/ Tianjin Key lab of Biomass Waste Utilization, Tianjin University, Tianjin, 300072, China
| | - Guanyi Chen
- School of Environmental Science and Engineering/ Tianjin Key lab of Biomass Waste Utilization, Tianjin University, Tianjin, 300072, China; School of Mechanical Engineering, Tianjin University of Commerce, Tianjin, 300134, China
| |
Collapse
|
34
|
Bashir S, Bashir S, Gulshan AB, Iqbal J, Diao ZH, Hassan W, Al-Hashimi A, Elshikh MS, Chen Z. Efficiency of Soil Amendments for Copper Removal and Brassica Juncea (L.) Growth in Wastewater Irrigated Agricultural Soil. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 109:1075-1080. [PMID: 36326843 DOI: 10.1007/s00128-022-03624-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Wastewater irrigation is becoming a massive challenge for sustainable agriculture. Particularly, copper (Cu) presence in wastewater poses a great threat to the food chain quality. Thus, scientists need to address this issue by using chemical and organic soil amendments to restore the soil ecosystem. Therefore, this study aims to examine the efficacy of sulphur, compost, acidified animal manure and sesame straw biochar for Cu immobilization, adsorption and Brassica growth in wastewater irrigated soil. The current findings presented that all the soil amendments prominently improved brassica yield and significantly minimized the Cu uptake by Brassica shoots and roots in sesame straw biochar (SB) (64.2% and 50.2%), compost (CP) (48% and 32.5%), acidified manure (AM) (37% and 23.2%) and Sulphur (SP) (16% and 3.1%) respectively relative to untreated soil. In addition, Cu bioavailability was reduced by 51%, 34%, 16.6%, and 7.4% when SB, CP, AM, and SP were incorporated in wastewater irrigated polluted soil. The Cu adsorption isotherm results also revealed that SB treated soil has great potential to increase Cu adsorption capacity by 223 mg g- 1 over control 89 mg g- 1. Among all the treatments, SB and CP were considered suitable candidates for the restoration of Cu polluted alkaline nature soil.
Collapse
Affiliation(s)
- Saqib Bashir
- Department of Soil and Environmental Sciences, Ghazi University, Dera Ghazi Khan, Pakistan.
| | - Safdar Bashir
- Department of Soil and Environmental Sciences, Ghazi University, Dera Ghazi Khan, Pakistan
| | | | - Javaid Iqbal
- Department of Agronomy, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Zeng-Hui Diao
- School of Environmental Science and Engineering, Zhongkai University of Agriculture and Engineering, 510225, Guangzhou, China
| | - Waseem Hassan
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Abdulrahman Al-Hashimi
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Mohamed S Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Zhongbing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500, Praha - Suchdol, Czech Republic.
| |
Collapse
|
35
|
Palansooriya KN, Yoon IH, Kim SM, Wang CH, Kwon H, Lee SH, Igalavithana AD, Mukhopadhyay R, Sarkar B, Ok YS. Designer biochar with enhanced functionality for efficient removal of radioactive cesium and strontium from water. ENVIRONMENTAL RESEARCH 2022; 214:114072. [PMID: 35987372 DOI: 10.1016/j.envres.2022.114072] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 07/25/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Radioactive elements released into the environment by accidental discharge constitute serious health hazards to humans and other organisms. In this study, three gasified biochars prepared from feedstock mixtures of wood, chicken manure, and food waste, and a KOH-activated biochar (40% food waste + 60% wood biochar (WFWK)) were used to remove cesium (Cs+) and strontium (Sr2+) ions from water. The physicochemical properties of the biochars before and after adsorbing Cs+ and Sr2+ were determined using X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectroscopy, extended X-Ray absorption fine structure (EXAFS) spectroscopy, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDX). The WFWK exhibited the highest adsorption capacity for Cs+ (62.7 mg/g) and Sr2+ (43.0 mg/g) among the biochars tested herein. The removal of radioactive 137Cs and 90Sr exceeded 80% and 47%, respectively, in the presence of competing ions like Na+ and Ca2+. The functional groups present in biochar, including -OH, -NH2, and -COOH, facilitated the adsorption of Cs+ and Sr2+. The Cs K-edge EXAFS spectra revealed that a single coordination shell was assigned to the Cs-O bonding at 3.11 Å, corresponding to an outer-sphere complex formed between Cs and the biochar. The designer biochar WFWK may be used as an effective adsorbent to treat radioactive 137Cs- and 90Sr-contaminated water generated during the operation of nuclear power plants and/or unintentional release, owing to the enrichment effect of the functional groups in biochar via alkaline activation.
Collapse
Affiliation(s)
- Kumuduni Niroshika Palansooriya
- Korea Biochar Research Center, APRU Sustainable Waste Management & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, South Korea; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - In-Ho Yoon
- Decontamination Technology Research Division, Korea Atomic Energy Research Institute, Daejeon, 34057, Republic of Korea
| | - Sung-Man Kim
- Decontamination Technology Research Division, Korea Atomic Energy Research Institute, Daejeon, 34057, Republic of Korea
| | - Chi-Hwa Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore
| | - Hyeonjin Kwon
- Decontamination Technology Research Division, Korea Atomic Energy Research Institute, Daejeon, 34057, Republic of Korea
| | - Sang-Ho Lee
- Disposal Performance Demonstration Research Division, Korea Atomic Energy Research Institute, Daejeon, 34057, Republic of Korea
| | | | - Raj Mukhopadhyay
- Division of Irrigation and Drainage Engineering, ICAR-Central Soil Salinity Research Institute, Karnal, 132001, Haryana, India
| | - Binoy Sarkar
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia.
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, South Korea.
| |
Collapse
|
36
|
Kumar R, Sharma P, Yang W, Sillanpää M, Shang J, Bhattacharya P, Vithanage M, Maity JP. State-of-the-art of research progress on adsorptive removal of fluoride-contaminated water using biochar-based materials: Practical feasibility through reusability and column transport studies. ENVIRONMENTAL RESEARCH 2022; 214:114043. [PMID: 36029838 DOI: 10.1016/j.envres.2022.114043] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 07/15/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Fluoride (F-) is one of the essential elements found in soil and water released from geogenic sources and several anthropogenic activities. Fluoride causes fluorosis, dental and skeletal growth problems, teeth mottling, and neurological damage due to prolonged consumption, affecting millions worldwide. Adsorption is an extensively implemented technique in water and wastewater treatment for fluoride, with significant potential due to efficiency, cost-effectiveness, ease of operation, and reusability. This review highlights the current state of knowledge for fluoride adsorption using biochar-based materials and the limitations of biochar for fluoride-contaminated groundwater and industrial wastewater treatment. Biochar materials have shown significant adsorption capacities for fluoride under the influence of low pH, biochar dose, initial concentration, temperature, and co-existing ions. Modified biochar possesses various functional groups (-OH, -CC, -C-O, -CONH, -C-OH, X-OH), in which enhanced hydroxyl (-OH) groups onto the surface plays a significant role in fluoride adsorption via electrostatic attraction and ion exchange. Regeneration and reusability of biochar sorbents need to be performed to a greater extent to improve removal efficiency and reusability in field conditions. Furthermore, the present investigation identifies the limitations of biochar materials in treating fluoride-contaminated drinking groundwater and industrial effluents. The fluoride removal using biochar-based materials at an industrial scale for understanding the practical feasibility is yet to be documented. This review work recommend the feasibility of biochar-based materials in column studies for fluoride remediation in the future.
Collapse
Affiliation(s)
- Rakesh Kumar
- School of Ecology and Environment Studies, Nalanda University, Rajgir, Bihar, 803116, India
| | - Prabhakar Sharma
- School of Ecology and Environment Studies, Nalanda University, Rajgir, Bihar, 803116, India.
| | - Wen Yang
- Agronomy College, Shenyang Agricultural University, Shenyang, China
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa; Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia; Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173212, Himachal Pradesh, India
| | - Jianying Shang
- Department of Soil and Water Science, China Agricultural University, Beijing, 100083, China
| | - Prosun Bhattacharya
- Department of Sustainable Development, Environmental Sciences and Engineering, KTH Royal Institute of Technology, Teknikringen, 10B SE-100 44, Stockholm, Sweden
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka; Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, 248007, India
| | - Jyoti Prakash Maity
- Department of Chemistry, School of Applied Sciences, KIIT Deemed to Be University, Bhubaneswar, Odisha, 751024, India
| |
Collapse
|
37
|
Liu L, Li C, Lai R, Li H, Lai L, Liu X. Perturbation and strengthening effects of DOM on the biochar adsorption pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 245:114113. [PMID: 36179450 DOI: 10.1016/j.ecoenv.2022.114113] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 08/29/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Biochar is an effective adsorbent commonly used in pollutants adsorption. However, natural constituents, such as dissolved organic matter (DOM), could affect pollutants adsorption. In this study, we analyzed the mechanisms underlying phenol adsorption on pine biochar under perturbation by fertilizer-derived DOM. In addition, biochar property alterations were characterized and further analyzed. The results showed that phenol and DOM combined to a certain extent in the adsorption system. DOM affected the adsorption pathway, which increased the biochar adsorption efficiency for phenol. The addition of DOM2 promoted phenol adsorption efficiency (70.31%), with total DOM adsorption capacity of 61.45 mg g-1 onto biochar.
Collapse
Affiliation(s)
- Le Liu
- National and Local Joint Engineering Research Center of Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Cheng Li
- National and Local Joint Engineering Research Center of Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ruite Lai
- National and Local Joint Engineering Research Center of Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Haixiao Li
- School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi 435003, Hubei, China
| | - Lisong Lai
- Agricultural Development Service Center of Tianjin, Tianjin 300061, China
| | - Xiaoning Liu
- National and Local Joint Engineering Research Center of Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
38
|
Li J, Liao L, Jia Y, Tian T, Gao S, Zhang C, Shen W, Wang Z. Magnetic Fe3O4/ZIF-8 optimization by Box-Behnken design and its Cd(II)-adsorption properties and mechanism. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
39
|
Yusuff AS, Lala MA, Thompson-Yusuff KA, Babatunde EO. ZnCl2-modified eucalyptus bark biochar as adsorbent: preparation, characterization and its application in adsorption of Cr(VI) from aqueous solutions. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1016/j.sajce.2022.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
40
|
Foong SY, Chan YH, Chin BLF, Lock SSM, Yee CY, Yiin CL, Peng W, Lam SS. Production of biochar from rice straw and its application for wastewater remediation - An overview. BIORESOURCE TECHNOLOGY 2022; 360:127588. [PMID: 35809876 DOI: 10.1016/j.biortech.2022.127588] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 06/30/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
The valorization of biochar as a green and low-cost adsorbent provides a sustainable alternative to commercial wastewater treatment technologies that are usually chemical intensive and expensive. This review presents an in-depth analysis focusing on the rice straw-derived biochar (RSB) for removal of various types of contaminants in wastewater remediation. Pyrolysis is to date the most established technology to produce biochar. Subsequently, biochar is upgraded via physical, chemical or hybrid activation/modification techniques to enhance its adsorption capacity and robustness. Thus far, acid-modified RSB is able to remove metal ions and organic compounds, while magnetic biochar and electrochemical deposition have emerged as potential biochar modification techniques. Besides, temperature and pH are the two main parameters that affect the efficiency of contaminants removal by RSB. Lastly, the limitations of RSB in wastewater remediation are elucidated based on the current advancements of the field, and future research directions are proposed.
Collapse
Affiliation(s)
- Shin Ying Foong
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Pyrolysis Technology Research Group, Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Yi Herng Chan
- PETRONAS Research Sdn. Bhd. (PRSB), Lot 3288 & 3289, off Jalan Ayer Itam, Kawasan Institusi Bangi, 43000 Kajang, Selangor, Malaysia
| | - Bridgid Lai Fui Chin
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia; Energy and Environment Research Cluster, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Serene Sow Mun Lock
- CO(2) Research Center (CO2RES), Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Cia Yin Yee
- CO(2) Research Center (CO2RES), Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Chung Loong Yiin
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak (UNIMAS), 94300 Kota Samarahan, Sarawak, Malaysia; Institute of Sustainable and Renewable Energy (ISuRE), Universiti Malaysia Sarawak (UNIMAS), 94300 Kota Samarahan, Sarawak, Malaysia
| | - Wanxi Peng
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Su Shiung Lam
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Pyrolysis Technology Research Group, Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India.
| |
Collapse
|
41
|
Zhang X, Gao Z, Fan X, Tan L, Jiang Y, Zheng W, Han FX, Liang Y. A comparative study on adsorption of cadmium and lead by hydrochars and biochars derived from rice husk and Zizania latifolia straw. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:63768-63781. [PMID: 35461422 DOI: 10.1007/s11356-022-20263-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
In this study, hydrochars and biochars were prepared from rice husk (RH) and Zizania latifolia straw (ZL) at various pyrolysis temperatures as absorbents, for removing toxic ions from single and competitive solutions of cadmium (Cd) and/or lead (Pb). The adsorption efficiencies of Cd and Pb in both hydrochars and biochars were lower in the competitive solution than in the single solution, and the absorbents had a stronger affinity for Pb than for Cd. Compared to hydrochars, biochars showed more favorable Cd and Pb adsorption capacities in the single or competitive solutions, and the ZL biochars had the maximum adsorption capacity among them. The SEM and FTIR analyses suggest that the predominant adsorption mechanisms of biochars and hydrochars are surfaces monolayer adsorption, precipitation, complexation, and coordination with π electrons. However, hydrochars derived from ZL exhibited an optimal additional Pb adsorption capacity in the high-level (5 ~ 10 mg L-1 Cd and Pb) competitive solution. This extra Pb adsorption of hydrochars was likely attributed to the Si-O-Si groups and more bumpy structure. Zizania latifolia straw biochar had a huge potential removal of Cd or/and Pb, and applying hydrochars as absorbents was beneficial to the removal of Cd and Pb in polluted solutions.
Collapse
Affiliation(s)
- Xinyuan Zhang
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zixiang Gao
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoping Fan
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Li Tan
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yishun Jiang
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wanning Zheng
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Fengxiang X Han
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, MS, 39217, USA
| | - Yongchao Liang
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
42
|
Efficient Remediation of Cadmium Contamination in Soil by Functionalized Biochar: Recent Advances, Challenges, and Future Prospects. Processes (Basel) 2022. [DOI: 10.3390/pr10081627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Heavy metal pollution in soil seriously harms human health and animal and plant growth. Among them, cadmium pollution is one of the most serious issues. As a promising remediation material for cadmium pollution in soil, functionalized biochar has attracted wide attention in the last decade. This paper summarizes the preparation technology of biochar, the existing forms of heavy metals in soil, the remediation mechanism of biochar for remediating cadmium contamination in soil, and the factors affecting the remediation process, and discusses the latest research advances of functionalized biochar for remediating cadmium contamination in soil. Finally, the challenges encountered by the implementation of biochar for remediating Cd contamination in soil are summarized, and the prospects in this field are highlighted for its expected industrial large-scale implementation.
Collapse
|
43
|
Hosny M, Fawzy M, Eltaweil AS. Phytofabrication of bimetallic silver-copper/biochar nanocomposite for environmental and medical applications. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 316:115238. [PMID: 35576706 DOI: 10.1016/j.jenvman.2022.115238] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/15/2022] [Accepted: 05/02/2022] [Indexed: 05/28/2023]
Abstract
In the current study, a novel, green, low-cost, and sustainable path for the phyto-fabrication of Ag-Cu biochar nanocomposite (Ag-Cu/biochar) by Atriplex halimus biomass and aqueous extract is described. Surface plasmon resonance peaks were detected at 450 nm and 580 nm signifying the formation of both silver and copper nanoparticles, respectively on the biochar surface. XRD analysis confirmed the crystal structure of the phytosynthesized Ag-Cu/biochar whereas FT-IR, SEM, EDX, and XPS analyses confirmed the successful phytofabrication of the composite. Ag and Cu nanoparticles loaded on the biochar surface were almost spherically-shaped with a particle size ranging from 25 nm to 45 nm. Zeta potential of -25.5 mV showed the stability of Ag-Cu/biochar. The potential of this novel nanocomposite in the removal of doxycycline (DOX) was evident under different conditions as it reached nearly 100% under the optimum reaction conditions (DOX concentration; 50 ppm, pH; 9, a dose of Ag-Cu/biochar; 0.01 g, temperature; 25 °C, and H2O2 concentration; 100 mM). The promising regeneration of Ag-Cu/biochar was evident as the removal efficiency was 81% after 6 consecutive cycles. Ag-Cu/biochar was also shown an excellent antimicrobial activity against gram-negative bacteria as well a promising antioxidant activity.
Collapse
Affiliation(s)
- Mohamed Hosny
- Green Technology Group, Environmental Sciences Department, Faculty of Science, Alexandria University, 21511, Alexandria, Egypt.
| | - Manal Fawzy
- Green Technology Group, Environmental Sciences Department, Faculty of Science, Alexandria University, 21511, Alexandria, Egypt; National Egyptian Biotechnology Experts Network, National Egyptian Academy for Scientific Research and Technology, Egypt.
| | - Abdelazeem S Eltaweil
- Department of Chemistry, Faculty of Science, Alexandria University, 21321, Alexandria, Egypt.
| |
Collapse
|
44
|
Lim Y, Kim B, Jang J, Lee DS. Buckwheat hull-derived biochar immobilized in alginate beads for the adsorptive removal of cobalt from aqueous solutions. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129245. [PMID: 35739764 DOI: 10.1016/j.jhazmat.2022.129245] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/10/2022] [Accepted: 05/25/2022] [Indexed: 05/23/2023]
Abstract
Buckwheat hull-derived biochar (BHBC) beads were synthesized by immobilizing biochar powder with alginate. Due to their cation-exchange ability, abundant functional groups, microporous structure, and large surface area, BHBC beads were successfully applied for the removal of cobalt from aqueous solution. The adsorption behavior followed pseudo-second-order kinetics and the Langmuir isotherm model showed a better fit to adsorption data than the Freundlich or Temkin isotherm models. The maximum adsorption capacity of BHBC beads was 24.0 mg/g at pH 5, 35 °C, and an initial cobalt concentration of 1.0 g/L, which was higher than those of previously reported natural resource-based adsorbents. In a fixed-bed column study, the effects of operating parameters such as flow rate, bed height, and bed diameter were investigated. Both the Thomas and Yoon-Nelson models were applied to the experimental data to predict the breakthrough curves using nonlinear regression. Overall, BHBC beads can be used as an efficient adsorbent for removal of radioactive cobalt from aqueous solution.
Collapse
Affiliation(s)
- Youngsu Lim
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Bolam Kim
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Jiseon Jang
- R&D Institute of Radioactive Wastes, Korea Radioactive Waste Agency, 174 Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic of Korea.
| | - Dae Sung Lee
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.
| |
Collapse
|
45
|
Nie M, Li Y, Jia A, Zhang J, Ran W, Yang CZS, Wang W. Cadmium removal from wastewater by foamed magnetic solid waste-based sulfoaluminate composite biochar: preparation, performance, and mechanism. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.08.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
46
|
Meng Z, Huang S, Xu T, Lin Z, Wu J. Competitive adsorption, immobilization, and desorption risks of Cd, Ni, and Cu in saturated-unsaturated soils by biochar under combined aging. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128903. [PMID: 35460995 DOI: 10.1016/j.jhazmat.2022.128903] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/06/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
This study investigated saturated-unsaturated soils, which were closer to the actual field conditions than traditional batch and column experiments with large water-soil ratios. The competitive adsorption, immobilization, and desorption of Cd, Ni, and Cu in soils treated with original and KMnO4-modified biochars were investigated under combined aging. Moreover, the employment of a three-layer mesh method enabled the independent analysis of heavy metals on biochar and soil during aging. The results showed that the order of biochar adsorption capacities was Cd > Cu > Ni in tested soils, and competing with Ni and Cu enhanced the Cd adsorption on biochars. Cd desorbed most with the CaCl2 solution while Ni and Cu desorbed most with citric acid. Modified biochar had improved immobilization effects compared to original biochar, and maintained the most stable remediation effects. The maximum variations in the stable Cd fraction during aging were 7.21%, 13.26%, and 14.71% for modified biochar, original biochar, and CK, respectively. However, for Ni and Cu, the biochar application reduced the residual fraction and increased desorption by citric acid. However, the stable fractions of Ni and Cu remained dominant, accounting for 83.28-97.85% and 86.31-98.96%, respectively.
Collapse
Affiliation(s)
- Zhuowen Meng
- State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, Wuhan 430072, China.
| | - Shuang Huang
- State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, Wuhan 430072, China.
| | - Ting Xu
- State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, Wuhan 430072, China
| | - Zhongbing Lin
- State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, Wuhan 430072, China
| | - Jingwei Wu
- State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
47
|
Effect of Pore Structure on CO2 Adsorption Performance for ZnCl2/FeCl3/H2O(g) Co-Activated Walnut Shell-Based Biochar. ATMOSPHERE 2022. [DOI: 10.3390/atmos13071110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Walnut shell is a very potential biochar precursor because of its wide source, low cost, and easy structure modification. In this paper, the co-activation method of FeCl3, ZnCl2 and H2O(g) was adopted to prepare walnut shell-based biochar with high microporosity and the effect of pore structure on CO2 adsorption performance at different temperatures was investigated. The prepared biochar had a larger specific surface area (2647.8 m2 g−1), satisfactory micropore area (2008.7 m2 g−1) and high total pore volume (2.58 cm3 g−1). At 273 K and 298 K, its CO2 adsorption capacity was 4.79 mmol g−1 and 3.20 mmol g−1, respectively. Particularly, CO2 adsorbed uptake on biochar was strongly sensitive to their narrow micropore volume, instead of the total specific surface area, total pore volume, and micropore specific surface area. The optimal pore size beneficial for CO2 adsorption was 0.33–0.82 nm at 273 K, but the optimal pore size was 0.33–0.39 nm at 298 K. It provides theoretical guidance for future material preparation and selection, and FeCl3, ZnCl2 and H2O(g) may be effective biochar activators.
Collapse
|
48
|
Jia Y, Li J, Zeng X, Zhang N, Wen J, Liu J, Jiku MAS, Wu C, Su S. The performance and mechanism of cadmium availability mitigation by biochars differ among soils with different pH: Hints for the reasonable choice of passivators. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 312:114903. [PMID: 35313152 DOI: 10.1016/j.jenvman.2022.114903] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/08/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
The performances of passivation materials mitigating Cadmium (Cd) bioavailability considerably vary with the pH condition of Cd-contaminated soils. However, less information was available for the method of improving Cd passivation efficiency taking into account the pH of the targeted soil. Furthermore, the underlying mechanism of Cd availability mitigation in soils with different pH has not been clearly explored. In this study, cotton straw biochar (CSB) and its modified products using NaOH (CSB-NaOH) were prepared and applied in two kinds of Cd-contaminated soils with different pH. It was found that CSB-NaOH was more effective than CSB in regulating the Cd bioavailability in the acid soil, while the opposite tendency was observed in alkaline soil. The difference of the Cd passivation efficiency is correlated with contributions of various Cd-biochar binding mechanisms, which cation exchange mechanism is largely eliminated for CSB-NaOH. The interaction of Cd with CSB/CSB-NaOH was further evidenced through characterization results of Scan Electron Microscopy (SEM), X-Ray Diffraction (XRD), Fourier-transformed infrared spectroscopy (FTIR) and X-ray Photoelectron spectroscopy (XPS). Characterization results proved that carboxyl, hydroxyl and ethyl groups were the key functional groups involved in Cd passivation. XPS results showed that Cd binding methods varied between CSB and CSB-NaOH, which Cd2+ and Cd-O were the main form of Cd binding to CSB while Cd-O was the main form on CSB-NaOH. In this work, it was demonstrated that in acid soil, pH change caused by biochar plays a more significant role in controlling the Cd bioavailability, while in alkaline soil, the strength of the Cd-biochar interaction is more decisive for the Cd passivation efficiency. This work provides information on how to select the suitable passivator to decrease the Cd bioavailability in terms of different soil pH and property.
Collapse
Affiliation(s)
- Yuehui Jia
- The Beijing Key Laboratory of New Technology in Agricultural Application, Department of Agricultural Resource and Environment, Beijing University of Agriculture, Beinong Road 7, Huilongguan, Changping District, Beijing, 102206, China
| | - Jing Li
- The Beijing Key Laboratory of New Technology in Agricultural Application, Department of Agricultural Resource and Environment, Beijing University of Agriculture, Beinong Road 7, Huilongguan, Changping District, Beijing, 102206, China; Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South St., Haidian District, Beijing, 100081, China
| | - Xibai Zeng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South St., Haidian District, Beijing, 100081, China
| | - Nan Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South St., Haidian District, Beijing, 100081, China.
| | - Jiong Wen
- Yueyang Agricultural Environment Scientific Experiment Station, Ministry of Agriculture, Yueyang, 414000, China
| | - Jie Liu
- The Beijing Key Laboratory of New Technology in Agricultural Application, Department of Agricultural Resource and Environment, Beijing University of Agriculture, Beinong Road 7, Huilongguan, Changping District, Beijing, 102206, China
| | - Md Abu Sayem Jiku
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South St., Haidian District, Beijing, 100081, China
| | - Cuixia Wu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South St., Haidian District, Beijing, 100081, China
| | - Shiming Su
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South St., Haidian District, Beijing, 100081, China.
| |
Collapse
|
49
|
Behera M, Tiwari N, Banerjee S, Sheik AR, Kumar M, Pal M, Pal P, Chatterjee RP, Chakrabortty S, Tripathy SK. Ag/biochar nanocomposites demonstrate remarkable catalytic activity towards reduction of p-nitrophenol via restricted agglomeration and leaching characteristics. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128616] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
50
|
Research Progress on Adsorption of Arsenic from Water by Modified Biochar and Its Mechanism: A Review. WATER 2022. [DOI: 10.3390/w14111691] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Arsenic (As) is a non-metallic element, which is widely distributed in nature. Due to its toxicity, arsenic is seriously harmful to human health and the environment. Therefore, it is particularly important to effectively remove arsenic from water. Biochar is a carbon-rich adsorption material with advantages such as large specific surface area, high porosity, and abundant functional groups, but the original biochar has limitations in application, such as limited adsorption capacity and adsorption range. The modified biochar materials have largely enhanced the adsorption capacity of As in water due to their improved physicochemical properties. In this review, the changes in the physicochemical properties of biochar before and after modification were compared by SEM, XRD, XPS, FT-IR, TG, and other characterization techniques. Through the analysis, it was found that the adsorbent dosage and pH are the major factors that influence the As adsorption capacity of the modified biochar. The adsorption process of As by biochar is endothermic, and increasing the reaction temperature is conducive to the progress of adsorption. Results showed that the main mechanisms include complexation, electrostatic interaction, and precipitation for the As removal by the modified biochar. Research in the field of biochar is progressing rapidly, with numerous achievements and new types of biochar-based materials prepared with super-strong adsorption capacity for As. There is still much space for in-depth research in this field. Therefore, the future research interests and applications are put forward in this review.
Collapse
|