1
|
Pan H, Li Y, Zhu W, Wu C, Gao M, Wang Q, Wang Y, Lu Y, Rao Y, Yu C. Oriented bioconversion of food waste to lactic acid for external carbon source production: Microbial communities and comparison of denitrification performance. BIORESOURCE TECHNOLOGY 2024; 416:131739. [PMID: 39491737 DOI: 10.1016/j.biortech.2024.131739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/20/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
The lactic acid fermentation supernatant of food waste (FSFW-LA) is an excellent carbon source for denitrification regarding performance and cost. Currently, limited attention has been paid to the concentration of lactic acid and its composition in the final product. In this study, five types of liquid carbon sources were obtained under optimal conditions to ensure a high concentration and percentage of the target products. Among them, FSFW-LA reached 68.1 g/L (81.8 %, w/w) of lactic acid by oriented bioconversion and possessed denitrification parameters closest to sodium acetate. Under the combined long-term operation of the SBR system with domestic wastewater, the TN and COD removal in the effluent after the addition of FSFW-LA stabilized at 96 % and 84 %, respectively, similar to sodium acetate (96 % and 85 %). Overall, the denitrification capabilities of high-quality FSFW-LA were explored, providing details on economic carbon source production.
Collapse
Affiliation(s)
- Haichuan Pan
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yuan Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Wenbin Zhu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Chuanfu Wu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory On Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Ming Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory On Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China.
| | - Qunhui Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory On Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Ying Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, Guangdong, China; Chengdu Environmental Investment Group Co., Ltd, Chengdu 610042, Sichuan, China
| | - Yuan Lu
- Chengdu Environmental Investment Group Co., Ltd, Chengdu 610042, Sichuan, China
| | - Yi Rao
- Chengdu Environmental Investment Group Co., Ltd, Chengdu 610042, Sichuan, China
| | - Chunjiang Yu
- Chengdu Environmental Investment Group Co., Ltd, Chengdu 610042, Sichuan, China
| |
Collapse
|
2
|
Li Z, Huang T, Wu W, Xu X, Wu B, Zhuang J, Yang J, Shi H, Zhang Y, Wang B. Carbon slow-release and enhanced nitrogen removal performance of plant residue-based composite filler and ecological mechanisms in constructed wetland application. BIORESOURCE TECHNOLOGY 2024; 402:130795. [PMID: 38705213 DOI: 10.1016/j.biortech.2024.130795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/22/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Stable carbon release and coupled microbial efficacy of external carbon source solid fillers are the keys to enhanced nitrogen removal in constructed wetlands. The constructed wetland plant residue Acorus calamus was cross-linked with poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) to create composite solid carbon source fillers (Ac-BDPs). The study demonstrated the slow release of carbon sources from Ac-BDPs with 35.27 mg/g under an average release rate of 0.88 mg/(g·d). Excellent denitrification was also observed in constructed wetlands with Ac-BDPs. Moreover, the average removal rate of nitrate nitrogen (NO3--N) was increased by 1.94 and 3.85 times of the blank groups under initial NO3--N inputs of 5 and 15 mg/L, respectively. Furthermore, the relatively high abundances of nap, narG, nirKS, norB, qnorZ and nosZ guaranteed efficient denitrification performance in constructed wetlands with Ac-BDPs. The study introduced a reliable technique for biological nitrogen removal by using composite carbon source fillers in constructed wetlands.
Collapse
Affiliation(s)
- Zhaoyang Li
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Tianyin Huang
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; Key Laboratory of Suzhou Sponge City Technology, Suzhou 215009, China
| | - Wei Wu
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; Key Laboratory of Suzhou Sponge City Technology, Suzhou 215009, China
| | - Xiaoyi Xu
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; Key Laboratory of Suzhou Sponge City Technology, Suzhou 215009, China.
| | - Bingdang Wu
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; Key Laboratory of Suzhou Sponge City Technology, Suzhou 215009, China
| | - Jinlong Zhuang
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Jingjing Yang
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; Key Laboratory of Suzhou Sponge City Technology, Suzhou 215009, China
| | - Haochen Shi
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yang Zhang
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Bin Wang
- College of Civil Engineering, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
3
|
Wang L, Hao X, Jiang T, Li X, Yang J, Wang B. Feasibility of in-situ sludge fermentation coupled with partial denitrification: Key roles of initial organic matters and alkaline pH. BIORESOURCE TECHNOLOGY 2024; 401:130730. [PMID: 38657825 DOI: 10.1016/j.biortech.2024.130730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/18/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024]
Abstract
Achieving partial denitrification (PD) by using fermentation products extracted from waste activated sludge (WAS) rather than commercial organic matters is a promising approach for providing nitrite for anammox, while sludge reduction could also be realized by WAS reutilization. This study proposed an In-situ Sludge Fermentation coupled with Partial Denitrification (ISFPD) system and explored its performance under different conditions, including initial pH, nitrate concentrations, and organic matters. Results showed that nitrite production increased with the elevation of initial pH (from 6 to 9), and the highest nitrate-to-nitrite transformation ratio (NTR) reached 77% at initial pH 9. The PD rates and NTR were observed to be minimally influenced by initial nitrate concentrations. Acetate was preferred by denitrifying bacteria, while macromolecules such as proteins necessitated be hydrolyzed to be suitable for further utilization. The insights gained through this study paved the way for efficient nitrite production and sustainable WAS reutilization in harmony.
Collapse
Affiliation(s)
- Lu Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiang Hao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Tan Jiang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiaodi Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jiayi Yang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Bo Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
4
|
Li L, Liao Q, Liu C, Zhang T, Liu C, Chen Z, Gao R, He Q. Enhanced biological wastewater treatment supplemented with anaerobic fermentation liquid of primary sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119086. [PMID: 37801945 DOI: 10.1016/j.jenvman.2023.119086] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/03/2023] [Accepted: 08/30/2023] [Indexed: 10/08/2023]
Abstract
The wastewater treatment performance in an inverted A2/O reactor supplemented with fermentation liquid of primary sludge was explored comparing to commercial carbon sources sodium acetate and glucose. Similar COD removal rate was observed with the effluent COD stably reaching the discharge standard for those 3 carbon sources. However, the fermentation liquid distributed more carbon source in the anaerobic zone. Fermentation liquid and sodium acetate tests achieved better nitrogen removal rate than glucose test. The fermentation liquid test showed the best biological phosphorus removal performance with the effluent phosphorus barely reaching the discharge standard. The microbial community characterization revealed that the fermentation liquid test was dominated by phylum Proteobacter in all the anoxic, anaerobic and aerobic zones. Denitrifying phosphorus accumulating organisms (PAOs) (i.e., genera Dechloromonas and unclassified_f__Rhodocyclaceae) were selectively enriched with high abundances (over 20%), which resulted in improved phosphorus removal efficiency. Moreover, the predicted abundances of enzymes involved in nitrogen and phosphorus removal were also enhanced by the fermentation liquid.
Collapse
Affiliation(s)
- Lin Li
- Key laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Qiqi Liao
- Key laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Caihong Liu
- Key laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China.
| | - Tanglong Zhang
- Key laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Chang Liu
- Key laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Ziwei Chen
- Key laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Rui Gao
- Key laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Qiang He
- Key laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China.
| |
Collapse
|
5
|
Jiang B, Lu D, Shen X, Zhang F, Xu X, Zhu L. Magnetite enhancing sludge anaerobic fermentation to improve wastewater biological nitrogen removal: Pilot-scale verification. CHEMOSPHERE 2023:139197. [PMID: 37315850 DOI: 10.1016/j.chemosphere.2023.139197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/06/2023] [Accepted: 06/10/2023] [Indexed: 06/16/2023]
Abstract
Alkaline anaerobic fermentation for acids production has been considered as an effective method to recover resources from waste activated sludge, and magnetite could improve the quality of fermentation liquid. Here we have constructed a pilot-scale sludge alkaline anaerobic fermentation process enhanced by magnetite to produce short chain fatty acids (SCFAs), and used them as external carbon sources to improve the biological nitrogen removal of municipal sewage. Results showed that the addition of magnetite could significantly increase the production of SCFAs. The average concentration of SCFAs in fermentation liquid reached 3718.6 ± 101.5 mg COD/L and the average concentration of acetic acid reached 2368.8 ± 132.1 mg COD/L. The fermentation liquid enhanced by magnetite were used in the mainstream A2O process, and the TN removal efficiency increased from 48.0% ± 5.4%-62.2% ± 6.6%. The main reason is that the fermentation liquid is conducive to the succession of microbial community in the denitrification process, increasing the abundance of denitrification functional bacteria and realizing the enhancement of denitrification process. Besides, magnetite can promote the activity of enzyme to enhance biological nitrogen removal. Finally, the economic analysis showed that magnetite enhancing sludge anaerobic fermentation was economically and technically feasible to promote biological nitrogen removal of municipal sewage.
Collapse
Affiliation(s)
- Binbin Jiang
- College of Environmental & Resource Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Donghui Lu
- College of Environmental & Resource Sciences, Zhejiang University, 310058, Hangzhou, China; PowerChina Huadong Engineering Corporation, 311122, Hangzhou, China
| | - Xiaojia Shen
- Haining Water Investment Group Co., Ltd, Jiaxing, 314400, China
| | - Fan Zhang
- Environmental Protection Bureau of Changxing County, Huzhou, 313100, China
| | - Xiangyang Xu
- College of Environmental & Resource Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Liang Zhu
- College of Environmental & Resource Sciences, Zhejiang University, 310058, Hangzhou, China.
| |
Collapse
|
6
|
Hwan Kang K, Yang M, Raza S, Son H, Park YK, Wang J, Kim YM. Mitigation of N 2O emissions via enhanced denitrification in a biological landfill leachate treatment using external carbon from fermented sludge. CHEMOSPHERE 2023; 335:139114. [PMID: 37270035 DOI: 10.1016/j.chemosphere.2023.139114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/20/2023] [Accepted: 06/01/2023] [Indexed: 06/05/2023]
Abstract
The effects of an external carbon source (C-source) on the mitigation of N2O gas (N2O(g)) emissions from landfill leachate were investigated via enhanced denitrification using anaerobically fermented sewage sludge. Anaerobic fermentation of sewage sludge was conducted under thermophilic conditions with progressively increasing organic loading rates (OLR). Optimal conditions for fermentation were determined based on the efficiency of hydrolysis and the concentrations of sCOD and volatile fatty acids (VFAs) as follows: at an OLR of 40.48 ± 0.77 g COD/L·d with 1.5 days of solid retention time (SRT), 14.68 ± 0.59% of efficiency of hydrolysis, 14.42 ± 0.30 g sCOD/L and 7.85 ± 0.18 g COD/L of VFAs. Analysis of the microbial community in the anaerobic fermentation reactor revealed that degradation of sewage sludge might be potentially affected by proteolytic microorganisms producing VFAs from proteinaceous materials. Sludge-fermentate (SF) retrieved from the anaerobic fermentation reactor was used as the external C-source for denitrification testing. The specific nitrate removal rate (KNR) of the SF-added condition was 7.54 mg NO3-N/g VSS·hr, which was 5.42 and 2.43 times higher than that of raw landfill leachate (LL) and a methanol-added condition, respectively. In the N2O(g) emission test, the liquid phase N2O (N2O-N(l)) of 20.15 mg N/L was emitted as N2O(g) of 19.64 ppmv under only LL-added condition. On the other hand, SF led to the specific N2O(l) reduction rate (KN2O) of 6.70 mg N/g VSS hr, resulting in mitigation of 1.72 times the N2O(g) emission compared to under the only-LL-added condition. The present study revealed that N2O(g) emissions from biological landfill leachate treatment plants can be attenuated by simultaneous reduction of NO3-N and N2O(l) during enhanced denitrification via a stable supply of an external C-source retrieved from anaerobically fermented organic waste.
Collapse
Affiliation(s)
- Kyeong Hwan Kang
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Minseok Yang
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Shahbaz Raza
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Heejong Son
- Busan Water Authority, Gimhae-si, Gyeongsangnam-do, 50804, Republic of Korea
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Dongdaemun-gu, Seoul, 02504, Republic of Korea
| | - Jinhua Wang
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, China.
| | - Young Mo Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul, 04763, Republic of Korea.
| |
Collapse
|
7
|
Yin Z, Wang J, Wang M, Liu J, Chen Z, Yang B, Zhu L, Yuan R, Zhou B, Chen H. Application and improvement methods of sludge alkaline fermentation liquid as a carbon source for biological nutrient removal: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162341. [PMID: 36828064 DOI: 10.1016/j.scitotenv.2023.162341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Alkaline fermentation can reduce the amount of waste activated sludge and prepare sludge alkaline fermentation liquid (SAFL) rich in short-chain fatty acids (SCFAs), which can be used as a high-quality carbon source for the biological nutrient removal (BNR) process. This review compiles the production method of SAFL and the progress of its application as a BNR carbon source. Compared with traditional carbon sources, SAFL has the advantages of higher efficiency and economy, and different operating conditions can influence the yield and structure of SCFAs in SAFL. SAFL can significantly improve the nutrient removal efficiency of the BNR process. Taking SAFL as the internal carbon source of BNR can simultaneously solve the problem of carbon source shortage and sludge treatment difficulties in wastewater treatment plants, and further reduce the operating cost. However, the alkaline fermentation process results in many refractory organics, ammonia and phosphate in SAFL, which reduces the availability of SAFL as a carbon source. Purifying SCFAs by removing nitrogen and phosphorus, directly extracting SCFAs, or increasing the amount of SCFAs in SAFL by co-fermentation or combining with other pretreatment methods, etc., are effective measures to improve the availability of SAFL.
Collapse
Affiliation(s)
- Zehui Yin
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Jihong Wang
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Mingran Wang
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Jiandong Liu
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhongbing Chen
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha, Suchdol 165 00, Czech Republic
| | - Boyu Yang
- Nanjing Academy of Resources and Ecology Sciences, No. 606, Ningliu Road, Jiangbei New District, 210044 Nanjing, China
| | - Lixin Zhu
- Sinopec Nanjing Chemical Industries Co., Ltd., No. 189, Geguan Road, Liuhe District, Jiangsu 210048, Nanjing, China
| | - Rongfang Yuan
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China.
| | - Beihai Zhou
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Huilun Chen
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
8
|
Liu C, Cheng K. Molasses fermentation to produce low-cost carbon source for denitrification. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2138781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Chang Liu
- Hubei Key Laboratory of Ecological Restoration for River-Lakes and Algal Utilization, College of Resources and Environmental Engineering, Hubei University of Technology, Wuhan, Hubei, PR China
| | - Kai Cheng
- Hubei Key Laboratory of Ecological Restoration for River-Lakes and Algal Utilization, College of Resources and Environmental Engineering, Hubei University of Technology, Wuhan, Hubei, PR China
| |
Collapse
|
9
|
Zhai Z, Su J, Ali A, Xu L, Wahid F. Biological denitrification potential of cellulase-producing Cupriavidus sp. ZY7 and denitrifying Aquabacterium sp. XL4 at low carbon-to-nitrogen ratio: Performance and synergistic properties. BIORESOURCE TECHNOLOGY 2022; 360:127600. [PMID: 35820558 DOI: 10.1016/j.biortech.2022.127600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
This study emphasizes on the cellulase production characteristics of strain ZY7 and its collaboration with nitrate-dependent ferrous oxidizing (NFO) strain XL4 to achieve efficient denitrification at low carbon-to-nitrogen (C/N) ratio. Results indicated that the denitrification efficiency increased from 65.47 to 97.99% at 24 h after co-culture at C/N of 1.0. Three-dimensional fluorescence excitation-emission matrix (3D-EEM) showed significant changes in the intensity of soluble microbial products (SMP), fulvic-like materials, and aromatic proteins after co-culture. Bio-precipitates were characterized by Scanning electron microscope (SEM), Fourier transform infrared spectrometer (FTIR), and X-ray diffraction (XRD), which showed that cellulose structure was disrupted and the metabolites were potential carbon source for denitrification. In addition, cellulase activity suggested that the hydrolysis of β-1,4-glycosidic bonds and oligosaccharides may be the rate-limiting steps in cellulose degradation. This work promoted the understanding of denitrification characteristics of co-culture and expanded the application of cellulose degrading bacteria in sewage treatment.
Collapse
Affiliation(s)
- Zhenyu Zhai
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Fazli Wahid
- Department of Agriculture, The University of Swabi, Swabi 23561, Pakistan
| |
Collapse
|
10
|
Fu X, Hou R, Yang P, Qian S, Feng Z, Chen Z, Wang F, Yuan R, Chen H, Zhou B. Application of external carbon source in heterotrophic denitrification of domestic sewage: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:153061. [PMID: 35026271 DOI: 10.1016/j.scitotenv.2022.153061] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
The carbon source is essential as an electron donor in the heterotrophic denitrification process. When there is a lack of organic carbon sources in the system, an external carbon source is needed to improve denitrification efficiency. This review compiles the effects of liquid, solid and gaseous carbon sources on denitrification. Sodium acetate has better denitrification efficiency and is usually the first choice for external carbon sources. Fermentation by-products have been demonstrated to have the same denitrification efficiency as sodium acetate. Compared with cellulose-rich materials, biodegradable polymers have better and more stable denitrification performance in solid-phase nitrification, but their price is higher than the former. Methane as a gaseous carbon source is studied mainly by aerobic methane oxidation coupled with denitrification, which is feasible using methane as a carbon source. Liquid carbon sources are better controlled and utilized than solid carbon sources and gaseous carbon sources. In addition, high carbon to nitrogen ratio and hydraulic retention time can promote denitrification, while high dissolved oxygen (DO>2.0 mg L-1) will inhibit the denitrification process. At the same time, high temperature is conducive to the decomposition of carbon sources by microorganisms. This review also considers the advantages and disadvantages of different carbon sources and cost analysis to provide a reference for looking for more economical and effective external carbon sources in the future.
Collapse
Affiliation(s)
- Xinrong Fu
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Rongrong Hou
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Peng Yang
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Shengtao Qian
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhuqing Feng
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhongbing Chen
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha, Suchdol 165 00, Czech Republic
| | - Fei Wang
- School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Haidian District, 100875, Beijing, China
| | - Rongfang Yuan
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China.
| | - Huilun Chen
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China.
| | - Beihai Zhou
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
11
|
Mahmoud A, Hamza RA, Elbeshbishy E. Enhancement of denitrification efficiency using municipal and industrial waste fermentation liquids as external carbon sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151578. [PMID: 34774960 DOI: 10.1016/j.scitotenv.2021.151578] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/28/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
The addition of external carbon source for nitrogen removal from wastewater is an essential step in wastewater treatment. In this study, various external carbon sources from the fermentation of primary sludge (PS), thickened waste activated sludge (TWAS), food waste (FW), bakery processing & kitchen waste (BP + KW), fat, oil, & grease (FOG), and whey powder (WP) were successfully employed for wastewater denitrification. Methanol and acetate were also used as controls due to their common use as external carbon sources for wastewater denitrification. The denitrification performance and kinetics such as the specific denitrification rate (SDNR), denitrification potential (PDN), and the biomass yield were studied at a constant TVFA as COD/N ratio of 5 for all substrates. Complete denitrification was achieved with a NO3--N removal efficiency of 98-99%, and no NO2- accumulation was observed at the end of the experiments for all substrates. The results revealed that the liquid fermentation filtrates exhibited higher SDNRs than methanol and acetate. This indicates the high organic matter utilization efficiency and better denitrification ability of fermentation filtrates over conventional carbon sources. WP exhibited the highest SDNR of 17.6 mg NOx - N/g VSS/h, which is approximately four times that of methanol (4.6 mg NOx - N/g VSS/h). The other carbon sources had SDNRs two to three times higher than that of methanol. However, the fermentation filtrates exhibited higher biomass yields of 0.26-0.37 mg VSS/mg COD compared to methanol of 0.21 mg VSS/mg COD, which could lead to higher sludge handling costs. Moreover, methanol exhibited higher PDN of 0.25 g N/g COD compared to all the fermentation filtrates.
Collapse
Affiliation(s)
- Ali Mahmoud
- Environmental Research Group for Resource Recovery, Department of Civil Engineering, Faculty of Engineering, Architecture and Science, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada
| | - Rania Ahmed Hamza
- Environmental Research Group for Resource Recovery, Department of Civil Engineering, Faculty of Engineering, Architecture and Science, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada.
| | - Elsayed Elbeshbishy
- Environmental Research Group for Resource Recovery, Department of Civil Engineering, Faculty of Engineering, Architecture and Science, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada
| |
Collapse
|
12
|
Shi J, Su J, Ali A, Chen C, Xu L, Yan H, Su L, Qi Z. Nitrate removal under low carbon to nitrogen ratio by modified corn straw bioreactor: Optimization and possible mechanism. ENVIRONMENTAL TECHNOLOGY 2022:1-11. [PMID: 35200110 DOI: 10.1080/09593330.2022.2046649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
ABSTRACTThe removal of nitrate (NO3--N) from water bodies under the conditions of poor nutrition and low carbon to nitrogen (C/N) ratio is a widespread problem. In this study, modified corn stalk (CS) was used to immobilize Burkholderia sp. CF6 with cellulose-degrading and denitrifying abilities. The optimal operating parameters of the bioreactor were explored. The results showed that under the hydraulic retention time (HRT) of 3 h and the C/N ratio of 2.0, the maximum nitrate removal efficiency was 96.75%. In addition, the organic substances in the bioreactor under different C/N ratios and HRT were analyzed by three-dimensional fluorescence excitation-emission mass spectrometry (3D-EEM), and it was found that the microorganisms have high metabolic activity. Scanning electron microscope (SEM) showed that the new material has excellent immobilization effects. Fourier transform infrared spectrometer (FTIR) showed that it has potential as a solid carbon source. Through high-throughput sequencing analysis, Burkholderia sp. CF6 was observed as the main bacteria present in the bioreactor. These research results showed that the use of waste corn stalks waste provides a theoretical basis for the advanced treatment of low C/N ratio wastewater.
Collapse
Affiliation(s)
- Jun Shi
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
| | - Changlun Chen
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
| | - Huan Yan
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
| | - Lindong Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- Xi'an Yiwei Putai Environmental Protection Company Limited, Xi'an, People's Republic of China
| | - Zening Qi
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- Xi'an Yiwei Putai Environmental Protection Company Limited, Xi'an, People's Republic of China
| |
Collapse
|
13
|
Zhou Y, Li X. Effect of addition sites on bioaugmentation of tea polyphenols-NZVI/PE composite packing: Nitrogen removal efficiency and service life. CHEMOSPHERE 2022; 290:133258. [PMID: 34914945 DOI: 10.1016/j.chemosphere.2021.133258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Although efficient improvement of the nitrogen removal from wastewater by adding iron was achieved in wastewater process, the influence mechanism of addition sites is unclear. The study was based on the A/O-MBR treating simulated domestic wastewater, and tea polyphenol-nano zero-valent iron/polyethylene packing (TP-NZVI/PE) was added into the anoxic tank, aerobic tank and membrane effluent end of the process, respectively. The effect of the different addition sites on the nitrogen removal performance of A/O-MBR was investigated. Combine with the corrosion rate of NZVI on the packing surface to optimize TP-NZVI/PE addition site. The enhancement mechanism of TP-NZVI/PE under different addition site was explored through the calculation of the materials balance (carbon, nitrogen, phosphorus). The results showed that the pollutant removal of A/O-MBR was significantly increased with the TP-NZVI/PE added. In particular, the TP-NZVI/PE was added into the aerobic tank, and the pollutant removal rate was increased 31.71% (TN) and 53.00% (total phosphorus), respectively. Meanwhile, the service life of TP-NZVI/PE in the aerobic tank was 66 days. The anti-oxidation and dispersion of NZVI was improved with the encapsulation of tea polyphenols and support of packing, and it also played a certain slow-release effect, so that the service life of NZVI was further prolonged in aerobic condition. Combined with the material balance analysis, the result showed that the environmental structure made diversity in the aerobic tank by added the TP-NZVI/PE, and the simultaneous nitrification and denitrification process was achieved. The dependence of the denitrification process on the carbon source was greatly reduced. Besides, it promoted the adsorption and chemical precipitation process of the system for phosphor pollutant and achieved the denitrifying phosphorus removal performance.
Collapse
Affiliation(s)
- Yu Zhou
- Laboratory of Environmental Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi, 214122, PR China; Jiangsu Cooperative Innovation Center of Technology and Material of Water Treatment, Suzhou, 215009, PR China
| | - Xiufen Li
- Laboratory of Environmental Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi, 214122, PR China; Jiangsu Cooperative Innovation Center of Technology and Material of Water Treatment, Suzhou, 215009, PR China.
| |
Collapse
|
14
|
Chen X, Tang R, Qi S, A R, Ali IM, Luo H, Wang W, Hu ZH. Inhibitory effect of oil and fat on denitrification using food waste fermentation liquid as carbon source. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149111. [PMID: 34303253 DOI: 10.1016/j.scitotenv.2021.149111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/31/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Food waste fermentation liquid (FWFL) can be used as carbon source to enhance nitrogen removal in wastewater treatment. However, the influence of lipid, a common component of food waste, on denitrification remains unclear. In this study, the effect of oil and fat on denitrification process and the underlying mechanisms were investigated using synthetic oil- and fat-bearing carbon source and verified with real FWFL. In the batch experiment, oil and fat had no obvious influence on denitrification, but in the semi-continuous experiment, the denitrification rate in the oil- and fat-added assays decreased to 44% and 38% of that in the control, respectively, after 45 batches. Oil and fat caused sludge floatation, and the floating sludge thickness increased with the continuous operation. Oil/fat-sludge aggregates were observed in the floating sludge and limited gas release. Microbial community analysis indicated that oil and fat did not affect denitrifying bacteria abundance. Limitation of mass transfer might be the main reason for the inhibition of oil and fat on denitrification. In the real FWFL experiment, the denitrification rate in the original and emulsified oil-bearing FWFL decreased to 24% and 56% of that in the demulsifying FWFL, respectively, after 45 batches. These findings indicate the necessity of removing lipids when FWFL is used as denitrification carbon source.
Collapse
Affiliation(s)
- Xihong Chen
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
| | - Rui Tang
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
| | - Shasha Qi
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
| | - Rong A
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
| | - Ibrahim Mohamed Ali
- Department of Soil and Water, Faculty of Agriculture, Benha University, Egypt
| | - Haiping Luo
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Wei Wang
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, Hefei 230024, China
| | - Zhen-Hu Hu
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
15
|
Qi S, Lin J, Wang Y, Yuan S, Wang W, Xiao L, Zhan X, Hu Z. Fermentation liquid production of food wastes as carbon source for denitrification: Laboratory and full-scale investigation. CHEMOSPHERE 2021; 270:129460. [PMID: 33423004 DOI: 10.1016/j.chemosphere.2020.129460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/19/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
Nitrogen removal is often limited in municipal wastewater treatment due to the insufficiency of carbon source, and using food wastes fermentation liquid as carbon source could cut down the cost of operating and recycle food wastes. Food wastes fermentation liquid production and application as external carbon source were explored in the laboratory and full-scale system in this study. In the laboratory scale, lactic acid and VFAs were the main components of fermentation liquid, and the highest total chemical oxygen demand (TCOD) production was obtained with activated sludge as inoculum. The yield of TCOD was around 794.5 mg/g TSfed and NH4+-N was 3.5 mg/g TSfed. The denitrification rate with fermentation liquid was slightly lower than acetic acid and butyric acid, but higher than lactic acid and starch. In the full-scale investigation, the TCOD concentration in fermentation liquid was in the range of 6.9-12.8 g/L and the ratio of TCOD/inorganic nitrogen was 210.5-504.5:1. NO3--N removal increased from 52.1% to 94.2% after fermentation liquid addition, confirming the potentiality of food wastes fermentation liquid replace the commercial carbon source in wastewater treatment plants.
Collapse
Affiliation(s)
- Shasha Qi
- School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China; Civil Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Ireland
| | - Jinbiao Lin
- School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China; Hong Kong Hua Yi Design Consultants (S.Z.) LTD., Shenzhen, 518057, China
| | - Yulan Wang
- School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Shoujun Yuan
- School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Wei Wang
- School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Liwen Xiao
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, Dublin 2, Ireland
| | - Xinmin Zhan
- Civil Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Ireland
| | - Zhenhu Hu
- School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China; Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
16
|
Liu J, Su J, Ali A, Wang Z, Chen C, Xu L. Role of porous polymer carriers and iron-carbon bioreactor combined micro-electrolysis and biological denitrification in efficient removal of nitrate from wastewater under low carbon to nitrogen ratio. BIORESOURCE TECHNOLOGY 2021; 321:124447. [PMID: 33302007 DOI: 10.1016/j.biortech.2020.124447] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/17/2020] [Accepted: 11/21/2020] [Indexed: 06/12/2023]
Abstract
In the current research, a novel bioreactor composed of porous polymer carriers and iron-carbon (PPC@FeC) was established through bacterial immobilized technology. The influence of key factors was studied on the nitrate removal performance of the PPC@FeC bioreactor. The experimental results showed that the highest removal rate of nitrate (7.33 mg L-1 h-1) can be obtained with short hydraulic retention times (HRT = 2.0 h) and low carbon-to-nitrogen ratio (C/N = 2.0). The results of high-throughput sequencing revealed that Zoogloea sp. L2 was the dominant strain in bioreactor responsible for nitrate removal. Moreover, the SEM and XRD analyses elucidated that Fe2O3 was the final product produced by the interaction of FeC and strain L2. These findings showed that the PPC@FeC bioreactor successfully combined micro-electrolysis and biological denitrification, which exhibited great potential in removing nitrate effectively from wastewater under low C/N ratio and short HRT conditions.
Collapse
Affiliation(s)
- Jian Liu
- Xi'an University of Architecture and Technology University of South Australia An De College, Xi'an 710055, China
| | - Junfeng Su
- Xi'an University of Architecture and Technology University of South Australia An De College, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Changlun Chen
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
17
|
Zhang Y, Lu G, Zhang H, Li F, Li L. Enhancement of nitrogen and phosphorus removal, sludge reduction and microbial community structure in an anaerobic/anoxic/oxic process coupled with composite ferrate solution disintegration. ENVIRONMENTAL RESEARCH 2020; 190:110006. [PMID: 32784019 DOI: 10.1016/j.envres.2020.110006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/16/2020] [Accepted: 07/25/2020] [Indexed: 06/11/2023]
Abstract
Waste activated sludge (WAS) was disintegrated by composite ferrate solution (CFS) in this work, and the effect of CFS disintegrated sludge supernatant (CDSS), as a supplementary carbon source, on enhancement of nitrogen and phosphorus removal and sludge reduction in an AAO-CFSSDR (Anaerobic/Anoxic/Oxic combined with CFS-Sludge disintegration reactor) process was evaluated. The results showed that CDSS was easily utilizable by the denitrification bacteria due to the high content of readily biodegradable substrates. When compared with the AAO process, the operation results of AAO-CFSSDR suggested that the removal efficiencies of TN, NH4+-N and TP increased from 71.15, 79.23 and 85.52% to 85.05, 87.70 and 90.06%, respectively; and the sludge was reduced by 34.79%. The 16SrRNA high-throughput sequencing results showed that the introduction of CDSS weakened the microbial diversity but enhanced the microbial richness; and the abundance of bacteria related to the removal of nitrogen and phosphorus, increased in the AAO-CFSSDR process.
Collapse
Affiliation(s)
- Yanping Zhang
- School of Civil Engineering and Transportation, Hebei University of Technology, Tianjin, 300401, China.
| | - Guangping Lu
- School of Civil Engineering and Transportation, Hebei University of Technology, Tianjin, 300401, China
| | - Huichun Zhang
- Department of Civil Engineering, Case Western Reserve University, Cleveland, OH, 44106, United States
| | - Fen Li
- College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin, 150000, Heilongjiang, China
| | - Lingchong Li
- School of Civil Engineering and Transportation, Hebei University of Technology, Tianjin, 300401, China
| |
Collapse
|
18
|
Liu W, Yang H, Ye J, Luo J, Li YY, Liu J. Short-chain fatty acids recovery from sewage sludge via acidogenic fermentation as a carbon source for denitrification: A review. BIORESOURCE TECHNOLOGY 2020; 311:123446. [PMID: 32402992 DOI: 10.1016/j.biortech.2020.123446] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
Wastewater treatment plants face the problem of a shortage of carbon source for denitrification. Acidogenic fermentation is an effective method for recovering short-chain fatty acids (SCFAs) as a carbon source from sewage sludge. Herein, the most recent advances in SCFAs production from primary sludge and waste activated sludge are systematically summarised and discussed. New technologies and problems pertaining to the improvement in SCFAs availability in fermentation liquids, including removal of ammoniacal nitrogen and phosphate and extraction of SCFAs from fermentation liquids, are analysed and evaluated. Furthermore, studies on the use of recovered SCFAs as a carbon source for denitrification are reviewed. Based on the above summarisation and discussion, some conclusions as well as perspectives on future studies and practical applications are presented. In particular, the recovery of carbon source/bioenergy from sewage sludge must be optimised considering nutrient removal/recovery simultaneously.
Collapse
Affiliation(s)
- Wen Liu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Huan Yang
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Jiongjiong Ye
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Jinghuan Luo
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Yu-You Li
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Jianyong Liu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China.
| |
Collapse
|
19
|
Xu H, Guo L, Guo S, Wang Y, She Z, Gao M, Zhao Y, Jin C. Effect of magnetic powder on denitrification using the sludge alkaline fermentation liquid as a carbon source. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:7712-7719. [PMID: 31879873 DOI: 10.1007/s11356-019-07461-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 12/19/2019] [Indexed: 06/10/2023]
Abstract
This work evaluates the impact of the different concentrations of Fe3O4 on nitrate removal and organic matters utilization in the sequencing batch reactors (SBRs) using the sludge alkaline digestion supernatant as external sludge carbon source. Results indicated that the optimal concentration of Fe3O4 was 1 g/L for enhancing denitrification with NO3--N removal efficiency of 93.13% (up to a 11.93% increase) and without NO2--N accumulation after 18 days. The changes of soluble chemical oxygen demand (SCOD), protein, and carbohydrate during denitrification process were analyzed to gauge the utilization of sludge fermentation products by denitrifiers. The SCOD was consumed for organisms involved in NO3--N removal and the Fe3O4 could promote the utilization of carbohydrate better than protein by denitrifiers during denitrification process. Denitrification rate (VDN) and the nitrate-to-nitrite transformation ratio (NTR), as the kinetics parameters, were also investigated in different concentrations of Fe3O4.
Collapse
Affiliation(s)
- Haiqing Xu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Liang Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China.
- Key Laboratory of Marine Environmental and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Shiliang Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yi Wang
- Department of Biosystems Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Zonglian She
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Mengchun Gao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yangguo Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Chunji Jin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
20
|
Enhancing Nitrate Removal from Waters with Low Organic Carbon Concentration Using a Bioelectrochemical System—A Pilot-Scale Study. WATER 2020. [DOI: 10.3390/w12020516] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Assessments of groundwater aquifers made around the world show that in many cases, nitrate concentrations exceed the safe drinking water threshold. This study assessed how bioelectrochemical systems could be used to enhance nitrate removal from waters with low organic carbon concentrations. A two-chamber microbial electrosynthesis cell (MES) was constructed and operated for 45 days with inoculum that was taken from a municipal wastewater treatment plant. A study showed that MES can be used to enhance nitrate removal efficiency from 3.66% day−1 in a control reactor to 8.54% day−1 in the MES reactor, if a cathode is able to act as an electron donor for autotrophic denitrifying bacteria or there is reducing oxygen in a cathodic chamber to favor denitrification. In the MES, greenhouse gas emissions were also lower compared to the control. Nitrous oxide average fluxes were −639.59 and −9.15 µg N m−2 h−1 for the MES and control, respectively, and the average carbon dioxide fluxes were −5.28 and 43.80 mg C m−2 h−1, respectively. The current density correlated significantly with the dissolved oxygen concentration, indicating that it is essential to keep the dissolved oxygen concentration in the cathode chamber as low as possible, not only to suppress oxygen’s inhibiting effect on denitrification but also to achieve better power efficiency.
Collapse
|
21
|
Wang Z, Chen C, Liu H, Hrynshpan D, Savitskaya T, Chen J, Chen J. Effects of carbon nanotube on denitrification performance of Alcaligenes sp. TB: Promotion of electron generation, transportation and consumption. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 183:109507. [PMID: 31386942 DOI: 10.1016/j.ecoenv.2019.109507] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/14/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
Multi-walled carbon nanotubes (MWCNTs) promote biodegradation in water treatment, but the effect of MWCNT on denitrification under aerobic conditions is still unclear. This investigation focused on the denitrification performance of MWCNT and its toxic effects on Alcaligenes sp. TB which showed that 30 mg/L MWCNTs increased NO3- removal efficiency from 84% to 100% and decreased the NO2-and N2O accumulation rates by 36% and 17.5%, respectively. Nitrite reductase and nitrous oxide reductase activities were further increased by 19.5% and 7.5%, respectively. The mechanism demonstrated that electron generation (NADH yield) and electron transportation system activity increased by 14.5% and 104%, respectively. Cell membrane analysis found that MWCNT caused an increase in polyunsaturated fatty acids, which had positive effects on electron transportation and membrane fluidity at a low concentration of 96 mg/kg but caused membrane lipid peroxidation and impaired membrane integrity at a high concentration of 115 mg/L. These findings confirmed that MWCNT affects the activity of Alcaligenes sp. TB and consequently enhances denitrification performance.
Collapse
Affiliation(s)
- Zeyu Wang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Cong Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Huan Liu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Dzmitry Hrynshpan
- Research Institute of Physical and Chemical Problems, Belarusian State University, Minsk, 220030, Belarus
| | - Tatsiana Savitskaya
- Research Institute of Physical and Chemical Problems, Belarusian State University, Minsk, 220030, Belarus
| | - Jianmeng Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Jun Chen
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310021, PR China.
| |
Collapse
|
22
|
Huang J, Chen S, Wu W, Chen H, Guo K, Tang J, Li J. Insights into redox mediator supplementation on enhanced volatile fatty acids production from waste activated sludge. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:27052-27062. [PMID: 31317436 DOI: 10.1007/s11356-019-05927-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 07/08/2019] [Indexed: 06/10/2023]
Abstract
Anaerobic fermentation of waste activated sludge (WAS) for recycling valuable volatile fatty acids (VFAs) is economically valuable. However, the fermentation of protein is the rate-limiting step of VFA production with WAS as a substrate. In this study, the effect of redox mediators (RMs, i.e., riboflavin and lawsone) on the enhanced production of VFAs from WAS was investigated. The results indicate that both RMs can promote protein-dependent fermentation, increasing maximum VFA accumulation by 43.9% and 42.5% respectively. In cultures supplemented with riboflavin and lawsone, VFA production was highly correlated with protease activities, but not with α-glucosidase activities. This implies that RMs affected the redox reaction of amino acids degradation, resulting in an increased release of ammonia. Sequencing results showed that RMs significantly increased the abundance of bacteria related to VFA fermentation and protein/amino acid degradation at the levels of phylum, class, order, family, and even genus.
Collapse
Affiliation(s)
- Jingang Huang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Room 112, The 6th Building, Hangzhou, 310018, People's Republic of China.
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| | - Susu Chen
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Room 112, The 6th Building, Hangzhou, 310018, People's Republic of China
| | - Weihong Wu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Room 112, The 6th Building, Hangzhou, 310018, People's Republic of China.
| | - Huiping Chen
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Room 112, The 6th Building, Hangzhou, 310018, People's Republic of China
| | - Kangyin Guo
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Room 112, The 6th Building, Hangzhou, 310018, People's Republic of China
| | - Junhong Tang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Room 112, The 6th Building, Hangzhou, 310018, People's Republic of China
| | - Jianping Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
| |
Collapse
|